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Preface

The sixteenth workshop on General Relativity and Gravitation (the 16th JGRG meeting)
was held at Niigata Prefectural Civic Center, from 27 November to 1 December, 2006.

There has been impressive progress in astrophysical/cosmological observation in recent
years, including CMB, black holes and gamma-ray bursts. On the theory side, motivated
by unified theories of fundamental interactions, especially string theory, physics in higher
dimensional spacetimes has been studied intensively. There has been also important
developments in various areas of GR, including alternative theories of gravity, quantum
gravity, spacetime singularities, etc.

This year, we invited ten speakers from various countries, who gave us clear overview
of recent developments and future perspectives. We witnessed active discussions among
the participants during the meeting. We would like to thank all the participants for their
earnest participation.
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versities: matching fund subsidy from MEXT (Ministry of Education, Culture, Sports,
Science and Technology), 2002-2006.
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Post-Friedmannian effects of inhomogeneities in observational
cosmology

— Apparent Acceleration through Large-Scale Inhomogeneities? —

Masumi Kasai1

Faculty of Science and Technology, Hirosaki University, Hirosaki 036–8561, Japan

Abstract
There have been suggestions that the apparent acceleration of the cosmic expansion
is not driven by dark energy, but is a consequence of large-scale inhomogeneities in
the universe. Previous works, however, deeply depend on the simplified toy mod-
els, such as the spherically symmetric Lemâıtre-Tolman models. In this article, we
demonstrate a method to describe phenomenologically the effects of the large-scale
inhomogeneities in the universe, without depending on the specific toy models. This
clearly illustrate how the post-Friedmannian effects of inhomogeneities, i.e., the ef-
fects due to the deviations from the perfectly homogeneous Friedmann models, change
the cosmological parameters, in particular q0.

1 Introduction

The Cosmological Principle, which states that the universe is described by the perfectly homogeneous
and isotropic Friedmann model, is a working hypothesis which has been widely accepted among cur-
rent cosmologists. The present, past, and future evolution of the Friedmann model is determined by
a few constant parameters, such as the Hubble parameter H0 and the deceleration parameter q0. The
determination of the cosmological parameters is one of the main purposes in observational cosmology.

The recent observations of type Ia supernovae (SNIa) [1] now strongly suggests the negative decel-
eration parameter, q0 < 0. As long as we stick to the perfectly homogeneous Friedmann models, this
requires dark energy, an exotic energy component which accelerates the cosmic expansion with its negative
pressure.

Instead of introducing such a mysterious energy component, there have been attempts to explain
the apparent accelerated expansion of the universe as a result of the large-scale inhomogeneities in the
universe. For example, Tomita [2], using his local void model, and Iguchi et al. [3], using the Lemâıtre-
Tolman model, discussed the possibility of explaining the observed magnitude-redshift (m-z) relation of
SNIa. Moreover, recently Alnes et al. [4] have concluded that not only the m-z relation of SNIa but also
the position of the first peak in the CMB anisotropy can be explained due to the inhomogeneity in the
Lemâıtre-Tolman model.

Previous works, however, depend specifically on the simplified toy models. Therefore, due to the
lack of strong support for such toy models as a realistic description of our universe, the study of the
inhomogeneous effects of the universe is not the main stream of the research subjects, compared to that
of dark energy.

In this article, we demonstrate a method to describe phenomenologically the effects of the large-scale
inhomogeneities in the universe, without depending on the specific toy models. This method clearly
illustrate how the post-Friedmannian effects of inhomogeneities, i.e., the effects due to the deviations
from the perfectly homogeneous Friedmann models, change the cosmological parameters, in particular
q0.

1E-mail: kasai@phys.hirosaki-u.ac.jp
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2 The magnitude-redshift relation of SNIa

Before describing the effects of inhomogeneities, let us summarize the magnitude-redshift relation in the
Friedmann universe:

m = M + 5 log10
DL(z)
D10

, (1)

where m is the apparent magnitude, M is the absolute magnitude of SNIa which is defined as the apparent
magnitude at a distance DL(z) = D10 ≡ 10pc, and DL(z) is the luminosity distance at redshift z. All
SNIa we will consider in this article have the redshift z < 1, therefore, we can use the approximate
formula for DL(z) as a power series:

DL(z) =
c

H0

{
z +

1
2
(1 − q0)z2 + · · ·

}
(2)

Putting this into Eq. (1), we obtain

m = M + 5 log10
c

H0 D10
+ 5 log10

{
z +

1
2
(1 − q0)z2

}
≡ M + 5 log10

{
z +

1
2
(1 − q0)z2

}
, (3)

where M is often called as the “Hubble-constant-free” absolute magnitude [1], or the magnitude “zero-
point” [5]. The problem is now to obtain the best fit parameters M and q0 from observational data.

As an illustration, we use the observed SNIa data given in the paper by Perlmutter et al.[1]. In
Figure 1, we plot the Hubble diagram for 42 high-redshift (0.172 ≤ z ≤ 0.830) type Ia supernovae from the
Supernova Cosmology Project and 18 low-redshift (0.018 ≤ z ≤ 0.101) supernovae from the Calán/Tolont
Supernova Survey. Also plotted is the best fit m-z curve with the parameters M = 24.01, q0 = −0.32.
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Figure 1: Hubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project
and 18 low-redshift supernovae from the Calán/Tolont Supernova Survey (data taken from [1]). The solid
curve is the best fit m-z relation with M = 24.01, q0 = −0.32.
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3 Different M for different data sets?

Before concluding “OK, q0 is negative. We need dark energy. That’s all”, let us remark that the data
consists of two different data sets, by different groups, of different distances and epochs of SN formation.
In the two sets, the low-redshift data set essentially determines the value of M irrespectively of q0,
whereas the other, the high-redshift data set, plays the role of determining the best fit q0 for the given
value of M.

In order to make an alternative interpretation without dark energy, let us perform the following
experimental fitting for each data set: What happens if we fit the only high-redshift SN data, or the only
low-redshift SN data, with the m-z relation assuming, say, q0 = 1/2? Figure 2 shows the results of such
experimental fittings.

 14

 16

 18

 20

 22

 24

1.00.50.20.10.050.02

ef
fe

ct
iv

e
m

B

redshift z

M=24.37, q0=0.5
M=24.04, q0=0.5

M=24.01, q0=−0.32
42 high-redshift type Ia SNe
18 low-redshift type Ia SNe

Figure 2: Hubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project
and 18 low-redshift supernovae from the Calán/Tolont Supernova Survey (data taken from [1]). The
upper dashed curve (M = 24.37, q0 = 0.5) fits with the high-redshift SN data, the lower dashed curve
(M = 24.04, q0 = 0.5) fits with the low-redshift SN data.

4 Inhomogeneous interpretation?

Since M = M +5 log10 (c/H0D10), the result that the different values of M fit with the different redshift
data sets may imply the following possibilities of inhomogeneous interpretation:

1. The absolute magnitude M of the high-redshift SNIa is systematically different from that of the
low-redshift SNIa.

2. The speed of light c is different in different redshift regions;-)

3. H0 in the high-redshift region is slightly different from that in the low-redshift region.

In the following, we examine further the third possibility of the inhomogeneous interpretation. If the
difference in M is due to the inhomogeneous expansion rate H0, we can estimate as follows:

24.37 − 24.04 = 5 log10
H0(z ≤ 0.1)
H0(0.2 ≤ z)

, (4)
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which yields H0(0.2 ≤ z) = 0.86H0(z ≤ 0.1), i.e., 14% smaller value of H0 in the high-redshift region
compared to that in the low-redshift region may explain the observed m-z relation of SNIa, without
introducing dark energy.

5 Post-Friedmannian effects of large-scale inhomogeneities

In the perfectly homogeneous Friedmann models, H0 denotes the expansion rate at the present time t0,
and is constant all over the t = t0 hypersurface. In generally inhomogeneous universes, however, the
expansion rate is naturally dependent on the spatial positions, through which H0 becomes dependent on
z:

H0 = H(t0, xi) = H0(t0, xi(z)) ⇒ H0(z). (5)

In the same way, q0 can also be dependent on z:

q0 = q(t0, xi) = q0(t0, xi(z)) ⇒ q0(z). (6)

Since z < 1, these are expanded as power series:

H0(z) = H̄0

(
1 + h1 z + h2 z2 + · · ·) , (7)

q0(z) = q̄0
(
1 + ω1 z + ω2 z2 + · · ·) . (8)

The coefficients h1, h2, . . . , ω1, ω2, . . . represent the post-Friedmannian corrections due to spatial inhomo-
geneities. Including the post-Friedmannian corrections, we may describe the luminosity distance as

DL(z) =
c

H̄0

{
z +

1
2
(
1 − (q̄0 + 2h1)

)
z2 + · · ·

}
. (9)

Therefore, negative values of the post-Friedmann term h1 can contribute to decrease the apparent decel-
eration parameter q0 ≡ q̄0 + 2h1.

6 Conclusion

We have pointed out the possibility that the apparent accelerated expansion of the universe, which
derived from the observed m-z relation of SNIa, may be explained by the large-scale inhomogeneities
in the cosmological parameters. In generally inhomogeneous universes, the expansion rate are natu-
rally dependent on spatial coordinates, therefore the redshift z. A simple phenomenological method to
treat the post-Friedmannian effects, i.e., the effects of the deviations from the perfectly homogeneous
Friedmann models due to spatial inhomogeneities, is shown. This method clearly illustrates how the
post-Friedmannian corrections affect the apparent cosmological parameters, in particular q0.

In order to examine the more detail, we need to expand higher order. The detail will be published
elsewhere in the forthcoming paper.
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Abstract
if the expanding and contracting regions coexist in the universe, the speed of cosmic

volume expansion can be accelerated. We construct simple inhomogeneous dust-filled
universe models of which the speed of cosmic volume expansion is accelerated for
finite periods. We find that the the acceleration of the cosmic volume expansion is
realized when the size of the contracting region is comparable to the horizon radius of
the Einstein-de Sitter universe. This result implies that general relativistic non-linear
effects of inhomogeneities are very important for the realization of the acceleration of
the cosmic volume expansion.

1 Introduction

The accelerated expansion of the universe indicated by the observational data of the luminosity dis-
tance of Type Ia supernovae and the cosmicmicrowave background radiation is a greatmystery in modern
cosmology. The acceleration of a homogeneous and isotropic Friedmann-Robertson-Walker (FRW) uni-
verse implies the existence of the dark energy component of the matter fields which violates the energy
conditions and we do not know their true character. Conversely, if the universe is not homogeneous and
isotropic, the observational data does not necessarily indicate the accelerated expansion of the universe,
or even if the cosmic expansion is accelerated, it does not necessarily mean the existence of the dark
energy. Thus to explain the observational data without introducing the dark energy, the argument about
the effects of the inhomogeneities has been arisen.

One of the present authors, Nambu, and his collaborator, Tanimoto pointed out the possibility that
the non-perturbative features of inhomogeneities are crucial to realize the accelerated expansion of the
universe by the backreaction effects.[1] They proposed a model of the universe containing both expanding
and contracting regions and the spatially averaged scale factor defined through the volume of a spatial
domain can show accelerated expansion if the size of each region is properly chosen.

As Nambu and Tanimoto have adopted a over-simplfied model of the accelerated universe, we modify
their model and check whether their mechanism really works. Hence, in this paper, in order to check it,
we study the comoving volume of the highly inhomogeneous dust-filled universe.

2 The mechanism of the accerelation

We consider a compact spatial domain D in each t =constant hypersurface by assuming that D is
dust-comoving. By its definition, D contains fixed rest mass of dust. We assume that the domain D is
so large that the spatial periodicity is recognizable in this domain. The volume VD of D is defined by

VD =
∫

D

√
γ d3x, (1)

where γ is the determinant of the spatial metric γij . Following Ref. [2, 3], we define the spatially averaged
scale factor aD(t) of the domain by 3ȧD/aD = V̇D/VD, where the dot ˙means the derivative with respect
to t. This definition is equivalent to aD(t) ∝ V

1/3
D (t).
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3knakao@sci.osaka-cu.ac.jp
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Since we assume that the expanding and contracting domains coexist within this domain D, we rewrite
the volume VD in the form

VD = Ve + Vc, (2)

where Ve and Vc are the comoving volume of the union of the expanding domains and that of the
contracting domains, respectively. The time derivative of the volume is written as

V̇D = V̇e + V̇c = |V̇e| − |V̇c|. (3)

We see from the above equation that even though V̇D is initially positive, once V̇c becomes dominant,
V̇D can almost vanish or be negative. In other words, due to the appearances of the contracting domains
in D, the cosmic volume expansion of D can strongly slow down or the volume VD of D can decrease.
However, the contracting domains will collapse and then their contributions to the volume VD necessarily
become negligible. This means that V̇e will be dominant in V̇D and the volume VD begins increasing
again. Here it should be noted that the acceleration of volume expansion is realized around the end of
the slowdown or contraction stage. In this period, the second order time derivative of the effective scale
factor aD(t) becomes positive and thus the acceleration of cosmic expansion will be realized. This is the
mechanism of the acceleration of the cosmic volume expansion pointed out by Nambu and Tanimoto[1].

3 An inhomogeneous universe witu expanding and contracting

region

We consider an inhomogeneous dust-filled universe which is initially expanding everywhere. We assume
that at some stage, the dust begins contracting in some domains and continues expanding elsewhere. Such
a situation agrees with our conventional picture of the real universe (stars, galaxies, etc).

To describe this universe by the exact solution of Einstein equation, we consturuct a simple inhomoge-
neous dust filled model. This model is made by removing spherical region from Einstein-de-sitter universe
(EDS) and filling each region by Lamâıtre-Tolman-Bondi (LTB) dust sphere with the same gravitational
mass.

The line element of the LTB region is given by

ds2 = −dt2 +
Y ′2(t, χ)

1 − k(χ)χ2
dχ2 + Y 2(t, χ)(dθ2 + sin2 θdϕ2), (4)

where the prime ′ denotes the differentiation with respect to the radial coordinate χ. This coordinate
system is dust-comoving Gaussian normal coordinate. Einstein equations lead to the equations for the
areal radius Y (t, χ) and the rest mass density ρ(t, χ) of the dust;

Ẏ 2 = −k(χ)χ2 +
2M(χ)

Y
, (5)

ρ =
M ′(χ)

4πY ′Y 2
, (6)

where k(χ) and M(χ) are arbitrary functions of the radial coordinate. We assume the non-negativity
of ρ and monotonicity of Y with respect to χ, i.e., Y ′ > 0 in the regular region. This assumption leads
M ′ ≥ 0 and thus we can set M(χ) = 4πρ0χ

3/3, where ρ0 is a non-negative arbitrary constant. This
choice of M(χ) does not loose any generality. As equations (4)-(6) are invariant under the rescaling of
the radial coordinate χ, we can choose the above form of M(χ) generally.

The solution of Eq.(5), (6) is given by

Y =
4πρ0
3k(χ)

(
1 − cos

(√
k(χ) η

))
χ, (7)

t − ti(χ) =
4πρ0
3k(χ)

(
η − 1√

k(χ)
sin

(√
k(χ) η

))
, (8)
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where ti(χ) is an arbitrary function. We can use this expression of the solution for any sign of k(χ). Here
note that the time t = ti corresponds to the Big Bang singularity. Hereafter, we assume a simultaneous
Big Bang ti = 0.

For k(χ) = 0, this model corresponds to EDS universe that scale factor is given by ae(t) = (6πρ0t
2)1/3.

So, we need to set k(χ) so that LTB region smoothly mathed to EDS region. We denote the boundary
between the LTB region and the EdS region by χ = χb. Then dividing the LTB region into four regions
by using the following spatial profile of the curvature function:

k(χ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k0 for 0 ≤ χ < χ1

k0
2χ2

{
(χ2−χ2

2)
2

χ2
1−χ2

2
+ χ2

1 + χ2
2

}
for χ1 ≤ χ < χ2

k0
2χ2

(
χ2
1 + χ2

2

)
for χ2 ≤ χ < χ3

k0
2χ2

(
χ2
1 + χ2

2

){(χ2−χ2
3

χ2
b−χ2

3

)2
− 1

}2

for χ3 ≤ χ < χb

, (9)

where k0 is constant, and we are interested in the case that LTB regions will cotract, we assume k0 > 0.
In the case of the present model, the singularity formed at the origin χ = 0 is spacelike, since the

innermost region [0, χ1) is a Friedman universe with a positive spatial curvature. Therefore there is no
causal influence of the spacelike singularities on the regular region This property allows us to ignore the
contribution of the singularity in the calculation of the volume VD of the domain D.

We see from Eq. (8) that the singularity formation time is given by t = 8π2ρ0/(3k3/2). Since k is
monotonically decreasing with respect to χ, the singularity formation time is monotonically increasing
with respect to χ and thus the shell crossing singularity does not occur in the present model.

4 Numerial result

We first consider the model with one LTB region of χb = l in the domain D (see FIG. 1).

Figure 1: The compact domain D of the one-scale SSC model is depicted.

Thus in this model, the identical LTB regions are ranged in close order. The volume VD of the domain
D is given by

VD =
(

8 − 4π

3

)
a3e(t)l

3 + 4π

∫ ae(t)l

0

Y 2dY√
1 − k(χ)χ2

. (10)

The integral in the right hand side of the above equation corresponds to the comoving volume of the
LTB region. It should be noted that χ in this integral is the function of the areal radius Y at time t
through Eqs. (7) and (8). Thus this integration covers the only region which has not yet collapsed to the
singularity, i.e., the domain of Y > 0 at time t. In Fig.(2) we show several examples of the evolution of
the scale factor aD(t). Here, aD(t) ≡ V

1/3
D /2l.

The necessary condition for the appearance of the acceleration period is that the volume of the LTB
region becomes dominant in VD. In this case, if the parameter κ is almost equal to unity, the contribution
of χ2 ≤ χ < χ3 is dominant in the volume of the LTB region and further makes the volume of the LTB
region dominant in VD for a long time before the domain χ ≤ χ3 completely collapses. So acceleraion
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Figure 2: The left panel shows the evolution of the averaged scale factor aD of one scale SSC model for
various values of κ. The right panel shows the acceleration of the averaged scale factor aD.

is realized. Especially, for two cases of κ ≥ 0.999609, κ ≥ 0.999453, do not have the contraction period
although the acceleration occurs. this case is consitent with our real universe.

It should be noted that when the volume of the domain χ < χ3 is dominant in the volume VD and
is contracting, the volume expansion of the domain D strongly slows down or the domain D contracts.
The acceleration of the volume expansion is realized when the volume of the domain χ < χ3 becomes so
small that its contribution to VD is negligible. In other words, the acceleration period appears around
the time at which the dust in the domain χ < χ3 collapses to the singularity and this time is given by

tac :=
8π2

3
ρ0χ

3
3

κ3/2
. (11)

At t = tac, the ratio of the areal radius of the boundary of a LTB region ae(t)l to the Hubble horizon
radius of EdS region H−1(t) := ae/ȧe = 3t/2 becomes

ae(tac)l
H−1(tac)

=
(

2
3π

)1/3

κ1/2 l

χ3
� 0.60 κ1/2

(
l

χ3

)
. (12)

Here it should be noted that κ has to be almost equal to unity so that the acceleration of the cosmic
volume expansion is realized. Therefore the size of the LTB region is comparable to the horizon radius of
EdS region in the acceleration period. Thismeans that general relativistic non-linear effects are important
for the realization of the acceleration period.

5 summary and future work

We indicated that the cosmic volume expansion can be accelerated by inhomogeneities in the dust-filled
universe. Moreover, the existence of the cotracting region comparable to the Hubble horizon scale is
necessarry condition to realize the acceleration. this fact is very different from the universe observed
today in the period of the accelerating cosmic volume expansion. However, for the model with various
scales of inhomogeneities, the temporal variation of the cosmic volume expansion is nontrivial from a
theoretical point of view, and the complete analysis is left as a future work.

Here we should note that the issue of the cosmic acceleration has first been arisen from the observa-
tional data of the distance-redshift relation and that we have not directly observed the acceleration of
the ‘volume’ expansion. So we need to investigate the distance-redshift relation in the inhomogeneous
model. This is also our future work.
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Abstract
Dark energy indicated by the current acceleration of our universe is one of the greatest
mysteries in modern cosmology. Although more than 70% of our universe is thought to
be dark energy, we do not know what it really is. In this situation, it seems natural to
ask whether we can modify gravity at long distances to address the mystery. Ghost
condensation is an analog of Higgs mechanism in general relativity, and modifies
gravity at long distances without pathologies like ghost instability or strong coupling.
In this presentation I discuss gravity and cosmology with ghost condensate.

1 Introduction

Acceleration of the cosmic expansion today is one of the greatest mysteries in both cosmology and
fundamental physics. Assuming that Einstein’s general relativity is the genuine description of gravity
all the way up to cosmological distance and time scales, the so called concordance cosmological model
requires that about 70% of our universe should be some sort of energy with negative pressure, called dark
energy. However, since the nature of gravity at cosmological scales has never been probed directly, we
do not know whether the general relativity is really correct at such infrared (IR) scales. Therefore, it
seems natural to consider modification of general relativity in IR as an alternative to dark energy. Dark
energy, IR modification of gravity and their combination should be tested and distinguished by future
observations and experiments.

2 EFT of ghost condensation

Ghost condensation is an analogue of the Higgs mechanism in general relativity and modifies gravity in
IR in a theoretically controllable way [1]. Its basic idea can be pedagogically explained by comparison
with the usual Higgs mechanism as in the table shown below. First, the order parameter for ghost
condensation is the vacuum expectation value (vev) of the derivative ∂μφ of a scalar field φ, while the
order parameter for Higgs mechanism is the vev of a scalar field Φ itself. Second, both have instabilities
in their symmetric phases: a tachyonic instability around Φ = 0 for Higgs mechanism and a ghost
instability around ∂μφ = 0 for ghost condensation. In both cases, because of the instabilities, the system
should deviate from the symmetric phase and the order parameter should obtain a non-vanishing vev.
Third, there are stable points where small fluctuations do not contain tachyons nor ghosts. For Higgs
mechanism, such a point is characterized by the order parameter satisfying V ′ = 0 and V ′′ > 0. On
the other hand, for ghost condensation a stable point is characterized by P ′ = 0 and P ′′ > 0. Fourth,
while the usual Higgs mechanism breaks usual gauge symmetry and changes gauge force law, the ghost
condensation spontaneously breaks a part of Lorentz symmetry (the time translation symmetry) and
changes linearized gravity force law in Minkowski background. Finally, generated corrections to the
standard Gauss-law potential is Yukawa-type for the usual Higgs mechanism but oscillating for ghost
condensation.

At this point one might wonder if the system really reach a configuration where P ′ = 0 and P ′′ > 0.
Actually, it is easy to show that this is the case. For simplicity let us consider a Lagrangian Lφ =
P (−(∂φ)2) in the expanding FRW background with P of the form shown in the upper right part of the
table. We assume the shift symmetry, the symmetry under the constant shift φ → φ + c of the scalar
field. This symmetry prevents potential terms of φ from being generated. The equation of motion for φ

1E-mail:mukoyama@phys.s.u-tokyo.ac.jp
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is simply ∂t[a3P ′φ̇] = 0, where a is the scale factor of the universe. This means that a3P ′φ̇ is constant
and that

P ′φ̇ ∝ a−3 → 0 (a → ∞) (1)

as the universe expands. We now have two choices: P ′ = 0 or φ̇ = 0, namely one of the two bottoms of
the function P or the top of the hill between them. Obviously, we cannot take φ̇ = 0 since it is a ghosty
background and anyway unstable. Thus, we are automatically driven to P ′ = 0 by the expansion of the
universe. In this sense the background with P ′ = 0 is an attractor.

Having shown that the ghost condensate is an attractor, let us construct a low energy effective field
theory around this background. For this purpose the most straightforward approach is to expand a
general Lagrangian consistent with the shift symmetry. An alternative, more powerful way is to use the
symmetry breaking pattern. In this approach, we actually do not need to specify a concrete way of the
spontaneous symmetry breaking.

Here, let us briefly review this approach based on the symmetry breaking pattern. This is more
universal and can be applied to any situations as far as the symmetry breaking pattern is the same.
We assume that (i) 〈∂μφ〉 is non-vanishing and timelike and that (ii) the background spacetime metric is
maximally symmetric, either Minkowski or de Sitter. With the assumption (i), the 4-dimensional Lorentz
symmetry is spontaneously broken down and we are left with the 3-dimensional spatial diffeomorphism
x → x′(t, x). Our strategy here is to write down the most general action invariant under this residual
symmetry. After that, the action for the Nambu-Goldstone (NG) boson π is obtained by undoing the
unitary gauge.

For simplicity let us consider the Minkowski background plus perturbation: gμν = ημν + hμν . The
infinitesimal gauge transformation is δhμν = ∂μξν + ∂νξμ, where ξμ is a 4-vector representing the gauge
freedom. Under the residual gauge transformation ξi (i = 1, 2, 3), the metric perturbation transforms as

δh00 = 0, δh0i = ∂0ξi, δhij = ∂iξj + ∂jξi. (2)

Now let us seek terms invariant under this residual gauge transformation. They must begin at quadratic
order since we assumed that the flat spacetime is a solution to the equation of motion. The leading term
(without derivatives acted on the metric perturbations) is

∫
dx4M4h200. This is indeed invariant under the

residual gauge transformation (2). From this term, we can obtain the corresponding term in the effective
action for the NG boson π. Since h00 → h00 + 2∂0ξ0 under the broken symmetry transformation ξ0, by
promoting ξ0 to a physical degree of freedom π, we obtain the term

∫
dx4M4(h00 − 2π̇)2. This includes

a time kinetic term for π as well as a mixing term. At this point we wonder if we can get the usual space
kinetic term (∇π)2 or not. The only possibility would be from (h0i)2 since h0i → h0i − ∂iπ under the
broken symmetry transformation ξ0 = π. However, this term is not invariant under the residual spatial
diffeomorphism ξi and, thus, cannot enter the effective action. Actually, there are combinations invariant

− 10 −



under the spatial diffeomorphism. They are made of the geometrical quantity called extrinsic curvature.
The extrinsic curvature Kij in the linear order is Kij = (∂0hij − ∂jh0j − ∂ih0j)/2 and transforms as a
tensor under the spatial diffeomorphism. Thus,

∫
dx4M̃2K2 and

∫
dx4M̄2KijKij are invariant under

spatial diffeomorphism and can be used in the action, where K = Ki
i . Since Kij → Kij + ∂i∂jπ under

the broken symmetry ξ0 = π, we obtain
∫

dx4(M̃2 + M̄2)(∇2π)2. Combining these terms with the above
time kinetic term and properly normalizing the definition of π and M , we obtain

Leff = M4

{
1
2

(
π̇ − 1

2
h00

)2

− α1

M2

(
K + ∇2π

)2
− α2

M2

(
Kij + ∇i∇jπ

)(
Kij + ∇i

∇jπ
)

+ · · ·
}

, (3)

where α1 and α2 are dimensionless constants of order unity. Note that, in deriving the effective action,
all we needed was the symmetry breaking pattern. Thus, the low energy EFT of the ghost condensation
is universal and should hold as far as the symmetry breaking pattern is the same.

In ghost condensation the linearized gravitational potential is modified at the length scale rc in the
time scale tc, where rc and tc are related to the scale of spontaneous Lorentz breaking M as

rc � MPl

M2
, tc � M2

Pl

M3
. (4)

Note that rc and tc are much longer than 1/M . The way gravity is modified is peculiar. At the time
when a gravitational source is turned on, the potential is exactly the same as that in general relativity.
After that, however, the standard form of the potential is modulated with oscillation in space and with
exponential growth in time. This is an analogue of Jeans instability, but unlike the usual Jeans instability,
it persists in the linearized level even in Minkowski background. The length scale rc and the time scale tc
above are for the oscillation and the exponential growth, respectively. At the time ∼ tc, the modification
part of the linear potential will have an appreciable peak only at the distance ∼ rc. At larger distances,
it will take more time for excitations of the Nambu-Goldstone boson to propagate from the source and
to modify the gravitational potential. At shorter distances, the modification is smaller than at the peak
position because of the spatial oscillation with the boundary condition at the origin. The behavior
explained here applies to Minkowski background, but in ref. [1] the modification of gravity in de Sitter
spacetime was also analyzed. It was shown that the growing mode of the linear gravitational potential
disappears when the Hubble expansion rate exceeds a critical value Hc ∼ 1/tc. Thus, the onset of the IR
modification starts at the time when the Hubble expansion rate becomes as low as Hc.

If we take the M/MPl → 0 limit then the Higgs sector is completely decoupled from the gravity
and the matter sectors and, thus, the general relativity is safely recovered. Therefore, cosmological and
astrophysical considerations in general do not set a lower bound on the scale M of spontaneous Lorentz
breaking, but provide upper bounds on M . If we trusted the linear approximation for all gravitational
sources for all times then the requirement Hc <∼ H0 would give the bound M <∼ (M2

PlH0)1/3 � 10MeV ,
where H0 is the Hubble parameter today [1]. However, for virtually all interesting gravitational sources
the nonlinear dynamics dominates in time scales shorter than the age of the universe. As a result the
nonlinear dynamics cuts off the Jeans instability of the linear theory, and allows M <∼ 100GeV [2].

Note that the ghost condensate provides the second most symmetric class of backgrounds for the
system of field theory plus gravity. The most symmetric class is of course maximally symmetric solutions:
Minkowski, de Sitter and anti-de Sitter. The ghost condensate minimally breaks the maximal symmetry
and introduces only one Nambu-Goldstone boson.

3 Cosmological applications

Now let us discuss some applications to cosmology.
Inflation: We can consider inflation with ghost condensation in the regime of validity of the EFT. In

the very early universe where H is higher than the cutoff M , we do not have a good EFT describing
the sector of ghost condensation. However, the contribution of this sector to the total energy density
ρtot is naturally expected to be negligible: ρghost ∼ M4 � M2

p H2 � ρtot. As the Hubble expansion
rate decreases, the sector of ghost condensation enters the regime of validity of the EFT and the Hubble
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friction drives P ′ to zero. If we take into account quantum fluctuations then P ′ is not quite zero but
is ∼ (H/M)5/2 ∼ (δρ/ρ)2 ∼ 10−10 in the end of ghost inflation. In this way, we have a consistent
story, starting from the outside the regime of validity of the EFT and dynamically entering the regime of
validity. All predictions of the ghost inflation are derived within the validity of the EFT, including the
relatively low-H de Sitter phase, the scale invariant spectrum and the large non-Gaussianity [3].

Dark energy: In the usual Higgs mechanism, the cosmological constant (cc) would be negative in the
broken phase if it is zero in the symmetric phase. Therefore, it seems difficult to imagine how the Higgs
mechanism provides a source of dark energy. On the other hand, the situation is opposite with the ghost
condensation: the cc would be positive in the broken phase if it is zero in the symmetric phase. Hence,
while this by itself does not solve the cc problem, this can be a source of dark energy.

Dark matter: If we consider a small, positive deviation of P ′ from zero then the homogeneous part
of the energy density is proportional to a−3 and behaves like cold dark matter (CDM). Inhomogeneous
linear perturbations around the homogeneous deviation also behaves like CDM. However, at this moment
it is not clear whether we can replace the CDM with ghost condensate. We need to see if it clumps
properly. Ref. [2] can be thought to be a step towards this direction.

Cosmological perturbation: By using the formalism of the cosmological perturbations developed in
[4], the theory of ghost condensation can be tested by dynamical information of large scale structure
in the universe such as cosmic microwave background anisotropy, weak gravitational lensing and galaxy
clustering.

4 UV completion via gauged ghost condensation

To realize the ghost condensation without fine-tuning, we need to spontaneously break the 4-dimensional
diffeomorphism invariance times a global shift symmetry down to the 3-dimensional spatial diffeomor-
phism invariance times an unbroken global shift symmetry. The latter global shift is a combination of
the former global shift and the time shift. However, it is generally believed that all symmetries in string
theory are gauged. Therefore, it seems more plausible to obtain the ghost condensation as the neutral
limit of the gauged version of the ghost condensation, i.e. the gauged ghost condensation [5]. To obtain
the gauged ghost condensation from the ghost condensation we replace the global shift symmetry with a
minimal gauge symmetry, i.e. U(1) gauge symmetry, so that no global symmetry is needed. The ghost
condensation can be obtained from the gauged ghost condensation if we can fine-tune the gauge coupling
to a sufficiently small value. Thus, it is likely that, without fine-tuning, the gauged ghost condensation is
the simplest Higgs phase of gravity in string theory. An attempt to realize the gauged ghost condensation
in string theory has been made in ref. [6].
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Abstract
We present a method for accelerating the calculation of CMB power spectra, matter power spec-
tra and likelihood functions for use in cosmological parameter estimation. The algorithm, called
COSMONET, is based on training a multilayer perceptron neural network. We demonstrate the
capabilities of COSMONET by computing CMB power spectra over a box in the parameter space
of both a flat ΛCDM model and non-flat cosmology (with tensor modes, varying equation of
state of dark energy and massive neurtinos) containing the 4σ WMAP 3-year + (high resolution
CMB experiements plus 2dF and SDSS surveys) confidence region. We also use COSMONET
to compute the WMAP 3-year, 2dF and SDSS likelihoods and demonstrate that marginalised
posteriors on parameters derived are very similar to those obtained using CAMB and the like-
lihood codes in the normal way. COSMONET and an interface to COSMOMC are publically
available at www.mrao.cam.ac.uk/software/cosmonet.

1 Introduction
In the analysis of increasingly high-precision data sets, it is now common practice in cosmology to constrain
cosmological parameters using sampling based methods, most notably Markov chain Monte Carlo (MCMC) tech-
niques (Christensen et al. 2001; Knox, Christensen & Skordis 2001; Lewis & Bridle 2002). This approach typically
requires one to calculate theoretical CMB power spectra (i.e. some subset of the TT, TE, EE and BB C � spectra)
and/or the matter power spectrum P(k) at a large number of points (typically ∼ 10 5 or more) in the cosmologi-
cal parameter space. In addition, one must also evaluate at each point the corresponding (combined) likelihood
function for the data set(s) under consideration. As a result, the process can be computational very demanding.

MCMC parameter estimation codes such as COSMOMC (Lewis & Bridle 2002) attempt to decrease the overall
computational burden by dividing the cosmological parameter space into ‘fast’ parameters (governing the initial
primoridal power spectra of scalar and tensor perturbations) and ‘slow’ parameters (governing the perturbation
evolution).

There are a number of ways in which suitably accurate spectra can be generated somewhat more rapidly. For
small parameter spaces, it is possible simply to create spectra for a regular grid of models in parameter space
and interpolate between them in some way, such as the �-splitting scheme of Tegmark & Zaldarriaga (2000).
Nevertheless, the pre-compute of the grid of models remains extremely time-consuming.

Analytic and semi-analytic approximations can reduce the required number of pre-computed models. The
DASH code of Kaplinghat, Knox & Skordis (2002), stores a sparse grid of transfer functions (rather than C �) and
uses efficient choices for grid parameters and makes considerable use of analytic approximations.

More recently, the need to pre-compute a grid of models has been removed in the CMBWARP package (Jimenez
et al. 2004), which builds on the method introduced by Kosowsky, Milosavljevic & Jimenez (2002). In this
approach, a new set of nearly uncorrelated ‘physical parameters’ are introduced upon which the CMB power
spectra have a simple dependence. CMBWARP uses a modified polynomial fit in these parameters in which the
coefficients are based on the spectra CTT

� , CTE
� or CEE

� for just a single fiducial model in the parameter space.
Although the above methods have proved extremely useful in performing cosmological parameter estimation,

they do exhibit a number of drawbacks, including time consuming grid calculations, loss of accuracy and lack
of generality. Most recently, this has led Fendt & Wandelt (2006) to propose a more flexible and robust machine-
learning approach (called PICO) to accelerating both power spectra and likelihood evaluations. The basic algorithm
used by PICO consists of three major parts. First, the training set is compressed using Karhunen–Loève eigenmodes
which results in a reduction in the dimensionality of around two. Second, the training set is used to divide the

1E-mail:tauld@mrao.cam.ac.uk
2E-mail:mb435@mrao.cam.ac.uk
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parameter space into (∼ 100) smaller regions using a k-means clustering algorithm (see e.g. MacKay 1997).
Finally, a (4th order) polynomial is fitted within each cluster to provide a local interpolation of the power spectra
within the cluster as a function of cosmological parameters. The reason for dividing up the parameter space in
the second step is that the interpolation method used fails to model accurately the power spectra over the entire
parameter space.

We present an independent approach to using machine-learning techniques for accelerating both power spectra
and likelihood evaluations. Our approach is based on training a neural network in the form of a 3-layer perceptron.
The resulting COSMONET code has additional benefits over PICO in terms of simplicity, computational speed,
accuracy, memory requirements and ease of training.

2 Neural Networks

2.1 Multilayer perceptron networks
Multilayer perceptron neural networks (MLPs) are a type of feed-forward network composed of a number of
ordered layers of perceptron (Rosenblatt 1958) neurons that pass scalar messages from one layer to the next. We
will work with a 3-layer network, which consists of an input layer, a hidden layer and an output layer, as illustrated
in Fig. ??.

In such a network, the outputs of the nodes in the hidden and output layers take the form

hidden layer: h j = g(1)( f (1)
j ); f (1)

j = ∑
l

w(1)
jl xl + θ(1)

j , (1)

output layer: yi = g(2)( f (2)
i ); f (2)

i = ∑
j

w(2)
i j h j + θ(2)

i , (2)

where the index l runs over input nodes, j runs over hidden nodes and i runs over output nodes. w 1
jl ,θ

1
j ,w2i j,θ2

i are
the set of parameters that define the network that we will collectively refer to as the weights, w here. The functions
g(1) and g(2) are called activation functions. We use g(1)(x) = tanhx and g(2)(x) = x.

According to a ‘universal approximation theorem’ (Leshno et al. 1993), a standard multilayer feed-forward
network with these activation functions can approximate any continuous function to any degree of accuracy, given
sufficient hidden nodes.

2.2 Network training
We build an empirical model of the CAMB mapping using a 3-layer MLP as described above (a model of the
WMAP3 likelihood code can be constructed in an analogous manner). The number of nodes in the input layer
will correspond to the number of cosmological parameters, and the number in the output layer will be the number
of uninterpolated C� values output by CAMB. A set of training data D = {x(k), t(k)} is provided by CAMB and
the problem now reduces to choosing the appropriate weights w that best fit this training data. We do this by
minimising the ‘error’ term χ2(w) on the training set given by

χ2(w) = 1
2 ∑

k
∑

i

[
t(k)i − yi(x(k);w)

]2
. (3)

This is, however, a highly non-linear, multi-modal function in many dimensions whose optimisation is achieved
using the MEMSYS package (Gull & Skilling 1999).

3 Results
We demonstrate our approach by training networks to replace the CAMB package for the evaluation of the CMB
power spectra CTT

� , CTE
� , CEE

� (and CBB
� ) for two separate cosmological models within a box in parameter space

that encompasses the 4σ confidence region as determined using a typical mixture of CMB and large scale structure
experiments; WMAP 3-year + higher resolution CMB observations (ACBAR; Kuo et al. 2004; BOOMERang;
Piacentini et al. 2003; CBI; Readhead et al. 2004 and the VSA; Dickinson C., et al. 2004) and galaxy surveys;
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2dF; Cole et al. 2005 and SDSS; Tegmark et al. 2004. The first model; Model A, is a flat ΛCDM model,
the second; model B, is a 10-parameter non-flat cosmology that includes tensor modes, massive neutrinos and a
varying equation of state of dark energy. We also train networks to replace the WMAP 3-year, 2dF and SDSS
likelihood codes for model A within the same 4σ region.

The training data for the spectra interpolation is produced by uniformly sampling models over the 4σ parameter
region. It was found that up-to 5000 models are required in training for the various networks. Using less, led to a
loss in accuracy, and more, led to a slower training time. The physical parameters (ω b, ωcdm, θ,...) are converted
back to cosmological parameters (Ωb, Ωcdm, H0,...) and used as input to CAMB to produce the training set of CMB
power spectra out to �max = 1500. The WMAP 3-year likelihood was also generated for model A, but for model B,
this was problematic, due to the WMAP likelihood code producing no finite value for very non-physical models in
certain regions at the edges of the 4σ region. A further set of 10 4 samples were generated as testing data.

It was found that between 50 and 100 nodes in the hidden layer were sufficient to provide good results. The
results of comparing the COSMONET output with CAMB over the testing set are shown in Figures 1 and 2.

For all but the very low values of l in the EE spectrum the average error is under 10% of cosmic variance.
The 99th percentiles are comfortably below unit cosmic variance. A comparison of output of the COSMONET
likelihood network with the WMAP 3-year likelihood code over the testing set reveals a mean error of roughly 0.2
ln units close to the likelihood peak for model A.

4 Application to cosmological parameter estimation
To illustrate the usefulness of COSMONET in cosmological parameter estimation we perform an analysis of the
WMAP 3-year TT, TE and EE data using COSMOMC in three separate ways: (i) using CAMB power spectra and
the WMAP 3-year, 2dF and SDSS likelihood codes; (ii) using COSMONET power spectra and the likelihood codes;
and (iii) using the COSMONET likelihoods. The resulting marginalised parameter constraints for each method are
shown in figures 3, and are clearly very similar.

In each case 4 parallel MCMC chains were run on Intel Itanium 2 processors at the COSMOS cluster (SGI
Altix 3700) at DAMTP, Cambridge. The wall-clock computational time (the total CPU time is 4 times longer)
required to gather ∼ 20000 post burn-in MCMC samples was ∼ 12 hours for model A and ∼ 20 hours for model
B using method (i) (with CAMB further parallelised over 3 additional processors per chain, therefore totalling
16 CPUs), 8 hours (model A and model B) for method (ii) and for model A roughly 35±5 minutes using the
interpolated likelihood for method (iii).

5 Conclusions
We have presented a method for accelerating power spectrum and likelihood evaluations based on the training
of multilayer perceptron neural networks, which we have shown to be fast, robust and accurate. The method
is demonstrated with applications to a 6-parameter ΛCDM model and a 10-parameter non-flat cosmology. The
parameter constraints generated with COSMONET are very similar to those produced from the existing methods,
but took significantly less time to compute.

The homepage for the COSMONET package is located at www.mrao.cam.ac.uk/software/cosmonet and
provides a simple interpolation routine that interfaces with COSMOMC.
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Figure 1: Comparison of the performance of COSMONET versus CAMB for TT, TE and EE power spectra and
matter transfer function in a 6 parameter flat ΛCDM model. The plots show the average error together with the 95
and 99 percentiles in units of cosmic variance in the case of the CMB spectra and % error in the matter transfer
function case.
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Figure 2: Comparison of the performance of COSMONET versus CAMB for TT, TE, EE and BB power spectra
in a 10 parameter non-flat cosmological model. The plots shows the average error together with the 95 and 99
percentiles in units of cosmic variance.
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Figure 3: The one-dimensional marginalised posteriors on the cosmological parameters within the 6-parameter flat
ΛCDM model comparing: CAMB power-spectra and WMAP3, 2dF and SDSS likelihoods (red) with COSMONET
power spectra and WMAP3, 2dF and SDSS likelihoods (black) in (a) while (b) shows CAMB power-spectra
and WMAP3, 2dF and SDSS likelihoods (red) with COSMONET likelihoods (black). The 10-parameter non-flat
cosmology is shown in (c) comparing: CAMB power-spectra and WMAP3, 2dF and SDSS likelihoods (red) with
COSMONET power spectra and WMAP3, 2dF and SDSS likelihoods (black).
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Neutrino Mass Constraints from WMAP and SDSS
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Abstract
We discuss the constraints on the neutrino mass from recent cosmological data.
Assuming the flat LCDM model with power-law adiabatic perturbations, we find
mν < 0.7 eV (95% C.L.) from the WMAP data alone, without the aid of any other
cosmological data. We also investigate how much the SDSS LRG power spectrum
can improve this WMAP limit.

1 Introduction

The neutrino mass is directly searched by tritium β-decay experiments and the current upper bound for
the electron neutrino mass is 2 eV (95% C.L.) [1]. At present, it is difficult to push down the limit in
this way, but, as is well known, cosmological considerations give more stringent constraints.

For example, Ref. [2] obtained mν < 0.21 eV and Ref. [3] obtained mν < 0.58 eV, using the WMAP
1st year data combined with the galaxy power spectrum (the former used the data from the 2dFGRS and
the latter from the SDSS main sample. The difference can be ascribed to the use of the bias information
by Ref. [2]). By contrast, we found mν < 0.66 eV from the WMAP 1st year data alone as reported in
Ref. [4]. We note that this is the first to point out CMB data (the WMAP 1st year data) alone can give
a sub-eV upper bound on the neutrino mass, which is comparable to the limits obtained from the CMB
and galaxy clustering data combined.

Before Ref. [4] (and some time after that too), there seems to be a lack of consensus about whether
the CMB experiment with the WMAP-level precision can derive a sub-eV neutrino mass limit and, in
fact, the WMAP alone limit reported in Ref. [3], mν < 3.8 eV, which allows 100% HDM was somewhat
accepted (incidentally, the WMAP group did not report the WMAP 1st year data alone limit on the
neutrino mass). We, on the contrary, have derived the upper limit 0.66 eV as quoted above from the
same data by the χ2 minimization method which is independent from the MCMC method adopted by
Ref. [3]. Our conclusion is later confirmed by Refs. [5–7] (Ref. [5] does not report the WMAP alone
limit in a number but judging from their likelihood figure, it looks less than 1 eV. Refs. [6] and [7] gives
mν < 0.70 eV and mν < 0.63 eV respectively).

Below, we first discuss the WMAP alone limit comparing results from 1st year data and 3rd year
data. Then, we will see how the limit is tightened by the SDSS Luminous Red Galaxy (LRG) power
spectrum [8] which is obtained from a galaxy sample with the largest effective volume to date (about 6
times larger than that of the main sample).

We here summarize our notations. We derive neutrino mass constraint in the flat ΛCDM model with
the power-law adiabatic perturbations. Namely, cosmological parameters we consider are: baryon density
ωb, matter density ωm, hubble parameter h, reionization optical depth τ , spectral index of primordial
spectrum ns, its amplitude A and massive neutrino density ων . Here, ω ≡ Ωh2 where Ω is the energy
density normalized to the critical density and ωm ≡ ωb + ωc where ωc is cold dark matter density 2.
ων is related to neutrino masses by ων =

∑
mν/(94.1 eV) and we assume three generations of massive

neutrinos with degenerate masses so that ων = mν/(31.4 eV). The flatness condition is expressed as
ωm + ων + ωΛ = h2 where ωΛ is the cosmological constant energy density.
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Figure 1: Effects of massive neutrinos on the CMB TT power spectrum. The labels denote the neutrino
mass for single species mν and we assume three degenerate species. When we vary the neutrino mass, we
fix ωb, ωc, h and Ωtot = 1 so that ΩΛ varies. We also fix the amplitude (normalization) for the primordial
power spectrum A. Errorbars are from the WMAP 3-year observation.

2 WMAP alone limit

We begin with showing how CMB power spectrum is modified by increasing neutrino mass in Fig. 1. The
other cosmological parameters are fixed here. Also, we assume equal mass mν for three neutrino species,
which is justified because, from the oscillation experiments, the mass differences are known to be much
smaller than one eV. In this figure, we see horizontal shift, and suppression around the first peak. We
will briefly discuss whether these variations are degenerate with other cosmological parameters.

As for the horizontal shift, this comes from the fact that the larger mν implies smaller amount of
cosmological constant, since we assume that the universe is flat. Then the distance to the last scattering
surface is shorter and the peaks move to smaller � (to larger angular scales). However, this shift is easily
cancelled by the shift in the hubble parameter. Therefore this does not produce a neutrino mass signal.

Next, the suppression of the 1st peak takes place only when mν is larger than about 0.6 eV. This
corresponds to 0.3 eV in terms of photon temperature T . Meanwhile, the recombination takes place at
z ≈ 1088 or T ≈ 0.3 eV. In other words, massive neutrinos become non-relativistic before the epoch of
recombination if they are heavier than 0.6 eV. Therefore, only in this case, the neutrino mass can imprint
a characteristic signal in acoustic peaks (to be specific, the matter-radiation equality occurs earlier due
to less relativistic degrees of freedom and the enhancement of the 1st peak by the early-integrated Sachs-
Wolfe effect is smaller).

In passing, notice that such separation of the neutrino mass effect into the horizontal shift and the
suppression of the 1st peak for mν > 0.6 eV can be accomplished by our parametrization that ωm ≡ ωb+ωc

is fixed (ΩΛ is varied) when mν is varied.
This signal, however, could be accidentally mimicked by some combination of other cosmological

parameters. So we searched a large cosmological parameter space in order to find the degree of degeneracy
between mν and the other cosmological parameters. The results are shown in Fig. 2. We calculated
WMAP χ2 (log likelihood) as functions of mν . For each value of mν , we varied 6 other ΛCDM cosmological
parameters to find minimum χ2. In Fig. 2, the different lines represent different data sets. The blue dotted
line is the WMAP 1st year result which I mentioned in the introduction. The others use WMAP 3-year
data. The red solid line uses full data sets including temperature and polarization and the green dashed
line uses only temperature power spectrum. We find that three lines are quite similar.

1E-mail:kazuhide@icrr.u-tokyo.ac.jp
2Caution that many literatures define ωm ≡ ωb + ωc + ων to include the massive neutrino in the matter density.
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Figure 2: Δχ2 of WMAP data as functions of the neutrino mass mν [4,9]. Δχ2 = 4 roughly corresponds
to 95% C.L. limit. Each curve represents different data sets. The blue dotted line use the WMAP
1st year data (TT+TE), the red solid line uses the full WMAP 3-year data including temperature and
polarization and the green dashed line uses only temperature power spectrum of the WMAP 3-year data.

In summary, we obtained the upper bound of 0.7 eV from WMAP alone and two points are worth
mentioning. First is that the WMAP 3-year constraint is not improved from the 1st year limit. Next is
that the polarization data does not contribute to the limit much. These results are reasonable because
the neutrino mass (larger than 0.6 eV) characteristically modifies the acoustic peaks around 1st and 2nd
peaks in the temperature power spectrum and these regions are already well measured by the WMAP
1st year.

We stress that this bound is robust in a sense that it is obtained from CMB data of the WMAP which
is considered to be the cleanest cosmological data and that it is obtained from a single experiment. Also,
CMB can be dealt with the linear perturbation theory so it does not suffer from non-linearity or biasing
which appear in galaxy clustering data.

However, we have to combine other data sets to improve this limit. This is because, as we mentioned
earlier, CMB is insensitive to the neutrino mass lighter than 0.6 eV 3 , whose effects being absorbed in
the shift of the hubble parameter.

3 WMAP + SDSS LRG limit

Now, we try to improve the WMAP alone limit by combining with the newest galaxy power spectrum
data of SDSS based on the luminous red galaxy samples. We are mostly interested in how combined
limit is affected by systematic effects, especially by uncertainties in non-linear modeling. We show the
result of the χ2 analysis first in Fig. 3. We find SDSS data improves the limit down to 0.2 eV shown by
the light-blue dot-dashed line from 0.7 eV of the WMAP alone limit shown by the red solid line. Here,
when we marginalize over the other cosmological parameters, we marginalized also over two parameters
for non-llinear modeling following the SDSS group’s analysis [8]. Next I will explain non-linear modeling
we adopted.

Our non-linear modeling follows a simple model of Ref. [10]: Pgal(k) = (1 + Qk2)/(1 + Ak)Plin(k),
where k is the wavenumber. Plin is the linear power spectrum computed by e.g. CMBFAST and Pgal is
the galaxy power spectrum to be compared with the observation. A is fixed to 1.4 and we marginalize
over Q. We also marginalize over scale-independent “bias factor” b in addition to the above correction
factor for Fig. 3.

3The lensed CMB is known to be sensitive to smaller neutrino masses if we obtained polarization data of next (or
next-to-next) generation experiments, but we do not discuss this possibility here.
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Figure 3: Δχ2 of WMAP 3-year and SDSS LRG power spectrum data as functions of the neutrino mass
mν . The red solid line uses the full WMAP 3-year data and the light-blue dot-dashed line uses the
WMAP 3-year + LRG.

To investigate how the neutrino mass and the non-linear correction are correlated, as a very simple
test, we begin by fixing Q. This is because the value such as Q is in principle determined by theoretical
calculation if we could calculate how galaxies form in the dark matter halo. We performed χ2 analysis
with several fixed values of Q and we found that the upper bound does not move very much from 0.2 eV
(0.2-0.25 eV for Q =25-35). However, note that, in such a simple way, systematic effects of non-linear
corrections can not be fully investigated, of course.

In conclusion, the WMAP 3-year alone limit is 0.7 eV and the SDSS new galaxy data of LRG improves
this limit down to around 0.2 eV. This combined limit does not seem to change much by simple systematic
effects of non-linear correction like the one explained above. However, we need to investigate more the
effects of the non-linear modeling on the neutrino mass constraints to increase the robustness of limits
from the galaxy clustering data.
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Abstract
We realize the model of spontaneous baryogenesis in the framework of dynamical
dark energy. This will lead to dynamical cosmic CPT violations and leave imprints
in the universe. Using the CMB observations of WMAP and Boomerang we get a
mild preference of such kind of cosmic CPT violations.

The origin of the baryon number asymmetry in the universe remains a big puzzle in cosmology
and particle physics. Sakharov’s original proposal for a dynamical generation of the baryon asymmetry
requires three ingredients [1]: (1) baryon number violation; (2) C and CP non-conservation; and (3) out
of thermal equilibrium. Note that the Sakharov’s conditions were originally concerned for models where
the CPT is conserved. If the CPT is violated the baryogenesis (or leptogenesis) could happen in thermal
equilibrium[2, 3, 4], such as the spontaneous baryogenesis[3].

The current observations show strong evidence that our Universe is in a stage of accelerated expan-
sion. One interesting candidate for the acceleration is the dynamical scalar field dubbed Quintessence[5].
Quintessence is expected to have interactions with the ordinary matter, however for most of cases the
couplings are strongly constrained[6]. Nevertheless there could be some exceptions, and here we introduce
the following interaction of Quintessence with the matter, which in terms of an effective lagrangian is
given by[7]

Leff =
c

M
∂μQ Jμ, (1)

whereM is the cut-off scale, and c is the coupling constant which characterizes the strength of Quintessence
interacting with the ordinary matter in the Standard Model. Jμ can be the baryon current Jμ

B or the
current of baryon number minus lepton number Jμ

B−L.
The term in Eq.(1), when Q̇ is non-zero during the evolution of spatial flat Friedmann-Robertson-

Walker Universe, violates CPT invariance and generates an effective chemical potential μb for baryons[3],
i .e., c

M ∂μQJμ
B → c Q̇

M nB = c Q̇
M (nb − nb̄) , μb = c Q̇

M = −μb̄ . In thermal equilibrium the baryon

number asymmetry is given by (when T � mb) nB = gbT
3

6 (μb
T +O(μb

T )
3) � c gbQ̇T 2

6M , where gb counts the
internal degree of freedom of the baryon. The final expression for the baryon to entropy ratio would be
nB/s � 15c

4π2
gbQ̇

g�MT , where Q̇ can be obtained by solving the equation of motion of Quintessence. Without
fine tuning of the parameters, we find there are viable Quintessence models which lead to the observed
baryon number asymmetry[7]

nB

s
|TD ∼ 0.01 c

TD

M
(2)

with TD being the decoupling temperature. In this picture the baryon number asymmetry and the current
accelerated expansion of the Universe have been described in a unified way.

In general the scalar field Q in Eq.(1) could be the function of a scalar field as extended models of
spontaneous baryogenesis[8, 9]. Meanwhile from naive dimensional analysis for the interaction with the
photon sector one would expect to have the Chern-Simons(CS) term:

Lint = −12δ ∂μQKμ , (3)

1E-mail:fengbo@resceu.s.u-tokyo.ac.jp
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where Kμ = AνF̃μν , Fμν is the electromagnetic field strength tensor, and F̃μν ≡ 1
2εμνρσFρσ is its dual.

The coefficients between c/M in Eq.(1) and δ could be naturally related when Jμ is anomalous with
respect to the electromagnetic interaction[9].

With the presence of the CS term the equations of motion for the electromagnetic field are now

∇μFμν = δ ∂μQF̃μν ,∇μF̃μν = 0 . (4)

In a FRW cosmology we can write the electromagnetic field strength tensor in terms of E and B:

Fμν = a−2

⎡⎢⎢⎣
0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎤⎥⎥⎦ . (5)

The dual tensor F̃μν can be obtained from Fμν by replacing E and B with B and −E respectively. In
terms of the notations given by Ref.[10]:

B(�x, η) = e−ik·xB(η) ,

F± = a2B±(η) = a2(By ± iBz) , (6)

we have the equation of motion for a given mode k,

F ′′± + (k
2 ± δkQ′)F± = 0 , (7)

where the prime represents the derivative with respect to the conformal time η and k is the modulus of
k. In the equation above, we have assumed the wave vector k is along the x axis, and + and − denote
right- and left-handed circular polarization modes respectively. The non-vanishing Q′ induces a difference
between the dispersion relations for the modes with different handedness. This will rotate the direction
of the polarization of light from distant sources. For a source at a redshift z, the rotation angle is

Δα =
1
2
δ ΔQ , (8)

where ΔQ is the change in Q between the redshift z and today, i.e., ΔQ = Q|z − Q|z=0.
The CMB polarization can be described with two Stokes parameters of Q and U, which can be

spherically expanded to get a gradient (G) and a curl (C) component [11]. If the temperature/polarization
distribution does not violate parity, one gets vanished CMB TC and GC due to the intrinsic properties of
the tensor spherical harmonics. The interaction in Eq.(3) violates P, CP and also CPT. In our case the
polarization vector of each photon is rotated by a same angle Δα everywhere and one would get nonzero
TC and GC correlations with[12, 9]

C ′TC
l = CTG

l sin 2Δα , (9)

C ′GC
l =

1
2
(CGG

l − CCC
l ) sin 4Δα. (10)

The rotated quantities have been denoted with primes. Meanwhile the original TG,GG and CC are also
modified as[13]

C ′TG
l = CTG

l cos 2Δα , (11)
C ′GG

l = CGG
l cos2 2Δα+ CCC

l sin2 2Δα , (12)
C ′CC

l = CCC
l cos2 2Δα+ CGG

l sin2 2Δα . (13)

As implied above, the rotation angel Δα can be used as a model independent parameter for the
cosmological probe of the CPT violations, namely independent of the form of the scalar in Eq.(3). We
use the WMAP observations and the data from the January 2003 Antarctic flight of BOOMERANG[19]
(Hereafter B03) for the measurement of this rotation angel[13]. To break possible degeneracy between
this term and the variation of other parameters, we make a global fit to the CMB data with the publicly
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Figure 1: One dimensional constraints on the rotation angle Δα from WMAP data alone (Green or light
gray line), WMAP and the 2003 flight of BOOMERANG B03 TT, TG, GG and CC(Orange or gray line),
and from WMAP and the full B03 observations (TT, TG, GG, CC, TC, GC) (Black line)[13].

available Markov Chain Monte Carlo package cosmomc[14, 15], which has been modified to allow the
rotation of the power spectra discussed above, with a new free parameter Δα.

In Fig. 1 we plot our one dimensional constraints on Δα from the WMAP data alone, and from the
combined WMAP and B03 data. ”WMAP3” here denotes the three year WMAP observations[16] and
previously we have also performed our analysis on the first year WMAP(WMAP1)[17, 18] combined with
B03. We have assumed that the cosmic rotation is not too large and imposed a flat prior −π/2 ≤ Δα ≤
π/2. Using the data from WMAP alone, for both the first and three year data set, we obtain a null
detection within the error limits. For WMAP3 the 1, 2 σ constraints are Δα = 0.0+11.6

−11.7
+5.9
−5.9 deg and for

WMAP1 Δα = −0.1+11.6
−11.6

+7.5
−7.4 deg. In the likelihood of Fig. 1 we have gained double peaks, which can be

easily understood from Eqs.(11,12,13) due to the symmetry around Δα = 0. For the first year WMAP
while only TT and TG data were available, an indirect measurement on Δα could still be worked out
with Eq.(11). WMAP3 constraints are a bit more stringent than WMAP1 results.

With the inclusion of the B03 data, the measurement could be improved dramatically. In a first step
we also consider the indirect measurements only by including the B03 TT, TG, GG and CC data. We
find the constraint on Δα becomes a bit more stringent compared with WMAP only, a nonzero Δα is
slightly favored and the double peaks are still present. When the B03 TC and GC data are also included
the degeneracy around Δα = 0 is broken. We get the 1, 2 σ constraints to be Δα = −6.0+4.0

−4.0
+3.9
−3.7 deg

with WMAP3 and the B03 full data set. And for the first year WMAP combined with B03 the constraint
is Δα = −5.3+3.9

−4.0
+4.1
−3.5 deg. The mild preference on the nonzero rotation angel lies on the fact that for

B03 there are several GC bands where the center values are below zero[19]. Future CMB polarization
experiments like Planck and CMBpole will help significantly to detect such kind of effects[9].

In summary the current CMB polarization experiments have opened a new window to search the
signature of cosmic P and CPT violations mentioned above and this can help to understand the nature of
the dark energy which gives rise to the accelerated expansion of our Universe. Yet we need to understand
better the inherited possible systematics and the degeneracy among the various cosmological parameters
and difference physical processes, which are necessary to be explored in more details in the coming
precision cosmology.
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Abstract
We apply an five-dimensional squashed Kaluza-Klein black hole solution to the outer
region of the Earth and consider an evaluating of the size of an extra dimension by a
measurement of the geodetic effect with the Gravity Probe B experiment.

1 Introduction

Brane world scenarios suggest the spacetime has large scale extra dimensions, such as a sub-millimeter
scale. Based on this idea, there are many studies on higher-dimensional black objects : black holes, black
rings and black branes, etc. In these scenarios, one of the most interesting problem is a verification of the
size of extra dimensions from physical phenomena in higher-dimensional spacetimes [1,2]. Especially, we
focus the Gravity Probe B experiment [3], here.

The Gravity Probe B satellite moves along a stable circular orbit around the Earth and collect data
about two effects, the geodetic effect and the frame dragging effect. We focus on the geodetic effect,
which is the leading effect, by the static Schwarzschild black hole. We expect that the geodetic effect is
suffered from a correction by the existence of extra dimensions.

We apply an five-dimensional squashed Kaluza-Klein black hole solution with a compact extra dimen-
sion to the outer region of the Earth. We estimate the size of an extra dimension by the higher-dimensional
correction to the geodetic precession angle.

2 Kaluza-Klein Black Hole with Squashed Horizon

We start from the five-dimensional Einstein system with the action :

S =
1

16πG5

∫
d5x
√−gR, (1)

where G5 and R are the five-dimensional gravitational constant and the Ricci scalar curvature. From
this action, we write down the Einstein equation

Rμν = 0. (2)

The Kaluza-Klein black hole with a squashed S3 horizon [4–6] is an exact solution of (2). The metric
is written as

ds2 = −V dt2 + U
(
V −1dρ2 + ρ2dΩ2

S2

)
+
(r∞
2

)2
U−1χ2

S1 , (3)

where

dΩ2
S2 = dθ2 + sin2 θdφ2, χS1 = dψ + cos θdφ, (4)

and

V (ρ) = 1− ρ+
ρ

, U(ρ) = 1 +
ρ0
ρ

, r2∞ = 4ρ0 (ρ+ + ρ0) , (5)

1E-mail: matsuno@sci.osaka-cu.ac.jp
2E-mail: ishihara@sci.osaka-cu.ac.jp
3E-mail: mkimura@sci.osaka-cu.ac.jp
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with constants ρ+ and ρ0. The range of coordinates are −∞ < t <∞, 0 < ρ <∞, 0 ≤ θ < π, 0 ≤ φ < 2π
and 0 ≤ ψ < 4π.

This black hole (3) is static and has a squashed S3, a twisted S1 fiber bundle over a base space S2,
regular horizon at ρ = ρ+ > 0, which covers up a timelike singularity at ρ = 0. The shape of horizon ρ+
is oblate, the base space S2 is larger than the fiber space S1.

Asymptotic structure is a locally flat, a twisted constant S1 fiber bundle over the four-dimensional
Minkowski spacetime, at ρ =∞. The size of extra dimension is 2πr∞ at the spatial infinity. We also find
a relation between the five-dimensional gravitational constant, G5, and the four-dimensional one, G4, as
G5 = 2πr∞G4.

We discuss the physical meanings of the parameter ρ0 in (3), shortly. When ρ0 � ρ+ then V (ρ)
becomes more effectively than U(ρ) and the function U(ρ) is almost constant. Thus distant observers at
ρ0 � ρ+ < ρ feel this black hole as the four-dimensional Schwarzschild black hole with a constant S1

fiber. On the other hand, when ρ+ � ρ0 then U(ρ) becomes more effectively than V (ρ) near the horizon
ρ+. Thus observers at ρ+ < ρ� ρ0 feel this black hole as the five-dimensional Schwarzschild black hole.
Therefore, the parameter ρ0 denotes a typical scale between the four-dimensional black hole spacetime
and the five-dimensional one.

Here, we consider the limit for parameters ρ0 and ρ+ with ρ0 → ∞ and ρ+ → 0 while ρ0ρ+ →
finite. The metric (3) takes the form of the five-dimensional Schwarzschild black hole for this limit with
a coordinate transformation r = 2

√
ρ0ρ and rg = 2

√
ρ0ρ+ as

ds2 = −
[
1−

(rg

r

)2]
dt2 +

[
1−

(rg

r

)2]−1
dr2 + r2dΩ2

S3 , dΩ2
S3 =

1
4
(
dΩ2

S2 + χ2
S1

)
, (6)

where dΩ2
S3 denotes the metric of unit S3 sphere. This spacetime (6) is an asymptotically flat and is

valid if the gravitational radius is much smaller than the size of an extra dimension.

3 Size of Extra Dimension Measured by Geodetic Effect

3.1 Geodesics in Higher-dimensional Black Holes

First, we consider timelike geodesics in the five-dimensional Schwarzschild black hole spacetime with
no compactified extra dimension (6). We restrict ourselves to a motion in an equatorial plane, that is,
θ = π/2, then the geodesic equation and the effective potential with a proper time τ become(

dr

dτ

)2

= E2
S − VS, VS(r) =

[
1−

(rg

r

)2] [
1 +

(
LS

r

)2
]

, (7)

where ES =
[
1− (rg/r)2

]
(dt/dτ) and LS = r2

√
(dφ/dτ)2 + (dψ/dτ)2/2 are the energy and the total

angular momentum of a particle, respectively [7]. A typical shape of an effective potential VS with
LS = 2.1rg is drawn in the left of Figure 1. We find that there is no stable circular orbit and this
spacetime (6) does not give any description around the Earth.

Next, we consider timelike geodesics in the five-dimensional squashed Kaluza-Klein black hole space-
time with a compact extra dimension (3). We can restrict ourselves to a motion in an equatorial plane,
θ = π/2, as before, and we assume that there is no motion toward the extra direction. Then the geodesic
equation and the effective potential with a proper time λ are given by(

dρ

dλ

)2

=
(
E2 − VKK

)(
1 +

ρ0
ρ

)−1
, VKK(ρ) =

(
1− ρ+

ρ

)[
1 +

L2

ρ (ρ+ ρ0)

]
, (8)

where E = (1− ρ+/ρ)(dt/dλ) and L = ρ(ρ+ ρ0)(dφ/dλ) denote the energy and the angular momentum
of a particle. A typical shape of an effective potential VKK with L = 2.1ρ+ and ρ0 = 10−2ρ+ is given in
the right of Figure 1. It is easy to see there is a stable circular orbit at the local minimum of an effective
potential.
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Figure 1: Effective potentials for a particle moving around the five-dimensional Schwarzschild black hole
spacetime (7) with LS = 2.1rg (left) and around the five-dimensional squashed Kaluza-Klein black hole
spacetime (8) with L = 2.1ρ+ and ρ0 = 10−2ρ+ (right).

So, we apply the metric (3) with a condition ρ0 � ρ+ as a spacetime around the Earth and consider
the higher-dimensional correction appears in the geodetic precession effect. Here, the mass of this black
hole is given by

M =
ρ+
2G4

. (9)

3.2 Geodetic Precession

We regard an axes of a gyroscope of the Gravity Prove B satellite as a spacelike spin-vector Sμ which
is parallelly transported along a timelike geodesic with a five-velocity uμ = dxμ/dλ where λ denotes a
proper time of the satellite.

