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Abstract.
The influence of nonlinear effects in stochastic equations of motion with both additive

and multiplicative noises is studied. Non-Markovian stochastic dynamics are compared with
their corresponding Markovian (local approximations). Non-Markovian effects are implemented
through Ornstein-Uhlenbeck and exponential damped harmonic dissipative kernels.

1. Introduction
In nature, almost as a rule, most systems behave as open ones, interacting with an

environment (e.g., a thermal bath). Interactions with an environment lead, as a consequence, to
dissipative as well-stochastic effects. Nonlinear stochastic dynamical systems are of interest in
many different areas of investigation with applications in diverse fields, like in the study of double
quantum dot systems (1; 2; 3), in fundamental aspects of biological systems (4; 5; 6), in studies
concerning domain growth processes (7) and in the context of field theory models (8; 9). In
double quantum dot systems, for instance, the importance resides in their possible applications
in nanotechnology and quantum information processing (10; 11). Fluctuation and dissipation
appear in these systems due to quantum operations and measurements and these can change the
physics of the system’s coherent evolution. Recently, many investigations have been performed
using different forms of noises and interactions that can change the coherent evolution of electrons
in the double dot quantum system.

Another area of interest is the application of stochastic models in biological systems. In
this case, for example, one of the aspects studied is the issue of how cooperative behavior may
emerge. The competition among different growth and death processes and the inclusion of
external mechanisms can influence the global properties of these systems. Many efforts have
been dedicated to provide a theoretical framework for understanding the cooperative behavior.
Another example that has been a focus of attention in recent years is the analysis of tumor
growth. In this case, a population of proliferating cells can be considered as a stochastic
dynamical system far from equilibrium. To obtain a better understanding of the behavior
of this type of phenomenon is necessary to include stochastic effects and, ideally, spatial
correlations (12).
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Nonlinear stochastic dynamical systems also appear in the context of field theory models (8;
9). It has been shown in that case how generalized equations of motion can be derived
microscopically, resulting is a complicated structure depending on the form of the couplings
involved between the fields, like between some background configuration we are interested in
the dynamics and other fields and degrees of freedom taken as an environment or (quantum or
thermal) bath fields.

One common way for describing all the above mentioned forms of evolution is by means
of generalized stochastic Langevin-like equations of motion. These non-deterministic equations
of motion are used in many applications of interest, including, e.g., for the study the system
mentioned above. These equations, for example, can simulate Brownian motion in (classical and
quantum) statistical mechanics and in other areas of physical interest (13; 14).

A classical example of a system whose dynamics is modeled by a Langevin equation of motion
is the one that describes the Brownian motion of a classical particle described by a coordinate
q, unitary mass and subjected to a potential V (q) (as usual dots mean derivative with respect
to time and V ′[q(t)] ≡ dV/dq),

q̈(t) + ηq̇(t) + V ′[q(t)] = ξ(t) , (1)

where η is a Markovian (local) dissipation term and ξ(t) is a stochastic term describing a white
noise with Gaussian properties, satisfying (throughout this work we consider the Boltzmann
constant kB = 1)

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(t′)〉 = 2Tηδ(t − t′) . (2)

Approaches with Langevin equations like Eq. (1) and their generalizations, are used in
different contexts, e.g. in classical statistical mechanics to study problems with dissipation and
noise, to determine how order parameters equilibrate and in the studies like dynamic scaling and
dynamic critical phenomena (15; 16). Though extensively used, equations of the form of Eq. (1)
and with noise properties as given by Eq. (2), can only be considered phenomenologically. This
is because it implicitly assumes that the environment interacts instantaneously with the system.
This is a physically unacceptable situation that violates causality, since the environment bath
has no memory time.

In a microscopic description, the effects of the environment on some select variable, taken
as the system, dissipation and stochastic noise terms are expected to originate from scattering
events, thus giving origin to finite interaction times that reflect in the system’s equation of
motion as being nonlocal, i.e., they have non-Markovian terms with finite memory. The simplest
archetype of this is the description of the system-environment as being modeled by linearly
coupled harmonic oscillators (17) (for a general review, see, e.g., Ref. (18)), which also become
to be known as Caldeira-Leggett type of models (19; 20; 21).

