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ABSTRACT 

Using the collective field method we show that the d = 1 matrix model may be rewritten as 
a field theory of a single massless scalar field in two dimensions. The extra dimension, identified 
as the liouville mode, comes from the space of eigenvalues of the matrix. The extent of this 
extra dimension is proportional to the logarithm of the cosmological constant, which explains 
the logarithmic scaling violations of the model. The field theory has interactions only at the 
boundary. 

In critical string theory one considers con-
formally invariant matter coupled to two dimen­
sional gravity. Since the matter is critical, the 
couplings of the theory are constrained to have 
their fixed point (under renormalization group) 
values and strict conformai invariance further re­
stricts the central charge, and hence the dimen­
sion of the embedding space, to its critical value. 
These constraints are significant in critical strings. 
For a string moving in arbitrary backgrounds, 
the couplings of the two dimensional theory are 
essentially the background fields and the fixed 
point conditions turn out to be the classical equa­
tions of motion of the background space-time 
fields. In this way one uncovers "string field the­
ory". 

In non-critical strings, one is interested in 
coupling any matter to 2d gravity. The cou­
plings and the central charge are not constrained 
by anything and it appears that the background 
fields are not determined. In that case how does 
one recover "string field theory" in non-critical 
strings ? 

The answer lies in the realization that the 
Liouville mode acts as an extra dimension [ 1 ] (see 
also ) . Matter couplings get dressed by grav­
ity and thus acquire a dependence on the Li­
ouville mode. The point is that this renormal­
ization of the couplings is determined purely by 
the reparametrization invariance ( 3 ] f 4 1. Consider 
for example a string moving in d dimensions in 
the presence of some Tachyon background T(X). 
The background gets dressed by gravity 

into T(tp,X) and the above mentioned condi­
tion of reparametrization invariance then implies 
that 1 1 1 1 3 1 
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where 3Q 2 = 25 - d. This is the equation of mo­
tion of a scalar field in d + 1 dimensions with ip 
as the extra coordinate. The mass of the field 
T(<j), X) is (2 - Ç ) . For d = 1 the scalar particle 
is massless, while it becomes tachyonic for d > 1. 
For d ^ 25 there is no translation invariance in 
the (j) direction. At d = 25 there is complete sym­
metry and one has the standard 26-dimensional 
bosonic string 1 6 1. Furthermore for d > 25 the 
coordinate <p has a time-like signature, while for 
d < 25 it has a space-like signature. 

Let us now turn to the matrix model rep­
resentation of non-critical strings. Consider a 
N x N hermitian matrix field Mi,(x) living in 
d dimensions and having the action: 

where V(M) is some invariant potential. Then 

the feynman diagrams of this matrix field the­

ory may be regarded as discretizations of a two-

dimensional surface with cosmological constant 

0-

Matrix models may be used to provide a non-

perturbative definition of the continuum string. 
To do this one has to perform a double scaling 



limiti$] in which the cosmological constant g goes 
to its critical value gc where the partition func­
tion is singular, and N —> oo such that the com­
bination (g0c — go)a N = is held fixed. The 
value of the quantity a depends on the particular 
model. 

In the single matrix problem, the free energy 
is completely finite in the double scaling limit, 
the contribution of each genus being equally im­
portant^5. In contrast, the d = 1 model has fi­
nite contributions for genus 2 and higher, but 
has logarithmically divergent contributions for 
the genus 0 and genus 1 contributions171. This 
is usually referred to as the logarithmic scaling 
violations of the d = 1 model and had created a 
lot of confusion regarding the physical interpre­
tation of the model. 

In order to provide a physical interpretation 
of the matrix model one has to identify the li-
ouville mode. In the rest of the talk I will in-
dicate how to do that . We have shown that 
the d = 1 matrix model may be rewritten as a 
field theory of a single massless scalar field in 
two dimensions, the extra dimension (the liou-
ville mode) coming from the space of eigenval­
ues of the matrix MtJ. This "string field theory" 
provides a natural explanation of the scaling vio­
lations mentioned above. The scaling violations 
have also been explained from the point of view 
of the continuum theory equations (1) i n m . 

d = 1 Matrix Model 

In one dimension the absence of ultraviolet 
problems allows one to replace the gaussian prop­
agator of the action in (2) by a standard feynman 
propagator. Considering the single X as time, 
the quantum.theory is defined by the Hamilto-
nian: 

ground state energy is 

where p(e) is the density of states and is 
the fermi energy determined by the filling con­
dition f*F de p(e) = A r. Let the potential have 
a maximum at the point A c. Then criticality is 
obtained when the fermi energy I*F approaches 
V(XC) = i*Fc, which happens when the cosmolog­
ical constant g approaches a critical value gc. A 
crucial role is played by the quantity 

The double scaling limit is defined by 

In this limit the expression for the ground state 
energy has the expansion[7] 

We also write down the expression for the finite 
temperature free energy F for the singlet sector 
at temperature T[U] 

The higher terms are all finite in the double scal­
ing limit and respect the duality symmetry %T 
~ p The expressions (8) and (9) display the scal­
ing violations mentioned above. 

The Collective Field Theory 

The main idea of our work is to rewrite the 
problem in terms of invariant variables using the 
method of collective fields developed in I U ] . Cor­
relation functions of any number singlet opera­
tors may be written in terms of the collective 
fields, 

<P(x) is simply the density of eigenvalues A,. 
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acting on fermionic wave functions which are an­
tisymmetric under interchanges of the A-s. The 

where )3 = y . We shall restrict ourselves to the 
sector of the theory which is singlet under the 
symmetry group of U(N) rotations. In terms of 
the eigenvalues At of the matrix M , the hamilto-
nian becomes: 



liouville mode we have to study the fluctuations 
around the saddle point solution : 

It is convenient to introduce the variable q de­
fined by: 

Note that q is simply the time of flight of a clas­
sical particle moving in the potential v(x). In 
the following we will use the specific form of the 
potential 

The results are of course independent of the de­
tailed form of the potential provided the maxi­
mum is generic, i.e. the second derivative v"(xQ) 
is non-vanishing. 

The range of q is given by ~-L < q < L where 
4L is the time period of classical motion. In the 
critical limit L - » oo as L = — \lnfji (as follows 
from the saddle point solution above). The ac­
tion quadratic in the fluctuations 

We now make a change of variables from the 
fields Mjj to the collective fields <f>(x). The field 
(j>(x) is. of course, constrained to satisfy: 

The change of variables is made using the 
procedure of [ n ] . We also perform the rescalings 
x -> \ffix, (j) - * y//5 <f>. One finally gets a Hamil-
tonian l 8 ] 

where n(x) is the momentum conjugate to the 
field (f>{x), and 

In this hamiltonian, the constraint (11) which 
has a g instead of N on the right hand side, 
has been implemented by a lagrange multiplier 
JJLF. The lagrangian which follows from the above 
hamiltonian may be written as 

Leading Order 

It is clear that ,8 is the bare string coupling 
constant. In the leading order of the W K B ex­
pansion the free energy is dominated by the sad­
dle point solution for <f>(x) which is given by 

which is the lagrangian of a massless scalar field 
in two dimensions. This is exactly what we ex­
pected from the continuum equation (l)for d = 
1! In fact what we have found that q is precisely 
the liouville mode hidden in the matrix model. 

The boundary conditions on the fluctuation 
i>(q,t) are determined from the time indepen­
dence of the constraint, i.e. ^(/dx<f>(x)) = 0, 
which leads to Dirichlet boundary conditions on 
ip : ^(—£,2) = tp(L,t) = 0. The eigenfunctions 
are therefore 

while its integral must be equal to g. In the crit­
ical limit of small JJ, one may easily show that 
the energy evaluated at the saddle point coin­
cides with the leading order ground state energy 
in (8). 

The Liouville mode and the Spectrum 

The lagrangian density (15) is clearly the la­
grangian of a two dimensional field theory with 
x as the extra dimension. However x is not quite 
the liouville mode we are looking for. To find the 

with the frequencies 
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The propagator is then W K B correction obtained in 1 " 1 , and the collec­

tive field calculation in*1*1 

To obtained the free energy at finite temper­
ature one has to add to AEX the contribution of 
the thermal free energy of a massless scalar field 
in (1 -f 1) dimensions having the dispersion re­
lation (22). At temperature T the free energy is 
easily seen to be 

The total thermal free energy is obatined by adding 
(28) and (29) 

which displays duality and agrees with (9) . 

Thus the genus zero and one free energies are 
proportional to lap simply because the effective 
field theory lives in a box of length L ~ ln/i. 