We consider the geodesic equation for uμ,

uμ∇μuν = 0, (10)

the parallel transporting equation of Sμ along uμ,

uμ∇μSν = 0, (11)

and the orthogonality condition between uμ and Sμ,

uμSμ = 0. (12)

Here, we set the following assumptions for uμ and Sμ. First, we restrict ourselves to a stable circular
orbit in an equatorial plane with a condition θ = π/2, i.e.,

uρ = uθ = 0. (13)

Next, we assume the matter is confined in a ψ = const. plane, i.e.,

uψ = Sψ = 0. (14)

With these assumptions, we can write down the five-velocity uμ of the satellite for a stable circular
orbit with a radius R in a five-dimensional squashed Kaluza-Klein black hole spacetime (3) as

1
ut
=

√
1− 3R+ 2ρ0

2R+ ρ0

ρ+
R

, uφ =
ut

R

√
ρ+

2R+ ρ0
, uρ = uθ = uψ = 0, (15)

where uμ is normalized as uμuμ = −1.
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Suppose the spin-vector Sμ is initially oriented in a radial ρ-direction at λ = 0. Then we get an
expression of Sμ, which is normalized as SμSμ = 1, as

St = Ct sin (Ωλ) , Sρ = Cρ cos (Ωλ) , Sφ =
Cφ

R
sin (Ωλ) , Sθ = Sψ = 0, (16)

where Ct, Cρ, Cφ and Ω are given by

Ct = ∓ut

√
ρ+(R+ ρ0)

(R− ρ+)(2R+ ρ0)
, Cρ = ±

√
R− ρ+
R+ ρ0

, Cφ = ∓ut

√
R− ρ+
R+ ρ0

, (17)

Ω =

√
ρ+(2R+ ρ0)
2R(R+ ρ0)

. (18)

During one orbital period, φ goes from 0 to 2π and a proper time λ goes from 0 to λf = 2π/uφ, the
geodetic precession angle ΔΘ raises from a difference between these two angular displacements, φ and
Ωλ, as

ΔΘ = |Ωλf − 2π| =
∣∣∣∣2π( Ωuφ

− 1
)∣∣∣∣ . (19)

Thus we obtain the geodetic precession angle in a weak-field limit as follows

Θ = Θ4D (1 + δ) +O
(
R−2

)
, (20)

where

Θ4D =
3πG4M

R
(21)

is the predicted value by the four-dimensional Einstein theory and

δ =
(

r∞
2
√
6G4M

)2

(22)

is the higher-dimensional correction. We can estimate the size of an extra dimension by a measurement
of a difference of the geodetic effect from Θ4D.

Even if, the result of the Gravity Probe B measurement gives the predicted value Θ4D = 6.6144
arcsec/yr with an expected accuracy of 0.5 marcsec/yr, this accuracy of an observation gives an upper
limit of the size of an extra dimension as |2πr∞| < 1 mm.
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Abstract
We construct Kaluza-Klein multi-black hole solutions on the Gibbons-Hawking multi-
instanton space in the five-dimensional Einstein-Maxwell theory. We study geometric
properties of the multi-black hole solutions. In particular, the spatial cross section of
each horizon is admitted to have the topology of a different lens space L(n; 1) = S3/Zn

in addition to S3.

1 Introduction

The large extra dimension sinario suggests the production of a mini-black hole at an accelerator. A
mini-black hole probably have the property such that it behaves like a higher-dimensional black hole in
the near region but like a four-dimensional black hole in the far region. Recently a black hole solution
which has such a property were analyzed [1] in the five dimensional Einstein-Maxwell theory. Since the
black hole has a compactified extra-dimension, we call this Kaluza-Klien black hole. In this article we
generalize the black hole solution to multi-black hole solution, and investigate the geometrical structure
[2].

2 Construction of Kaluza-Klein Multi-Black Hole solution

2.1 single black hole solution

The metric and the gauge potential one-form of the maximally charged limit of the Kaluza-Klein black
hole [1] are

ds2 = −H−2dT 2 +Hds2TN, (1)

A = ±
√
3
2

H−1dT, (2)

where ds2TN denotes the metric of the Taub-NUT space which is given by

ds2TN = V −1
(
dR2 +R2dΩ2

S2

)
+ V (dζ +N cos θdφ)2 , (3)

dΩ2
S2 = dθ2 + sin2 θdφ2, (4)

V −1(R) = 1 +
N

R
, (5)

with

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ζ ≤ 2πL, (6)

and the function H is given by

H(R) = 1 +
M

R
, (7)
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where L,M and N are positive constants.
Regularity of the spacetime requires that the nut charge, N , and the asymptotic radius of S1 along

ζ, L, are related by

N =
L

2
n, (8)

where n is an natural number.
We can see that a degenerated horizon exists at R = 0, where the nut singularity of the Taub-NUT

space were located. Although the Taub-NUT space is regular only when n = 1 on the conditions (6), the
nut singularity with n ≥ 2 is resolved by the event horizon in the black hole solution.

In the case of n = 1, the horizon has the shape of round S3 in a static time-slice in contrast to the
non-degenerated case, where the horizon is squashed [1]. The spacetime is asymptotically locally flat,
i.e., a constant S1 fiber bundle over the four-dimensional Minkowski spacetime at R → ∞. Therefore,
the spacetime behaves as a five-dimensional black hole near horizon, while the dimensional reduction to
four-dimension is realized in a far region. In the case of n ≥ 2, the horizon is in shape of lens space
L(n; 1) = S3/Zn.

2.2 multi-black hole solution

When we generalize the single black hole solution (1) to the multi-black holes, it is natural to generalize
the Taub-NUT space to the Gibbons-Hawking space [3] which has multi-nut singularities. The metric
form of the Gibbons-Hawking space is

ds2GH = V −1 (dx · dx) + V (dζ + ω)2 , (9)

V −1 = 1 +
∑

i

Ni

|x− xi| , (10)

where xi = (xi, yi, zi) denotes position of the i-th nut singularity with nut charge Ni in the three-
dimensional Euclid space, and ω satisfies

∇× ω = ∇ 1
V

. (11)

We can write down a solution ω explicitly as

ω =
∑

i

Ni
(z − zi)
|x− xi|

(x− xi)dy − (y − yi)dx

(x− xi)2 + (y − yi)2
. (12)

If we assume the metric form (1) with the Gibbons-Hawking space instead of the Taub-NUT space,
the Einstein equation and the Maxwell equation reduce to

GHH = 0, (13)

whereGH is the Laplacian of the Gibbons-Hawking space. In general, it is difficult to solve this equation,
but if one assume ∂ζ to be a Killing vector, as it is for the Gibbons-Hawking space, then Eq.(13) reduces
to the Laplace equation in the three-dimensional Euclid space,

EH = 0. (14)

We take a solution with point sources to Eq.(14) as a generalization of Eq.(7), and we have the final
form of the metric

ds2 = −H−2dT 2 +Hds2GH, (15)

H = 1 +
∑

i

Mi

|x− xi| , (16)

where Mi are positive constants.
We note that the singular points of the harmonic function H are same points to the singular points of

V −1. If these points were not same points, curvature singularities would appear. This is the the reason
why we extend the base space to Gibbons-Hawking space.
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3 Property

Next we investigate near horizon geometry. For simplicity, we restrict ourselves to the solution with two
black holes. In order to examine that the geometry near the horizon x = x1, we make the coordinate
transformation such that the point source x1 is the origin of the three-dimensional Euclid space and
x2 = (0, 0,−a). In this case, from Eqs.(15) and (16) the metric can take the following simple form,

ds2 = −H(R, θ)−2dT 2

+H(R, θ)
[
V (R, θ)−1(dR2 +R2dΩ2

S2) + V (R, θ)
(

dζ + ωφ(R, θ)dφ

)2]
, (17)

with

H(R, θ) = 1 +
M1

R
+

M2√
R2 + a2 + 2aR cos θ

, (18)

V (R, θ)−1 = 1 +
N1

R
+

N2√
R2 + a2 + 2aR cos θ

, (19)

ωφ(R, θ) = N1 cos θ +
N2(a+R cos θ)√

R2 + a2 + 2aR cos θ
, (20)

where the parameter a denotes the separation between two point sources x1 and x2 in the three-
dimensional Euclid space.

If we take the limit R = |x− x1| → 0, we can see the leading behavior of the metric as follows,

ds2 � −
(

R

M1

)2

dT 2 +
M1

R

[
R

N1

(
dζ +N1 cos θdφ

)2

+
N1

R

(
dR2 +R2dΩ2

S2

)]
. (21)

We should note that the other black holes does not contribute to this behavior of the metric in the leading
order. Therefore, the form of each black hole is equivalent with the single extremal black hole (1) in the
vicinity of the horizon. The Kretschmann invariant near the horizon R = 0 can be computed as,

RμνλρR
μνλρ =

19
4M2

1N2
1

+O

(
R

a

)
, (22)

which suggests the horizon R = 0 is regular. In fact, under the coordinate transformation,

u = T − F (R), (23)

dF (R)
dR

=
(
1 +

M1

R
+

M2

a

)3/2(
1 +

N1

R
+

N2

a

)1/2

, (24)

the metric near the horizon R = 0 has the following form

ds2 � −2
√

N1

M1
dudR+M1N1

[(
dζ

N1
+ cos θdφ

)2

+ dΩ2
S2

]
. (25)

Here, we note that the black hole horizon is regular if and only if 2N1/L is positive integer, then spatial
cross section of the horizon is the lens space. The lens space is the quotient of S3 by the discrete subgroup
of the isometry generated by ∂ζ . In a special case 2N1/L = 1 , the shape of the horizon is S3. Of course,
from the similar discussion, the regularity of the other black hole horizon at x = x2 is also assured.
Outside the black holes, there is evidently no singular point from the explicit form of the metric. Even
if we consider the situations with more than two black holes, these properties do not change in such
spacetimes.

We saw the i-th black hole admits a lens space as a horizon in addition to S3 by choosing parameter
2Ni/L to be an arbitrary positive integer. Since each black hole can take a different parameterNi, each
horizon of the black hole can be the lens space with a different index. Namely, black holes with different
lens spaces can coexist in a spacetime.

Finally we comment that if 1 in V −1 (5) disappears then the base space is Eguchi-Hanson space which
is asymptotically locally Euclidean. We can also construct multi-black hole solution on Eguchi-Hanson
space in a similar way discussed here [4, 5].
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Abstract
We construct multi-black hole solutions in the five-dimensional Einstein-Maxwell the-
ory with a positive cosmological constant on the Eguchi-Hanson space, which is an
asymptotically locally Euclidean space. The solutions describe the physical process
such that two black holes with the topology of S3 coalesce into a single black hole
with the topology of the lens space L(2; 1) = S3/Z2. We discuss how the area of the
single black hole after the coalescence depends on the topology of the horizon.

1 Introduction and summary

Black hole spacetime which has asymptotically Euclidean time slices, AE black holes in short, would be
a good idealization in the situation such that we can ignore the tension of the brane and the curvature
radius of the bulk, or the size of extra dimensions. However, from more realistic view point, we need
not impose the asymptotic Euclidean condition toward the extra dimensions. In fact, higher dimensional
black holes admit a variety of asymptotic structures: Kaluza-Klein black hole solutions [1, 2] have the
spatial infinity with compact extra dimensions; Black hole solutions on the Eguchi-Hanson space [3] have
the spatial infinity of topologically various lens spaces L(2n; 1) = S3/Z2n (n:natural number). The latter
black hole spacetimes are asymptotically locally Euclidean, i.e., ALE black holes. In spacetimes with
such asymptotic structures, furthermore, black holes have the different structures from the black hole
with the asymptotically Euclidean structure. For instance, the Kaluza-Klein black holes [1, 2] and the
black holes on the Eguchi-Hanson space [3] can have the horizon of lens spaces in addition to S3.

We compare five-dimensional static and vacuum AE black holes (Schwarzschild black holes) with ALE
black holes which has the spatial infinity with the topology of a lens space L(2; 1) = S3/Z2. The metric
of an ALE black hole we consider is given by

ds2 = −
(
1− r2g

r2

)
dt2 +

(
1− r2g

r2

)−1
dr2 + r2dΩ2

S3/Z2
, (1)

where rg is a constant, and the metric of the S3 in the Schwarzschild spacetime is replaced by the metric
of the lens space, which has the locally same geometry as S3. The ADM mass of the ALE black hole (1)
is half of the mass of Schwarzschild black hole with the same rg. It means that the area of horizon of the
ALE black hole is

√
2 times that of the Schwarzschild black hole with the same ADM mass. This fact

would cause the difference of the coalescence process of higher dimensional black holes with non trivial
asymptotic structure.

To observe this, we compare the ALE multi-black hole solutions constructed on the Eguchi-Hanson
space with the five-dimensional version of Majumdar-Papapetrou solutions [4], which has AE structure.
We can prepare a pair of black holes with the same mass and area of S3-horizons in both ALE and AE
solutions. If the black holes with S3 topology coalesce into a single black holes, it would be natural that
the resultant black hole has S3-horizon in the AE case while L(2; 1)-horizon in the ALE case, because
there are closed surfaces with S3 topology surrounding two black holes in the AE case, while L(2; 1)
topology in the ALE case. If we assume the total mass of black holes is conserved through the whole
process, the area of the final black hole in the ALE case is larger than that in the AE case.

Kastor and Traschen [5] constructed multi-black hole solutions with a positive cosmological constant,
and London [6] extend it to five-dimensional solutions. If we consider a contracting phase derived by

1E-mail:tomizawa@sci.osaka-cu.ac.jp
2E-mail:ishihara@sci.osaka-cu.ac.jp
3E-mail:mkimura@sci.osaka-cu.ac.jp
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the cosmological constant, the solution can describe a coalescence of black holes in an asymptotically de
Sitter spacetime [7, 8]. Analogously, we investigate the coalescence of the ALE black holes by using new
multi-black hole solutions on the Eguchi-Hanson space with a positive cosmological constant which is
asymptotically locally de Sitter (Let us see Ref. [9] for the detail).

2 Solutions and their properties

We consider the five-dimensional Einstein-Maxwell system with a positive cosmological constant. In the
previous work [3], we gave a metric of a pair of maximally charged black holes on the Eguchi-Hanson space
as a solution in the five-dimensional Einstein-Maxwell theory without a positive cosmological constant.
The Einstein equation with a positive cosmological constant and the Maxwell equation admit a new
solution whose metric and gauge potential one-form are

ds2 = −H−2dτ2 +Hds2EH, A = ±
√
3
2

H−1dτ, (2)

with

ds2EH =
(
1− a4

r4

)−1
dr2 +

r2

4

[(
1− a4

r4

)
(dψ̃ + cos θ̃dφ̃)2 + dθ̃2 + sin2 θ̃dφ̃2

]
, (3)

H = λτ +
2m1

r2 − a2 cos θ̃
+

2m2

r2 + a2 cos θ̃
, (4)

where a and mj (j = 1, 2) are positive constants, λ is a constant related to the cosmological constant
by λ2 = 4Λ/3, −∞ < τ < ∞, a ≤ r < ∞, 0 ≤ θ̃ ≤ π, 0 ≤ φ̃ ≤ 2π and 0 ≤ ψ̃ ≤ 2π. Equation (3) is
the metric form of the Eguchi-Hanson space [10]. As is seen later, this solution describes coalescing two
black holes.

In order to obtain the physical interpretation about this solution, let us introduce the following
coordinate [11, 3],

R = a

√
r4

a4
− sin2 θ̃, tan θ =

√
1− a4

r4
tan θ̃, φ = ψ̃, ψ = 2φ̃, (5)

where 0 ≤ R < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π. Then, the metric takes the form of

ds2 = −H−2dτ2 +H

[
V −1dR2 + V −1R2(dθ2 + sin2 θdφ2) + V

(
a

8
dψ + ωφdφ

)2]
, (6)

with

H = λτ +
2m1/a

|R−R1| +
2m2/a

|R −R2| , V −1 =
a/8

|R−R1| +
a/8

|R −R2| , ωφ =
a

8

(
z − a

|R−R1| +
z + a

|R−R2|
)

,

where R = (x, y, z) is the position vector on the three-dimensional Euclid space and R1 = (0, 0, a),
R2 = (0, 0,−a). In order to focus our attention on the coalescence of two black holes, we consider only
the contracting phase λ = −√4Λ/3 throughout below. Though τ runs the range (−∞,∞), we investigate
only the region −∞ < τ ≤ 0.

For later convenience, we mention the global structure of the five-dimensional Reissner-Nordström-de
Sitter solution with m =

√
3|Q|/2. This solution is static, spherically symmetric and has the horizons

with the topology of S3. By the coordinate transformation into the cosmological coordinate, the metric
is given by [6],

ds2 = −
(

λτ +
m

r2

)−2
dτ2 +

(
λτ +

m

r2

)[
dr2 +

r2

4
dΩS2 +

r2

4
(dψ + cos θdφ)2

]
, (7)

where each coordinate runs the range of −∞ < τ < ∞, 0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π,
m is a constant, λ is the constant related to the cosmological constant by λ2 = 4Λ/3. The ingoing
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and outgoing expansions of the null geodesics orthogonal to three-dimensional surfaces, τ = const and
r = const are given by

θin = λ− 2x√
(x+m)3

, θout = λ+
2x√

(x +m)3
, (8)

respectively, where x := λτr2. There is a curvature singularity at x +m = 0. Horizons occur at x such
that

λ2(x+m)3 − 4x2 = 0. (9)

Form < mext ≡ 16/(27λ2), there are three horizons, which are three real roots xin[m] < xBH[m] < xdS[m],
the inner and outer black hole horizons and the de Sitter horizon, respectively. We see that θout = 0 at
x = xBH[m] and x = xdS[m], and θin = 0 at x = xin[m]. When m = mext, the outer black hole horizon
and the de Sitter horizon coincides with each other (xBH[mext] = xdS[mext]). In the case of m > mext

there is only a naked singularity.
Let us investigate the global structure of the solution (6) following the discussion of Ref.[7]. As

mentioned below, in order to consider the coalescence of two black holes we must choose the parameters
such that m1 + m2 < 8/(27λ2), mi > 0. Therefore, in this letter, we assume such range of these
parameters.

First, let us choose the origin on the three-dimensional Euclid space to be R = Ri (i = 1, 2) in
Eqs.(6). In the neighborhood of R = 0 the metric becomes

ds2 � −
(

λτ +
mi

r̃2

)−2
dτ2 +

(
λτ +

mi

r̃2

)[
dr̃2 +

r̃2

4
dΩ2

S2 +
r̃2

4
(dψ + cos θdφ)2

]
, (10)

where the origin of τ is appropriately shifted by a constant and we used the coordinate r̃2 = aR/2. This is
identical to the metric of the five-dimensional Reissner-Nordström-de Sitter solution (7) which has mass
equal to mi which is written in the cosmological coordinate. If mi < 16/(27λ2), which is automatically
satisfied as long as we assume m1 +m2 < 8/(27λ2) and mi > 0, at early time τ � 0, sufficiently small
spheres with the topology of S3 centered at R = Ri are always outer trapped, since there are solutions
for θout = 0 at r̃2 = xBH[m1]/(λτ) and r̃2 = xBH[m2]/(λτ), which denote an approximate small sphere,
respectively.

Next, we study the asymptotic behavior of the metric for large R := |R|, where we assume that R is
much larger than the coordinate distance |R1 −R2| between the two masses 2m1/a and 2m2/a. In this
region, the metric behaves as

ds2 � −
(

λτ +
2(m1 +m2)

r2

)−2
dτ2 +

(
λτ +

2(m1 +m2)
r2

)[
dr2 +

r2

4
dΩ2

S2 +
r2

4

(
dψ

2
+ cos θdφ

)2]
,

where we introduced a new coordinate r2 := aR. This resembles the metric of the five-dimensional
Reissner-Nordström-de Sitter solution (7) with mass equal to 2(m1 + m2). Like the five-dimensional
Reissner-Nordström solution, if we assume 2(m1 + m2) < 16/(27λ2), at late time τ → −0, sufficiently
large spheres becomes outer trapped, since θout = 0 at r2 = xBH[2(m1+m2)]/(λτ), which is approximately
a sphere. However, we see that this solution differ from the five-dimensional Reissner-Nordström-de Sitter
solution in the following point; Each r = const surface is topologically a lens space L(2; 1) = S3/Z2, while
in the five-dimensional Reissner-Nordström-de Sitter solution, it is diffeomorphic to S3. We can regard
S3 and a lens space L(2; 1) = S3/Z2 as examples of Hopf bundles i.e. S1 bundle over S2. The difference
between these metrics appears in Eqs.(10) and (11): dψ in S3 metric (10) is replaced by dψ/2 in L(2; 1)
metric (11). Therefore, at late time, the topology of the trapped surface is a lens space L(2; 1) = S3/Z2.

From these results, we see that if m1+m2 < 8/(27λ2) (in this letter, we consider only this case), this
solution describes the dynamical situation such that two black black holes with the spatial topologies S3

coalesce and convert into a single black hole with the spatial topologies of a lens space L(2; 1) = S3/Z2.
We should note that in the case of the five-dimensional Kastor-Traschen solution [5, 6], in the contracting
phase, two black holes with the topology of S3 coalesce into a single black hole with the topology of S3.
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Finally, in order to compare the area of a single black hole formed by the coalescence of two black
holes at late time, let us consider the five-dimensional Kastor-Traschen solution [5, 6] which has the two
black holes with the masses m1 and m2 at early time,

ds2 = −
(

λτ +
m1

|r − r1|2 +
m2

|r − r2|2
)−2

dτ2 +
(

λτ +
m1

|r − r1|2 +
m2

|r − r2|2
)
(dr2 + r2dΩ2

S3),(11)

where r = (x, y, z, w) is the position vector on the four-dimensional Euclid space, and r1 and r2 denote
the position vectors of the two black holes on the four-dimensional Euclid space.

Since this metric near the black horizon is equal to that of Eq.(10) at early time (τ → −∞), each
black hole has the same area as that in our solution. Using Eq.(9), the areas AKT

late and AEH
late of them at

the late time can be computed as follows,

AKT
late =

2
λ

xBH[m1 +m2]AS3 , AEH
late =

2
λ

xBH[2(m1 +m2)]
AS3

2
, (12)

respectively. Here, KT and EH denote the quantities of the Kastor-Traschen solutions and our solutions,
respectively and AS3 is the area of a three-dimensional sphere with unit radius. We should note that
AS3/2 in Eq.(12) reflects the fact that the black hole at late time after the coalescence of the two black
holes is topologically a lens space L(2; 1) = S3/Z2. Thus, we see that if each black holes at early time in
our solution have the same area with that in the Kastor-Traschen solution, the ratio of the area of the
single black hole at late time in our solution to that in the five-dimensional Kastor-Traschen solution is
given by

AEH
late

AKT
late

=
xBH[2(m1 +m2)]
2xBH[m1 +m2]

, (13)

which is larger than one regardless of the values of m1, m2, since xBH[m] is the concave downward and
increasing function of m. The ratio AEH

late/AKT
late is monotonically increasing function of the initial total

mass of two black holes. We also see that this ratio has the range of
√
2 < AEH

late/AKT
late ≤ 4.

There are two main differences between our solution and the Kastor-Traschen solution [5, 6]: Firstly,
two black holes with the topology of S3 coalesce and change into a single black hole with the topology
of L(2; 1) = S3/Z2, while for the Kastor-Traschen solution, two black holes with the topology with S3

coalesce into a single black hole with the topology of S3. Secondly, after two black holes coalesce, where
we assume that each black hole in our solution has the same mass and area as that in the Kastor-Traschen
solution initially, the area of the single black hole formed by the coalescence at late time in our solution is
larger than that in the Kastor-Traschen solution. These differences are essentially due to the asymptotic
structure. While the Kastor-Traschen solution is asymptotically de Sitter and each r = const surface has
the topological structure of S3, our solution is asymptotically locally de Sitter and R = const surface is
topologically L(2; 1) = S3/Z2.
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Abstract
We classify all cohomogeneity-one cosmic strings in the five-dimensionalanti-de-Sitter
space, by classifying the Killing vector fields up to isometry. The local isomorphism
of SO(4, 2) and SU (2, 2) and the notion of H-similarity are effectively used. The
result is useful also for the classification of higher-dimensional objects.

1 Introduction and summary

In cosmology, extended objects in the universe has been attracting long-lasting attention and it is still
growing. The examples of extended objects are the topological defects, such as cosmic strings and
membranes, and the universe as a whole which is embedded in a higher-dimensional spacetime in the
context of the brane world universe model. The trajectory of an extended object forms a hypersurface in
the spacetime which is described by some partial differential equation (PDE). For example, a test cosmic
string in the spacetime is governed by the Nambu-Goto equation. The simplest solutions to those PDE
are homogeneous ones, in which case the problem reduces to an algebraic one. However, these solutions
usually do not have a wide variety and tend to be too simple to contain nontrivial dynamics.

One may expect that if we assume “less” homogeneity, the equation still remains to be tractable and
the solutions has enough variety to show physically interesting properties and dynamics of those extended
objects. The class of cohogeneity-one objects gives such a condition. We say that a hypersurface is of
cohomoneneity-one if it is foliated by codimension-one submanifolds with each of them being embed-
ded homogeneously in the whole spacetime. A cohomoneneity-one object has a world sheet which is a
cohomoneneity-one hypersurface. Any covariant PDE governing such an object reduces to an ordinary
differential equation (ODE), which can be easily solved analytically, or at least, numerically. A solution
expresses a spatially homogeneous object with a nontrivial dynamics if the above-mentioned homogeneous
submanifolds are spacelike, or a spatially nontrivial object with a trivial dynamics if the homogeneous
submanifolds are timelike. The case with the null homogeneous submanifolds will also give new intrigu-
ing models. In the case of the Minkowski space, there are many nontrivial examples of Nambu-Goto
strings [1].

With the application in brane world or string theory in mind, we shall focus on the extended objects
in the five-dimensional anti-de-Sitter space AdS5. In this talk, we shall classify (Theorem 1) the one-
dimensional subalgebras of the Lie algebra of the isometry (equivalently, the Killing vector fields) up
to isometry, because the classification of all cohomoneneity-one cosmic strings reduces to that problem.
Finding solutions for the dynamics is another problem which depends on the PDE governing these objects;
the case of Nambu-Goto string will be presented elsewhere. The classification presented here will also be
the basis for that of higher-dimensional cohomoneneity-one objects in AdS5.

In the classification we will make use of the local isomorphism between SO(4, 2) and SU (2, 2) (Sec. 2).
The reason is, roughly speaking, that lower dimensional, complex matrices are easier to deal with, espe-
cially in the context of Jordan decomposition. The notion of H-selfadjoint matrices and the classification
of the pair (A,H) of a H-selfadjoint matrix A and a Hermitian matrix H (Sec. 3) turn out to be essential.

1E-mail: koike@phys.keio.ac.jp
2E-mail: furusaki@sci.osaka-cu.ac.jp
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2 SO(4, 2) and SU (2, 2)

Our aim is to classify Killing vector fields in the five-dimensional anti-de-Sitter space AdS5 up to isometry,
so we consider two Killing vector fields ξ and ξ′ equivalent if there is an isometry φ (connected to the
identity) such that ξ′ = φ ◦ Exp tξ ◦ φ−1, or ξ′ = φ∗ξ. The isometry group of AdS5 is SO(4, 2), because
AdS5 is a hypersurface −s2−t2+w2+x2+y2+z2 = −l2 in the peudo-Euclidean space E4,2 whose metric
is dS2 = −ds2 − dt2 + dw2 + dx2 + dy2 + dz2. Thus we shall classify so(4, 2)/AdSO(4,2)0 . To do so, we
take advantage of the isomorphism SO(4, 2)0 � SU (2, 2)/{±1}. This isomorphism implies in particular a
Lie algebra isomporphism so(4, 2) � su(2, 2) and a Lie group isomorphism AdSO(4,2)0 � AdSU (2,2). Thus
we have an isomorphism so(4, 2)/AdSO(4,2)0 � su(2, 2)/AdSU (2,2), which will be resolved in Sec. 3.

Let us give a concrete expression of the SO(4, 2)0 transformation by SU (2, 2). The action of an
element of SO(4, 2)0 on (s, t, x, y, z, w) ∈ E4,2 is expressed by the action of U ∈ SU (2, 2) on V in the
following way:

p �→ UpUT ,

V � p = siσz ⊗ σy + t1⊗ σy + xiσy ⊗ σx + yσx ⊗ σy − ziσy ⊗ σz + wσy ⊗ 1. (1)

The infinitesimal transformation for (1) is given by the action of X ∈ su(2, 2) as

p �→ Xp+ pXT = {XS , p}+ [XA, p], (2)

whereXS := (X+XT )/2 andXA := (X−XT )/2 are the symmetric and antisimmetric parts, respectively,
of X. Let us express the correspondence in terms of a basis of su(2, 2). A convenient basis for su(2, 2)
is {1/i, σx, σy, σz/i} ⊗ {1, σx, σy, σz} with (1/i) ⊗ 1 being omitted. [Including (1/i) ⊗ 1 would yield a
basis for u(2, 2).] Then the infinitesimal transformation are expressed by a commutator [X, •] for X =
{1/i, σx, σz/i}⊗{1, σx, σz} and forX = σy⊗σy, and by an anticommutator {X, •} forX = σy⊗{1, σx, σz}
and for X = {1/i, σx, σz/i} ⊗ σy. The corresponding SO(4, 2)0 infinitesimal transformations (Killing
vectors on AdS5) are given in Table 1, with X being (e1 ⊗ e2)/2. In the table, xy denotes the rotation
in the xy plane, st denotes the rotation in the st plane, tx denotes the t-boost in the x direction, −sw
denotes the s-boost in the −w direction, and so forth.

�����e1

e2 1 σx σy σz

1/i yz zx xy
σx tw sx sy sz
σy −sw tx ty tz

σz/i st wx wy wz

Table 1: Correspondence between the su(2, 2) and so(4, 2) transformations.

3 The classification

Let us introduce the useful terms in the classification. Let H be an invertible Hermitian matrix. The
H-adjoint of a square matrix A is defined by A� := H−1A†H. A matrix A is called H-selfadjoint when
A� = A, H-anti-selfadjoint when A� = −A, and H-unitary when AA� = A�A = 1. Let us say that
matrices A and B are H-unitarily similar and denote by A

H∼ B if there exists an H-unitary matrix W
satisfying B = WAW−1. In this terminology, SU (2, 2) is the group of unimodular η-unitary matrices
with η = diag[1, 1,−1,−1]. The Lie algebra su(2, 2) of SU (2, 2) consists of traceless η-anti-selfadjoint
matrices

X =
[

p r
r† q

]
, (3)

where r is a 2 × 2 complex matrix and p and q are 2 × 2 anti-Hermitian matrices. The task of finding
su(2, 2)/AdSU (2,2) is equivalent to classifying elements of su(2, 2) up to equivalence relation

η∼.
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We shall now find out the equivalence classes of su(2, 2)/AdSU (2,2) = su(2, 2)/
η∼. Let (A,H) be a

pair of a complex matrix and an invertible Hermitian matrix H. The pairs (A, H) and (A′, H ′) are said
unitarily similar if there is a complex matrix W such that A′ = WAW−1, H ′ = WHW † [2]. This is
an equivalence relation and will be denoted by (A, H) ∼ (A′, H ′). Note that A

η∼ A′ is equivalent to
(A, η) ∼ (A′, η). Let A be an H-selfadjoint matrix. Then if λ is an eigenvalue of A, so is its complex
conjugate λ∗. Let J0(λ) be the Jordan block with eigenvalue λ and let

J(λ) :=

{
J0(λ), λ is real,
J0(λ)⊕ J0(λ∗), λ is non-real.

(4)

We shall make use of the canonical forms of the pairs (A,H) [2]:

Lemma. If A is H-selfadjoint, then (A, H) is unitarily similar to (J, P ) with

J =
β⊕

j=1

J(λj); P =
( α⊕

j=1

cjPj

)
⊕
( β⊕

j=α+1

Pj

)
; cj = ±1, Pj =

[
0 1

.
.
.

1 0

]
, (5)

where λ1, . . . , λα are the real eigenvalues of A, λα+1, λ
∗
α+1, . . . , λβ , λ∗β are the non-real eigenvalues of A,

and the size of Pj is the same as that of J(λj).

We will denote the type of of the generator X by the dimensions of Jj for the real and non-real
eigenvalues of X, namely, by (d1, . . . dα|dα+1/2, . . . , dβ/2) with dj := dimJ(λj). [If there is either no
real or no non-real eigenvalues, we put a 0 in the corresnponding slot.] We also define the subtype of
each type by the signs of (c1, · · · , cα). We sometimes denote the subtype as a subscript such as (3, 1|0)+.
In the theorem below, Jxy denotes spatial rotations in the xy plane, Kz denotes the boost with respect
to the time t in the z direction, K̃w denotes the boost with respect to the time s in the w direction, L
denotes the rotation in the st plane, and so forth.

Theorem 1. Any one-dimensional homogeneously embedded submanifold of AdS5 is generated by one
of the nine types of ξ in Table 2 up to isometry of AdS5, where a, b, c are real numbers, the double-signs
must be taken in the same order in each expression.

Type Killing vector field ξ

(4|0) Kx + K̃y + Jxy + L+ 2(Jyz +Kz)
(3, 1|0)± Kx + K̃y + Jyz ± Jxw + a(Jxy − L∓ Jzw)
(2, 2|0)++ Kx + L+ aJyz

(2, 2|0)+− Kx + Jxy + aJzw

(2, 1, 1|0) Kx + K̃y + Jxy + L+ a Jwz + b (Jxy − L)
(1, 1, 1, 1|0) a L+ b Jxy + c Jwz (a2 + b2 + c2 = 1)
(2|1) Kx + K̃y + L+ Jxy + aJzw + b(Ky + K̃x)
(1, 1|1) Kx + K̃y + b (L− Jxy) + c Jzw

(0|2) Kx + Jxy + a K̃z (a �= 0)
(0|1, 1) aKx + b K̃y + c Jzw (b �= ±a, a2 + b2 + c2 = 1)

Table 2: The types of the generator of SU (2, 2) and the corresponding Killing vector fields ξ.

Proof. Let X be an η-anti-selfadjoint matrix X. Let us first show that η-unitarily similar to X0 :=
iWJW−1 with some J in the Lemma and with an arbitrary complex matrix W satisfying η = WPW †.
By the Lemma, we have (X/i, η) ∼ (J, P ) with some (J, P ) because X/i is η-selfadjoint. [This also implies
that there exists at least one W ′ satisfying η = W ′PW ′†.] On the other hand, if η = WPW † holds, we
have (J, P ) ∼ (WJW−1, η) by the definition of unitary similarity. Then we have (X/i, η) ∼ (WJW−1, η),
which implies X

η∼ iWJW−1. Thus we can carry out the classification by the following procedure.
(1) Enumeratete P such that there is some W satisfying η = WPW †.
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(2) For each P and the corresponding W , construct X0 = iWJW−1.
(3) Translate X0 back to the Killing vector field ξ in SO(4, 2)0.

In some cases, however, the canonical pairs (J, P ) and (J ′, P ′) correspond to X0’s which generate
an identical Lie group. This happens when (J ′, P ′) ∼ (αJ, P ) holds with a nonzero real number α. To
find nontrivial identifications and clarify the relation between subtypes, it is useful to know how a pair
(αJj(λj), Pj) can be canonicalized. For α > 0, we simply have (αJj(λj), Pj) ∼ (Jj(αλj), Pj). Therefore
we focus on (−Jj(λj), Pj).
(i) When dj is odd, we have

(−J(λj), Pj) ∼ (J(−λj), Pj). (6)

This can be seen by applying a similarity transformation by diag[−1, 1,−1], etc.
(ii) When dj is even, we have

(−J(λj), Pj) ∼ (J(−λj),−Pj). (7)

Apply a similarity transformation by diag[−1, 1,−1, 1], etc.
(iii) In the special case of dj = 2 and λj ∈ C, not only (7) but also (6) holds because −J(λj) = J(−λj).

Another useful relation is that of (J, P ) and (J,−P ). Let us show that the corresponding Killing vector
fields ξ are related by a reflection r : (t, x) �→ (−t,−x), which is a transformation in SO(4, 2) which is
not connected to the identity. When (J, P ) ∼ (X0, η), we have (J,−P ) ∼ (−X ′

0, η) with X ′
0 = −ΣXΣ−1

and Σ = σy ⊗ σx, because ΣηΣ† = −η holds. On the other hand, one can read off from (1) that the
transformation p �→ −Σp(Σ−1)T = −ΣpΣT is a reflection along the t and x axes. Thus the Killing vector
field ξ′ corresponding to X ′

0 is the one ξ corresponding to X0 with the t and x axes reversed.
Let us find the relation of the subtypes within each type by using the results above. For Type (4|0),

by (7), the subtypes (+) are (−) identical and there is a unique subtype, which is invariant under r
(though the parameters change). For Type (3, 1|0), there are two subtypes (++) and (−−), which we
shall simply call (+) and (−). They are related to each other by the reflection r. For Type (2, 2|0), by
(7), the subtypes (++) and (−−) are identical which is invariant under r. The subtype (+−) is distinct
but is the same as (−+) (by a simple reordering) which is invariant under r. For Type (2, 1, 1|0), because
of reordering, there are at most two subtypes (+ +−) and (−−+). However, they are identical, by (7)
for the first block and by exchange of the second and the third blocks. It is invariant under r. Type
(1, 1, 1, 1|0) has only one subtype (by reordering). For Type (2|1), the subtypes (+) and (−) generates
an identical group and fall into a unique subtype. This can be seen by applying (ii) to the first block and
(iii) to the second, yielding (diag[J1, J2],diag[−P1, P2]) ∼ (−diag[J1, J2],diag[P1, P2]). Type (1, 1|1) has
a unique subtype (by reordering). Type (0|2) and type (0|1, 1) have a unique subtype.

Let us demonstrate the concrete calculation for Type (2|1) (the other types can be found in a similar
manner). We have, because J is traceless, J = diag

[[
a 1
0 a

]
,−a+ bi,−a− bi

]
, where a and b are

real numbers, and P = diag
[
±
[
0 1
1 0

]
,

[
0 1
1 0

]]
. As discussed above, however, it suffices to con-

sider the plus sign. Let us choose W = S23 · diag[R(π/2), R(−π/2)] where R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
and S23 =

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]
. Then X0 = iWJW−1 =

[
i(a + 1/2) 0 i/2 0

0 −ia 0 b
−i/2 0 i(a − 1/2) 0

0 b 0 −ia

]
= −a (1/i) ⊗ σz +

b σx ⊗ 1−σz
2 − (σy+(σz/i))⊗(1+σz)

4 . By Table 1, we find that X0 corresponds to the so(4, 2) operation
ξ = −K̃w +Kz + L+ Jwz + aJxy + b(Kw − K̃z), where we have rescaled ξ (by −4) and redefined a and
b.
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Cosmological perturbations in Stochastic gravity
— Beyond the linear perturbations —
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Abstract
Base on the formalism in Stochastic gravity, we study the nonlinear quantum effect of
the scalar field during inflation. We have shown as long as the slow-roll condition is
satisfied, Einstein-Langevin equation, which describes the quantum correction of the
scalar field to the gravitational field, can be solved iteratively. In these quantum cor-
rections, there exist two different order parts; the leading part induces the equivalent
effect to the linear analysis and the other part induces the nonlinear effect.

1 Introduction

The issue of calculating nonlinearity and the consequent non-Gaussianity in the primordial universe
has been attracting increasing attention, recently. Nevertheless, since the second order gauge invariant
perturbation equation is so complicated that it is difficult to quantize the gauge invariant variables in the
similar way to the linear analysis. It is why we consider the alternative approach by Stochastic gravity
to estimate this nonlinear effect.

2 Stochastic gravity

Since the Planck scale is so small, we expect that there exist some region where only the quantum effect
of the matter field is essential. Based on this idea, in Stochastic gravity, we treat the gravitational field
as a classical external field to pick up the quantum effect of the matter field. In particular, from the
effective action given by Feynman-Vernon’s Influence function or Closed time path formalism, we can
derive the equation for gravitational field which includes also the nonlinear quantum correction of the
matter field. [1]

Gab[g + h](x) = 〈T̂ab〉R[g + h](x) + 2ξab(x)

〈T̂ab〉R[g + h](x) = 〈T̂ab〉R[g] + 〈T̂ (1)
ab [g;h]〉R − 2

∫
d4y
√−gHabc′d′ [g](x, y)hcd(y) +O(h2) (1)

This equation is called Einstein-Langevin equation and let me note next three points about it.

(1) Expectation value of the energy momentum tensor
This expectation value of the energy momentum tensor depends on both the gravitational field and
the scalar field. The scalar field also depends on the gravitational filed. In other words, this energy
momentum tensor depends on the gravitational field not only directly, but also indirectly through the
scalar field. These two effects can be seen in the expectation value, 〈T̂ab〉R[g + h], respectively. We can
see that the second term in Eq.(1) is induced from the change of the gravitational field from g to g+h
directly. On the other hand, the third term, which represents the non-Markovian nature, is induced from
the change of the gravitational field indirectly. The second term is given by the next equation, in case
we consider minimal coupling scalar field

〈T̂ (1)
ab [g;h]〉R =

(1
2
gabh

cd − δc
ahd

b − δd
bh

c
a

)
〈T̂cd〉R[g]− 1

4

(
hab − 1

2
gabh

c
c

)
�c �c〈φ̂2〉R[g] (2)

1E-mail:yuko@gravity.phys.waseda.ac.jp
2E-mail:maeda@gravity.phys.waseda.ac.jp
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(2) Stochastic variable ξab

This classical noise represents the quantum fluctuation of the energy momentum tensor, the deviation
from the expectation value. Here I neglect the non-Gaussianity of this noise term, but if necessary we
can consider this effect in the formalism of Stochastic gravity. The correlation function of this stochastic
variable, ξab, is given by the next bi-tensor Nabc′d′(x, y)

Nabc′d′ [g](x, y) ≡ 1
8
〈{(T̂ab − 〈T̂ab〉)(x), (T̂c′d′ − 〈T̂c′d′〉)(y)}〉 = 〈ξab(x)ξc′d′(y)〉s (3)

Here I put index “s” to distinguish the ensemble average from the expectation value of operators.

(3) General covariance
Einstein-Langevin equation satisfies the general covariance, as long as a background metric,g, is a solution
of the semi-classical Einstein equation. To confirm this general covariance, let me consider the gauge
transformation by a stochastic variable ζ. Under this transformation, any tensors which depends on the
metric of the perturbed space time transform as follows to linear order,

Rab[g + h′] = Rab[g + h] + LζRab[g] (4)

Suppose that in one gauge (the perturbed metric → g + h) Einstein-Langevin equation is satisfied, then
under the gauge transformation to another gauge (the perturbed metric→ g+h′) this equation transforms
as follows to linear order,{

Gab[g + h](x)− 〈T̂ab〉R[g + h](x)− 2ξab(x)
}
− Lζ

{
Gab[g](x)− 〈T̂ab〉R[g](x)

}
= 0 (5)

Since the stochastic variable ξab has no background part, there is no contribution from ξab in second
curly bracket. Then, in case a background metric g is a solution of the semi-classical Einstein equation,
Einstein-Langevin equation is still valid after an arbitrary gauge transformation. From this fact, we can
consider the right hand side of Einstein-Langevin equation as one ordinary energy momentum tensor.

3 Cosmological perturbations in Stochastic gravity

We shall consider a minimal coupling scalar field with mass term 1
2m2φ2. As a state of the quantum

fluctuation, we choose Bunch-Davies vacuum. [2]

3.1 Background

To guarantee the general covariance, we have to consider a background space time as a solution of
the semi-classical Einstein equation. Here I decomposed the scalar field into the classical part and the
fluctuation part, φ̂ = φcl + ψ̂. To substitute this decomposition into the semi classical Einstein equation,
the back ground equation is

Gab[g](x) = κ2{T (cl)
ab (x) + 〈T̂ab〉R(x)} (6)

Second term in the right hand side is composed of the fluctuation term,ψ̂2(x). To compare the order of
these two terms,

1st term/2nd term ∼ φ2
(cl)/〈ψ̂2〉R ∼ φ2

(cl)/H2 ∼ (mpl/m)2 ∼ 1012 (7)

The order of 〈ψ̂2〉R is essentially led by the Green function for Bunch-Davies vacuum.[2] The classical
part of Tab,which is the leading term, induces a slow-roll inflationary stage.

3.2 Perturbed equations

Here, we shall consider the perturbation of Einstein-Langevin equation. As I already mentioned, since
the right hand side of Einstein-Langevin equation can be considered as a single energy-momentum tensor,
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although it includes a classical stochastic noise, this equation is just an ordinary Einstein equation. Then
by solving this perturbed “Einstein equation”, we can know the evolution of the gravitational field ,
affected by the quantum scalar filed.
At first we shall introduce the perturbed variables for the energy momentum tensor which corresponds
to the right hand side of Einstein-Langevin equation.

T̃ 0
0 = −(ρ+ δρY )

T̃ j
0 = −fY j

T̃ i
j = pδi

j + δPY δi
j + pπY i

j (8)

For the perturbed variables of the gravitational field, we use the same notation as [3]. Then, we can
construct gauge invariant variables in the following, 3

ρΔ = δρ+ n(ρ+ p)H 1
k

σg

F = f − (ρ+ p)
1
k

σg

δ̂P = δP − p′
1
k

σg

pΠ = pπ (9)

,where n represents the spatial dimension. From now on, we will consider the evolution of two gauge
invariant variables; one is the curvature perturbation in uniform density gauge RUD and the other is the
curvature perturbation in longitudinal gauge RL.

RUD = R+ 1
n(ρ+ p)

δρ = Φ+
1

n(ρ+ p)
ρΔ (10)

RL = R− H
k

σg = Φ (11)

The perturbed equations we shall solve are next four equations.

(ρΔ)′ + nHρΔ+ kF + nHδ̂P + n(ρ+ p)Φ′ = 0 (12)

F ′ + (n+ 1)HF − k
(
δ̂P − n− 1

n
pΠ
)
− (ρ+ p)Ψ = 0 (13)

Φ =
1

n− 1
κ2a2

k2

(
ρΔ+ n

H
k

F
)
=

n

2

(H
k

)2{
ρΔ+ n

(H
k

)2 k

HF
}

(14)

Ψ = −(n− 2)Φ− a2κ2

k2
pΠ (15)

Once we know the evolution of ρΔ and F , the evolution of RUD and RL is given by Eq.(10),Eq.(11),and
Eq.(14). From Eq.(12) and Eq.(13), after transforming the variable from conformal time η into ζ, which
satisfies dζ/dη = Hζ, ρΔ and F are given by

ρΔ(ζ) = − n

ζn

∫ ζ

ζ0

dζ ′ζ ′n−1δ̂P +
1
2ζn

∫ ζ

ζ0

dζ ′
( k

H
)2

ζ ′n+1
( 1

ζ2
− 1

ζ ′2
)(

δ̂P − n− 1
n

pΠ
)

+
1
2ζn

∫ ζ

ζ0

dζ ′ζ ′n+1(1 + w)
( 1

ζ2
− 1

ζ ′2
)(n

2
k

HF +
( k

H
)2

ρΨ
)
− n

ζn

∫ ζ

ζ0

dζ ′ζ ′n(1 + w)ρ
d

dζ ′
Φ

k

HF (ζ) =
1

ζn+2

∫ ζ

ζ0

dζ ′
( k

H
)2

ζ ′n+1(δ̂P − n− 1
n

pΠ) +
1

ζn+2

∫ ζ

ζ0

dζ ′ζ ′n+1(1 + w)
{n

2
k

HF +
( k

H
)2

ρΨ
}

(16)

Although ρΔ and F have not been solved completely yet, using these equations, we can solve ρΔ and F ,
and also RUD and RL iteratively during a slow-roll inflation.

3To compare the notation in [3], f = (ρ + p)v and F = (ρ + p)V
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Here we shall go back to the explicit form of Einstein-Langevin equation. From Eq.(1) and Eq.(2) in
longitudinal gauge, δ̂P and pΠ are given by

δ̂P = δPξ − (1 + w)(ρΦ+ δPm) +O((m/mpl)4)
pΠ = pπξ − (1 + w)pπm (17)

,where δPξ,δPm and pπξ,pπm represents the isotropic pressure part and the unisotropic pressure part for
the stochastic variable ξab and memory term, respectively.
Note that in case we consider the lowest order of (1+w), the right hand side of ρΔ and F are composed
of δPξ and pπξ. Then, since the correlation function of δPξ and pπξ are given by the bi-tensor Nabc′d′ ,
the correlation function of ρΔ,F ,RUD and RL are given in the lowest order of (1+w) by these equations.
Using the result of the lowest order,Eq.(16), and(17), we can find out the evolution of the correlation
functions until any order of (1 + w). In other words, as long as (1 + w) is small, we can estimate the
quantum correction of the scalar field to correlation functions, iteratively.

4 Nonlinear quantum effect of the scalar field

Since the perturbed equation which relates the stochastic terms and gauge invariant variables, what to
do next is to estimate the correlation function of ξab from Nabc′d. From Eq.(3), we can see that there are
two order quantum corrections,

Nabcd(x, y) ∼ Nabcd〈{φ̂2(x)− 〈φ̂(x)〉2, φ̂2(y)− 〈φ̂(y)〉2}〉 ∼ Nabcd[φ2
clG

+(x, y) +G+(x, y)G+(x, y)] (18)

,where G+(x, y) is the Wightman function. In a similar way to Eq.(7), we can see that the first term is
smaller than second one by order of (m/mpl)2. Since the first term is equivalent to the linear perturbation
and the second term corresponds to the nonlinear quantum effect of the scalar field, the quantum effect
beyond the linear analysis is induced from the second term. Although this correction is much small, it is
worth considering because it might represent a new physics which isn’t included in the linear order. In
particularly, we are considering two topics about this nonlinear effect; one is the contribution to the two
point function and three point function and the other is the amplification of the tensor mode.

5 Summary

In the formalism of Stochastic gravity, the nonlinear quantum effect of the scalar field can be considered.
We have shown that in case 1 + w is small, we can solve Einstein-Langevin equation, iteratively. And
there are two quantum corrections which have different order in the noise term(also in the memory term);
the leading part corresponds to the linear effect and the other part corresponds to the nonlinear effect.
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Abstract
The second order perturbations in Friedmann-Robertson-Walker universe filled with
a perfect fluid are completely formulated in the gauge invariant manner without any
gauge fixing. All components of the Einstein equations are derived neglecting the first
order vector and tensor modes. These equations imply that the tensor and the vector
mode of the second order metric perturbations may be generated by the non-linear
effects of the Einstein equations from the first order density perturbations.

Recently, the first order approximation of the early universe from a homogeneous isotropic one is
revealed by the observation of the CMB by Wilkinson Microwave Anisotropy Probe (WMAP)[1] and is
suggested that fluctuations in the early universe are adiabatic and Gaussian at least in the first order
approximation. One of the next theoretical tasks is to clarify the accuracy of these results, for example,
through the non-Gaussianity. To do this, the second order cosmological perturbation theory is necessary.

In this article, we show the gauge invariant formulation of the general relativistic second order cosmo-
logical perturbations on the background Friedmann-Robertson-Walker (FRW) universe M0 filled with
the perfect fluid whose metric is given by

gab = a2(η)
(−(dη)a(dη)b + γij(dxi)a(dxj)b

)
, (1)

where γij is the metric on maximally symmetric three space. The details of our formulation is given in
Refs.[2].

The gauge transformation rules for the variable Q, which is expanded as Qλ = Q0 + λ(1)Q+ 1
2λ2(2)Q,

are given by

(1)
YQ− (1)

XQ = £ξ(1)Q0,
(2)
YQ− (2)

XQ = 2£ξ(1)

(1)
XQ+

{
£ξ(2) +£2

ξ(1)

}
Q0, (2)

where X and Y represet two different gauge choices, ξa
(1) and ξa

(2) are generators of the first and the
second order gauge transformations, respectively.

The metric ḡab on the physical spacetime Mλ is expanded as ḡab = gab + λhab + λ2

2 lab. We de-
compose the components of the first order metric perturbation hab into the three sets of variables
hηη, h(V L), h(L), hTL , h(V )i

, h(TV )i
, and h(TT )ij , which are defined by

hηi =: Dih(V L) + h(V )i, hij =: a2h(L)γij + a2h(T )ij , Dih(V )i = 0, γijh(T )ij
= 0, (3)

h(T )ij =:
(

DiDj − 1
3
γijΔ

)
h(TL) + 2D(ih(TV )j) + h(TT )ij Dih(TV )i = 0, Dih(TT )ij = 0. (4)

Inspecting gauge transformation rules (2), we define a vector field Xa by

Xa := Xη(dη)a +Xi(dxi)a, Xη := h(V L) − 1
2
a2∂τh(TL), , Xi := a2

(
h(TV )i +

1
2
Dih(TL)

)
, (5)

where Xa is transformed as YXa − XXa = ξ(1)a under the gauge transformation (2). We can also define
the gauge invariant variables for the linear order metric perturbation by

Hab = −2a2
(1)

Φ (dη)a(dη)b + 2a2
(1)
νi (dη)(a(dxi)b) + a2

(
−2

(1)

Ψ γij+
(1)
χij

)
(dxi)a(dxj)b, (6)

1E-mail:kouchan@th.nao.ac.jp
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where Di (1)
νi=

(1)
χ[ij]=

(1)

χi
i= Di (1)

χij= 0. In the cosmological perturbations[3],
(1)

Φ ,
(1)

Ψ ,
(1)
νi ,

(1)
χij are called the

scalar, vector, and tensor modes, respectively. In terms of the variables Hab and Xa, the original first
order metric perturbation hab is given by

hab =: Hab +£Xgab. (7)

Since the scalar mode dominates in the early universe, we assume that
(1)
νi=

(1)
χij= 0 in this article.

As shown in Ref.[2], through the above variables Xa and hab, the second order metric perturbation
lab is decomposed as

lab =: Lab + 2£Xhab +
(
£Y −£2

X

)
gab. (8)

The variables Lab and Y a are the gauge invariant and variant parts of lab, respectively. The vector field
Ya is transformed as YYa− XYa = ξa

(2)+[ξ(1), X ]
a under the gauge transformations (2). The components

of Lab are given by

Lab = −2a2
(2)

Φ (dη)a(dη)b + 2a2
(2)
νi (dη)(a(dxi)b) + a2

(
−2

(2)

Ψ γij+
(2)
χij

)
(dxi)a(dxj)b, (9)

where Di (2)
νi=

(2)
χ[ij]=

(2)

χi
i= Di (2)

χij= 0.
As shown in Ref.[2], by using the above variables Xa and Ya, we can find the gauge invariant variables

for the perturbations of an arbitrary field as

(1)Q := (1)Q−£XQ0, ,
(2)Q := (2)Q− 2£X

(1)Q− {£Y −£2
X

}
Q0. (10)

As the matter contents, in this article, we consider the perfect fluid whose energy-momentum tensor is
given by T̄ b

a = (ε̄+ p̄) ūaūb + p̄δ b
a . We expand these fluid components ε̄, p̄, and ūa as

ε̄ = ε+ λ
(1)
ε +

1
2
λ2

(2)
ε , p̄ = p+ λ

(1)
p +

1
2
λ2

(2)
p , ūa = ua + λ

(1)
u a +

1
2
λ2

(2)
u a p. (11)

Following the definitions (10), we easily obtain the corresponding gauge invariant variables for these
perturbations of the fluid components:

(1)

E :=
(1)
ε −£Xε,

(1)

P :=
(1)
p −£Xp,

(1)

Ua:=
(1)

(ua) −£Xua,
(2)

E :=(2)
ε −2£X

(1)
ε −{£Y −£2

X

}
ε,

(2)

P :=
(2)
p −2£X

(1)
p −{£Y −£2

X

}
p,

(2)

Ua:=
(2)

(ua) −2£X
(1)
ua −

{
£Y −£2

X

}
ua.

Through ḡabūaūb = gabuaub = −1 and neglecting the rotational part in
(1)

Ua, the components of
(1)

Ua are

given by
(1)

Ua= −a
(1)

Φ (dη)a + aDi

(1)
v (dxi)a.

We also expand the Einstein tensor as Ḡ b
a = G b

a + λ(1)G b
a + 1

2λ2(2)G b
a . From Eqs.(7) and (8), each

order perturbation of the Einstein tensor is given by

(1)G b
a = (1)G b

a [H] +£XG b
a , (2)G b

a = (1)G b
a [L] + (2)G b

a [H,H] + 2£X
(1)G b

a +
{
£Y −£2

X

}
G b

a (12)

as expected from Eqs. (10). Here, (1)G b
a [H] and (1)G b

a [L] + (2)G b
a [H,H] are gauge invariant parts of

the frist and the second order perturbations of the Einstein tensor, respectively. On the other hand, the
energy mometum tensor of the perfect fluid is also expanded as T̄ b

a = T b
a + λ(1)T b

a + 1
2λ2(2)T b

a and
(1)T b

a and (2)T b
a are also given in the form

(1)T b
a = (1)T b

a +£XT b
a , (2)T b

a = (2)T b
a + 2£X

(1)T b
a +

{
£Y −£2

X

}
T b

a (13)

through the definitions (12) of the gauge invariant variables of the fluid components. Here, (1)T b
a and

(2)T b
a are gauge invariant part of the first and the second order perturbation of the energy momentum
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tensor, respectively. Then, the first and the second order perturbations of the Einstein equation are
necessarily given in term of gauge invaraint variables:

(1)G b
a [H] = 8πG(1)T b

a , (1)G b
a [L] + (2)G b

a [H,H] = 8πG (2)T b
a . (14)

The traceless scalar part of the spatial component of the first equation in Eq.(14) yields
(1)

Ψ=
(1)

Φ, and
the other components of Eq. (14) give well-known equations[3].

Since we neglect the first order vector and tensor modes,
(2)

Ua is given by

(2)

Ua = a

((
(1)

Φ
)2

−Di

(1)
v Di (1)

v −
(2)

Φ

)
(dη)a + a

(
Di

(2)
v +

(2)

Vi

)
(dxi)a, (15)

where Di
(2)

Vi= 0. All components of the second equation in Eq. (14) are summarized as follows: As the
scalar parts, we have

4πGa2
(2)

E =
(−3H∂η +Δ+ 3K − 3H2

) (2)

Φ −Γ0 + 3
2

(
Δ−1DiDjΓ

j
i − 1

3
Γ k

k

)
−9
2
H∂η (Δ + 3K)

−1
(
Δ−1DiDjΓ

j
i − 1

3
Γ k

k

)
, (16)

8πGa2(ε+ p)Di

(2)
v = −2∂ηDi

(2)

Φ −2HDi

(2)

Φ +DiΔ−1DkΓk

−3∂ηDi (Δ + 3K)
−1
(
Δ−1DiDjΓ

j
i − 1

3
Γ k

k

)
, (17)

4πGa2
(2)

P =
(
∂2

η + 3H∂η −K + 2∂ηH +H2
) (2)

Φ −1
2
Δ−1DiDjΓ

j
i

+
3
2
(
∂2

η + 2H∂η

)
(Δ + 3K)−1

(
Δ−1DiDjΓ

j
i − 1

3
Γ k

k

)
, (18)

(2)

Ψ −
(2)

Φ =
3
2
(Δ + 3K)−1

(
Δ−1DiDjΓ

j
i − 1

3
Γ k

k

)
. (19)

where H = ∂ηa/a and

Γ0 := 8πGa2(ε+ p)Di (1)
v Di

(1)
v −3Dk

(1)

Φ Dk
(1)

Φ −3
(

∂η

(1)

Φ
)2

− 8
(1)

Φ Δ
(1)

Φ −12
(
K +H2

)((1)

Φ
)2

,

Γi := −16πGa2
(
(1)

E +
(1)

P
)

Di

(1)
v +12H

(1)

Φ Di

(1)

Φ −4
(1)

Φ ∂ηDi

(1)

Φ −4∂η

(1)

Φ Di

(1)

Φ , (20)

Γ j
i := 16πGa2(ε+ p)Di

(1)
v Dj (1)

v −4Di

(1)

Φ Dj
(1)

Φ −8
(1)

Φ DiD
j
(1)

Φ

+2

(
3Dk

(1)

Φ Dk
(1)

Φ +4
(1)

Φ Δ
(1)

Φ +
(

∂η

(1)

Φ
)2

+ 4
(
2∂ηH+K +H2

)((1)

Φ
)2

+ 8H
(1)

Φ ∂η

(1)

Φ

)
γ j

i .

As the vector parts, we have

8πGa2(ε+ p)
(2)

V i =
1
2
(Δ + 2K)

(2)
νi +

(
Γi −DiΔ−1DkΓk

)
, (21)

∂η

(
a2

(2)
νi

)
= 2a2 (Δ + 2K)−1

{
DiΔ−1DkDlΓ l

k −DkΓ k
i

}
. (22)

As the tensor parts, we have the evolution equation of
(2)
χij(

∂2
η + 2H∂η + 2K −Δ) (2)

χij

= 2Γij − 2
3
γijΓ k

k − 3
(

DiDj − 1
3
γijΔ

)
(Δ + 3K)−1

(
Δ−1DkDlΓ l

k −
1
3
Γ k

k

)
+4

(
D(i (Δ + 2K)

−1
Dj)Δ−1DlDkΓ k

l −D(i (Δ + 2K)
−1

DkΓj)k

)
, (23)

− 48 −



Equations (22) and (23) imply that the second order vector and tensor modes may be generated due to
the scalar-scalar mode coupling of the first order perturbation.

Further, the equations (16) and (19) are reduced to the single equation for
(2)

Φ

(
∂2

η + 3H(1 + c2s)∂η − c2sΔ+ 2∂ηH+ (1 + 3c2s)(H2 −K)
) (2)

Φ

= 4πGa2

{
τ

(2)

S +
∂c2s
∂ε

(
(1)

E
)2

+ 2
∂c2s
∂S

(1)

E
(1)

S +
∂τ

∂S

(
(1)

S
)2
}
+
3
2

(
c2s +

1
3

)(
Δ−1DiDjΓ

j
i − 1

3
Γ k

k

)
−c2sΓ0 +

1
6
Γ k

k − 3
2
(
∂2

η +
(
2 + 3c2s

)H∂η

)
(Δ + 3K)−1

(
Δ−1DiDjΓ

j
i − 1

3
Γ k

k

)
. (24)

Here, we have used the second order perturbation of the equation of state for the fluid components

(2)

P= c2s
(2)

E +τ
(2)

S +
∂c2s
∂ε

(1)

E
2

+2
∂c2s
∂S

(1)

E
(1)

S +
∂τ

∂S

(1)

S
2

, (25)

where
(1)

S and
(2)

S are the gauge invariant entropy perturbation of the first and second order, respectively,
we denoted that c2s := ∂p̄/∂ε̄ and τ := ∂p̄/∂S̄. The equation (24) will be useful to discus non-linear
effects in the CMB physics[4]. We also derive the similar equations in the case where the matter content
of the universe is a single scalar field[2].

Now, we are developing our formulation to the case in which the first order vector and tensor modes
are not negligible. In some inflationary scenario, the tensor mode are also generated by the quantum
fluctuations. This extension is necessary to clarify the evolution of the second order perturbation in the
existence of the first order tensor mode. Further, to apply this formulation to clarify the non-linear effects
in CMB physics[4], we have to extend our formulation to multi-field system and the Einstein Boltzmann
system. This extension of our formulation is one of our future works.

Moreover, the rotational part of the fluid velocity in Eqs. (21) of the vector mode is also important
in the early universe because this part of the fluid velocity is related to the generation of the magnetic
field in the early universe[5]. The generation of the tensor mode by Eq. (23) is also interesting, since this
is one of the generation process of gravitational waves. We have already known that the fluctuations of
the scalar mode exist in the early universe from the anisotropy of the CMB[6]. Hence, the generation of
the vector mode and tensor mode due to the second order perturbation will give the lower limit of these
modes in the early universe.
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The Engines behind Supernovae and Gamma-Ray Bursts
The Role of Convection and Rotation

Chris L. Fryer1

CCS Division, MS D409, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract
We review the different engines behind supernova (SNe) and gamma-ray bursts
(GRBs), focusing on those engines driving explosions in massive stars: core-collapse
SNe and long-duration GRBs. Convection and rotation play important roles in the
engines of both these explosions. We outline the basic physics behind convection in
core-collapse and discuss the wide variety of ways scientists have proposed that this
physics can affect the supernova explosion mechanism, concluding with a review of
the current status in these fields.

1 Introduction

Supernovae and Gamma-Ray Bursts are the two most energetic explosions in the universe since the big
bang. For a brief time, they outshine the galaxies in which they reside. Observations have led to the
classification of these outbursts based on their observational properties. For supernovae, the classification
is based primarily on their spectra: type II SNe have strong hydrogen lines, type I SNe exhibit hydrogen
lines at late times if at all. Type I supernovae are further distinguished by the presence of strong silicon
lines (Ia), absent in Ib/c supernovae; Ib supernovae have helium lines, absent in Ic supernovae. GRBs are
differentiated by the duration of the burst and “hardness” of its spectra: long-hard bursts with durations
above a few seconds and the short-soft bursts. A third intermediary category may exist. An additional
feature of these observations is that long-duration GRBs have type Ic supernovae associated with them.

Theorists have proposed a wide variety of mechanisms for these explosions, from electrical storms in
the earth’s stratosphere to colliding strings in the early universe. Indeed, just 25 years after the discovery
of GRBs, over 100 models existed for GRBs[50]. However, only a handful of models have emerged as
“favorite” engines behind all the types of GRB and SN explosions. Figure 1 reviews the 3 main types
of SN and 2 types of GRB and the energy source/mechanism behind the explosions. Type Ia SNe are
produced by the thermonuclear explosion of a white dwarf. In the standard picture, the ignition of the
white dwarf occurs when its mass exceeds the Chandrasekhar mass (generally through accretion from
a binary companion). This is the only explosion powered by nuclear energy. All other explosions are
produced by the release of gravitational energy. Short-Duration GRBs are believed to be produced by
gravitational energy released during the merger of two neutron stars and the subsequent accretion onto
the black hole formed during this merger.

Type Ib/c SNe, Type II SNe and long-duration GRBs are ALL believed to be produced in the collapse
of a massive star down to a compact object. For most SNe, the outburst is produced when a massive star
(>∼ 9M�) collapses down to a neutron star. Long-duration GRBs are produced in the collapse of a very
massive star (>∼ 20M�) down to a black hole. Although the source of energy for both these explosions is
the same potential energy released during the collapse, it is believed that the mechanism that converts
this energy into an explosion is very different. The mechanism behind long-duration GRBs also produces
associated type Ic SNe, so the line dividing these different explosions is not concrete, but we shall argue
below that these “type Ic” SNe have different characteristics from “normal” type Ic SNe.

This paper reviews the role of convection in the explosion mechanisms of core-collapse SNe and GRBs.
But before we focus on this particular piece of physics, let’s review the basic engines involved.

1E-mail:fryer@lanl.gov
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Figure 1: Three basic SN types and two primary GRB types. The basic SN types are distinguished based
on the appearance of different elements (H, He, Si) in the spectra of the explosions. The GRB types are
distinguished by the duration of the gamma-ray emission. Two SNe types (II,Ib/c) and one GRB class
(long-duration) are believed to be produced by the collapse of massive stars. This paper focuses on the
role of convection on the explosions behind these core-collapse events.
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1.1 The Basic Engine Powering Core-Collapse Supernovae

Stars are powered by the nuclear fusion of material in their cores. For stars like the sun, this fusion
stops after the core has “burned” its hydrogen into helium. But for more massive stars, the core is able
to become sufficiently hot to fuse the helium ashes into carbon. In stars above ∼ 9M�, this burning
process continues through the fusion of silicon into iron. The fusion of iron to heavier elements does not
release any further energy and the build up of an iron core marks the end of the life of even the most
massive stars. When this core becomes so large that pressures and densities dissociate the iron to lighter
atoms (removing thermal support) and induce the capture of electrons onto protons (removing electron
degeneracy support), the core collapses.

The core collapses until it reaches nuclear densities where nuclear forces and neutron degeneracy
pressure halt the collapse. This marks the initial formation of the proto-neutron star (roughly 0.9M�)
and sends a “bounce”-shock back through the star. This shock is extremely hot and most of its energy
is stored in thermal energy. Initially, photons, and even neutrinos, are trapped in this shock. But as the
shock moves to lower densities, the neutrinos can leak out of the shock, removing most of its energy and
causing it to stall. This occurs roughly between 100-200km. The stall leaves behind a region between
the proto-neutron star and the stalled shock with a negative entropy gradient (high entropies below lower
entropies) that initiates convection in this region. But this convection continues to be driven by a number
of instabilities (to be discussed below) that Herant et al.[27] argued would allow the convective region to
more-efficiently transfer the potential energy released (stored in the thermal energy of the proto-neutron
star) to be converted to kinetic energy and ultimately drive a supernova explosion. After over a decade
of debate, there is now a general consensus that this convective region is indeed critical to the supernova
explosion engine. It allows the transfer of energy from the proto-neutron star to the stalled shock, pushing
back against the infalling star and ultimately driving a supernova explosion.

1.2 The Basic Engine Powering Long-Duration GRBs

The engine behind both short and long-duration GRBs is powered by the accretion of matter onto a black
hole. If this accreting matter has enough angular momentum to form a disk around the black hole, its
energy can be extracted by first converting it into magnetic fields or neutrinos and then depositing this
energy further out to drive a relativistic explosion[49]. A number of progenitor models exist to produce
such black hole accretion disk (BHAD) systems and the relative merits of the two conversion mechanisms
(neutrinos or magnetic fields) have been studied in detail assuming a simple disk picture[52, 17].

In 1993, Woosley[61] proposed that the BHAD engine could be produced in the collapse of a rotating
massive star. MacFadyen & Woosley[42] modeled the first such collapse of a massive star in 2-dimensions
and, using the simple disk models of Popham et al.[52] found that by injecting energy above the disk,
they could produce a jet-like explosion that could explain the features of long-duration GRBs.