In this work our objective is to study the nonlinear effects on the dynamics governed by a
non-Markovian generalized Langevin equation when compared to the approximated Markovian
form. We will consider some of the most common forms for the dissipation kernels. These forms
for the dissipation kernels include, for example, the one that describes an Ornstein-Uhlenbeck
(OU) process (22) and the exponential damped harmonic (EDH) kernel (23; 24). We study both
the cases of additive and multiplicative noises, including system dependent dissipation terms,
according to the fluctuation dissipation theorem (for details see (25)). A detailed numerical
analysis is made when the various regimes of non-linearity are considered.

2. Non-Markovian Generalized Langevin Equation (GLE)
Here we study a GLE describing the interaction of a system, denoted by a variable φ (which
can be e.g. the coordinate of a particle) interacting with a thermal bath. The GLE studied here
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has the generic form

φ̈(t) + φn(t)
∫ t

t0

dt′φn(t′)K(t − t′) φ̇(t′) + V ′(φ) = φn(t) ξ(t) , (3)

where n = 0, 1, with n = 0 giving the standard GLE of additive noise, while for n = 1
gives a multiplicative form of GLE. The inclusion of multiplicative noise and system dependent
dissipation is motivated from field theory calculations (for details, see e.g. Refs. (8; 9)). The
potential in Eq. (3) is considered to be one with quadratic and quartic terms, given by

V (φ) =
m2

2
φ2 +

λ

4
φ4 , (4)

where m2 and λ are parameters depending on the details of the system under study. The
parameter m can be associated with the system’s frequency and λ characterizes the degree of
nonlinearity.

Non-Markovian and nonlinear GLEs of the form of Eq. (3) are very difficult to solve in
general. Analytical methods can only be used in linear regimes (26), like in the additive noise
case and when the quartic term in the potential can be neglected. In this case, the equation is
in the form of a convolution, thus easily solvable through Laplace transform for instance (26).
Otherwise, in more general cases, we must resort to numerical methods. This is the approach we
follow in this paper in order to analyze the dynamics obtained from the full nonlinear Eq. (3).
Though there are some specific numerical methods using e.g. Fourier transform that may apply
for equations with non-Markovian kernels of generic form (27), we still would like to be able
to solve equations like Eq. (3) through standard methods, which are less numerically expensive
than other alternatives. Recently, the authors (26) have demonstrated the reliability of using
a fourth-order Runge-Kutta method when solving GLE of the OU and EDH forms. The way
this can be done stems from the fact that non-Markovian equations with kernels of those forms
can be replaced by a system of completely local first-order differential equations, as described
in details in (25; 26; 28).

The local version of the GLE that we will use to contrast the Markovian and the non-
Markovian dynamics of the system is obtained by the following approximation (29; 30)

φn(t)
∫ t

t0

dt′D(t − t′)φn(t′) φ̇(t′) '

φ2n(t) φ̇(t)
∫ t

−∞
dt′D(t − t′) → η φ2n(t) φ̇(t) , (5)

where η is the local dissipation coefficient. Our local version of the GLE is then given by

φ̈(t) + η φ2n(t) φ̇(t) + V ′(φ) = φn(t) ξ(t) . (6)

In this work we concentrate our study in equations like Eq. (3) with non-Markovian kernels
of either the OU type (22),

DOU (t − t′) = η γe−γ(t−t′) , (7)

or with the EDH type (23; 24),

DH(t − t′) = η e−γ(t−t′) Ω
2
0

2γ

{
cos[Ω1(t − t′)] +

γ

Ω1
sin[Ω1(t − t′)]

}
, (8)

XI Latin American Workshop on Nonlinear Phenomena IOP Publishing
Journal of Physics: Conference Series 246 (2010) 012029 doi:10.1088/1742-6596/246/1/012029

3



where in the equations above, η sets the magnitude of the dissipation, γ sets the relaxation time
for the bath kernels, τ = 1/γ, and Ω0 gives the oscillation time scale in the case of the EDH
kernel. In Eq. (8), Ω2

1 = Ω2
0 − γ2, and so, in the EDH case the values of γ and Ω0 are restricted

such that Ω2
1 ≥ 0.