Interactions 

To obtain the leading form of the interac­
tions, one has to compute the pieces of the collec­
tive field lagrangian which are cubic in ip. There 
are two contributions, one coming from the (f>3 

piece and one coming from the expansion of ^ in 
the kinetic energy. The full result is 

For our potential <j>o(q) may be obtained in terms 
of standard elliptic functions, and in the critical 
limit, one can show that 

The coupling has the exponential dependence on 
the liouville direction as has been found in the 
continuum theory in equation (1) . The coupling 
grows near the boundaries. To define a sensible 
continuum theory it is natural to require that the 
coupling at the boundary to be held fixed, which 
means 

For our potential so that 

We have found the double scaling law. 

which agrees with the corresponding term in (8) . 
The expression (27) also agrees with the leading 

Using the form of the potential (19) one can find 
the singular (as ^ —> 0) piece in the one loop free 
energy density to be 

One must also add the term AV in the original 
collective field lagrangian (15). To treat the var­
ious singular pieces, we make a change of vari­
ables in (25) to the original variable x. Using 
the definition of q(x) one finds that the singu­
larity as x —• y cancels between A F and (25), 
leaving with the finite answer 

where G{q,q}) isthe standard propagator follow­
ing from the action (20) 

Using (21) and (23) it is easy to check that the 
result is identical to that obtained from a direct 
calculation of the above correlator in the matrix 
model 1 1 3 1 . 

One loop free energies 

To obtain the one-loop (torus) free energy at 
zero temperature we need to calculate the ex­
pression 

In the scaling limit we have L —• oo and we 
define continuum momenta p = f f » The propa­
gator now becomes the standard massless scalar 
propagator in two dimensions. The dispersion 
relation becomes E2 — p2 = 0. 

Using the above basic two point function it is 
straightforward to evaluate the class of two-point 
functions in the matrix model 
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In the double scaling limit the interactions of 
the theory are nonzero only at the boundary, as 
is evident from (31). This immediately provides 
a qualitative explanation of why there are no hi/i 
factors in front of the higher genus contributions 
to the free energy. The higher genus contribu­
tions are purely due to interactions which are 
only at the boundary; therefore no overall vol­
ume factor is present. 

Conclusions 

What happened to the other modes of the 
string ? The answer is that for our "d = 1" the­
ory the gauge invariant degrees of freedom are : 
(i) a single massless scalar field and (ii) a set of 
discrete states with energies given by E = ^= for 

integers n. This follows from a BRST analysis [ i 6 ] 

The latter are not particle like states in two di­
mensions. Nevertheless, there does not seem to 
be any trace of them in the matrix model ! This 
is an unresolved question at the moment. Per­
haps the answer lies in a more careful treatment 
at the boundaries. Furthermore, it may be useful 
to obtain a gauge-invariant form of the theory 
with all the redundant variables present. Pre­
sumably the pure gauge degrees of freedom have 
automatically disappeared in our treatment be­
cause we have already chosen a direction of time 
by adopting the hamiltonian approach. 

While we have found that the qualitative form 
of the interaction agrees with that obtained from 
the continuum theory the interaction terms are 
not really identical, as is clear by comparing (30) 
and (1). It is not clear at this moment why this 
is so. This may be related to the non universal­
ity of the higher terms of the beta function from 
which (1) has been derived. 

Finally we note that recently the string field 
theory underlying the d = 1 matrix model has 
also been obtained starting from the second quan-

[17] 

tized fermion description . The results are in 
agreement with ours. 
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DISCUSSION 

Q. E. Brezin (ENS, Paris): (1) The master field is a 
pure ?7(iVr)-smglet. Therefore the finite temperature 
calculation is not really a compactified c = 1 string. 
(2) The master field Hamiltonian includes 1/N2 cor­
rections to the usual large-N limit. In order to recover 
the full double scaling limit, does one need to include 
further terms or is this all? 

A. (1) Dr. Das does agree with the comment. 
(2) Dr Das told us that in momentum space there 
are no further terms needed to recover the continuum 
theory (this is my understanding of what has been 
said!). 
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M U L T I - B A N D S T R U C T U R E A N D O R T H O G O N A L P O L Y N O M I A L S 

Chung-I Tan 
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A B S T R A C T 

We discuss the multi-band phase structure that arises in hermitian one-matrix models with 
bounded potentials having several local minima by relating orthogonal polynomial recursion coeffi­
cients Rn and Sn to the large-iV limit of the generating function F(z) = jj(trjz§). We show how 
periodicity structure in these coefficients naturally leads to multi-band structure, and in particular, 
we provide an explicit example of a three-band phase. We also briefly comment on the stability of 
the k = 2 pure gravity solution. 

I N T R O D U C T I O N 

Matrix models have proved to be a powerful 
tool for analyzing sums over random surfaces! 1 , 2 3 

Some of the more interesting features of non-critical 
strings have been derived from the large-N her­
mitian matrix models using polynomial potentials 
which are unbounded from belowf 3 ] Attempts have 
been made in regularizing these models by consider-

[4 5] 

ing bounded potentials of higher orders ' by mak­
ing potentials periodic thus leading to unitary ma­
trix models! 6 ' 7 1 In both cases, one must now face 
the question of tunneling, and one is led to the phe­
nomenon of multi-band structure, which was first 
observed and studied in the early eighties for uni­
tary matrix models? 8 1 

In this talk, we shall concentrate on discussing 
this phenomenon for hermitian one-matrix models 
by relating orthogonal polynomial recursion coeffi­
cients Rn and Sn to the large-N limit of the gen­
erating function F(z) = jf{trjz$). We show how 
periodicity structure in these coefficients naturally 
leads to multi-band structure and we provide an 
explicit example of a three-band phase. We also 
briefly comment on the k = 2 pure gravity solution. 

We are interested in the phase structure of the 
one-matrix model defined by the partition function 
Z = E~N2R = J d$ E~NTT where $ is an N x N 

Hermitian matrix and U = UL(<I>) = X ^ = I J-\?^J"> 
\j real. Unless otherwise stated, we consider \ i > 0 
and L even so that U is bounded from below and 
the partition function Z is well-defined. 

The k = 2 pure gravity solution also exists in 
the model U3 and in the "inverted Mexican-hat" 
C/4, both unbounded from below. Thus Ue is the 
simplest well-defined model containing a k = 2 so­
lution. Although much of our analysis is general, we 
have concentrated on the Ue model in Ref. 5. Cer­
tain aspects of the tree level phase structure of this 
model has recently been studied also by others.' 4 ' 
Other work on related questions includes discus­
sions of the impossibility of flowing from k = 3 to 
k — 2, and regulating Z by allowing complex cou-
plings, 

P H A S E D I A G R A M 

At the usual large-N limit (the tree level), the 
model is completely described in terms of the den­
sity of eigenvalues p(z) = jj J2iLi Kz ~ xi) where 
( £ I , £ 2 , . . . is the large-iV saddle point con­
figuration of eigenvalues of $ that dominates the 
integral after the SU(N) degrees of freedom are 
integrated out. The phase diagram indicates the 
region of coupling constant space where different 
types of solutions for p characterized by the num­
ber of bands on which p has support, are present. 
The solutions for p satisfy a saddle point equation, 
which is obtained by minimizing the free energy T = 
Ti + T 2 + T 3 , where I \ = / dzp{z)U{z) is the "po­
tential term", = — / fdzdz'p(z)]n\z — z'\p(z') is 

the "repulsion term", and = 7^/dzp(z) — lj is 

an additional term involving the "chemical poten­

tial" 7 to enforce the constraint J dzp(z) = 1. 
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If all couplings Xj are positive, U has a unique 
minimum at </> = 0. The saddle point solution for p 
then has a single finite band centered at the origin 
on which p has support. If, on the other hand, some 

, 1 < j < L — 1, are allowed to take on negative 
values, U has multiple local minima, and then p(z) 
can have support in more than one bands. 

Broadly speaking, when U has one minimum, 
one has the one-band phase, and in most of the re­
gions where it has two or three minima, one has two-
or three-band phase respectively. (The correspon­
dence is not exact because of the repulsion term.) 
For instance, for the symmetric quartic potential 

UA{4) = f ^ 2 + f ^ 4 > 3 > 0> o n e 1 S a l w a v s m a 

one-band phase for JI > 0. As /i turns sufficiently 
negative, one moves into a two-band phase. 