Let’s outline the basic picture behind this collapsar engine. It begins with the same evolution as the
stars we studied in our basic supernova engine. A massive star collapses, forms a proto-neutron star and
this engine convects. However, if the star is more massive than roughly 20M�[16], the supernova engine
is unable to produce a strong explosion. If it produces a weak explosion, it is unable to disrupt the entire
star and material will eventually fall back onto the proto-neutron star, causing it to collapse to a black
hole. For extremely massive stars (>∼ 40M�), the supernova engine may not work at all, producing a
black hole without any supernova explosion at all (but as we shall see, this collapse may still produce an
explosion).

If the star is rotating, some of the material falling on the newly-formed black hole will hang up in an
accretion disk around the black hole. Then it is assumed that either the neutrinos emitted from the hot
disk or magnetic fields generated in the disk will convert the potential energy released into an explosion.
Popham et al.[52] made a series of advection dominated accretion flow simulations to show that although
both the neutrino and magnetic field conversion mechanisms are plausible, the magnetic field conversion
mechanisms may well be required for the strong GRB explosions that are observed.

A series of papers have studied this disk picture in more detail. For the neutrino-annihilation transfer
mechanism, semi-analytic calculations can provide quantitatively accurate estimates. di Matteo et al.[13]
studied this mechanism at the highest accretion rates and found that neutrino trapping severely limited
the amount of energy injected by neutrinos in this regime. Fryer & Mészáros[20] focused on progenitors,
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finding that for massive stars, the black hole would become too massive by the time the axis above
the disk cleared for the simple neutrino-annihilation disk-mechanism to work. All these studies agreed
that it is unlikely that neutrino-annihilation will work for GRBs produced in stellar collapse. It is much
more difficult to accurately estimate the role of magnetic fields. Although many papers exist predicting
what magnetic fields can do for GRBs produced in stellar collapse[49, 35, 43] only a few quantitative
calculations of these magnetic fields have been made[53]. Even these calculations are constrained by a
number of assumptions and 2-dimensional calculations.

Three-dimensional calculations of these collapser models have shown us that the basic disk picture is
far too simple and the behavior of matter near the black hole is much more similar to a supernova engine
than that of an accretion disk[54]. Convective instabilities develop and dominate the flow of matter.
Rockefeller et al. [54] also found that viscous forces may also be able to extract angular momentum
energy driving outflows. How this leads to a GRB remains to be seem, but it is clear that nature is much
more complex than we first imagined and a lot of work remains to fleshing out the GRB engine. But the
first step is to understand this convection and we will focus on this aspect of the GRB engine here.

2 Convection in Supernovae

2.1 History

In 1979, Epstein[14] argued that lepton gradients in the proto-neutron star would drive convection that
would help transport neutrinos deep in the proto-neutron star to its surface, allowing those neutrinos to
better heat the material in the shocked region, driving an explosion2. Shortly thereafter, a more complete
picture based on the first multi-dimensional calculations of convection in supernovae[41, 3, 57] argued
that the convection was driven by the interplay between entropy and lepton gradients. These calculations
also focused on the role of convection in the proto-neutron star core and the effect this convection would
play on the neutrino flux, but they also realized that the role of convection might lead beyond just
transporting neutrinos.

The research in the 1980s focused mostly upon the convection in the neutron star. Lattimer and
collaborators[39, 7] took advantage of the latest advances in dense equations of state to better estimate
the convection and hence the neutrino fluxes from the proto-neutron star. Burrows[8] argued, using
semi-analytic calculations, that convection at the neutrinosphere would grow to encompass the entire
proto-neutron star. This convection was later confirmed by multi-dimensional simulations[36]. With
appropriate tweaking, Wilson & Mayle[59, 60] found that they could get explosions with this proto-
neutron star convection, focusing on the doubly diffusive regime where heat diffusion removed the stable
entropy gradient faster than lepton diffusion diminished the unstable lepton gradient. The increased
neutrino flux from this convection was just enough to produce an explosion.

But all large-scale, multi-dimensional calculations since Herant et al.[27] that include the shocked
region only exhibit weak convection in the proto-neutron stars. Whether or not strong convection occurs
in the proto-neutron star is still a matter of debate. A very good review of our current understanding of
this analysis has been done by Bruenn et al.[4].

However, in the 1990s, the focus of convection in supernovae turned to the region above the proto-
neutron star. In trying to explain the mixing in the ejecta seen in SN 1987A, Herant et al.[26] argued
that the convection above the proto-neutron star driven primarily by entropy gradients could be the
key to the explosion. Despite discouraging results by Yamada et al.[62] and Miller et al.[45] arguing
that the convection above the proto-neutron star was only a minor effect, the simulations of Herant et
al.[27] argued that this convection actually played a key role in the explosion. Convection above the
proto-neutron star converted thermal energy deposited by neutrinos just above the proto-neutron star to
kinetic energy in the explosion.

The effects of convection above the proto-neutron star (PNS) outlined by Herant et al.[27] can be
illustrated by comparing the differences between the 1-dimensional (fig. 2) and multi-dimensional (fig. 3)
pictures. In the 1-dimensional scenario (fig. 2), material from the infalling star piles up on the stalled
shock. For a successful explosion to develop, the engine must be able to push the matter outward. With

2At the PNS surface, electron neutrinos are no longer trapped and, because of this, this surface region becomes extremely
electron poor, producing a gradient in the lepton number.
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Figure 2: Supernovae in the 1-dimensional picture. Matter is not allowed to mix, so the transfer of energy
is much more difficult.
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time, this material piles up on the shock, making the explosion harder and harder to explode. The
neutrinos leaking out of the PNS primarily heat the region just above the PNS surface. If this region can
not expand, it heats up so high that it too emits neutrinos, losing all of the energy it has gained from
the PNS. These two issues make it very difficult for a 1-dimensional calculation to produce a successful
explosion.

Convection above the PNS alleviates both of these issues. The infalling material falls onto the shock,
but it does not build up on the shock(fig. 3). Instead, convection allows this material to flow down toward
the PNS surface. This material does not build up on the shock, so does not contribute to the matter that
must be pushed outward to drive a successful explosion. It accretes onto the PNS, depositing additional
energy that can help drive a supernova explosion (possibly through neutrino emission). Both of these
effects make it easier to produce an explosion. In addition, any heating just above the PNS surface causes
the heated material to rise upward, converting its thermal energy into kinetic energy before it gets so hot
that it re-emits that energy in the form of neutrinos. So convection also allows the region above the PNS
to better convert its thermal energy into kinetic energy to drive an explosion.

What does this look like in a real simulation? Figure 4 shows a snapshot in time of the convective
region above the proto-neutron star. The vectors show the direction and the shading denotes entropy.
At roughly 300km one can easily make out the edge of the shocked region where the infalling star hits
the top of the convective region. The proto-neutron star ends roughly at 40-50km. In this region, hot
material at the base rises upward and pushes the shock outward. Infalling material pushes back and as
it piles up, it flows down onto the proto-neutron star.

Although the Herant et al.[27] result was immediately corroborated by Burrows et al.[9], until recently,
the debate about the role of convection met violent arguments. Janka & Müller[33] argued that convection
could help the explosion, but only mildly. Mezzacappa et al.[44] argued that convection did not produce
explosions. In 2003, Buras et al.[5] argued that explosions could not occur in collapsing stars, even with
convection, without the invocation of new microphysics or magnetic fields. On the other extreme, Fryer
and collaborators [16, 19, 21, 22, 24] produced explosions for all stars below about 20M� unless they
artificially damped out convection. Arguments about numerical techniques ensued: e.g. hydrodynamic
techniques, transport techniques, errors in the equation of state. Of the 4-5 supernova groups across the
world, all but 1 focused on doing better neutrino transport.

In the past few years, this picture has changed. Blondin et al.[1] discovered that a number of insta-
bilities exist in the region above the PNS. Burrows et al.[10] found that these instabilities could drive
an explosion independent of neutrino transport scheme. The group led by Janka suddenly started to
produce explosions[6]. At this point, over a decade after the Herant et al.[27] work proposed it, there is
reasonable consensus in the field that convection above the PNS is critical in the supernova paradigm.

Why does it take so long for scientists to converge on this result? Because it is a difficult problem with
a lot of interacting physics, core-collapse explosions must be modeled computationally, and this means
scientists must be able to discern between numerical and real effects. And this can be difficult indeed.
An example of how hard this is to do can be shown in the range of recent results from the Janka group.
In 2003, they argued that convection could not produce explosions without new microphysics or magnetic
fields. Two years later, they argued that they could get explosions for stars less massive than 12M�,
but nothing bigger could explode. At the Texas Symposium in Melbourne (Dec. 2006), they admitted
that they could get 15M� stars to explode without new microphysics or magnetic fields. Issues in their
numerics fooled them not once, but twice. This group is very strong in computational astrophysics and
is considered by all to be excellent in both computational science and supernovae. But they, as we all
do, struggle to disentangle the numerics from the physics. Bear this in mind when we discuss the current
state-of-the-art results. What we believe now may be incorrect.

2.2 Convection Basics

The focus of most of the convective instabilities has been on either lepton or entropy gradients. These
can be understood fairly easily by linear stability criteria and have been known since the 50s[40, 34]. To
determine whether a region is Rayleigh-Taylor unstable to entropy gradients, let’s examine a simple case
of a homogeneous material with an entropy gradient and a constant gravity vector. Let’s take a blob of
material in this atmosphere with entropy [S(r0) = S0] and slightly raise its entropy (Sbub = S0 +ΔS).
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Figure 4: Convection in a core-collapse supernovae[19]. This plot shows a slice of a 3-dimensional
simulation at a snapshot in time as the convective region starts to push the star outward[19]. The base
of the convective region (surface of the PNS) is at roughly 40-50km and the top of the convective region
(position where the infalling stellar material shocks against the convective region).
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As it evolves into pressure equillibrium with the material around it, its density will be lower than its
surroundings (for most normal equations of state), and it will rise. If the entropy increases with increasing
radius (r), then the bubble will only rise until S0 +ΔS = S(r) where the density of the bubble and that
of the atmosphere are the same. Such an atmosphere is stable to convection. If the entropy remains
constant or decreases at increasing radius, the equilibrated bubble will always have a lower density than
its surroundings and will continue to rise. Such an atmosphere is unstable to entropy gradients. Simply
stated, the criterion for instability is:

dS/dr < 0. (1)

If we include lepton (YL) gradients, the more general criterion for instability becomes:

(∂P/∂S)ρ,YLdS/dr − (∂P/∂YL)ρ,SdYL/dr < 0 (2)

where (∂P/∂S)ρ,YL is the partial derivative of the pressure with respect to the entropy and constant
density ρ and lepton number YL and (∂P/∂YL)ρ,S is the corresponding partial derivative of the pressure
with respect to the lepton number.

From this general equation, we can understand the bulk of the convective instabilities studied in core-
collapse supernovae. The “Lepton-driven” instability is determined by the second term in equation 2.
Essentially it says that if there is heavy material on top of light material, the light material will rise while
the heavy material descends. The escape of the electron neutrinos at the surface of the PNS produces a
region where there is a high neutron/electron ratio (> 3− 5) above a region where this value is below 2.

In the region above the PNS, entropy-driven convection can dominate. As the initial bounce shock
moves outward, it weakens and produces a lower shift in the entropy, leaving behind a negative entropy
gradient. This starts entropy-driven convection. Heating near the PNS surface contines to maintain this
entropy gradient, producing convection.

The electron neutrino emitted during electron capture is less energetic than the energy released during
the capture. The neutron-rich region at the surface of the PNS tends to be hotter than the region below
it. So although it is unstable to lepton gradients, the entropy gradient stabilizes against this convection.
This leads to a doubly-diffusive or “salt-finger” instability3. It is this doubly-diffusive instability that
must be understood if we are to solve whether convection within the PNS is important or not.

For the convection above the PNS, the lepton gradient is a negligible effect and we can estimate the
convective instability (and timescale) on the entropy gradient alone. One way to estimate the timescale
of this convection is to use the Brunt-Väisäla frequency ω[12]:

ω2 = g/ρ(∂ρ/∂S)P(∂S/∂r) (3)

where (∂ρ/∂S)P is the partial derivative of the density with respect to entropy at constant pressure, and
g ≡ GMenclosed/r2 is the gravitational acceleration. Here G is the gravitational constant and Menclosed

is the enclosed mass at radius r. If (∂S/∂r) is negative, ω2 is negative and the region is unstable. The
timescale for this convection (τconv) is (|1/ω2|)1/2.

In the limit where radiation pressure dominates the pressure term (reasonably true at the accretion
shock), this equation becomes:

ω2 = g/S(∂S/∂r) ≈ (1/S)(GMenclosed)/r2)(ΔS/Δr) (4)

where ΔS is the change in entropy over distance Δr. Here we used the following relations: S ∝ T 3/ρ and
Pressure ∝ T 4. For the massive 23M� star studied by Fryer & Young[25], where g ≈ 1.5× 1012 cm s−2,
ΔS/S ≈ 0.2, and Δr ≈ 107cm, the convective timescale is roughly 2ms. Even on core-collapse timescales,
this is extremely rapid and most simulations do not reproduce this result, probably because numerical
viscosity (either through SPH artificial viscosity or numerical advection in grid codes) damps out the
convection.

Some scientists prefer to estimate the growth time of Rayleigh-Taylor instabilities based on a more
simplified equation using the Atwood number A:

ω2
Atwood = kgA (5)

3So-named because it is like the hot Mediterranean Sea pouring into the Atlantic Ocean. The Sea is saltier but hotter
than the Ocean. At first, the two fluids are stable, but as the heat from the Mediterranean diffuses into the water below it,
lepton-driven gradients dominate over the stabilizing entropy gradient, allowing convection to develop.

− 62 −



where A = (ρ2 − ρ1)/(ρ2 + ρ1) and k is the wave number. Such an equation is designed for simplistic
examples of a two density fluid chamber. But, if we again assume a radiation pressure dominated gas,
this equation becomes:

ω2
Atwood = k(GMenclosed)/r2)(ΔS/S). (6)

If we pick a wave number roughly of the size scale of our convective region, this equation is identical to
our equation derived using the Brunt-Väisäla frequency.

2.3 Where Are We Now?

Blondin et al.[1] introduced a new feature into convection above the PNS. Building upon the work
of Houck & Chevalier[28], they argued that advective-acoustic (or vortical-acoustic) instabilities would
develop low-mode oscillations. This has become the focus of a lot of the multi-dimensional results in the
past few years[55, 51, 10, 15] and has brought a new appreciation of the complexity of convection above
the PNS.

There are some issues to this new convective instability that are still being realized by the supernova
community. First and foremost, the existence of this instability does not preclude the existence of the
Rayleigh-Taylor instabilities scientists have focused on in the past. Indeed, because the growth time of
the accretion shock instabilities tend to be > 100ms, Rayleigh-Taylor instabilities will dominate at early
times (Yamada, presented at this meeting[64, 65]). Figure 5 shows the explosion roughly 100ms after
bounce. At this time, the only strong instabilities are Rayleigh-Taylor. As the edge of the shock front
moves outward, the Rayleigh-Taylor instabilities will naturally develop lower order modes (Rayleigh-
Taylor modes will have instabilities roughly the size of the convective region). Roughly 350ms after the
explosion, the Rayleigh-Taylor instabilities still dominate (Fig. 6), but an l = 1 mode convection has
developed that almost assuredly is an accretion instability. So this new instability will only play a role
in extremely delayed explosions.

The long delay in the development of accretion shock instabilities places limits on the effectiveness of
this instabilty in driving supernova explosions. The explosion energy is derived from the energy stored
in the PNS or the convection region above the PNS. Once the explosion is launched, it is very difficult
to inject further energy in the shock (unless we invoke magnetic fields). Fryer[23] made some simple
estimates of the energy making the following assumptions: 1) the explosion energy is limited to the
energy in the convective region, 2) the convective region can be mimicked by a radiation dominated gas
(γ = 4/3), 3) the structure total energy in the convective region is not too different from the equilibrium
solution. In pressure equilibrium, the pressure profile [P (r)] of a radiation dominated gas is[11]:

P (r) = [1/4MNSG(Srad/S0)−1(1/r − 1/rshock) + P
1/4
shock]

4erg cm−3, (7)

where MNS is the mass of the proto-neutron star, G is the gravitational constant, Srad is the entropy
in Boltzmann’s constant per nucleon, S0 = 1.5 × 10−11 and rshock, Pshock are the radius and pressure of
the accretion shock produced where the infalling stellar material hits the convective region. Pshock is set
to the ram pressure of the infalling material ≡ 1/2ρv2ff where ρ is the density of the material and vff is
the free-fall velocity at the shock. In our derivation, we will set our free parameter to the accretion rate
(Ṁacc) of the infalling material. Using mass continuity, ρ = Ṁacc/(4πr2shockvff), the pressure at the shock
is:

Pshock = (2GMNS)0.5Ṁacc/(8πr2.5
shock). (8)

The energy density for a radiation dominated gas is just 3× P (r):

u(r) = 3
[
4.7× 108MNS

M�

10kBnuc−1

Srad

(
106cm

r
− 106cm

rshock

)

+ 1.2× 106
(

MNS

M�
Ṁacc

M�s−1

)0.25(
2× 107cm

rshock

)5/8
⎤⎦4 erg cm−3. (9)

Note that the near the neutron star surface, the ram pressure is small compared to the pressure component
compensating for the gravity of the neutron star. This means that the energy density in this region is
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Figure 5: Slice of a 3-dimensional collapse of a 23M� roughly 100ms after bounce[25]. This quickly into
the explosion, we do not expect any shock instabilities to have developed. Indeed, the the convective
cycles, with sizes comparable to the size-scale of the convection region.
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Figure 6: Slice of a 3-dimensional collapse of a 23M� roughly 350ms after bounce[25]. By this time, we
expect shock instabilities to have developed, and an l=1 mode has developed that could well be caused
by this instability. But Rayleigh-Taylor instabilities also exist.
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dominated by the neutron star’s mass. At higher radii, the energy density is set by the ram pressure.
The ram pressure, in turn, is determined by the density structure of the star, but for stars less massive
than 15-20M�, this infall rate drops considerably after the first 50-200ms[16].

If the explosion has a long delay, there won’t be much energy stored in the convection region (see Fryer
2006 for more details). It is possible that the explosion energy can be stored in the PNS and have it inject
this energy even after the launch of the shock. Burrows et al.[10] suggested that accretion shocks could
excite oscillations in the PNS. These oscillations could store energy to drive an explosion, but Yamasaki
& Yamada[64, 65] found that this energy is less than 1050 erg (and is inefficient at imparting this energy
into the envelope), a full order of magnitude less than what we need to produce a “normal” supernova
explosion.

The long growth-time of the acoustic instabilities means both that Rayleigh-Taylor instabilities dom-
inate at early times when we need to make the explosion occur if we want a strong explosion. For the
accretion shock instabilities to be important for supernovae, we must find a different source for the explo-
sion energy. One possible source is rotational energy in the PNS. With strong magnetic fields, a spinning
neutron star can inject considerable energy into the expanding supernova ejecta. To understand that, we
must understand the role of convection when rotation is added to the picture.

3 Convection with Rotation

3.1 History

Much of the early work studying rotation in stellar collapse focused on how rotation could drive an
explosion[47, 2, 58, 46, 31, 32]. Most of these papers required extremely high rotation rates and strong
magnetic fields. But these mechanisms generally predicted an explosion well before the core of the star
reached nuclear densities and the neutrino fluxes from these explosion mechanisms fell far short of what
was observed in SN 1987A. In addition, the angular momentum required far exceeded what current stellar
evolution models could predict.

In the 90s, scientists started focusing on the role rotation played in modifying the convection above
the PNS. Yamada and collaborators[56, 63] argued that neutrinos would heat along the rotation axis
much more effectively than along the equator, driving stronger convection along this axis. Fryer and
collaborators[18, 21] discussed a different effect, the fact that the angular momentum would stabilize
against convection along the equator. Both of these effects lead to stronger convection along the ro-
tation axis and a larger asymmetry in the explosion. This asymmetry has been used to explain many
observational features of core-collapse supernovae[48, 37, 29, 30].

3.2 Basics of Convection with Rotation

To understand the effect of rotational gradients on convection, we can use a similar linear stability
analysis to the one we used for lepton and entropy gradients 7. Let’s consider the net force on the blob
in a rotating atmosphere with an entropy gradient:

Δa = g

(
1− ρ+Δρ

ρblob

)
+

j2blob − (j +Δj)2

(r +Δr)3
(10)

where jblob = j. For acceleration to remain positive (so the blob will continue to rise) any entropy
gradient must overcome an angular momentum gradient. The corresponding Solberg-Høiland instability
criterion is (Endal & Sofia 1978):

g

ρ

[(
dρ

dr

)
adiabat

− dρ

dr

]
>
1
r3

dj2

dr
(11)

The left half of this equation corresponds to the entropy gradient condition we’ve already studied. But
the condition for instability set to zero is altered by the presence of an angular momentum gradient. If
the angular momentum increases with increasing radius as it does for our core collapse models, then the
entropy gradient must overcome the angular momentum gradient to drive convection. In our simulations,
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the high entropy bubbles are unable to rise through the large angular momentum gradient and the
convection is constrained to the polar region. The overwhelming effect of rotation on supernova models
is this constraint on the convection and it causes weaker, asymmetric explosions.

But the pressure is also altered by the angular momentum. It produces a more condensed profile
along the rotation axis and this will lead to more neutrino energy deposition along these poles[62, 56, 38].

3.3 Where We are Now?

Although rotation has been modeled in collapse extensively, we still do not have accurate progenitor
models to definitively determine the role of rotation on convection. In addition, although estimates of
the magnetic fields have been made, magnetic fields have not yet been modeled self-consistently. This is
the next big step for rotation stellar collapse.

4 Rotation in GRBs

Right now, the history of GRB models is fairly limited. Only a handfull of calculations have been
made[42, 53, 54]. The simple disk picture was shattered by the first set of 3-dimensional simulations.
Angular momentum can help provide support around the black hole and convection cycles can develop.
Figure 8 shows a slice of a 3D calculation where the y-axis is the rotation axis. Far from being a simple
disk along the equatorial region, vigorous convection has developed. The angular momentum in this
matter also contributes to additional instabilities, and this angular momentum can drive gravitational
waves.

This problem is in its infancy, and much more work on any number of topics must be done before
we know what issues must be studied and what physics is relevant. Among these is the role of magnetic
fields and a better instability analysis of the Rockefeller et al.[54] simulations.

5 Gravitational Waves

Rotation clearly plays a key role in the explosions of GRBs, and because of this, we are also assured of
producing gravitational waves (GWs). The signal peaks shortly after the collapse of the massive star and
quickly drops off (9). The rotation provides an ideal way method to produce a time-varying quadruple
moment in the mass motions. Even so, the GW signal from collapsars is strong enough for advanced
LIGO to observe only if the GRB is very near to the earth (within the Galaxy or the local group).

In comparison, there is no guarantee that normal supernovae will produce a strong enough time-
varying quadrupole moment to be observed at all. Conection alone produces a GW signal more than
100 times weaker than what is produced in collapsars (10). With rotation or asymmetries (especially in
the neutrino emission), this signal could easily be an order of magnitude greater, detectable by advanced
LIGO if the supernova occurs in the local group. Because of the much higher rate of supernovae over
GRBs, we are more likely to detect supernovae in GWs than GRBs4. Despite the difficulty in detecting
stellar collapse in GWs, GW observations will tell us much about the rotation and asymmetries in the
mechanism itself.
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Figure 8: A 3-dimensional slice of a collapsar[54]. Angular momentum prevents direct accretion onto the
black hole. Convective instabilities develop and move outward. It is hard to tell that angular momentum
is even present in this calculation from this slice of the model. But angular momentum does more than
prevent the accretion of material onto the black hole. It contains considerable energy, and viscous forces
heat the material near the black hole considerably, driving an explosion.
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Figure 9: Gravitational wave emission from a 60M� star[54]. Angle-averaged wave amplitude of the
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(solid/dotted lines for the two GW components) and slowly rotating (dashed/dot-dashed) simulations.
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Figure 10: Angle averaged wave amplitudes frommass motions of 3 representative models of rotating, non-
rotating, and asymmetric collapse supernovae. The fast-rotator produces the strongest signal, occuring
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Probing the Jet Structure of Gamma-Ray Bursts with Steep
Decay Phase of their Early X-ray Afterglows

Kentaro Takami1 and Ryo Yamazaki2

Department of Physics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

Abstract
We show that the jet structure of gamma-ray bursts (GRBs) can be constrained
by investigating the tail emission of the prompt GRB. The tail emission which we
consider is identified as a steep-decay component of the early X-ray afterglow observed
by the Swift X-ray Telescope. Using a Monte Carlo method, we derive, for the first
time, the distribution of the decay index of the GRB tail emission for various jet
models. The new definitions of the zero of time and the time interval of a fitting region
are proposed. These definitions for fitting the light curve leads us an unique definition
of the decay index, which is useful to investigate the structure of the GRB jet. We
find that if the GRB jet has a core-envelope structure, the predicted distribution of
the decay index of the tail has a wide scatter and has multiple peaks, which cannot
be seen for the case of the uniform jet. Therefore, the decay index distribution tells
us the information on the jet structure. Especially, if we observe events whose decay
index is less than about 2, the uniform jet model will be disfavored according to our
simulation study.

1 Introduction

Gamma-ray burst (GRB) jet structure, that is, the energy distribution E(θ) in the ultra-relativistic
collimated outflow, is at present not yet fully understood . There are many jet models proposed in
addition to the simplest uniform jet model; the power-law jet model and so on. The jet structure may
depend on the generation process of the jet, and therefore, may tell us important information on the
central engine of the GRB. For example, in collapsar model for long GRBs , the jet penetrates into and
breakout the progenitor star, resulting E(θ) ∝ θ−2 profile [4]. For compact binary merger model for short
GRBs, hydrodynamic simulations have shown that the resulting jet tends to have a flat core surrounded
by the power-law like envelope [1].

In the Swift era, rapid follow up observation reveals prompt GRBs followed by the steep decay phase
in the X-ray early afterglow [5]. Most popular interpretations of the steep decay component is the tail
emission of the prompt GRB (so called high latitude emission), i.e., the internal shock origin [7] . Then,
for the uniform jet case, predicted decay index is α = 1− β, where we use a convention Fν ∝ T−αν1+β

[3]. For power-law jet case (E(θ) ∝ θ−q), the relation is modified into α = 1− β + (q/2). However, these
simple analytical relations cannot be directly compared with observations because they are for the case
in which the observer’s line of sight is along the jet axis, and because changing the zero of time, which
potentially lies anywhere within the epoch we see the bright pulses, substantially alters the early decay
slope.

Recently, [6] investigated the tail emission of the prompt GRB, and found that the jet structure can
be discussed, and that the global decay slope is not so much affected by the local angular inhomogeneity
but affected by the global energy distribution. They also argued that the structured jet is preferable
because steepening GRB tail breaks appeared in some events. In this paper, we calculate, for the first
time, the distribution of the decay index of the prompt tail emission for various jet models, and find that
derived distribution can be distinguished with each other, so that the jet structure can be more directly
constrained than previous arguments.

1E-mail:takami@theo.phys.sci.hiroshima-u.ac.jp
2E-mail:ryo@theo.phys.sci.hiroshima-u.ac.jp
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2 Tail Part of the Prompt GRB Emission

We consider the same model as discussed in the previous works [6]. The whole GRB jet, whose opening
half-angle is Δθtot, consists of Ntot emitting sub-shells. We introduce the spherical coordinate system
(r, ϑ, ϕ, t) in the central engine frame, where the origin is at the central engine, and ϑ = 0 is the axis of
the whole jet. Each emitting sub-shell departs at time t(j)dep (0 < t

(j)

dep < tdur, where j = 1, · · · , Ntot, and
tdur is the active time of the central engine) from the central engine in the direction of �n(j) = (ϑ(j), ϕ(j)),
and emits high-energy photons generating a single pulse as observed. The direction of the observer is
denoted by �nobs = (ϑobs, ϕobs). The observed flux from the jth sub-shell is calculated when the following
parameters are determined: the viewing angle of the sub-shell θ(j)

v = cos−1(�nobs ·�n(j)), the angular radius
of the emitting shell Δθ(j)

sub, the departure time t
(j)

dep, the Lorentz factor γ
(j) = (1−β2(j))

−1/2, the emitting
radius r(j)0 , the low- and high-energy photon index α

(j)
B and β(j)

B , the break frequency in the shell comoving
frame ν′0

(j) [2], the normalization constant of the emissivity A(j), and the source redshift z. The observer
time T = 0 is chosen as the time of arrival at the observer of a photon emitted at the origin r = 0 at
t = 0. Then, at the observer, starting and ending time of jth sub-shell emission are given by

T (j)
start ∼ t(j)dep +

r(j)0

2cγ2(j)

(
1 + γ2(j)θ

(j)
−

2
)
, (1)

T (j)

end ∼ t(j)dep +
r(j)0

2cγ2(j)

(
1 + γ2(j)θ

(j)
+

2
)
, (2)

where θ(j)
+ = θ(j)

v + Δθ(j)

sub and θ
(j)
−
= max{0, θ(j)

v − Δθ(j)

sub}, and we use the formulae β(j) ∼ 1 − 1/2γ2(j)
and cos θ ∼ 1 − θ2/2 for γ(j) � 1 and θ � 1, respectively. The whole light curve from the GRB jet is
produced by the superposition of the sub-shell emission.

[6] discussed some of kinematical properties of prompt GRBs in our model and found that each
emitting sub-shell with θ(j)

v � Δθ(j)

sub produces a single, smooth, long-duration, dim, and soft pulse,
and that such pulses overlap with each other and make the tail emission of the prompt GRB. Local
inhomogeneities in the model are almost averaged during the tail emission phase, and the decay index of
the tail is determined by the global jet structure, that is the mean angular distribution of the emitting
sub-shell because in this paper all sub-shells are assumed to have the same properties until otherwise
stated. Therefore, essentially we are also studying the tail emission from the usual continuous jets at once,
i.e., from uniform or power-law jets with no local inhomogeneity. In the following, we study various energy
distribution of the GRB jet through the change of the angular distribution of the emitting sub-shell.

3 Decay Index of the Prompt Tail Emission

In this section, we perform Monte Carlo simulations in order to investigate the jet structure through
calculating the statistical properties of the decay index of the tail emission. For fixed jet model, we
randomly generate 104 observers with their line of sights (LOSs) �nobs = (ϑobs, ϕobs). For each LOS, the
light curve, F (T ), of the prompt GRB tail in the 15–25 keV band, is calculated, and the decay index is
determined. The adopted observation band is the low-energy end of the BAT detector and near the high-
energy end of the XRT on Swift. Hence one can observationally obtain continuous light curves beginning
with the prompt GRB phase to the subsequent early afterglow phase , so that it is convenient for us
to compare theoretical results with observation. However, our actual calculations have shown that our
conclusion does not alter qualitatively even if the observation band is changed to, for example, 0.5–10 keV
as usually considered for other references.

For each light curve, the decay index is calculated by fitting F (T ) with a single power-law form,
∝ (T − T∗)−α as in the following (see Fig. 1). The decay index α depends on the choice of T∗ [6]. Let Ts
and Te be the start and the end time of the prompt GRB, i.e., Ts = min{T (j)

start} and Te = max{T (j)

end} .
Then, we take T∗ as the time until which 99% of the total fluence is radiated, that is∫ T∗

Ts
F (T ′) dT ′∫ Te

Ts
F (T ′) dT ′

= 0.99 . (3)
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Figure 1: An example of how the decay index, α, is determined by the calculated light curve F (T ). The
start and end time of the burst are denoted by Ts and Te, respectively. The time T∗ is determined by the
Eq. (3). The decay index α is determined by fitting F (T ) ∝ (T − T∗)−α in the time interval [Ta, Tb].

Then, the prompt GRB is in the main emission phase for T < T∗, while in the tail emission phase
for T > T∗. The time interval, [Ta, Tb], in which the decay index α is determined assuming the form
F (T ) ∝ (T − T∗)−α, is taken so as to satisfy F (Ta,b) = qa,bF (T∗) , where we adopt qa = 1 × 10−2 and
qb = 1× 10−3 unless otherwise stated. We find that in this epoch, the assumed fitting form gives a well
approximation.

At first, we consider the uniform jet case, in which the number of sub-shells per unit solid angle is
approximately given by dN/dΩ = Ntot/(πΔθ2tot) for ϑ < Δθtot, where Δθtot = 0.25 rad is adopted.
The departure time of each sub-shell t(j)dep is assumed to be homogeneously random between t = 0 and
t = tdur = 20 sec. The central engine is assumed to produce Ntot = 1000 sub-shells. In this section, we
assume that all sub-shells have the same values of the following fiducial parameters: Δθsub = 0.02 rad,
γ = 100, r0 = 6.0× 1014 cm, αB = −1.0, βB = −2.3, hν′0 = 5 keV, and A = constant.

For ϑobs � Δθtot (on-axis case), α clusters around ∼ 3. On the other hand, when ϑobs � Δθtot
(off-axis case), α rapidly increases with ϑobs. The reason is as follows. If all sub-shells are seen sideways
(that is θ(j)

v � Δθ(j)

sub for all j), the bright pulses in the main emission phase followed by the tail emission
disappear because of the relativistic beaming effect, resulting smaller flux contrast between the main
emission phase and the tail emission phase compared with the on-axis case. Then T∗ becomes larger.
Furthermore, in the off-axis case, the tail emission decays more slowly (|dF/dT | is smaller) than in the
on-axis case. Then both Ta−T∗ and Tb−T∗ are larger for the off-axis case than for the on-axis case. As
can be seen in Fig. 3 of [7], the emission seems to decay rapidly, so that the decay index α becomes large.

Next, we consider the power-law distribution. In this case, the number of sub-shells per unit solid
angle is approximately given by dN/dΩ = C[1 + (ϑ/ϑc)2]−1 for 0 � ϑ � Δθtot, i.e., dN/dΩ ≈ C for
0 � ϑ� ϑc and dN/dΩ ≈ C(ϑ/ϑc)−2 for ϑc � ϑ � Δθtot, where C = (Ntot/πϑ

2
c)[ln(1 + (Δθtot/ϑc)

2)]−1

is the normalization constant and we adopt ϑc = 0.02 rad and Δθtot = 0.25 rad. The other parameters
are the same as for the uniform jet case.

When ϑobs � ϑc, the observer’s LOS is near the whole jet axis. Compared with the uniform jet
case, α is larger because the power-law jet is dimmer in the outer region, i.e., emitting sub-shells are
sparsely distributed near the periphery of the whole jet (see also the solid lines of Figs. 1 and 3 of [6]).
If ϑobs � ϑc, the scatter of α is large. Especially, some bursts have small α of around 2. This comes
from the fact that the power-law jet has a core region (0 < ϑ � ϑc) where emitting sub-shells densely
distributed compared with the outer region [6]. In the epoch before photons emitted by the core arrive
at the observer , the number of sub-shells that contributes to the flux at time T , Nsub(T ), increases with
T more rapidly than in the case of the uniform jet case. Then, the light curve shows a gradual decay.
If the fitting region [Ta, Tb] lies in this epoch, the decay index α is around 2. In the epoch after the
photons arising from the core are observed , the sub-shell emission with θ(j)

v � ϑobs + ϑc is observed.
Then Nsub(T ) rapidly decreases with T and the observed flux suddenly drops. If the interval [Ta, Tb] lies
in this epoch, the decay index becomes larger than 4.

To compare the two cases considered above more clearly, we derive the distribution of the decay index
α. Here we consider the events whose peak fluxes are larger than 10−4 times of the largest one in all
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Figure 2: Solid and dotted lines show the distributions of the decay index, α, for uniform (dN/dΩ =
const.) and power-law jet (dN/dΩ ∝ [1+ (ϑ/ϑc)2]−1) models, respectively. We assume that all sub-shells
have the same values of the following fiducial parameters: Δθsub = 0.02 rad, γ = 100, r0 = 6.0×1014 cm,
αB = −1.0, βB = −2.3, hν′0 = 5 keV, and A = constant. We consider events whose peak fluxes are larger
than 10−4 times of the largest one in all simulated events .

simulated events, because the events with small peak fluxes are not observed. Fig. 2 shows the result. For
the uniform jet case (the dotted line), α clusters around 3, while for the power-law jet case (the dashed
line), the distribution is broad (1 � α � 7) and has multiple peaks.

In summary, when we adopt model parameters within reasonable ranges, the decay index becomes
larger than ∼ 2 for the uniform jet case, while significant fraction of events with α � 2 is expected for
the power-law jet case. Therefore, if non-negligible number of events with α � 2 are observed, uniform
jet model will be disfavored. Furthermore, if we observationally derive the α-distribution, the structure
of GRB jets will be more precisely determined.

4 Summary

We have calculated the distribution of the decay index α for the uniform and the power-law jet case,
respectively. For the uniform jet case, α becomes larger than ∼ 2, and its distribution has a single peak.
On the other hand, for the power-law jet case, α ranges between ∼ 1 and ∼ 7, and its distribution has
multiple peaks. Therefore we can decide the jet structure of GRBs with analyzing a lot of early X-ray
data showing a steep decay component that is identified as a prompt GRB tail emission.

The details of this work will appear in the paper which we submitted to ApJ.
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Abstract
In this study, we investigate the iron core collapses systematically for various masses,
especially in the range which has not been studied well so far. Here, we solve the
general relativistic hydrodynamics and neutrino transfer equations simultaneously,
treating neutrino reactions in detail. We also estimate the neutrino event number
from the black hole formation at the Galactic center for the currently operating
detectors. As a result, we suggest that the probe into the black hole progenitors is
possible by detecting the neutrinos emitted from them, because the more massive the
progenitor is, the softer its ν̄e spectrum becomes. Further details of this study are
seen in our lately submitted nanuscript [1].

1 Introduction

Various anomalous stars, such as the first stars in the universe (so-called Population III stars) or stars
produced by stellar mergers in stellar clusters, are being studied recently. As for the Population III stars, it
is suggested theoretically that they are much more massive (M >∼ 100M�) than stars of later generations.
On the other hand, N -body simulations show that the runaway mergers of massive stars occur and the
very massive (M >∼ 100M�) stars are formed in a young compact stellar cluster. It is noted especially
that a new formation scenario of supermassive black holes is suggested nowadays, which requires the
formation of intermadiate-mass black holes by the collapse of merged star in very compact stellar clusters
[2]. If these anomalous stars collapse to black holes without supernova explosion, it is supposed to be
hard to probe into their progenitors. One possibility is, we think, the neutrinos emitted from the black
hole formation. For this purpose, systematical studies on the black hole formation including neutrinos
are needed. In this study, we investigate the iron core collapses systematically for various masses and
estimate the neutrino event number from the black hole formation at the Galactic center for the currently
operating detectors. As a result, we suggest that we can probe into the black hole progenitors by the
hardness of ν̄e spectrum because the more massive the progenitor is, the softer its ν̄e spectrum becomes.

2 Models and Methods

We construct the iron core models, which are used as initial models for the dynamical simulation of the
collapse, solving the Oppenheimer-Volkoff equation under the assumption of the isentropy and the electron
fraction Ye = 0.5 throughout the core. For the systematic analysis, we set the initial central temperature
as Tinitial = 7.75 × 109 K, and generate 6 models with the values of entropy per baryon, sinitial = 3kB-
13kB. Since we define the mass of the iron core as the mass coordinate where the temperature is
5 × 109 K, the mass of the iron core is determined by the entropy in our models (Table 1). As for the
numerical methods, we solve the general relativistic hydrodynamics and the neutrino transfer equations
simultaneously, treating neutrino reactions in detail under spherical symmetry. We adopt a realistic
equation of state [3,4] in order to obtain the initial models and follow the dynamics. Further details of
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numerical methods are given in our previous study [5]. It is noted that our method allows us to follow
the dynamics with no difficulty up to the apparent horizon formation. The existence of the apparent
horizon is the sufficient condition for the formation of a black hole (or, equivalently, of an event horizon).

3 Results and Discussions

It is known that the ordinary supernovae with sinitial ∼ 1kB bounce because the central density exceeds
the nuclear density (∼ 2.5×1014g/cm3) and the pressure gets higher drastically. From our computations,
we find that models with 3kB ≤ sinitial ≤ 7.5kB (Miron ≤ 10.6M�) have a bounce and they recollapse to
black holes. On the other hand, models with sinitial > 7.5kB (Miron > 10.6M�) collapse to black holes
directly without bounce.

In the case of 3kB ≤ s ≤ 7.5kB, it is noted that the bounce mechanism of the core with s ≥ 3kB
is not the same as that of the ordinary supernovae. The high entropy cores bounce by the thermal
pressure of nucleons at sub-nuclear density. We can see this fact from the evolutions of central density
and temperature in the phase diagram of the nuclear matter at Ye = 0.4 and 0.2 (Figure 3). We note
that for all models at the center, Ye ∼ 0.4 and Ye ∼ 0.2 when T ∼ 1 MeV and T ∼ 10 MeV, respectively.
These figures show that the models with higher entropies go from the non-uniform mixed phase of nuclei
and free nucleons to the classical ideal gas phase of thermal nucleons and α particles, whereas that of the
ordinary supernova goes into the uniform nuclear matter phase. In the ideal gas phase, the number of
non-relativistic nucleons and α particles is comparable to that of relativistic electrons. Since the adiabatic
index of non-relativistic gas is γ = 5

3 and that of relativistic gas is γ =
4
3 , the collapse is halted and bounce

occurs. Because this bounce is weak, the shock is stalled and recollapses to black hole soon.

Figure 1: Phase diagram in ρ − T plane from [4] for fixed electron fraction, Ye (thick lines). The
nucleus exist in the region below these thick lines. The phase boundaries depend on Ye whereas the same
trajectories are plotted for the upper panel and the lower panel. Dashed line represents the evolution of
the central density and temperature for the ordinary supernova progenitor with the initial mass 15M�
[6] and solid lines do that for the progenitors studied. Each line corresponds models with sinitial = 3kB,
5kB and 10kB from right to left.

As for the neutrino emission during core collapse, we show the time-integrated neutrino spectra in the
left panel of Figure 3. We can see that the spectra become softer for higher entropy models, especially
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for ν̄e and νx. In order to investigate this tendency, we show the time-integrated spectra of the neutrino
emitted before and after the shock formation each other in the right panel of Figure 3. We can see that,
for higher entropy models, ν̄e and νx are emitted also before the shock formation. They are created by
the electron-positron pair annihilation and their energy is relatively lower (<∼ several MeV) because the
temperature is low (T <∼ 1 MeV). On the other hand, for lower entropy models, ν̄e and νx can not be
produced by the electron-positron pair process because positrons are absent owing to the Pauli blocking.
As for ν̄e and νx emitted after the shock formation, they are mainly created by the bremsstrahlung. In
this phase, the temperature near the neutrino sphere rises to T ∼ several MeV and it makes the neutrino
energies relatively high ∼ 10 MeV. Since the low energy (<∼ several MeV) neutrinos are not emitted so
much and the spectra become harder for lower entropy models, the emission of low energy ν̄e and νx is
characteristic for the collapse of high entropy cores.

Figure 2: Spectra of time-integrated emissions of νe (short-dashed), ν̄e (solid) and νx (long-dashed).
(Left) Upper left, upper right, lower left and lower right panels are for models with sinitial = 4kB, 7.5kB,
10kB and 13kB, respectively. (Right) Upper left and upper right are the time-integrations of the emission
before and after bounce, respectively, for the model with sinitial = 4kB. Lower left and lower right panels
are emission before and after shock formation, respectively, for the modell with sinitial = 13kB.

Because lots of low energy ν̄e are emitted from the collapse of the high entropy cores and soften the
spectrum, we may use this tendency in order to probe into the black hole progenitors. We estimate the ν̄e

event number for Super Kamiokande III and KamLAND, currently operating neutrino detectors, under
the assumption that the black hole formations considered above occur at the center of our Galaxy. For
both detectors, the dominant reaction is the inverse beta decay,

ν̄e + p −→ e+ + n, (1)

which we take into account only. We adopt the cross section for this reaction from [7]. For Super
Kamiokande III, we assume that the fiducial volume is 22.5 kton and the trigger efficiency is 100% at 4.5
MeV and 0% at 2.9 MeV, which are the values at the end of Super Kamiokande I [8]. For KamLAND, we
assume 1 kton fiducial mass, which means that 8.48×1031 free protons are contained [9]. We also assume
that the trigger efficiency is 100% for all ν̄e energy larger than the threshold energy of the reaction.

The results are given in Table 1. The total event number does not change monotonically with the
initial entropy of the core because the total number of neutrinos depends on both the core mass and the
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duration time of neutrino emission. In order to investigate the hardness of ν̄e spectrum, we calculate
the ratio of the event number by ν̄e with < 10 MeV to that for all events. The ambiguity about the
distance of source is also canceled by this normalization. This ratio gets larger as the entropy of the core
becomes higher. This suggests that we can probe the entropy of the black hole progenitor especially in
higher regimes (sinitial ≥ 7.5kB) because the event numbers of ν̄e with < 10 MeV are over 100 by Super
Kamiokande III.

Table 1: Models and Results

sinitial Miron trecollapse
Nν̄e<10 MeV,SK

Nν̄e,SK
Nν̄e,SK

Nν̄e<10 MeV,Kam
Nν̄e,Kam

Nν̄e,Kam

(kB) (M�) (msec)
3.0 2.44 96.7 3.3% 6163 3.3% 174
4.0 3.49 62.0 4.0% 4778 4.0% 135
5.0 4.97 52.6 4.6% 4319 4.6% 122
7.5 10.6 37.9 7.3% 4018 7.3% 114
10.0 19.3 — 11.8% 5326 12.0% 151
13.0 34.0 — 20.1% 9139 20.5% 259

Note: sinitial,Miron and trecollapse are the initial value of the entropy par baryon, the iron core mass of the
initial model and the interval time from the bounce to the apparent horizon formation, respectively. Nν̄e

represents the event number of ν̄e by Super Kamiokande III and KamLAND. The subscript “SK” and
“Kam” means the prediction for Super Kamiokande III and KamLAND, respectively, and the subscript
“< 10 MeV” means the event by ν̄e with < 10 MeV.
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Abstract
We investigate the viscosity driven instability in rotating relativistic stars by means of
an iterative approach. We focus on polytropic rotating equilibrium stars and impose
an m = 2 perturbation in the lapse. We vary both the stiffness of the equation
of state and the compactness of the star to study these factors on the critical value
T/W for the instability. For a rigidly rotating star, the criterion T/W , where T is the
rotational kinetic energy and W the gravitational binding energy, mainly depends on
the compactness of the star and takes values around 0.13 ∼ 0.16, which slightly differ
from that of Newtonian incompressible stars (∼ 0.14). For differentially rotating
stars, the critical value of T/W is found to span the range 0.17 − 0.25. The value
is significantly larger than in the rigidly rotating case with the same compactness of
the star.

1 Introduction

Stars in nature are usually rotating and subject to nonaxisymmetric rotational instabilities. An ana-
lytical treatment of these instabilities exists only for Newtonian incompressible equilibrium fluids [e.g.
1]. For these configurations, global rotational instabilities arise from non-radial toroidal modes eimϕ

(m = ±1,±2, . . .) when β ≡ T/W exceeds a certain critical value. Here ϕ is the azimuthal coordinate,
while T and W are the rotational kinetic and gravitational binding energies. In the following we will
focus on the m = ±2 bar-mode, since it is the fastest growing mode when the rotation is sufficiently
rapid.

There exist two different mechanisms and corresponding timescales for bar-mode instabilities. Rigidly
rotating, incompressible stars in Newtonian gravity are secularly unstable to bar formation when β >∼
βsec � 0.14. This instability can grow in the presence of some dissipative mechanisms, such as viscosity or
gravitational radiation, and the growth time is determined by the dissipative timescale, which is usually
much longer than the dynamical timescale of the system. By contrast, a dynamical instability to bar
formation sets in when β >∼ βdyn � 0.27. This instability is independent of any dissipative mechanism,
and the growth time is the hydrodynamic timescale of the system.

In the absence of thermal dissipation there are two dissipative mechanisms that can drive the secular
bar instability; they are viscosity and gravitational radiation. The viscosity driven instability sets in when
a mode has a zero-frequency in the frame rotating with the star, and the first unstable mode in terms of
m is the m = 2 bar mode. Throughout the deformation process the circulation of a given closed curve
at the beginning of deformation varies but the angular momentum is conserved. On the other hand, the
instability induced by gravitational radiation sets in when the backward going mode is dragged forward
in the inertial frame, and the modes are all unstable when m exceeds a certain value. Throughout the
deformation process the star’s angular momentum varies but the circulation of a given closed curve at
the beginning of deformation is conserved.

The purpose of the paper is twofold. Firstly, we investigate the critical value T/W of the viscosity-
driven instability for a rigidly rotating compressible star. The argument that the viscosity-driven insta-
bility can deform a star from a Maclaurin spheroid to a Jacobi ellipsoid is valid if the star has no internal
energy. Otherwise the total energy can be converted into the internal energy without any emission from
the star. Here we assume that the cooling timescale of the star is shorter than the thermal heating
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timescale so that the thermal energy generated by viscosity is immediately radiated away. Therefore the
picture of the deformation process due to viscosity is quite similar to the case of incompressible stars.

Our other main purpose in this paper is to investigate the effect of differential rotation on the secular
bar instabilities driven by viscosity. For high viscosity or a strong magnetic field, the star maintains rigid
rotation. However, in nature, the star may rotate differentially, as is the case for the Sun. Therefore it is
worthwhile taking differential rotation into account to study instabilities driven by viscosity in rotating
relativistic stars.

This paper is organized as follows. In Sec. 2 we present the iterative evolution approach to determine
the stability due to viscosity in relativistic rotating stars. We discuss our numerical results in Sec. 3,
and briefly summarize our findings in Sec. 4. Throughout this paper, we use the geometrized units with
G = c = 1 and adopt polar coordinates (r, θ, ϕ) with the coordinate time t. A more detailed discussion
is presented in Ref. [2].

2 Iterative evolution approach

We follow an iterative evolution approach [3] to investigate the viscosity-driven instability in rotating
relativistic stars. The physical viewpoint of this approach can be understood in Newtonian gravity
by considering the transition between a rigidly rotating incompressible axisymmetric star (Maclaurin
spheroid) to a nonaxisymmetric star (Jacobi ellipsoid). The above deformation process is driven by
viscosity, since viscosity causes the circulation to vary but keeps the angular momentum constant in
the Newtonian incompressible star. From a computational viewpoint, the key theme of this approach is
that, instead of performing a time evolution of the star to investigate its stability, we treat the iteration
number as an evolutional time and determine the stability of the star with respect to this iteration. The
advantage of this approach is that there is no restriction on the evolutional time-step even in a star with
high compactness.

To determine the stability of a rotating relativistic star driven by viscosity, we follow a computational
procedure to construct an equilibrium configuration until we reach a relative error in the enthalpy norm
of 1.5× 10−7. At this iteration step, we put the following m = 2 perturbation in the logarithmic lapse ν
to enhance the growth of the bar mode instability as

ν = νeq(1 + εamp sin2 θ cos 2ϕ), (2.1)

where νeq is the logarithmic lapse in the equilibrium, and εamp is the amplitude of the perturbation. We
diagnose the maximum logarithmic lapse of the m = 2 coefficients ν̂2 in terms of mode decomposition as

q = max |ν̂2|. (2.2)

We also define the logarithmic derivative of q in the iteration step Ni as

q̇

q
=
qi − qi−1
qi−1

, (2.3)

where qi denotes q at the iteration step Ni. We then determine the stability of the star as follows. When
the diagnostic q grows exponentially after we impose a bar mode perturbation in the logarithmic lapse,
we conclude that the star is unstable. On the other hand when the diagnostic decays after we introduce
the perturbation, the star is stable. Finally we determine the critical value of β as the minimum one in
the unstable branch. We also confirm our argument that in all equilibrium stars there is a continuous
transition between stable and unstable stars as a function of β [2].

3 Numerical Results

We study the critical value of β for the viscosity-driven instability in rigidly rotating stars (see Figure 1).
We have found that relativistic gravitation tends to stabilizes the star, and that the critical value of β for
each compactness is almost insensitive to the stiffness of the equation of state. Our computational results
(Figure 1) show that the critical β is ∼ 0.137 for M/R = 0.01 (where M is the gravitational mass, R the
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Figure 1: Critical value of β as a function of an adiabatic index Γ for four different compactness of
rigidly rotating stars (see Table II of Ref. [2]). Open circles, filled circles, open squares, and filled squares
refer to the compactness M/R of 0.01, 0.05, 0.1, and 0.15, respectively. The star whose adiabatic index
is Γ = Γlow − 0.1, where Γlow is the lowest Γ of an unstable star for any compactness in this figure, is
stable.

Table 1: Critical value of the viscosity-driven instability in differentially rotating relativistic stars. We
choose Γ = 2 for the polytropic equation of state and Ârot = 1 as the degree of differential rotation.

Rp/Re
1 Hmax

2 βcrt M/R
0.4458 7.594× 10−3 0.1828 0.01000
0.3985 3.830× 10−2 0.1999 0.05000
0.3820 7.492× 10−2 0.2186 0.1000
0.3457 1.116× 10−1 0.2354 0.1500
0.2982 1.581× 10−1 0.2496 0.2000

circumferential radius), ∼ 0.145 for M/R = 0.05, ∼ 0.150 for M/R = 0.1, and ∼ 0.157 for M/R = 0.15,
respectively. The critical value of β monotonically increases when increasing the compactness of the star.
For the case of Newtonian compressible stars it was shown in Fig. 3 of Ref. [3] that the critical value of
β is ∼ 0.134, and is not very sensitive to the stiffness of the star.

We now investigate the threshold for the viscosity-driven instability in differentially rotating stars.
First we show the result of a fixed rotation profile throughout the evolution (Table 1). We find that both
relativistic gravitation and differential rotation tend to stabilize the star. The critical value is βcrt ∼
0.13− 0.16 for a rigidly rotating star depending on the compactness of the star, while βcrt ∼ 0.18− 0.25
for a differentially rotating star with a moderate degree of differential rotation.

Next we study the variation of the rotation profile as viscosity also plays a significant role in changing
the angular momentum distribution of the star. In order to mimic this process, after we impose a
perturbation we vary slightly the parameter which represents the degree of differential rotation Ârot and
the central angular velocity Ωc

Â−1rot = Â
−1 (eq)
rot [1− εrot(N −Nptb)], (3.1)

Ωc = Ω(eq)
c [1− εomg(N −Nptb)], (3.2)

Â
(eq)
rot the degree of differential rotation in the equilibrium state, εrot the degree of the variation of the

rotation profile which we set to be 1.0× 10−4, N the iteration number, Nptb the iteration number when
we impose the perturbation, Ω(eq)

c is the central angular momentum in the equilibrium state, and εomg

the degree of the variation of the central angular velocity required in order to (approximately) conserve
the total angular momentum.

Taking into account the change of rotational profile, we show our numerical results for βcrt in Figure 2.
We find that all stars with β ≈ βcrt and a fixed rotation profile become unstable. In fact, the plateau stage
of q̇/q for a fixed rotation profile in Fig. 7 of Ref. [2] becomes increase one in our Figure 2. Therefore,
we estimate two relevant timescales, the growth time of the bar mode due to viscosity and the variation
time of the rotation profile due to viscosity, based on the analytical estimation [2]. The timescales used
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Figure 2: Diagnostic q̇/q as a function of iteration step N for five different differentially rotating stars.
Solid, dashed, dotted, and dashed lines denote β = (0.1825, 0.1828, 0.1834, 0.1844) and εomg = 0.8×10−4
for M/R = 0.01; β = (0.1993, 0.1996, 0.1998, 0.1999) and εomg = 0.9 × 10−4 for M/R = 0.05; β =
(0.2180, 0.2184, 0.2185, 0.2186) and εomg = 1.3×10−4 forM/R = 0.1; β = (0.2348, 0.2352, 0.2353, 0.2354)
and εomg = 1.1 × 10−4 for M/R = 0.15; and β = (0.2494, 0.2495, 0.2496) and εomg = 1.0 × 10−4 for
M/R = 0.2, respectively. Note that q̇/q is always increasing around the critical value of β in differentially
rotating stars. We see that variations of rotation profile due to viscosity unstabilize the star.

in our numerical results should be described as

τang ≈ ε−1omg, (3.3)

τbar ≈ ε−1omg

(
Ωc − Ωs

Ωc

)(
βsec

β − βsec

)
, (3.4)

where Ωs is the equatorial surface angular velocity, and βsec is the critical value βcrt of the secular bar
mode instability driven by viscosity. We confirm that differential rotation tends to stabilize the star.
Also, Eq. (3.4) shows that the timescale of the bar growth becomes short as the viscosity reduces the
degree of differential rotation. The critical value βcrt changes from the value computed for a fixed rotation
profile, but the change is roughly of the same order of magnitude as for differential rotation profile (Eq.
[3.1]), which means ≈ εomg(≈ εrot).

4 Conclusion

We have studied the viscosity-driven instability in both rigidly and differentially rotating polytropic stars
by means of iterative evolution approach in general relativity. We have focused on the threshold of the
instability driven by viscosity.

We find that relativistic (rather than Newtonian) gravitation stabilizes the star, preventing the onset of
a viscosity-driven instability. Also, the critical value T/W is not sensitive to the stiffness of the polytropic
equation of state for a given compactness of the star. In a previous study devoted to compressible stars,
Bonazzola, Frieben and Gourgoulhon [3] investigated a sequence of mass-shedding stars and showed that
relativistic gravitation does stabilize rigidly rotating polytropic stars. In our study we have calculated
the value of βcrt for rigidly rotating stars.

We have also found that differential rotation stabilizes a star against the instability driven by viscosity.
If we fix the compactness of the star, we find a significant increase of the critical value βcrt, which supports
the above statement. We have also confirmed the above statement by changing the rotation profile due to
viscosity and found that differential rotation still significantly stabilizes the instability driven by viscosity.
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Abstract
Assuming that the collapsing matter is a perfect fluid with the equation of state P =
αρ, we study spherically symmetric non-self-similar perturbations in homogeneous
self-similar collapse described by the flat Friedmann solution. In the low pressure
approximation α � 1, we analytically derive an infinite set of the normal modes and
their growth (or decay) rate. The existence of one unstable normal mode is found
to suggest that new critical phenomena occur which result from the development
of a certain inhomogeneous density profile with the lapse of time in homogeneous
self-similar collapse of a sufficiently low pressure perfect fluid.

1 Introduction

Spherically symmetric self-similar gravitational collapse of a perfect fluid with pressure P given by the
equation of state P = αρ is one of the most extensively-studied phenomena in general relativity. Many
efforts have been made to solve the Einstein’s equations governing its dynamics, which are reduced to
a set of ordinary differential equations with respect to the single variable z ≡ r/t. The flat Friedmann
solution is well known as the unique analytically-found exact self-similar solution regular at the center
and has played an important role in finding a family of solutions regular at the center. The homogeneous
collapse described by this solution has been considered as the most basic process to spacelike singularity
formation in the self-similar dynamics, while essential features of inhomogeneous self-similar collapse have
been understood mainly through the detailed analysis of the general relativistic Larson-Penston solution.
In addition, it is also noteworthy that the perfect fluid critical collapse corresponding to the threshold of
black hole formation has been confirmed to be described by the self-similar solution called as the general
relativistic Hunter(a) solution.

By means of renormalization group ideas, critical phenomena in spherically symmetric gravitational
collapse are well explained in terms of time evolution of spherically symmetric non-self-similar perturba-
tions of matter and metrics in spherically symmetric self-similar gravitational collapse [1]. An essential
point of such an explanation is that a self-similar solution relevant to critical phenomena gives the single
unstable normal mode. In fact, it was numerically found for 0 < α <∼ 0.89 that the single normal mode
is allowed to grow with the lapse of time in the self-similar collapse described by the general relativistic
Hunter(a) solution [2]. In addition it was claimed through the numerical analysis of the perturbations
for 0 < α <∼ 0.036 that the flat Friedmann solution and the general relativistic Larson-Penston solution
are stable and act as an attractor in general gravitational collapse [3]. Therefore the self-similar solution
relevant to critical phenomena has been believed to be only the general relativistic Hunter(a) solution.

Recently, we have developed an analytical scheme to treat the stability problem by constructing the
single wave equation governing non-self-similar spherically symmetric perturbations [4], which is reduced
to the ordinary differential equation if we assume the perturbations to have the time dependence given
by exp (iω log |t|). In this paper, using this analytical scheme, we study the stability problem for the
flat Friedmann solution in the low pressure limit, i.e., 0 < α 	 1 (see [5] for details of this analysis).
Fortunately, in the expansion with respect to the small parameter α, we can explicitly solve the master
ordinary differential equation for the normal modes and consequently find the single unstable normal
mode, which was not found in the numerical analysis [3]. This result strongly suggests that new critical
phenomena relevant to the flat Friedmann solution occur in general gravitational collapse which starts
from a nearly homogeneous density profile.

1E-mail:emitsuda@gravity.phys.nagoya-u.ac.jp
2E-mail:atomi@gravity.phys.nagoya-u.ac.jp
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2 Perturbation theory for self-similar homogeneous perfect fluid
collapse

In this section, we briefly illustrate our analytical scheme to treat spherically symmetric non-self-similar
perturbations in homogeneous self-similar perfect fluid collapse described by the flat Friedmann solution.
The line element considered throughout this paper is given by

ds2 = −e2ν(t,r)dt2 + e2λ(t,r)dr2 +R2(t, r)
(
dθ2 + sin2 θdϕ2

)
(1)

with the comoving coordinates t and r. As was mentioned in Sec. 1, the equation of state is assumed to
be P = αρ with a constant α lying in the range 0 < α ≤ 1. To discuss the self-similar behavior later, we
use a new variable z defined by z ≡ r/t, instead of r. In addition, instead of the four unknown functions
ν, λ, R and ρ, we introduce the following dimensionless functions:

S(t, r) ≡ R

r
, η(t, r) ≡ 8πr2ρ , M(t, r) ≡ 2m

r
, V (t, r) ≡ zeλ−ν , (2)

where the function m(t, r) is the Misner-Sharp mass. The function V is interpreted as the velocity of a
z = const surface relative to the fluid element.

Now we consider spherically symmetric non-self-similar perturbations in the flat Friedmann back-
ground by expressing the solutions for the Einstein’s equations as

S(t, z) = SB(z)
{
1 + εS1(t, z) +O(ε2)

}
, η(t, z) = ηB(z)

{
1 + εη1(t, z) +O(ε2)

}
,

M(t, z) =MB(z)
{
1 + εM1(t, z) +O(ε2)

}
, V (t, z) = VB(z)

{
1 + εV1(t, z) +O(ε2)

}
(3)

with a small parameter ε. The functions SB , ηB , MB and VB for the flat Friedmann solution are given
by

SB(z) ∝ (−z)−p , ηB(z) ∝ z2 , MB(z) ∝ (−z)2−3p , VB(z) ∝ (−z)1−p (4)

with the constant p defined as p ≡ 2/3(1 + α). From the perturbation equations for S1, η1 and M1, we
can obtain the single wave equation for the function Ψ defined as

Ψ(t, z) = S1(t, z)− f(z)M1(t, z) , (5)

where the function f is explicitly written by the background flat Friedmann solution. The perturbations
S1, η1, M1 and V1 are determined by the solution Ψ for the wave equation.

The wave equation allows us to consider the modes φ defined as

Ψ(t, z) = φ(z, ω)g(z)eiω log(−t) (6)

with the spectral parameter ω, where the function g is also explicitly written by the background flat
Friedmann solution. Then the equation for φ is found to be

φ,xx +
2iωx− 2(1− p)x2 − F (x, α)

(1− p)x(1− x2) φ,x − iω(F (x, α) +W (x, α)) + U(x, α)
(1− p)2x2(1− x2)2 φ = 0 , (7)

where the new variable x used instead of z is defined as

x = −VB/
√
α , (8)

and the functions F , W and U are explicitly written as the functions of the variable x and regular both
at x = 0 and x = 1. Note that the regular center z = 0 and the sonic point defined as a point at which
the velocity of a z = const surface relative to the fluid is equal to the sound speed, i.e., VB = −√α
correspond to x = 0 and x = 1, respectively. We require the boundary conditions such that φ is analytic
both at the regular center x = 0 and at the sonic point x = 1 to set up the eigenvalue problem for Eq. (7)
and to obtain the normal modes and the discrete eigenvalues denoted by φn and ωn.

Here we would like to note that there exists an exact solution φ = φg for Eq. (7) if the spectral
parameter ω is equal to ωg defined as ωg = (1 − α)i/(1 + α). This solution φg is one of the normal
modes φn but corresponds to a gauge mode due to an infinitesimal transformation of t. In fact, all the
perturbations η1, S1 and M1 obtained from φg are found to be independent of z. Although the gauge
mode is obviously unphysical, the presence of such an exact solution will be mathematically useful for
checking the validity of the analysis of Eq. (7).
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3 Result and its implications

As was mentioned in Sec. 1, we consider the low pressure limit α → 0, keeping the variable x finite in
the range 0 ≤ x ≤ 1 and expanding the solution φ(x, ω, α) analytic at x = 0 as follows,

φ(x, ω, α) = φ(0)(x, ω) +O(α) . (9)

For the lowest-order solution φ(0) we obtain the equation

d2φ(0)

dx2
+

3
1− x2

{
2iω +

2x3 + 3x2 + 10x+ 3
3x(1 + 2x)

}
dφ(0)

dx

− 3
x(1 + 2x)(1 + x)(1− x2)

{
2iω(2x2 − 2x− 1)− 2x4 + 4x3 − x2 − 2x− 1

x

}
φ(0) = 0 .

(10)

We would like to emphasize that this limit does not mean to consider an exactly pressureless fluid (i.e.,
a dust fluid) because the requirement of the analyticity of φ at the sonic point x = 1 is not missed. The
crucial point in this approach is that we can explicitly derive general solutions for Eq. (10). In particular,
the solution φ(0) satisfying the boundary condition at x = 0 is written as

φ(0)(x, ω) = Z1(x, ω)− Z2(x, ω) , (11)

where the functions Z1 and Z2 are the two independent solutions for Eq. (10) and given by

Z1(x, ω) = (1 + x)3
{−6x2ω2 − 4x(x2 − 3x+ 1)iω + (1− x)4} /x3(1 + 2x) , (12)

Z2(x, ω) = (1− x)4+3iω(1 + x)1−3iω
{
x2 + 2(1 + iω)x+ 1

}
/x3(1 + 2x) . (13)

It is clear that this solution φ(0) becomes analytic also at the sonic point x = 1 if the spectral
parameter ω is equal to ωn given by

ωn = ω(0)n +O(α) , ω(0)n = (4− n)i/3 (14)

with n defined as non-negative integers. However, for n = 0, 2 and 4, the function φ(0) turns out to
vanish. Hence, the values of ω(0)n are given only for n = 1, 3, 5, 6, · · ·. It can be easily found that the value
of ω(0)1 and the function φ(0)(x, ω(0)1 ) are identical with the value of ωg and the gauge mode φg in the
limit α→ 0.

The most important result is that the imaginary part of ω(0)3 given by Eq. (14) is positive, namely,
there exists one unstable normalmode, at least for sufficiently small values of α. Hence the flat Friedmann
solution does not act as an attractor in inhomogeneous collapse of a sufficiently low pressure perfect fluid.
Moreover, it is also interesting that there exists an infinite set of the stable normal modes (i.e., φn for
n ≥ 5).

Let us denote the perturbed density η1 corresponding to the normal modes φn by η1(n), which is
expanded with respect to α as follows,

η1(n)(t, x, α) = η
(0)
1(n)(x) exp {iω(0)n log(−t)}+O(α) . (15)

Here we focus our attention on the leading term η
(0)
1(n) depending on x. Using Eqs. (11), (6) and (5) in

the limit α→ 0 for the eigenvalues ω = ω(0)n , we obtain

η
(0)
1(n)(x) =

2 + n
6x

[
(1− x)n−2 {3x2 + 3(n− 2)x+ (n− 1)(n− 3)}

−(1 + x)n−2 {3x2 − 3(n− 2)x+ (n− 1)(n− 3)}] . (16)

In Fig. 1, we show the configuration of the density perturbation η(0)1(n)(x) normalized by its value at x = 0
for n = 1, 3, 5, 6, 7, 8, 9 and 10 in the range 0 ≤ x ≤ 1 . It is shown in this figure that the normal mode
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Figure 1: Configuration of the density perturba-
tion given by η(0)1(n)(x)/η

(0)
1(n)(0).

ρ

r

p < p∗

p = p∗

p > p∗

Figure 2: one parameter p family of the initial
density profile which should be set up to see new
critical phenomena relevant to the homogeneous
self-similar collapse.

η
(0)
1(1) corresponds to the gauge mode ηg = const at a given time as was mentioned in Sec. 2. In addition,

it should be emphasized that the normal mode η(0)1(6), which is also constant at any x, is a physical normal
mode because the corresponding perturbation M1 depends on x in the range 0 ≤ x ≤ 1.