The GLE equations with kernels of those forms can be replaced by a system of completely
local first order differential equations (25; 26; 28). For the OU case,

φ̇ = y ,

ẏ = −V ′(φ) + φnwOU + φnξOU ,

ẇOU = −γwOU − DOU (0)φny ,

ξ̇OU = −γ
[
ξOU −

√
2Tη ζ

]
, (9)

while for the EDH case we obtain

φ̇ = y ,

ẏ = −V ′(φ) + φnwH + φnξH ,

ẇH = u − 2γwH − DH(0) φny ,

u̇ = −Ω2
0wH + ḊH(0) φny − 2γDH(0) φny ,

ξ̇H = z ,

ż = −2γz − Ω2
0ξH + Ω2

0

√
2Tη ζ . (10)

In the above equations, DOU (0) = η γ, DH(0) = η Ω2
0/(2γ) and ḊH(0) = 0, which follow from

Eqs. (7) and (8). As before, the additive noise case is when n = 0 is used in Eqs. (9) and (10),
while n = 1 is for the multiplicative noise case. ζ is a white Gaussian noise.

We take the initial time as t0 = 0 and define new variables u(t) and w(t) by (25; 26):

wOU,H(t) = −
∫ t

0
dt′φn(t′)DOU,H(t − t′)φ̇(t′) , (11)

and

u(t) =
∫ t

0
dt′

[
dkH(t − t′)

dt′
− γDH(t − t′)

]
dφ(t′)

dt′
. (12)

In Ref. (25) we have studied how the variation of the various parameters of the noise and
dissipation kernels affect the dynamics. Here, we study how the variation of the non-linearity
parameter λ affects overall system dynamics and its effects in the applicability or not of the
simpler Markovian approximation. Of course, we expect that both dynamics, the non-Markovian
and the Markovian ones to have the same asyntoptic state because, by definition, the system
reaches the equilibrium, but the question we want to address here is, given a set of model
parameters representing the system and the thermal bath to which it is coupled to, for how
long can we expect the memory effects due to the non-Markovian terms to be important and
if the discrepancy between the Markovian and non-Markovian dynamics changes if we vary the
λ parameter ? Since the representation of the dynamics in a local form as given by Eq. (6)
represents a considerable simplification, for both a numerical point of view, or for analytical
analysis (when it is possible), when compared, e.g., with the full nonlocal, nonlinear integro-
differential stochastic equation (3), these then become important questions to be accessed for
most practical studies that make use of nonlinear stochastic equations of motion.

In the following we will study how the non-linearity (when the quartic constant term in the
potential is varied) change the equilibration and thermalization of the stochastic system.
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∆φOU add ∆φOU mult ∆φEDH add ∆φEDH mult

0.0 20 19 44 35
5.0 15 14 32 38
15.0 11 10 23 75

Table 1. The time scale (in units of 1/m),using η = 1.0, for the non-Markovian dynamics to
approach the Markovian one, within a precision of 10−3 for the differences defined in Eq. (13).

3. Numerical Results
Let us now turn to our numerical results for the Markovian and non-Markovian dynamics of
the system. Numerical simulations of the system of differential first-order equations, Eqs. (9)
and (10), for the non-Markovian GLE with OU and EDH kernels, respectively, are compared
with those obtained through the local approximation given by Eq. (6). All our simulations
were performed with 300, 000 realizations over the noise and we have integrated all differential
equations using a standard fourth-order Runge-Kutta method with a time stepsize of δt = 0.001,
which was found to be more than enough for both numerical stability and also for numerical
precision (as determined in Ref. (26), these values already assure an overall numerical error
always smaller than about one percent, which suffices for our comparison purposes set here).
In all our simulations we have also used the initial conditions φ(0) = 1 and φ̇(0) = 0. The
time in all our evolutions is in units of the (inverse of the) frequency for the system (which
is equivalent to consider m = 1 throughout). Comparisons between the Markovian and non-
Markovian dynamics are made changing the degree of non-linearity of the system’s potential.
The other model parameters are kept fixed.