The phase diagram can also be determined us­
ing the Schwinger-Dyson equation satisfied by F(z): 
F{zf - U'(z)F(z) + b(z) = 0, where b{z) is a poly­
nomial. Its solution must satisfy the following con­
straints: (i) F(z) must have only real singularities in 
the complex z-plane (the eigenvalues of $ are real), 
(ii) it must be consistent with the large z expansion 
F(z) = \{l + ^ + . . . ) , and, (iii) it must lead to 
a density function that is positive semidefinite for 
real z. In terms of F(z), the spectral density p{z) 
for real z is given by 

where A ( z ) = [ ^ ' ( ^ ) ] 2 ~ 4b[z) is a polynomial of 
order 2L — 2. Every odd degree zero of A ( z ) is a 
branch point of F(z), hence must be real. With 
F(z) real analytic, it follows that the branch cuts 
of F on the real axis are the bands on which p has 
support. On these cuts, KeF = ^Uf(z). A detailed 
analysis for the tree-level phase structure from the 
viewpoint of Schwinger-Dyson equation for U4 and 
UQ can be found in Ref. 5. 

O R T H Q G O N A L P O L Y N O M I A L S 

We next discuss how F(z) can be obtained in 
the large-A7" spherical limit using the method of or­
thogonal polynomials. Recall that for each normal-
izable measure djj,(x) — exp(—NU(x))dx, —00 < 
x < 00, a set of orthogonal polynomials, Pn(x), can 
be defined by / d p , ( x ) P n ( x ) P m ( x ) = hnSn)ln. Pn(x) 
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one. They satisfy a recursion relation: xPn(x) = 
Pn+i(x) + SnPn(x) + i k P n - i ( s ) , w i t h ^ 0 = 0. 
For even potentials, Pn(—x) = ( - l ) n P n ( x ) , and 
5 „ = 0. 

One next introduces an operator formalism by 
associating each normalized orthogonal polynomial, 
Pn(%)lVhn-> a n orthonormal basis vector, |n), n = 
0,1 ,2 , For instance, the recursion relation for 
Pn(x) is equivalent to the existence of an operator 

with matrix elements 

F(z) can now be expressed in terms of </>, 

Given a potential UL (</>), Rn and SN obey recur­
sion relations which can be obtained by evaluating 
the (n — 1, n) and (n, n) matrix elements of the dif­
ferential operator Upon integrating by parts, 
these relations, in an operator form, read 

where the right-hand sides involve Rj and Sk- Eq. 
(2) can be considered as a set of recursion relations, 
which allows one to find Rn and Sn iteratively. Al­
ternatively, for the large-N limit, one can directly 
analyze Eq. (2) once an ansatz on the continuum 
structure of Rn and Sn as a function of x = n/N is 
made. We have carried out both analyses and have 
demonstrated that the continuum limit is charac­
terized by certain periodicity structure in nJ 5 ' This 
periodicity is crucial for understanding the multi-
band structure of a rnatrix model when the poten­
tial possesses multiple local minima. 

A ) Scalar Ansatz and Single-Band Structure 

The simplest continuum ansatz one can make is 
one in which Rn and Sn approach continuous func­
tions R(x) and S(x). This shall be referred to as a 
scalar ansatz (or period-1). 

It is convenient to approach the large-N limit by 
introducing; a pair of conjugate operators I and #, 
where 



ReF^(z) = \U'(z), as required. Similarly for the 

imaginary part one gets 

and since W'(r) > 0 for positive potentials, p(z) 

automatically satisfies the positivity requirement on 

the cut. Eq. (4) therefore represents a bona fide 

solution to the Schwinger-Dyson equation. Eq. (5) 

was first obtained in Ref. 2, and it follows more 

readily from our general expression, Eq. (4) . 

In generally, for a positive symmetric polyno­

mial potential of order L, Eq. (5) leads to a spec­

tral density p(z) = VL(Z2)^fz\ - z2 , where VL(z
2) 

is an ( y — l)th order polynomial in z2, positive over 

the region \z\ < z\. 

What will happen if we are dealing with poten­

tials involving negative couplings? One can explic­

itly demonstrate that Eq. (3) no longer represents 

a solution of the Schwinger-Dyson equation. A pos­

sible approach is to always start with a positive po­

tential and then analytically continue F^(z) into 

regions involving negative couplings. Indeed, (4) 

provides such a continuation. In terms of this rep­

resentation, F^\z) always satisfies the Schwinger-

Dyson equation, provided that the upper limit of 

the integral, i ? ( l ) , is real and well-defined. It also 

automatically leads to a single-band spectral den­

sity, given by (5). However, three obstacles can stop 

this continuation process: (i) R(l) starts to turn 

complex, or takes a discontinuous jump, (ii) VL{Z2) 

turns negative over the branch cut while -R(l) re­

mains well-defined, (Hi) this single-band solution 

becomes "subdominant".t5J 

B) Two-component Ansatz 

In order to deal directly with potentials involv­

ing negative couplings, one must go beyond the 

scalar ansatz. We first consider the period-2 ansatz, 

namely, that in the large-A7" limit Rn —> A(x) for n 

even and Rn —• B(x) for n odd, where x = n/N. 

Since (j) connects only "nearest-neighbor" even-

odd and odd-even basis states, it is convenient to 

think of the Hilbert space as a direct sum of an 

"even-space" and an "odd-space", i.e., Ti = Ho © 

Ti\. One can then arrange <f> into a 2 X 2 ma­

trix form where $ay(Tt maps Ti„>. —> Tia. Under 

Since W'(r) is real, for a fixed value of z in the 

range \z\ < z\ — 2 > / R ( î ) , only the region 0 < r < 

z2/4 contributes to ReF(z). One easily verifies that 

Changing the integration variable from x to r — 

R(x)} Eq. (3) becomes 

Under our scalar ansatz, the operator $ can be ex­

pressed as ^ = y/R(î)eiè + S(l) + e " ^ y ^ ) . In 

the #-basis, an operator-valued function of </> be­

comes a local differential operator with £ —» —jqj§, 

and wave functions are periodic in 6 with a period 

27T. Since [0, £] —• 0 as N —• oo, one finds, for 

the diagonal matrix elements of the resolvent op-

erator, (n\(z - fr^n)-* J? g(z - tfM))"1, 
where <j>(x,0) = S(x) + (eie + e~i6)<jRÏ~x). It fol­

lows that, in the large-iV limit, after performing the 

^-integration, the generating function approaches 

where the superscript signifies that (3) is derived 

under a scalar ansatz. In what follows, we shall 

simplify the discussion by restricting to the case of 

even potentials where S(x) — 0. The general case 

where S(x) ^ 0 will be reported elsewhere. 

In the large-iV limit, Eq. (2) for even potentials, 

under our scalar ansatz becomes x = WL(R(X)) , 

which can be solved for R(x) analytically. For sym­

metric potentials whose coupling constants are all 

positive, a unique real solution R(x) exists which 

is monotonically increasing over the positive z-axis 

with R(0) = 0. We shall refer to this class of 

symmetric potentials as "positive" and shall con­

centrate on this special class first. 

Since R(x) is bounded for 0 < x < 1, Eq. (3) 

defines an analytic function for \z\ sufficiently large. 

Since R(0) = 0 and R(x) is monotonie, it follows 

that R(z) is real-analytic with a pair of symmet­

ric square-root branch points located at ± 2 1 , z\ = 

2y/R(l). That is, Eq. (3) represents a single-band 

structure. Furthermore, since F^\z) —> 1/z as 

\z\ —> 00, it automatically leads to a properly nor­

malized spectral density, p(z), on the cut. 



Ho- is spanned by { |n ) ,n = qp + cr,p = 0 , 1 , 2 , . . . } . 

Therefore G can be written as a q X q matrix where 

each component Ga^ maps lia> to In the 

large-N limit, the generating function becomes 

where G(x,0) = (z — <j)(x,8)) 1 and <j>(x,d) is a qxq 

hermitian matrix whose matrix elements are 

a = 1,2, (mod </). Instead of A ^ r r ) , it is 

sometimes more convenient to use symmetric com­

binations TJq EE Yll=l A < r a n d £q = 11*= 1 F o r 

q = 3, (7) can be greatly simplified and one obtains 

It is a priori unclear for which potentials a par­

ticular q-ansatz would be appropriate in the large-

N limit. It is plausible to assume that a large-q 

ansatz would involve situations where a large num­

ber of local minima exist. For our current appli­

cations, we are primarily interested in situations 

where a three-band structure can occur. We have 

seen earlier that, generically, when a potential has a 

pair of degenerate local minima, a two-component 

ansatz becomes operative. The simplest general­

ization is one where a potential has three degen­

erate minima, e.g., for UG(</)) = f <f>2 + + f ^ 6 = 

( f )</> 2 (<£ 2 -<^) 2 , A > 0. The minima occur at (f) = 0, 

and (j) = ± ^ o where <j>\ = - 3 # / 4 A = —ifi/g. 