From Fig. 1, we note that the amplitude of all the stable normal modes (i.e., the normal modes for
n ≥ 5) at the sonic point x = 1 remains non-zero and the amplitude of the normal modes for n ≥ 7 rather
increases towards the sonic point x = 1 from the center x = 0. The ratio η(0)1(n)(1)/η

(0)
1(n)(0) increases as n

becomes larger and the decay rate −Im(ωn) given by Eq. (14) has the same tendency. This implies that
the density perturbation generated near the sonic point is rapidly carried away to the supersonic region
x > 1 by the background transonic flow and the growth of such a density perturbation in the subsonic
region is prevented. It is remarkable that only for n = 3, the value of η(0)1(n) vanishes at x = 1. This seems
to be the most favorable configuration of η1 to allow the growth of the density perturbation due to the
effect of its own self-gravitation.

It should be emphasized that only the single normal mode giving an inhomogeneous density profile
drawn as Fig. 1 for n = 3 is allowed to grow with the lapse of time in homogeneous self-similar collapse
of a sufficiently low pressure perfect fluid. This result strongly suggests that critical phenomena can be
observed at least for sufficiently small α in spherically symmetric perfect fluid collapse characterized by
one parameter p representing inhomogeneity of the initial density profile (see Fig. 2). In such critical
phenomena, the critical collapse will be described by the flat Friedmann solution. If the general relativistic
Larson-Penston solution is confirmed to be stable also in our analytical scheme, a transition from the flat
Friedmann stage to the general relativistic Larson-Penston stage may occur in the collapse for p > p∗.
Because the general relativistic Larson-Penston solution for 0 < α <∼ 0.0105 describes naked singularity
formation, the critical collapse may correspond to the threshold of the naked singularity formation.
What critical phenomena are relevant to the flat Friedmann solution will be an interesting problem to be
investigated in future works.
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Time-symmetric initial data of brane-localized black hole in
RS-II model
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Abstract
Based on the AdS/CFT correspondence, it was conjectured that brane-localized static
black holes larger than the bulk curvature scale do not exist in Randall-Sundrum II
braneworld model. In order to investigate the properties of brane-localized black
holes, we study time-symmetric initial data with apparent horizon. We find that the
size of the apparent horizon can be much larger than the bulk curvature scale. We
discuss implications of our results to the issue of brane-localized black hole.

1 Introduction

Randall-Sundrum II (RS-II) model is a braneworld model which contains a single brane with positive
tension. The bulk is infinitely extending and is asymptotically anti de-Sitter (AdS). In this model gravity
propagates in five dimensions. Thus it is not so obvious what kind of gravity is effectively realized on
the brane. This has been studied much in weak gravity regime. Linear analysis shows that ordinary 4D
Einstein gravity with small corrections is realized on the brane. On the other hand, in non-linear strong
gravity regime, not much has been known yet. Here we would like to focus on gravitational collapse in
braneworld, in which the effect of strong gravity is important. In ordinary 4D gravity black holes will
form after gravitational collapses. It is no wonder that almost the same process will occur also in RS-II
model. However, no one certainly knows what will happen after a gravitational collapse in braneworld in
detail.

In RS-II model, no static black hole solution has not been found so far. This may suggest that exactly
static black hole solution might be really absent in RS-II model. If so, one can say that gravity in this
model is significantly different from the ordinary one in strong gravity regime. As an interpretation of the
lack of static black hole solution in RS-II model, a conjecture was proposed that the black hole formed
after gravitational collapse in RS-II model is not completely static [1, 2]. This conjecture is a kind of
extension of the well-known AdS/CFT correspondence conjecture in superstring theory.

AdS/CFT correspondence is a conjecture based on the duality between the closed string and open
string descriptions [3, 4]. One version of this conjecture states that the supergravity theory in AdS bulk
background spacetime corresponds to the strongly coupled conformal field theory (CFT) defined on the
boundary geometry of the bulk. A vast number of evidences support this correspondence, but a complete
proof has not been obtained.

Although there are a few subtle points, one can interpret the AdS/CFT correspondence in the context
of RS-II model. In RS-II model, the ”boundary spacetime” is identified with the positive tension brane.
Then, the AdS/CFT correspondence states that classical gravity realized on the brane in RS-II model
corresponds to 4D Einstein gravity corrected by the coupling to “strongly coupled” CFT with a large
number of degrees of freedom [5]. Again there is no proof for this correspondence, but there are a few
supporting evidences for it. First of all, these two theories share the same correction to the Newton’s
law [6]. In RS-II model, gravity realized on the 4D brane deviates from the ordinary Einstein gravity
due to the effects of the extra dimension [7]. The same deviation can be reproduced by CFT 1-loop
correction to the graviton propagator. Another example is the tensor perturbation in the Friedmann-
Lemâıtre-Robertson-Walker universe. It satisfies the same equation in these two theories [8].

If this correspondence also applies to the black holes, the following statements stands: a classical
black hole realized on the brane in RS-II model corresponds to a 4D black hole with quantum correction

1E-mail:tanahashi@tap.scphys.kyoto-u.ac.jp
2E-mail:tama@tap.scphys.kyoto-u.ac.jp
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due to CFT. A 4D black hole under CFT correction cannot be static since CFT particles extract the
energy of the black hole through Hawking radiation. Then, the above statement leads to the conjecture,
“the black hole realized on the brane in RS-II model also cannot be static”.

In RS-II picture gravity is classical. Namely, the decrease of the black hole mass measured on the
brane has to be explained by classical dynamics, such as deformation of the horizon in the 5D bulk. We
call this phenomenon ”classical evaporation” of the brane black hole into the bulk. This is the conjecture
made by Tanaka [1] and independently by Emparan et al. [2].

2 Numerical analysis of brane-localized BH

There are already several works on static brane-localized black holes. There is a lower dimensional
exact solution of brane-localized black hole [9]. But its existence does not contradict with the classical
evaporation conjecture as was explained in Ref.[2]. Numerically, static black holes smaller than the
curvature scale of the AdS bulk were constructed in Ref.[10]. The presence of a small static black hole
does contradict with the above mentioned conjecture because CFT picture does not work when the size
of the black hole is smaller than the length scale determined by the CFT cut-off. In this work static brane
black hole whose size is much larger than the bulk curvature scale was not found. This does not directly
mean that there is no static large black hole solution. It seems more appropriate to say that it takes too
much time to obtain large black hole solutions by the method adopted there. There is a good reason why
a larger black hole is harder to construct. We have to resolve the bulk curvature scale numerically even
when the black hole horizon size is much bigger. This means that a larger number of grids are necessary
for a larger black hole.

Roughly speaking, there are the following three possibilities. Large brane-localized black holes (1) do
not exit, (2) exist but are unstable, or (3) exist and are stable. To study which one is correct, we examine
time-symmetric initial data of brane-localized black holes following the method used by Shiromizu and
Shibata [11]. Initial data will be easier to obtain compared with static solutions. Thus we expect that
we can study larger black holes relatively easily by focusing on the initial data.

We solve the constraint equations on an initial surface. By the assumption of time-symmetry, the
extrinsic curvature vanishes. Then, the only non-trivial constraint is the Hamiltonian constrain, which
reduces to one equation requiring the intrinsic scalar curvature of that surface to be zero, (4)R = 0.
Since the time-symmetric initial configuration is not unique, we have to impose additional conditions
that restrict the form of the metric. We try the following two simplest possibilities.

1. Shiromizu & Shibata’s ansatz

First one is the metric ansatz adopted by Shiromizu and Shibata:

dl2 =
1
z2

[
l2dz2 + (1 + ϕ(r, z))4

(
dr2 + r2dΩ2

)]
. (1)

Here l is a constant corresponding to the bulk curvature scale. The brane is located at z = l. This
metric ansatz is compatible with black string solutions. A pure AdS bulk corresponds to ϕ = 0.

2. Conformal-flat ansatz

The second one is conformally flat metric ansatz:

dl2 =
l2

z2

(
1 +

ζ(r, z)
r

)2 [
dz2 + dr2 + r2dΩ2

]
. (2)

The brane is placed at z = l. This ansatz is compatible with 5D Schwarzschild black hole solutions
in the limit 	→∞. A pure AdS bulk spacetime is realized when ζ = 0.

In both cases, the Hamiltonian constraint becomes a two-dimensional elliptic partial differential equation
of the form,

L(ϕ or ζ) + (non-linear terms of ϕ or ζ) = (Source) . (3)

− 107 −



where L is a linear elliptic partial differential operator. We solve this equation by relaxing the associated
diffusion equation.

To characterize the black hole horizon, we use apparent horizon (AH), which is the 3-surface on which
the expansion of outgoing null geodesics vanishes: ∇is

i
∣∣
AH

= 0. Here si is the unit normal of the AH and
∇i is the covariant derivative associated with the induced 3D metric on the AH. To obtain a non-trivial
solution, we placed source term in Eq. (3) by hand in the bulk spacetime region near r = 0 and z = 	.
As far as the source is confined inside the AH, the obtained initial data can be interpreted as the one for
vacuum case.

The boundary conditions are given as follows. At r = 0 the regularity conditions ∂rϕ = 0 and ∂rζ = 0
are imposed. On the brane the boundary conditions are derived from the Israel’s junction conditions [12]
as

∂zϕ|z=l = 0, ∂zζ|z=l = 0. (4)

The boundary conditions at z � l and at r � l are determined from the linear analysis. We can rewrite
Eq. (3) as

L(ϕ or ζ) = (Source)− (non-linear terms of ϕ or ζ) (5)

Then, this equation can be regarded as a linear equation with a new source term defined by the right hand
side as a whole. This linear equation can be solved analytically when the source is given by Mδ4(x, z).
the asymptotic forms of ϕ and ζ are, respectively,

ϕ(x, z)
r,z→∞−−−−−→ G5M

4z3b

2r2 + 3R2z2

(r2 + R2z2)3/2
, (6)

ζ(x, z)
r,z→∞−−−−−→ 1

4πr
l2κ25M

3z5b

[
3z3b
2

{
1− 2

π
arctan

(
z − zb

r

)}
+

z3b
[
r(z − zb)

{
3r2 + 5(z − zb)2

}]
π {r2 + (z − zb)2}2

]
. (7)

As long as the non-linear terms vanish rapidly enough at r, z → ∞, the asymptotic behavior of the
solution of Eq. (3) is expected to be given by the above form. In more general cases, the parameter M
can be represented by volume integral with the aid of Gauss’ law.

Under Shiromizu-Shibata’s metric ansatz (1), we succeeded in constructing time-symmetric initial
data which contains the AH much larger than l (Fig. 1(a)). The heavier the source is, the larger the
AH became. It seems that the AH can be arbitrarily large, although the computational time grows
exponentially. On the other hand, under the conformal-flat metric ansatz (2), we could not construct
such initial data. However, under the same metric ansatz we could construct initial data with a large
AH if we adopt simpler boundary conditions, ζ = 0 at r, z � l (Fig. 1(b)), which are analogous to the
conditions used previously in obtaining static brane black hole solutions.

3 Summary and future works

In RS-II model, static black hole solutions have not been found yet analytically. Numerical solutions
were obtained for small black holes, but black holes larger than the bulk curvature scale have not been
constructed. These facts are consistent with the conjecture that large brane black holes are not static.

In order to investigate the properties of brane-localized black holes in RS-II model, we focused on
time-symmetric initial data of brane black holes. We obtained initial data with an AH much larger than
the bulk curvature scale l in the case of Shiromizu-Shibata’s metric ansatz. Definitely, time evolution
of these initial data is an interesting issue. We would like to study it as a future work. However, the
computation time to construct initial data increases exponentially as the AH size increases. The same
problem happened in the construction of static solutions. Thus, we think that one can use the initial
data construction as a test problem for blushing up the techniques necessary to construct static solutions.
This will be another direction of our future work.

In contrast, in the case of the conformal-flat metric ansatz we could not construct such initial data.
Interestingly, by adopting simpler boundary conditions setting ζ = 0 on the boundaries, initial data
could be constructed. Although we do not have enough space to explain it here, we can understand this
dependence on the boundary conditions analytically, too. This fact suggests that the boundary conditions
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(b) value of ζ(r, z) in conformal-flat metric ansatz. The
boundary condition at r, z � l is taken to be ζ = 0.

Figure 1: The numerical solutions ϕ, ζ of the Hamiltonian constraint under each metric ansatz. The red
lines show the position of the AH.

are crucial in this type of calculation. It should be noted that analogous simpler boundary conditions are
adopted in the previous calculation for static solutions [10].
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Abstract
We study properties of Q-balls in flat spacetime and in curved spacetime. (1) By
energy analysis with catastrophe theory we obtain a clear picture of stability change
of equilibrium solutions. (2) Numerical analysis of dynamical equations as a whole
confirms the stability obtained by the energy analysis. However, even if we give per-
turbed initial conditions with the same charge, a part of charge is radiated away and
approaches a different equilibrium solution with lower charge. (3) We study gravitat-
ing Q-balls as well. If the mass of the scalar filed is close to Planck mass, equilibrium
solutions are nonexistent; a Q-ball either approaches a stable configuration or col-
lapses to a black hole. We also argue that Q-ball inflation does not occur.

1 Introduction

Q-balls [1] are natural consequences of many models of a scalar field and could be dark matter [2]. To
understand basic properties of Q-balls, we address the following issues.

(1) In flat spacetime stability against infinitesimal perturbations is well understood both in the thin-
wall limit and in the thick-wall limit by energy analysis [1]-[6]. Here we investigate how stability changes
in between the two limits by numerical analysis and catastrophe theory.

(2) To explore the fate of Q-balls with finite perturbations, we numerically solve dynamical field
equations. We argue limitations of energy analysis in discussing finite perturbations.

(3) If the mass of the scalar field is so large, gravitational effects are not negligible. Therefore, we
extend our investigations to gravitating Q-balls in curved spacetime.

2 Q-balls in flat spacetime

Consider an SO(2)-symmetric scalar field, whose action is given by

S =

∫
d4x

[
−1

2
ημν∂μφ · ∂νφ− V (φ)

]
, (1)

with φ = (φ1, φ2) and φ ≡ √φ · φ =
√

φ2
1 + φ2

2. Due to the symmetry there is a conserved charge:

Q ≡
∫

Σt

d3x(φ1∂tφ2 − φ2∂tφ1), (2)

where Σt is the 3-hyperspace at t =const. Supposing homogeneous phase rotation,

φ = φ(r)(cos ωt, sin ωt), (3)

we obtain the field equation,
d2φ

dr2
= −2

r

dφ

dr
− ω2φ +

dV

dφ
, (4)

which is equivalent to the static field equation of a single scalar field with the potential V − (ω2/2)φ2.
Monotonically decreasing solutions φ(r) with the boundary condition dφ/dr(0) = 0, φ(∞) = 0 exist if

1E-mail:nsakai@e.yamagata-u.ac.jp
2E-mail:misao@yukawa.kyoto-u.ac.jp
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Figure 1: Relation among ω2, Q and E for equilibrium solutions in flat spacetime.

ω2
min < ω2 < m2, with ω2

min ≡ min

(
2V

φ2

)
, m2 ≡ d2V

dφ2
(0). (5)

The condition ω2
min < m2 is not so severe because it is satisfied if the potential has the form,

V =
m2

2
φ2 − λφn + O(φn+1), m2 > 0, λ > 0, n ≥ 3 (6)

In the literature the stability of equilibrium solutions has been studied by energetics argument as
follows. The total energy of the system for equilibrium solutions is given by

E =
Q2

2I
+

∫
Σt

d3x

{
1

2

(
dφ

dr

)2

+ V

}
, Q = ωI, I ≡

∫
Σt

d3x φ2 (7)

Its first variation by fixing the integral boundary and charge yields the field equation (4). Analysis of
the second variation gives the stability of the equilibrium solutions; the main results which have already
been obtained are as follows.

• In the thin wall limit (ω2 → ω2
min) they are stable [1, 5, 6].

• In the thick wall limit (ω2 → m2) they are stable if n = 3 [3, 5, 6] and unstable if n ≥ 4 [5, 6].

• For any ω, if
ω

Q

dQ

dω
is negative (positive), equilibrium solutions are stable (unstable) [6].

Here we analyze equilibrium solutions for the whole range ω2
min < ω2 < m2 numerically and then

discuss their stability. For definiteness we assume a sextic function,

V (φ) =
φ6

M2
− λφ4 +

m2

2
φ2 with 0 < λ, M < ∞. (8)

By rescaling the field variables, we can set M = λ = 1 without loss of generality. Then the existing
condition (5) reduces to m2− 1/2 < ω2 < m2. Fixing m2 = 1, we numerically solve (4) for 0.5 < ω2 < 1,
and obtain a series of equilibrium solutions φ(r). For each equilibrium solution we calculate charge (2)
and energy (7). We depict the relation among ω2, Q and E in Figure 1. There is a minimum charge,
which we denote by Qmin, and near the minimum there are two equilibrium solutions for each Q.

To discuss the stability near Q = Qmin by analogy with a mechanical system, let us consider the
one-parameter family of field configuration φξ;Q(r) for each Q in such a way that φξ;Q(r) contains all
equilibrium solutions. Note that we do not impose any restriction on perturbation type. Then the
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Q>Qmin Q<QminQ=Qmin

E

ξ or ω

Figure 2: Behavior of the “potential” E for Q ≈ Qmin.

Figure 3: Dynamics of a Q-ball with a perturbed initial condition. ω2 = 0.6 and Q = 718. The right
panel shows the evolution of the local charge, which is defined by q ≡ 4π

∫ r

0
drr2(φ1∂tφ2 − φ2∂tφ1).

energy is written as EQ(ξ) ≡ E[φξ;Q]. Equilibrium solutions are realized when dEQ(ξ)/dξ = 0, and their
stability is determined by the sign of d2EQ(ξ)/dξ2. Therefore, the system completely corresponds to a
mechanical system with the “potential” EQ(ξ), where ξ is a dynamical variable (or a “behavior variable”
in catastrophe theory) and Q is a “control parameter” which is given by hand. Because ω is a function
of ξ through Q = ωI[φξ;Q] for fixed Q, unless dξ/dω = 0, ω also can be regarded as a behavior variable.
Figure 2 shows how equilibrium points of EQ(ξ) change as Q varies near Q = Qmin. This behavior is just
a “fold catastrophe” in catastrophe theory.

Next, to explore the dynamics of Q-balls with finite deformation, we analyze numerically the dynamical
field equations with perturbed initial conditions. Figure 3 shows an example of dynamical solutions.
Although we give the initial configuration with the same Q and ∂tφ = 0, a part of charge is radiated
away together with energy dispersion, and the Q-ball approaches to a different equilibrium solution with
smaller Q. This shows a limitation of energy analysis with fixing Q when we discuss the dynamics of
Q-balls with finite perturbations.

Coleman claimed that Q-balls with large Q are absolutely stable, not just stable under small deforma-
tion. Mathematically his statement is correct within energy-variation analysis for fixed Q. In a physical
situation, however, charge is conserved but not necessarily confined in a local system. Therefore, we
should not discuss finite perturbations by energy analysis with fixing Q.

3 Q-balls in curved spacetime

In this section we consider gravitating Q-balls. The action is given by

S =

∫
d4x
√−g

[
mPl

2

16π
R− 1

2
gμν∂μφ · ∂νφ− V (φ)

]
. (9)

To obtain equilibrium solutions, we assume a spherically symmetric and static spacetime,

ds2 = −α2(r)dt2 + A2(r)dr2 + r2(dθ2 + sin2 θdϕ2). (10)
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Figure 4: (left) Parameters which allow equilibrium solutions. A square denotes the maximum of ω2 for
a fixed κ, and a circle denotes the minimum.

Figure 5: Evolution of a Q-ball for κ = 0.3. In this case the metric approaches a stable configuration.

Supposing homogeneous phase rotation (3) again, we numerically solve the field equations, which follows
from (9) and (10), with regularity conditions at the origin and at infinity. The model contains three
independent parameters: m2, ω2 and κ ≡ 8πλM2/mPl

2. Fixing m2 = 1, we survey equilibrium solutions.
The parameter range (ω2, κ) which allow equilibrium solutions are summarized in Fig. 3. As κ becomes
larger, the range of ω2 which allows equilibrium solutions becomes smaller. If κ >∼ 0.24, equilibrium
solutions are nonexistent regardless of ω2.

Next, we investigate the stability of the equilibrium solutions. Becuase the energy defined by (7) does
not have a definite meaning in curved spacetime, we adopt the gravitational (Misner-Sharp) mass, which
is defined by Eg ≡ mPl

2r(1 − a2)/2. We find the relation among ω2, Q and Eg of equilibrium solutions
are similar to that in Fig. 1. Therefore, we can understand their stability in the same way.

Finally, we consider the fate of Q-balls for κ > 0.24, where equilibrium solutions are nonexistent.
For several initial conditions we solve the dynamical field equations numerically. We obtain two types of
solutions: a Q-ball either approaches a stable solution (as shown in Fig. 5) or collapses to a black hole.

Contrary to the claim in [7], Q-ball inflation does not occur. In the core of an equilibrium Q-ball,
the effective potential V − ω2φ2/2 must be negative, and accordingly −T t

t + T i
i ∝ ω2φ2 − V > 0, which

induces attractive nature of gravity. Although inflation may occur if ω2φ2 is sufficiently small and the
slow-roll condition is satisfied, it is perhaps inappropriate to call such a configuration a Q-ball.

Acknowledgements. We thank H. Kodama, K. Maeda, K. Nakao, V. Rubakov, H. Shinkai and T. Tanaka
for useful discussions. A part of this work was done while NS stayed at Yukawa Institute for Theoretical Physics,
which was supported by Center for Diversity and Universality in Physics (21COE) in Kyoto University. The
numerical computations of this work were carried out at the Yukawa Institute Computer Facility. This work was
supported in part by JSPS Grant-in-Aid for Scientific Research (S) No. 14102004, (B) No. 17340075, (A) No.
18204024 and (C) No. 18540248.

References

[1] S. Coleman, Nucl. Phys. B262, 263 (1985).

[2] A. Kusenko, M. Shaposhnikov, Phys. Lett. B 418, 46 (1998).

[3] A. Kusenko, Phys. Lett. B 404, 285 (1997).

[4] M. Axenides, S. Komineas, L. Perivolaropoulos & M. Floratos, Phys. Rev. D 61, 085006 (2000).

[5] T. Multamaki & I. Vilja, Nucl. Phys. B 574, 130 (2000).

[6] F. Paccetti Correia & M. G. Schmidt, Eur. Phys. J. C21, 181 (2001).

[7] T. Matsuda, Phys. Rev. D 68, 127302 (2003).

− 113 −



Bubbles and Quantum Tunnelling in Inflationary Cosmology

Stefano Ansoldi1

International Center for Relativistic Astrophysics (ICRA), Italy, and
Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Italy, and
Dipartimento di Matematica e Informatica, Università degli Studi di Udine,
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Abstract
We review a procedure to use semiclassical methods in the quantization of General
Relativistic shells and apply these techniques in some simplified models of inflationary
cosmology. Some interesting open issues are introduced and the relevance of their
solution in the broader context of Quantum Gravity is discussed.

The interplay of the gravitational and quantum realms is a fundamental topic in the research landscape
of the last decades and is still waiting for a consolidate answer. While waiting, it is sometimes also tempt-
ing to study simplified models, that are well known from the classical point of view and that can be turned
into virtual laboratories to test our present level of understanding. Concerning quantum gravitational
systems, it is safe to say that, if not most, certainly many of these models use general relativistic shells.
To make a first, quick, contact with this interesting system, we will restrict to a highly symmetric case and
consider two four-dimensional spherically symmetric spacetimes S±; let us also choose the coordinates
(t±, r±, θ±, φ±) which are static and adapted to the spherical symmetry, so that in both S± the two
metrics can be written as g

(±)
ab =diag(g(±)00 , g

(±)
11 , g

(±)
22 , g

(±)
33 ) =diag

(−f±(r±), 1/f±(r±), r2±, r
2
± sin2 θ±

)
.

Let us then consider the situation in which a part M− of S− and a part M+ of S+ are joined together
across a timelike hypersurface Σ whose constant time slices are spherically symmetric, so that we obtain
a new spherically symmetric spacetime S = M− ∪ Σ ∪M+. The dynamics of this system is described
by Israel junction conditions [1], which, in the case we are considering, reduce to just one equation

R

(
ε+

√
Ṙ2 + f+(R)− ε−

√
Ṙ2 − f−(R)

)
= M(R); (1)

M(R) is a function describing the matter content of Σ (i.e. it is related to the stress energy tensor of
the infinitesimally thin matter-energy distribution which is joining M− and M+); ε± are the signs of
the radicals which follow them: when ε± are positive (resp. negative) it means that the normal to the
shell (which by convention we choose directed from M− to M+) points in the direction of increasing
(resp. decreasing) r±. Finally, R = R(τ) is the radius of the shell (or bubble) expressed as a function of
the proper time τ of an observer that lives on the bubble itself. Most of the popularity of shell models
(particularly in the spherically symmetric version) is likely due to the direct geometrical meaning of the
junction conditions, as well as to the fact that in spherical symmetry, it is possible to reduce (1) to

Ṙ2 + V (R) = 0 , V (R) = −{(R2f−(R) + R2f+(R)−M2(R))2 − 4R4f−(R)f+(R)}/(4M2(R)R2). (2)

The solutions of (1) are equivalent to the solutions of (2) when the classical looking equation is comple-
mented by the results ε± = sign{M(R)(R2f−(R)−R2f+(R)∓M2(R))}, which are required to obtain the
global spacetime structure of S starting from the knowledge of the trajectory R(τ). Thanks to the fact
that the classical dynamics can be exactly solved (at least numerically), it is then tempting to proceed
and study its quantum regime [2, 3, 4, 5]. In particular, since it is often the case that V (R) in (2) acts
as a potential barrier between bounded and unbounded solutions, it can be interesting to study, both,
the semiclassical states corresponding to the bounded solutions [6] as well as the tunnelling under the
potential barrier. Both these approaches have been considered, but here we will concentrate only on the
second one, i.e. the tunnelling process: while waiting for quantum gravity, the natural framework for a its

1E-mail: ansoldi@trieste.infn.it — Web-page: http://www-dft.ts.infn.it/∼ansoldi
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Figure 1: Various possibilities for tunnelling geometries and behavior of the Euclidean momentum. The instanton

should be obtained joining across the shell trajectory (thick black curve) the shaded part of Euclidean de Sitter on the

left with the part of Euclidean Schwarzschild on the same row in the middle. There are cases (as (a), (d)) where it is

natural to identify the region to use. This is not always the case. For the tunnelling (a), (b), (c), the choice of Euclidean

Schwarzschild region (b) is non-trivial and, if the Euclidean Schwarzschild time t
(E)
− changes for more than π, multiple

covering occurs [10]. At least, we see that in (c) no problem arises: in this case, path-integral and canonical approaches

give the same result for the action. On the contrary, for the tunnelling (d), (e), (f), although Euclidean de Sitter (d)

is again free of troubles, Euclidean Schwarzschild (e) develops an additional complication: at the point P the sign ε−
vanishes, passing from negative to positive values: this changes the part of the constant time section that participates in

the junction (PB instead than PA); only after P the point r− = 2M is included; moreover, P
(E)
eff develops a discontinuity

at P (see (f), cf. equation (4)). Using path-integrals methods, a proposal has been made to make sense of the diagram and

to obtain the tunnelling action [10]: this proposal spoils the equivalence with the canonical approach although the reason

is not clear. Note also that, the discontinuity in the momentum can be cured by carefully choosing the arctan branch

in (4): the price to pay is a non-vanishing momentum at the second turning point. Coming, then, to the tunnelling (g),

(h), (i), it shows that the Euclidean de Sitter part can also be affected by similar problems. t
(E)
±(i)/(f)

and t
(E)
±(D

) denote

the initial/final time slices (also shown as (i) and (f)) and those corresponding to discontinuities of the momentum. The

parts of spacetime selected for the junctions are chosen naively, but consistently with the amount of information provided

in the main text; more refined and subtle choices can be made, without changing the conclusions.
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complete analysis, many studies have already been performed at the semiclassical level. In particular, for
these tunnelling processes we would like to determine: i) the geometry (instanton) interpolating between,
for instance, the bounded initial configuration and the unbounded final one (if this instanton exists); ii)
a general procedure to calculate the probability for the process. In this contribution we will summarize
some problems that appear when trying to implement the above program and which resist, unsolved,
since more than fifteen years [7], hoping to shed some light on possible successful approaches. In more
detail, the problem of determining the Euclidean solution mediating the tunnelling can be formulated in
the framework that we briefly depicted above. The Euclidean junction can be proved to be described by
an equation very similar to (1); formally it can be obtained by simply Wick rotating the Euclidean time
τ : τ → τ (E) = −ıτ and correspondingly, t(E)± = −ıt±. This gives the Wick rotated equation

R
(
ε+
√
f+(R)− (R′)2 − ε−

√
f−(R)− (R′)2

)
= M(R) ⇒ (R′)2 − V (R) = 0, (3)

where a prime denotes a derivative with respect to τ (E). Under Wick rotation, the results for ε± are

clearly unchanged. It is also worth remembering the relations
(
t
(E)
±
)′

= ε±
√
f±(R)− (R′)2/f±(R), as

well as the fact that it is possible to provide an effective Lagrangian formulation [8, 9] to derive (1) and
(3). Incidentally, we observe that (1) and (3) are, in fact, first order equations: they are a first integral
of the second order Euler-Lagrange equations obtained from the effective Lagrangian Leff . From Leff the
effective momentum Peff can be derived with standard techniques and its Euclidean counterpart is

P
(E)
eff = −R

{
arctan

(
R′

ε+
√
f+(R)− (R′)2

)
− arctan

(
R′

ε−
√
f−(R)− (R′)2

)}
. (4)

We have, now, at least two choices to determine the transition amplitude: use the path-integral approach
with the Lagrangian Leff or proceed via canonical quantization using the Euclidean momentum P

(E)
eff and

the standard result for the probability amplitude A

A ∼ exp(−S) , S =
∫ R2

R1

P (R)dR , R1, R2 extrema of the tunneling trajectory. (5)

For concreteness, let us now specialize to the case considered in [10] where this analysis has been performed
by choosing f+(r+) = 1 − χ2r2+, i.e. de Sitter spacetime, f−(r−) = 1 − 2M/r−, i.e. Schwarzschild
spacetime, and the shell has a constant tension ρ, i.e. M(R) = 4πρR2. This is a special, important
case often considered in the studies of vacuum bubbles/decay [11, 4, 5]. This specific model allows a
description of inflation in early universe cosmology avoiding the initial singularity problem. Indeed, it
turns out that for a wide range of values of the parameters χ, M and ρ, there are bounded inflating
solutions that can be created without an initial singularity; although they do not inflate enough to be
a good model of the present universe, it is suggestive to consider the possibility that they will tunnel
into an unbounded solution which will eventually evolve and resemble the present universe. This idea
becomes even more stimulating in view of some issues which appear at a careful analysis of the process
[10] and which have not yet found a satisfactory solution/explanation. They are i) the fact that the
Euclidean manifold which should mediated the transition between the two Lorentzian junctions (the one
before the tunnelling and the one after) can not be easily defined and ii) a discordance between the
results provided by a path-integral approach and those obtained with a canonical one. If in the seminal
paper of Farhi et al. [10] an interesting proposal for the construction of the instanton has been put
forward and its generalization to generic junctions might provide the sought answer, the second issue is
mostly disturbing in view of the fact that canonical methods are known to reproduce well known results
in vacuum decay (in particular the canonical approach has been shown to reproduce [9] the results of
Coleman et al. [3] and Parke [12]). A slightly more detailed analysis of this point with additional technical
details can be found in figure 1. Then, we would like to conclude this contribution with just a few, more
speculative, considerations. In particular, what is the physical counterpart of these open issues in the
Euclidean sector? Is the tunnelling process really allowed or not? If yes, is there an instanton mediating
the process? What is the meaning of the discrepancy between path-integral and canonical formulations?
Could it be of interest for quantum gravity? And more, how can we interpret all the above questions in
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view of the initial singularity problem? For instance, we could take the point of view that transitions
which do not satisfy all the standard properties of the Euclidean momentum are forbidden; but then we
would forbid many transitions which would help us to evade classical singularity theorems! If, instead,
we can make sense of the unusual properties of the (Euclidean) spacetime structure, we could easily
develop a lot of other (solvable) examples in which, already at the semiclassical level, quantum effects
can be effectively used to remove singularities. . . . The search for an answer to these and other similar
(interesting) questions is, currently, work in progress, and its results will be reported elsewhere.
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1 Introduction

One of the notable feature of quantum fields in curved spacetime is that quantum processes prohibited in
the Minkowski spacetime is allowed. For example, the emission of a photon from a moving massive charged
particle occurs in an expanding universe, though such a process is prohibited by the energy momentum
conservation in the Minkowski spacetime due to the Lorentz invariance. This subject was studied by
several authors [1, 2, 3, 4]. These previous works, however, focused on the transition probability of the
process. While, in the present work, we calculate the radiation energy emitted through the process. Our
point of view is as follows: The motion of a massive charge in an expanding or contracting universe can be
regarded as an accelerated motion, because the physical momentum of the particle decreases (increased)
as the universe expands (contracts). Then, the photon emission process can be regarded as the well-
known classical radiation process from an accelerated charge [5]. The present work aims to clarify the
correspondence between the classical and quantum approaches to photon emission from a moving charge
in expanding universe.

2 Derivation of the radiation formula with the WKB approxi-
mation

In what follows, we focus on the spatially flat Friedmann-Robertson-Walker spacetime, whose line element
is expressed as

ds2 = a(η)2[−dη2 + dx2] = a(η)2ημνdx
μdxν , (1)

where η is the conformal time, and a(η) is the scale factor. We consider the scalar QED Lagrangian
conformally coupled to the curvature,

S =
∫

d4x
√−g

[
−gμν

(
∇μ − ieAμ

h̄

)
Φ†
(
∇ν +

ieAν

h̄

)
Φ−

(
m2

h̄2
+ ξconfR

)
Φ∗Φ− 1

4μ0
FμνFμν

]
, (2)

where Fμν = ∇μAν −∇νAμ is the field strength, and μ0 is the magnetic permeability of vacuum. In this
work, we use the unit light velocity equals 1 but explicitly include the Planck constant h̄. Introducing
the conformally rescaled field φ(= a(η)Φ), we may rewrite the Lagrangian as

S =
∫

d4x

[
−ημν

(
∂μ − ieAμ

h̄

)
φ†
(
∂ν +

ieAν

h̄

)
φ− m2a(η)2

h̄2
φ∗φ− 1

4μ0
fμνfμν

]
, (3)

where fμν = ∂μAν − ∂νAμ. Thus the system is mathematically equivalent to the scalar QED in the
Minkowski spacetime with the time-variable mass ma(η).

We follow a general prescription for interacting fields, based on the interaction picture approach. We
focus on the radiation energy emitted through the process described by the Feynman diagram in Fig. 1.

1E-mail:hide@theo.phys.sci.hiroshima-u.ac.jp
2E-mail:misao@yukawa.kyoto-u.ac.jp
3E-mail:kazuhiro@hiroshima-u.ac.jp
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qi

qf

k

Figure 1: Feynman Diagram of the photon emission process

The radiation energy is

E =
(2π)3

L3

∑
r=1,2

∑
k

∑
q

h̄ω(k)|Transition Amplitude|2 (4)

=
2e2

ε0

∫
d3k

(2π)3

(
q2

i −
(qi · k)2

k2

) ∣∣∣∣∫ dηeikηϕ∗qf (η)ϕqi(η)
∣∣∣∣2 ,

where qf = qi − k, and ε0 is the permittivity of vacuum, which is related to μ0 as ε0μ0 = 1/c2 = 1. In
the computation of the above radiation energy, we need to know the form of the mode function of the
scalar field, namely the solution of the equation of motion of the scalar field. In this section, we adopt the
WKB approximation in order to derive the classical formula for the radiation energy. The mode function
of the scalar field, ϕq(η), is given as

ϕq(η) =

√
1

2Ωq(η)
exp

[
−i
∫ η

η∗
Ωq(η′)dη′

]
, where Ωq(η) =

√
m2a(η)2 + h̄2q2

h̄
. (5)

We can write the condition that the WKB formula is valid, as

Ω2
q �

1
2

∣∣∣∣∣ Ω̈q

Ωq
− 3

2
Ω̇2

q

Ω2
q

∣∣∣∣∣, (6)

where the dot means the differentiation with respect to η.
The integration in Eq.(5) requires some technique but is straghtforward. Finally, using the WKB

mode functions, the integration with respect to k yields

E =
e2

6πε0

∫
dη

z̈2

(1 − ż2)3
. (7)

This result is the same as the Larmor formula in the case when the particle moves along a straight line
[5]. Note that this is the energy in the conformally rescaled spacetime, which is not the physical energy.
From this expression, however, we can read the physical radiation energy as E = E/a, and the physical
rate of the radiation energy per unit time as

dE
dt

=
1
a2

dE

dη
=

e2p2physH
2

6πε0m2
, (8)

where t is the cosmic time, pphys(= pi/a) is the physical momentum and H is the Hubble expansion
rate. This result is consistent with that in ref. [3], which is obtained from consideration of the classical
electromagnetic radiation formula of a moving charge in an expanding universe.

Finally in this section, let us summarize the necessary condition for reproducing the radiation formula
in the classical electromagnetic theory. We started with the WKB formula of the mode function, for which
Eq. (6) is needed. In addition, we assumed an additional condition as follows

k(= |k|)� qf (= |qf |), and qi(= |qf |). (9)

Although this condition is independent of the necessary condition for the WKB approximation, Eq. (6),
we assumed it because this additional assumption is necessary to recover the conventional picture for
the classical radiation from a charged massive particle, in which the massive field should behave like a
particle and the photon field should behave like a wave.
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3 Quantum radiation

In this section, we consider an exactly solvable model in order to address the validity of the WKB
formula. We consider a time-symmetric bounce universe which asymptotically approaches a contracting
and expanding radiation-dominated universe. The scale factor is given in terms of the conformal time η
by [6]

a(η) =
√
�2η2 + ε2 (−∞ < η <∞), (10)

which recovers a radiation-dominated Friedmann universe in the asymptotic regions, a(t) ∝ t1/2 (η →
±∞). In this background spacetime, the equation of motion of the scalar field is reduced to the Weber’s
differential equation and therefore the mode functions are constructed by the parabolic cylinder function.

Using the exact mode function, we can calculate the radiation energy exactly and represent it as
following form [7]:

E = Ecl × F
( pi

εm
,
h̄�

ε2m

)
, (11)

where Ecl is the WKB formula (7) calculated in the background spacetime (10), and we defined

F
( pi

εm
,
h̄�

ε2m

)
=

12
π

∫ ∞

0

dk̂k̂2
∫ 1

−1
d cos θ

1− cos2 θ
(1− e−2πλ)(1− e−2πλ̄)

eπ(λ−2λ̄)

×
∣∣∣U(iλ+

1
2
, 1 + i(λ− λ̄),−i h̄�k̂

2

2mε2

)∣∣∣2, (12)

with

pi = h̄qi, (13)

k̂ =
ε

�
k, (14)

λ =
qi

2 + m2ε2/h̄2

2m�/h̄
, λ̄ =

(qi − k)2 + m2ε2/h̄2

2m�/h̄
. (15)

Note that the function F describes the deviation from the WKB formula. Figure 2 plots F as a function
of pi/mε with fixed as h̄�/mε2 = 1, 0.1 and 0.01. Figure 3 plots F as a function of h̄�/mε2 with fixed
as pi/mε = 0.01 and 1. These figures show F = 1 for pi/mε <∼ 1 and h̄�/mε2 � 1, and the suppression
F < 1 for the other region.

We consider the classical limit of the function F by taking the limit h̄ → 0, or h̄�/mε2 → 0. Then,
by numerical analysis of the function F , we find

lim
h̄→0

F = 1. (16)

This means that the exact formula in the limit of h̄→ 0 agrees with the WKB approximate formula. Then,
the decrease of F from 1 comes from the term in proportion to h̄, hence the suppression is understood
as the quantum effect.

Now let us consider the physical meaning of the condition �h̄/mε2 � 1. Around the bounce regime
a ∼ ε ∼ �η, where the classical radiation rate becomes maximum, we can write

h̄�

mε2
� λCH

∣∣∣
bounce

, (17)

where λC = h̄/m is the Compton wavelength, and H |bounce = �/ε2 is the Hubble expansion rate, re-
spectively. Thus h̄�/mε2 can be regarded as the the ratio of the Hubble horizon length to the Compton
wavelength of the charged particle, around the bouncing regime.
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0.1 1
pi /mε

0.1

1

F

exact
approximate

Figure 2: F as function of pi/mε with
fixed as h̄�/mε2 = 0.01, 0.1, 1, from
top to bottom.

0.01 0.1 1 10

ρh/2πmε2

0.1

1

F

pi /mε = 0.01
          = 1

Figure 3: F as function of h̄�/mε2 with
fixed as pi/mε = 0.01(dashed curve)
and 1(solid curve).

4 Summary and Conclusions

In the present paper, we investigated photon emission from a moving massive charge in an expanding
universe. We considered the scalar QED model for simplicity, and focused on the energy radiated by the
process. First we showed how the Larmor formula for the radiation energy in the classical electromagnetic
theory can be reproduced under the WKB approximation in the framework of the quantum field theory
in curved spacetime.

We also investigated the limits of the validity of the WKB formula, by deriving the radiation formula
in a bouncing universe in which the mode functions are exactly solvable. The result using the exact
mode function shows the suppression of the radiation energy compared with the WKB formula. The
suppression depends on the ratio of the Compton wavelength λC of the charged particle to Hubble length
H−1. Namely, the larger the ratio λC/H

−1 is, the stronger the suppression becomes. In the limit the
Compton wavelength is small compared with the Hubble length, the radiation formula is found to agree
with the WKB formula. Since this limit is equivalent to the limit h̄ → 0, the suppression we found is
a genuine quantum effect in an expanding (or contracting) universe, which is due to the finiteness of
the Hubble length. Whether the quantum effect on the radiation from a accelerated charge always leads
suppression or not is an interesting question. This would be understood by analyzing higher order terms
of the WKB approximation.
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Abstract
We obtain a new exact black-hole solution in Einstein-Gauss-Bonnet gravity with a
cosmological constant which bears a specific relation to the Gauss-Bonnet coupling
constant. The spacetime is a product of the usual 4-dimensional manifold with a (n−
4)-dimensional space of constant negative curvature, i.e., its topology is locally Mn ≈
M4 × Hn−4. The solution has two parameters and asymptotically approximates to
the field of a charged black hole in anti-de Sitter spacetime. The most interesting and
remarkable feature is that the Gauss-Bonnet term acts like a Maxwell source for large
r while at the other end it regularizes the metric and weakens the central singularity.
It is a pure gravitational creation including Maxwell field in four-dimensional vacuum
spacetime. The solution has been generalized to make it radially radiate null radiation
representing gravitational creation of charged null dust. This paper is based on the
results in [1].

1 Model and basic equation

Throughout this paper we use units such that c = 1. The Greek indices run μ = 0, 1, · · · , n− 1. We write
action of Einstein-Gauss-Bonnet gravity with a cosmological constant for n ≥ 5,

S =
∫

dnx
√−g

[
1

2κ2n
(R− 2Λ + αLGB)

]
+ Smatter, (1)

where α is the Gauss-Bonnet (GB) coupling constant and all other symbols having their usual meaning.
The GB Lagrangian is given by

LGB = R2 − 4RμνR
μν + RμνρσR

μνρσ. (2)

This form of action follows from low-energy limit of heterotic superstring theory [2]. In that case, α is
identified with the inverse string tension and is positive definite, so we assume α ≥ 0 in this paper. It
should be noted that LGB makes no contribution in the field equations for n ≤ 4.

The gravitational equation following from the action (1) is given by

Gμ
ν ≡ Gμ

ν + αHμ
ν + Λδμ

ν = κ2nT
μ

ν , (3)

where

Gμν ≡ Rμν − 1
2
gμνR, (4)

Hμν ≡ 2
[
RRμν − 2RμαR

α
ν − 2RαβRμανβ + R αβγ

μ Rναβγ

]
− 1

2
gμνLGB. (5)

We consider the n-dimensional spacetime locally homeomorphic to M4 × Kn−4 with the metric,
gμν = diag(gAB, r

2
0γab), A,B = 0, · · · , 3; a, b = 4, · · · , n− 1. Here gAB is an arbitrary Lorentz metric on

1E-mail:hideki@gravity.phys.waseda.ac.jp
2E-mail:nkd@iucaa.ernet.in
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M4, r0 is a constant and γab is the unit metric on the (n − 4)-dimensional space of constant curvature
Kn−4 with its curvature k̄ = ±1, 0. Then Gμ

ν gets decomposed as follows:

GA
B =

[
1 +

2k̄α(n− 4)(n− 5)
r20

]
(4)GA

B

+
[
Λ− k̄(n− 4)(n− 5)

2r20
− k̄2α(n− 4)(n− 5)(n− 6)(n− 7)

2r40

]
δA

B, (6)

Ga
b = δa

b

[
−1

2
(4)R + Λ− (n− 5)(n− 6)k̄

2r20

−α
{
k̄(n− 5)(n− 6)

r20

(4)R +
1
2
(4)LGB +

(n− 5)(n− 6)(n− 7)(n− 8)k̄2

2r40

}]
, (7)

where the superscript (4) means the geometrical quantity on M4.
The decomposition leads to a general result in terms of the following no-go theorem on M4:

Theorem 1 If (i) r20 = −2k̄α(n−4)(n−5) and (ii) αΛ = −(n2−5n−2)/[8(n−4)(n−5)], then GA
B = 0

for n ≥ 6 and k̄ and Λ being non-zero.

The proof simply follows from substitution of the conditions (i) and (ii) in Eq. (6).
These conditions also imply for α > 0, k̄ = −1 and Λ < 0. Hereafter we set k̄ = −1, i.e., the local

topology of the extra dimensions is Hn−4, and obtain the vacuum solution (T μ
ν ≡ 0) satisfying the

conditions (i) and (ii). The governing equation is then a single scalar equation on M4, Ga
b = 0, which

is given by

1
n− 4

(4)R +
α

2
(4)LGB +

2n− 11
α(n− 4)2(n− 5)

= 0. (8)

2 Exact solutions

2.1 Schwarzschild-like solution

We seek a static solution with the metric on M4 reading as:

gABdx
AdxB = −f(r)dt2 +

1
f(r)

dr2 + r2dΣ2
2(k), (9)

where dΣ2
2(k) is the unit metric on K2 and k = ±1, 0. Then, Eq. (8) yields the general solution for the

function f(r):

f(r) = k +
r2

2(n− 4)α

[
1∓

√
1− 2n− 11

3(n− 5)
+

4(n− 4)2α3/2μ

r3
− 4(n− 4)2α2q

r4

]
, (10)

where μ and q are arbitrary dimensionless constants. The solution does not have the general relativistic
limit α → 0. There are two branches of the solution indicated by sign in front of the square root in
Eq. (10), which we call the minus- and plus-branches.

There exists a central curvature singularity at r = 0 as well as the branch singularity at r = rb > 0
where the term inside the square root in Eq. (10) is zero. This solution can represent a black hole depend-
ing on the parameters. The n-dimensional black hole with (n−4)-dimensional compact extra dimensions
is called the Kaluza-Klein black hole. The warp-factor of the submanifold r20 is proportional to GB pa-
rameter α which is supposed to be very small. Thus, compactifying Hn−4 by appropriate identifications,
we obtain the Kaluza-Klein black-hole spacetime with small and compact extra dimensions.

The function f(r) is expanded for r →∞ as

f(r) ≈ k ∓ α1/2μ
√

3(n− 4)(n− 5)
r

± αq
√

3(n− 4)(n− 5)
r2

+
r2

2(n− 4)α

(
1∓

√
n− 4

3(n− 5)

)
. (11)
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This is the same as the Reissner-Nordström-anti-de Sitter (AdS) spacetime for k = 1 in spite of the
absence of the Maxwell field. This suggests that μ is the mass of the central object and q is the charge-
like new parameter.

Further, the solution (10) agrees with the solution in the Einstein-GB-Maxwell-Λ system having the
topology of Mn ≈M2 ×Kn−2 although it does not admit n = 4. The solution is given for n ≥ 5 by

ds2 = −g(r)dt2 +
1

g(r)
dr2 + r2dΣ2

n−2(k) (12)

with

g(r) = k+
r2

2(n− 3)(n− 4)α

[
1∓
√

1 +
8(n− 3)(n− 4)αΛ

(n− 1)(n− 2)
+

8(n− 3)(n− 4)κ2nαM
(n− 2)V k̄

n−2rn−1 − (n− 4)ακ2nQ2

(n− 2)πg2cr2(n−2)

]
,

(13)
where gc is the coupling constant of the Maxwell field, and M and Q are mass and charge respectively [3].
k is the curvature of Kn−2 and a constant V k

n−2 is its surface area on compactifications. The non-zero
component of the Maxwell field reads as

Frt =
Q

rn−2 (14)

representing the coulomb force of a central charge in n-dimensional spacetime.
Thus the parameters μ and q act as mass and “charge” respectively in spite of the absence of the

Maxwell field. The new “gravitational charge” q is generated by our choice of the topology of space-
time, splitting it into a product of the usual 4-spacetime and a space of constant curvature. Thus, the
solution (10) manifests gravitational creation of the Maxwell field, i.e., “matter without matter”.

Clearly the global structure of our solution (10) will be similar to that of the solution (13). Note that
f(0) = k ∓√−q, which produces a solid angle deficit and it represents a spacetime of global monopole.
This means that at r = 0 curvatures will diverge only as 1/r2 and so would be density which on integration
over volume will go as r and would therefore vanish. This indicates that singularity is weak as curvatures
do not diverge strongly enough.

2.2 Vaidya-like solution

It is well known that Schwarzschild spacetime could be made to radiate null (Vaidya) radiation by trans-
forming the metric into retarded/advanced time coordinate and then making mass parameter function of
the time coordinate. It is interesting to note that the same procedure also works here. This solution (10)
can thus be generalized to include Vaidya radiation and it would be given by

gABdx
AdxB = −f̃(v, r)dv2 + 2dvdr + r2dΣ2

2(k), (15)

f̃(v, r) ≡ k +
r2

2(n− 4)α

[
1∓

{
1− 2n− 11

3(n− 5)

+
4(n− 4)2α3/2M̃(v)

r3
− 4(n− 4)2α2q̃(v)

r4

}1/2]
, (16)

where M̃(v) and q̃(v) are arbitrary functions. As expected, this solution is quite similar to the null dust
solution with the topology of M2 ×Kn−2 [4].

This solution manifests gravitational creation of an ingoing charged null dust as another complete ex-
ample of “matter without matter”. Using this solution and the solution (10), we can construct completely
vacuum spacetime representing the formation of a black hole from an AdS spacetime by gravitational
collapse of a gravitationally created charged null dust.

3 Discussions and conclusion

In this paper, we obtained new exact solutions in Einstein-Gauss-Bonnet gravity which offer direct and
purely classical examples of curvature manifesting as matter, i.e., “matter without matter”. The origins
of the Maxwell field and a null dust fluid have been proposed.
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We have found a new Kaluza-Klein vacuum black hole solution (10) of Einstein-Gauss-Bonnet gravity
with topology of product of the usual 4-spacetime with a negative constant curvature space. In this
solution we have brought the GB effects down on four dimensional black hole. This solution manifests
gravitational creation of the Maxwell field and asymptotically resembles a charged black hole in AdS
background. What really happens is that GB term regularizes the metric and weakens the singularity
while the presence of extra dimensional hyperboloid space generates the Kaluza-Klein modes giving rise
to the Weyl charge. This is indeed the most interesting and remarkable feature of the new solution which
needs to be probed further for greater insight and application. The global structure of the solution (10)
depending on the parameters will be shown in the forthcoming paper. Also, we have successfully gener-
alized this solution into Vaidya-like metric on M4. That solution manifests gravitational creation of an
ingoing charged null dust.

Now we explain the origin of “matter without matter”. For the metric in the form of Eq. (9), one
just requires one second-order differential equation (8) to determine the metric fully and it will in general
have two constants of integration. On the other hand, the trace of the Einstein-Gauss-Bonnet equation
(3) is given by

−n− 2
2

R− (n− 4)α
2

LGB + nΛ = κ2nT. (17)

The basic equation (8) for gAB resembles this equation with T = 0 and Λ = Λeff defined by

Λeff ≡ − C(2n− 11)
α(n− 4)2(n− 5)

, (18)

where C is some positive constant. Thus, Eq. (8) will generate a Maxwell-like charge as well as a null
dust because vanishing trace is characteristic of a null dust and the Maxwell field in four dimensions.
That is why it is not surprising that there occur Maxwell-like additional gravitational charge or a gravi-
tationally created null dust in our solution. It is noted that this happens only in four dimensions because
electromagnetic stress tensor is not trace-free in other dimensions.

In the original Kaluza-Klein theory, the origin of the Maxwell field is the extra-dimensional component
of the five-dimensional metric with which the five-dimensional vacuum Einstein equation is decomposed
into the four-dimensional Einstein-Maxwell equation [5]. Here on the other hand, we have given com-
pletely different and novel generation of Maxwell field as well as of null dust fluid in the framework
of Einstein-Gauss-Bonnet gravity. This is a partial success to explain origin of all matter in our four-
dimensional universe. Since our mechanism works only for trace free matter fields, creation of other
matter, especially with non-zero trace remains a very important open problem. Undoubtedly its solution
will have a great bearing on our understanding of spacetime and matter.
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Abstract
We have simulated the collapse of rotating Population III stars with numerical simula-
tion and extracted the gravitational waves from the mass motions via the quadrupole
formula. In addition, we estimate the gravitational wave emission by anisotropic
neutrino radiation. With these wave forms, we calculate the gravitational wave back-
ground from Population III stars. As a result, we have found that the gravitational
wave background from Population III stars is large enough to be detected by inter-
ferometers such as BBO and DECIGO without correlation.

1 Introduction

The observation of gravitational waves (GWs) is one of the most important tasks for exploring the
trackless parts of the Universe. Already several ground-based laser interferometers (TAMA300, LIGO,
and GEO600) are now operating and taking data. The Laser Interferometer Space Anntena (LISA) will
be launched in the near future, and, moreover, future space missions such as DECIGO and BBO are in
planning. These interferometers will open up a new era of exploring the Universe.

Recently, [2] pointed out that cosmological population of core-collapse supernovae could contribute
to gravitational wave background (GWB) in low-frequency range as a result of the GWs associated with
neutrino emissions. Moreover, [13] calculate the spectrum of GWB from Population III (Pop III) stars
with the star formation rate (SFR) of the result of their computation and show that the GWB from
Pop III stars could be observable by next generation interferometer LIGO III. However, these studies
assumed that the wave spectrum of GW from a single Pop III star has the same shape of the result of the
simulation of ordinary core-collapse supernovae [11] and amplified such wave form on the basis of several
supposition. The validity of this assumption should be confirmed by the simulation of core-collapse Pop
III stars.

The purpose of this paper is to give an estimate of the gravitational wave spectrum from the Pop III
stars by a single Pop III star collapse simulation. In addition, we calculate the GWB spectrum with the
result of single star simulation.

The paper is organized as follows: In the next section the numerical model is described. In §3, we
calculate the gravitational wave signal and its spectrum of a single Pop III star collapse. In §4, we present
the numerical result of the gravitational wave background from Pop III stars. Section 5 is devoted to the
discussion.

2 Method

The numerical methods employed in this paper are essentially the same as those used in our previous
paper [16]. We employed the ZEUS-2D code [15] as a base and added major changes to include the
microphysics. First we added an equation for electron fraction to treat electron captures and neutrino
transport by the so-called leakage scheme [7]. Furthermore, we extend the scheme to include all 6 species
of neutrino (νe, ν̄e, νX), which is indispensable for the computations of the Pop III stars. Here νX means
νμ, ν̄μ, ντ and ν̄τ . As for the reactions of neutrinos, pair, photo, and plasma processes are included using

∗suwa@utap.phys.s.u-tokyo.ac.jp
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the rates by [6]. We assume neutrino emission is radial. As for the equation of state, we have incorporated
the tabulated one based on relativistic mean field theory instead of the ideal gas EOS assumed in the
original code [14]. Spherical coordinates (r, θ) are employed with logarithmic zoning in the radial direction
and regular zoning in θ. One quadrant of the meridian section is covered with 300 (r)× 30 (θ) mesh
points. We also calculated some models with 60 angular mesh points, however, any significant difference
was not obtained. Therefore, we will report in the following the results obtained from the models with
30 angular mesh points. In our 2D calculations, axial symmetry and reflection symmetry across the
equatorial plane are assumed.

The initial condition are provided in the same manner of [16]. We produced hydrostatic core with the
assumption of isentropic, which the values of entropy are taken from [1], and constant electron fraction
of Ye = 0.5. The supposed rotation law is cylindrical rotation, which the strength of rotational energy
is 0.5% of gravitational energy in all models. In this paper, we don’t note the effect of magnetic fields,
therefore, the injected magnetic fields are negligibly small. We calculate some mass range from 300M�
to 1000M�.

3 Gravitational Wave of a single Population III Star Collapse

In this section, we consider the gravitational wave emission of a single 300M� Population III star collapse.
In this study, we estimate the gravitational wave from aspherical mass motions in our models via the
Newtonian quadrupole formalism as described in [9]. In addition, we compute the gravitational wave
strain from anisotropic neutrino emission employing the formalism introduced by [4] and developed by
[10] and [8]. Using the standard quadrupole formula, we can estimate for the neutrinos the expression

DhTT (t) =
2G
c4

∫ t

−∞
α(t′)Lν(t′)dt′, (1)

where D is the distance to the source, hTT is the transverse-traceless and dimensionless metric strain, G
is the gravitational constant, c is the speed of light, α(t) is the time-dependent anisotropy parameter, and
Lν(t) is the total neutrino luminosity. To derive Equation (1), we assumed that the observer is positioned
perpendicular to the source’s rotational axis.

Figure 1 depicts the strain versus time after bounce of 300M� star. First, the matter contribution
to changes in hTT dominates during first 70 ms. Afterward, the anisotropic neutrino radiation begins
to contribute because the thermal shock occurs and the neutrino luminosity increases in the hot region,
backward of the shock surface. 120 msec after bounce, the neutrino contribution converges to a constant
value and the matter contribution dumps to zero. This is due to the black hole formation. After the
black hole formation, we don’t calculate of the GW from matter but dump with the timescale of light
crossing time ∼ O(RBH/c), where RBH is the radius of black hole. This procedure does not affect the
discussion of following section because the matter contribution of total GW is only in the high frequency
region, which is not the main remarkable point of this letter. Population III stars have high temperature
so that the dynamics of collapse is different from ordinary supernovae. The high temperature causes
bounce by thermal pressure not by nuclear pressure as ordinary supernovae [5]. Such thermal bounce
make the central density lower at the time of bounce (O(1012)g cm−3) so that the dynamical timescale
(∼ 1 msec(ρ/1014g cm−3)−1/2) becomes longer and the time evolution of gravitational waves are slower
in Population III stars. The total energy emitted in gravitational waves is ∼ 4×1050 erg, which is smaller
than [5] because their peak amplitude is larger than our result by a factor of 100.

Figure 2 shows the Fourier transformation of the GW signal. The solid line, which means total
spectrum of signal, is larger than the wave form assumed in the previous works in low frequency region.
This is because [2] assumed that the wave spectrum of GW from a single Population III star has the same
shape of the result of the simulation of ordinary core-collapse supernovae [11]. They amplified such wave
form with the normalization of total energy emitted in GW as 10−3M�c2 as argued by [5]. However, the
feature of gravitational collapse of Population III stars is different from ordinary supernovae ,as we already
mentioned. Thus, the wave form is also different. The dotted line means the neutrino contribution, which
is dominant in the low frequency region, meanwhile, the dashed line means the matter contribution, which
dominates the high frequency region. In should be noted that the matter’s spectrum overwhelms total
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signal for the frequency above ∼ 50Hz because the quadrupole moment of neutrinos have opposite sign
to the quadrupole moment of matter [see 3]. Current numerical simulations are done for O(1) sec and
do not cover the strain spectrum below fractions of Hertz. However, for the low frequency region, we
can deduce the GW signal by applying the zero-frequency limit [4]. In this calculation, we employed the
same manner of [2].

Figure 1: The gravitational wave strain,hTT ,
times the distance to the Population III, D,
versus time after bounce (in seconds). The neu-
trino, matter, and total wave forms are plotted
with dotted, dashed, and solid lines, respec-
tively.

Figure 2: GW source spectra. The solid line
is the total GW, the dtted line is the neutrino
GW, and the dashed line is the matter GW for
model 300M� at D=10kpc.

4 Gravitational Wave Background from Population III Stars

We are now in a position to discuss the contribution of GWs from the Population III stars to the back-
ground radiation. According to [12], the sum of the energy densities radiated by a large number of indepen-
dent Population III stars at each redshift is given by the density parameter ΩGW(f) ≡ ρ−1c (dρGW/d log f)
as

ΩGW(f) =
16π2cD2

15GNρc

∫
dz

1 + z

∣∣∣∣ dtdz
∣∣∣∣ ∫ dm φ(m)ψ(z)f ′3|h̃(f ′)|2, (2)

where ρc is the critical density (3H2
0/(8πG)), φ(m) is the initial mass function (IMF) of Population III,

ψ(z) is the SFR, and f ′ is the red shifted frequency, (1 + z)f . We employ the model 2b of [13] as the
SFR, which is for the very massive stars, from 270M� to 500M�. As for the IMF, we employ the same
parameterization with [13] as follows,

φ(m) ∝ m−2.3, (3)

which is normalized by
∫
dmφ(m) = 1. The cosmological model enters with |dt/dz| = [(1 + z)H(z)]−1

and, for a flat geometry,
H(z) = H0[ΩΛ + Ωm(1 + z)3]1/2. (4)

We use the parameters ΩΛ = 0.73,Ωm = 0.27, and H0 = 100 h0km s−1 Mpc−1 with h0 = 0.71.
In Figure 3, the calculated ΩGW is plotted with the sensitivity curves of the future detectors. The

GWB is broadly distributed with peak amplitude h20ΩGW ∼ 10−10 near 20 Hz. It can be seen that, in low
frequency region, our result exceeds the foregoing research about GWB of Population III stars [2, 13],
which assumed the wave form of gravitational collapse of Population III stars to be the similar shape of
normal supernovae [11] and amplified by a factor ∼1000 (see Eq. (8) in [2]). On the other hand, our
result is much smaller than previous studies in high frequency region. The GWB of [2] is calculated with
assumption that all Population III stars collapse at one time on z = 15. [13] took in the evolution of
Population III stars formation. We employed the same SFR with [13], therefore, the differences of wave
form of GWB are entirely owing to the single Population III star’s wave form. The GWB from Population
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III can give a particularly contribution, masking completely the GWB generated in the inflationary epoch
constrained by COBE observations (the horizontal dashed line). It can be seen that the gravitational wave
from the anisotropic radiation of neutrinos, which are dominated low frequency region, seem within the
detection limit of the planning detectors BBO and DECIGO without correlation. In contrast, detection
by LIGO III, which is the ground based detector, is difficult because the amplitude in high frequency
region is smaller than the detection limit of LIGO III (∼ 10−11 at O(10) Hz).

Figure 3: The energy density parameter of GWB. The horizontal dashed line shows the GWB from the
inflationary epoch constrained by COBE observations.
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Abstract
We make a proposal about a possible link between a 3-body system and periodic
gravitational waves. None of N-body gravitating systems have been considered to
emit periodic gravitational waves because of their chaotic orbits when N=3 (or more).
However, by employing a figure-eight orbit as a toy model, we show that a 3-body sys-
tem is capable of generating periodic waves, thereby suggesting that the true number
of sources detectable by large-scale interferometers such as LIGO, VIRGO, GEO600
and TAMA300 may be larger than previously thought. A waveform generated by the
special 3-body system is volcano-shaped and different from that of a binary system.
Therefore, it will be possible to distinguish it in future observations.

1 Introduction

As you know very well, gravitational waves (GWs) are ripples in a curved spacetime generated by ac-
celerated masses, predicted by General Relativity (GR). An evidence of GWs (though indirect) came in
1974 by discovery of binary pulser ‘PSR1913+16’ (J. Taylor, R. Hulse [Nobel Prize 1993]). The observed
decrease in orbital period agrees with the theoretical value by GR. However, the amplitude is too small.
No one has ever detected directly GWs.

The detection of GWs will open up new observation fields, especially concerning the physics of stellar
central parts, black holes, the early universe, a test of GR and so on. The detection will lead to the Nobel
Prize possibly in 20XX. There are several GWs detectors all over the world.

Most likely sources for the first detection are supposed to be (quasi-)periodic such as a single star in
rotation and/or oscillation, and a binary star in inspiral and finally merging phases.

There are existing works on a binary plus the third body [1, 2, 3]. On the other hand, much less
attention has been paid to N-body gravitating systems, because when N = 3(or more), orbits will be
chaotic.

Our purpose is to show that a 3-body system can generate (quasi-)periodic GWs [4].

2 3-body Problem

3-body problem was investigated crucially by Jules-Henri Poincare (1854-1912): He gave a proof of being
unintegralable. At present, there seems need of numerical computations. Furthermore, chaotic orbits
seem to be unsuitable for periodic GWs. However, we know the existence of periodic orbits in 3-body
system; Euler’s a collinear solution (1765) and Lagrange’s an equilateral triangle solution (1772).

We employ a figure-eight solution as a new model of a periodic orbit. It was found firstly by Cristopher
Moore (1993) [5] via numerical computations, and secondly with a mathematical proof of existence by
Alain Chenciner and Richard Montgomery (2000) [6].

One of its features are a stable orbit in the Newtonian gravity in spite of 3-body system [6, 7]. Each
star chases each other on the same orbit with the total angular momentum = 0.

Our assumption:

• the orbital plane is taken as the x-y plane.

• 3-body system with three particles with equal mass.

• compact star like a neutron star or black hole.
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Figure 1: Three masses in a figure-eight at the initial time. Each mass is labeled by 1, 2 and 3. The
initial velocity of each mass is denoted by an arrow. The distance between 1 and 3 is denoted by 	. In
this plot, we take 	 = 1.

• when one mass arrives at the center of the ’figure-eight’, 	 (length parameter) is defined as a half
of the separation between the remaining two masses.

The equation of motion of 3-body system is

m
′
i

d2�ri

′

dt′
2 = −m

′
im

′
j(�ri

′ − �rj

′
)

|�ri
′ − �rj

′ |3 − m
′
im

′
k(�ri

′ − �rk

′
)

|�ri
′ − �rk

′ |3 , (1)

where i, j, k = 1 ∼ 3, i �= j �= k, and we define

m
′
i ≡

mi

M�
, (2)

�ri

′ ≡ �ri

	
, (3)

t
′ ≡ t√

	3/GM�
. (4)

The orbital period becomes

T = 6.32591398

√
	3

GM�
. (5)

3 Gravitational Waves

The quadrupole formula in the wave zone is

hTT
ij =

2GI−ij

rc4
+ O(

1
r2

), (6)

where we define

I−ij = Iij − δij
Ikk

3
, (7)

Iij =
N∑

A=1

mAx
i
Ax

j
A. (8)
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Figure 2: A figure-eight at t = T/2. The velocity of each mass is denoted by an arrow.

Here, we denote the Newtonian constant by G, the light speed by c, the space distance from an
observer to a source by r, and Transverse and Traceless by TT .

The waveform is shown by Fig. 3. The amplitude of the GWs (	 = R�) is

hTT
ij ∼ 10−23

(
m

M�

)(
R�
	

)(
10kpc
r

)
, (9)

which is of the same order as that of a binary system.
Next, we consider the angular momentum loss. Lx = Ly = 0, because a figure-eight orbit is on the

x-y plane. The angular momentum loss rate dLz/dt vanishes. This is because the total orbital angular
momentum = 0.

Let us compare a figure-eight with the head-on collision of two non-spinning black holes [8, 9]. For
this case, the angular momentum is not carried away. A crucial difference is that for two black holes
in head-on collision, each black hole moves without any orbital angular momentum with respect to the
common center of mass. On the other hand, in a figure-eight, each star has the angular momentum.

The energy loss rate is expressed as

dE

dt
=

G

5c5
< I−(3)

ij I−(3)
ij >

= 1.2× 1019
(

m

M�

)5(
R�
	

)5

erg/s (figure-eight)

= 2.0× 1018
(

m

M�

)5(
R�
	

)5

erg/s (binary) (10)

where 〈· · ·〉 denotes the time average.
The radiation reaction time scale becomes

tGW ≡ E

dE/dt

= 0.13
(
M�
m

)3(
	

R�

)4

Gyr (figure-eight)

= 0.15
(
M�
m

)3(
	

R�

)4

Gyr (binary) (11)

Finally, we make comments on “three black holes just before merging” as a speculation. We take each
mass as 10 ×M�, and 	 as 10 × Schwarzschild radius denoted by Msch = 2GM�/c2. The frequency of
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Figure 3: Gravitational waves from three masses in a figure-eight orbit. The dashed curve and the solid
one denote hTT

xx and hTT
xy , respectively.

GWs is about a few kHz, around which the large-scale interferometric detectors are most sensitive. The
amplitude of GWs becomes

hTT
ij ∼ 10−17

(
m

10M�

)(
10Msch

	

)(
10kpc
r

)
. (12)

4 Conclusion

It is possible for 3-body system to generate periodic GWs. One example is a figure-eight orbit. A
difference from a binary system is a waveform which is volcano-shaped. The emitted GWs carry away
no total angular momentum. Our result may be encouraging; the true number of sources may be larger
than previously thought, though would be very few such systems in the universe.
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Abstract
Recently, we developed a numerical code to calculate the gravitational wave for
generic extreme mass ratio inspirals. In this paper, for simplicity, we focus on the
Schwarzschild case and calculate the energy fluxes explicitly. We also demonstrate
the computational costs and accuracy.