3.1. The dynamics of the system
Let us first consider the analysis of the dynamics for φ. In Fig. 1 we plot side by side, using
η = 1, our results for the difference between the Markovian and non-Markovian dynamics, which
can be estimated by defining the quantities below:

∆ϕ = 〈φ〉non−Markovian − 〈φ〉Markovian . (13)

In Eq. 13, 〈φ〉 is the ensemble averaged macroscopic system variable φ(t), where the average
is over the noise realizations. In Fig. 2, we perform the same numerical computation, but using
η = 10.0. The results from the plots shown in Figs. 1 and 2 are useful to determine within
which time scale the Markovian and non-Markovian dynamics become sufficiently close (within
to some given precision) and how the non-linearity of the system influences this time scale. The
results for these time scales for the different simulations we have performed, for the Markovian
dynamics and for the non-Markovian dynamics with the two types of memory kernels, are given
in tables 1 and 2.

The effect of changing λ is clear: The larger is λ, the more pronounced are the memory effects,
resulting in a strong difference with respect to the local approximation. As expected, at some
sufficient long time, the two dynamics, Markovian and non-Markovian approximate each other.
This can also be seen in the case where we have plotted the correlation 〈φ2(t)〉 for both OU and
EDH cases. There is another interesting aspect of our results. If we look at Fig. 2, we can see
that the larger is λ, the faster the difference between Markovian and non-Markovian dynamics
seems to tend to zero. It occurs more explicitly in the EDH cases (top panels). However, note
that the behavior shown in Fig. 1 is exactly the opposite: the larger is λ, the slower the difference
between Markovian and non-Markovian dynamics reduces.
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Figure 1. The time evolution for ∆φ = 〈φ〉non−Markovian − 〈φ〉Markovian fixing η = 1.0 and
varying the λ parameter for (a) EDH additive noise case, (b) EDH multiplicative noise case, (c)
OU additive noise case and (d) OU multiplicative noise case. The other parameters used are:
T = 1.0, Ω0 = 1.0, m2 = 1.0 and γ = 0.5 (EDH case) or γ = 5.0 (OU case).

∆φOU add ∆φOU mult ∆φEDH add ∆φEDH mult

0.0 58 23 92 150
5.0 20 16 29 14
15.0 11 10 22 13

Table 2. The time scale (in units of 1/m),using η = 10.0, for the non-Markovian dynamics to
approach the Markovian one, within a precision of 10−3 for the differences defined in Eq. (13).

3.2. The thermalization and nonlinear effects
It is also useful to determine how the parameter λ influences the thermalization time for the
system when put in contact with the thermal bath at some temperature T . For this, let us
define an effective time dependent temperature for the system according to the equipartition of
kinetic energy:

Teff(t) = 〈φ̇2(t)〉 . (14)
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Figure 2. The time evolution for ∆φ fixing η = 10.0 and varying the λ parameter for (a) EDH
additive noise case, (b) EDH multiplicative noise case, (c) OU additive noise case and (d) OU
multiplicative noise case. The other parameters used are: T = 1.0, Ω0 = 1.0, m2 = 1.0 and
γ = 0.5 (EDH case) or γ = 5.0 (OU case).

From the plots shown in both Figs. 3 and 4 we can see how the non-linearity of the system
reflects in the thermalization of the system. Larger values of λ lead to a longer time for the
system to thermalize. Typically, for comparable λ values, in the additive case the system tends
to thermalize faster than in the multiplicative case. Also, we can see that the variation of λ
produces more striking changes in the thermalization time of the EDH case, in both additive
and multiplicative noise cases. In Tables 3 and 4 we give the approximate time (in units of 1/m)
for thermalization for all the cases studied above. For comparative purposes, we show in Fig. 5
the additive and multiplicative Markovian dynamics for the effective temperature Teff for both
η = 1.0 and η = 10.0.