Under a three-component ansatz, Eq. (2) leads 

to three coupled equations in the spherical limit, 

which allow one to find r]3(x) and £ 3 ( x ) . Denote 

x = Arjj where ro = V ^ X * F o r ^ > 1, w ^ h 9 — 

— > / l 6 ^ A / 3 , Eq. (8) can be integrated easily. One 

obtains F^(z) = \U'Jz) - inp(z\ where 

with 0 < ri < r 0 < r 2 < r 3 , r i r 2 r 3 = 2/3A, rj+r2 + 
r 3 = 3 r 0 , and rir2 + r 2 r 3 + r 3 r i = 9r%. The positive 

normalized spectral density represents a three-band 

structure and solves the Schwinger-Dyson equation 

when the potential has three degenerate minima. 

We can again consider our Hilbert space as a di­

rect sum of q subspaces 7i(r->'H = ©<rW<7, where each 

our two-component ansatz, one finds that (̂ >o,o = 

] > h l = 0, 4>ho = e~i6^B(e) + yJÂ^)êè, and ^ 0 , i = 

^ { 0 . Similarly, any operator-valued function of <j> 

can also be arranged in a 2 x 2 matrix form, de­

fined by a power series expansion in </>. In partic­

ular, the resolvent operator G = (z — now 

has four components, G I n the large-TV limit 

where [I, 0] —• 0, one finds that the diagonal ma­

trix element (n\(z — |n) , n — 2p-fer, approaches 

iTf 0) where G{x,9) = {z - <j>{x,6))-\ 

and <t>{x,9) is an ordinary 2 x 2 hermitian matrix, 

e.g., Mx,6) = jMx)*-ie + y/S(x)eie. 

It immediately follows from Eq. (1) that in the 

large-N limit a general representation for the gen­

erating function under a two-component ansatz is 

where we have again added a superscript. Instead 

of using A and B, we have also expressed Eq. (6) in 

terms of symmetric combinations rç2 = A + B and 

£2 = AB. As a consistency check, we note that Eq. 

(6) reduces to Eq. (3) if A{x) = B(x). 

Under what conditions is the period-2 ansatz 

valid? Detailed analysis for both U4 and U& can be 

found in Ref. 5. The answer verifies our expecta­

tion from the numerical calculation and from the 

fact that the scalar ansatz applies for positive po­

tentials that the period-2 ansatz is valid when the 

potential has two mimina. In particular, we show 

that Eq. (6) provides a unified representation for 

the transition region between the one-band and the 

two-band phase. 

C ) Mult i -Component Ansatz 

When a potential has many local minima, it is 

possible to have a multi-band structure where the 

number of bands increases with the number of local 

minima. Although this correspondence is not exact, 

it is a qualitative feature which can be understood 

by using a Dyson gas picture. Let us next assume 

that Rn has a period-g structure in the large-N limit 

so that Rn —> Aa(x)yx — n/N where a = n (modg) , 

q > 3. This corresponds to a ^-component ansatz. 

730 



A C K N O W L E D G E M E N T S 

For x < 1, . F ( 3 ) ( z ) can be shown to agree with 
F^\z) obtained by analytic continuation, thus de­
scribing a single-band structure. The transition be­
tween the three-band and the single-band phases 
occurs at x = 1, where ro = n = r<i. 

Surprisingly, a three-component ansatz as for­
mulated above is incompatible for UQ away from 
the situation of three degenerate minima. Although 
Eq. (8) would produce a real analytic function F(z) 
having the structure of a three-band phase, it turns 
out that in general ReF(z) ^ \U'(z) on the cuts. 
It is apparent that, to produce an acceptable three-
band solution, one needs to work with an ansatz 
involving q being a multiple of three. This will be 
discussed in another publication. 

R E M A R K S 

In Ref. 5, we have provided numerical evidence 
for the periodicity structure in the orthogonal poly­
nomial recursion coefficients. We have also iden­
tified different double scaling limits from various 
multi-band phases. In particular, a k = 2 type 
multi-critical solution from the two-band phase in 
the potential and a k = 1 type solution from 
the three-band phase in the </>6 potential are found. 
Both solutions are described by differential equa­
tions related to the modified KdV hierarchy, (type-
II). A similar analysis for the multi-band structure 
of unitary one-matrix model has also been carried 
out in Ref. 7. 

We have stressed in Ref. 5 that all the k = 2 
Painleve-I solution found in hermitian one-matrix 
models so far arise either when the potential is un­
bounded from below or when the solution that gives 
rise to k = 2 behavior is sub-dominant. We have 
also shown in Ref. 7 that a similar situation occurs 
when we adopt a periodic regularization. By carry­
ing out an analysis for a prototypic unitary model, 
we find that the k = 2 Painleve-I equation occurs 
at boundaries of phase regions which are again sub-
dominant. However, unlike the case of a bounded 
<f>6 hermitian matrix model, a k = 2 type-II scaling 
equation is also obtained. This solution could serve 
as a new candidate for the pure 2d gravity. Signif­
icance of this new scaling solution deserves further 
examination. 

This work was done in collaboration with K. 
Demeterfi, N. Deo, and S. Jain, and it was sup­
ported in part by the U. S. DoE under contract 
DE-AC02-76ERO3130.A021-Task A. 
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Abstract 

Critical behaviour in JD-dimensional matrix models is considered within the field theory approach to critical phenomena 

and e-expansion. For real (Hermitian) N x N matrix order parameter $ the Landau-Ginzburg type Lagrangians are 

constructed and all the critical points are found. The relevant critical point is a saddle point existing when the potential 

is essentially V ~ ( T r $ 2 ) 2 . At the critical point the model is equivalent to the n-vector one with an appropriate number 

of parameters. In the latter case, the critical exponents can be calculated with high accuracy. Empirical relation for the 

correlation length exponent v for arbitrary n and D is presented. Large N limit admits an exact solution coinciding 

with that of the spherical model. 

1 Introduction 

There are two main motivations to study matrix 

models. The first one is the existence of real physical 

objects such as liquid crystals [l] or liquid Helium-3 

[2], which can be described within the models with a 

3 x 3 matrix order parameter. In both cases, differ­

ent phases could exist and a phase transition occurs. 

Though its nature is not yet clear, several character­

istics have a singular behaviour which presumably 

can be described by the standard renormalization 

group approach. 

The second motivation is connected with lattice 

formulation of 2-dim. quantum gravity. In the 

discrete approach based on dynamically triangu­

lated random surfaces the theory can be regarded 

as N x TV matrix field theory, where the sum over 

various genuses is simply the large N expansion [3]. 

Continuum limit actually corresponds to the critical 

point of the underlined field theory. For a number 

of models corresponding to conformai field theories 

with central charge c < 1 the critical exponents have 

been calculated from the discrete approach [3], while 

for the string theory c > 1, and in this regime cal­

culations have so far failed. 

In the present paper we write down matrix mod­

els and treat them according to the standard field 

theory approach and renormalization group method. 

Critical behaviour in the infrared region is studied 

and all the critical points are found. We show that 

the critical point, if it exists, corresponds to an n-

vector model with an appropriate number of param­

eters, where the critical exponents have been calcu­

lated already with great accuracy. 

2 The Model. Relation to 
Critical Phenomena 

We consider the model with a single order parameter 

(field) which is an N x N real (Hermitian) matrix $ . 

Symmetry properties are dictated by the form of this 

matrix and could be different in different phases. We 

concentrate below on three particular cases being 

irreducible representations of SO(N) and SU(N). 

Namely, we consider $ to be real traceless symmet­

ric, antisymmetric and hermitian traceless matrices. 

In the field theoretical approach to critical phe­

nomena a crucial role is played by a Lagrangian 

rather than by free energy. To construct a La­

grangian, which is invariant under an appropriate 

symmetry group, we consider all possible invari­

ants restricted by the renormalizability requirement. 

Having in mind gr-expansion, where dimension is 

D = 4 - 2s, we are left with quadratic and quar-

tic terms. Thus, we come to the Landau-Ginzburg 

type Lagrangian for a traceless field $ : 

£ = 1 Tr(d$)2 - ^ Trè2 - ^ T r ê 4 - *± (Trê 2 ) 2 -

Three different choices of the matrix $ are distin­

guished by the form of the propagator. We have 

732 



respectively : 

symmetric 

antisymm 

Hermitian 

dimensions. Remind that in the MS-scheme the /?-
functions in 4 — 2e dimensions are connected with 
those in 4 dimensions by the equation [7] 

Fixed points correspond to the r.h.s equal to zero. 
They are all the power series of e : 

where the coefficients uf are determined in &-th or­
der of perturbation theory. 