1 Introduction

Gravitational radiation is one of the most important predictions of general relativity. It has been detected
indirectly through its effect on the orbital period of the Hulse-Taylor binary pulsar but it has not yet
been directly detected. Thanks to recent advances in technology, an era of gravitational wave astronomy
has almost arrived. Several ground-based interferometric gravitational wave detectors are in various
stages of development. R&D studies of a space-based gravitational wave observatory project, the Laser
Interferometer Space Antenna (LISA) [1] have also been done.

One of the most promising sources of gravitational waves that can be detected by future space-based
interferometric detectors such as LISA is a compact star orbiting a super-massive black hole. In order to do
astronomy of such systems by gravitational waves, we have to know the precise waveforms. For this type of
binary, i.e., an extreme mass ratio inspiral (EMRI), the standard post-Newtonian approximation [2] seems
inappropriate, because the extension of the post-Newtonian approximation to higher Post-Newtonian(PN)
orders is not straightforward. However, in such a system, there is another natural perturbation parameter,
that is, mass ratio. As a result, the black hole perturbation approach is suited for EMRI.

The black hole perturbation theory was originally developed as a metric perturbation theory on a
black hole spacetime. For non-spherically symmetric black holes, there are presently no simple, coupled
equations for metric coefficients. Instead the perturbed geometry must be analyzed by means of the equa-
tions that Teukolsky derived, using gauge-invariant variables corresponding to some tetrad components
of the perturbed Weyl curvature [3].

By using this Teukolsky formalism, there are many numerical calculations of gravitational waves
induced by a particle. See Chandrasekhar [4], and Nakamura, Oohara and Kojima [5], for reviews and for
references on earlier papers. Now the computations of gravitational waves induced by a particle moving
on eccentric non-equatorial orbits are available [6]. However a lot of time are needed for computation
and their results have a few order of accuracy. We, therefore, have to develop a numerical code which
works more efficiently and accurately.

In this paper, we use the method based on Fujita and Tagoshi [8] for numerical computation of the
homogeneous Teukolsky equations and compute the gravitational flux induced by a particle moving on
eccentric equatorial orbits around Schwarzschild black hole. We also demonstrate that our method is
very efficient and can be evaluated very accurately.

This paper is organized as follows. In Sec. 2, we describe how to compute gravitational wave emitted
by a point particle orbiting Schwarzschild black hole. In Sec. 3, we explain briefly our method and
compute the gravitational wave energy. In Sec.4, we summarize this paper.

1E-mail:hikida@vega.ess.sci.osaka-u.ac.jp
2E-mail:draone@vega.ess.sci.osaka-u.ac.jp
3E-mail:tagoshi@vega.ess.sci.osaka-u.ac.jp
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2 Formulae to evaluate gravitational waves

We consider a point particle mass μ moving in the Schwarzschild background

ds2 = −
(

1− 2Mr

Σ

)
dt2 +

Σ
Δ
dr2 + Σdθ2 + r2 sin2 θdϕ2, (1)

where Σ = r2 and Δ = r2 − 2Mr. Here M is the mass of the black hole. In the Teukolsky formalism,
gravitational perturbation is described by a master variable ψ, which is decomposed into Fourier-harmonic
components according to

r4ψ4 =
∑
�m

∫
dωe−iωt+imϕ−2Y�m(θ)R�mω(r) (2)

The radial function R�mω and the angular function sY�m(θ) satisfy the Teukolsky equations with s = −2
as

Δ2 d

dr

(
1
Δ

dR�mω

dr

)
− V (r)R�mω = T�mω,[

1
sin θ

d

dθ

{
sin θ

d

θ

}
− (m− 2 cos θ)2

sin2 θ
− 2 + 	(	+ 1)− 2

]
−2Y�m = 0 (3)

The potential V (r) is given by

V (r) = −K2 + 4i(r −M)K
Δ

+ 8iωr + 	(	 + 1)− 2, (4)

where K = r2ω and λ is the eigenvalue of −2Y�m. We define a homogeneous solution of the radial
Teukolsky equation:

sR
in
�mω →

{
Btrans

�mω Δ−se−iωr∗ for r → 2M
r−2s−1Bref

�mωe
iωr∗ + r−1Binc

�mωe
−iωr∗ for r →∞ (5)

where r∗ = r+ 2M ln(r− 2M)/2M . Then a solution which has purely out-going property at infinity and
has purely in-going property at the horizon is expressed at infinity as

R�mω(r →∞)→ r3eiωr∗

2iωBinc
�mω

∫ ∞

2M

dr′
T�mωR

in
�mω

Δ2
≡ Z�mωr

3eiωr∗ . (6)

Now let us discuss the form of the source term T�mω. It is given by

T�mω = 4
∫

dΩdt r6(B′2 + B′∗2 )e−imϕ+iωt−2Y�m√
2π

, (7)

where

B′2 = −1
2
r−9L−1[r4L0(r3Tnn)]− 1

2
√

2
r−9Δ2L−1[r6J+(r4Δ−1Tm̄n)],

B′∗2 = −1
4
r−9Δ2J+[r4J+(rTm̄m̄)]− 1

2
√

2
r−9Δ2J+[r2Δ−1L−1(r4Tm̄n)], (8)

with

Ls = ∂θ +
m

sin θ
+ s cot θ, J± = ∂r ± iK/Δ. (9)

In the above, Tnn, Tm̄n and Tm̄m̄ are the tetrad components of the energy momentum tensor. Since we
consider a point particle limit, the energy momentum tensor takes the form

T μν =
μ

Σ sin θdt/dτ
dzμ

dτ

dzν

dτ
δ(r − rz(t))δ(θ − π/2)δ(ϕ− ϕz(t)), (10)
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Figure 1: Energy flux at infinity. Results are 	 = m = 2. The orbit has eccentricity e = 0.3, 0.5, 0.7, and
semi-latus rectum p = 10 and 100, respectively.

where zμ = (tz(τ), rz(τ), π/2, ϕz(τ)). Here τ is the proper time along the orbit. Using a new parameter
along the trajectory λ defined by dλ = dτ/Σ, the geodesic equation become(

drz

dλ

)2

= R(rz),
dtz
dλ

=
r2z
Δ
P (rz),

dϕz

dλ
= L, (11)

where E and L are the energy and angular momentum of a test particle, respectively, and

P (r) = Er2, R(r) = [P (r)]2 −Δ[r2 + L2]. (12)

Using these notations, the amplitude of partial wave is rewritten as

Z�mω =
μ

2iωBinc

∫ ∞

−∞
dλeiωt−im〈dϕ/dλ〉

( −1
2
√

2π

)[
D2

r

Δ2 0
ΞR�mω

−2DrDθ

Δ
(1Ξ(J− − 2r−1)R�mω + D2

θ2Ξ(J 2
− − 2r−1J−)R�mω

]
r=zr(λ)

(13)

where

2Ξ := −2Y�m(θ = π/2), 1Ξ := L†2−2Y�m(θ = π/2), 0Ξ := L†1L†2−2Y�m(θ = π/2),

Dr := Er2 + dr/dλ, Dθ := −iL. (14)

Furthermore, since the orbits have the periodic properties, Z�mω is just a sum of delta functions as

Z�mω =
∑
nr

Z�mnrδ(ω − ωmnr ), with ωmnr :=
〈
dtz
dλ

〉−1(
m

〈
dϕz

dλ

〉
+ nrΩr

)
. (15)

And the gravitational wave and energy flux can be obtained as

h+ − ih× = −2
r

∑
�mnr

Z�mnr

ωmnr

−2Y�m(θ)√
2π

eiωmnr (r
∗−t)+imϕ,

dE
dt

=
∑

�mnr

|Z�mnr |2
4πω2

mnr

. (16)

3 Our method and results

Let us summarize our method briefly. The numerical method to evaluate the homogeneous Teukolsky
equation is based on Mano, Suzuki and Takasugi [7]. They formulated a method to express a homogeneous
solution in a series of hypergeometric functions or Coulomb wave functions. Later, Fujita and Tagoshi [8]
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Table 1: Energy flux at infinity for dominant mode (	,m) = (2, 2). p and e represent semi-latus rectum
and eccentricity, respectively. We also show total computation time to obtain the energy flux.

p e number time[s] p e number time[s]
100 0.1 3.116891971556e-10 1.84 10 0.1 2.710478149233e-05 2.73
100 0.5 3.533573687511e-10 9.55 10 0.5 3.642014430939e-05 13.75
100 0.7 2.891426491398e-10 53.10 10 0.7 3.665044597464e-05 124.59

applied their method to numerical calculations. They found that the convergence of hypergeometric
functions was very fast and the accuracy of their code was very high. Therefore, we use the numerical
method based on their formalism. In the evaluation of the orbit of a particle, the conventional method
is to solve the ordinary differential equations numerically. We find that for the r- and θ-component, the
solutions of the orbital motion are expressed in terms of the elliptic integral of the first kind, which can
be easily computed numerically. The numerical integration to evaluate Eq. (13) is done by using the
trapezium rule in evaluating each modes of the amplitude of partial wave. This is because the trapezium
rule tends to become extremely accurate when periodic functions are integrated over their periods.

Based on these techniques, we develop a numerical code which works very efficiently. To demonstrate
the efficiency of our code, we evaluate the gravitational wave energy flux explicitly.

In Fig. 1, we plot the energy flux for 	 = m = 2. Beyond the dominant modes, the mode magnitudes
fall exponentially. The value of the energy flux bottom out at about n � 80 and n � 40 for (p, e) =
(100, 0.7) and (p, e) = (10, 0.7), respectively. The exponential decay stops at these mode. The energy
flux for modes larger than these mode seem to be dominated by numerical error. As a result, we can
estimate the accuracy of our code to be 7 significant figures for (p, e) = (10, 0.7) and 11-12 significant
figures for the other cases. In Table 1, we show the computational costs for 	 = m = 2 mode. We present
energy flux and the total computation time. The accuracy is better than the previous results, and the
computation time is faster than the previous works.

4 Summary

So far a large number of studies have been made on numerical calculations of gravitational waves induced
by a particle. However a lot of computation time are needed and their results have only a few order of
accuracy for general orbits.

In this paper, we have developed an efficient method for the computation of gravitational waves from
generic EMRI. By using our method, we found we could compute faster and more accurately than before,
though we have focused on the Schwarzschild case. We emphasize that our method is applicable to the
Kerr case as well. An extension of our method to the Kerr case is now in progress.
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Abstract
The major design of current GW detector is Fabry-Perot Michelson interferom-

eter, which uses laser interferometry. In order to reach high sensitivity, it needs to
decrease all displacement noises of mirrors. Recently, new idea that combines many
signals and cancels all displacement noises, was suggested. However, this has seri-
ous problems: (i) sensitive frequency-band is too high to apply to a ground-based
GW interferometer. (ii) GW response function becomes f2 in low frequency. We
naively extended the design with Fabry-Perot cavity and tried resolving these prob-
lems. We found that, unfortunately, the results were negative and no improvement
in the sensitivity compared with the design without FP cavity, obtained.

1 Introduction

The first generation of kilometer-scale, ground-based laser interferometer gravitational-wave (GW)
detectors, located in the United States (LIGO), Europe (VIRGO and GEO 600), and Japan (TAMA 300),
has begun its search for gravitational wave radiation and has yielded scientific results. The development
of interferometers of the next-generation, such as Advanced-LIGO (in U.S.) and LCGT (in Japan), is
underway. These current major design of GW detectors is called Fabry-Perot (FP) Michelson interferom-
eter, in which laser is split into two directions at the beam splitter, is reflected by FP cavities, and then,
is combined again at the beam splitter[1]. The output light from the photodetector contains the phase
shift due to the change of an arm length in each direction, including GW signals, the displacement noise
of mirrors and other noise. So far, much effort to improve sensitivity has been devoted to reducing the
displacement noise, caused by seismic oscillation, thermal Brownian motion, radiation pressure of light,
and etc.

Recently, the new idea, that cancels the displacement noise by combining the signals, is suggested[2].
This design of an interferometer is called displacement noise-free interferometer (DFI). DFI is similar to
time-delay interferometry (TDI), which cancels all laser noise by combining the signals and will be used
in Laser Interferometer Space Antenna (LISA), but there is a difference in the way of combining the
signals. Extending the previous idea, it was showed that not only displacement noise but also laser noise
could be canceled at the same time[3].

DFI is possible because the responses of the GW and the displacement noise is different on the fre-
quency band higher than the frequency corresponding to the size of a detector. The displacement of a
mirror acts at the time of the emission and reflection of light. On the other hand, the GW acts during
the light trip between the mirrors. It should be noted that, of course, we cannot distinguish them in
lower frequency than the size of a detector because GW can be regarded as the tidal force to act on the
mirrors.

There is serious problems to apply DFI to a ground-based interferometer. As mentioned above, GWs
1E-mail:atsushi.nishizawa@nao.ac.jp
2

3

4
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Figure 1: Design of DFI without FP cavity[4].

Figure 2: rms response function of DFI without FP
cavity[4].

and the displacement of mirrors cannot be distinguished in low frequency. This worsens the response
function for GWs in low frequency, which has the frequency dependence f2. In addition, the peak of
response function located around 100kHz, corresponding to the arm length of the detector, for example,
3km. Thus, the sensitivity worsens in our interested observational frequency, in which GWs from astro-
physical objects can exist. To resolve this problem, we tried constructing DFI design with FP cavity.
First, we will review the previous design of DFI without FP cavity briefly. Next, we will describe the
design with FP cavity.

2 DFI without FP cavity

First, in order to take a brief look at the principle of DFI, let us consider N-detector system. Suppose
that there are N test masses, located in D-dimensions and lights are emitted and receipted between each
test mass. In this case, N(N−1) signals can be acquired. On the other hand, the number of displacement
noise is N ×D and the number of laser noise is N . Thus, all noise can be canceled if the number of the
signal is larger than that of the noise. In other words, this is expressed as the condition, N ≥ D + 2.

In practice, however, it is difficult to realize a composite mirror, which emits or reflects light in more
than two directions. So, more practical design without composite mirrors, are proposed[4]. This consists
of two Machzender interferometers, in which lasers are injected from the top and bottom, as showed in
Fig2. In the figure, beam splitters are located at the top and bottom, and the mirrors are at four vertices
in the middle. The phase shift of light from the start (ct0,x0) to the end (ct,x) is expressed to the linear
order of h as,

φgw =
ωL

2c

∫ 1

0

dζhTT
ij (t0 + Lζ,x0 + N	ζ)NiNj (1)

where c is the speed of light, ω is the angular frequency of light, |x−x0| = c|t− t0| = L is a nonperturbed
distance between two test masses and N is defined as N ≡ (x − x0)/L. GW is written as hTT

ij in
Transvers-Traceless gauge.

Let us define the phase shift of signal for a Machzender interferometer,

δφA1 ≡ φ(A→C1→B) − φ(A→D1→B), δφA2 ≡ φ(A→D2→B) − φ(A→C2→B), (2)
δφB1 ≡ φ(B→C1→A) − φ(B→D1→A), δφB2 ≡ φ(B→D2→A) − φ(B→C2→A). (3)

Combining these signals to cancel the all displacements of mirrors and beam splitters, gives following the
signal,

φDFI ≡ [δφA1 − δφB1]− [δφA2 − δφB2]. (4)
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Fourier-transforming φDFI and taking average for GWs from all directions on the celestial sphere,
we can obtain the root-mean-squared GW response function of DFI, as showed Fig2. The behavior of
the response function is different in above and below the frequency corresponding to the size of the
detector, L. Above the characteristic frequency, the response becomes f−1 because the contribution of
GW in a phase shift during the light trip, is integrated and canceled partially. Below the frequency, the
response becomes f2 because we cannot distinguish the effects of GW and the displacement of a mirror,
and DFI combination also cancels GW signals. Due to this fact, the sensitivity worsens in our interested
observational frequency even though the only noise is white shot noise.

3 DFI with FP cavity

Figure 3: Design of DFI with FP cavity.

In order to figure out the problem of DFI in the previous section, we introduced the FP cavity
into DFI and thought out the design like Fig3. The yellow objects are mirrors and beam splitters and
the light blue are completely reflecting mirrors. The parts A1−A2, B1−B2, A3−A4, B3−B4 are FP
cavities.

In Fourier domain, the phase shift due to GW and the displacement of mirrors from (t−L12,X1+x1)
to (t,X2 + x2), is given as[3],

δ̃φ12(Ω) = ω/c× [ n12 · {x̃2 − e−iΩL12 x̃1}

+ n12 ⊗ n12 :
1
2
{
∑

p

eph̃p
eiΩ(−ez·X2) − e−iΩ(L12+ez·X1)

iΩ(1− ez · n12)
} ] (5)

where L12 is the arm length between test mass 1 and 2, Xi and xi, i = 1, 2 are the nonperturbed and
perturbed positions of test masses respectively. n12 is defined as n12 ≡ (X2 −X1)/L12. Noted that xi

depends on the time of light emission and reception. GW is propagating in the direction of ez. The
polarization tensors of GW are difined as

e+ ≡ ex ⊗ ex − ey ⊗ ey, e× ≡ ex ⊗ ey + ey ⊗ ex. (6)

The response of the FP cavity is well known. Using the above expression and taking the sum of the
signals for each travels in FP cavity, we can derive the phase shift due to GW and the displacements of
mirrors and obtain the simple form,

Φ̃12 = αδ̃φ12 (7)

where

α ≡ e−iΩL12

1−R2e−2iΩL12
(8)
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Figure 4: GW responce function (left) and shot noise spectrum (right) of DFI with FP cavity. Here
we selected the parameters R = 0.99 and L = 3km. This correspons to ΩFP ≈ 6.3 × 105sec−1 and
ΩL ≈ 500sec−1. The values in the vertical axis are normalized by some factor.

R is the reflectivity of the mirrors of FP cavity.
Now we are ready to construct DFI signal. Using arbitrary coefficients, we can write down it like,

δ̃φDFI(Ω) ≡ δ̃φFPM1(Ω)− δ̃φFPM2(Ω) +
4∑

i=0

γi δ̃φMZi(Ω). (9)

where δ̃φFPM1 and δ̃φFPM2 are the signals of Fabry-Perot Michelson interferometer at the top and bottom
in Fig3 respectively, and δ̃φMZi, i = 0, · · · , 4 are the signals of Machzender interferometer concerning
Ai and Bi respectively. γi, i = 0, · · · , 4 are arbitrary coefficients, determined by the condition that all
displacement noise are canceled, and become

γ0 =
√

2
1− e−2

√
2iΩL

, γ1 =
{2α cos(2ΩL) e−2iΩL + 1}e−2iΩL

√
2(1− e−2

√
2iΩL)

, γ2 =
−√2αe−4iΩL

1− e−2
√
2iΩL

γ3 = −γ1, γ4 = −γ2 (10)

Thus, the signal δ̃φDFI has no displacement noise and is limited only by shot noise. The results
are shown in Fig4. GW response function is shifted toward low frequency by virtue of FP cavity, and
flat region appears between the characteristic frequency determined by the size of the detector and that
determined by FP cavity, in the spectrum. These are ΩL = c/L and ΩFP = T 2c/(4L) respectively, where
T is the transmissivity of the mirrors of FP cavity. In this case, however, the spectrum of shot noise after
the cancellation has nontrivial dependence on frequency, though the spectrum of an original shot noise
has flat frequency dependence. So, in total, shot noise sets off the advantage of GW response and the
sensitivity shows the same frequency dependence as that of DFI without FP cavity! Unfortunately, we
had negative results.

In this work, we found that the naive attempt to lower the peak frequency in the sensitivity with
FP cavity, doesn’t work well. In order to apply the DFI to a ground-based GW interferometer, it needs
other ideas to shift the peak frequency of the sensitivity.
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Abstract
Pulsars are remarkably stable clocks which have a variety of applications covering a
wide range of physics and astrophysics. In particular, their occurrence as members
of binary systems, in orbit with another star, opens up the possibility of tests of
gravitational theories. About 1750 pulsars are now known and about 10% of these
are millisecond pulsars (MSPs) which have the best rotational stability. About half
of the known pulsars have been discovered in the past few years using the 20cm
multibeam system on the Parkes radio telescope. They include the first-known dou-
ble pulsar, PSR J0737−3039A/B, which is a remarkable test-bed for gravitational
physics. Current timing results show that Einstein’s general theory of relativity is
accurate at the 0.05% level in strong gravitational fields. Timing measurements of
an ensemble of pulsars widely distributed on the celestial sphere can be used to make
a direct detection of gravitational waves with frequencies in the nanoHertz region.
The Parkes Pulsar Timing Array project is observing 20 MSPs at three frequencies
and at intervals of 2 – 3 weeks with the aim of detecting gravitational waves. It will
also establish a pulsar timescale which has comparable stability to the best terrestrial
timescales over intervals of months and years.

1 Introduction

Pulsars are generally believed to be rotating neutron stars formed in supernova explosions. They have a
mass comparable to that of the Sun but a diameter of only about 30 km and so the gravitational force
at their surface is incredibly strong, corresponding to a gravitational redshift GM/cR2 ∼ 0.2. Because
of this, they can rotate very rapidly with a minimum spin period of order 1 ms. Furthermore, because
of the large moment of inertia (∼ 1045 g cm2) and small radius, the spin rate is extremely stable and so
pulsars are remarkably good clocks. This, together with the fact that some pulsars are found in compact
binary systems with a relatively massive companion, makes them highly effective probes of a range of
gravitational effects.

About 1750 pulsars are now known, almost all of which are located in our Milky Way galaxy. These
pulsars fall into two main classes: “normal” pulsars and “millisecond” pulsars (MSPs). Most normal
pulsars have spin periods of between 30 ms and 5 s, relatively large spin-down rates, Ṗ ∼ 10−15, corre-
spondingly low characteristic ages, τc = P/(2Ṗ ) <∼ 107 yr, and are mostly single (i.e., not members of
binary systems). MSPs, on the other hand, typically have spin periods of between 1 and 20 ms, very low
spin-down rates giving characteristic ages of >∼ 109 yrs and most of them are members of binary systems.
MSPs are believed to be old neutron stars which have been “recycled” to short periods by accretion from
an evolving companion star [1]. Fig. 1 gives the period distribution of known pulsars, showing that MSPs
are about 10% of the known sample.

Precise pulsar periods are measured by recording pulse times of arrival (TOAs), typically over data
spans of several years. In practice, a mean pulse profile obtained from an observation of duration typically
a few minutes to an hour is cross-correlated with a standard template to produce a TOA at the telescope.
This is then corrected for propagation delays and time transformations to give a corresponding TOA
at the Solar-system barycentre. This transformation involves a knowledge of the pulsar position. A set
of barycentric TOAs is then compared with TOAs predicted from a model for the pulsar timing and
astrometric properties to give a set of timing “residuals”, i.e., differences between observed and predicted
TOAs. Systematic deviations of these timing residuals from zero can be fitted to improve the model
parameters. Residuals remaining after the model fitting are either random receiver noise (including sky
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− 146 −



Figure 1: Period distribution of the 1750 known pulsars. Pulsar which are members of a binary system
and the so-called “anomalous X-ray pulsars” are identified. Data are from the ATNF Pulsar Catalogue
[30] (http://www.atnf.csiro.au/research/pulsar/psrcat)

and ground noise) or from unmodelled effects, most of which are potentially interesting. Table 1 lists
possible sources of timing residuals, illustrating the wide variety of effects which can be investigated using
pulsar timing. Of most interest in the present context are orbital perturbations, especially those due to
relativistic effects, and perturbations of local space-time due to gravitational waves (GW) passing over
the Earth.

2 The Hulse-Taylor binary pulsar

In 1975 Russell Hulse and Joeseph Taylor announced the discovery of the first-known binary pulsar, PSR
B1913+16 [16]. The short orbital period (7.75 hours) and high orbital velocities observed (∼ 0.1% of
the velocity of light) suggested that the companion was another neutron star and that relativistic effects
would be observable in this system and, indeed, they soon were [43]. Three effects were detected: the
relativistic precession of periastron, gravitational redshift and time dilation as the pulsar moved in its
eccentric orbit, and orbit decay due to emission of gravitational radiation from the system. Together these
determined the masses of the two stars, confirming that the companion is a neutron star, and provided
a check on the validity of the theory used to predict the effects, namely Einstein’s general theory of
relativity (GR). These results have been confirmed by more recent observations, giving values for the
mass of the pulsar Mp = 1.4408± 0.0003 M�, the mass of the companion Mc = 1.3873± 0.0003 M�and
the ratio of observed to predicted orbital period decay Ṗb,obs/Ṗb,pred = 1.0013± 0.0021 [45]. Differential
acceleration of the binary system and the Solar system in the gravitational field of the Galaxy introduces
a bias into the measured value of Ṗb and the precision of the test of GR is limited by the uncertainty in
this correction. Fig. 2 shows the outstanding agreement of the predicted and observed shift in periastron
time due to orbit decay, confirming that GR is an accurate theory of gravity in the strong-field regime.

3 The Parkes Multibeam Pulsar Surveys

The Parkes 64-m radio telescope in New South Wales, Australia, has been outstandingly successful as
an instrument for finding pulsars. In fact, it has found more than twice as many pulsars as the rest
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Table 1: Sources of pulsar timing residuals

Intrinsic noise:
• Period fluctuations, glitches
• Pulse shape changes

Perturbations at the pulsar:
• Gravitational wave background
• Globular cluster acceleration
• Orbital perturbations: planets, classical Doppler, relativistic effects

Propagation effects:
• Scattering and dispersion in a wind from a binary companion
• Variations in interstellar or Solar-system dispersion
• Interstellar scattering

Perturbations at the Earth:
• Gravitational wave background
• Errors in the Solar-system ephemeris

Clock errors:
• Timescale errors
• Errors in time transfer

Instrumental errors:
• Radio-frequency interference and receiver non-linearities
• Digitisation artifacts or errors
• Calibration errors and signal-processing artifacts or errors

Noise sources:
• Sky and ground noise
• Receiver thermal noise

of the world’s telescopes put together. What are the reasons for this success? Firstly, the Galactic
Centre passes almost overhead at Parkes and, since the concentration of pulsars is much higher in the
quadrants toward the Galactic Centre compared to those in the anti-centre direction, the telescope is very
favourably located for pulsar searching. Secondly, owing to the foresight and skill of the ATNF engineers
and scientists, the telescope has been equipped with state-of-the-art receiver systems. In particular, the
20cm 13-beam multibeam receiver, operating at frequencies close to 1400 MHz, is an outstanding system
for blind searches, increasing the efficiency of the telescope by more than an order of magnitude over
single-beam systems [42]. Thirdly, the international team responsible for the Parkes searches is very
experienced and has developed and refined the data acquisition and analysis techniques over many years.

The Parkes Multibeam Pulsar Survey used the 13-beam receiver to survey a 10◦-wide strip along the
southern Galactic plane from longitude 260◦ to 50◦. A bandwidth of 288 MHz centred on 1374 MHz
and split into 96 3-MHz channels was sampled every 250 μs with an observation time per pointing of
approximately 35 min. The survey required 3080 pointings to cover the 1500 square degrees. Observa-
tions commenced in 1997 and were completed in 2003. Following confirmation of a pulsar, at least 18
months of timing data were obtained in order to precisely determine the pulsar astrometric and timing
parameters. The survey and its results are described in a series of papers [31, 35, 25, 13, 9, 27]. It has
been outstandingly successful, detecting 1031 pulsars of which 743 are new discoveries.

A companion survey, the Parkes High Latitude Survey, was carried out by the same team. This survey,
described by Burgay et al. [3], covered a region extending to latitudes |b| < 60◦ between longitudes of
220◦ and 260◦. While the number of pulsars found in this survey was more modest (42 pulsars detected,
18 new discoveries), they included the remarkable double-pulsar system, PSR J0737−3039A/B. Another
companion survey using the multibeam receiver was carried out by a group based at Swinburne University.
This survey covered the same longitude range as the Parkes Multibeam Pulsar Survey but higher latitudes
5◦ < |b| < 30◦ [6, 17]. This survey discovered 95 pulsars and detected 230.
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Figure 2: Observed shift of the time of periastron of PSR B1913+16 together with the predicted variation
based on general relativity [45]

4 The Double Pulsar PSR J0737−3039A/B
This system, discovered in the Parkes High Latitude Survey [2, 28], is remarkable in a number of ways.
Firstly it is a double-neutron-star (DNS) system with a very short orbital period, just 2.4 hours. As a con-
sequence, orbital velocities are a significant fraction of the velocity of light and relativistic perturbations
to the orbit are readily detectable. It also means that the system will coalesce in a relatively short time
(85 Myr); its detection has raised the expected rate of such coalescences detectable by laser-interferometer
gravitational-wave detectors by nearly an order of magnitude [21, 22]. Secondly, it is the only known
double-pulsar system, i.e., the only DNS where the second neutron star is detectable as a pulsar. This
immediately give a measure of the mass ratio of the two stars, which is an important constraint in tests of
theories of relativistic gravity since it is theory independent, at least to 1PN order. The properties of the
system, namely a pulsar (A) with a 22-ms period and small Ṗ and hence large τc, and a slow pulsar (B)
with a period of 2.7 s which is much younger, are exactly those expected from the recycling mechanism.
Thirdly, the orbit is very close to edge-on, which means that the Shapiro delay of the signal from MSP
(A) as it passes through the gravitational field of B is easily detectable. (The delay of B as it passes
behind A is not so easy to measure because of B’s much longer period and hence less precise TOAs.)
Another consequence of the near-edge-on orbit is that eclipses of the A pulsar by the magnetosphere of
B are observable, giving a fascinating insight into pulsar magnetospheric physics [34, 29].

Periastron advance in the double pulsar system is ∼ 16◦.9 per year, more than four times as large
as in the PSR B1913+16 system. Measurement of this and the mass ratio defines the masses of the
two stars. Based on analysis of 2.5 years of timing data, Kramer et al. [26] obtain MA = 1.3381 ±
0.0007 M� and MB = 1.2489± 0.0007 M�, showing that B is a very low-mass neutron star. Four other
relativistic or “Post-Keplerian” parameters have been measured for PSR J0737−3039A/B, more than for
any other system. They are the gravitational-redshift/time-dilation term, orbit decay, and two parameters
describing the Shapiro delay, the “shape” s and “range” r. Fig. 4 shows that the measurements are fully
consistent with GR. The tightest constraint comes from the measurement of s which in GR is identical
to sin i, where i is the inclination angle of the orbit. This measurement confirms that GR is an accurate
theory of gravity in the strong-field regime with an uncertainty of only 0.05%, the most precise test so
far. Currently, the measurement of orbital decay is less precise than the corresponding measurement for
PSR B1913+16, but since the precision of this measurement improves approximately as T 2.5, where T is
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Figure 3: Plot of the slowdown rate Ṗ versus pulse period P for all known pulsars in the Galactic disk.
Pulsars which are members of a binary system are marked by a circle around the point. The group
of pulsars in the top right-hand corner of the plot are the anomalous X-ray pulsars (AXPs) which also
include pulsating soft gamma-ray repeaters (SGRs). Lines of constant implied surface dipole magnetic
field (∝ PṖ ) and characteristic age (τc) are shown on the plot along with the minimum period attainable
by accretion from a binary companion. Data are from the ATNF Pulsar catalogue.

the data span, PSR J0737−3039A/B will provide a more accurate test of the radiative predictions of GR
in a few years. Furthermore, since PSR J0737−3039A/B is much closer to the Sun than PSR B1913+16,
the uncertainty in differential Galactic acceleration will not be a limiting factor for this system. We also
expect to detect a number of other relativistic effects, including relativistic orbit deformation and higher-
order terms in the periastron precession, testing new aspects of GR and giving additional information
about the system. In particular, detection of spin-orbit coupling affecting periastron precession has the
potential give a measurement of the neutron-star moment of inertia and hence constrain the equation of
state for neutron-star matter [36].

5 Tests of Equivalence Principles

Binary pulsars can be used to test other aspects of relativity, specifically the equivalence principles.
These tests are the strong-field analogues of weak-field tests done in Solar system using techniques such
as lunar laser ranging. They are usually described in terms of the parameterised post-Newtonian (PPN)
formalism in which different theories of gravity have different values of the parameters compared to GR
in which they are either zero or one [46]. Many of these tests rely on the difference in self-gravitation of
the two stars in the binary system, so DNS systems are not optimal and better limits are obtained from
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Figure 4: Mass-mass diagram for the PSR J0737−3039A/B binary system based on interpretation of
the Post-Keplerian parameters within general relativity. The shaded regions are excluded by the mass-
function constraint sin i ≤ 1 for each pulsar. The mass ratio R and the periastron advance ω̇ are both
accurately measured and give nearly orthogonal constraints on this diagram. Other constraints come
from measurement of the Shapiro shape s and range r and the orbit decay Ṗb. The inset shows that all
constraints are consistent with a very small region in the MA −MB plane [26].

neutron-star – white-dwarf systems [39]. As an example, long-period binary pulsars with white-dwarf
companions and very low eccentricity may be used to set limits on the differential acceleration of the
two stars in the Galactic gravitational potential, thereby testing the Strong Equivalence Principle. From
observations of 21 wide-orbit low-eccentricity pulsars, Stairs et al. [40] place a limit on the parameter
Δ < 5× 10−3, not as strong as the LLR limit, but in the strong-field regime.

Another interesting limit obtained from pulsars is a limit on the time variation of the gravitational
constant |Ġ/G| < 4.8×10−12 yr−1 obtained by comparing the neutron-star masses in old and (relatively)
young DNS systems [44].

6 Detection of Gravitational Waves using Pulsars

An important prediction of GR (and other theories of gravity) is that accelerated masses generate grav-
itational waves. The DNS binary systems provide excellent evidence for the existence of these waves at
the level predicted by GR. However, despite huge efforts over many decades, efforts to make a direct
detection of them at the Earth have so far not been successful. Ground-based laser-interferometer sys-
tems such as LIGO in the United States, VIRGO in Europe and TAMA in Japan are now beginning
operation although their sensitivity is still being improved. These systems are most sensitive to GW
with frequencies in the range 10 – 500 Hz with the coalescence of DNS systems being the astrophysical
source most likely to be detected. LISA is an ambitious ESA-NASA project consisting of a constellation
of three spacecraft trailing the Earth around its orbit and forming a laser-interferometer triangle with
arms 5 × 106 km in length. LISA is currently in its design and planning phase and launch is planned
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for 2017. It will be most sensitive to GW in the range 10−4 – 10−1 Hz with the dominant sources being
coalescing binary super-massive black holes in the cores of galaxies and compact stellar binary systems
in our Galaxy.

Pulsars offer an alternative method of directly detecting the GW background in our Galaxy. GW
passing over the pulsar and the Earth will introduce variable gravitational redshifts into the observed
pulsar period. For a stochastic GW background in the Galaxy, the effects at the pulsar and at the Earth
are uncorrelated. Because of the possible presence of other sources of irregularity in the observed periods,
observations of a single pulsar can only put a limit on the strength of a stochastic GW background. Since
pulsar timing analyses essentially measure the pulse phase, the detected signal is the integral of the effec-
tive gravitational strain and the highest sensitivity is obtained for GW signals with frequency comparable
to 1/T , that is, in the nano-Hz region for data spans of order several years. Analysis of an 8-year span of
Arecibo data on PSR B1855+09 gave a limit on the energy density of a GW background in the Galaxy
relative to the closure density of the Universe, Ωg[1/8 yr]h2 < 10−7, where H0 = 100h km s−1 Mpc−1

[23, 33].
A stochastic gravitational wave background can in principle be detected using observations of many

pulsars distributed across the celestial sphere. The timing signatures resulting from GW passing over
the different pulsars are uncorrelated for a stochastic background, but for waves passing over the Earth,
there is a correlation between the timing residuals in different pulsars. A set of such observations, known
as a pulsar timing array, can also be used to detect possible long-term irregularities in the terrestrial
timescale and errors in the Solar system planetary ephemeris [38, 10].

How are these different effects separated? If there are errors in the timescale to which the pulsar
measurements are referred, normally TT(TAI) which is based on a world-wide network of atomic clocks,
then all pulsars will be observed to speed up or slow down in synchronism. As a function of direction
in space, this can be described as a monopole signature. Errors in the Solar system ephemeris result in
errors in the predicted velocity of the Earth with respect to an inertial frame, normally assumed to be
the barycentre (centre of mass) of the Solar system. Such errors will result in a dipole signature in the
residuals, with opposite redshifts in opposite directions. Similarly, a gravitational wave passing over the
Earth will have a quadrupolar signature with opposite redshifts in directions separated on the celestial
sphere by 90◦. Fig. 5 shows the predicted correlation for the sample of pulsars used in the Parkes Pulsar
Timing Array (PPTA) [12, 19]. For a stochastic GW background, the actual position of the pulsars on
the sky is not important, the correlation depends only their angular separation. For pulsars which are
close together on the sky, the correlation is close to 0.5 since GW passing over the pulsars and over the
Earth contribute equally to the residuals, but those from GW passing over the pulsars are uncorrelated.

The PPTA project is a realisation of the pulsar timing array idea in which 20 MSPs are being timed
using the Parkes radio telescope with observations in three frequency bands around 685 MHz (50cm), 1400
MHz (20cm) and 3100 MHz (10cm), where the wavelength band designations are given in parentheses.
The project is a collaboration principally between the ATNF, the Swinburne University pulsar group
led by M. Bailes and a group at the University of Texas led by F. Jenet. Observations commenced in
mid-2004 and the pulsars are observed at the three frequencies at intervals of 2 – 3 weeks. Observations
times per pulsar are typically 64 min. Observations at 50cm and 10cm are made simultaneously using
the dual-band coaxial 10cm/50cm receiver. Data are recorded using the CPSR2 baseband system which
has two 64-MHz bandwidths, each dual polarisation, and a digital filterbank system which has 256 MHz
of bandwidth, also dual polarisation. Offline processing uses the psrchive pulsar data analysis system
[15] and the tempo2 timing analysis program [14, 7] with the JPL DE405 Solar system ephemeris [41].

Table 2 lists the 20 pulsars, all MSPs, being observed in the PPTA project and Fig. 6 shows their sky
distribution. Basic pulsar parameters are listed, including the dispersion measure (DM) characterising
the amount of interstellar dispersion. All of the pulsars are located in the Galactic disk except PSR
J1824-2452 (PSR B1821-24) which is associated with the globular cluster M28. These pulsars are chosen
to give a good distribution over the celestial sphere, to have relatively short periods, narrow pulses and
high flux densities in order to maximise the precision of the observed TOAs. The final column in Table 2
gives the rms timing residual for two years of data at the band which gives the best timing performance,
usually 20cm. These results are preliminary in the sense that they have not been corrected for variations
in interstellar dispersion and nor has a full polarisation calibration been done. Never-the-less, nearly half
the sample has sub-microsecond rms timing residuals and all are less than 2.5 μs.
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Figure 5: Simulation of the effect of a stochastic background of gravitational waves on pair-wise cor-
relations between timing residuals for pulsars being observed in the PPTA project as a function of the
angular separation between the pulsar pairs. (Hobbs & Jenet, unpublished)

The astrophysical sources of GW most likely to be detectable with a pulsar timing array are stochastic
backgrounds from supermassive black-hole binary systems in the cores of galaxies [18, 47, 8], fluctuations
of cosmic strings [5] and relic radiation from the inflation era [11]. Of these, the first is the most
predictable, although even in this case there are large uncertainties, principally concerning the number
of such systems with masses and orbital periods in the range relevant for pulsar GW detection. Jenet
et al. [19] discussed techniques for detecting a stochastic GW background and showed that to have a
realistic chance of a positive detection, weekly observations of at 20 pulsars over five years with rms
timing residuals of order 100 ns are required.

It is clear from Table 2 that we have not yet achieved this goal although we are within a factor of a
few of doing so. Considerable effort is going into improving our observing and data analysis systems and
techniques with the aim of reaching this goal. A new digital filterbank system with improved time and
frequency resolution is about to be commissioned. This should improve our timing precision, especially
for the shorter-period pulsars. A new timing analysis program, tempo2 in which known errors in time
transfer and propagation delays have been kept at the 1 ns level or below and which has a versatile
graphical user interface has been developed [14, 7]. Radio frequency interference is an important limiting
factor, especially in the 50cm band, and techniques to mitigate its effect, including real-time adaptive
filtering, are being implemented [24]. We are also actively exploring international collaborations in order
to obtain access to data for northern hemisphere pulsars and to improve our coverage of pulsars in the
equatorial zone.

By combining the existing 2 – 3 years of PPTA data for seven of our best timing pulsars with the
publically available Kaspi et al. [23] 8-year Arecibo data set for PSR B1855+09 and using a statistically
rigorous analysis procedure, Jenet et al. [20] obtained a limit on Ωg[1/8 yr]h2 < 1.9× 10−8. This limit, a
factor of five better than the limit obtained by Kaspi et al., allows us to constrain the equation of state in
the inflation era, P/ε = w > −1.3, where P is the pressure and ε is the energy density. It also allows us
to limit the dimensionless tension of cosmic strings, Gμ < 1.5× 10−8, already ruling out some proposed
models. Our limit does not constrain existing models for GW from super-massive black-hole binaries in
the Universe. However, as illustrated in Fig. 7, projections for the full (five-year) PPTA show that it
will either make a positive detection of GW from binary super-massive black holes or rule out all current
models for their formation and evolution.

Fig. 8 shows the pulsar limiting sensitivities in the context of other gravitational-wave detectors,
emphasizing the complementary nature of the three classes of detectors: pulsar timing arrays, space-
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Figure 6: Sky distribution of Galactic disk MSPs with periods less than 20 ms. The size of the circle is
logarithmically related to the pulsar period and stronger pulsars have filled symbols. Pulsars selected for
the Parkes Pulsar Timing Array are indicated.

based laser interferometers and ground-based laser interferometers. A projected limit for pulsar timing
using the next-generation radio telescope, the Square Kilometer Array (SKA) [4], is also shown. The
SKA will detect the GW background predicted by all of the models discussed in this paper.

7 A Pulsar Timescale

The standard of terrestrial time, TT(TAI), is defined by the weighted average of about 200 caesium clocks
at time-standard laboratories around the world. This timescale is available in near real-time through the
Circular T of the BIPM (see http://www.bipm.org/en/publications). A more precise timescale can be
established retroactively by a more careful adjustment of the weights given to various clocks; the latest
of these timescales is TT(BIPM06), also available on the BIPM website. These revisions differ from each
other by amounts of order 10 – 50 ns and from TT(TAI) by significant trends and fluctuations of order
1 μs.

A pulsar timescale is fundamentally different from TT(TAI) in that it depends on a different physical
property (rotational inertia) and is effectively isolated from all terrestrial phenomena [37]. It is not
absolute in the sense that TT(TAI) is (being tied to the definition of the second through the frequency
of a hyperfine transition of the Cs 133 atom) but it can be used to detect irregularities in the terrestrial
timescale. Because of the nature of pulsar timing, only relatively long-timescale irregularities, with
duration of months to years, can be detected. Fig. 9 shows the sigma-z statistic [32] for clock stability for
two pulsars with the longest data spans and good timing properties, as well as the difference between two
of the best atomic timescales. It is clear that for intervals of order a few years or more, the pulsars have
a stability comparable to that of the atomic timescales. With averaging over a large number of pulsars
and increased timing precision, the PPTA should be able to define a pulsar timescale having a precision
of 50 ns or better over intervals of a few weeks and longer-term trends to higher precision. This will be
a valuable check on the integrity of the timescales based on terrestrial atomic clocks.
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Table 2: Parkes Pulsar Timing Array pulsars
Name Period DM Orbital Timing

(ms) (cm−3 pc) Period Residual
(d) (μs)

J0437−4715 5.757 2.65 5.74 0.12
J0613−0200 3.062 38.78 1.20 0.83
J0711−6830 5.491 18.41 – 1.56
J1022+1001 16.453 10.25 7.81 1.11
J1024−0719 5.162 6.49 – 1.20
J1045−4509 7.474 58.15 4.08 1.44
J1600−3053 3.598 52.19 14.34 0.35
J1603−7202 14.842 38.05 6.31 1.34
J1643−1224 4.622 62.41 147.02 2.10
J1713+0747 4.570 15.99 67.83 0.19
J1730−2304 8.123 9.61 – 1.82
J1732−5049 5.313 56.84 5.26 2.40
J1744−1134 4.075 3.14 – 0.65
J1824−2452 3.054 119.86 – 0.88
J1857+0943 5.362 13.31 12.33 2.09
J1909−3744 2.947 10.39 1.53 0.22
J1939+2134 1.558 71.04 – 0.17
J2124−3358 4.931 4.62 – 2.00
J2129−5721 3.726 31.85 6.63 0.91
J2145−0750 16.052 9.00 6.84 1.44

Figure 7: Current limit on the amplitude of a stochastic gravitational-wave background in the Galaxy
A = Ωg[1 yr−1] h2 as a function of the spectral index of the characteristic strain spectrum. The near-
vertical dotted lines are the expected range of amplitudes and spectral indices for GW from (left to right)
cosmic strings, the inflationary era and supermassive binary black holes. The dashed line is the expected
limit from the full 5-year PPTA.
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Figure 8: Sensitivities of gravitational-wave detectors in terms of characteristic strain as a function of
frequency. Expected ranges of characteristic strain for likely astrophysical sources in the frequency ranges
of the three classes of detectors are shown.

Figure 9: Sigma-z statistic as a function of averaging interval for two pulsars and the difference between
two of the best atomic timescales, TT(NIST) and TT(PTB), respectively from the US and German
time-standards laboratories (Hobbs & Verbiest, unpublished).
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Abstract
We show an efficient numerical method to compute gravitational waves radiated by a
particle orbiting around a Kerr black hole. In this work, we compute the homogeneous
solutions of the Teukolsky equation using formalism developed by Mano, Suzuki and
Takasugi. We also compute various modes of gravitational waves using trapezoidal
rule in numerical integration. We check our code in the case of simple orbits and
report our current status.

1 Introduction

Gravitational waves radiated from a particle orbiting around a Kerr black hole are one of the main targets
of LISA. Such systems are called the extreme mass ratio inspirals(EMRI). Observing gravitational waves
from EMRI, we may be able to obtain information of the central black hole’s spacetime such as mass,
spin and the mass distribution of compact objects in the center of galaxy. In order to obtain information
from EMRI, we have to achieve the phase accuracy of theoretical gravitational wave forms within one
radian over the total cycle of wave, ∼ 105.

There are a lot of previous works which numerically compute gravitational waves from EMRI. For
simple orbits such as circular or equatorial orbits around black hole, they achieved the accuracy 10−5

which may be sufficient to detect gravitational waves. For more general orbits, Drasco and Hughes
computed gravitational waves from EMRI[3]. However, their computational time and numerical accuracy
seem to be insufficient to detect gravitational waves. It might be useful if we can compute gravitational
waves more efficiently.

In this paper, we show such an efficient method which may be applicable for LISA data analysis.

2 Gravitational waves from EMRIs

Gravitational waves from EMRI are well approximated by the black hole perturbation theory. The basic
equation of the black hole perturbation is the Teukolsky equation[1] which is a master equation for Weyl
scalars, Ψ4. The Weyl scalars are related to the amplitudes of gravitational wave as

Ψ4 → 1
2
(ḧ+ − i ḧ×), for r →∞. (1)

Teukolsky showed that the master equation can be separated into a radial and a angular part if we
expand Weyl scalars in Fourier-harmonic modes as

Ψ4 =
∑
�m

∫ ∞

−∞
dωe−iωt+imϕ −2Saω

�m(θ)R�mω(r). (2)

where the angular function −2Saω
�m(θ) is a spin-weighted spheroidal harmonic with spin s. The radial

function R�mω(r) satisfies radial part of the Teukolsky equation as

Δ2 d

dr

(
1
Δ

dR�mω

dr

)
− V (r)R�mω = T�mω. (3)
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The potential is given by

V (r) = −K2 − 2is(r −M)K
Δ

− 4isωr + λ, (4)

where K = (r2 + a2)ω −ma and λ is the eigenvalue of −2Saω
�m(θ).

We solve the radial Teukolsky equation using the Green function method. Then, the solutions of the
Teukolsky equation are derived as

R�mω(r) = Rup
�mω(r)Z∞�mω(r) + Rin

�mω(r)ZH
�mω(r), (5)

where R
in/up
�mω (r) satisfy ingoing/outgoing wave conditions at the horizon/infinity and

Z∞,H
lmω =

∫ ∞

−∞
dt ei[ωt−mφ(t)]I∞,H

lmω [r(t), θ(t)]. (6)

The function I∞,H
lmω [r(t), θ(t)] is constructed from the source term of the Teukolsky equation and depends

on the orbital worldline of the star perturbing the black hole spacetime. If the trajectory of the star is
eccentric and inclined from equatorial plane around a black hole, it is difficult to evaluate Eq. (6) because
integrand is multi periodic function and each mode couples. These problems comes from the fact that
radial motion and polar motion of the star couple in observer time. They can be solved by introducing
a new parameter of time[2, 3]. Then the geodesic equations of the star are given by(

dr

dλ

)2

=
[
(r2 + a2)E − aLz

]2 −Δ[r2 + (Lz − aE)2 + C] ≡ R(r),(
dθ

dλ

)2

= C −
[
(1 − E2)a2 +

L2
z

sin2 θ

]
cos2 θ ≡ Θ(θ),

dφ

dλ
=

a

Δ
[
E(r2 + a2)− aLz

]− aE +
Lz

sin2 θ
≡ Φr(r) + Φθ(θ),

dt

dλ
=

r2 + a2

Δ
[
E(r2 + a2)− aLz

]− a
[
aE sin2 θ − Lz

] ≡ Tr(r) + Tθ(θ), (7)

where E, Lz and C are the energy, the z-component of the angular momentum and the Carter constant
of a test particle respectively. Since the equations of radial and polar motion are decouple with time
parameter λ, the radial and the polar motion are independently periodic functions. The frequencies are
given by

2π
Υr

= 2
∫ rmax

rmin

dr√
R(r)

,
2π
Υθ

= 4
∫ θmin

0

dθ√
Θ(θ)

. (8)

Here, Υr and Υθ are the frequency of the radial and the polar motion respectively. The frequencies of
the time and the azimuthal motion are also derived respectively as

Γ ≡ 1
2π

∫ 2π

0

dwθ Tθ

[
θ(wθ)

]
+

1
2π

∫ 2π

0

dwr Tr [r(wr)] , (9)

Υφ ≡ 1
2π

∫ 2π

0

dwθ Φθ

[
θ(wθ)

]
+

1
2π

∫ 2π

0

dwr Φr [r(wr)] , (10)

where wr and wθ are action-angle variables for r and θ motion respectively.
Using new parameterization of time λ, we can evaluate Eq. (6) as

Z∞,H
lmω ≡

∑
kn

Z̃∞,H
lmknδ(ω − ωmkn) , (11)

where

Z̃∞,H
lmkn =

1
(2π)2

∫ 2π

0

dwθ

∫ 2π

0

dwr ei(kwθ+nwr) Z∞,H
lmωmkn

[r(wr), θ(wθ)], (12)
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and
ωmkn ≡ Υmkn/Γ ≡ (mΥφ + kΥθ + nΥr)/Γ . (13)

Computing Eq. (12), we can obtain gravitational wave forms and energy flux to infinity as

h+ − i h× = −2
r

∑
lmkn

Z∞lmkn

ω2
mkn

−2Saωmkn

lm (θ)√
2π

eiωmkn(r
∗−t)+imφ,

〈
dE

dt

〉∞
GW

=
∑
lmkn

|Z∞lmkn|2
4πω2

mkn

. (14)

3 An efficient numerical method and results

As explained in the previous section, we have to compute Eq. (12) in order to evaluate gravitational
waves. From the points of views of LISA data analysis, it is important to find efficient methods to
compute Eq. (12). In order to compute Eq. (12) efficiently, we compute the homogeneous solutions of
the Teukolsky equation with the formalism developed by Mano, Suzuki and Takasugi(MST)[4] and use
the trapezoidal rule to compute Eq. (12).

In MST formalism, the homogeneous solutions of the Teukolsky equation are expressed in terms of
two kinds of series of special functions. Although the application of this method was previously limited to
the analytical evaluation of the homogeneous solutions, Fujita and Tagoshi found that it was also useful
for numerical calculation[5] because the convergence of the homogeneous solutions are very rapid and the
accuracy of gravitational waves were achieved about machine accuracy. Then, we use trapezoidal rule to
compute Eq. (12) because the convergence of numerical integration of periodic function over one cycle is
very rapid and the accuracy is also very high if we use trapezoidal rule.

As a demonstration, we compute the energy fluxes of gravitational waves radiated to infinity and
compare with past results. We show our numerical results in Table 1, 2 and Fig. 3.

l |m| Fujita and Tagoshi(2005) This work Relative error
2 2 1.78401657716943627674× 10−2 1.78401657717214383314× 10−2 1.5× 10−12

3 3 1.07647967139507787920× 10−2 1.07647967139685510340× 10−2 1.7× 10−12

4 4 6.15270976286638737740× 10−3 6.15270976287798920801× 10−3 1.9× 10−12

5 5 3.62992493707918690085× 10−3 3.62992493685125290973× 10−3 6.3× 10−11

6 6 2.20229967982856367908× 10−3 2.20229967906702657834× 10−3 3.5× 10−10

7 7 1.36347483334188827007× 10−3 1.36347483181112750887× 10−3 1.1× 10−9

Table 1: Energy fluxes radiated to the infinity in the case of a circular and the equatorial orbit around
a Kerr black hole. In this table, the orbital radius is 1.55M and spin of the black hole is a = 0.99.
We compare our numerical results with the results of high precision calculation[5] which are about 13–
14 significant figures in double precision calculation. In order to check the accuracy of our numerical
code, we evaluate the energy fluxes by computing Eq. (??) with numerical integration though we can
compute it without numerical integration. These results shows that accuracy of our code is limited by
the accuracy of the numerical integration. In this case, we set the accuracy of the numerical integration
about 10 significant figures.

4 Summary

In this paper, we show an efficient numerical method to compute gravitational waves produced by a
particle orbiting around a Kerr black hole. We compute the homogeneous solutions of the Teukolsky
equation with the formalism developed by Mano, Suzuki and Takasugi and also evaluate Fourier mode of
gravitational waves with trapezoidal rule of numerical integration. Numerical accuracy and computational
time derived here are more useful for LISA data analysis than past works.

Future work is to develop our code for more general orbits such that the star move across the north and
south poles. At the same time, we evaluate gravitational waves including effects of adiabatic evolution of
orbital parameter by computing energy fluxes, angular momentum fluxes and change rate of the Carter
constants.
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e inclination Sago et al.(2006) This work Relative error
0.01 3◦ 6.211124676× 10−10 6.205511895774004× 10−10 9.0× 10−4

0.01 5◦ 6.211194911× 10−10 6.205582654583145× 10−10 9.0× 10−4

0.01 7◦ 6.211301135× 10−10 6.205687847727640× 10−10 9.0× 10−4

0.03 3◦ 6.268368982× 10−10 6.213139168623904× 10−10 8.8× 10−3

0.03 5◦ 6.268440256× 10−10 6.213210249941237× 10−10 8.8× 10−3

0.03 7◦ 6.268548068× 10−10 6.213315925452469× 10−10 8.8× 10−3

0.05 3◦ 6.382857572× 10−10 6.228283030987133× 10−10 2.4× 10−2

0.05 5◦ 6.382930950× 10−10 6.228354756012462× 10−10 2.4× 10−2

0.05 7◦ 6.383041917× 10−10 6.228461394314896× 10−10 2.4× 10−2

Table 2: Energy fluxes radiated to the infinity in the case of slightly eccentric and inclined orbit around
a Kerr black hole. In this table, the semilatus rectum is 100M and spin of the black hole is a = 0.9. We
compare the numerical results with analytical post-Newtonian expansions of the energy fluxes[6] which
truncate Taylor expansion to 2.5PN, v5, order. These results shows that accuracy of our code in the case
of eccentric and inclined orbits are consistent with the results of the analytical post-Newtonian expansion.
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n

dE/dt[2 2 0 n] for p=6M inclination=20
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e=0.3
e=0.5
e=0.7

Figure 1: Modal energy fluxes radiated to the infinity in the case of eccentric and inclined orbit around
a Kerr black hole. The mode indices are 	 = M = 2 and k = 0. In this figure, the semilatus rectum is
6M and spin of the black hole is a = 0.9. Computational time to calculate date for e = 0.7 in this figure
is about 10 seconds.
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Abstract
We formulate and calculate the second-order Quasi-Normal Modes (2nd-order QNMs)
of the Schwarzschild black hole (BH). We derive a master Zerilli equation for the
metric perturbations to 2nd-order and explicitly regularize it at the horizon and
spatial infinity. The 2nd-order QNM frequencies are found to be twice the first-order
ones, and the gravitational wave amplitude could go up to ∼ 10% of the 1st-order
one for the mergers of binary BHs. Since the 2nd-order QNMs always exist, their
detections could test the nonlinearity of the general relativity.

1 Introduction

In the 21 century, the gravitational waves (GWs) will open a new eye to the universe and also provide
a direct test of the general relativity. One of the most important GW sources are the Quasi-Normal
Modes (QNMs) of black holes (BHs) [1]. The QNMs represent perturbations of BH metrics that damp
due to the GW emission. It is important to study QNMs because we can determine the mass and angular
momentum of BHs by observing the QNM frequencies.

A promising source that excites QNMs is a merger of binary BHs. In these events we may detect
QNMs with high Signal-to-Noise Ratio (SNR) (e.g., SNR∼ 105 for ∼ 108M� BH mergers at ∼ 1Gpc by
LISA) [2] since a large fraction of energy (∼ 1–5%×M) is emitted as GWs of QNMs. (We use the units
c = G = 1.) Numerical simulations have recently succeeded in calculating the entire phase of BH mergers
[3], and found that the l = 2, m = 2 mode actually dominates, carrying away ∼ 1–5% of the initial rest
mass of the system.

In the BH mergers the BH deforms appreciably, so that the higher-order QNMs could be prominent.
As an order of magnitude estimate, if the GW energy is ∼ 1%×M , i.e.,

EGW ∼ [ψ(1)]2/M ∼ 1%×M, (1)

the relative amplitude of the metric perturbation is ψ(1)/M ∼ 10%, and hence the 2nd-order amplitude
goes up to [ψ(1)/M ]2 ∼ 1% (∼ 10% of the 1st-order amplitude), which is detectable for high SNR events
(i.e., the SNR of the 2nd-order QNMs is ∼ 10 if SNR∼ 100 for the 1st-order QNMs). The essence of
higher-order QNMs has already been discussed in “Mechanics” by Landau & Lifshitz [4] as an anharmonic
oscillation. In general, an oscillation with small amplitude x is described by an equation, ẍ + ω2x = 0,
which gives a solution, x = a cos(ωt + φ). Including the 2nd-order with respect to the amplitude, the
equation has a correction, ẍ + ω2x = −αx2, and so the solution is x = a cos(ωt + φ) + x(2) where

x(2) = −αa2

2ω2
+

αa2

6ω2
cos 2ωt ∝ a2. (2)

Here the first term has a frequency (ω−ω) and the second term has a frequency (ω+ω). The important
point is that the 2nd-order oscillation always exists and is completely determined by the 1st-order one.
Note also that the frequency does not have a correction at this order.

In this paper we formulate the method to calculate the 2nd-order QNMs of BHs for the first time. As
a first step we consider the Schwarzschild BH. We show that the 2nd-order QNMs appear at ω(2) = 2ω(1).
Since the 2nd-order QNMs always exist, their detections can be used as a new test of the general relativity.

1E-mail:ioka@tap.scphys.kyoto-u.ac.jp
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2 1st-order Zerilli equation

We consider the 2nd-order metric perturbation, g̃μν = gμν + h
(1)
μν + h

(2)
μν , where gμν is the background

Schwarzschild metric. Expanding the Einstein’s vacuum equation, we obtain basic equations order by
order [5].

For the 1st-order problem we use the Regge-Wheeler-Zerilli formalism [6, 7]. Separating angular
variables with tensor harmonics of indices (	,m), the equations decouple to the even (or polar) part
with parity (−1)� and the odd (or axial) part with (−1)�+1. We impose the Regge-Wheeler (RW) gauge
conditions. Seven equations for the even part can be reduced to a single Zerilli equation for a function
ψ(1)(t, r), and the other three equations for the odd part to a single RW equation.

The Zerilli equation is given by[
− ∂2

∂t2
+

∂2

∂r2∗
− VZ(r)

]
ψ(1)(t, r) = 0, VZ(r) =

2λ2(λ + 1)r3 + 6λ2Mr2 + 18λM2r + 18M3

r3(λr + 3M)2

(
1− 2M

r

)
, (3)

where r∗ = r+2M ln
(

r
2M − 1

)
and λ = (	−1)(	+2)/2. All 1st-order perturbations can be reconstructed

from ψ(1)(t, r). If ψ(1)(t, r) is Fourier analyzed, ψ(1)(t, r) =
∫
e−iωtψ

(1)
ω (r)dω, the Zerilli equation gives a

one-dimensional scattering problem with a potential. The QNMs are obtained by imposing the boundary
conditions with purely ingoing waves ψ(1)

ω (r) ∼ e−iωr∗ at the horizon and purely outgoing waves ψ(1)
ω (r) ∼

eiωr∗ at infinity. Such boundary conditions are satisfied at discrete QNM frequencies, which are complex
with the real part representing the actual frequency of the oscillation and the imaginary part representing
the damping. There is an infinite number of QNMs for each harmonic index 	.

In the following we only consider the 	 = 2,m = ±2 even mode as the 1st-order perturbations because
this mode dominates for binary BH mergers. Note that we need to specify m when we consider the
2nd-order perturbations. The first three QNM frequencies for 	 = 2 are [11]

Mω
(1)
�=2,n=0 = 0.37367168441804183579349200298− 0.08896231568893569828046092718i,

Mω
(1)
�=2,n=1 = 0.34671099687916343971767535973− 0.27391487529123481734956022214i,

Mω
(1)
�=2,n=2 = 0.30105345461236639380200360888− 0.47827698322307180998418283072i.

3 2nd-order Zerilli equation

For the 2nd-order perturbations, we also separate angular variables by tensor harmonics and choose the
RW gauge. We introduce a function

χ(2)(t, r) =
r − 2M
λr + 3M

[
r2

r − 2M
∂K(2)(t, r)

∂t
−H

(2)
1 (t, r)

]
, (4)

where we note that χ(1)(t, r) = ∂ψ(1)(t, r)/∂t is satisfied for the 1st-order perturbations, and the dimen-
sions are ψ(t, r) ∼ O(M) and χ(t, r) ∼ O(M0). All 2nd-order perturbations can be reconstructed from
χ(2)(t, r). The equations for the even mode is reduced to a Zerilli equations with a source term,[

− ∂2

∂t2
+

∂2

∂r2∗
− VZ(r)

]
χ(2)(t, r) = S(t, r), (5)

where the source term S(t, r) is quadratic in the 1st-order perturbations.
We are sufficient to consider the 	 = 4, m = ±4 even mode for the 2nd-order perturbations if the

dominant 1st-order perturbations are the 	 = 2, m = ±2 even mode, as shown below. The source term
may contain products, (	 = 2,m = 2) × (	 = 2,m = 2), (	 = 2,m = −2)× (	 = 2,m = −2), (	 = 2,m =
−2) × (	 = 2,m = 2) and (	 = 2,m = 2) × (	 = 2,m = −2). Then the source term has m = 0,±4
modes. Only 	 = 4 modes can make m = ±4. We can find that the m = 0 source does not depend on
time because of the symmetry ωl,m = −ωl,−m, and hence this mode is not related to GWs. Note that
the source terms for l = 2 axisymmetric perturbations are obtained by [8, 9], although these are not
dominant terms for binary BH mergers.
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4 Regularization

Although it is straightforward to calculate the 	 = 4, m = ±4 source term S(t, r) in terms of ψ(1)(t, r),
the raw expression S(t, r) does not behave well at infinity and it is useless for numerical calculations. We
can find S(t, r) ∼ O(r0) at infinity because the 1st-order function behaves as

ψ(1)(t, r) =
1
3
F ′′I (t− r∗) +

1
r
F ′I(t− r∗) +

1
r2

[FI(t− r∗)−MF ′I(t− r∗)] + O(r−3), (6)

where FI(x) is some function. We have to make at least S(t, r) ∼ O(r−2) [i.e., the same order of the
potential VZ(r) ∼ O(r−2)] by some regularization. At horizon the source behaves well, S(t, r) ∼ O(r0),
since

ψ(1)(t, r) = F ′H(t + r∗) +
1
4
FH(t + r∗)

M
+

27
56

FH(t + r∗)
M2

(r − 2M) + O[(r − 2M)2], (7)

where FH(x) is some function.
We can regularize the source term by using the regularized function,

χ(2)reg(t, r) = χ(2)(t, r)−
√

70
126
√
π

(r − 2M)2

r

(
∂

∂r
ψ(1)(t, r)

)
∂2

∂r∂t
ψ(1)(t, r), (8)

which satisfies the Zerilli equation (5) with a well-behaved source term, i.e., Sreg(t, r) ∼ O(r−2) at infinity
and Sreg(t, r) ∼ O[(r − 2M)] at horizon. Note that such a regularization is not unique, and for example
we can replace ∂/∂r with ∂/∂t in Eq. (8). The regularization is equivalent to adding quadratic terms in
the 1st-order gauge invariant function to the 2nd-order gauge invariant function, so that it preserves the
gauge invariance [10].

The explicit expression for the regularized source term is given by

Sreg(t, r) =
r − 2M

42

√
70√
π

{
1

r6 (M + 3 r)2 (2 r + 3M)3
(−72 r8 − 3936 r7M − 2316 r6M2

+ 2030 r5M3 + 7744 r4M4 + 9512 r3M5 + 3540 r2M6 + 1119 rM7 + 144M8
)
ψ′ψ̇

− 1
r3 (M + 3 r)2 (2 r + 3M)2 (−r + 2M)2

(
48M7 + 237 rM6 − 77 r2M5 − 120 r3M4

+ 771 r4M3 + 872 r5M2 − 344 r6M − 24 r7
)
ψ̈ψ̇

−
(−66 r4 + 106Mr3 + 220M2r2 + 156M3r + 45M4

)
r (M + 3 r)2 (2 r + 3M) (−r + 2M)

ψ̈′ψ̇

+
3

r7 (2 r + 3M)4 (M + 3 r)2
(−2160 r9 − 11760 r8M − 30560 r7M2 − 41124 r6M3

− 31596 r5M4 − 11630 r4M5 + 1296 r3M6 + 4182 r2M7 + 1341 rM8 + 144M9
)
ψψ̇

− 1
r5 (M + 3 r)2 (2 r + 3M)2

(−228 r7 − 8 r6M + 370 r5M2 − 142 r4M3 + 384 r3M4

+ 514 r2M5 + 273 rM6 + 48M7
)
ψ̇′ψ′

+

(
24M5 + 127M4r + 458M3r2 + 664M2r3 + 318Mr4 − 198 r5

)
3 r2 (M + 3 r)2 (2 r + 3M) (−r + 2M)

···
ψψ′

+
2 (−r + 2M)M2

3 (M + 3 r)2 r2
ψ̈ψ̇′ − (4M + 7 r)

3 r
ψ̈′ψ̇′ +

(7 r + 4M) r
3 (r − 2M)2

···
ψ ψ̈

+
1

r6 (M + 3 r)2 (2 r + 3M)3
(−216 r8 − 4296 r7M − 1992 r6M2 + 3488 r5M3

+ 8716 r4M4 + 9512 r3M5 + 3540 r2M6 + 1119 rM7 + 144M8
)
ψψ̇′

−
(
24M6 + 171 rM5 + 524 r2M4 + 730 r3M3 + 674 r4M2 + 636 r5M + 252 r6

)
r3 (M + 3 r)2 (2 r + 3M)2 (−r + 2M)

ψ
···
ψ

}
, (9)
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where ψ̇ = ∂ψ(1)(t, r)/∂t, ψ′ = ∂ψ(1)(t, r)/∂r etc. We can find that the source term is quadratic in
ψ(1)(t, r) ∼ e−iωt and hence the 2nd-order perturbations have a form χ

(2)
reg ∼ e−2iωt. Therefore the 2nd-

order QNMs have frequencies at ω(2) = 2ω(1). Since the 2nd-order frequencies are not different from the
1st-order ones, we can in principle identify the 2nd-order QNMs.

5 Discussions

With the regularization in Eqs. (8) and (9) and Fourier expansions, the 2nd-order Zerilli equation (5)
provides a two-point boundary value problem. However a simple numerical integration like Runge-
Kutta method fails because the outgoing waves ∼ e−iω(t−r∗) diverge at infinity and the ingoing waves
∼ e−iω(t+r∗) diverge at horizon since Im ω < 0 (QNMs damp). Furthermore, since the irregular singularity
is at r = ∞, an expansion around r = ∞ is not well-behaved. To overcome these problems, we modify
the Leaver’s method, which transforms the RW’s differential equation to algebraic recurrence equations
for the 1st-order [11]. (We use a Chandrasekhar transformation to make the Zerilli equations to the
RW ones [12].) For the 2nd-order case, the recurrence equations have source terms, which we first
calculate algebraically by Maple or Mathematica and then evaluate numerically. Once the source terms
are obtained numerically we can solve the recurrence equations. More details will be presented elsewhere.