4. Conclusions
In this work we have studied how the variation of the nonlinear parameter λ of the system’s
quartic potential term affects the discrepancy between the dynamics of a GLE, given by Eq. (3),
and the dynamics of its Markovian or local approximated form. We here have concentrated in
two forms for the non-Markovian memory kernel, the OU and EDH cases, and we have analyzed
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Figure 3. Time evolution for Teff. (a) EDH additive noise case, (b) EDH multiplicative noise
case, (c) OU additive noise case and (d) OU multiplicative noise case. The other parameters
used are: η = 1.0, T = 1.0, Ω0 = 1.0 and γ = 0.5 (EDH case) or γ = 5.0 (OU case).

τmarkov add τOU add τEDH add τmarkov mult τOU mult τEDH mult

0.0 7 8 146 32 47 200
5.0 7 17 180 40 54 650
15.0 8 36 500 70 115 2500

Table 3. The approximate time for thermalization for η = 1.0, in units of 1/m, for the
Markovian and non-Markovian dynamics, determined when (14) approaches the temperature of
the thermal bath.

the cases of additive and multiplicative noises in both cases.
Our results show that the Markovian approximation becomes less applicable as the value of

λ increases. Obviously, since these are all dissipative systems, we expect the two dynamics to
tend to each other asymptotically. We have then analyzed how long it takes for the discrepancy
between the non-Markovian and Markovian dynamics to tend to vanish. We have analyzed
the time for the difference ∆ϕ and also the thermalization time for each of the dynamics by
studying the behavior of the correlation function 〈φ̇2〉, which is associated to the temperature
of equilibration through the equipartition theorem. We have fixed the all other parameters and
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Figure 4. Time evolution for Teff. (a) EDH additive noise case, (b) EDH multiplicative noise
case, (c) OU additive noise case and (d) OU multiplicative noise case. The parameters used are:
η = 10.0, T = 1.0, Ω0 = 1.0 and γ = 0.5 (EDH case) or γ = 5.0 (OU case).

τmarkov add τOU add τEDH add τmarkov mult τOU mult τEDH mult

0.0 6 10 120 9 27 150
5.0 5 10 125 10 28 320
15.0 6 10 420 13 25 2300

Table 4. The approximate time for thermalization for η = 1.0, in units of 1/m, for the
Markovian and non-Markovian dynamics, determined when (14) approaches the temperature of
the thermal bath.

then analyzed the system dynamics varying λ for two cases of dissipation coefficient η. By
increasing λ, we have seen that in general, the larger is the λ parameter, the more important are
the memory effects, resulting in a strong difference with respect to the local approximation. This
difference is seen most notably at short times, obviously, but can last for considerable longer
times.

Another interesting aspect of our results is the antagonistic behavior of the system dynamics
face the variation of the magnitude of the dissipation parameter, η: looking at Fig. 2, we can see
that the larger is λ, the faster the difference between Markovian and non-Markovian dynamics
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Figure 5. Markovian time evolution for Teff varying the λ parameter. (a) Additive noise case
and (b) Multiplicative noise case for η = 1.0. (c) Additive noise case and (d) Multiplicative
noise case for η = 10.0 . The other parameters used are: T = 1.0 and m2 = 1.0.

seems to tend to zero. The case we have shown in Fig. 1 is exactly the opposite. In general,
the Markovian dynamics tend more and more to overestimate the time for thermalization as
the value of λ increases. We can see that this behavior is more accentuated in both additive
and multiplicative EDH cases. The results we have obtained here show that, in many cases, the
local approximation is not a reliable description of the true non-Markovian dynamics and this
becomes more accentuated as the dynamics becomes more nonlinear.
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