Having this in mind we get the following RG equa­
tions written to one-loop order (we consider below 
the Hermitian case for definiteness). 

According to the general analysis [4, Sect XI] 
there are four types of fixed points of eq.(3): 

Before analysing the stability properties of these 
fixed points it is useful to note that Hermitian trace-
less N x N matrices for N = 2 and 3 obey the fol­
lowing equation: 

Hence for N = 2,3 there exists only one indepen­
dent coupling in eq.( l ) equal to (h± + 2h2)(Tr Ô 2 ) 2 . 
Looking for the value of the coupling hi + 2h2 at the 
critical points (1 - 4) we find out that it is the same 

3 Renormalization Group 
Equations. Fixed Points 

In this section we consider RG equations for the 
effective couplings of the model at hand in 4 — 2e 

Critical point h is the infra-red stable fixed point of 
the renormalization group equation. Within the e-
expansion method it is a power series of e calculated 
in perturbation theory. 

All other critical exponents are not independent 
and can be evaluated via the scaling laws 

with the powers 7r equal to the anomalous dimen­
sions at h = h*. There exist direct relations be­
tween the anomalous dimensions and critical expo­
nents, which characterize the scaling behaviour of 
various quantities in the neighbourhood of a second 
order phase transition. For example, the critical ex­
ponents T) (correlation function) and v (correlation 
length) can be expressed through the anomalous di­
mension of the field and mass, respectively [5,6] 

where a, b, c, d = 1 ,2 , . . . , N. 
Critical phenomena are associated with the in­

frared properties of the model. Scaling behaviour 
in the vicinity of the critical point caused by the ap­
pearance of a long-range order can be described in 
terms of Euclidean quantum field theory possessing 
an infra-red stable fixed point [4]. 

A systematic approach to the description of infra­
red asymptotics is based on the renormalization 
group. In the presence of infra-red stable fixed 
points defined by the vanishing of RG /^-functions 
the dimensionless Green functions obey the scaling 
laws for small p2 



for the points 1 and 4 as well as for 2 and 3, respec­

tively. Thus, the presence of four different points for 

N — 2,3 is just an artefact, and there are only two 

relevant fixed points for any value of N. 

Stability properties of the fixed points can be in­

vestigated in a standard way. The fixed point 1 is 

absolutely infra-red unstable and the fixed point 2 is 

a saddle point. The phase portrait of the trajectories 

is shown in Fig.l. One can see that the fixed point 

2 can be reached only when the coupling h\ = 0. In 

this case, the fixed point is infra-red stable and ac­

cording to a general belief corresponds to a second 

order phase transition one. Otherwise, there is no 

fixed point solution of eq.(3). 

So far, we have considered the leading approxima­

tion. However, the obtained results are stable with 

respect to higher order corrections. In any loop or­

der the infra-red fixed point will lie on the h2 axis 

being the power series of s 

It is a saddle point in the coupling constant space. 

It should be stressed that the conclusion is valid 

for any value of s , i.e. for any value of D. The 

problem arises when one tryes to sum the series. 

Here we come to the problem of validity of the e 

-expansion. 

The situation is qualitatively the same for the 

other cases mentioned above. In case of complex 

matrices the potential is more complicated, however 

even here nothing is changed. The only fixed point 

is a saddle point with only Tr2 interaction surviving. 

4 Critical Exponents 

To find the critical exponents one has to calcu­

late the anomalous dimensions at the infra-red fixed 

point. The results will be expressed via the power 

series of e. However, there is no necessity to perform 

any new calculation. Indeed, if one looks at the La-

grangian, eq.(l), at the fixed point, one finds out 

that the only coupling which survives is (Tr $ 2 ) 2 . 

Then, expanding the matrix field $ over the irre­

ducible set of matrices in an appropriate represen­

tation ê = £ . r > \ we get 

where we have taken into account that Tr TXT* ~ 

Thus, what we finally get is the n-vector model 

with the number of components equal to that of the 

original matrix. For the three cases of interest we 

have respectively 

Critical exponents in the rc-vector model have 

been calculated with high accuracy. Recent most 

accurate estimates have been achieved in the frame­

work of ^-expansion, where the calculations are done 

up two five loop order [9,8]. 

The coefficients of ^-expansion grow very fast 

which is a manifestation of asymptotical character 

of this expansion. This means that to get a numer­

ical result for D = 2 or 3 (i.e. e = 1 or 1/2) one 

needs a special summation procedure. The latter 

was proposed in a number of papers [5,6,8], The re­

sults obtained for small values of n are in very good 

agreement with experiment as well as with other ap­

proaches. The procedure can be repeated for any 

value of n. 

In a recent paper [10] we have proposed an em­

pirical expression for the correlation length critical 

exponent iv. It is valid for arbitrary n and D and 

fits all known exact and numerical values. Even if 

it is not an exact solution, the advocated result can 

serve as a very accurate approximation to the true 

value. It has the following form: 

where the parameter x is connected with n by the 

equation 

For D = 3 eq.(5) gives a smooth curve 

Thus, to get the values of the critical exponents 

for the matrix model one has to substitute an ap­

propriate value of n — n(N) into e- expansion or 

directly into eqs.(5),(6) and (7). 

Special attention is paid to the N = oo case. For 

the matrix model, eq.(l), it corresponds to taking 

into account of planar diagrams in all orders of per­

turbation theory. However, at the critical point due 
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to the absence of the Tr $ 4 term the situation is 
drastically simplified. For the (TV $ 2 ) 2 interaction 
(or equivalently for the n-vector model) in the large 
N limit only one-loop diagrams survive. As can be 
seen e.g. from ref.[6] the results for n — oo are 

O.V.Tarasov, V.B.Priezzhev and V.A.Zagrebnov for 
numerous useful discussions. 

References 

[l] P.G. de Gennes, The Physics of Liquid Crys­
tals, Oxford Clarendon, 1974; N.Angelescu and 
V.Zagrebnov, Journ. Phys. A 15 (1982) L639. 

[2] G.Barton and M.A.Moore, Journ. Phys. C 7 
(1974) 4220. 

[3] V.A.Kazakov and A.A.Migdal, Nucl. Phys. 
B20 (1989) 654. 

[4] E.Brezin, J.C.Le Guillou and J.Zinn-Justin 
in Phase Transitions and Critical Phenomena 
Vol.6, Ed. C.Domb and M.S. Green, Academic 
Press 1976, p.125. 

[5] J.Zinn-Justin, Phys. Rep. 70 (1981) 109. 

[6] A.A.Vladimirov, D.I.Kazakov and 
O.V.Tarasov, Zh. Eksp. Teor. Fiz. 77 (1979) 
1035; {Sov. Phys. JETP 50 (1979) 521). 

[7] G.'t Hooft, Nucl.Phys. B 6 1 (1973) 455. 

[8] J.C.Le Guillou and J.Zinn-Justin, J.Physique 
Lett. 46 (1985) L137; J.Physique 48 (1987) 19; 
ibid 50 (1989) 1365. 

[9] K.G.Chetyrkin, A.L.Kataev and F.V.Tkachov, 
Phys. Lett. 99 B (1981) 147, Er. ibid 101 
B (1981) 457; S.G.Gorishny, S.A.Larin and 
F.V.Tkachov, Phys. Lett. 101 A (1984) 120. 

[10] D.I.Kazakov, Exact critical exponent for n-
vector model with arbitrary n and D, JINR 
Preprint E17-89-79, Dubna, 1989. 

[11] M.E.Fisher, The Theory of Critical Point Sin­
gularities in 1970 Enrico fermi Summer School 
of Critical Phenomena, Italy, 1970. 

[12] S.R.Das et al, New critical behaviour in d = 0 
large N matrix models, Preprint TIFR/TH/89-
70, Bombay, 1989. 

A c k n o w l e d g e m e n t s 

The author would like to thank A.L.Kuzemsky, 

735 

This corresponds to the so called spherical model 
which admits an exact solution [11]. Strictly speak­
ing, eq.(8) is valid only for D — 3 or 4 as far as for 
D < 2 the phase transition for large n > 2 disap­
pears. For D = 3 we get rj = 0, v = 1 in accordance 
with eq.(7). 

5 Conclusion 

We have shown above that the critical behaviour in 
matrix models of eq . ( l ) is determined by the pres­
ence of nontrivial infra-red fixed point. Our conclu­
sion is true in all orders of perturbation theory for 
any value of e and N. This fixed point is believed 
to be associated with the second order phase tran­
sition with the matrix order parameter. As we have 
seen, it exists only when the interaction is essen­
tially (Tr Ô 2 ) 2 . Addition of arbitrary small amount 
of Tr $ 4 destroys a phase transition. 