The solutions for the Zerilli equations do not directly give us the observed GW amplitude since the
RW gauge is not asymptotically flat (AF). In order to calculate the observed GW amplitude we have to
make a transformation from the RW gauge to a gauge that is AF. This is straightforward and will be
presented elsewhere.

In order to verify that the 2nd-order QNMs actually exist, we have to not only demonstrate numerical
calculations of 2nd-order QNMs directly but also formulate a mathematically rigorous definition of 2nd-
order QNMs [1]. Direct numerical calculations of 2nd-order QNMs may be challenging because the mesh
size should be less than ∼ 1%M to resolve ∼ 1% metric perturbations. This requires more than (103)3

meshes if we use a simulation box of size > (10M)3 to cover several GW lengths.
We also have to show that the 2nd-order QNMs can be actually detected when the 1st-order QNMs

are present in the GW analysis. A correlation between the 1st and 2nd-order QNMs may reduce the
detected SNR. Future problems include the odd mode case, the Kerr BH case, and the 3rd-order QNM
case. The odd mode appears when BHs have spin before mergers. A correction to the QNM frequencies
will appear at the 3rd-order according to the analysis of an anharmonic oscillation [4].
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Quasinormal ringing of acoustic black holes
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Abstract
The quasinormal modes of acoustic black holes in Laval nozzles are discussed. The
equation for sound waves in transonic flow is rewritten into a Schrödinger-type equa-
tion with a potential barrier, and quasinormal frequencies are calculated by the WKB
method. The results of numerical simulations show that the quasinormal modes are
excited when the background flow in the nozzle is externally perturbed, as well as in
the real black hole case. Also, we discuss how the quasinormal modes change when
the outgoing waves are partially reflected at the boundary. It is found that the par-
tially reflected quasinormal modes damp more slowly than the ordinary ones. Using
this fact, we propose an experimental setup for detecting the quasinormal ringing of
an acoustic black hole efficiently.

1 Introduction

When the geometry around a black hole is slightly perturbed, a characteristic ringdown wave is emitted.
This kind of phenomenon is known as quasinormal ringing, which is expressed as a superposition of quasi-
normal modes, The central frequencies and the damping times of the quasinormal modes are determined
by the geometry around the black hole, and thus the gravitational quasinormal ringing of a black hole is
expected to play the important role of connecting gravitational-wave observation to astronomy.

Although quasinormal modes are themselves linear perturbations, they are in many cases excited
after a nonlinear oscillation of a black hole, such as the black hole formation by the coalescence of the
binary neutron stars. Therefore, when we want to study the excitation of the quasinormal modes in
such a complicated situation, we have to resort to numerical relativity, which needs extremely powerful
computatioal resources.

Here we present an alternative way for studying the quasinormal ringing of black holes by using a
transonic fluid flow, called an acoustic black hole [2, 5]. In a transonic flow, sound waves can propagate
from the subsonic region to the supersonic region, but cannot in the opposite way. Therefore, the sonic
point of a transonic flow can be considered as the “event horizon” for sound waves, and the supersonic
region as the “black hole region”. Furthurmore, it is shown that the wave equation for a sound wave
in an inhomogeneous flow is precisely equivalent to the wave equation for a massless scalar field in a
curved spacetime [2]. This implies that an acoustic black hole has the quasinormal modes, which makes
it possible for us to study the quasinormal ringing of black holes in laboratories.

In this paper, we show some results of out numerical simulations to prove that the quasinormal ringing
of sounds occurs actually , and propose a feasible way to demonstrate QN ringing in a laboratory. For
future experiments in laboratories, we treat one of the most accessible models of acoustic black holes:
transonic airflow in a Laval nozzle [3]. A Laval nozzle is a wind tunnel that is pinched in the middle, and
makes it possible to create a stable transonic flow in a laboratory.

A quasinormal mode is characterized by a complex frequency (called quasinormal frequency) ωQ, or
equivalently, a pair of the central frequency fc ≡ Re(ωQ)/2π and the quality factor Q ≡ |Re(ωQ)/2Im(ωQ)|.
The quality factor is a quantity that is propotional to the number of cycles of the oscillation within the
damping time. In experiments, damping oscillation like quasinormal ringing is inevitably buried in noise
within a few damping times. Therefore, in order to detect quasinormal ringing efficiently, it is important
to design a Laval nozzle which gives large quality factor.

We also discuss the quasinormal modes when the outgoing waves arepartially reflected at the boundary.
In this situation, the quasinormal modes are found to decay more slowly than in the case where the
reclection at the boundary does not occur.

1E-mail:okuzumi phys@ybb.ne.jp
2E-mail:sakagami@grav.mbox.media.kyoto-u.ac.jp
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K α ωQ [cs0/L]
(1st WKB) (2nd WKB) (3rd WKB)

2 0.1 2.10− 0.85i 1.78− 1.01i 1.73− 0.91i
0.03 3.00− 0.99i 2.65− 1.11i 2.61− 1.02i
0.01 4.00− 1.20i 3.57− 1.34i 3.54− 1.26i
0.003 5.44− 1.57i 4.86− 1.76i 4.83− 1.68i

4 0.1 3.36− 1.25i 3.09− 1.36i 3.15− 1.48i
0.03 4.24− 1.14i 4.10− 1.17i 4.12− 1.23i
0.01 5.02− 1.10i 4.86− 1.13i 4.85− 1.09i
0.003 5.91− 1.15i 5.69− 1.20i 5.66− 1.09i

Table 1: The quasinormal frequency ωQ of the least-damped mode for different Laval nozzles, calculated
by the third order WKB formula [7]. To show the convergence, the first lower order WKB values are also
shown.

2 Quasinormal Modes of Acoustic Black Holes in Laval Nozzles

In what follows, we assume that flow in the nozzles is isentropic and one-dimensional. Thus, the wave
equation for sound reads [(

∂t + ∂xv
)ρA
c2s

(
∂t + v∂x

)
− ∂x(ρA∂x)

]
φ = 0 , (1)

where ρ, v, cs, A, φ are the background density and fluid velocity, the speed of sound, the cross section
of the nozzle, and the vecocity potential perturbation. Note that cs depends on the background state,
and is therefore a function of x.

Assuming steady background, the wave equation of sound (1) can be rewritten into the form of Eq. (2):

[
d2

dx∗2
+
( ω

cs0

)2
− V (x∗)

]
Hω = 0, V (x∗) =

1
g2

[
g

2
d2g

dx∗2
− 1

4

( dg

dx∗
)2 ]

, (2)

where x∗ = cs0

∫
dx

cs(1−M2) , M = v/cs, g = ρA/cs, Hω(x∗) = g
1
2 eiωF (x)

∫
eiωtφ(t, x)dt, and F (x) =∫

v dx
c2
s(1−M2) . Here we have also introduced the stagnation speed of sound cs0, which is constant over the

isentropic region of the flow.
In this study, we consider a family of Laval nozzles which have the following form:

A(x) = π r(x)2 , (3)
r(x) = r∞ − r∞(1− α) exp[−(x/2L)2K ] , (4)

where K is a positive integer and α ≡ r(0)/r∞ ∈ (0, 1).
Having obtained the form of the potential V (x∗), we can compute quasinormal frequencies by solving

the Schrödinger-type wave equation (2) under the outgoing boundary conditions. In this study, we adopt
the WKB approach, which was originally proposed by Schutz and Will [6] and has been developed in
some works [7, 8].

Table 1 shows the least-damped quasinormal frequency ωQ for Laval nozzles with different (K,α) up
to the 3rd order WKB values. We have found that the WKB method converge well for K > 1. It is noted
that fc ∼ cs0/L and 1 <∼ Q <∼ 3.

3 Numerical Simulations

In the case of astrophysical black holes, quasinormal ringing occurs when a black hole is formed or when
a test particle falls into a black hole. Hence, let us consider analogous situations for our acoustic black
holes: (i)acoustic black hole formation and (ii)weak-shock infall. In simulations of type (i), the initial
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Figure 1: The numerical waveforms v̇(t) obtained by numerical simulations of acoustic black hole for-
mation (left) and weak-shock infall (right). In both simulations, the nozzle parameters are set to
(K,α) = (4, 0.01), which give the peak of the potential V (x∗) at x = 0.632, and the observer is lo-
cated at x = 2.0. Each waveform is compared to the analytic waveform of the damping oscillaton (dotted
line) with the 3rd WKB value of the least-damped quasinormal mode frequency, ωQ = 3.54− 1.26i.

state of the flow in the nozzle is set to be steady and homogeneous. At time t = 0, a sufficiently large
pressure difference is set between both ends of the nozzle, and the fluid in the nozzle starts to flow.
In type (ii), the initial state is set to stationary transonic flow. At t = 0, the upsteream pressure is
slightly raised, and a weak shock starts to fall into the sonic horizon. In both cases, we observe sound
waves emitted from the potential barrier at a fixed position until the flow sufficiently settles down into a
stationary transonic state.

In Fig. 1(a), the waveform observed in a numerical simulation of type (i) is plotted. For t <∼ 11L/cs0,
nonlinear oscillation dominates, which corresponds to the “merger phase” oscillation in real black hole
formation. At t � 11L/cs0, the background state begins to settle down into the statonary transonic state,
and the oscillation enters into the ringdown phase. In this phase, the numerical waveform agrees in good
accuracy with the analytic waveform of the least-damped quasinormal mode obtained by the third order
WKB analysis. We have also performed some simulations of type (ii), and obtained the similar results,
except that the nonlinear phase does not exist in the case (see Fig. 1(b) ).

4 Effect of Reflection at the Boundary

It turns out from our numerical simulations that the quality factor for the quasinormal ringing of our
acoustic black holes is typically 1 <∼ Q <∼ 2. This means that the ringing oscillates by only a few cycles
before it is substantially buried in noise. Thus, if one wants to observe it in experiments, this feature is
quite unfavorable.

Now let us consider that the upstream tank has a finite length and the outgoing waves are partially
reflected at the boundary wall of the tank. The existence of the reflection at the boundary effectively
generalize the boundary condition for quasinormal modes. Assuming the boundary is located at x = xc,
the generalized boundary conditions are

Hω(x∗) ∼ e−i ω
cs0

x∗ , x∗ → −∞, (5)

Hω(x∗) ∼ e+i ω
cs0

(x∗−x∗c) +Rω e−i ω
cs0

(x∗−x∗c), x∗ → x∗c , (6)

where Rω ∈ [−1, 1] is the reflection coefficient of the boundary wall. Sicne the solutions of the wave
equation (2) with these boundary conditions are in a narrow sense no more the quasinormal modes, we
shall refer to them as the Partially Reflected QuasioNormal Modes (PRQNMs).

Under the third order WKB approximation, the frequencies of PRQNMs ωPQ are given by the solutions
of simultaneous equations

(2π)1/2

R(ν)2Γ(−ν)
= Rω exp[iπν + 2i

ω

cs0
Δω], (7)( ω

cs0

)2
= V (x∗0) +

(−2V ′′(x∗0)
) 1

2 Λ̃(ν)− i
(
ν +

1
2

)(−2V ′′(x∗0)
) 1

2
(
1 + Ω̃(ν)

)
, (8)
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R ωPQ [cs0/L] R ωPQ [cs0/L]
0 3.54− 1.26i 0 3.54− 1.26i
10−4 3.46− 1.20i −10−4 3.64− 1.22i
10−3 3.39− 1.01i −10−3 3.72− 1.01i
0.01 3.35− 0.73i −0.01 3.76− 0.73i
0.1 3.34− 0.41i −0.1 3.76− 0.42i
1.0 3.38− 0.05i −1.0 3.72− 0.14i

Table 2: The least-damped PRQNMs ωPQ for nozzle parameters (K,α) = (2, 0.01) and different values
of R, calculated by using the 3rd WKB formulae, Eqs. (7) and (8). The position of the half mirror, or
contact surface, is set to xc = 3.0.

where Γ(−ν) is the Gamma function, and Δω is the distance between the half mirror and the classical
turning point on the potential barrier. The functions R(ν), Λ̃(ν) and Ω̃(ν) are shown in [7]. Note that,
for Rω ≡ 0, Eq. (7) gives ν = 0, 1, 2, ..., which results the ordinary quasinormal mode case.

Table 2 shows how the frequency of the least-damped PRQNM ωPQ deviates from the ordinary
quasinormal frequency ωPQ depending onR. It is clear that Im(ωPQ) decreases drastically as R increases,
although Re(ωQ) does not vary greatly with R. This means that the reflection at the boundary enhances
the quality factor of the quasinormal ringing. This fact is intuitively understandable if one notes that
Im(ωQ) represents the energy dissipation rate, while Re(ωQ) characterizes the curvature of the background
geometry. A partially-reflecting boundary wall suppress the dissipation of wave energy to infinity, but
does not directly deform the background geometry.

5 Conclusion

We have analyzed the quasinormal modes of transonic fluid flow in Laval nozzles by WKB calculations and
numerical simulations, and shown that the quasinormal ringing does arise in responce to some external
perturbation. We have also argued the effect of a boundary wall which reflects the outgoing waves on
quasinormal modes, and found that the existence of such a wall enhances the damping time of the ringing.

The results of our numerical study suggests a effective experimental setup for detecting the quasinor-
mal ringing of transonic airflow in a laboratory. First, prepare a Laval nozzle and an air tank which is
filled with sufficiently high-pressure air, and connect them with a shock tube. Then, remove a diaphragm
in the shock tube to generate a transonic flow in the nozzle, and observe the sound waves coming out
of the nozzle until the background flow sufficiently settles down. In this situation, the damping time of
the quasinormal ringing will be enhanced in the upstream air tank, which will make the detection of the
ringdown wave easier.

We are grateful to S. Inutsuka for providing his Riemann solver code and introducing us to computa-
tional fluid dynamics. We also thank to R. A. Konoplya for sharing with us the higher order WKB code
and making important comments on the WKB approach.
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Abstract
We consider the growth of black holes due to mass accretion in a universe containing a
scalar field or a quintessence field. The latter is especially motivated by the currently
accelerating universe which is strongly suggested by several cosmological observations.
We take the cosmological expansion into account in general relativity. We show that
there is no self-similar black hole solution surrounded by an exact or asymptotically
flat Friedmann background containing a massless scalar field. This applies even if
there is a scalar potential, as in the quintessence scenario. This extends the result
previously found in the perfect fluid case. It also contradicts recent claims that such
black holes can grow appreciably by accreting quintessence.

1 Introduction

For a stationary black hole in an asymptotically flat vacuum spacetime in the Einsteinian gravity, the
spacetime is uniquely given by the Kerr solution. This is called the black hole uniqueness theorem. This
means that under these assumptions, the properties of the Kerr solution must be the properties of general
black holes. However, our universe is expanding and filled with matter fields. Hence, realistic black holes
would not be in vacuum. They exist in the expanding universe and hence are not asymptotically flat.
Moreover, they could accrete surrounding mass and hence grow in time. The Kerr solution will give
a very good approximation in some cases but not in the other. Here, we focus on the effects of the
expanding universe filled with matter fields on black hole dynamics. We would call black holes in an
expanding universe cosmological black holes to put an emphasis on this particular aspect of astrophysical
black holes.

Among cosmological black holes, primordial black holes have been intensively studied because of their
important roles as probes into the early universe, high energy physics, quantum gravity and relativistic
gravity in the expanding universe. See a recent review [2] for details and references therein. It should be
noted that the primordial black holes would have been born with the mass of the same order as the mass
contained within the cosmological horizon at the formation epoch.

2 Accretion onto cosmological black holes

The problem of accretion rate or growth rate of black holes in the expanding universe was studied
about forty years ago [3]. This discussion based on the Newtonian gravity was recently refined and
generalised [4]. The mass growth rate is given by

dM

dt
= 4παr2AcsρFRW(t) � GM2

c3t2
, (1)

where rA ≡ GM/c2s is the accretion radius and α is a constant of order unity which depends on the
equation of state. This equation can be easily integrated. Then, we can find a critical mass of the same
order as the horizon mass, which divides the evolution of black hole mass qualitatively. If the initial mass
is smaller than this critical value, the accretion soon becomes insignificant. If the initial mass is equal to
the critical value, the solution is self-similar and the mass of the black hole grows in proportion to the
cosmological time due to the effective accretion. If the initial mass is larger than the critical value, the

1E-mail:harada@rikkyo.ac.jp
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mass accretion is so significant that the mass of the black hole diverges in a finite time, which would be
unphysical. It should be noted that the existence of self-similar solution plays a key role for this analysis.

The general relativistic numerical simulation strongly suggests that the growth of black holes in the
universe containing a scalar field is not significant [5]. On the other hand, the above quasi-Newtonian
discussion of black hole growth has been applied to a quintessence field [6], a scalar field which slowly
roles down its flat potential and enables the universe to accelerate due to its large negative pressure.
Then, based on the equation analogous to Eq. (1), it has been claimed that the accretion onto black
holes could be so significant in the quintessence-dominated era preceding the radiation-dominated era
that primordial black holes may provide the seeds for the formation of supermassive black holes in the
galactic nuclei.

3 Non-existence of cosmological self-similar black holes

Indeed, it was shown that there is no self-similar solution of the Einstein field equation which contains
a black hole event horizon in the expanding universe with a dust, radiation fluid [7], a perfect fluid for
p = kρ (0 < k < 1) [8] or a stiff fluid (p = ρ) [9]. However, it has not yet been clear whether a self-similar
black hole can exist or not in an accelerating universe. Because the accelerating universe is strongly
favoured by the recent observational data, it would be very important to answer this question.

The self-similar (homothetic) spacetime is defined by the existence of a vector field ξ satisfying

Lξgab = 2gab. (2)

We here consider a scalar field as a matter field because it very often appears in many aspects of modern
cosmology and also provides one of the simplest and physically reasonable model to accelerate the universe.
It is remarkable that, from self-similarity assumption, the scalar field is restricted to be massless or with
a potential of the following exponential form:

V (φ) = V0e
√
8πλφ, (3)

which is parametrised by λ. Here we assume the potential is not negative. For the flat Friedmann
solution, the scalar field with the exponential potential can accelerate the universe if 0 < λ2 < 2 and
hence can be regarded as a quintessence model.

With the assumption of self-similarity and spherical symmetry, the line element is given in the form:

ds2 = −g(r/v)ḡ(r/v)dv2 + 2g(r/v)dvdr + r2(dθ2 + sin2 θdφ2), (4)

in the Bondi coordinates. A similarity surface Σ is defined as a surface on which r/v=const. A similarity
horizon is defined as a null similarity surface on which ξ is also null. A similarity horizon can be identified
with an event horizon or a particle horizon. Figure 1 gives the schematic diagram of a possible self-similar
black hole embedded into the flat Friedmann universe.

The Einstein equation reduces to the set of ordinary differential equations (ODEs) with respect to
ξ = ln(r/|v|). The characteristic surfaces correspond to the singular points of the ODEs, as do in the case
of a perfect fluid of p = kρ (0 < k < 1). They are classified into nodes, saddles and foci as equilibrium
points in dynamical systems theory. Figure 2 illustrates a node and a saddle. The uniqueness may break
down at the singular points. The non-existence of black hole solution even with an exact Friedmann
exterior is therefore highly nontrivial. Moreover, the singular points coincide with similarity horizons for
the scalar field case.

We have proved the following non-existence theorem.

Theorem 1 Let a spherically symmetric self-similar spacetime with a scalar field satisfy one of the
following two conditions: (a) it coincides with the flat Friedmann solution outside some finite radius; (b)
it is asymptotic to the decelerating Friedmann solution at spatial infinity. Then it has no black hole event
horizon.

The sketch of the proof is the following. For the massless case and the decelerating potential case, the
Friedmann particle horizon corresponds to a nodal point. In this case, we can show the monotonicity of
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z by investigating the ODEs. For the accelerating potential case, the flat Friedmann universe does not
have a particle horizon but a cosmological event horizon. This cosmological event horizon corresponds
to a saddle point. We can match only the Friedmann solution or the pure shock-wave solution with the
Friedmann exterior. The shock-wave solution cannot be an interior solution. See [1] for the details of the
proof.

4 Summary

There is no self-similar black hole in a flat Friedmann universe containing a scalar field or quintessence
field. This strongly suggests that the accretion onto black holes in the quintessence-dominant phase is not
very effective even for horizon-scale black holes. However, recall that we have here adopted two nontrivial
assumptions. One is that a scalar field is responsible for the acceleration of the universe and the other
is that the universe is described exactly by the flat Friedmann solution outside some finite radius for
the accelerating case. It would be interesting to relax these assumptions and see whether the conclusion
changes or not. Finally, it should be cautioned that there could exist a self-similar black hole in a very
contrived situation where a massless scalar field is suddenly converted to a null dust [9]. This means that
it is impossible to prove non-existence with energy conditions alone.
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Nonequilibrium Phenomena in Black Hole Evaporation

Hiromi Saida1

Department of Physics, Daido Institute of Technology, Minami-ku, Nagoya 457–8530, Japan

Abstract
While the black hole formation (gravitational collapse) has been studied well in detail,
the black hole evaporation has not been studied in detail. When a black hole evap-
orates, there arises a net energy flow from black hole into its outside environment.
The existence of energy flow means that the thermodynamic state of the whole sys-
tem, which consists of a black hole and its environment, is in a nonequilibrium state.
Therefore, in order to study the detail of evaporation process, the nonequilibrium
effects of the energy flow should be taken into account. Using the nonequilibrium
thermodynamics which has been formulated recently, this report shows the follow-
ing: (1) the negative heat capacity of black hole gives the physical essence of the
generalized 2nd law of black hole thermodynamics, (2) nonequilibrium effects of the
energy flow tends to make the time scale of black hole evaporation be shorter, and
consequently specific nonequilibrium phenomena are suggested.
This report is a brief summary of three papers [4], [5] and [6].

1 Challenge to nonequilibrium nature of black hole evaporation

The black hole evaporation is one of interesting phenomena in black hole physics. Because a direct treat-
ment of time evolution of the evaporation process suffers from mathematical and conceptual difficulties
(e.g. dynamical Einstein eq., quantum expectation value of stress tensor, definition of dynamical horizon
and so on), an approach based on the black hole thermodynamics [1] is useful. There are two important
issues of black hole evaporation from thermodynamic viewpoint; the generalized 2nd law (GSL) [2] and
the black hole phase transition [3] (black hole evaporation in a heat bath). Although the black hole
evaporation is a dynamical/nonequilibrium process (see abstract), the existing approaches to those issues
have been based on equilibrium thermodynamics. Because of the lack of complete nonequilibrium ther-
modynamics, the physical essence of GSL has remained unclear, and few analyses have been done about
the black hole evaporation under the effects of interactions with the outside environment around black
hole. That is, the study of nonequilibrium nature of black hole evaporation is the challenging topic. Then,
for the first, we need to construct a nonequilibrium thermodynamics [4] suitable to the nonequilibrium
nature of black hole evaporation. (Hereafter Planck units are used, c = h̄ = G = kB = 1.)

2 Basic consideration and Steady state thermodynamics (SST)

According to the black hole thermodynamics [1], a stationary black hole can be treated as a black body.
For simplicity, let us consider a Schwarzschild black hole. Its equations of states as a black body are

Eg =
1

8πTg
=

Rg

2
, Sg =

1
16πT 2

g

= πR2
g , (1)

where Eg is mass energy, Rg is areal radius of horizon, Tg is the Hawking temperature, and Sg is the
Bekenstein-Hawking entropy. It is obvious that the heat capacity of a black hole is negative, Cg =
dEg/dTg = −1/8πT 2

g = −2πR2
g < 0. The negative heat capacity is a peculiar property to self-gravitating

systems. Therefore the equations of states (1) encode well the self-gravitational effects of black hole on
its own thermodynamic state.

As mentioned abstract, the nonequilibrium nature arises in the matter fields around black hole due
to energy flows by Hawking radiation and by matter accretion from the outside environment into the
black hole. For simplicity, let us consider massless free fields as the matter field of Hawking radiation and

1E-mail: saida@daido-it.ac.jp
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accretion. Here note that the study on nonequilibrium phenomena is one of the most difficult subjects in
physics, and it is impossible at present to treat the nonequilibrium nature of black hole evaporation in a
full general relativistic framework. Hence we resort to a simplified model which reflects the nonequilibrium
effects of energy exchange between a black hole and its environment [6]:

Nonequilibrium Evaporation (NE) model: Put a spherical black body of temperature Tg in a heat
bath of temperature Th(< Tg), where the equations of states of the black body is given by eq.(1)
and we call the black body the black hole. Let the heat bath be made of ordinary materials of
positive heat capacity. Then hollow a spherical region out of the heat bath around the black hole.
The hollow region is a shell-like region which is concentric with the black hole and separates the
black hole and the heat bath, and filled with matter fields emitted by them. Further, in order to
make it valid to utilize the “equilibrium (static)” equations of states (1), we assume the following:

Quasi-equilibrium assumption: Time evolution in the NE model is not so fast that the thermody-
namic states of black hole and heat bath at each moment of their evolution are approximated well
by equilibrium states individually. That is, the time evolution of black hole is expressed as that
its thermodynamic state changes along a sequence of equilibrium states in the state space during
the time evolution of the whole system. The same is true of the heat bath. (Recall a quasi-static
process in ordinary thermodynamics). Then, it is valid to use the eq.(1) of a Schwarzschild black
hole. And, since Schwarzschild black hole is not a quantum one, the relation Rg > O(1) is required.

It should be noted that, the temperature difference (Tg > Th) causes a net energy flow from the black
hole to the heat bath (a relaxation process). This relaxation process describes the black hole evaporation
process in the framework of NE model.

Hereafter we assume for simplicity that the matter fields in the shell-like hollow region of NE model are
massless non-self-interacting fields (gas of collisionless particles), and call the matter fields the radiation
fields. When the number of independent helicities in radiation fields is N , then the Stefan-Boltzmann
constant becomes σ = Nπ2/120 (N = 2 for photon). Note that, due to the quasi-equilibrium assumption
(Rg > O(1)), the NE model describes a semi-classical stage of evaporation, Tg < 1. Therefore it is
appropriate to evaluate N by the number of independent states of standard particles (quarks, leptons
and gauge particles of four fundamental interactions), N = O(10).

In the hollow region, the nonequilibrium state of radiation fields (at each moment of its time evolution)
are described by a simple superposition of a state of temperature Tg and that of Th, since the radiation
fields are collisionless gas. That is, the radiation fields are in a two-temperature nonequilibrium state
at each moment of time evolution. Because of the quasi-equilibrium assumption, the two-temperature
nonequilibrium state of radiation fields (at each moment of time evolution) can be described well by a
nonequilibrium state which possesses a stationary energy flow from the black hole to the heat bath. We
call this macroscopically stationary nonequilibrium state the steady state. Then the time evolution of
radiation fields is expressed as that the thermodynamic state of radiation fields changes along a sequence
of steady states in the state space. Hence, we need a thermodynamic formalism of two-temperature
steady states for radiation fields in order to analyze the black hole evaporation process in the framework
of NE model. The steady state thermodynamics (SST) has already been formulated, and the 0th, 1st,
2nd and 3rd laws are established in reference [4]. By the SST for radiation fields, the energy Erad and
entropy Srad of the radiation fields are given as

Erad =
∫

dx3 4σ
(
gg(�x)T 4

g + gh(�x)T 4
h

)
, Srad =

∫
dx3

16σ
3

(
gg(�x)T 3

g + gh(�x)T 3
h

)
, (2)

where �x is a spatial point in the hollow region, gg(�x) is given by the solid-angle (divided by 4π) covered
by the black hole seen from �x, and gh(�x) is that given by the heat bath. By definition, gg(�x)+ gh(�x) = 1.

3 Negative heat capacity is the essence of Generalized 2nd law

For simplicity, consider a black hole evaporation in an empty space. Then the black hole entropy Sg

decreases as the mass energy Eg decreases along the evaporation process. Then the generalized second law
(GSL) conjectures that the total entropy Stot = Sg +Sm increases (dStot > 0) as the evaporation process
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proceeds, where Sm is the entropy of matter fields of Hawking radiation. There are three candidates for
the physical origin of dStot > 0: (a) self-interaction of matter fields of Hawking radiation (collision of
particles and self-gravitational interaction), (b) gravitational interaction between black hole and matter
fields of Hawking radiation (curvature scattering, lens effect, gravitational redshift and so on), and (c)
the increase of temperature Tg along the evaporation process due to the negative heat capacity Cg < 0
(dEg < 0 ⇒ dTg = dEg/Cg > 0). In the existing proofs of GSL, all of these candidates are considered
and it has remained unclear which of these dominates over the others. If the GSL would be proven by
considering a situation keeping one of them and discarding the others, then we can conclude that the
one kept is the essence of GSL. In reference [5], it has been revealed that the third candidate (c) is the
essence of GSL. The outline of discussion in [5] is summarized as follows.

Let us consider about the candidates (a) and (b). The (a), self-interaction of matter fields of Hawking
radiation, denotes clearly the positive entropy production rate inside the matter fields. That is, the
self-relaxation (self-production of entropy) of the matter fields occurs due to the self-interactions. The
(b), gravitational interaction between the black hole and the matter fields, causes the relaxation of the
matter fields as well and the matter entropy is produced. Therefore, (a) and (b) give a positive entropy
production rate inside the matter fields of Hawking radiation. In other words, matter entropy increases
by (a) and (b) during propagating in the outside space of black hole. On the other hand, the candidate
(c), increase of black hole temperature Tg, does not cause the entropy production inside the matter fields
like (a) and (b). However the (c) denotes that the entropy of the matter fields just at the moment
of emission at the black hole horizon (“inherent” entropy of matter fields) increases as the black hole
evaporation process proceeds, because the temperature Tg of the “entropy source” increases. This is not
the self-production of entropy by matter fields, but the emission of entropy by the black hole.

The NE model includes (c) due to the equation of state (1), but not (a) because the radiation fields
are massless and non-self-interacting. Here recall that (b) causes a relaxation of matter fields. That
is, the heat bath in NE model can be understood as a very simple and rough model representing (b).
Therefore, the black hole evaporation which reflects only (c) can be obtained by removing the heat bath
from the NE model and makes the radiation fields spread out into an infinitely large space (black hole
evaporation in empty space). Then the total entropy Stot = Sg + Srad is calculated concretely using Sg

in eq.(1) and Srad in eq.(2). Finally dStot > 0 is found and it is concluded that (c) is the essence of GSL.

Conclusion by [5]: It is not the interactions of matter fields around black hole, but the self-gravitation
of the black hole (negative heat capacity) which guarantees the validity of GSL.

4 Black hole evaporation interacting with outside environment

In general, a black hole evaporation proceeds under the effects of interactions with the outside environment
around black hole (e.g matter accretion, curvature scattering and so on). The heat bath in NE model
can be considered as a simple model of such interactions, and it is expected that the analysis of time
evolution of NE model gives a thermodynamic understanding of black hole evaporation interacting with
outside environment.

Hereafter assume that the whole system of NE model (the black hole, the heat bath and the radiation
fields) is isolated from the outside world around heat bath (micro-canonical ensemble). It is useful to
divide the whole system into two sub-systems X and Y. The X consists of the black hole and the “out-
going” radiation fields emitted by black hole, which share the temperature Tg. The Y consists of the heat
bath and the “in-going” radiation fields emitted by heat bath, which share the temperature Th. Then
the energy transport between X and Y is given by the Stefan-Boltzmann law,

dEX

dt
= −σ (T 4

g − T 4
h

)
Ag ,

dEY

dt
= σ

(
T 4

g − T 4
h

)
Ag , (3)

where Ag = 4πR2
g, EX = Eg + E

(out)
rad (E(out)

rad =
∫
dx34σggT

4
g ) is the energy of X, EY = Eh + E

(in)
rad

(E(in)
rad =

∫
dx34σghT

4
h , Eh(Th) = energy of heat bath) is the energy of Y, and E

(out)
rad + E

(in)
rad = Erad

by definition (see eq.(2)). In order to analyze these nonlinear equations (3), it is useful to consider the
energy emission rate (luminosity) by the black hole, Jne = −dEg/dt. The larger the value of Jne, the
more rapidly the energy Eg of black hole decreases along its evaporation process. That is, the stronger
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emission rate Jne denotes the acceleration of the evaporation process. Further we compare Jne with
Jempty = σT 4

g Ag which is the energy emission rate by a black hole of the same mass Eg evaporating in
an empty space (as considered in previous section). Then, applying eq.(3) to Jne, we obtain a relation,
Jne/Jempty = (Cg/CX) (1 − T 4

h/T
4
g ), where CX = dEX/dTg(< 0) is the heat capacity of sub-system X

[6]. By a careful analysis of Jne/Jempty with a support of numerical solutions of eq.(3), reference [6] has
found a non-trivial result (where tne denotes the time scale of evaporation in the framework of NE model,
and tempyt denotes that in an empty space):

Conclusion by [6]: When the thickness of the hollow region in the NE model is thin enough, then
Jne/Jempty < 1 holds along the black hole evaporation in NE model and tne > tempty is obtained.
When the hollow region is thick enough, then Jne/Jempty > 1 holds along the black hole evaporation
in NE model and tne < tempty is obtained.

One may naively think that the existence of the heat bath always decelerates the evaporation and tne <
tempty does not occur. However the above result states that this naive sense does not work. In order to
understand the failure of naive sense, it is helpful to note the following two points: The first point is that
the evaporation in an empty space (see previous section) is regarded as a relaxation process of “isolated”
sub-system X, since the heat bath and consequently the in-going radiation fields are removed. That is,
EX = constant has to hold during the evaporation process in an empty space. On the other hand, in
the NE model, the sub-system Y extracts energy from X due to the temperature difference Th < Tg.
Further the energy extraction from X by Y becomes stronger as the nonequilibrium region around black
hole (the volume of the hollow region in NE model) is set larger, since a strong nonequilibrium effect
causes a strong dynamical effect. That is, for the case of a sufficiently large volume of the hollow
region, the energy emission rate Jne is enhanced by the energy extraction by Y, and then it results in
tne < tempty. The second point of understanding the failure of naive sense is that the energy transport
equation dEg/dt = −Jempty of the evaporation in an empty space can not be obtained from those of NE
model (3). One may expect that the empty case would be recovered by a limit operation, Th → 0 and
Vrad →∞, where Vrad is the volume of the hollow region. However this operation gives Rg =∞ (see [6]
for derivation) which is unphysical. Therefore, the evaporation in an empty space can not be described
as some limit situation of NE model. Hence, the naive sense which is based on a limit operation of NE
model leads a mistake.

Finally turn our discussion to the suggestion by the NE model. Because of the quasi-equilibrium
assumption, the NE model is valid only in a semi-classical evaporation stage. The SST for the radiation
fields enables us to estimate the quantities like Jne, Eg and Sg at the end of semi-classical stage (at the
onset of quantum evaporation stage) more precisely than the method based on ordinary thermodynamics.
Then, we can guess physically what happens in the quantum evaporation stage without referring to present
incomplete theories of quantum gravity. In reference [6], the followings have been suggested:

Suggestion 1 by [6]: The black hole evaporation in the framework of NE model will end with a huge
energy burst which is stronger than that of the evaporation in an empty space.

Suggestion 2 by [6]: A remnant of Planck size may remain at the end of the quantum evaporation
stage in order to guarantee the increase of total entropy along the whole process of evaporation.
This implies that the so-called information loss problem may disappear due to the nonequilibrium
effect of energy flow.
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Abstract
We discuss the impact of Lorentz violation on the cosmology. Firstly, we show that
the Lorentz violation affects the dynamics of the chaotic inflationary model and gives
rise to an interesting feature. Secondly, we propose the Lorentz violating DGP brane
models where the Lorentz violating terms on the brane accelerate the current universe.
We conjecture that the ghost disappears in the Lorentz violating DGP models.

1 Introduction

Various observations suggest the existence of two accelerating stages in the universe, namely, the past
inflationary universe and the current acceleration of the universe. In cosmology, therefore, how to accel-
erate the universe in the past and present is a big issue. Many attempts to resolve this issue have been
performed and failed. Given the difficulty of the problem, it would be useful to go back to the basic point
and reexamine it. Here, we consider the possibility to break the Lorentz symmetry.

Typically, the Lorentz violation yields the preferred frame. In the case of the standard model of
particles, there are strong constraints on the existence of the preferred frame. In contrast, there is no
reason to refuse the preferred frame in cosmology. Rather, there is a natural preferred frame defined by
the cosmic microwave background radiation (CMB). Therefore, there is room to consider the gravitational
theory which allows the preferred frame.

Now, we present our model with which we discuss the cosmological acceleration problems. Suppose
that the Lorentz symmetry is spontaneously broken by getting the expectation values of a vector field uμ

as < 0|uμuμ|0 >= −1 . We do not notice the existence of this field because the frame determined by this
field coincides with the CMB frame. However, in the inhomogeneous universe, both frames can fluctuate
independently. Hence, we can regard the spatial hypersurface of our universe as a kind of membrane
characterized by the extrinsic curvature Kij with a time like vector field uμ. Based on this observation,
we propose the model

S =
∫

d4x
√−g

[
1

16πG
R + β1(φ)KijKij − β2(φ)K2 − γ1(φ)∇μuν∇μuν

−γ2(φ)∇μuν∇νuμ − γ3(φ) (∇μu
μ)2 − γ4(φ)uμuν∇μu

α∇νuα

+λ (uμuμ + 1)− 1
2

(∇φ)2 − V (φ)
]
, (1)

where gμν , R, and λ are the 4-dimensional metric, the scalar curvature, and a Lagrange multiplier, re-
spectively. Here, we also considered the scalar field φ with the potential V and it couples to other terms
with the coupling function βi(φ) and γi(φ). This is a generalization of the Einstein-Ether gravity [1].
Since βi, γi at present can be different from those in the very early universe, we do not have any con-
straint on these parameters in the inflationary stage. Of course, ultimately, they have to approach the
observationally allowed values at present. Here, the Lorentz symmetry is violated both spontaneously
and explicitly.

The purpose of this paper is to discuss the impact of the Lorentz violation both on the inflationary
scenario and the current acceleration. In the former case, the Lorentz violation merely modifies the
scenario. In the latter case, however, the impact of Lorentz violation could be appreciable. The inclusion
of Lorentz violation may give rise to a resolution of the ghost problem in the DGP brane model [2].
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2 Impact of Lorentz Violation on Inflationary Scenario

Now, let us consider the chaotic inflationary scenario and clarify to what extent the Lorentz violation
affects the inflationary scenario [3]. We take the model

S =
∫

d4x
√−g

[
1

16πG
R− β(φ)K2 − 1

2
(∇φ)2 − V (φ)

]
. (2)

Let us consider the homogeneous and isotropic spacetime

ds2 = −dt2 + e2α(t)δijdx
idxj . (3)

The scale of the universe is determined by α. Now, let us deduce the equations of motion. First, we
define the dimensionless derivative Q′ by Q̇ = dQ

dα
dα
dt ≡ Q′ dα

dt . Then, the equations of motion are(
1 +

1
8πGβ

)
H2 =

1
3

[
1
2
H2φ′2

β
+

V

β

]
(4)(

1 +
1

8πGβ

)
H ′

H
+

1
2
φ′2

β
+

β′

β
= 0 (5)

φ′′ +
H ′

H
φ′ + 3φ′ +

V,φ

H2
+ 3β,φ = 0 , (6)

where β,φ denotes the derivative with respect to φ. We have taken H = α̇ as an independent variable.
As is usual with gravity, these three equations are not independent. Usually, the second one is regarded
as a redundant equation.

The above equation changes its property at the critical value φc defined by 8πGβ(φc) = 1 . When we
consider the inflationary scenario, we usually require the enough e-folding number, say N = 70. Let φi

be the corresponding initial value of the scalar field. If φc > φi, the effect of Lorentz violation on the
inflationary scenario would be negligible. However, if φc < φi, the standard scenario should be modified.
It depends on the models. To make the discussion more specific, we choose the model β = ξφ2 , V =
1
2m

2φ2 , where ξ and m are parameters. For this model, we have φc = Mpl√
8πξ

. As φi ∼ 3Mpl approximately
in the standard case, the condition φi > φc implies the criterion ξ > 1/(72π) ∼ 1/226 for the Lorentz
violation to be relevant to the inflation. For other models, the similar criterion can be easily obtained.

Now, we suppose the Lorentz violation is relevant and analyze the two regimes separately.
For a sufficiently larger value of φ, both the coupling function β and the potential function V are

important in the model (2). During this period, the effect of Lorentz violation on the inflaton dynamics
must be large. In the Lorentz violating regime, 8πGβ � 1, we have

H2 =
1
3β

[
1
2
H2φ′2 + V

]
(7)

H ′

H
+

1
2β

φ′2 +
β′

β
= 0 (8)

φ′′ +
H ′

H
φ′ + 3φ′ +

V,φ

H2
+ 3β,φ = 0 . (9)

To have the inflation, we impose the condition H2φ′2 � V as the slow roll condition. Consequently,
Eq.(7) is reduced to

H2 =
1
3β

V . (10)

Using Eq.(10), the slow roll condition can be written as φ′2 � β . Now, we also impose the condition
H ′/H � 1 as the quasi-de Sitter condition. Then, Eq.(8) gives us the condition β′ � β . We also require
the standard condition φ′′ � φ′ . Thus, we have the slow roll equations (10) and

φ′ +
V,φ

3H2
+ β,φ = 0 . (11)
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For our example, we can easily solve Eqs.(10) and (11) as φ(α) = φie
−4ξα . For this solution to satisfy

slow roll conditions, we need ξ < 1/16. Thus, we have the range 1/226 < ξ < 1/16 of the parameter for
which the Lorentz violating inflation is relevant. Note that, in our model, the Hubble parameter (10)
becomes constant

H2 =
m2

6ξ
, (12)

even though the inflaton is rolling down the potential. This is a consequence of Lorentz violation.
After the inflaton crosses the critical value φc, the dynamics is governed entirely by the potential V .

In the standard slow roll regime 8πGβ � 1, the evolution of the inflaton can be solved as

φ2(α) = φ2c −
α

2πG
. (13)

The scale factor can be also obtained as a(t) = exp
[
2πG(φ2c − φ2(t))

]
. The standard inflation stage ends

and the reheating commences when the slow roll conditions violate.
Now it is easy to calculate e-folding number. Let φi be the value of the scalar field corresponding to

the e-folding number N = 70. The total e-folding number reads

N =
1
4ξ

log
φi

φc
+ 2πG

(
φ2c − φ2e

)
, (14)

where φe ∼ 0.3Mpl is the value of scalar field at the end of inflation. Note that the first term arises from
the Lorentz violating stage. As an example, let us take the value ξ = 10−2. Then, φc ∼ 2Mpl. The
contribution to the e-folding number from the inflation end is negligible. Therefore, we get φi ∼ 12Mpl.

In this simple example, the coupling to the Lorentz violating sector disappears after the reheating.
Hence, the subsequent homogeneous dynamics of the universe is the same as that of Lorentz invariant
theory of gravity. However, it is possible to add some constants to β, which are consistent with the
current experiments. In that case, the effect of the Lorentz violation is still relevant to the subsequent
history.

The tensor part of perturbations can be described by

ds2 = −dt2 + a2(t)
(
δij + hij(t, xi)

)
dxidxj , (15)

where the perturbation satisfy hi
i = hij

,j = 0. The quadratic part of the action is given by

S =
∫

d4x
a3

16πG

[
1
4
ḣij ḣ

′ij − 1
4a2

hij,kh
ij,k

]
. (16)

In the case of chaotic inflation model, the Hubble parameter is constant (12) during Lorentz violating
stage. The spectrum is completely flat although the inflaton is rolling down the potential. This is a clear
prediction of the Lorentz violating chaotic inflation.

3 Impact of Lorentz Violation on Current Acceleration

To solve the current acceleration problem is much more difficult than the past one. The most interesting
proposal is the DGP model [2]. However, it suffers from the ghost. Hence, it is not a stable model. Here,
we would like to argue the Lorentz violation may resolve the instability problem.

Our basic observation is that the Lorentz violating term itself can accelerate the universe. Let us
consider the simplest braneworld model:

S =
1

2κ25

∫
d5x
√−GR−

∫
d4x
√−gβK2, (17)

where G is the determinant of the 5-dimensional metric and κ5 is the 5-dimensional gravitational coupling
constant. Here, we have assumed the scalar field is stabilized at present. Let us assume the Z2 symmetry.
Then the junction condition Kμν − gμνK = κ25Tμν gives the effective Friedman equation:

±H =
κ25
6
[
3βH2 − ρ

]
. (18)
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If we take the positive sign, in the late time, we have the de Sitter spacetime with

H =
2

κ25β
. (19)

Thus, the late time accelerating universe can be realized due to the Lorentz violation.
More generally, we propose the following model

S =
1

2κ25

∫
d5x
√−GR

+
∫

d4x
√−g

[
1

16πG
R + β1K

ijKij − β2K
2 − γ1∇μuν∇μuν

−γ2∇μuν∇νuμ − γ3 (∇μu
μ)2 − γ4u

μuν∇μu
α∇νuα + λ (uμuμ + 1)

]
. (20)

It should be stressed that any term on the brane can generate the current acceleration. As the tensor
structure in the action is very different from the original DGP model, we can expect the above action
contains no ghost. In fact, we have many parameters here, hence there is a chance to remove the ghost
from our models. Thus, we expect that some of the above Lorentz violating brane models does not
contain any ghost. If this is so, one can say the Lorentz violation explains the current stage acceleration
of the universe.

4 Conclusion

We have discussed the impact of Lorents violation on cosmology. In the first place, we found that the
Lorentz violating inflation shows an interesting feature. In the second place, we proposed a Lorentz
violating DGP model which have a possibility to avoid the ghost problem.

It would be interesting to study the evolution of fluctuations completely. If the vector modes of
perturbations can survive till the last scattering surface, they leave the remnant of the Lorentz violation
on the CMB polarization spectrum. It is also intriguing to seek for a relation to the large scale anomaly
discovered in CMB by WMAP. The calculation of the curvature perturbation is much more complicated.
However, it must reveal more interesting phenomena due to Lorentz violating inflation. The tensor-scalar
ratio of the power spectrum would be also interesting. These are now under investigation.

More importantly, we need to show the stability of Lorentz violating DGP model. If the Lorentz
violation kills the ghost, this is a great progress in the cosmology. Even in case that it turns out that all
of the models are unstable, it makes our understanding of the ghost issue profound.
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Abstract
We investigate the dynamical stability of a six-dimensional braneworld solution with
warped flux compactification recently found by the authors. We consider linear per-
turbations around this background spacetime, assuming the axisymmetry in the extra
dimensions. Perturbations are decomposed into scalar-, vector- and tensor-sectors ac-
cording to the representation of the 4D de Sitter symmetry, and analyzed separately.
It is found that when the four-dimensional spacetime has a large Hubble expansion
rate, there appear are tachyonic modes in the scalar sector. This fact means that in
this regime the spacetime becomes dynamically unstable. We interpret this result via
thermodynamics of the spacetime.

1 6D warped flux compactification braneworld model

When we reduce a higher dimensional spacetime to the 4D universe, a compactification of extra dimensions
is necessary. However, this compactification yields moduli fields (e.g. radion field), and in order to recover
the 4D Einstein gravity we must stabilize these fields. In other words, we need to stabilize the shape
and the volume of the extra dimensions. Recently some authors suggest that when the Hubble expansion
rate of the 4D spacetime is too large, it is hard to stabilize all moduli [1, 2]. So we would like to study
stability of a de Sitter brane universe in the context of a simple 6D braneworld solution found by us [3].

We consider the 6D Einstein-Maxwell system described by the action

I =
1

16π

∫
d6x
√−g

(
R− 2Λ6 − 1

2
FMNFMN

)
, (1)

where Λ6 is the 6D bulk cosmological constant (Λ6 > 0), and FMN = ∂MAN−∂NAM is the field strength
associated with the U(1) gauge field AM to stabilize the extra dimensions. The braneworld solution is

ds26 = r2gμνdxμdxν +
dr2

f(r)
+ f(r)dφ2,

AMdxM = A(r)dφ,
(2)

where gμν is the metric of the 4D de Sitter space with the Hubble parameter h and

f(r) = h2 − Λ6

10
r2 − μ

r3
− b2

12r6
, A(r) =

b

3r3
. (3)

When h = 0 the 4D spacetime reduces the Minkowski spacetime. Two branes are located at r = r±
(0 < r− < r+) which are two positive roots for f(r) = 0. The tension of each brane characterizes a
conical deficit of the angular coordinate φ in the extra dimensions. To be precise, the period of the
angular coordinate (φ ∼ φ + Δφ) is given by

Δφ =
2π − σ+
|f ′(r+)/2| =

2π − σ−
|f ′(r−)/2| , (4)

1E-mail:kinoshita@utap.phys.s.u-tokyo.ac.jp
2E-mail:mukoyama@phys.s.u-tokyo.ac.jp
3E-mail:sendouda@utap.phys.s.u-tokyo.ac.jp
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where σ± are tensions of the branes at r = r±, respectively.
In this braneworld model the spacetime has two compact extra dimensions and two 3-branes at

r = r±. The geometry on the brane at r = r± is the 4D de Sitter spacetime with the Hubble expansion
rate h± = h/r±, respectively. The role of the U(1)-field is to stabilize extra dimensions by magnetic flux.

For a fixed cosmological constant Λ6 in the bulk, this solution is locally parameterized by two pa-
rameters b and μ. It is convenient to introduce two dimension-less parameters determining the geometry
instead of these original parameters. One is the ratio of the warp factors at the branes α ≡ r−/r+. This
parameter describes how the geometry of the 2D extra dimensions is warped. Note that in the special
case α = 1 the geometry is non-warped and locally a round sphere. The other is β defined by

β ≡ h2+
hmax(α)2

=
10(1 + α + α2)

Λ6(1 + α + α2 + α3 + α4)
h2

r2+
, (5)

which is the Hubble parameter squared on the brane at r = r+ normalized by its maximum value h2max(α)
for a given α. In the following we parametrize the solutions by the pair of two parameters (α, β), both
of which run over the finite interval [0, 1].

2 Dynamical stability

In order to investigate the dynamical stability of this spacetime, we consider linear perturbations around
the background spacetime. Perturbations are decomposed into scalar-, vector- and tensor-sectors accord-
ing to the representation of the 4D de Sitter symmetry. In this presentation we consider the scalar sector
only. The vector and tensor sectors are easier to analyze and turn out to be stable in the whole range of
parameters. The scalar sector is expanded by scalar-type harmonics on the 4D de Sitter space, as

gMNdxMdxN = r2(1 + Φ2Y )gμνdxμdxν + [1 + (Φ1 + Φ2)Y ]
dr2

f
+ [1− (Φ1 + 3Φ2)Y ]fdφ2,

AMdxM = (A + aφY )dφ,
(6)

where Y is the scalar harmonics on the 4D de Sitter space. The Einstein equation and the Maxwell
equation are reduced to two perturbation equations,

Φ′′1 + 2
(
f ′

f
+

5
r

)
Φ′1 −

4Λ6

f
(Φ1 + Φ2) +

m2 + 18h2

r2f
Φ1 = 0,

Φ′′2 +
4
r
Φ′2 +

m2

2r2f
(Φ1 + 2Φ2) = 0,

(7)

where a prime denotes derivative with respect to r and m2 is the eigenvalue of harmonics on the de Sitter
space with the Hubble parameter h:

∇2
(4)Y −m2Y = 0. (8)

Here, ∇(4) is the covariant derivative associated with gμν which is the 4D de Sitter space with the Hubble
parameter h. The boundary conditions at r = r± obtained by requiring the regularities at the brane
positions. An alternative and more rigorous derivation of the boundary conditions is possible by using the
formalism developed in [5]. If the Kaluza-Klein mass square m2 is negative, then the mode is tachyonic
and the scalar sector is unstable.

Since the background spacetime is a two-parameter family of solutions, the system of the perturbation
equations depend on two parameters. We investigate the lowest KK mass of the scalar-type perturbation
for different values of two parameters. Our strategy to attack the problem is as follows. First, we
analytically solve the perturbation equations in the α = 1 case for any β in the region [0, 1], and obtain
the lowest KK mass m2(α = 1, β). Next, we numerically calculate m(α, β)2 as α changes from 1 to 0 for
a fixed β by the relaxation method.

Fig. 1 shows the lowest KK mass square of the scalar perturbation. For β = 0 which means the
4D spacetime is the Minkowski, we have shown that there is no unstable (i.e. neither massless nor
tachyonic) mode in the scalar perturbation [4]. We find that as β becomes larger, namely as the Hubble
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Figure 1: The lowest KK mass square of the scalar perturbation. When β = 0 the 4D spacetime is
the Minkowski. As β becomes larger (i.e. the 4D Hubble becomes larger), m2 decreases and eventually
becomes negative at some value of β.

parameter on the brane becomes larger, the lowest KK mass square m2 decreases and eventually becomes
negative. Therefore we conclude that when the Hubble on the brane is too large the extra-dimensions
are destabilized and such configurations are unstable.

3 Summary and discussion

We have studied the stability of the 6D braneworld solution with 4D de Sitter branes, considering linear
perturbations around it. We have explored the lowest KK mass for the scalar perturbations and found
that for large values of the 4D Hubble parameter on the brane tachyonic modes appear and the geometry
becomes unstable.

We can interpret this instability from a different viewpoint via thermodynamics of the spacetime.
Since the de Sitter space has the cosmological horizon, it has entropy given by one quarter of the area of
the horizon. This is an analogue of the well-known black hole entropy. In the 6D braneworld background
solution which we have considered, each point in the 2D extra dimensions corresponds to a 4D de Sitter
spacetime. Therefore, we shall define the entropy by one quarter of the area of the cosmological horizon
integrated over the extra dimensions. We can represent the entropy S as a function of conserved quantities
η and Φ up to the normalization depending only on Δφ, where η is given by

η ≡ 2π − σ−
2π − σ+

, (9)

and Φ is the total magnetic flux. We see from Fig. 2 that S(η,Φ) is not single-valued but actually has
two values for some values of η and Φ. Thus we find that the spacetime has two branches, which we call
the high-entropy branch and the low-entropy branch, respectively, and these two branches merge at the
critical curve. Beyond the critical curve there is no solution. Since the upper branch has a greater entropy
than the lower one, we expect that the upper high-entropy branch is thermodynamically preferred than
the lower branch and the spacetime becomes marginally stable on the critical line where two branches
merge. Indeed, we can show that the massless mode of the scalar sector in linear perturbations appears
on this critical curve. Furthermore, we can show that the high-entropy and the low-entropy branches in
Fig. 2 exactly agree with the positive and negative m2 regions in Fig. 1, respectively [6]. This fact implies
that in this spacetime the onset of dynamical instability coincides with the onset of thermodynamic
instability. This is similar to the Gubser-Mitra conjecture for extended black objects [7]. More generally
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Figure 2: The entropy as a function for η and Φ.

speaking, we should be able to understand our result in the language of the catastrophe theory. Further
studies in this line are certainly worthwhile pursuing.
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Abstract
We study cosmological perturbations in the brane models with an induced Einstein-
Hilbert term on a brane. We consider an inflaton confined to a de Sitter brane in
a five-dimensional Minkowski spacetime. There are two branches (± branches) of
solutions for the background spacetime. In the + branch, which includes the self-
accelerating universe, a resonance appears. In the − branch, which can be thought
as the Randall-Sundrum type brane-world with the high energy quantum corrections,
there is no resonance. At high energies, we analytically confirm that four-dimensional
Einstein gravity is recovered, which is related to the disappearance of van Dam-
Veltman-Zakharov discontinuity in de Sitter spacetime. On sufficiently small scales,
we confirm that the lineariaed gravity on the brane is well described by the Brans-
Dicke theory with ω = 3Hrc in − branch and ω = −3Hrc in + branch, respectively,
which confirms the existence of the ghost in + branch.

1 Introduction

There has been much interest over the last several years in the brane-world scenario where we are assumed
to be living on a four-dimensional hypersurface (brane) in a higher-dimensional spacetime (bulk) [1].

One of the most promising tools to extract the information of the extra-dimension is the primordial
density fluctuations generated in the period of inflation in the early universe. In the inflation model where
inflation is driven by an inflaton field confined to the brane, the amplitude of the curvature perturbation
is calculated in the extremely slow-roll limit where the coupling between inflaton field fluctuation and
bulk perturbations can be neglected [2].

This work is proceeded to go beyond the zero-th order slow-roll approximation by solving the bulk
metric perturbations classically [3, 4]. It is shown that we could have significant effects from the back-
reaction due to the coupling to five-dimensional gravitational perturbations.

On the other hand, it was pointed out that the localized matter on a brane can induce gravity on the
brane via quantum loop corrections at high energies [5]. This induced gravity can act as the ultra-violet
cut-off for the inflaton perturbations.

Based on the induced gravity scenario, Dvali, Gabadadze, and Porrati (DGP) proposed a brane-world
model with induced gravity [6] in which the four-dimensional brane is embedded in a five-dimensional
Minkowski spacetime. In this paper, we study the behavior of five-dimensional metric perturbations
excited by the inflaton perturbations confined to the brane in DGP model.

2 Bulk gravitons with a de Sitter brane

2.1 Background cosmology

We consider a four-dimensional brane-world model with a five-dimensional infinite-volume bulk. The
action is given by

S =
1

2κ2

∫
d5x
√−g(5)R +

∫
d4x
√−γ

[
1
κ2

K + Lbrane +
1

2κ24
R

]
, (1)

1E-mail:mizuno@resceu.s.u-tokyo.ac.jp
2E-mail:kazuya.koyama@port.ac.uk
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where κ2 is the fundamental five-dimensional gravitational constant, K is the trace of extrinsic curvature
KAB on the brane and Lbrane is a Lagrangian for brane-localized matter. In addition, we consider the last
term, an intrinsic curvature term on the brane which plays a crucial role in this model. Here, κ24 = 8πG
is the four-dimensional gravitational constant. We define a crossover scale rc as rc = κ2/2κ24. We are
interested in the gravitational property of this model in a cosmological setting. By assuming the flat
Friedmann-Robertson-Walker metric on the brane and neglecting the effect from the five-dimensional
Weyl tensor in the background, the following Friedmann like equation is derived [7];

H2 − ε

rc
H =

κ24
3
ρ, (2)

where H is a Hubble parameter on the brane and ε = ±1, which is the parameter related to the embedding
of the brane in the bulk. We call the case with ε = 1 + branch, while ε = −1 − branch.

2.2 Master variable for perturbations in the Minkowski bulk

Now let us consider the scalar perturbation. In order to solve the perturbations in this background, it is
convenient to use five-dimensional longitudinal gauge, given by

ds2 = (1 + 2Ayy)dy2 + 2N(y)Aydydt + N(y)2
[
− (1 + 2A)dt2 + a(t)2(1 + 2R)δijdx

idxj
]
, (3)

where a(t) = exp(Ht).
In the absence of bulk matter perturbations, five-dimensional perturbed Einstein equations (5)δGA

B =
0 are solved in a Minkowski background if the metric perturbations are derived from a ‘master variable’,
Ω [8], [9]. The perturbed five-dimensional Einstein equations yield a single wave equation governing the
evolution of the master variable Ω in the bulk. Solutions for the master equation can be separated into
eigenmodes of the time-dependent equation on the brane and bulk mode equation for de Sitter brane:

Ω(t, y; �x) =
∫

d3�kdmgm(t)fm(y)eikx, (4)

where

g̈m − 3Hġm +
[
m2 +

k2

a2

]
gm = 0, f ′′m − 2

N ′

N
f ′m +

m2

N2
fm = 0. (5)

3 Scalar field on the brane

3.1 Boundary conditions

In the following, we model the matter on the brane as a canonical scalar field φ with potential V (φ) whose
homogeneous part gives approximately de Sitter universe on the brane [3, 4]. In this case, combining the
junction conditions we get an evolution equation for G:

G̈ −
(
H + 2

φ̈

φ̇

)
Ġ +

k2

a2
G = 0, where G = (1− 2εHrc)(Ω′ − εHΩ)− rc(2H2 −m2)Ω. (6)

This gives the boundary condition for the time dependence of the master variable Ω. Assuming that
φ is slow-rolling, so that |φ̈/φ̇| � H in Eq. (6), which is valid for the de Sitter universe, the solution for
G is

G = C1
cos(−kη)
−kη + C2

sin(−kη)
−kη . (7)

We use the formulae for summation of Bessel functions,
∞∑

�=0

(−1)�

(
2	 +

3
2

)
z−

3
2 J2�+ 3

2
(z) =

√
1
2π

sin z
z

,

∞∑
l=0

(−1)�

(
2	 +

1
2

)
z−

3
2 J2�+ 1

2
(z) =

√
1
2π

cos z
z

. (8)
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These show that an infinite sum of mode functions

gm = (−kη)−3/2Jν(−kη), where ν2 =
9
4
− m2

H2
, (9)

can satisfy the boundary condition imposed on G, where the spectrum of KK modes is given by

m2

H2
= −2(2	− 1)(	 + 1) for C1,

m2

H2
= −2	(2	 + 3) for C2. (10)

3.2 Curvature perturbation on the brane

Making use of the boundary condition obtained above, we can obtain the general solutions for Ω which
yield the metric perturbations in the five-dimensional longitudinal gauge. Since we can show the curvature
perturbation on the brane R(b) is related with A and R as

R(b) =
1

1− 2εHrc

[
(1− εHrc)R+ εHrcA

]
, (11)

the general solutions for R(b) is obtained. We show only the results − branch (ε = −1) and + branch
(ε = 1) separately.

− branch (ε = −1)

R(b) = −
√

2π
6

C1

k

H2

(2Hrc + 1)

∞∑
�=0

(−1)�(2	 + 1
2 )

(2	 + 1){2(	 + 1)Hrc + 1}
×[6(	 + 1)(2	 + 1)Hrc(−kη)− 1

2 J2�+ 1
2
(−kη) + 2(2	 + 1)(−kη) 1

2 J2�− 1
2
(−kη)− (−kη) 3

2 J2�− 3
2
(−kη)]

−
√

2π
6

C2

k

H2

(2Hrc + 1)

∞∑
�=0

(−1)�(2	 + 3
2 )

2(	 + 1){(2	 + 3)Hrc + 1}
×[6(	 + 1)(2	 + 3)Hrc(−kη)− 1

2 J2�+ 3
2
(−kη) + 2(2	 + 2)(−kη) 1

2 J2�+ 1
2
(−kη)− (−kη) 3

2 J2�− 1
2
(−kη)].

(12)

In + branch (ε = 1), the curvature perturbation on the brane is given as

R(b) = R(b)(m2=2H2)

−
√

2π
6

C1

k

H2

(2Hrc − 1)

∞∑
�=1

(−1)�(2	 + 1
2 )

2	{(2	− 1)Hrc + 1}
×[{6	(2	− 1)Hrc + 12	 + 3}(−kη)− 1

2 J2�+ 1
2
(−kη)− 2(2	 + 1)(−kη) 1

2 J2�− 1
2
(−kη) + (−kη) 3

2 J2�− 3
2
(−kη)]

−
√

2π
6

C2

k

H2

(2Hrc − 1)

∞∑
�=0

(−1)�(2	 + 3
2 )

(2	 + 1){2	Hrc + 1}
×[{6	(2	 + 1)Hrc + 12	 + 9}(−kη)− 1

2 J2�+ 3
2
(−kη)− 4(	 + 1)(−kη) 1

2 J2�+ 1
2
(−kη) + (−kη) 3

2 J2�− 1
2
(−kη)],

(13)

+ branch (ε = 1)

where

R(b)(m2=2H2) = −C1

6k
H2

(2Hrc − 1)(Hrc − 1)
[
3(Hrc − 1)(−kη)−1 sin(−kη)

+
α(−kη)

2
{−3(−kη)−1 sin(−kη) + 3 cos(−kη) + (−kη) sin(−kη)}

+
β(−kη)

2
{−3(−kη)−1 cos(−kη)− 3 sin(−kη) + (−kη) cos(−kη)}], (14)
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for Hrc �= 1 and

R(b)(m2=2H2) =
C1H

2

12k
[−6(−kη)−1 sin(−kη)

+α̃(−kη){−3(−kη)−1 sin(−kη) + 3 cos(−kη) + (−kη) sin(−kη)}
+β̃(−kη){−3(−kη)−1 cos(−kη)− 3 sin(−kη) + (−kη) cos(−kη)}], (15)

for Hrc = 1.
We should note that there are homogeneous solutions that satisfy G = 0. These homogeneous solutions

also induce curvature perturbations on the brane.

4 Conclusion

In this paper, we studied inflaton perturbations confined to a de Sitter brane with induced gravity in a
five-dimensional Minkowski spacetime.

For a vacuum brane, the spin-0 mode appears as a discrete bulk mode with m2 = 2H2 in the + branch,
while in the − branch there are no normalizable solutions for the spin-0 modes. Since there is another
discrete bulk mode (helicity-0 mode of spin-2 perturbation) with mass m2 = H2(3Hrc−1)(Hrc)−2 in the
+ branch, there is a resonance between the spin-0 mode and the helicity-0 mode of spin-2 perturbation
for Hrc = 1. In this paper we introduced inflaton perturbations on a brane. Then an infinite ladder of
discrete modes with m2 = −2(2	 − 1)(	 + 1)H2 and m2 = −2	(2	 + 3)H2 are excited. Since there is a
mode with m2 = 2H2 regardless of the value of Hrc, in the + branch the resonance inevitably appears.
We obtained the solutions for the curvature perturbation on the brane R(b) and studied their behavior.

We make comments on future applications of our results. In − branch, if rc � H−1, small scale
perturbations a/k � rc can be described by the four-dimensional Brans-Dicke theory. If the perturbations
approaches to rc, the gravity becomes five-dimensional and we expect significant effects from the coupling
to five-dimensional metric perturbations [4]. Unlike the Randall-Sundrum model where the small scales
perturbations are always coupled to five-dimensional perturbations and a quantum vacuum state is hard
to be specified [4, 10, 11], we can specify a vacuum state without ambiguity based on the four-dimensional
BD theory on sufficiently small scales. Then we can estimate the effect of the coupling to five-dimensional
gravity without ambiguity.

For the discussion of the behavior of metricperturbation in several limits, please see Ref. [12]

References

[1] R. Maartens, Living Rev. Rel. 7, 7 (2004).

[2] R. Maartens, D. Wands, B. A. Bassett and I. Heard, Phys. Rev. D 62, 041301 (2000).

[3] K. Koyama, D. Langlois, R. Maartens and D. Wands, JCAP 0411 (2004) 002.

[4] K. Koyama, S. Mizuno and D. Wands, JCAP 0508, 009 (2005).

[5] S. L. Adler, Phys. Rev. Mod. Phys. 54, 729 (1982) [Erratum-ibid. 55, 837 (1983)].

[6] G. R. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B 485, 208 (2000).

[7] C. Deffayet, Phys. Lett. B 502, 199 (2001).

[8] S. Mukohyama, Phys. Rev. D 62, 084015 (2000).

[9] H. Kodama, A. Ishibashi and O. Seto, Phys. Rev. D 62, 064022 (2000).

[10] K. Koyama, A. Mennim and D. Wands, Phys. Rev. D 72, 064001 (2005).

[11] H. Yoshiguchi and K. Koyama, Phys. Rev. D 71 (2005) 043519.

[12] K. Koyama and S. Mizuno, JCAP 0607, 013 (2006).

− 191 −



Scalar cosmological perturbations in the Gauss-Bonnet
braneworld

Tsutomu Kobayashi1 and Masato Minamitsuji2

1Department of Physics, Tokyo Institute of Technology, Tokyo 152–8551, Japan
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606–8502, Japan

Abstract
We study scalar cosmological perturbations in a braneworld model with a bulk Gauss-
Bonnet term. For an anti-de Sitter bulk, the five-dimensional perturbation equations
share the same form as in the Randall-Sundrum model, which allows us to obtain
metric perturbations in terms of a master variable. We derive the boundary conditions
for the master variable from the generalized junction conditions on the brane. We
then investigate several limiting cases in which the junction equations are reduced to
a feasible level. In the low energy limit, we confirm that the standard result of four-
dimensional Einstein gravity is reproduced on large scales, whereas on small scales
we find that the perturbation dynamics is described by the four-dimensional Brans-
Dicke theory. In the high energy limit, all the non-local contributions drop off from
the junction equations, leaving a closed system of equations on the brane. We show
that, for inflation models driven by a scalar field on the brane, the Sasaki-Mukhanov
equation holds on the high energy brane in its original four-dimensional form. This
article is a short summary of [1].

1 Introduction

One of the simplest realizations of braneworld is proposed by Randall and Sundrum (RS) [2], assuming
that the bulk involves five-dimensional (5D) Einstein gravity with a negative cosmological constant. The
RS model can be naturally extended to include the Gauss-Bonnet (GB) term:

LGB := R2 − 4RABRAB +RABCDRABCD, (1)

where R, RAB , and RABCD denote the Ricci scalar, Ricci tensor, and Riemann tensor in five dimensions,
respectively. Cosmology on a GB brane is important because one of the possible ways to test the
braneworld idea is studying cosmological perturbations from inflation. In this direction, Minamitsuji and
Sasaki [3] have examined linearized effective gravity on a de Sitter brane, and Dufaux et al. [4] investigated
tensor and scalar perturbations generated from de Sitter inflation in the GB braneworld (The authors of
[4] have performed an exact analysis for the tensor perturbations, but they have neglected bulk effects for
the scalar perturbations without any justification). In the present article, we study scalar cosmological
perturbations on a more general (flat) Friedmann-Robertson-Walker cosmological brane.