At this point, our conclusion contradicts that of 
ref.[l2] where in D = 0 matrix model in N —• oo 
limit different phases were obtained with critical ex­
ponents having negative values. From our point of 
view the negative values of exponents mean that the 
formulas are out of the range of applicability. This 
really happens in the vector model, where for some 
values of parameters a phase transition disappears, 
while formally the critical exponent may take a neg­
ative value (see Fig. 2) . A way out of this descrep-
ancy is probably in different meaning attached to 
a phase transition and connection between the field 
theory model and statistical system. Strictly speak­
ing it is not obvious, what kind of a phase transition 
occurs in D — 0 case and what is an order param­
eter. It would be interesting to find a relation be­
tween the two approaches and to understand better 
the nature of different phases. 



Figure 1: Phase portrait of solutions for N > 3. The 
arrows show the direction of decreasing argument t 
corresponding to the infra-red limit. 

Figure 2: Structure of vector model in the space of 
parameters. 
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1. Some aspects of the recently discovered 

non-perturbative solutions to non-critical strings 

[1] can be better understood and clarified directly 

in terms of the integrability properties of the ran­

dom matrix model used to define the coupling of 

(p, #)-conformal matter to 2D-gra.vity. Soon af­

ter the appearance of the original papers on the 

subject , Douglas [2] showed that the continuum 

limit of these models can be described in terms of 

Heisenberg algebras and the KdV hierarchy [3] 

The non-pertubative definition of strings [1] 

requires two different types of equations. Denot­

ing the string susceptibility by u(x) as a function 

of x, the cosmological constant, the first equation 

is 

involving the Gel'fand-Dickii potentials 1Zn and 

providing a non-perturbative characterization of 

the different critical points of a generic hermitean 

matrix model. The second type of equations 

describe the renormalization group flows of the 

models defined by (1) . These equations coincide 

with the flows of the K d V hierarchy [3] The geo­

metrical meaning of the string equations has been 

clarified [4] using the Schwinger-Dyson equations 

for loop functionals [5] (see also [6]). 

In collaboration with C. Gomez and J. Lacki 

[7] we consider a different derivation of (1) us­

ing the Volterra hierarchy for even potentials [8]. 

The two basic steps in this approach are: i) to 

show the connection between discrete integrable 

models and the matrix models defined in terms 

of orthogonal polynomials, and ii) understand the 

extension of the double scaling limit to non-linear 

lattices. The outputs of this construction are (1) 

and the flow equations where (1) appears as an 

initial condition of the non-linear lattice. 

An interesting fact about the Volterra equa­

tion which gives rise to some interesting specu­

lation is its relation to the Liouville model on a 

regular lattice discussed in [9], The existence of 

an infinite number of conserved charges in invo­

lution for the Volterra equation defines an infi­

nite set of hamiltonian equations and a collec­

tion of compatible hamiltonian structures which 

in the continuum limit reproduce the well-know 

GeFfand-Dickii bihamiltonian properties of the 

KdV equation [101. 

2 For simplicity we consider only the case 

of one matrix models with even potentials. The 

generic even potential is 
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if one defines monic orthogonal polynomials with 

respect to the measure 

in (9) is defined as the antisymmetric ma­

trix such that the strictly upper triangular parts 

of and L2t coincide. In the theory of inte-

grable systems [3] an equation of the form (9) is 

called a Lax equation and its complete integrabil­

ity is a consequence of the existence of an infinite 

number of conservation laws in involution (with 

vanishing Poisson brackets). In this context the 

flows are generated only by the even powers of 

L+. The form of the matrix (8) implies that the 

only non-vanishing entries of the matrix Ln ap­

pear in positions (i , i + n ) , ( i , i+n—2),... and their 

transpose, and furthermore in [ £ + , £ ] the only 

non-vanishing entries appear at positions (z, i + 1 ) 

and (i + whereas for [ L + n + 1 , L ] only the di­

agonal elements are different from zero. Conse­

quently I?£ generates flows and provides 

initial conditions. This cannot be seen so clearly 

in the continuum limit where the form of the op­

erators generated by [L+ n ,L ] and [ L 2 n + 1 , L ] are 

essentially the same. 

If the Volterra flows are associated to a poten­

tial with a finite number of non-zero couplings, 

the operator d/dA is also represented by a Jacobi 

matrix P [13] such that P „ ^ 0 for \i-j\ < 2k-1 

if the potential has degree 2k. The matrix P can 

be chosen to be antisymmetric and it obviously 

satisfies [P, L] = 1. Since P is a Jacobi matrix 

and [P, L] is diagonal, we can write P as a linear 

combination of L ^ n + 1 ' s 

Conversely, it is possible to prove using Favard's 

theorem [14] that beginning with a Volterra hier­

archy together with the initial condition (10) for 

the flows, the set of polynomials (5) defined by 

the operator L are an orthogonal set with respect 

to the measure (3) . 
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and the E{j are matrix units. As we change the 

couplings gi the polynomials change as well as the 

matrix elements of L. Using simple homogeneity 

arguments and a theorem of Moser [12] it is not 

difficult to show that the matrix L changes with 

the couplings according to 

where L is the Jacobi matrix 

changing basis from the P n ' s to an orthonormal 

basis , the operation of multiplication by A be­

comes 

the orthogonal polynomials satisfy the two step 

recursion relation 

hence 

the partition function of the one matrix model 

can be written as [11] 



3 . It is very instructive to to study the hier­

archy (9) from a hamiltonian point of view. This 

approach exhibits the discrete version of the Vi-

rasoro conditions found in [4]. The hierarchy (9) 

admits a collection of compatible Poisson struc­

tures. The most natural one is [8] 

and the flows (9) are generated by the hamiltoni-

ans 

hamiltonian structure of the Volterra hierarchy 

gives in the continuum limit the Virasoro alge­

bra. This discrete version of the Virasoro algebra 

appeared for the first time in [9] and it is also 

shown in this reference that the classical equa­

tions of motion for the discretized Liouville theory 

are equivalent to the classical Volterra equations. 

One wonders whether there is a direct connection 

between the discrete Liouville system described in 

[9] and the matrix model definition of 2D-gravity 

In terms of hamiltonian flows the string equa­

tions become 

and in terms of the partition function (6) we ob­

tain 

using (16) and the GePfand-Dickii property to re­

late higher and lower flows one obtains an infinite 

number of conditions on the partition function. 

In the continuum limit they become the Virasoro 

conditions of [4]. To understand these statements 

more clearly, we briefly analyze the double scaling 

limit of the Volterra hierarchy. 

We will follow the notation of Gross and 

Migdal in ref.[l] The string equation in Douglas' 

form [2] has the discrete form 

since only the (/, I) components of this equation 

are different from zero, summing the first m di­

agonal entries in (18) we obtain 
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the proof can be found in [7]. The origin of the Vi­

rasoro conditions on the partition function in the 

continuum limit [4] lies in the discrete Gel'fand-

Dickii relation and in the fact that the second 

the origin of the Virasoro conditions in [4] lies in 

the discrete analogue of the Gel'fand-Dickii rela­

tion [10] between the two hamiltonian structures 

of the KdV hierarchy. In the case of the Volterra 

hierarchy we find 

and one can check that the flows (13) commute. 

The second hamiltonian structure which can 

be defined for the Volterra hierarchy [9] is 

It is more convenient for our purposes to intro­

duce a new variable u m = l o g i ? m which will be­

come one of the scaling variables in the continuum 

limit, and 



going to the continuum limit one introduces the 

continuous variable x = n/f3 and the fc-th critical 
2k 

point is obtained by setting x = 1 — ^~2k+1t and 

R = 1 — /? 2*+i f(t). By tuning the couplings in 

(19) one obtains the fc-th critical point. Let 

be the corresponding values of the couplings, then 

we know from [1] that 

has a well defined scaling limit describing the per­

turbations by scaling operators of the Art h critical 

point, with the constants chosen appropri­

ately [1]. Since the hamiltonians (12) are given 

as functionals of Rn which is not a scaling vari­

able in the continuum limit, we have to find the 

linear combinations of hamiltonians with well de­

fined scaling properties. In terms of u m we obtain 

with 

D is a discrete derivative defined by Dfm = 

/ra+l — fm-l with good scaling properties in the 

continuum limit. Hence 

and therefore 

is a combination of hamiltonians with good scal­

ing properties. Therefore in the continuum limit 

we expect the scaling hamiltonians (23) to turn 

into the conserved charges of the K d V hierar­

chy. To show that this is indeed the case all we 

have to do is to show that the continuum limit of 

(15) is the standard Gel'fand-Dickii relation [10], 

or equivalently that the second Poisson structure 

(14) becomes the Virasoro algebra. Although the 

conserved quantities for the Volterra hierarchy 

were written explicitly in (12) , we can read (15) 

as a recursion relation for the conserved quanti­

ties of the hierarchy. From Hn we can compute 

with a unique result if we require Hn to be 

homogeneous of degree n in R. Therefore, know­

ing Hi we can derive all other conserved quanti­

ties Hn and they are guaranteed to be commuting 

due to the compatibility of the Poisson structures. 

The continuum limit of the Poisson structures is 

easier to derive in terms of the variables u m . For 

the first Poisson structure (11) we have 

in the continuum limit Rn i-> R(x) = 1 — 
-2 -2k 

^2A+1/W with x = 1 - p2Wt and u m = l o g # m , 

defining À = /? 2 f c+i we have u m = — A 2 / m 

—X2f(t). Thus the renormalized first Poisson 

bracket becomes in the continuum limit 

Next to define the continuum limit of the second 

Poisson bracket with good scaling properties we 

have to subtract the first Poisson structure with 

a coefficient depending appropriately on the scal­

ing parameter À. This is legitimate because the 

two hamiltonian structures are compatible for any 

value of the cut-off. Up to some trivial numerical 

factors we can write the result as 
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which is the classical form of the Virasoro alge­

bra. As a consequence of the compatibility of 

the lattice Poisson structures these two brackets 

are compatible and as before they can be used to 

generate all the conserved quantities for the con­

tinuum system. Once we have the string equa­

tions and the Gelfand-Dickii relations one only 

needs to repeat the arguments on [4] to see that 

the infinite number of conditions on the partition 

function become the Virasoro constraints. 

4. We have shown that many of the proper­

ties of the recently found non-critical strings fol­

low directly from the complete integrability of the 

Volterra hierarchy equivalent to the original ma­

trix model formulation. If one considers general 

potentials instead of even ones the three step re­

cursion relation satisfied by the orthogonal poly­

nomials leads to the Toda hierarchy and the argu­

ments presented go through virtually unchanged. 

To summarize we have found that the integra­

bility of the Volterra hierarchy together with a 

very particular initial condition gives the discrete 

string equations together with an infinite number 

of conditions on the partition function as a con­

sequence of the discrete version of the Gel'fand-

Dickii relations, continuum limit as the Virasoro 

constraints. 

It is known that many of the known conformai 

field theories can be obtained as special limits of 

integrable systems. In the examples described in 

this work we have found that the effective action 

of some (non-unitary) conformai models coupled 

to 2 — D gravity are described by simple inte­

grable systems subject to particular initial condi­

tions. To what extent a similar procedure can be 

carried out for other known intergrable systems 

is an interesting question currently under investi­

gation. 
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String Field Theory in One Dimension and Matrix Models 
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ABSTRACT 

We discuss the singlet sector of the d = 1 matrix model in terms of a Dirac fermion formalism. 
The leading order two- and three- point functions of the density fluctuations are obtained by 
this method. This allows us to construct the effective action to that order and hence provide 
the equation of motion. This equation is compared with the one obtained from the continuum 
approach. 

In recent works we have studied the 
problem of two-dimensional quantum field the­
ories coupled to gravity. Our original motivation 
to do this was to arrive at a natural setting for 
the theory space formulation [4 ) (51 of string theory, 
where, (1) there is no restriction on the central 
charge of the matter sector, and, (2) the the­
ory has, within it, the ingredients to describe 
trajectories which join special points in the the­
ory space, namely the classical vacua which cor­
respond to conformally invariant theories. One 
of our main results has been that the matter + 
gravity system can be regarded as a field the­
ory of the Liouville mode and matter fields in 
the background of the fiducial metric. Generic 
couplings or backgrounds now depend both on 
the Liouville mode and on the matter degrees of 
freedom and satisfy equations of motion in d + 1 
variables (d = matter, 1 = Liouville). This is 
because reparametrization invariance of the the­
ory implies that all objects, in which the confor­
mai mode has been integrated, should be Weyl-
invariant in its dependence upon the fiducial met­
ric. This condition, stated as the vanishing of the 
{B function', gives rise to the equations of mo-
tion • Other related works are due to J. Polchin-
ski181, and, T. Banks and J. Lykkenm . 

These ideas were illustrated in various situa­
tions: 

(a) For d-scalar fields interacting with 2-dim. 
gravity, we proved that this system quan­
tized in the light cone gauge is exactly 
mapped into the conformally invariant field 
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The coupling of other backgrounds like the 
metric, antisymmetric tensor and dilaton 
can be discussed similarly. To see the spec­
trum from equation (2), one eliminates the 

where 

(c) In the case of d-scalar fields coupled to grav­
ity, perturbed by a 'tachyon' background, 
the tachyon coupling T,which depends on 
d coordinates <fo and the Liouville mode 77 
satisfies the d + 1 dimensional field equa-
j • [!][»] 
tion 

(b) In the case of d < 1, we considered the 
(ra, ra+1) minimal models coupled to grav­
ity, and could effectively describe the inter­
polation between two minimal models, for 
m very large, by means of a 'string field' 
that depends only on the Liouville mode, a 
function /c(rj) which satisfies the field equa­
te [3] 

tion 

theory of d + 1-scaîar fields, with 
background charge. At d = 25 we obtained 
the exact tree level 5-matrix and spectrum 
of the "d = 26 critical string". 



linear derivative piece by defining (6) It is easier to see various approximate and 
exact symmetries of the system from this 
point of view. 

As in well known, V2

M acting on the singlet 
sector wave function $ ( A ) has the form 

This equation tells us that the spectrum at 
d = 1 (i.e., Q2 = 8) is that of a massless parti­
cle. For d > 1, there is a tachyon in the spec­
trum and hence for much the same reasons as in 
26-dimensional critical string theories, where it 
ruins the perturbation expansion, these theories 
may not exist. It is likely that the tachyon per­
turbation drives d > 1 theories to a stable point 
which is d = 1. It would also be interesting to 
understand how one can reach models with d < 1 
by appropriate perturbations of the d = 1 model. 

Our main purpose here is to discuss the cut­
off string field theory at d = 1 1 8 1 1 9 1 1 1 0 1 , formulated 
as the quantum mechanics of the matrix hamil­
tonian which was originally discussed by Brézin, 
Itzykson, Parisi and Z u b e r I U ] 

where V2

H is the laplacian in the space of herme-
tian matrices and V ( M ) is a polynomial. We can 
expect the results of the continuum theory and 
that from the matrix model approach to agree in 
the low momentum region only. 

Since this hamiltonian is invariant under 
U(N) transformations, M -» UMlfl, there 
would be wavefunctions transforming according 
to various different representations oîU(N). (To 
be more precise, these consist of the trivial rep­
resentation and the representations that can be 
generated by taking products of the adjoint.) It 
is not yet clear whether states which transform 
nontrivially under U(N) are related to the string 
degrees of freedom. Presently we will analyse the 
singlet sector of model. We use the fermionic 
representation of this sector as explained below. 
This representation has two major advantages. 

(a) The model is well defined even for finite N 
and for noncritical values of the coupling. 
Hence the nature of the various regular-
izations are most clearly recognized in this 
picture. 
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where 

as the wave function, the effective hamiltonian 
becomes 

This is the hamiltonian for non-interacting par­
ticles. However, since ^ ( A ) is symmetric, x ( A ) 
is antisymmetric. Hence the problem reduces to 
that of noninteracting fermions moving in an ex­
ternal potential. 

The ground state is obtained by filling the N 
states which are lowermost in energy. The cor­
responding total energy becomes singular when 
the Fermi energy of the system approaches the 
value of the potential at a stationary point. This 
is related to the fact that the time period of the 
classical orbits corresponding to the states near 
the fermi surface starts diverging when they can 
approach the stationary point. In the semiclassi-
cal analysis one can obtain the nature of the sin­
gularities. Also one can take the double-scaling 
limit by keeping fixed the energy difference be­
tween the value of the potential at the stationary 
point and that of Fermi energy as N goes to in­
finity. Inverse of this energy difference can be 
identified as the string coupling constant, gGtt

{9]. 

We have developed a Dirac fermion formal­
ism for the states near the Fermi surface which 
works well for the leading contributions and lends 
valuable insight into many results. 

To obtain the equations of motion we write 
this theory as a second quantized theory with the 



action variables from À -> r = / A p0(À')dA', and scaling 
the hamiltonian by the fermi level wave function, 

where 

To get the scales right, let us make some es­
timates. The leading order large N solution of 
the equation 

is 

where 

If we choose the constant to be 1, we have 

and 

Let the potential have a maximum at A 0 with 
^ " ( A Q ) ^ 0. If we take a solution for e0 very 
near ^(Ao) then most of the probability is con­
centrated near that tip. Classically this is man­
ifested by the particle spending a lot of time 
near the turning point, which is very close to 
the rather flat region around the potential max­
imum. 