2 Gauss-Bonnet braneworld

We start with providing the basic equations that describe the GB braneworld. Our action is

S =
1

2κ2

∫
d5x
√−g [R− 2Λ + αLGB] +

∫
d4x
√−q

[
2K +

4α
3
Q + Lm − σ

]
, (2)

where Λ is the cosmological constant in the bulk, Lm is the matter Lagrangian on the brane, and σ is
the brane tension. The GB Lagrangian LGB was already defined in Eq. (1) and the coupling constant
α has dimension of (length)2. The surface term is given by 2K + (4α/3)Q, where K is the trace of the
extrinsic curvature K ν

μ of the brane and Q := Q μ
μ with Q ν

μ defined below in Eq. (6).

1E-mail:tsutomu@th.phys.titech.ac.jp
2E-mail:masato@yukawa.kyoto-u.ac.jp
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The 5D field equations following from the above action are

GAB − α

2
HAB = −ΛgAB , (3)

where GAB := RAB −RgAB/2 is the Einstein tensor and HAB is the GB tensor defined by

HAB := LGBgAB − 4
(RRAB − 2RACRC

B − 2RACBDRCD +RACDER CDE
B

)
. (4)

Assuming a Z2 symmetry across the brane, the junction conditions at the brane are given by [5]

K ν
μ −Kδ ν

μ = −κ2

2
(
T ν

μ − σδ ν
μ

)− 2α
(
Q ν

μ −
1
3
Qδ ν

μ

)
, (5)

where Tμν is the matter energy-momentum tensor and

Q ν
μ := 2KK α

μ K ν
α − 2K α

μ K β
α K ν

β +
(
K β

α K α
β −K2

)
K ν

μ

+2KR ν
μ + RK ν

μ − 2K β
α R να

μβ − 2R α
μ K ν

α − 2R ν
α K α

μ , (6)

with Rμναβ , Rμν and R being the Riemann tensor, Ricci tensor and Ricci scalar with respect to the 4D
induced metric. The main difference in the junction conditions from those in Einstein gravity is that
they include intrinsic curvature terms as well as external ones. Using the Codacci equation, we can show
that the conservation law holds on the brane.

The field equations (3) admit an anti-de Sitter (AdS) bulk with the curvature radius 	 (=: μ−1). The
5D cosmological constant and μ are related by Λ = −6μ2

(
1− 2αμ2

)
. It is useful to define a dimensionless

parameter β := 4αμ2. In this paper, we assume the parameter range 0 ≤ β < 1. To present a cosmological
background solution which has a flat 3D geometry [6], we write the AdS metric in the Gaussian normal
coordinates as g(0)ABdx

AdxB = −n2(t, y)dt2 + a2(t, y)δijdx
idxj + dy2. We may set n(t, 0) = 1, so that t is

the proper time on the brane at y = yb = 0 and ab(t) := a(t, 0) is the scale factor. Then the 5D field
equations are solved to give

n(t, y) = ȧ(t, y)/ȧb(t), (7)

a(t, y) = ab(t)

[
cosh(μy)−

√
1 +

H2

μ2
sinh(μy)

]
. (8)

Although the 5D field equations include the GB term, the metric functions n(t, y) and a(t, y) have the
same form as in the cosmological solution in the RS braneworld based on the Einstein-Hilbert action.
What is manifestly different is the Friedmann equation that relates the Hubble expansion rate H and
the energy-momentum components on the brane. The Friedmann equation derived from the generalized
junction conditions at the brane is [6]

2
√
H2 + μ2

(
3− β + 2β

H2

μ2

)
= κ2(ρ + σ). (9)

The critical brane tension, which allows for a Minkowski brane, is obtained by setting H → 0 as ρ→ 0:
κ2σ = 2μ(3 − β). There are three regimes for the dynamical history of the GB brane universe, two of
which are basically the same as those found in the context of the RS braneworld. When H2 � μ2/β[=
(4α)−1], we recover the RS-type Friedmann equation, H2 � 8πG/3

(
ρ + ρ2/2σ

)
, where we defined the

4D gravitational constant as 8πG := κ2μ/(1 + β). At very high energies, H2 � μ2/β, the effect of the
GB term becomes prominent. In this regime, we find H2 � (

κ2μ2ρ/4β
)2/3

.

3 Summary of cosmological perturbation theory in the Gauss-
Bonnet braneworld

Now let us consider linear perturbations about the cosmological brane background discussed in the
previous section. If the background geometry is given by AdS, the perturbed GB tensor has a following
nice property:

δH B
A = 8μ2δG B

A ⇒ (1− β)δG B
A = 0, (10)
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which, aside from the factor (1 − β), give the same perturbation equations as in Einstein gravity. This
allows us to make full use of the previously known results on cosmological perturbations in the RS model.

We write the perturbed metric in an arbitrary gauge as(
g
(0)
AB + δgAB

)
dxAdxB = −n2(1 + 2A)dt2 + 2a2B,idtdx

i + a2 [(1− 2ψ)δij + 2E,ij ] dxidxj

+2nAydtdy + 2a2By,idx
idy + (1 + 2Ayy)dy2. (11)

The 5D perturbation equations will be solved most easily in the so-called 5D longitudinal gauge [7], which
is defined by σ̃ = −B̃+ ˙̃E = 0, and σ̃y = −B̃y + Ẽ′ = 0. We use a master variable, Ω, which was originally
introduced by Mukohyama [8] in the Einstein gravity case. The perturbed 5D field equations are solved
if the metric perturbations are written in terms of this master variable:

Ã = − 1
6a

[
2Ω′′ − n′

n
Ω′ − μ2Ω +

1
n2

(
Ω̈− ṅ

n
Ω̇
)]

, Ãy = · · · , Ãyy = · · · , ψ̃ = · · · , (12)

where Ω is a solution of the master equation

Ω′′ +
(
n′

n
− 3

a′

a

)
Ω′ − 1

n2

[
Ω̈−

(
ṅ

n
+ 3

ȧ

a

)
Ω̇
]

+
(
μ2 +

1
a2

Δ
)

Ω = 0, (13)

with Δ := δij∂i∂j .
From the junction conditions (5) we obtain

κ2δρ = −6(1− β)δKT +
2β
μ2

a′b
ab

δG 0
0 , (14)

κ2δq,i = −2(1− β)δK 0
i −

2β
μ2

a′b
ab

δG 0
i , (15)

κ2δp = 2(1− β)
(
δK 0

0 + 2δKT

)
+

2β
μ2

[
1
3

(
a′b
ab
− n′b

nb

)
δG 0

0 −
a′b
ab

δGT

]
, (16)

κ2δπ = −2(1− β)δKTL − 2β
μ2

1
a2b

[
n′b
nb

Ψ− a′b
ab

Φ
]
. (17)

The perturbations of the extrinsic curvature and the Einstein tensor can be written in terms of the
master variable Ω and the brane bending (the perturbed location of the brane) ξ. In Eq. (17) the metric
potentials are defined by Φ := Ã+(n′/n)bξ and Ψ := ψ̃− (a′/a)bξ. This equation relates Ω with ξ. Thus
the above equations (14)–(17) give the boundary conditions for Ω at the brane.

3.1 Low energy limit

3.1.1 Perturbations larger than the bulk curvature radius

We can show that the standard 4D result is reproduced if H2 � μ2 and μ2Ω� ΔΩ/a2b .

3.1.2 Small scale perturbations

We now consider scales much smaller than the typical GB scale,
∣∣ΔΩ/a2b

∣∣� ∣∣μ2Ω/β∣∣, by requiring that
ξ ∼ (β/μ)ΔΩ/a3b . In this regime, the junction equations are equivalent to

δG ν
μ =

1
2ϕ0

δT ν
μ +

1
ϕ0

(∇μ∇ν −∇λ∇λδ ν
μ

)
δϕ, ∇λ∇λδϕ =

1
6 + 4ω

δT, (18)

with the identifications

1
ϕ0
→ κ2μ

β
,

δϕ

ϕ0
→ −μ

(
1− β

β

)
ξ, ω → 3β

1− β
. (19)

This is nothing but the linearized Brans-Dicke theory with terms of O(H2δϕ) neglected.
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3.2 High energy limit

Let us take the high energy limit, H2 � μ2/β. In this regime, the right hand side of the junction
equations (14)–(16) is dominated by the perturbed 4D Einstein tensor and so we have

δG 0
0 = −κ2μ2

2βH
δρ, δG 0

i =
κ2μ2

2βH
δq,i, δGT =

κ2μ2

2βH

(
δp− εH

3
δρ
)
, (20)

where we defined εH := −Ḣ/H2. Similarly, it is easy to show that the right hand side of Eq. (17) is
dominated by the metric potentials. Thus we obtain

(1− εH)Ψ− Φ =
κ2μ2

2βH
a2bδπ. (21)

The set of equations (20) and (21) governs the perturbation dynamics at very high energies.
Consider braneworld inflation driven by a single scalar field φ which is confined on the brane. For this

background we have ρ = φ̇2/2 + V (φ) and p = φ̇2/2− V (φ), where V (φ) is the potential of the inflaton.
For perturbations generated by fluctuations of the scalar field, it is quite easy to describe the evolution
of perturbations in the high energy limit by introducing the Sasaki-Mukhanov variable and invoking
the energy conservation equation. The perturbations of the energy-momentum components are given by
δρ = φ̇

(
˙δφ− φ̇Āb

)
+ (dV/dφ) δφ, δq = −φ̇ ˙δφ, and δp = φ̇

(
˙δφ− φ̇Āb

)
− (dV/dφ) δφ. The equation of

motion for the scalar field perturbation δφ follows from the energy conservation equation, δ (∇νT
μν) = 0.

Introducing a scalar field perturbation in the spatially flat gauge, δφψ := δφ+ φ̇/Hψ̄b, and defining new
variables v := abδφψ, z := abφ̇/H, the Klein-Gordon equation for the scalar field perturbation can be
rewritten in a familiar form

v′′ +
(
k2 − z′′

z

)
v = 0, (22)

where a prime denotes a derivative with respect to conformal time. This exactly coincides with the
Sasaki-Mukhanov equation derived in the standard 4D context.
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Abstract
We study the behaviour of five-dimensional fermions localized on branes, which we
describe by domain walls, when two parallel branes collide in a five-dimensional
Minkowski background spacetime. We find that most fermions are localized on both
branes as a whole even after collision. However, how much fermions are localized on
which brane depends sensitively on the incident velocity and the coupling constants
unless the fermions exist on both branes.

1 Introduction

In the 80’s, one may regard our universe as a domain wall, or more generally a brane in a higher
dimensional universe. The idea is that the fermionic chiral matter making up the standard model is
composed of trapped zero modes. A similar mechanism is used in models, such as the Horawa-Witten
model, in which two domain walls are present. The existence of models with more than one brane suggests
that branes may collide, and it is natural to suppose that the Big Bang is associated with the collision [1].
This raises the fascinating questions of what happens to the localized fermions during such collisions? In
this study we shall embark on what we believe is the first study of this question by solving numerically the
Dirac equation for a fermions coupled via Yukawa interaction to a system of two colliding domain walls.
Kink-anti-kink collisions, have recently been studied numerically [2, 3]. One may extend the treatment
to include gravity [4, 5] but in this paper we shall, for the sake of our preliminary study, work throughout
with gravity switched off.

2 Fermions on moving branes

We start with a discussion of five-dimensional (5D) four-component fermions in a time-dependent domain
wall in 5D Minkowski spacetime. As a domain wall, we adopt a 5D real scalar field Φ with an appropriate
potential V (Φ). The 5D Dirac equation with a Yukawa coupling term gΦΨ̄Ψ is given by

(ΓÂ∂Â + gΦ)Ψ = 0, (Â = 0, 1, 2, 3, 5) , (1)

where Ψ is a 5D four-component fermion. ΓÂ are the Dirac matrices in 5D Minkowski spacetime satisfying
the anticommutation relations. We introduce two chiral fermion states

Ψ± =
1
2

(
1± Γ5̂

)
Ψ , Ψ+ =

(
ψ+

ψ+

)
, Ψ− =

(
ψ−
−ψ−

)
, (2)

where ψ+ and ψ− are two-component spinors. The Dirac equation (1) is now reduced to

(±∂5̂ + gΦ)ψ± + Γμ̂∂μ̂ψ∓ = 0 . (3)

As for a domain wall, now we assume the potential form is given by V (Φ) = λ
4

(
Φ2 − η2

)2. Then a
domain wall solution is given by Φ = ε tanh (z/D) where ε = ± correspond to a kink and an anti-kink

1E-mail:takamizu@gravity.phys.waseda.ac.jp
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solutions and D =
√

2/λ is the width of a domain wall. As for a fermion, in the case of a static domain

wall, separating variables as ψ± =
(4)

ψ±(xμ)f±(z) and assuming massless chiral fermions on a brane, i.e.

Γμ̂∂μ

(4)

ψ±(xμ) = 0, we find the solutions are

f± ∝
[
cosh

( z

D

)]∓εgD

. (4)

Hence the positive-chiral (the negative-chiral) fermion is localized for a kink (an anti-kink ) but is not
localized for an anti-kink (a kink). To discuss fermions at collision of branes, we first discuss fermions
on a domain wall moving with a constant velocity. Since 3-space is flat, we expand the wave functions
by Fourier series. In what follows, we shall consider only low energy fermions, that is, we assume that
�k ≈ 0. The equations we have to solve are now

i∂0ψ± = (∓∂5 + gΦ)ψ∓ . (5)

Since up- and down-components of ψ± are decoupled, we discuss only up-components here. With this
ansatz, we can construct a localized fermion wave function on a moving domain wall with a constant
velocity υ. We find for a kink with velocity υ,

ψ
(K)
+ (z, t; υ) =

√
γ + 1

2
ψ̃(K) (γ(z − υt)) , ψ

(K)
− (z, t; υ) = i

γυ

γ + 1

√
γ + 1

2
ψ̃(K) (γ(z − υt)) (6)

and we also find solution for an anti-kink, where ψ̃(K)(z̃) = f+(z̃) are static wave functions of chiral
fermions localized on static kink. If a domain wall is given by a kink [an anti-kink], we have only the
positive-chiral fermions in a comoving frame [the negative-chiral fermions]. However, from Eqs (6), we
find that the negative-chiral modes [positive-chiral modes] also appear in this boosted Lorentz frame.
The above wave functions on a moving domain wall can be used for setting the initial data for colliding
domain walls.

3 Fermions on colliding domain wall

We construct our initial data as follows. Provide a kink solution at z = −z0 and an anti-kink solution at
z = z0, which are separated by a large distance and approaching each other with the same speed υ. We
can set up as an initial profile for the scalar field Φ and fermions Ψ;

Φ(z, t) = Φ(K)(z + z0, t; υ) + Φ(A)(z − z0, t;−υ)− 1 , (7)

Ψ̂ = Ψ(K)
in (x, z + z0; υ)aK + Ψ(A)

in (x, z − z0;−υ)aA + Ψ(B)
in (x, z)aB , (8)

where Φ(K,A)(z, t; υ) = ± tanh(γ(z−υt)/D), and Ψ(K)
in (x, z; υ) and Ψ(A)

in (x, z;−υ) are the wave function of
right-moving localized fermion on a kink and those of left-moving one on an anti-kink. We also denote the
bulk fermions symbolically by Ψ(B)

in (x, z). To quantize the fermion fields, we define annihilation operators
of localized fermions on a kink and on an anti-kink by

aK = 〈Ψ(K),Ψ〉 and aA = 〈Ψ(A),Ψ〉 (9)

Now we can set up an initial state for fermion by creation-annihilation operators. We shall call a domain
wall associated with fermions a fermion wall, and a domain wall in vacuum a vacuum wall. We shall
discuss two cases: one is collision of two fermion walls, and the other is collision of fermion and vacuum
walls. For initial state of fermions, we consider two states;

|KA〉 ≡ a†Aa
†
K|0〉 and |K0〉 ≡ a†K|0〉 (10)

where |0〉 is a fermion vacuum state. We discuss behaviour of fermions at collision. After collision of two
domain walls, each wall will recede to infinity with almost the same velocity as the initial one υ. We
define final fermion states as

Ψ̂ = Ψ(K)
out (x, z;−υ)bK + Ψ(A)

out(x, z; υ)bA + Ψ(B)
out(x, z)bB , (11)
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where bK, bA and bB are annihilation operators of those fermion states. We find the relations between
ingoing and outgoing states by solving the Dirac equation (5);

bK = αKaK + βAaA , bA = αAaA + βKaK , (12)

Using the Bogoliubov coefficients αK, βK and αA, βA, we obtain the expectation values of fermion number
on a kink and an anti-kink after collision as

〈NK〉 ≡ 〈KA|b†KbK|KA〉 = |αK|2 + |βA|2 , (13)

〈NA〉 ≡ 〈KA|b†AbA|KA〉 = |αA|2 + |βK|2 , (14)

for the case of |KA〉. If the initial state is |K0〉, we find

〈NK〉 ≡ 〈K0|b†KbK|K0〉 = |αK|2 , (15)

〈NA〉 ≡ 〈K0|b†AbA|K0〉 = |βK|2 . (16)

In order to obtain the Bogoliubov coefficients, we have to solve the equations for domain wall Φ [3] and
fermion Ψ numerically. From the solution (4), we find the fermions are localized within the domain wall
width D if g >∼ 2/D. When g < 2/D, fermions leak out from the domain wall. Hence, in this paper, we
analyze for the case of g ≥ 2 with setting D = 1, but leave υ free. To obtain the Bogoliubov coefficients,
we solve the Dirac equation for the collision of fermion-vacuum walls. We shall give numerical results
only for the case that positive chiral fermions are initially localized on a kink. Because of z-reflection
symmetry, we find the same Bogoliubov coefficients for the case that negative chiral fermions are initially
localized on an anti-kink, i.e. |αK|2 = |αA|2. The Bogoliubov coefficients depend on the initial wall
velocity. In Table 1, we summarize our results for different values of velocity and Yukawa coupling
constant.

g = 2 g = 2.5
υ |αK|2 |βK|2 |γK|2 |αK|2 |βK|2 |γK|2

0.3 0.94 0.056 0.004 0.47 0.53 0.00
0.4 0.87 0.12 0.01 0.57 0.40 0.03
0.6 0.69 0.30 0.01 0.78 0.17 0.05
0.8 0.42 0.55 0.03 0.88 0.02 0.10

Table 1: The Bogoliubov coefficients of fermion wave functions localized on each domain wall after
collision ( |αK|2 and |βK|2) with respect to the initial velocity υ. We also show the amount of fermions
escaped into bulk space (|γK|2 = 1− (|αK|2 + |βK|2)).

For the coupling constant g = 2, |αK|2 and |βK|2 are almost equal (0.44 and 0.55), but for g = 2.5,
most fermions remain on the kink (|αK|2 = 0.88 and |βK|2 = 0.02). We find that the Bogoliubov
coefficients depend sensitively on the coupling constant g as well as the velocity υ. In Fig. 1, we shows
the g-dependence. Since the wave function is changed at collision, when the background scalar field
evolves in a complicated way, one might think that the behaviour of wave function would be difficult
to describe analytically. However, we may understand the qualitative behaviour in terms of the naive
estimation. As a result, we obtain the formula;

|αK|2, |βK|2 ≈ 1
2

[1± sin (2εgΦcΔt + C0)] , (17)

where ε = ±1 and C0 is an integration constant. Comparing the numerical data and the formula (17)
with Φc ≈ −1.5, we find the fitting curves in Fig. 1 (ε = −1, Δt ≈ 1.4 and C0 = −1.2). This fitting
formula explains our numerical results very well.

Finally, we can evaluate the expectation values of fermion numbers after collision as follows. For the
initial state of fermions, we consider two cases: case (a) collision of two fermion walls |KA〉 and case (b)
collision of fermion and vacuum walls |K0〉. In the case (a), we find

〈NK〉 = |αK|2 + |βA|2 = |αK|2 + |βK|2 ≈ 1 , 〈NA〉 = |αA|2 + |βK|2 = |αA|2 + |βA|2 ≈ 1 . (18)
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Figure 1: The Bogoliubov coefficients (|αK|2, |βK|2) with υ = 0.4 in terms of a coupling constant g. The
circle and the cross denote |αK|2 and |βK|2 respectively. Two sine curves (|αK|2, |βK|2 ≈ [1± sin(4.2g −
1.2))]/2 show the formula (17) with the best-fit parameters.

We find that most fermions on domain walls remain on both walls even after the collision. A small
amount of fermions escapes into the bulk spacetime at collision. In the case (b), however, we obtain

〈NK〉 = |αK|2 , 〈NA〉 = |βK|2 . (19)

Since the Bogoliubov coefficients depend sensitively on both the velocity υ and the coupling constant g,
the amount of fermions on each wall is determined by the fundamental model as well as the details of the
collision of the domain walls.

4 Conclusion

We have studied the behaviour of five-dimensional fermions localized on domain walls, when two parallel
walls collide in five-dimensional Minkowski background spacetime. We analyzed the dynamical behaviour
of fermions during the collision of fermion-fermion branes (case (a)) and that of fermion-vacuum walls
(case (b)). In case (a), we find that most fermions are localized on both branes even after collision. In
case (b), however, some fermions jump up to the vacuum brane at collision. The amount of fermions
localized on which brane depends sensitively on the incident velocity υ and the coupling constants g/

√
λ.

The detailed discussion is shown in [6].
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Abstract
Field theory is reformulated on the algebraically defined system. Here we argue the
algebraic construction of field theory by a Dirac operator and its quantization. Also
gravitational field is investigated. As a simple example, we develop the gravitational
field theory on the two-point lattice spacetime.

1 Introduction

From the progresses of quantum mechanics, we have a wavy images of quantum particle, which posseses
both aspects of a particle and a stochastic wave. In the study of quantum theory of gravity, what can
we have the image about the microscopic spacetime. Most speculative is Wheeler’s wormhole which
combined the paticle and microscopic topology of spacetime. Hawking’s suggestion is in small scale the
spacetime has some topological nontoriviality in addition to some smooth fluctuation, which are small
handle with π1-nontriviality and virtrual black hole with π2-nontriviality.

Since the smoothness is the essential concept of theoritical physics since standard physical theory
is analytical theory. Without the differentiation on a continuous manifold we surrender the physical
analysis of system. However, algebraic formulation is possible to extend the analysis to the discrete space
or noncommutative space. For example, the author demonstrated that the analytical dynamics and
general relativity is extended. It encourage us to have a image of microscopic spacetime with discrete
topology of any other topological nontriviality. There are no reason prevent that. We should go further
and watch the new horizon of the theoritical physics.

There is no doubt that the essence of quantum theory is the noncommutativity of operator algebra
for physical variables. Usually, this noncommutativity reflects the ordering of quantum observations.
In quantum gravity, how can we understand the noncommutativity? A standard answer would be the
framework of field theory where the gravitational field is decomposed into a fluctuation of potential and
background geometry. As long as the gravity is sufficiently weak, that will promise to treat spacetime
geometry. However, strong gravity drastically changes background geometry, since general relativity is
remarkably non-linear theory. Indeed, the topological instanton of quantum gravity implies the micro-
scopic nontriviality of topology for spacetime. In this sense one should care the topological structure
as a physical variable, for example, the Wilson loop and moduli parameter. If we want to completely
enumerate the topological variables, one might treat the open neighborhoods of spacetime points, whose
set and coordinate transformation yields a concept of manifold. Roughly speaking, considering all open
neighborhoods as physical variable is similar to regarding their own spacetime points as physical vari-
ables by themselves. This will realize any noncommutativity through quantization of spacetime dynamics.
Of course, though such an idea is an imaginary picture without mathematical background, if we once
reproduce the geometry in an algebraic language, noncommutativity will be given to all the geometri-
cal concepts, e.g., to spacetime points, by changing the commutative algebra into the noncommutative
algebra.

The most successful framework of the noncommutative space has been established by A. Connes and
is well known by his textbook[1]. In the study of the noncommutative geometry, the most important
concept is algebraic abstraction of conventional commutative geometry. While ordinary commutative
geometry has been established on a space with any mathematical structure, noncommutative geometry
is constructed on the basis of the operator algebra which acts on a Hilbert space. Therefore we need
algebraic abstraction of gravity theory when we consider noncommutative gravity theory. We will have

1E-mail:msiino@th.phys.titech.ac.jp
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corresponding algebraic objects instead of the conventional objects like curvatures by which we character-
ize geometry, that is, topological space, differentiable manifold and Riemannian manifold. The algebraic
counterparts are a set of continuous function, pseudodifferential operators and a Dirac operator; and are
defined in the framework of a commutative operator algebra. Once this algebraic abstraction has been
made, the operator algebra naturally extends from commutative to noncommutative one.

One might worry that by the noncommutative extension, space may lose its continuity or differ-
entiability. The most worrisome thing might be missing of reasonable measure which is indispensable
to develop physical theory there. Nevertheless, the framework of the spectral geometry established by
Connes[2][3] provides the substantial structure that is appropriate to define a trace of operators.

Although people believe that our world is commutative and relativists study the dynamics of com-
mutative spacetime, there are two motivations to consider noncommutative space. One is interest about
the characteristic of real noncommutative space. For example, the noncommutative torus or the space of
irreducible Penrose tiling is a well-known model of noncommutative space. The noncommutative torus
of irrotational ring[4] is known as not Lebesgue measurable space. The set of the Penrose tiling is a
quotient set of the Cantor set[1]. The other is physical interest concerning quantization of gravitational
theory. Recently many authors study the noncommutative gravity, in the standpoint that at Planckian
scale spacetime should be noncommutative. Most of them expect that the noncommutative space gives
the quantization of spacetime geometry in the context of deformation quatization. On the other hand,
the aim of the algebraic gravity is to rewrite general relativity in an algebraic language. Since the al-
gebraically formulated theory makes it possible to extend general relativity into the spacetime without
differential structure, it is expected that one can develop a consistent quantum theory of gravitation as
a continuous limit of the theory on a discritized spacetime[5].

In these sense, a discretized spacetime is one of model of microscopic spacetime. In the present task,
we attempt to extend the fundamental notion about the field theory to such a topologically nontrivial
spacetime discribed by algebraic manner. Important concept is the function algebra and Clifford algebra
on a spacetime. From Gelfand Naimark, the function algebra determine the topology of spacetime.
Alain Connes establish the way to relate the Riemannian geometry and the Clifford algebra on it. Since
the analytical dynamics was extended to discritized space[5], also the field theory is extended to the
discritized spacetime in the present work. Some concept is prepared for the quantum theory formulated
in the comvined work[6].

The detail will appear in forthcomming papers. There we develop the algebraic formulations for:

• field theory.

• Nether theorem.

• gravitational perturbation

• canonical quantization

• QFT

• quantum theory of gravitational perturbation.
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Abstract
We derive exact time dependent solutions in a six dimensional supergravity model.
Of particular interest would be models where four dimensions expand whereas the
compact internal dimensions remain static. We show that under the assumptions we
make for the form of the fields, this is impossible and find that the only consistent
time dependent solutions lead to all six dimensions evolving (expanding) in time,
implying the decompactification of the extra dimensions.

1 Introduction

Six dimensional supergravity models have several interesting properties. Salam and Sezgin obtained
static solutions in which the six dimensional gauged supergravity compactifies on a product spacetime of
four dimensional Minkowski and a two dimensional sphere, M4 × S2 [1]. Remarkably this supergravity
model admits the supersymmetric Minkowski vacuum while many other supergravity models do not. The
modern interpretation of this remarkable property is that the solution of this theory is compatible with
the introduction of branes into the spacetime. As with any massive defect, this then leads of course
to the appearance of a deficit angle in the two internal spatial dimensions, as a gravitational response
to the tensions of branes [2]. The resulting geometry looks a rugby ball solution where the branes are
located at the north and south pole of the ball. It was later revealed that the Salam-Sezgin vacuum is
the unique one with a four dimensional maximal symmetry and general solutions with an axisymmetric
internal space were obtained by Gibbons, Guven and Pope (GGP) [3].

The observation that the four dimensional spacetime is always Minkowski even in the presence of
branes with tensions in Ref. [3] is a basis of the interesting supersymmetric large extra dimension (SLED)
scenario, an approach to solving the cosmological constant and dark energy problems [2]. If only for this
reason, such is the prize at stake, it makes this six dimensional supergravity interesting from a cosmological
point of view, although we note that cosmology in six dimensional supergravity has previously been
studied in the context of Kaluza-Klein cosmology [4, 5]. One of the neatest aspects of the SLED model
is that a 3-brane with any tension in six dimensional spacetime induces only the corresponding deficit
angle and does not lead to a non-vanishing four dimensional cosmological constant. This feature is often
referred to as a “self-tuning mechanism” of the effective four dimensional cosmological constant and would
be expected to be part of the solution to the cosmological constant problem (we still have to account for
the affect of quantum corrections).

Although the SLED scenario has enjoyed a number of successes, open questions still remain. We are
particularly interested in establishing whether the self-tuning mechanism really works in a time dependent
evolving Universe. Previous authors have argued that the self-tuning of the four dimensional cosmological
constant does not work at least in non-supersymmetric six dimensional Einstein Maxwell theories [6, 7, 8].
Our work has a number of overlaps with some of the solutions obtained by Tolley et al [9], who have
obtained a series of solutions to the dynamical system, although we believe the explicit expressions of
exact solution we present is done so for the first time.

In this short proceedings we search for time dependent exact solutions to the six dimensional super-
gravity model, as a first step toward understanding the cosmological evolution. Full details of the work
will be published shortly [10].
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2 The basic field equations

Concentrating on the bosonic field contents of this model, we have the metric gMN , dilaton φ, a U(1)
gauge field AM with field strength FMN and an antisymmetric tensor field BMN whose corresponding
field strength is expressed as

GMNP = ∂MBNP + FMNAP + cyclic permutations. (1)

The lagrangian density for the bosonic sector is given by

LSUGRA =
1

2
R− 1

2
∂Mφ∂Mφ− e−2φ

12
GMNP GMNP − e−φ

4
FMNFMN − 2g2eφ, (2)

where g is the U(1) gauge coupling. Here M, N runs over all the spacetime indices and we work on the
sphere with the six dimensional (reduced) Planck scale M6 = 1.

For simplicity we consider an ansatz GMNP = 0, namely the vanishing of the three form field strength.
With that assumption the field equations are

DMDMφ +
e−φ

4
FMNFMN − 2g2eφ = 0, (3)

DM

(
e−2φFMN

)
= 0, (4)

−RMN + ∂Mφ∂Nφ + e−φ

(
FM

P FNP − 1

8
FPQFPQgMN

)
+ g2eφgMN = 0. (5)

The metric ansatz we adopt is

ds2 = W (xm, t)2ds4 + r(t)2ds2
2,

ds2
4 = −dt2 + δijdxidxj , ds2

2 = γmn(xm)dxmdxn, (6)

where i, j run over the usual three spatial indices and m, n run over the extra two spatial indices. Under
this metric, the two form field strength takes a form of

Fμν = Fμm = 0

Fmn = F (t, xm)εmn, (7)

with εmn being the anti-symmetric tensor. Here, the use of Greek indices denote the four spacetime
coordinates (i.e. μ = (0, i)).

3 Static Internal spaces are not solutions

3.1 Case1: Time dependent W

Ideally what we want to obtain is a solution which describes the expansion of our three space dimensions
with a static extra dimensional space. As a first step towards obtaining it, we make the ansatz of a static
internal space r = 1, a static dilaton φ = φ(xm) and assume a separable form for W = W (t)W (xm). The
field equations can then be reduced to

C(xm)− 1

4W 4
Dm(γmn∂nW 4) +

e−φ

8
FPQFPQ − g2eφ = 0 (8)

3

W 2

(
∂0W

W

)
,0

=
1

W 2

(
∂0W

W

)
,0

+
2

W 2

(
∂0W

W

)2

= C(xm). (9)

which after some algebra leads to [10]

W (t) =
W0

t− t0
, C(xm) =

3

W 2
0 W (xm)2

(10)
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with W0 and t0 being integration constants.
However, from the other field equations, we also know that

Dm

(
γmnW 4∂n(lnW 4 + 2φ)

)− 4W 4C(xm) = 0, (11)

which is conflict, for any non-vanishing W on the internal space, with the fact that the extra two dimen-
sional space is compact. In other words, if we integrate both sides of Eq. (11) over the compact extra
space, we see that the first term on the left hand side vanishes as it is a total derivative while the second
terms does not. Hence, there is an inconsistency and so we conclude there is no solution static solution
for the compact space with this ansatz for W .

3.2 Case 2: Time dependent r and φ, but static W .

Next, we tried to find a solution of the static three space with a dynamical extra dimensional space.
However, unfortunately, we found that there is no consistent solution under this ansatz as well.

4 Time dependent solutions with dymanical r, W and φ

Having tried unsuccessfully to obtain static solutions for r and W , we now look for dynamical solutions
where all the key fields r, W and φ are time dependent. We again make a series of ansatz, in this case
φ(t, xm) = φ(t) + φ(xm), eφ(t)r2 = 1 and assume the separable form of W = W (t)W (xm). We then
obtain

∂mφ = −2
∂mW

W
(12)

as in the GGP solution. Here, we note that the relation r2 ∝ e−φ has been indicated by previous works
[2]. If we assume that the Field strength F is static and only depends on xm, then from the field equations
we obtain [10]

C(xm)− Dm(γmn∂nW 4)

4W 4
+

e−φr2

8
FPQFPQ − g2eφr2 = 0, (13)

which depends on only xm. Here, C(xm) is given by

C(xm) =
r2

W 2

[
3

(
∂0W

W

)
,0

+ 2

(
∂0r

r

)
,0

− 2
∂0r

r

∂0W

W
+ 2

(
∂0r

r

)2

+ ∂0φ∂0φ

]

=
r2

W 2

[(
∂0W

W

)
,0

+ 2

(
∂0W

W

)2

+ 2
∂0W

W

∂0r

r

]

= − 1

W 4
∂0

(
r2W 2∂0

φ

2

)
. (14)

and a function only of xm, because all other terms in Eq. (13) also only depends on xm.

4.1 Case a: Power law solutions for r and W

Eqns. (13) and (14) still look very difficult to solve directly from first principles, and so instead we will
try to obtain solutions by assuming the form of r and W , and looking for consistency with the solutions.
As a first attempt we assume power law behavior for them, namely:

W ∝ tnW , r ∝ tnr . (15)

Substitution into the field equations yields the non trivial expanding solution

nW =
2−√3

4
, nr =

√
3

2
, (16)

which in turn leads to C(xm) = 0. Notice that in this case, we obtain identical solutions for F , φ and
the xm dependent part of W as found in the in the GGP solution. This is as expected, since the xm

dependent part of the field equations are identical to that of the GGP solution.
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4.2 Case b: Exponential solutions for r and W

The next obvious step is to assume an exponential form

W (t) = ehW t, r(t) = ehrt, (17)

where hW and hr are constants. In this case, the non trivial solution turns out to be hW = hr. Then,
C(xm) is given by

C(xm) =
4h2

W (xm)2
(18)

with h ≡ hW (= hr). Thus, we obtain the equations of motion of the xm dependent part of the fields to
be

4h2

W (xm)2
− Dm(γmn∂nW 4)

4W 4
+

e−φ(xm)

8
FPQFPQ − g2eφ(xm) = 0, (19)

4h2

W (xm)2
γmn − ∂mφ∂nφ− e−φ(xm)

(
Fm

P FPn − 1

8
FPQFPQγmn

)
− g2eφ(xm)γmn = 0. (20)

Something significant can now be see. Recall that we have equation (12), relating φ and W (xm). Given
the solution we have just obtained, we see that in Eqn. (20), by introducing g̃2 ≡ g2 − 4h2, we see that
the original xm part of the GGP solution with our redefined gauge coupling g̃2 instead of g2 is a solution
of this system. Obviously, the h → 0 limit corresponds to the original static GGP solution. The line
element of this solution with non-vanishing h is rewritten as

ds2 = W (xm)2[−dτ2 + (hτ)2δijdxidxj ] + (hτ)2ds2
2, (21)

in terms of the cosmic time. This solution (21) is found by Tolley et al too [9].

5 Conclusions

We have derived a class of exact time dependent solutions in a six dimensional gauged supergravity
compactified on a two dimensional axisymmetric space. Under the assumption of a separable form of W we
showed that there is no solution expressing the expanding four dimensional universe with a static internal
space. Exact solutions we obtained involved all the dimensions expanding which means the eventual
decompactification of the extra dimension, indicating an instability of Salam-Sezgin, (Minkowski)4 × S2,
spacetime for the case with the absence of the maximal symmetry in the four dimensional spacetime.
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Global properties of some homogeneous spacetimes in the
Einstein-Yang-Mills-dilaton system
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Abstract
We prove theorems which support the validity of the strong cosmic censorship for
some homogeneous spacetimes in the Einstein-Yang-Mills-dilaton system.

Introduction The strong cosmic censorship (SCC) conjecture states that the maximal Cauchy devel-
opment of generic initial data for the Einstein(-matter) equations is inextendible [EM81]. To prove this
conjecture in terms of nonlinear partial differential equations two steps are needed; as the first step, a
global existence theorem of solutions for the Einstein(-matter) equations in a suitable (e.g. constant mean
curvature) time coordinate should be shown and as the second step, inextendibility should be checked.
To do the second step, analysis of asymptotic behavior of spacetimes is needed. Recently, global existence
theorems for some classes of spacetimes with or without matter are proven (see review article [RA05]).

By the discovery of spherical symmetric and static particle-like (numerical) solutions to the Einstein-
Yang-Mills equations by Bartnik and McKinnon [BM], study of classical solutions to gravitational field
coupled with the Yang-Mills filed turned out to be an interest research field. Also, the success of gauge field
theory in connection with accelerated expanding universe [FL] and the evidence of chaotic behavior near
asymptotic regions of spacetimes [BL], lead us to study the Einstein-Yang-Mills system in cosmological
setting. From the viewpoint of nonlinear differential equation problems, since global existence theorem
for the Yang-Mills-Higgs system has been shown on the Minkowski background [EM82], it is interesting
to study extension to system of the Yang-Mills field coupled with scalar and gravitational fields. For
cosmological spacetimes, there are few results on this problem. Thus, we will consider locally rotational
symmetric (LRS) Bianchi type I spacetimes, which is one of the most simplest cosmological models, and
use the form of SU(2)-Yang-Mills gauge field given by Darian and Künzle [DK].

In this paper, motivated by higher-dimensional unified theories, e.g. superstring/M-theory, where
a dilaton field arises naturally, the Einstein-Yang-Mills-dilaton theory is considered and we investigate
global properties of the Einstein-Yang-Mills-dilaton system in LRS Bianchi I spacetimes with an SU(2)-
Yang-Mills field. Our main result is a proof of the validity of the SCC in the spacetimes. In summary,

Theorem 1 ([NM]) The strong cosmic censorship holds for LRS Bianchi I spacetimes in the Einstein-
Yang-Mills-dilaton system, that is, there exists a maximal Cauchy development of generic initial data for
the system of the Einstein-Yang-Mills-dilaton equations and it is inextendible.

Einstein-Yang-Mills-dilaton system Four dimensional string vacua emerging from heterotic super-
string theories, correspond to N = 1 non-minimal supergravity and super Yang-Mills model [GSW].
The low-energy effective bosonic action arising the string theory, called the Einstein-Yang-Mills-dilaton
(EYMD) system, is given by

S =
∫

d4x
√−g

[
R− eaκTr(FμνFμν)− 1

2
(∇κ)2

]
, (1)

with the Yang-Mills field strength

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν ], (2)

where gμν is the metric of four dimensional spacetimes, R is the Ricci scalar, κ is the dilaton field with a
coupling constant a, Aμ = A

(a)
μ T(a) is the gauge potential of the Yang-Mills field and {T(a)} is a generator

1E-mail:narita@math.ntu.edu.tw
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of Lie group G with [T(a), T(b)] = f
(c)
(a)(b)T(c), where f

(c)
(a)(b) is the structure constant of G. In terms of

components, the Yang-Mills field strength becomes

F (a)
μν = ∂μA

(a)
ν − ∂νA

(a)
μ + f

(a)
(b)(c)A

(b)
μ A(c)

ν . (3)

We have assumed that a cosmological constant and potentials of dilaton field are zero. Varying this action
with respect to gμν , Aμ and κ, we have the system of the EYMD equations as follows:

Rμν − 1
2
gμνR = Tμν , (4)

Dμ (eaκFμν) = 0, (5)
∇λ∇λκ− aeaκTr(FμνFμν) = 0, (6)

where Tμν is the energy-momentum tensor

Tμν = ∇μκ∇νκ− 1
2
gμν∇λκ∇λκ + eaκ

(
Tr(FμλFλ

ν )− 1
4
gμνTr(FμνFμν)

)
, (7)

and Dα is the gauge-covariant derivative

DμFμν := ∇μFμν + [Aμ,Fμν ], (8)

with the covariant derivative ∇ with respect to gμν .

LRS Bianchi I spacetime A generic form of the metric for LRS Bianchi type I spacetimes is given
as follows:

ds = −N2dt2 + b2(dx2 + dy2) + c2dz2, (9)

where metric functions b and c are depend only on time t and N is the lapse function, which will be
supposed N ≡ 1 after getting the field equations. Here we put

eα := (b2c)1/3, eγ := (bc−1)1/3.

eα is the averaged scale factor and eγ implies the anisotropy of three dimensional spacelike hypersurfaces,
t =constant. In this coordinate, the metric becomes

ds = −N2dt2 + e2(α+γ)(dx2 + dy2) + e2(α−2γ)dz2. (10)

We also define the momentum for α and γ to obtain the first-order differential equations as follows.

pα := ∂tα pγ := ∂tγ.

Yang-Mills field We assume the following form for the gauge potential,

A = T1udx + T2udy + T3vdz, (11)

for the Yang-Mills field [DK]. Functions u and v are depend only on time t and Ti are SU(2) generators
[T1, T2] = iT3. From this, we can obtain the field strength as follows:

F = ∂tu (T1dt ∧ dx + T2dt ∧ dy) + ∂tvT3dt ∧ dz

+u2T3dx ∧ dy + uv (T2dz ∧ dx + T1dy ∧ dz) . (12)

We will define the following quantities:

ψ :=
u

b
= ue−(α+γ), φ :=

v

c
= ve−(α−2γ),

and

pψ :=
∂tu

b
= ∂tue

−(α+γ) = ∂tψ + (pα + pγ)ψ, pφ :=
∂tv

c
= ∂tve

−(α−2γ) = ∂tφ + (pα − 2pγ)φ.
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Dilaton field The dilaton field κ also depends only on time and the momentum will be defined as
follows:

pκ := ∂tκ.

The coupling constant a is arbitrary. In the case of a = 0, the system becomes the Einstein-Yang-Mills-
scalar one and this scalar filed is decoupled with the Yang-Mills field.

Field equations Now, the Lagrangian density in terms of (N,α, γ, ψ, φ, κ) is of the form:

L := LK + LP , (13)

where LK is the kinetic part

LK =
e3α

2N

{
3
[−(∂tα)2 + (∂tγ)2

]
+ (∂tκ)2 + eaκ

[
2e−2(α+γ)(∂tu)2 + e−2(α−2γ)(∂tv)2

]}
,

and LP is the potential part

LP = −1
2
eaκe3αN

(
2e−2(2α−γ)u2v2 + e−4(α+γ)u4

)
.

By varying this action with respect to (α, γ, ψ, φ, κ) and putting N ≡ 1, we have the system of the
dynamical part of the EYMD equations, which is the first-order nonlinear ordinary differential equations
as follows:

∂tw = f(w), (14)

where w := (α, pα, γ, pγ , ψ, pψ, φ, pφ, κ, pκ)T and

f(w) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pα

−p2γ − 2p2α − 1
3p

2
κ

pγ

−3pαpγ + 2
3e

aκ(−p2ψ + p2φ − ψ2φ2 + ψ4)
pψ − (pα + pγ)ψ

−(2pα − pγ + apκ)pψ − ψ(ψ2 + φ2)
pφ − (pα − 2pγ)φ

−[apκ + 2(pα + pγ)]pφ − 2ψ2φ
pκ

−3pαpκ + a
2e

aκ
(
2p2ψ + p2φ − 2ψ2φ2 − ψ4

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

By varying the action with respect to N and putting N ≡ 1, we have the Hamiltonian constraint equation

−3p2α + 3p2γ + eaκ
(
2p2ψ + p2φ + 2ψ2φ2 + ψ4

)
+ p2κ = 0. (16)

The momentum constraint is trivial. Note that the constant mean curvature time slices is equivalent to
the hypersurfaces of homogeneity in spatially homogeneous spacetimes. Thus, the mean curvature H of
spacelike hypersurfaces

H = −3pα, (17)

serves as time. Now we can fix the time direction as H < 0 into the future [RA94]. This means that the
universe is expanding along the time. To see this, consider the constraint equation (16). This equation
means that H cannot become zero except in very special conditions. That is, H = 0 implies that pγ and
matter fields are zero and then, the spacetime must be Minkowski space. Therefore, H < 0 for all time
if the spacetime is not flat.
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Results Theorem 1 is proved from the following theorems, whose proofs are given in [NM].

Theorem 2 For any positive constant M , there exists a positive constant t0 = t0(M), which is indepen-
dent of τ , and the following holds: If wτ satisfies |wτ | ≤M , Cauchy problem{

∂tw = f(w), t ≥ τ,
w(τ) = wτ ∈ R10,

(18)

has a unique solution w ∈ C1(I) on I = [τ, τ + t0] such that

sup
t∈I
|w(t)| ≤ 2M (19)

is satisfied, and thus there exists a unique corresponding maximal spacetime on the interval.

Theorem 3 For any w0 ∈ R10, which satisfies the constraint equation (16), there is a positive num-
ber C(w0) which depends only on w0 and the Cauchy problem (18) has a unique global solution w ∈
C1((T ∗,∞)) such that

sup
t>T∗

|w(t)| ≤ C(w0),

is satisfied, and thus there exists a corresponding maximal spacetime globally.

Theorem 4 The Kretschmann scalar for the spacetime become infinite as t goes to the time T ∗.

Theorem 5 The spacetime is future geodesic complete.
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Abstract
A puzzling question in modern cosmology has been the nature and origin of dark
energy for the apparent acceleration of the universe in the present epoch. In most
researches of dark energy, one often parameterizes dark energy with its equation of
state ’w’, and cosmological observations have tried to put constraint on this parameter
as severe as possible. The equation of state parameter can only be relevant to the back
ground evolution, and therefore, one needs to specify the fluctuation properties of dark
energy to compare its theoretical predictions with observational data derived from
density inhomogeneity such as cosmic microwave background anisotropies (CMB)
and galaxy clustering. Here we parameterize the dark energy fluctuation in a general
manner and investigate their effect on the final result of the constraint on the equation
of state of dark energy. We found that a different assumption of the fluctuation
property of dark energy can lead a different result of constraint on ’w’ by at most
<
∼

20 %.

Almost all cosmological observations today suggests that the present universe is accelerating. To
account for the present cosmic acceleration, one usually assumes an enigmatic component called dark
energy. In most researches of dark energy, one often parameterizes dark energy with its equation of state
wX = pX/ρX where pX and ρX are pressure and energy density of dark energy. Current cosmological
observations can give a severe constraint on wX . When the equation of state is assumed to be constant
in time, it is constrained as wX = −0.941+0.087

−0.101 [1]3.
The parameterization mentioned above can only be relevant to the background evolution. In fact, in

various models of dark energy, dark energy can fluctuate and then its fluctuation can affects the cosmic
density perturbations such as cosmic microwave background (CMB). When one specifies a model for
dark energy, one can investigate its effects of fluctuation using the perturbation equation in the model.
However, there are many models proposed to date, one may prefer to describe it in a phenomenological
way. To describe the nature of fluctuation of dark energy, the (effective) speed of sound c2

s
has been used

in many works so far. Some authors have investigated the constraints on the equation of state varying
the speed of sound [2] and on the speed of sound itself [3]. Since the fluctuation of dark energy mostly
come into play after when dark energy becomes the dominant component of the universe, the effects of it
appears on large scales. Hence, when one tries to constrain the speed of sound from observations of CMB,
we do not obtain a severe constraint on it because the cosmic variance error is large there. However,
some studies have shown that the constrains on the equation of state can vary with the assumption for
the perturbation property of dark energy. For example, the constraint we mentioned above is obtained
by assuming no fluctuation for dark energy, however, when one take into account the perturbation of
dark energy, the constraint becomes wX = −1.00+0.17

−0.19 where c2s = 1 is assumed [1]. Thus, in this sense,
it is important to investigate the properties of dark energy fluctuation from the viewpoint not only from
to reveal its fluctuation nature but also from constraining the equation of state for dark energy.

In fact, to parameterize the perturbation property of dark energy, the use of the speed of sound is
not enough. If one considers the possibilities of imperfect fluid models for dark energy, we also need
to specify its anisotropic stress in some way. In fact, there have been proposed that some models have
such anisotropic stress [4] and also there are a few works which accommodate such possibilities from a
phenomenological point of view [5, 6]. Although they investigated its effects in some detail, cosmological
constrains in such models did not given. Since now we have precise measurements of cosmology, it is

1E-mail:ichiki@resceu.s.u-tokyo.ac.jp
2E-mail:tomot@cc.saga-u.ac.jp
3This constraint is given for the fluctuation of dark energy being neglected.
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worth to investigate constraints for dark energy in such a general setting. The purpose of the present
paper is to discuss a generalized dark energy including the possibilities of imperfect fluids and give the
constraints on various parameters assuming such a generalized dark energy.

The background evolution of dark energy can be parameterized by its equation of state wX = pX/ρX .
The evolution of the energy density of dark energy is given by solving

ρ′
X

= −3H(1 + wX)ρX (1)

where the prime denotes the derivative with respect to the conformal time η andH = a′/a is the conformal
Hubble parameter with a being the scale factor. As far as the background evolution is concerned, this
equation specifies it.

To specify the nature of dark energy perturbation, we need to give its pressure perturbation and
anisotropic stress. For the pressure perturbation, it may be useful to separate it to adiabatic and non-
adiabatic parts. When the dark energy fluid is adiabatic, the evolutions of pressure perturbation can be
specified with the adiabatic sound speed c2a which is

c2
a
≡

p′
X

ρ′
X

= wX −
w′

X

3H(1 + wX)
. (2)

Then pressure perturbation is given as δp = c2
a
δρ. However, in general, non-adiabatic pressure perturba-

tion may arise. Such a degrees of freedom can be parameterized with the so-called speed of sound which
is defined as

c2s ≡
δpX

δρX

∣∣∣
rest

. (3)

This quantity is usually defined in the rest frame of dark energy. A famous example of dark energy models
with non-adiabatic pressure is quintessence which has the speed of sound c2

s
= 1. Other models such as

k-essence can have different values for the speed of sound. In the adiabatic case, c2s and c2a coincide.
In fact, to consider a general fluid model for dark energy, the speed of sound is not enough to specify

its nature. We still have to specify an anisotropic stress for dark energy. Including the anisotropic stress,
perturbation equations for density and velocity fluctuations are

δ′X = −(1 + wX)
[
k2 + 9H2(c2s − c2a)

] θX

k2
− 3H(c2s − wX)δX − (1 + wX)

h′

2
(4)

θ′X = −H(1− 3c2s)θX +
c2
s
k2

1 + wX

δX − k2σX (5)

where δX , θX and σX represent density, velocity and anisotropic stress perturbations for a general fluid,
respectively. The anisotropic stress can be obtained by solving

σ′X + 3H
c2a
wX

σX =
8
3

c2vis
1 + wX

(
θX +

h′

2
+ 3η′

)
(6)

where c2vis is “the viscosity parameter” which can specify the nature of an anisotropic stress for dark
energy. We modified CAMB code [7] and CMBFAST code [8] to include a general dark energy fluid to
calculate CMB power spectra.

In Figure 1, we show the CMB power spectrum with several values of c2vis. As seen from the figure,
increasing the values of c2vis, the low multipole region are more enhanced, which is driven by the ISW
effect. In fact, for the case with c2vis = 1 and 0.1, the tendency becomes the opposite. This is because
of the non-trivial cancellation between the ISW effect and the cross correlation of the SW with the ISW
effects.

By including the sound speed and viscous effects of dark energy, we now investigate how these fluc-
tuation properties can affect the result of constraint on the equation of state of dark energy wX . To
do this, we first fix the two parameters related to the fluctuation of dark energy (c2s and c2vis) to some
values, and compare the result with the standard (quintessential) dark energy model parameterized by
(c2

s
, c2vis) = (1, 0). Here we investigate three cases: (c2

s
, c2vis) = (0, 0), (0, 1), and (1, 1).

To obtain the result of constraint on the equation of state of dark energy wX , we employ a Markov
Chain Monte Carlo (MCMC) engine which has been a standard method to explore the likelihood. The
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Figure 1: Calculated angular power spectrum of
CMB temperature anisotropy for several values of
c2vis. Lines are for the model with (from bottom to
top) c2vis = 0, 0.001, 0.01, 1.0, 0.1 as indicated. In
the figure, we fixed dark energy parameters as wX =
−0.8 and c2s = 0. Other cosmological parameters are
fixed to Ωmh2 = 0.02, Ωbh

2 = 0.11, h = 0.68, τ = 0
and ns = 1 only for an illustration. We assume that
the universe is flat and no tensor mode contribution.

other cosmological parameters are all marginalized. The likelihood functions we calculate are given by
WMAP3 term [9] for the CMB anisotropies and 2dF term [10] for the matter power spectrum. Our
results are shown in figures 2 and 3.
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Figure 2: Left: Marginalized 68% and 95% confidence regions from CMB and P (k) for an (c2s, c2vis) = (0, 0)
dark energy component (dashed) and (c2

s
, c2vis) = (0, 0) (colored). The confidence region is smaller for

preassureless dark energy model. Right: One dimensional distribution function of wX obtained by
marginalizing all the other cosmological parameters.

Interestingly, we found that the confidence region in the parameters plane of ΩM and wX is sig-
nificantly smaller for the (c2s, cvis) = (0, 0) case than the fiducial standard case (c2s, cvis) = (1, 0) (fig-
ure 2). This fact leads to the different conclusion on the constraint on the equation of state wX as
wX = −0.89+0.21

−0.24, while wX is limited as wX = −0.92+0.25
−0.32 for the fiducial case (errors are 2 σ). In

this particular case, the confidence limits on wX can differ by ∼ 20%. Notice that these constraints are
obtained from the same observational data set. On the other hand, we found no evidence that the limits
for the other two cases, i.e., for (c2s, cvis) = (0, 1) and (1, 1), differ from that for the fiducial case (figure
3).

In this presentation we parameterized the dark energy fluid with its equation of state wX , speed of
sound c2s and viscosity c2vis and calculate CMB angular and matter power spectra to compare with recent
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Figure 3: Same as figure 2, but for (c2s, c2vis) = (0, 1) (left) and (c2s, c2vis) = (1, 1) (right).

observations. The larger speed of sound and/or viscosity lead to the smaller gravitational potentials and
hence the larger ISW effect. We found that different assumption of the fluctuation property of dark energy
resulted in a different result of constraint on the equation of state parameter by at most <

∼ 20%, even
though current observational data can not put any significant constraint on the fluctuation properties.
Thus we suggest that it is important to specify the fluctuation property when putting constraint on the
equation of state of dark energy. More details will be found elsewhere soon [11].
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Abstract
We study weak gravitational lensing of galaxy clusters in relativistic MOND (MOdy-
fied Newtonian Dynamics) theory proposed by Bekenstein (2004). We calculate shears
of background galaxies for three clusters (A1689, CL0024+1654, CL1358+6245) and
compare them with observational data. For the shear as a function of the angle from
the lens center, MOND predicts a shallower slope than the data irrespective of the
critical acceleration parameter g0. The dark halo is necessary to explain the data for
any g0. If the dark halo is composed of massive neutrinos, its mass should be heavier
than 2 − 3 eV. However, it is still difficult to explain a small core (100 − 300 kpc)
determined by the lensing data in the neutrino halo model.

1 Introduction

MOND (MOdyfied Newtonian Dynamics) is an alternative theory to Newtonian dynamics proposed by
Milgrom (1983). It makes gravitational force stronger at large distance (or small acceleration) to explain
galactic dynamics without dark matter. The equation of motion is changed if the acceleration is lower
than the critical value g0 � 1× 10−8cm/s2 ≈ H0. It is well known that this theory can explain galactic
rotation curves with only one free parameter: the mass-to-light ratio (see review Sanders & McGaugh
2002). Bekenstein (2004) recently proposed a relativistic covariant formula of MOND (called TeVeS)
by introducing several new fields and parameters. After his work, several authors have discussed the
relativistic phenomena. In this paper, we discuss weak gravitational lensing of galaxy clusters.

The weak lensing provides an important observational method to test MOND. This is because the weak
lensing probes the lens potential outside of the Einstein radius, rE ∼ (MD)1/2 � 150kpc(M/1014M�)1/2

(D/H−10 )1/2, where M is the lens mass and D is the distance to the source. The gravitational law is
changed outside of the MOND radius, rM = (M/g0)1/2, where the acceleration is less than g0. Since
g0 ≈ H0 ≈ 1/D, the Einstein radius rE is comparable to the MOND radius rM . Hence, we can test the
MOND-gravity regime by the weak lensing.

The gravitational lensing in MOND have been studied by many authors. Just after Bekenstein
proposed the relativistic formula, Chiu et al. (2006) and Zhao et al. (2006) first studied the lensing
in detail and tested MOND with strong lensing data of galaxies. In this paper, we calculate shears for
three clusters (A1689, CL0024+1654, CL1358+6245) and compare them with the observational data.
We perform a χ2 fit of the data to give a constraint on the dark halo profile and the neutrino mass.
Throughout this paper, we use the units of c = G = 1.

2 Basics

We briefly review the basics of gravitational lensing based on the relativistic MOND theory for a spherical
symmetric lens model. The detailed discussions are given in Bekenstein (2004) and Zhao et al. (2006).

When a light ray passes through a lens with the impact parameter b, the deflection angle is

α(b) = 2b
∫ ∞

−∞
dl
g(r)
r
, (1)

1E-mail:takahasi@th.nao.ac.jp
2E-mail:chiba@phys.chs.nihon-u.ac.jp
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where l is the distance along the light path and r is the distance from the lens center, r =
√
l2 + b2.

The gravitational force due to the lens is μ̃(g/g0)g(r) = gN (r) = M(< r)/r2, where gN is the usual
Newtonian acceleration and M(< r) is the lens mass enclosed inside a radius r. We use a standard
interpolation function μ̃(x) = x/

√
1 + x2 with g0 = 1 × 10−8cm s−2. Then, μ̃(x) = 1 (i.e. g = gN ) for

g � g0, while μ̃(x) = x (i.e. g =
√
gNg0) for g � g0.

The lens equation is θs = θ − (DLS/DS)α(θ). Here, θs and θ(= b/DL) are the angular positions of
the source and the image, and DL, DS and DLS are the angular diameter distances between the observer,
the lens and the source.3 The shear γ and the convergence κ are given by, γ = (θs/θ−dθs/dθ)/2; 1−κ =
(θs/θ+dθs/dθ)/2. We note that if the mass increases asM ∝ rp with p ≥ 0, the shear and the convergence
decrease as

γ ∝ κ ∝ θp−2 for g � g0,

∝ θp/2−1 for g � g0. (2)

The slopes of γ and κ for g � g0 are steeper than that for g � g0. This is because the gravitational
force is proportional to g

1/2
N for g � g0, and hence the force decreases more slowly at larger distance.

Comparing the slope in Eq.(2) with the observational data, we can test MOND.

3 Results for Individual Clusters

We calculate the shear γ and the convergence κ based on the MOND theory for the three clusters, A1689,
CL0024+1654, CL1358+6245. The mass profiles of these clusters have been measured by gravitational
lensing for wider range of angular diameters, and hence these clusters are appropriate system to investigate
the angle dependence of the shear and the convergence. In this section, we assume the source redshift is
zS = 1.

3.1 A1689

The mass profile of the cluster A16894 is shown in Fig.1(a). The hot gas mass profile was directly
determined from X-ray observational data [2]. The galaxy mass profile was given from the surface
brightness profile with assuming the constant mass-to-light ratio 8M�/L� (B-band) [12]. The total
baryonic mass (gas + galaxies) is shown in the solid line. We also show the dark halo profile which will
be needed to match the observational data (we will discuss later).

The panel (c) shows the reduced shear data γ/(1− κ) from Broadhurst et al. (2005). The solid line
is the MOND theoretical prediction. We note that for θ < 10′ the solid line is clearly smaller than the
data. This indicates that the gravitational force is too weak to explain the data. In the dotted line, for
the critical acceleration g0 we use 40 times larger than the usual value (= 1× 10−8cm s−2). In this case,
for the central region (θ < 4′) the theory can explain the data, but for larger radius it cannot. This is
because that the slope of shear is shallow from Eq.(2) for g < g0. The slope is shallower than γ ∝ θ−1

for g < g0 (since p ≥ 0 in Eq.(2)) and the data in the panel (c) clearly shows steeper profile than this.
Hence MOND cannot explain the data for any mass model and any acceleration parameter g0 in the low
acceleration region g < g0.

Previously, Aguirre, Schaye & Quataert (2001) and Sanders (2003) reached the same conclusion as
ours by studying temperature profiles of clusters. They indicated that the temperature data near the
core is higher than the MOND prediction. Sanders (2003) noted that if the dark matter core is added
this discrepancy could be resolved. Following the previous studies, we include the dark halo to explain
the observational data. We take the Hernquist profile,

M(< r) = M0r
2/(r + r0)2, (3)

as the dark halo profile. We perform a χ2 fit of the data in order to determine the parameters M0 and
r0. The χ2 is given by χ2 =

∑
i(xi−xdata

i )2/σ2i where xi is the reduced shear γ/(1−κ) at the i-th angle,

3We use the distance in the usual FRW (Friedmann-Robertson-Walker) model with ΩM = 1 − ΩΛ = 0.3 and H0 =
70km/s/Mpc. The distance in MOND is almost the same with that in FRW model [3].

4Its redshift is z = 0.183 and 1′ corresponds to 184kpc.

− 220 −



101 102 103

1010

1012

1014

r (kpc)

A1689

gas

dark halo

galaxies

M
(<

r)
  (

M
 )

(a)
gas+

galaxies

100 101

10−2

10−1

100

γ 
/ (

1−
κ)

θ (arcmin)

gas+galaxies

with dark halo

g0=4  10−7cm/s2

(c)

Figure 1: Results for the cluster A1689. The left panel (a): The mass profiles of the gas (dotted line), the
galaxies (dot-dashed line), the gas + galaxies (solid line), and the dark halo (dashed line). The quantity
M(< r) is the mass enclosed within the radius r. The right panel (c): The reduced shear γ/(1 − κ) as
a function of an angle from the cluster center. The data is from Broadhurst et al. (2005). The solid
line is the MOND prediction. In the dotted line we use the value of g0, 40 times larger than usual one
(= 1 × 10−8cm/s2). In the dashed line the dark halo is added. From the panel (c), the MOND can not
explain the data unless the dark halo is added, because the gravitational force is too weak near the core.

xdata
i is the data and σi is the standard deviation. The best fitted model is M0 = (6.2 ± 1.2)× 1014M�

and r0 = 125 ± 52 kpc (see Table 1). The minimized χ2-value per degree of freedom (dof) is χ2min/dof
= 3.0/8. The results are insensitive to the mass-to-light ratio. As shown in the panel (c), this model
(dashed line) fits the data well. The dashed line in the panel (c) is steeper than the solid and dotted
lines, since θ < 5′ (↔ r < 1000kpc) is the high acceleration region g > g0 and hence the slope is steeper
as seen from Eq.(2).

3.2 CL0024+1654 & CL1358+6245

Fig.2 shows the reduced shear for the cluster CL0024+1654 [7] and CL1358+6245 [6]. Similar to the
previous case of A1689, the solid line is clearly smaller than the data near the core. The best fitted halo
model is M0 = (3.5 ± 1.0) × 1014M� and r0 = 309 ± 93 kpc with χ2min/dof = 9.9/8 for CL0024 and
M0 = (8.1 ± 3.6) × 1013M� and r0 = 134 ± 68 kpc with χ2min/dof = 4.5/7 for CL1358. Same as the
previous case of A1689, the dark halo is needed to fit the data.

4 Discussion

In previous studies, several authors assumed a massive neutrino with a mass of ∼ 2 eV as the dark matter
to explain the observational data [10]. In this section, we put a constraint on its mass from the weak
lensing.

The neutrino oscillation experiments provide the mass differences between different families : Δm2
ν
<∼

10−3eV2. Here we consider massive neutrinos whose masses are much heavier than Δmν and assume they
are degenerate: they have (almost) the same mass independent of their families. Using the maximum
phase space density h−3, the maximum density of the neutrino dark halo is given by ρνmax = 4.8 ×
10−27g cm−3(mν/2eV)4(T/keV)3/2 [11, 10]. The core density of the Hernquist profile is ρc = 3M(<
r0)/(4πr3) from Eq.(3). Since ρc < ρνmax, we obtain the minimum neutrino mass,

mν > 6.1eV
(

M0

1014M�

)1/4(
r0

100kpc

)−3/4(
T

keV

)−3/8

, (4)
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Figure 2: The reduced shear for the cluster CL0024+1654 (left) and CL1358+6245 (right).

where T is the X-ray temperature. The results are shown in Table 1. The minimum neutrino mass is
2− 3 eV for these three clusters. Since the current limit is mν < 2 eV from tritium β decay5, our results
in Table 1 are comparable to or larger than this limit.

Sanders (2003) derived a core radius of neutrino virialized halo, rν >∼ 700kpc(mν/2eV)−2(T/keV)−1/4.
But this is much larger than the core radius in Table 1. Hence, it is difficult to explain the small core in
the neutrino halo model.

M0 (M�) r0 (kpc) T (keV) mν (eV)
A1689 (6.2± 1.2)× 1014 125± 52 9.00± 0.13 > 3.6± 1.1
CL0024 (3.5± 1.0)× 1014 309± 93 3.52± 0.17 > 2.2± 0.5
CL1358 (8.1± 3.6)× 1013 134± 68 7.16± 0.10 > 2.2± 0.9
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Abstract
Lensing effects on point light sources are simulated in a clumpy universe model. In
our universe model, it is assumed that all of the matter in the universe constitutes
randomly distributed extended transparent objects each of which has the identical
mass ML and the typical size L. We suppose that the density distribution of the
objects is axially symmetric, non-singular, and smooth. Numerical calculations are
performed for three different density distributions, and we compute probability dis-
tribution functions of the magnification. In the large L/

√
ML case, the magnification

distribution functions are well fitted by the gamma distribution. This result suggests
that we might obtain information about L/

√
ML through the probability distribution

function of the magnification comparing it with the gamma distribution.

1 Introduction

Many cosmological observations suggest that our universe is globally homogeneous and isotropic, in other
word, that the time evolution of the global aspect is well approximated by the Friedmann-Lemâıtre (FL)
cosmological model. However our universe is apparently locally inhomogeneous. Recent cosmological
observations draw our attention to the effects of the inhomogeneity on our universe as one of the most
important issues in cosmology. One of the useful tools of obtaining information on the inhomogeneities
is to examine gravitational lensing.

Our main target of this work is the TypeIa supernovae observation. In this paper, we clarify the
effect of gravitational lensing on high redshift supernovae observation. There are several works for this
purpose [1][2][4]. In these works, the main purpose is to supply the method for investigation of the
fraction of compact objects in our universe through the observation of TypeIa supernovae. They have
not taken into account the size of clumps. However, the configuration of dark matter is not well known
in small scales. Hence further investigation with finite size clumps is needed.

In this paper, we assume that light sources can be treated as point sources. This assumption is valid
only when the width of a light beam emitted by the source is much thiner than the Einstein radius of lens
objects. In the case of supernovae, the light beam width is given by the order of the size of supernovae
at peak brightness ∼ 1015cm. The Einstein radius of lens objects is the order of

√
MLD, where D is

typical distance to supernovae given as ∼ 1Gpc in high redshift supernova events. Therefore we assume
the following inequality:

√
MLD � 1015cm ⇔ML � 10−2M�.

We focus on the magnification probability distribution function (MPDF) and the distance redshift
relation. If the size of lenses L is sufficiently large, we can expect that the MPDF and the distance redshift
relation agree with those of homogeneous universe model. On the other hand, when the lenses are point
masses, observed distances have large dispersion, and the MPDF has a broad tail in high magnification
with a sharp peak at the value which is corresponding to the distance of the undisturbed beam. This
fact indicates that the MPDF or the distance redshift relation depends a lot on L. Therefore we expect
that we may find the typical length scale of dark matter clumps through lensing effects on the MPDF
or the distance redshift relation. As the first step for this purpose, we investigate lensing effects on the
observation in very simple situations.

This paper is organized as follows: In § 2, we show definitions of the observed distance and magnifi-
cation in this paper. In § 3, the calculation method and settings are introduced. The results are shown
in § 4. Finally, § 5 is devoted to the conclusion and summary.