In this region 

By convention we make and define 
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Dirac fermion representation 

In the following we briefly indicate how this 
result was obtained using a Dirac fermion rep­
resentation. This is essentially by a change of 

We will find, perturbatively, the leading order 
terms in the equation of motion in terms of this 
variable. 

which is the quantum equation of motion. 

Since we are looking at an effective bosonic 
theory we define the field variable that is used 
for bosonizing relativistic fermion theories, 

When a 0 = 0 we have 

By taking the Legendre transformation of F[aQ] 
we obtain the effective action T[p] where 

and 

where x(^M) * s a second-quantized fermion field 
in two dimensions and %(A, t) is the source func­
tion conjugate to density. It corresponds a cou­
pling of the form ^^tr Mn(t)au(t) in the origi-

nal matrix model, where an(t) = JdX Xn t). 
The corresponding vacuum to vacuum amplitude 
Z[ao] contains the information of all correlation 
function of density. Let 
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p(\,t) is the eigenvalue/fermion density. If we 
look only at the connected part, we would see 
the correlation of density fluctuation, p(A, t)— < 
p(X7t) > , only. This density fluctuation can be 
represented also by X * X normal ordered with re­
spect to the Fermi sea. 

The two-point function of density fluctua­
tions 

In many of the leading order calculations, 
this problem does not show up. This effective 
ultraviolet cutoff parameter, in a certain region 
of r, is finite in the scaled picture (as opposed 
to the semiclassical case). Hence one has to be 
careful about it. 

We now briefly indicate the results of the cal­
culation of the 2 and 3 point functions of the den­
sity which corroborate our guess of the effective 
action to leading order. 

To be honest one should discard half the so­
lutions of each of the hamiltonians, not to over 
count the states. This would be some ultraviolet 
cut off in the theory. This cutoff would refer to 
the value of the momenta where the second term 
starts dominating over the first. For calculations 
involving processes near the Fermi surface, this 
cutoff is not important. 

Both the hamiltonians have the information 
about all the states. However, for the left moving 
states the second term in HR cannot be consid­
ered as a small perturbation. Similar problem 
arise for right moving states and Hi. 

Thus, for the calculations where only states 
near the Fermi surface matter, one can describe 
the left moving states by HL and the right mov­
ing by HR. This gives a Dirac hamiltonian. In 
the second-quantized notation the hamiltonian is 

moving states is Upon integration we get 

or 

where a is the value of r at the turning point. 

Now 

This estimate can be trusted, when r is not too 
near a. 

To recover an approximate relativistic 
fermion picture from a nonrelativistic one, the 
most natural thing to do is to take the refer­
ence energy level E0 to be the Fermi level Ef* 
If we now want the expression of H in terms of 
T to be a scaled expression, that is, if we want 
to keep T — a as a scaled variable, we have to 
have Nfx = fixed. (This is true irrespective of 
the semiclassical approximation that we made to 
reach this expression of H.) 

Strictly speaking, for this problem, the wave 
functions are not exactly like fp-f2e+iNe and 
pi/2e-tN®^ ^ut a S p e c i f i c linear combination which 
depends upon the energy and the the boundary 
conditions. In terms of r variables, p ^ 2 e ± , J V 0 , af­
ter the relevant transformation lodks like a plane 
wave in the leading order. The extent of clas­
sically allowed À — À 0 is roughly from 0 to say 
1. Corresponding range of r — a is from 0 to 
In The level spacing goes as inverse of this 
range. Hence the boundary condition can give 
rise to mixing of left moving and right moving 
plane waves which can change the energy atmost 
by j j p r , This vanishes in the scaling limit. 

Thus we are allowed, in the scaling limit to 
deal with chiral states which are almost exact 
eigenstates. The hamiltonian which makes the 
right moving states near the Fermi surface look 
like plane waves is 

The hamiltonian which does the same for the left 



If we change over to r variables we have 

We call 

Take and consider 

In the leading order the particle and hole 
propagators are identical and charge conjugation 
symmetry is explicit, 

Using these formulae the 2-point function is cal­
culated to be 

The expression inside the square bracket is the 
correlator of a free bose field. This is not sur­
prising since what we have done is to bosonize 
the noninteracting fermions in a finite volume. 
We identify the free Bose field through the well 
known relation 

One can then see equation (37) coming out im­
mediately from the Bose field correlator. 

The three-point function of density fluctu­
ations 

For fermions satisfying the Dirac equation, 
the three point function of density is zero. This 

The structure of the effective action 

We want to keep only terms upto the order 

being the Heaviside function. 

lengthy expression after a long calculation. 
turns out to be the following 

The lowest order contribution to the three-
point function 

is a consequence of the charge conjugation sym­
metry of the Dirac hamiltonian. In other words, 
it is a consequence of the symmetry of the prob­
lem under reflection about the Fermi level. How­
ever, we know that this symmetry is broken in 
the nonrelativistic model and this is caused by 
the second term in the hamiltonian. This term, 
treated as a perturbation, should provide sys­
tematic order by order contributions to the three 
point function. 
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of j in the equation of motion. It can be easily 
seen from N counting that if we normalize the 
two-point connected Green's function to be or­
der 1, then the order of the n-point connected 
function is N2~n. Hence we need to consider 
only the two-point and the three-point function. 
The leading contribution to the three-point func­
tion is of the order 1/N. The 1/N contribution 
to the two-point function cancells off. This is 
because the two-point function of the density is 
54(1,2)5,(1,2) which is 5 ( 1 , 2 f in the lowest or­
der. The next order is «5(5^(1,2)5,(1,2)). Since, 
in the lowest order ASk = — A 5 p , the first cor­
rection to the two-point funcion is zero. The cor­
rection is therefore ~ O(-p-). 

Hence, from what we have done till now, we 
can reconstruct in the lowest order quadratic and 
cubic pieces of the effective action. The quadratic 
piece is going to be that of a free boson field 
which is 2n J dtdrd+<j>d-<f>. We need to choose a 
three-vertex which gives the correct three point 
function. This three point function has two pieces. 
One is proportional to w " 1 — 1 . the other is not. 
This first term is the dominant one for fixed A,, 
if we calculate < YliPi^hti) >• However if we 
change over to scaled variable like r—a then since 

iiNAe is held fixed when N 00. On the other 
hand quantities like 

remain finite. Hence we pay less attention to 
the piece proportional to ~ . The other piece 
is a sum of two chiral contributions. This in­
dicates that the vertex is made of d+<f> and <9_<£. 
d± = In fact one can show that the required 
interaction piece of the effective action is of the 
form 

It is remarkable that some very similar ac­
tion can be obtained if one tries to bosonize the 

This is very similar to the tachyon equation. Note, 
however, that the interaction terms consist solely 

Then 

for large r - a, i.e. for points far away from the 
turning point, 

since 

translation-invariant ). It is possible that there is 
a generalization of the Mandelstam formulea in 
our case, where terms more singular than n * r a 

appear, but they are always multiplied by higher 
powers of 1/N (or ^ s t r ) . 

The equation of motion in the lowest order 
looks like 

crucially on the short distance properties of the 
Green's function, which can be modified if the 
perturbation is singular. This is precisely the 
case here. Yet this procedure gives the same lead­
ing order effective action,except for a 
^ / dtdrp2

fdP<j> term (which, if genuinely present, 
should shifts the background <f> from zero to a 
value ~ 0( j ) and in that process give O(-ĵ r) cor­
rection to the two point function which no longer 
remain 

(Note that our normalization of <f> is different 
from Mandelstam's.) Now, one can separately 
differentiate in ri and r 2 and then take the limit 
r i —• T 2 a n ( l u s e th e result in equation ( ) to 
obtain the bosonic expression for the perturba­
tion. 

We know that Mandelstam formulae depend 

fermion theory naively by using Mandelstam for­
mulae 1 1 2 1, 
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of derivatives of <j> and not <j> itself. Also it can 
be written entirely in terms of the currents j ± = 
d±</> + higher order terms. 

Note added 

While this work was in progress we became 
aware of similar works by S.R. Das and A. Je-
vicki1"1 and1"1 J. Polchinski. 

13. S.R. Das and A. Jevicki, Brown Preprint, 
1990. 

14. J. Polchinski, Texas Preprint, 1990. 

15. A.M. Sengupta and S.R. Wadia, TIFR 
Preprint TIFR-TH-90/33. 
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