1E-mail:c m yoo@sci.osaka-cu.ac.jp
2E-mail:ishihara@sci.osaka-cu.ac.jp
3E-mail:knakao@sci.osaka-cu.ac.jp
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2 Magnification and the distance

In this study, we assume that multiple images can not be separated within the observational limit and
we can only observe the total flux of light rays. The magnification μ(p) of the p-th image of a source is
defined by

μ(p) =
S(p)

S0
, (1)

where S(p) is the flux of the p-th image. Then the observed magnification μ is given by

μ =

∑
p S(p)

S0
=
∑

p

μ(p). (2)

Since the flux is inversely proportional to the square of the distance, we define the observed angular
diameter distance by

DA =
DDR(0, zS)√∑

p μ(p)
, (3)

where DDR is Dyer-Roeder (DR) distance which represents the angular diameter distance for undisturbed
beam [3].

3 Settings and the calculation method

In very simple terms, our universe model is globally FL universe, and all of the matter in this universe
takes the form of randomly distributed lens objects each of which has identical mass ML. The multiple
lensing calculation method is basically same as Ref.[5]. The brief description of the procedure is follows:
1. We ignore clumps far from the ray. 2. Lens mappings are calculated with the multiple lens plane
method [3] and the Newton-Raphson method. 3. Summing up the magnifications of all images, we obtain
the total magnification.

For simplicity, we assume that all of the clumps satisfy following properties. 1. They are transparent.
2. They have axially symmetric density distributions which is non-singular and smooth surface mass
density at the center of symmetry, and the axis of symmetry is identical to the line-of-sight. 3. The total
mass of each lens object 2π

∫∞
0
ξΣ(ξ) is finite, where ξ is the distance from the axis of symmetry on the

lens plane and Σ(ξ) is the surface mass density. 4. The surface mass density Σ(ξ) is a monotonically
decreasing function of ξ.

In this paper, we pick up following three lens models.

(a)Homogeneous disk Σ(ξ) =
{

ML

πL2 for ξ < L,
0 for ξ ≥ L.

(4)

(b)Homogeneous sphere Σ(ξ) =

{
3ML

2πL2

(
1− ξ2

L2

)1/2

for ξ < L,

0 for ξ ≥ L.
(5)

(c)Power low tail model Σ(ξ) =
ML

πL2

(
1 +

(
ξ
L

)2)2 . (6)

4 Results

Through the distance-redshift relations, we can overview the dependence of lensing effects on L. We have
calculated distance-redshift relations of 2,000 samples in each case. We only show the case of lens model
(b) (see the left and the center figures in Fig.1). We have set L/

√
ML = 2 and 10 [H−1/2

0 ]. For small L,
several plot points are scattered in wide area of figures. And, many samples are plotted in the vicinity of
the DR distance. On the other hand, for large L, most of samples are plotted in the vicinity of the FL
distance. These are expected results as mentioned in § 1.
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Figure 1: The left and the center figures: Distance-redshift relation of 2000 samples, depicted in the case
of lens model (b) for L/

√
ML = 2 and 10 [H−1/2

0 ]. The solid line and dashed line represent the DR and
the FL distance. The right figure: The values of L∗n are depicted as functions of the source redshift.

In order to find the typical value of L which gives a criterion for whether the distance-redshift relations
become like the center figure in Figure1, we consider the lens size L∗n for which a light ray receive
lensing averagely n times during the propagation. Using the probability of receiving lensing during the
propagation shown in Ref.[5], we find

L∗n√
ML

=

⎛⎝ 8n
3H0Ωm0

(∫ zS

0

(1 + z)2√
Ωm0(1 + z)3 + 1− Ωm0

dz

)−1⎞⎠1/2

, (7)

where we have set ΩK0 = 0 (see the right figure in Fig.1). From the results, we can find that most of
samples are plotted in the vicinity of the FL distance only in the case of L� L∗1.

In order to see the details of the L dependence of lensing effects, we investigate the MPDF. The MPDFs
given by our calculations are shown in Figure 2. In this figure, we also depict the gamma distributions
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Figure 2: The MPDFs in lens model (a), (b), and (c) are shown here. The smooth lines are gamma
distributions which have same averages and second moments as those given by the each ensemble.
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which have same means and variances as those given by each ensemble. The gamma distribution is
defined by follows:

f(μ− 1; k, θ) = μk−1 e
−(μ−1)/θ

θkΓ(k)
, (8)

where k > 0 and θ > 0 called the shape parameter and the scale parameter respectively, and Γ(k) is
the gamma function. The mean μm and the variance σ2 are given by μm = kθ + 1 and σ2 = kθ2. At
first glance, we can see the following common property; in L� L∗1 cases, MPDFs are well fitted by the
gamma distributions, and one cannot see these properties in L <∼ L∗1 cases. This result implies that, in
sufficiently large L/

√
ML, effects of gravitational lensing due to different lens models are degenerate.

Since the gamma distribution is identified by two parameters :mean and variance, we are interested in
the dependence of these parameters on the source redshift. In our calculations, the ensemble averages of
the magnification 〈μ〉 are almost equal to that of filled beam value D2

DR/D
2
FL (see the left figure in Fig.3).

It is consistent with the concept of the clumpy universe model. Hence, the variance is only non-trivial
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Figure 3: Means and variances of the magnification are depicted as functions of the source redshift.

variable. The variances are depicted as functions of the source redshift in the right side of Figure 3. The
gradient of the lines in this figure seems to be sensitive to the value of L/

√
ML and the lens model.

5 Conclusion and Summary

We have calculated lensing effects on point source observations such as TypeIa supernovae observations.
We have assumed very simple situations in order to understand basic properties of multiple gravitational
lensing effects. We have shown the MPDFs in each source redshift and L/

√
ML. We can divide the results

into two main categories through whether the MPDF is well approximated by the gamma distribution or
not. If our universe model well approximate the actual universe, in later case, one can conclude that the
typical size of dark matter clumps L satisfy L <∼ L∗1. In this case, the shape of MPDF depend a lot on
the lens model, therefore we might obtain the information about mass distribution through the shape of
the MPDF. On the other hand, if L satisfy L >∼ L∗1, the effects of gravitational lensing due to different
lens models degenerate. However, the variance of the MPDF depends on the value of L/

√
ML and lens

models. Hence, it might be possible to obtain the information about typical value of L/
√
ML or lens

model from the variance of magnifications which are given by observations even if L >∼ L∗1.

References

[1] R. Benton Metcalf and Joseph Silk. Astrophys. J., 519:L1–4, 1999.

[2] E. Moertsell, A. Goobar, and L. Bergstrom. Astrophys. J., 559:53, 2001

[3] Elers J. Schneider, P. and E. E. Falco. Gravitational lenses. 1992. New York : Springer.

[4] U. Seljak and D. E. Holz. Astronomy and Astrophysics, 351:L10–L14, November 1999.

[5] Chul-Moon Yoo, Ken-ichi Nakao, Hiroshi Kozaki, and Ryuichi Takahashi. astro-ph/0604123.

− 226 −



1/f fluctuations in spinning-particle motions near Schwarzschild
black hole

Hiroko Koyama1, Kenta Kiuchi2 and Tetsuro Konishi3

1,2Department of Physics, Waseda University, Shinjuku-ku, Tokyo 181–8555, Japan
3Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464–8602, Japan

Abstract
We study the property of chaos in spinning-particle motions in Schwarzschild space-
times. We characterize the chaos in the motions using the power spectrum. We find
that the power spectrum is not only white noise but also 1/f fluctuation, depending
on the value of the spin and the angular momentum of the test particle. We obtain
the phase diagram for the properties of the chaos. Furthermore, we suggest that the
origin of the 1/f fluctuations is the “stagnant motions” around the different tori.

1 Introduction

Nature is filled with phenomena that exhibit chaotic behavior. In the chaotic systems we cannot predict
the state in the future exactly [1]. Such chaotic behaviors have also been found in some relativistic
systems. For example, in Schwarzschild spacetime, the motions of a spinning test particle can be chaotic
[2]. They found that, as the magnitude of spin increases, the motions switch from periodic to chaotic.
exponents. However, they just classified the motions as regular or chaotic according to the Lyapunov
exponents, and details of the properties of the chaotic motion were not investigated.

In this paper, we look for statistical laws in the chaotic motions in the above system. Once we find the
chaotic behaviors, we can characterize the chaos to extract the specific property of the system. We can
hardly know about the chaos only from the positiveness of the Lyapunov exponents. Not a few people
may believe that chaotic system is just complex and unpredictable at all. Of course, we cannot predict
the time evolution of the state of the spinning test particle exactly, when the system is chaotic. However,
even in such cases, we can frequently find some statistical laws which is proper to the system. One of the
measure of the chaos is the power spectrum of the time series. In some cases, the pattern of the power
spectrum obeys power laws, so called, 1/f fluctuations, which can be distinguished from the white-noise
type. That the power spectrum obeys some power laws means that the time evolution of the system is
time-correlated. In other words, we can characterize the chaos by the pattern of the power spectrum.

In this paper, we will characterize the properties of the chaos in the spinning-particle motions in
Schwarzschild spacetime, using the pattern of the power spectrum of the time series. The pattern of the
power spectrum can be divided into two types, 1/f and white noise. We will obtain the phase diagram
for the properties of the chaos, the types of the power spectrum. We will discuss the origin of the 1/f
fluctuations of the power spectrum in this system.

2 Equations for a spinning test particle in Schwarzschild space-
time

We consider a spinning test particle in Schwarzschild spacetime,

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2, (1)

where M is the mass of the black hole.
1E-mail:koyama@gravity.phys.waseda.ac.jp
2E-mail:kiuchi@gravity.phys.waseda.ac.jp
3E-mail:tkonishi@r.phys.nagoya-u.ac.jp
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The equations of motions of a spinning test particle in a relativistic spacetime have been derived by
Papapetrou [3] and then reformulated by Dixon [4]. The set of equations is given as

dxμ

dτ
= vμ, (2)

Dpμ

dτ
= −1

2
Rμ

νρσv
νSρσ, (3)

DSμν

dτ
= 2p[μvν], (4)

where τ, vμ, pμ and Sμν are an affine parameter of the orbit, the four-velocity of a particle, the momentum,
and the spin tensor, respectively. pμ deviates from a geodesic due to the coupling of the Riemann tensor
with the spin tensor. We also need an additional condition which gives a relation between pμ and vμ.
We adopt the condition formulated by Dixon [4]

pμS
μν = 0. (5)

This condition consistently determines the center of mass in the present system. The mass of the particle
μ is defined by

μ2 = −pμp
μ. (6)

To make clear the freedom of this system, we have to check the conserved quantities. Regardless of the
symmetry of the background spacetime, it is easy to show that μ and the magnitude of spin S defined by

S2 ≡ 1
2
SμνS

μν , (7)

are constants of motion. If a background spacetime possesses some symmetry described by a Killing
vector ξμ,

Cξ ≡ ξμpμ − 1
2
ξμ;νS

μν (8)

is also conserved [4].
Because the spacetime is static and spherically symmetric, there are two Killing vector fields, ξμ

(t) and
ξμ
(φ). From (8), we find the constants of motion related with those Killing vectors as

E ≡ −C(t) = −pt − M

r2
Str, (9)

Jz ≡ C(φ) = pφ − r(Sφr − rSθφ cot θ) sin2 θ. (10)

E and Jz are interpreted as the energy of the particle and the z component of the total angular momentum,
respectively. Because the background is spherically symmetric, without loss of generality we can choose
the z axis in the direction of total angular momentum as

(Jx, Jy, Jz) = (0, 0, J), (11)

where J > 0.

3 1/f fluctuations of the power spectrum

In this section, we characterize the chaos in the spinning particle motions using the power spectrum.
First, we plot the Poincaré maps with the different sets of the parameters in Fig.1. To draw the Poincaré
map, we adopt the equatorial plane (θ = π/2) as a Poincaré section and plot the point (r, vr) when the
particle crosses the Poincaré section with vθ < 0. If the orbit is chaotic, some of the tori are broken and
the Poincaré map does not consist of a set of closed curves. As shown in Fig.1, the orbits with both sets
of the parameters are chaotic, and we cannot distinguish them apparently.

Next we plot the power spectrum of the time series of z components of the particle in Fig.2 with the
same set of the parameters as Fig.1. From Fig.2 we find that one is 1/f , and the other is white noise.
Therefore we can distinguish them clearly using the pattern of the power spectrum. That is, the property
of the chaos depends on the system parameters, the angular momentum and the spin of the test particle.
A preliminary result is summarized in the phase diagram in Fig.3.
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Figure 1: The Poincaré maps. All orbits have the total angular momentum J = 4.0μM . The magnitude
of spin and the total energy are S = 1.2μM and E = 0.93545565μ in the left panel, and S = 1.4μM and
E = 0.92292941μ in the right panel, respectively.
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4 Summary and Discussion

In this paper we have investigated the properties of chaos in a spinning test particle in Schwarzschild
spacetime. We have calculated the power spectrum of the time series of z components of the position of
the test particle. We have found that the pattern of the power spectrum is 1/f or white noise, depending
on the spin S and the angular momentum J of the test particle. We have obtained the phase diagram
for the character of the chaos, the type of the pattern of the power spectrum. To put it another way, we
can guess the properties of the system (S and J) by observing the dynamics of the test particle, even if
the motion is chaotic.

Finally we discuss the origin of the 1/f fluctuations we found for the spinning test particle. We plot
the orbit in the two-dimensional configuration space in Fig.4. Instead of filling the phase space uniformly,
we find that the orbit (left panel in Fig.4) have two significant components (center and right panels in
Figs.4), which stagnate around different tori. This type of motion where the phase point in chaotic orbit
stays close to some regular orbits (tori) for some long time is known as “stagnant motion”, and is often
observed in Hamiltonian dynamical systems [5]. Stagnant motions are usually accompanied with 1/f
fluctuations and are considered to be due to the fractal structure of the phase space. We expect that
the 1/f fluctuations we observed in the system are also generated by such stagnant motions, itinerating
among regular orbits in the Schwarzschild spacetime.
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Abstract
We discuss a 3-body problem in general relativity. It is impossible to describe all the
solutions to the three-body problem even for the 1/r potential. For the Newtonian
gravity, a special solution was found firstly by Moore (1995) and re-discovered with a
rigorous proof by mathematicians Chenciner and Montgomery (2000). This solution
is that three massive particles chase each other in a figure-eight orbit. We try to
find out a figure-eight orbit of three masses by taking account of the post-Newtonian
corrections. In a 2-body system, the post-Newtonian corrections cause the famous
periastron shift. Therefore, we investigate whether or not the periastron shift appears
in our post-Newtonian 3-body system.

1 Introduction

There are exact solutions for a 3-body problem in Newtonian gravity; a collinear solution (Euler, 1765),
an equilateral triangle solution (Lagrange, 1772) and so on. The 3-body problem has not yet been solved
completely in the sense that it is impossible to describe all the solutions to the 3-body problem even for
the 1/r potential.

However, we shall investigate the 3-body problem in general relativity. From a different point of view,
a binary plus the third body have been investigated so far regarding chaotic behaviors [1, 2, 3]. For our
purpose, we take a figure-eight orbit in the Newton gravity as one example. This particular solution in
the Newtonian gravity was found firstly by Moore (1995) [4] and re-discovered with a rigorous proof by
mathematicians Chenciner and Montgomery (2000) [5].

What happens for the figure eight in GR? In a 2-body system by taking account of the post-Newtonian
corrections, the famous periastron shift occurs. For instance, one may thus ask, “Is there a periastron
shift?” or “Does the Figure-eight survive?” We will give an answer to these questions below [7]. The
emitted gravitational waves have been computed [6].

2 The post-Newtonian corrections

Our assumption is as follows.

• Each mass is m = 1.

• The orbital plane is taken as the x - y plane.

• The position of each mass is denoted by (xK , yK) for K = 1, 2, 3.

• initial conditions

� ≡ (x1, y1), (1)
� = 100, (2)

(x1, y1) = (−x2,−y2) (3)
= (97.000436,−24.308753), (4)

(x3, y3) = (0, 0), (5)
(ẋ3, ẏ3) = (−2ẋ1,−2ẋ1) (6)

= (−2ẋ2,−2ẋ2) (7)
= (0.093240737,−0.086473146), (8)
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Figure 1: A binary orbit in the general relativity. The orbit is not closed any more, because a periastron
shift occurs.

where, a dot denotes the time derivative.
The ”EIH” equations of motion for a many-body system is expressed as

d2xK

dt2
=

∑
A �=K

rCA
1

r3AK

[
1− 4

∑
B �=K

1
rBK

−
∑
C �=A

1
rCA

(
1− rAK · rCA

2r2CA

)

+v2K + 2v2A − 4vA · vK − 3
2

(
vA · rCA

rAK

)2
]

−
∑

A�=K

(vA − vK)
rAK · (3vA − 4vK)

r3AK

+
7
2

∑
A�=K

∑
C �=A

rCA
1

rAKr3CA

, (9)

where we define rCA ≡ rC − rA.
Apparently, Fig. 2 shows that a figure-eight orbit does not survive at the 1PN order. However, this

is not a case. We have to carefully investigate an initial condition by taking account of 1PN corrections.
We assume that both of the total linear momentum and the total angular momentum vanish (P = 0 and
L = 0). Then, the velocity of each mass is parameterized as

v1 = kV + ξ
m

�
, (10)

v1 = kV + ξ
m

�
, (11)

v3 = V , (12)

where k and ξ are determined as

k = −1
2

+ αV 2 + β
m

�
, (13)

α = − 3
16
, (14)

β =
1
8
, (15)

ξ =
1
8
m

�3
(V · �). (16)
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Figure 2: Figure-eights starting at the Newtonian initial condition. The solid curve denotes a figure-eight
orbit in the Newtonian gravity. The dotted curve denotes a trajectory of one mass following the EIH
equation of motion under the same Newtonian initial condition.

Figure 3: Figure-eight orbits. The solid curve denotes a figure-eight orbit in the Newtonian gravity. The
dotted curve denotes a figure-eight orbit at the 1PN order of the general relativity.
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We parameterize V as

V =
(
1 + δ

m

�

)
V Newton + η

m

�

�

�

(
V Newton · �

�

)
. (17)

To obtain a period orbit, we find out numerically

δ = −3.28, (18)
η = −3.82. (19)

The orbital period becomes

TGR ≈
(

1 +
6m
�

)
× TNewton. (20)

3 Conclusion

The figure-eight can survive also in GR! A difference is an expansion of the orbit around the upper
right and lower left parts. The line symmetry in the Newton gravity is reduced to the symmetry with
respect to the center.
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Abstract
We report on the first results of self-consistent second order metric perturbations
produced by a point particle moving in the Schwarzschild spacetime. The second
order waveforms satisfy a wave equation with an effective source term build up from
products of first order metric perturbations and its derivatives. We have explicitly
regularized this source term at the particle location as well as at the horizon and at
spatial infinity.

1 Introduction

The observation of gravitational waves opens a new window onto our universe and we also expect that
the observation of gravitational waves will provides a direct experimental test of general relativity.

The space mission LISA will primarily detect gravitational waves from inspiraling solar-mass compact
objects captured by a supermassive black hole residing in the core of active galaxies. For these Extreme
Mass Ratio Inspirals (EMRI) we use the black hole perturbation approach, where the compact object
is approximated by a point particle orbiting a massive black hole. There are two nontrivial problems
to consider in this approach: The self-force problem and the second order gravitational perturbations
problem. Due to the self-force the orbit of the particle deviates from the background geodesic, i.e. the
spacetime is perturbed by the particle itself. It is essential to take this deviation into account in order
to predict the orbital evolution to the required order. For the headon configuration studied in this paper
this was achieved in [1]. The gravitational self-force is, however, not easily obtainable for more general
trajectories.

We require the second perturbative order calculations to derive the precise gravitational waveforms
to be used as templates for gravitational wave data analysis. In general, this computation has to be done
by numerical integration. Hence, it is important to derive a well-behaved second order effective source.
In this paper, we will focus on this later problem.

2 Second order metric perturbations

We consider second order metric perturbations (MP), g̃μν = gμν +h
(1)
μν +h

(2)
μν , with expansion parameter

μ/M corresponding to the mass ratio of the holes and where gμν is the Schwarzschild metric. The
Hilbert-Einstein tensor and the stress-energy tensor up to the second perturbative order is given by

Gμν [g̃μν ] = G(1)
μν [h(1)] +G(1)

μν [h(2)] +G(2)
μν [h(1), h(1)] , Tμν = T (1)

μν + T (2,SF )
μν + T (2,h)

μν , (1)

where

G(1)
μν [h] = −1

2
hμν;α

;α + hα(μ;ν)
;α −Rαμβνh

αβ − 1
2
h;μν − 1

2
gμν(hλα

;αλ − h;λ
;λ) ,

1E-mail:nakano@phys.utb.edu
2E-mail:lousto@phys.utb.edu
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G(2)
μν [h(1), h(1)] = R(2)

μν [h(1), h(1)]− 1
2
gμνR

(2)[h(1), h(1)] ;

R(2)
μν [h(1), h(1)] =

1
4
h
(1)
αβ;μh

(1)αβ
;ν +

1
2
h(1)αβ(h(1)αβ;μν + h

(1)
μν;αβ − 2h(1)α(μ;ν)β)

−1
2
(h(1)αβ

;β − 1
2
h(1);α)(2h(1)α(μ;ν) − h(1)μν;α) +

1
2
h
(1)
μα;βh

(1)
ν

α;β − 1
2
h
(1)
μα;βh

(1)
ν

β;α .

On the other hand, the stress-energy tensor includes three parts, the first order stress-energy tensor T (1)
μν

which is the one of a point particle moving along a background geodesic;

T (1)μν = μ

∫ +∞

−∞
δ(4)(x− z(τ))

dzμ

dτ

dzν

dτ
dτ , (2)

where zμ = {T (τ), R(τ),Θ(τ),Φ(τ)} for the particle orbit, the deviation from the geodesic by the self-
force T (2,SF )

μν (See Ref. [1]), and finally T (2,h)
μν , which is purely affected by the first order MP,

T (2,h)
μν = −1

2
μ

∫ +∞

−∞
h(1) δ(4)(x− z(τ))

dzμ

dτ

dzν

dτ
dτ , (3)

where we have used the determinant g̃ = g(1 + h(1)) up to the first perturbative order.

3 First order metric perturbations in the RW gauge

Before considering the second order, it is necessary to discuss the first order MP, i.e., the Regge-Wheeler-
Zerilli formalism [2, 3]. The basic formalism has been given in Zerilli’s paper [3], and it has been
summarized in the time domain in [4, 5]. In the following, equation numbers (Z:1), (L1:1) and (L2:1) for
instance, denote the equation (1) in [3], [4] and [5], respectively.

For the first order Hilbert-Einstein equation, G(1)
μν [h(1)] = 8π T (1)

μν , we expand h
(1)
μν and T

(1)
μν in ten

tensor harmonics components. We then obtain the linearized field equations for each harmonic mode.
For the even part, which has the even parity behavior, (−1)�, we have seven equations. We impose
the Regge-Wheeler gauge conditions (RW), the vanishing of some coefficients of the first order MP:
h
(e)
0 = h

(e)
1 = G = 0.

We introduce the following wave-function for the even parity modes,

ψeven
�m (t, r) =

2 r
�(�+ 1)

[
KRW

�m (t, r) + 2
(r − 2M)

(r�2 + r�− 2 r + 6M)

(
HRW

2 �m(t, r)− r
∂

∂r
KRW

�m (t, r)
)]

, (4)

where the suffix RW stands for the RW gauge. This function ψeven
�m obeys the Zerilli equation,

Ẑeven
� ψeven

�m (t, r) = Seven
�m (t, r) ; Ẑeven

� = − ∂2

∂t2
+

∂2

∂r∗2
− V even

� (r) , (5)

where r∗ = r+2M log(r/2M−1), the potential V even
� and the source Seven

�m are given in Eqs. (L1:1-2) and
(L1:A.3). The reconstruction of the MP under the RW gauge have been expressed in Eqs. (L2:B.9-12).

In the following, we consider a particle falling radially into a Schwarzschild black hole as the first
order source. The equation of motion of the test particle is given by(

dR

dt

)2

= −
(

1− 2M
R

)3 1
E2

+
(

1− 2M
R

)2

; E =
(

1− 2M
R

)
dT (τ)
dτ

, (6)

where E and R are the energy and the location of the particle, respectively. The non-vanishing tensor
harmonics coefficients of the energy-momentum tensor are A�m, A(0)

�m and A(1)
�m. Because of the symmetry

of the problem we have only to consider even parity modes, i.e., described by the Zerilli equation.
In the head on collision case, the MP in the RW gauge are C0 (continuous across the particle). One

can see this as follows. First, from Eqs. (Z:C7d) and (Z:C7e), we find that H2 �m(= H0 �m) and K�m have
the same differential behavior. Then, we note that ∂rK�m ∼ θ(r − R(t)), because the left hand side of
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(4) behaves as a step function near the particle. This means that K�m (and also H2 �m) is C0. Using
this, ∂rH1 �m ∼ θ(r −R(t)) is derived from Eq. (Z:C7e), i.e., H1 �m is C0. (See Ref. [6].)

Using the above fact, we can take up second derivatives of the function ψeven
�m with respect to t and r.

These quantities allow us to calculate the coefficients of the δ-terms in the second order source.
Next, we consider the � = 0 perturbations (� = 1 modes can be completely eliminated in the center

of mass coordinate system). In the RW gauge there are four non-vanishing coefficients of the MP, H0 00,
H1 00, H2 00 and K00. The gauge transformation has two extra degrees of freedom. We could choose the
gauge so that H1 00 = K00 = 0, i.e., the Zerilli gauge, but it is difficult to treat the second order source,
since the MP are not C0.

We instead consider here a new (singular) gauge transformation, chosen to make the metric perturba-
tions C0 and to obtain an appropriate second order source behavior. To derive this gauge transformation,
we have also considered a regularization of the second order source at r = ∞ and the horizon at the same
time 3. Note that we succeeded in choosing the gauge such that all of the above MP behave as C0 at the
location of the particle and vanish at r = ∞ and r = 2M .

4 Second order Zerilli equation

Since the first order MP contains only even parity modes, we can discuss the second order MP for the
even parity modes only, i.e. in terms of the Zerilli function,

χZ20(t, r) =
1

2 r + 3M

(
r2
∂

∂t
K20(t, r)− (r − 2M)H1 20(t, r)

)
. (7)

Here, we have considered the contribution from the � = 0 and 2 modes of the first order to the � = 2 mode
of the second order since this gives the leading contribution to gravitational radiation. We also choose
the RW gauge to second order. This Zerilli function satisfies the equation, Ẑeven

2 χZ20(t, r) = SZ20(t, r) with

SZ20(t, r) =
8π
√

3 (r − 2M)2

3(2 r + 3M)
∂

∂t
B20(t, r) +

8π (r − 2M)2

2 r + 3M
∂

∂t
A20(t, r)− 8

√
3π (r − 2M)

3
∂

∂t
F20(t, r)

−4
√

2 iπ (r − 2M)2

2 r + 3M
∂

∂r
A(1)

20 (t, r)− 8
√

2 iπ (r − 2M) (5 r − 3M)M
r (2 r + 3M)2

A(1)
20 (t, r)

−8
√

3 iπ (r − 2M)2

3(2 r + 3M)
∂

∂r
B(0)20 (t, r) +

32
√

3 iπ
(
3M2 + r2

)
(r − 2M)

3 r (2 r + 3M)2
B(0)20 (t, r) . (8)

The functions B20 etc. are derived from the second order quantities, G(2)
μν [h(1), h(1)], T (2,h)

μν (and T
(2,SF )
μν )

by the same tensor harmonics expansion as for the first order.
The delta function δ(4)(x − z(τ)) in T

(2,h)
μν includes δ(2)(Ω − Ω(τ)) =

∑
�m Y�m(Ω)Y ∗�m(Ω(τ)). We

have considered only the contribution from the � = 0 and 2 modes of the first order perturbations.
Consistently, we use only the three components, h(1)(�=2)Y2m(Ω)Y ∗2m(Ω(τ)), h(1)(�=2)Y0m(Ω)Y ∗0m(Ω(τ)) and

h
(1)
(�=0)Y2m(Ω)Y ∗2m(Ω(τ)).

We may wander if there is any δ2-term in the second order source. The answer is “No”. This is
because in the case of the head on collision, the MP under the RW gauge are C0: R(2)

μν [h(1), h(1)] includes
second derivatives and we need one more derivative to construct SZ20. (h(1))2 is C0 × C0 and its third
derivative yields C0 × δ′ and θ × δ as the most singular terms. On the other hand, T (2,h)

μν includes only
C0 × δ terms.

From Eq. (8), we obtain the second order source as

SZ20(t, r) = (2,2)SZ20(t, r) + (0,2)SZ20(t, r) , (9)

where (2,2)SZ20 and (0,2)SZ20 are the contribution from (� = 2) · (� = 2) and (� = 0) · (� = 2), respectively.
Note that while the above source term is locally well behaved near the particle location, some terms

diverge as r →∞. So, we need to consider some regularization for the asymptotic behavior [7].
3We could regularize and fix the gauge for the second order source. One could also proceed by first fixing the gauge.
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In order to obtain a well behaved source for large values of r, we define a renormalized Zerilli function
by

χ̃Z20(t, r) = χZ20(t, r)− χ
reg,(2,2)
20 − χ

reg,(0,2)
20 ; (10)

χ
reg,(2,2)
20 =

√
5

7
√
π

r2

2 r + 3M

(
∂

∂t
KRW

20 (t, r)
)
KRW

20 (t, r) ,

χ
reg,(0,2)
20 = − 1

32
√
π

r (r − 2M)
2 r + 3M

((
1− M

r
ln
( r

2M

))
HRZ

2 00(t, r)
∂

∂r
HRW

220(t, r)

+6
(

1− 5
M

r

)
HRZ

0 00(t, r)
∂

∂r
HRW

220(t, r) + 4
(

1 + 3
M

r
ln
( r

2M

))
HRZ

2 00(t, r)
∂

∂t
HRW

220(t, r)

+5
(

1− 4
M

r

)
HRZ

0 00(t, r)
∂

∂t
HRW

220(t, r)− 18
1
r

ln
( r

2M

)
HRZ

0 00(t, r)H
RW
220(t, r)

)
,

where the suffix RZ means some gauge choice as discussed in Sec. 3. Finally, The best suited equation
to solve numerically for χ̃Z20 is then

Ẑeven
2 χ̃Z20(t, r) = SZ,reg

20 (t, r) ; (11)

SZ,reg
20 (t, r) =

(
(2,2)SZ20(t, r)− Ẑeven

2 χ
reg,(2,2)
20 (t, r)

)
+
(
(0,2)SZ20(t, r)− Ẑeven

2 χ
reg,(0,2)
20 (t, r)

)
.

5 Discussion

In this paper, we obtained the regularized second order effective source of the Zerilli equation in the case
of a particle falling radially into a Schwarzschild black hole. Using this source, we are able to compute
the second order contribution to gravitational radiation by numerical integration.

To be fully second order consistent we have to include the term T
(2,SF )
μν which is derived from the

self-force on a particle. The self-force for a headon collision has been calculated in [1], and in a circular
orbit around a Schwarzschild black hole in [8], but have not been obtained in the general case yet.

To prove that there is no δ2 term in the second order source, we have used the fact that the first order
MP in the RW gauge is C0. In the general orbit cases (including circular orbits), the first order MP is
not C0 in the RW gauge, but it is C0 in the Lorenz gauge [9]. This gauge choice favors the study of the
second order perturbations for generic orbits.
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Abstract
I present a model of high-energy emission sources generated by a standing mag-
netohydrodynamical (MHD) shock in a black hole magnetosphere. The black hole
magnetosphere would be constructed around a black hole and an equatorial accretion
disk, and can be considered as a model for a central engine of active galactic nuclei
(AGNs) and gamma-ray bursts (GRBs). From the analysis of MHD shock conditions
for accreting plasma onto a black hole, we obtain the restrictions on the flow’s phys-
ical parameters, and examine the distribution of the shock front. Then, we find that
an off-equatorial Aurora-like shaped hot plasma region is possible by the MHD shock
formation when the magnetosphere rapidly rotates; the hot plasma region locates
close to the event horizon. The emission from this off-equatorial sources would carry
new information about the strong gravitational field to us.

1 Introduction

A black hole magnetosphere would be constructed around a black hole and an equatorial disk (see
Fig. 1a) [1, 2]. The global magnetic field in the magnetosphere should be generated by the disk. Along
the magnetic field lines, the plasma fluid ejected from the disk surface stream inward and outward by the
dominant gravitational force and centrifugal force, respectively [3]. The outgoing plasma would make a
relativistic jet/wind, which may be observed in systems of AGNs and GRBs. Here, to understand the
astrophysical phenomena around a black hole, we consider ingoing flows and discuss the condition of
MHD shocks [4]. The ingoing MHD flow ejected from a plasma source with low velocity must be super-
magnetosonic at the event horizon, so that the two magnetosonic surface are require in front and behind
the shock front (see Fig. 1b). By the generation of the MHD shock, a very hot plasma region can be
formed near the event horizon [5]. Such a hot plasma region can be considered as a source of high energy
radiation, which gives us information of the strong gravitational field in addition to the (magnetized)
plasma state. Of course, some part of the radiation emitted from the hot plasma will fall into the black
hole because of gravitational lens effects, but we can expect that huge energy can be released at the
very hot shocked plasma region and considerable flux will be obtained. In the following sections, we
introduce transmagnetosonic accretion flows [7] and apply the shock condition in §2. Then, in §3, we
treat negative energy MHD inflows [3] and discuss the energy release of the rotational energy of the black
hole at the shocked region. In §4, we present the outline of radiative MHD shocks [8] for obtaining the
energy spectrum and the image of a shocked region.

2 MHD Accretion with MHD Shock

We consider MHD flows in a stationary and axisymmetric magnetosphere of a rotating black hole (see,
e.g., [3, 9]). The background metric is written by the Boyer-Lindquist coordinate with c = G = 1. The
basic equations for MHD flows are the equation of the particle number conservation, the equation of
motion and Maxwell equations. We assume ideal MHD condition and the polytropic relation. In these
situations, there are five field-aligned flow parameters; the total energy E, the total angular momentum
L, the angular velocity of the magnetic field line ΩF , the number flux per flux-tube η and the entropy.
The critical conditions at the Alfvén point and the magnetosonic points restrict the acceptable ranges
of these parameters (see [7] for the details). To obtain a shocked black hole accretion solution, it is

1E-mail:takahasi@phyas.aichi-edu.ac.jp
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Figure 1: (a) A model of the black hole magnetosphere. Ingoing MHD flows stream along the disk–black
hole connected magnetic field lines. Because of the loop-shaped magnetic field configuration, off-equatorial
shock is possible. (b) MHD shock in black hole accretion. After passing through first magnetosonic point,
the MHD inflow can make the MHD shock. The postshocked sub-magnetosonic flows must pass through
the second magnetosonic point again before reaching the event horizon.

necessary to find the two transmagnetosonic solutions; that is, the upstream and downstream solutions.
At the shock location, where the shock conditions must be satisfied, the super-magnetosonic branch of
the upstream solution is connected to the sub-magnetosonic branch of the downstream solution. After
the shock, the inflow must pass through the second magnetosonic point again, and then can fall into the
horizon. The upstream and downstream solutions would have different energy and angular momentum
because of the radiation loss, but the conservation of the angular velocity and the number flux between the
upstream and downstream solutions is assumed at present. Recently, Fukumura, Takahashi & Tsuruta
[6] investigates the accretion solutions with the fast MHD shock. Figure 2 shows the possible shock range
in the poloidal plane. When the angular velocity of the magnetic field lines are rather faster than the
Kepler velocity estimated at the footpoint of the field line, the shock can be generated, while for slowly
rotating magnetic field lines there are no shock fronts. The energy E and angular momentum L are also
restricted within the certain ranges of parameter spaces. It is interesting that for faster rotating case the
acceptable parameter range for the shock front shifts toward the polar region; the MHD shock formation
near the equatorial region is forbidden. Such a situation may not be stable when we consider inflows
originated from the equatorial thin disk, which rotates with Kepler velocity. However, when high-energy
MHD fluid (E � mp) falls along faster rotating magnetic field line, the MHD shock is generated in the
high-latitude region of the black hole. Thus, a ring shaped hot region would be observed close to the
black hole like an aurora (see Fig. 3).

3 High Energy Radiation powered by Rotating Black Hole

Rotational energy of a black hole can be extracted by magnetic field lines [3, 10]. The extracted en-
ergy is carried to the magnetosphere in the form of outgoing Poynting flux, and would be converted to
some kinds of fluid energy related to the radiative process directly. Then, the extracted hole’s energy
can be observable for us. However, in the treatment of the force-free (magnetically dominated limit)
magnetosphere, realistic conversion mechanisms are not clear, although some ideas may be proposed.
We are now discussing the MHD accretion onto a black hole. Although the MHD inflow takes the fluid
energy into the hole, which is positive at the plasma source, the total (fluid + magnetic) energy can be
negative from the plasma source to the horizon. In general, we understand that the kinetic energy of
the upstream MHD flow converts to the thermal and magnetic energies of the downstream flow at the
fast MHD shock. When the negative energy accrete onto the black hole (i.e., energy extraction by MHD
flows), we can also expect the energy conversion from the extracted hole’s energy to the radiative energy
at the MHD shock. By considering the regularity condition at the Alfvén point, which is related to the
amount of jump of the energy and angular momentum between the preshock and postshock solutions,
we find the necessary condition for doing such a energy release process (Takahashi & Takahashi 2007, in
preparation). To complete the black hole’s rotational energy release at the MHD shock, we must link this
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(a) (b)

Figure 2: The possible range of the fast MHD shock front for (a) ΩF = 0.1m and (b) ΩF = 0.2m [6].
The solid curves show LΩF/E = constant, and the dotted curves show the E/mp = constant, where mp

is the particle’s rest-mass energy. The radial magnetic field lines are assumed.

Alfvénic necessary condition to the requirement by the regularity conditions at the fast magnetosonic
points, consistently. That remains to be proved.

4 Radiative MHD Shock

Although we discuss the activity of plasma around a black hole in the frame work of general relativity, the
shocks and emission process are essentially local phenomena, which can be treated by special relativity.
We have discussed the global shocked accretion solutions, which are two transmagnetosonic solutions with
a MHD shock as mentioned above, in Boyer-Lindquist coordinates. To introduce the radiative process
in the MHD shock solution, Takahashi & Takahashi [8] discuss this problem in the local plasma frame,
and then transform the physical quantities in the local frame to that of the curved spacetime; in actual
numerical calculation, three kinds of reference frames are utilized; that is, the Boyer-Lindquist frame,
Zero-Angular Momentum Observer (ZAMO) frame and the fluid rest frame. Compared with the global
solution (plasma density, temperature, etc) denoted in curves spacetime, the restrictions on the local
plasma quantities are also determined. When radiation process (synchrotron radiation, bremsstrahlung,
inverse Compton scattering, etc.) are specified, local energy spectrum at radiative shock is obtained. In
order to calculate the observed spectrum and image of the radiative MHD shock around a black hole,
null geodesics from the black hole area to us should be calculated exactly. Such calculations include the
Doppler effects of plasma motion and general relativistic effects such as bending of light, gravitational
redshift and frame dragging effects. Thus, we present a theoritical tool to find the evidence of black holes
in the observed spectrum and the images (see [8] for details).

5 Summary

The general relativistic MHD is applied to a black hole magnetosphere, and transmagnetosonic ingoing
flows are discussed. The MHD shock conditions are also discussed, and the possibility of very hot shocked
plasma region is indicated very close to the black hole. We can expect that the high energy emission
from this hot plasma bring to us additional information about the black hole spacetime; the polar region
emission including this information can be distinct from the emissions from the equatorial plasma source,
which have investigated by many authors in models of black hole accretion. In this stage, expected energy
spectrum from the off-equatorial MHD shock is not clear. We need a realistic model of the black hole
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Figure 3: Image of the radiative MHD shock with radiatively inefficient accretion flows (RIAF) around
a Kerr black hole [8]. The split-monopole magnetic field is assumed. The shape of the emission region
is just like a aurora (black hole aurora). In this calculation, the shock in the Northern hemisphere is
considered, but the ghost of the shock is also seen in the Southern hemisphere because of the gravitational
lens effect. The crescent-shaped bright area, which is the radiation from RIAF, is cased by the Doppler
boosting.

magnetosphere with a magnetized accretion disk. Then, we will find the evidences of the existence of real

black holes (not the candidate) in observational data.
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Energy transport by MHD waves in force-free black hole
magnetospheres
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Abstract
Propagation of low-frequency MHD waves in a force-free black hole (BH) magne-
tosphere is studied. We investigate axisymmetric linear perturbations on the split-
monopole magnetic field. Imposing regularity conditions on the event horizon and
the outer light cylinder (LC), we derive an approximate global wave solution. We
find that the generation of the electromagnetic energy and angular momentum can
occur in the large distance. Moreover, we point out the physical role of the outer LC.

1 Introduction

The rotating BH surrounded by magnetosphere is believed to be one of the important energy sources
of active galactic nuclei and gamma-ray bursts. Blandford & Znajek demonstrated the possibility that
rotational energy of the BH can be extracted through the electromagnetic process[1]. Most of the fore-
going works on this subject are concerned with stationary and axisymmetric configurations and recent
GRMHD simulations have been able to remove these restrictions. Nonetheless, even in some simple set-
tings such as the force-free limit or the slow rotation limit of the BH, some analytic investigations are also
important to clarified underlying physics. Especially, to investigate the behaviour of small disturbances
is an important issue in terms of the wave propagation or the stability of stationary configurations, .

The importance of wave propagation analysis lies on understanding the role of MHD waves in the BH
magnetospheres. Using the force-free approximation in which the plasma inertia is negligible compared to
the magnetic energy density, Uchida investigated linear perturbations in the BH magnetospheres[2]. He
applied Lagrangian perturbation theory to the treatment of small disturbances in the force-free stationary
axisymmetric BH magnetospheres. In the high-frequency limit, he derived local dispersion relations for
the Alfvén mode and the fast magnetosonic mode and clarified the physical difference between these two
modes from the viewpoint of the super-radiant scattering.

On the other hand, the role of low-frequency MHD waves has not well understood. It is important to
find out the phenomenon that is peculiar to low-frequency waves. The purpose of this work lies in this
direction. Moreover, analysis of low-frequency waves might be important in terms of eigenvalue problems.
In force-free BH magnetospheres, the regularity conditions should be imposed upon wave solutions not
only on the horizon but also on the LCs (see section 2). Especially, it is known that the screw instability of
the magnetic field is a prior non-axisymmetric mode which work on low-frequency waves[3]. In this sense,
though we only treat axisymmetric waves as a first step, the extension of this work to non-axisymmetric
ones is also important.

In the present work[4], we consider axisymmetric linear perturbations in the stationary and axisym-
metric force-free BH magnetosphere. We investigate global propagation of low-frequency waves from the
large distance (beyond the outer LC) to the BH. For simplicity, we choose the split-monopole magnetic
field around the slowly rotating BH as the background field. Moreover, in the large distance, we only
consider the propagation of waves in the polar region.

2 Background force-free field

Since the gravitational field induced by the electromagnetic field is small, the force-free BH magneto-
sphere is determined by Maxwell’s equations Fμν

;ν = 4πjμ, F[μν,λ] = 0 and the force-free conditions
1E-mail:onda@gravity.phys.nagoya-u.ac.jp
2E-mail:emitsuda@gravity.phys.nagoya-u.ac.jp
3E-mail:atomi@gravity.phys.nagoya-u.ac.jp
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Fμνj
ν = 0 in the Kerr spacetime. For the non-stationary and axisymmetric filed, these equations reduce

to more simple forms which determine the eight quantities, Aφ, BT, ψθ, ψr and jμ[5]. We follow this
notation.

Especially for stationary fields, the force-free BH magnetosphere is characterized by two functions,
ΩF(Aφ) interpreted as the electromagnetic angular velocity and BT(Aφ). Namely, if ΩF and BT are
given as functions of Aφ, Aφ is determined by the stream equation. In the slow rotation limit, the split-
monopole solution was derived[1]. We only note here the relation ΩF=ΩH/2+O(a/M2). Here ΩH, a and
M are the angular velocity, Kerr parameter and mass of the BH respectively. We use this solution as
the background fields. The reason for this choice comes from mathematical simplicity. Moreover, recent
simulations suggest that their numerical solution is consistent with this solution in the polar region[6].

Here we stress that the existence of LCs causes difficulty of global analysis for force-free BH magneto-
spheres. LCs are two surfaces on which the velocity of magnetic field lines become light-like, i.e. defined
by gtt+2ΩFgtφ+Ω2

Fgφφ =0. They appear as singular surfaces in the stream equation which gives Aφ. For
the split-monopole solution, the outer LC is defined by rΩF sin θ � 1. On the other hand, we need not
care the inner LC because it degenerates to the horizon.

3 Linear perturbations in force-free black hole magnetospheres

For the eight equations (B10)–(B17) given in [5], we consider axisymmetric linear perturbations δf as
f → f + εδf and obtain perturbation equations for δf . Here f represents above eight quantities for the
split-monopole solution and ε is a small parameter. Then, we assume the harmonic time dependency e−iσt

and the separation of variables. Because we are interested in the disturbances exited in the timescale of
BH’s rotational period, the order of σ is same as ΩH (i.e. low-frequency waves).

To solve the perturbation equations, we use the slow rotation approximation of the BH and expand δf
in powers of a/M . Here, MΩF is also small enough because ΩF � ΩH/2 is satisfied for the split-monopole
solution. However, this treatment is valid only in the region r � 1/ΩF because the term such as rΩF in
the perturbation equations can be large in the large distance. For this reason, in subsection 3.1, we first
solve the perturbation equations around the BH in the slow rotation approximation. Then, in subsection
3.2, we extend these solutions to the large distance in the flat spacetime approximation. This treatment
is justified by the fact that the overlap region M � r � 1/ΩF exists in this case. In the following
subsections, we only show the solution δAφ and omit other seven quantities. Moreover, by the symmetry,
we only consider the region 0≤θ<π/2.

3.1 accretion of waves into the black hole

To begin with, we determine the order concerning a/M and θ-dependencies for each quantities δf . In
view of force-free equations δFμνj

ν+Fμνδj
ν =0, the natural choice is to follow the background. Of course,

this choice is not unique one, but is partially limited by the boundary condition on the pole. As a result,
we follow the background except for δAφ. δAφ arises in the order O(a2/M2) and we can separate θ as
δAφ =A(r) sin2 θ cos θe−iσt. In this way, we obtain the scattering equation for A(r) as

d2A(r∗)
dr2∗

+
(
σ2 − 6

Δ
r4

)
A(r∗) = 4CBΩF

(
ΩH − 2Ma

r3

)
e−iσr∗ +O(a4/M6). (1)

Here r∗ is the tortoise coordinate and CB is a constant. For the equation (1), we can find the approximate
form of the solution satisfying the ingoing wave boundary condition on the horizon and also derive other
seven quantities, δBT, δψr, δψθ and δjμ. We only note here that these solutions satisfy the regularity of
the electromagnetic fields on the horizon.

3.2 wave inflow in the large distance

As mentioned above, we consider the region M � r and derive a solution of the perturbation in in
the flat spacetime approximation and patch it to the solution of (1) in the overlap region M � r �
1/ΩF. At the beginning, defining χ ≡ rΩF, k ≡ σ/ΩF = O(1), L̂1(θ) ≡ cscθ∂/∂θ (cscθ∂/∂θ), L̂2(θ) ≡
(∂/∂θ+3 cot θ) (∂/∂θ−2 cot θ), we derive the perturbation equation for δAφ as
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[
χ2− 1

sin2 θ

]
δAφ,χχχ−

[
ikχ2−4χ+

ik

sin2 θ

]
δAφ,χχ+

[
k2χ2−4ikχ+2− k2

sin2 θ
+L̂2(θ) − 1

χ2
L̂1(θ)

]
δAφ,χ

−
[
ik3χ2+2ik+

ik3

sin2 θ
+ikL̂2(θ)+

(
ik

χ2
− 2
χ3

)
L̂1(θ)

]
δAφ � 0. (2)

We notice that the outer LC is also the singular surface of the equation (2) and other θ-dependencies of
δAφ arise as r glows. Difficulty of the global analysis arise in this point. For the difficulty to solve it, we
restrict our treatment in the region θ � 1. This restriction would be reasonable because our background
fields might be consistent with the real astrophysical system in the polar region[6].

Moreover, we divide the region into some ones where the behavior of δAφ change and solve the equation
(2) in each region by the leading order analysis. Then we connect these solutions in each overlap region.
Here, we omit the detail of the analysis and only show the solution. In the region where the relations
θ � 1 & M � r � 1/(ΩFθ) are valid, δAφ behaves as

δAφ = A(χ)θ2e−iσt � 4CB

k2

[{
k2χ2 − 3ikχ− 3

k2χ2

(
ikχ− 3 logχ− 3γ +

11
2

− 3 log(2k) − 3
2
πi+

3i
kχ

)
+
(

1
2
− 3i
kχ

)
k2χ2 + 3ikχ− 3

k2χ2

}
e−ikχ − 3

k2χ2 + 3ikχ− 3
k2χ2

∫ ∞

χ

e−2ikχ

χ
e+ikχ

]
θ2e−iσt (3)

where, γ is the Euler constant and (3) is connected with the solution of (1). In the farther region which
contains the LC, the behavior of δAφ changes as

δAφ �
(

4iCB

k
χ− 2CBχ

2θ2
)
θ2e−i(σt+kχ). (4)

As r glows larger, we also find that the direction of the propagation becomes vertical.

4 Energy and angular momentum transport

In this section, we discuss the energy and angular momentum transport induced by the wave propagation.
Here, if we introduce a notation of the perturbation as f → f+εδ(1)f+ε2δ(2)f , the quadratic quantities
such as δ(2)f or (δ(1)f)2 are more important because δ(1)f vanishes after they have been averaged over
periods. For this reason, averaging over periods, we would treat the quadratic energy-momentum tensor

δ(2)Tμν
EM =

1
4π

[
δ(1)Fμλδ(1)F ν

λ− 1
4
gμνδ(1)Fλτδ(1)Fλτ +Fμλδ(2)F ν

λ+F νλδ(2)Fμ
λ− 1

2
gμνFλτδ(2)Fλτ

]
(5)

in the following. However, we have obtained not δ(2)f but δ(1)f in the above section. To obtain δ(2)f ,
we follow the Lagrangian perturbation theory developed in [2]. In this formulation, the perturbations
are expressed by the vector ξμ called Lagrangian displacement as δ(1)Aμ =Fμνξ

ν , δ(2)Aμ = δ(1)Fμνξ
ν/2.

Here, these relations have been derived by the requirement that the perturbationsare given only by ξμ.
We only stress that this requirement does not guarantee the satisfaction of the force-free condition in the
second order perturbations. This means that δ(2)Tμν

EM is not a conserved quantity in general.
Since we have obtained the first order perturbations δ(1)Aμ and can derive ξμ, we can construct the

second order perturbations δ(2)Aμ. In this way, we obtain δ(2)Tμν
EM and derive the electromagnetic energy

flux E μ =−δ(2)Tμ
EMt/(4π) and angular momentum flux L μ = δ(2)Tμ

EMφ/(4π).
To begin with, we obtain the relations between intensity of the disturbances and the energy and

angular momentum inflow into the BH as δM�C2
BΩ2

F/3, δJ �704C2
BM

2Ω3
F/135 respectively. Moreover,

from the definition ΩH � J/4M3, we also found δΩH �−94C2
BΩ3

F/(135M)<0.
Next, we point out the generation of the electromagnetic energy and angular momentum can occur

around χ=O(1). To see this, we show the radial components of the flux in the region where the relations
θ � 1 & MΩF � χ � 1/θ are valid,

E r�−Ω4
Fθ

2

8πχ2

[
C2

B+k2
(

1− 8
k2

)
|A(χ)|2

]
, L r�−Ω3

Fθ
2

πχ2

[
CB

4
{
A(χ)e+ikχ+A∗(χ)e−ikχ

}−|A(χ)|2
]
. (6)

Here, A(χ) is given by (3) and the terms of |A(χ)|2 are negligible for χ�1 and dominant for 1�χ. This
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means the generation of the electromagnetic energy and angular momentum can occur around χ=O(1).
Confining the discussion in this region, the generation of the energy flux can not occur for 8≤k2.

Finally, we consider the energy and angular momentum flux around the outer LC (i.e. �≡χθ=O(1)),
then discuss the role of the outer LC. In this region, E μ and L μ reduce to

E r � − 2
π
C2
BΩ4

Fθ
2

[(
k2

9
−4

)
�4+

(
1− 8

k2

)]
, E θ � 2C2

BΩ5
Fθ

4

π�

[(
k2

12
−2

)
�4− 4

3
�2+

1
2

(
1− 8

k2

)]
L r � 8

π
C2
BΩ3

Fθ
2

[
�4 − �2 +

2
k2

]
, L θ � −4C2

BΩ4
Fθ

4

π�

[
�4 − 2

3
�2 +

2
k2

]
(7)

where, θ-components of the flux are smaller than r-components of that (even seen in the orthonormal
frame). Again, the radial outgoing flux can be realized for some values of k in some places. Especially
for the energy flux, this can not occur for 36≤ k2. Here, we note that we can take the stationary limit
k → 0 of our solutions by keeping CB/k finite. Of course, this treatment guarantees the regularity
of the solution on the horizon. In this limit, from the expression (7), the radial energy and angular
momentum flux are positive definite and the relation E μ = ΩFL μ are realized (Of course, this differ
from the Blandford-Znajek process near the horizon because the energy and angular momentum density
are positive). Moreover, these energy and angular momentum flux are conserved in this limit. Hence, we
have identified a part of generation of the electromagnetic energy and angular momentum as stationary
change of the state. As seen below, the another part of them is caused by dissipation.

As mentioned above, our second order perturbations do not guarantee the satisfaction of the force-free
condition in the second order and δ(2)Tμν

EM is not a conserved quantity. In this region, we can find

∇νδ
(2)T tν

EM =
16
π
C2
BΩ4

F

�2θ2

r

[
�2 − 1

]
, ∇νδ

(2)T rν
EM =

16
π
C2
BΩ4

F

�2θ2

r

[
�2 − 1

]
(8)

∇νδ
(2)T θν

EM = −16
π
C2
BΩ6

Fθ
3 , ∇νδ

(2)Tφν
EM =

16
π
C2
BΩ3

F

�2

r3
[
�2 − 1

]
. (9)

If we consider the contribution of fluids toward the energy-momentum tensor, then the total energy-
momentum tensor is conserved. Hence, in the case ∇νδ

(2)Tμν
EM < 0, the electromagnetic fields lose their

energy and momentum and fluids obtain them. Seeing in the orthonormal frame, ∇νδ
(2)T θν

EM dominates
and fluids obtain the momentum in θ direction. This direction is almost vertical to the LC. Moreover,
in the inner region of the LC, fluids obtain energy and momentum in r and φ direction. On the other
hand, in the outer one, they lose them. We identify this as the effect of the LC.

5 Summary

We have obtained the approximate solution representing inflow of low-frequency waves from the large
distance to the BH. The relations between intensity of the disturbances and the energy and angular
momentum inflow into the BH have been derived. We have found the generation of the electromagnetic
energy and angular momentum can occur around rΩF =O(1). We regard this effect as stationary change
of the state and dissipation in the second order perturbations. We have also found that fluids obtain
energy from the electromagnetic fields in the inner region of the LC and lose them in the outer one.

References

[1] R. D. Blandford and R. L. Znajek, MNRAS, 179, 433 (1977)

[2] T. Uchida, MNRAS, 286, 931 (1997a), T. Uchida, MNRAS, 291, 125 (1997b)

[3] A. Tomimatsu, T. Matsuoka and M. Takahashi, Phys. Rev. D 64, 123003 (2001)

[4] K. Onda, E. Mitsuda and A. Tomimatsu, in preparation

[5] A. Levinson, ApJ, 608, 411 (2004)

[6] J. C. McKinney, MNRAS, 368, 1561 (2006)

− 248 −
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Abstract
A numerical method to study pulsar magnetosphere is developed in terms of two-
component plasma flow. The positive and negative charged particles are assumed to
be ejected from inner simulation boundary with relativistic speed almost along the
magnetic field lines. Time-dependent Maxwell equations are consistently calculated
for non-zero charge density and electric current given by the plasma flow. Some
preliminary results are shown.

1 Introduction

Global pulsar magnetosphere is a long-standing unsolved problem. Stationary condition is assumed in
most previous works. Recently, some time-dependent numerical codes are adopted to simulate it. For
example, electromagnetic field structures are calculated in the force-free approximation [1, 2, 3], and in
the relativistic MHD approximation [4].

In both force-free and MHD codes, magnetically dominated conditions, B > E and �B · �E = 0 are
assumed to hold everywhere. Such modeling may be physically acceptable, since the electric fields along
the magnetic field lines may quickly dissipate as a result of acceleration of charged particles. However,
it is important to study in the numerical simulation, how and where the conditions break down, and
what physical mechanism involved changes the electro-magnetic field structure and plasma behavior.
An alternative approach is necessary to address these problems, relaxing the magnetically dominated
conditions.

We present a numerical approach based on two-fluid description consisted of positive and negative
charged particles. Two-fluid calculation is not new [5], but is significantly improved [6]. In this approach,
the electric field is solved by time-dependent Maxwell equations with the plasma source, and therefore the
magnetically dominated conditions may possibly break elsewhere. Furthermore, it can naturally extend
to include physical mechanism in future.

2 Method

Most important feature is that our code does not require the ideal MHD condition, �E + �v × �B/c = 0,
which results in B > E and �B · �E = 0. Our numerical code has the following properties. The details are
given elsewhere [6].

• The code is time-dependent one to simulate the evolution of plasma flow and electromagnetic fields,
with appropriate initial and boundary conditions.

• We adopt the spherical coordinates (r, θ, φ), and assume axial symmetry (∂/∂φ = 0) in the plasma
flows and the electro-magnetic fields. However, the azimuthal component of a vector, is not zero in
general. For example, toroidal magnetic field Bφ originates from poloidal currents (jr, jθ).

• The Maxwell equations are solved for the source terms (ρe,�j).

• Relativistic fluid dynamics is calculated for two components (electrons and positrons), i.e, charge
to mass ratio is the same in magnitude, but opposite in sign, q−/m− = −q+/m+.

• Electromagnetic force is only taken into account, because gravity, thermal pressure, and so on are
small and are ignored here.

1E-mail:kojima@theo.phys.sci.hiroshima-u.ac.jp
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3 Results

Figures 1 and 2 show the magnetic flux function G in the meridian (r sin θ-r cos θ) plane, which is
normalized by μΩ/(2c), where μ is initial magnetic dipole moment and Ω stellar angular velocity. Note
that poloidal magnetic fields are given by (Br, Bθ) = (�∇G × �eφ)/(r sin θ). The magnetic field liens in
these figures are almost the same, but are slightly different, since total amount of flowing currents from
the inner to outer boundaries are different. The current is larger in the result of figure 2. The magnetic
flux function deviates due to toroidal current.
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Figure 1: Magnetic flux function G. The length
is normalized by c/Ω. The curves denote
2cG/(μΩ) = 0.1, 0.2, · · · , 1.3 from the polar
axis.

     1.3
     1.2
     1.1
       1
     0.9
     0.8
     0.7
     0.6
     0.5
     0.4
     0.3
     0.2
     0.1

 0  0.5  1  1.5  2  2.5
 0

 0.5

 1

 1.5

 2

 2.5

Figure 2: Magnetic flux function G. The length
is normalized by c/Ω. The curves denote
2cG/(μΩ) = 0.1, 0.2, · · · , 1.3 from the polar
axis.

References

[1] Asano, E, Uchida, T., & Matsumoto, R., 2005, PASJ, 57, 409

[2] McKinney, J. C., 2006, Mon. Not. Roy. Astron. Soc., 368, L30

[3] Spitkovsky, A., 2006, Astrophys. J., 648, L51

[4] Komissarov, S. S., 2006, Mon. Not. Roy. Astron. Soc., 367, 19

[5] Kuo-Petravic, L. G., Petravic, M., & Roberts, K. V., 1975, Astrophys. J., 202, 762

[6] Kojima, Y. & Oogi, J., 2007, in preparation

− 250 −



Violation of Third Law of Black Hole Thermodynamics

Takashi Torii1

General Education of Science, Osaka Institute of Technology, Omiya, Asahi-ku, Osaka 535-8585, Japan,
and

Advanced Research Institute for Science and Engineering, Waseda University, Okubo, Shinjuku-ku,
Tokyo 169-8555, Japan

Abstract
We derive the black hole solutions in higher curvature gravitational theories and
discuss their properties. In this talk Lovelock theory is mainly investigated, which
includes cosmological constant, Einstein-Hilbert action, and Gauss-Bonnet term as
its lower order terms. Among the solutions, there are solutions which may become
extreme solutions with zero temperature through physical processes. This may be
a counterexample of the third law of black hole thermodynamics. We also discuss
whether an extreme black hole is formed from a regular spacetime by considering
collapse of a shell.

1 Introduction

Black holes are characteristic objects to general theory of relativity. Recent observational data show the
existence of one or more huge black holes in the central region of a number of galaxies. While over the past
decades much concerning the nature of black hole spacetimes has been clarified, a good many unsolved
problems remain. One of the most important ones is what the final state of black-hole evaporation through
quantum effects is. The mid-galaxy supermassive black holes are certainly not related to this problem;
however, it has been suggested that tiny black holes, whose quantum effect should not be neglected, could
be formed in the early universe by the gravitational collapse of the primordial density fluctuations. Black
holes may become small enough in the final stage of evaporation enough for quantum aspects of gravity
to become noticeable. In other words, such tiny black holes may provide a good opportunity for learning
not only about strong gravitational fields but also about of the quantum aspects of gravity.

Up to now many quantum theories of gravity have been proposed. Among them superstring/M-theory
formulated in the higher dimensional spacetime is the most promising candidate. So far, however, no
much is known about the non-perturbative aspects of the theory have not been To take string effects
perturbatively into classical gravity is one approach to the study of the quantum effects of gravity.

We focus on the n-dimensional action with the Gauss-Bonnet terms for gravity as the higher curvature
corrections to general relativity. The Gauss-Bonnet terms naturally arise as the next leading order of
the α′-expansion of superstring theory, where α′ is inverse string tension [1], and are ghost-free com-
binations [2]. The black hole solutions in Gauss-Bonnet gravity were first discovered by Boulware and
Deser [3]. Since then many types of black hole solutions have been intensively studied.

In this paper, we investigate the third law of the black hole thermodynamics. In general relativity it
is shown that the the 3rd law hold under the following conditions [4]; the energy-momentum tensor of
infalling matters is finite, and the weak energy condition is hold in the neighborhood of outer apparent
horizon. In Gauss-Bonnet gravity, however, there are exotic types of black hole solutions [5], they may
be the first counter examples to the third law. As the first step, we consider the collapse of a thin dust
shell and formation of the extreme black hole solution with a degenerate horizon.

1E-mail:torii@ge.oit.ac.jp
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2 Black Hole Solutions

We start with the following n-dimensional action

S =
∫

dnx
√−g

[
1

2κ2n
(R− 2Λ + αLGB)

]
, (1)

where R and (n)Λ are the n-dimensional Ricci scalar and the cosmological constant, respectively. κn :=√
8πGn, where Gn is the n-dimensional gravitational constant. LGB := R2−4RABRAB+RABCDRABCD

is Gauss-Bonnet Lagrangian, and α ≥ 0 is the coupling constant of the Gauss-Bonnet term. This type of
action is derived from superstring theory in the low-energy limit. We assume the static spacetime with
the following line element:

ds2 = −f(r)e−2δ(r)dt2 + f−1(r)dr2 + r2dΩ2
n−2, (2)

where dΩ2
n−2 = γijdx

idxj is the metric of the (n− 2)-dimensional Einstein space with the volume Σk
n−2.

The solution of the gravitational equations is obtained [3, 5] as

f = k +
r2

2α̃
(1 + εx), δ ≡ 0, (3)

where we have defined α̃ := (n− 3)(n− 4)α, Λ = −(n− 1)(n− 2)/2�2,

x :=

√
1 + 4α̃

(
M̃

rn−1 − 1
�2

)
, M̃ :=

2κ2nM
(n− 2)Σk

n−2
. (4)

The integration constant M is the mass of the black hole. There are two families of solutions which
correspond to ε = ±1.

We focus on the family of solutions with the following parameters: n ≥ 6, �2 = 1, k = −1 and ε = +1.
Fig. 1 shows the M -rh diagram of the solution. The curve of horizon is obtained by the condition
f(rh) = 0. When the mass parameter vanishes M̃ = 0, the spacetime is pure vacuum expressed by
Eq. (3) with x = x0 :=

√
1 − 4α̃/�2. For a well-defined theory, the condition 4α̃ ≤ �2 should be satisfied.

The pure vacuum solution has a black hole event horizon. However, the center is not singular but regular
and spacelike. For 0 < M̃ < M̃ex, the solution has a black hole and an inner horizons. The positive-mass
solutions have a timelike central singularity. For M̃ = M̃ex, the solution has a degenerate horizon and
represents the extreme black hole spacetime. For M̃ > M̃ex, the solution has no horizon and represents
the spacetime with a globally naked singularity.

3 Motion of the Thin Dust Shell

We define the trajectory of the (n − 1)-dimensional dust shell as t = t(τ) and r = R(τ), where τ is the
proper time on the shell. The induced metric is

ds2 = −dτ2 +R(τ)2dΩ2
n−2. (5)

Since it is shown that there is the generalized Birkhoff’s theorem in Gauss-Bonnet graivty [6], we can
employ the generalized thin shell formalism [7, 8]. The junction condition at the shell is

[Kμν ]± − hμν [K]± + 2α
(
3[Jμν ]± − hμν [J ]± − 2Pμρνσ[Kρσ]±

)
= −κ25τμν , (6)

where

Jμν =
1
3
(
2KKμρK

ρ
ν +KρσK

ρσKμν ,−2KμρK
ρσKσν −K2Kμν

)
, (7)

Pμνρσ = Rμνρσ + 2hμ[σRρ]ν + 2hν[ρRσ]μ +Rhμ[ρhσ]ν , (8)
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Figure 1: The M̃ -r diagrams of the static solutions in the six-dimensional Einstein-Gauss-Bonnet-Λ
system with 1/�2 = 1 (negative cosmological constant), k = −1, and ε = +1. We set α̃ = 0.2. The M̃ -r
diagrams of the higher-dimensional solutions where n > 6 have qualitatively similar configurations.

and τμν is the energy-momentum tensor on the brane. We have introduced [X]± := X+−X−, where X±
are X’s evaluated either on the plus or minus side of the shell. The shell is assumed to be dust with the
surface energy density ρ. Since the surface energy density of the dust shell is conserved [8], it behaves as

d

dτ
(ρRn−2) = 0. (9)

The proper mass of the dust shell defined as Ms = Σk
n−2R

n−2ρ remains constant.
In 6-dimensional spacetime the Equation of the shell can be written in a simple way as[

D

√
f + Ṙ2

]
±

= −C, (10)

where

C :=
M̃s

2R3
, D± := 1 +

4αk
R2

− 2α̃
3R2

f±. (11)

This equation can be solved with respect to Ṙ2 as

Ṙ 2
± =

1
(D2

+ −D2−)2
{
C2(D2

+ +D2
−) − (D2

+ −D2
−)(f+D2

+ − f−D2
−)

±2C
√
D2

+D
2−
[
C2 − (f+ − f−)(D2

+ −D2−)
]}
. (12)

It is noted that the ± of the Ṙ 2
± does not mean the inner and outer value of Ṙ2 but two roots in Eq. (12).

Here we set α̃ = 0.02. Fig. 2 shows square of the velocity of the shell. The positive (negative) sign of

the square root Ṙ± =
√
Ṙ2±

(
Ṙ± = −

√
Ṙ2±

)
is the speed of the expanding (collapsing) shell.

For the case with M̃s = 0.1M̃ex, Ṙ2 behaves as R4 for large R. The collapsing shell from the infinity
bounces at r = 5.1648 and expands to infinity. There is another region where the shell can move. As
the shell moves inward below r = 0.7772, its speed decreases, and the solution curve is terminated

at r = 0.3652. Below this radius
√
f− + Ṙ2 takes imaginary value. This means that the shell moves

spacelike. Since the radius of the extreme horizon is rex = 0.2764, the degenerate horizon is not formed.
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Figure 2: The motion of the thin dust shell. We set the parameters as α̃ = 0.2, �2 = 1, k = −1 and
ε = 1. The interior region is pure vacuum solution with the black hole horizon at rh = 0.525731, and the
exterior of the shell is extreme black hole solution with the degenerate horizon at rex = 0.276393. The
mass of the black hole is M̃ex = 0.035771. The curves shows the velocity of the shell with M̃s = 0.1M̃ex

(solid curve), M̃s = 0.5M̃ex (dotted curve), M̃s = M̃ex (dashed curve), and M̃s = 2M̃ex (dot-dashed
curve).

For the case with M̃s = 0.5M̃ex, the region where Ṙ2 is negative disappears. The collapsing shell

from the infinity does not bounce but continues to collapse to r = 0.3154 where the
√
f− + Ṙ2 takes

imaginary value.
For the case with M̃s = M̃ex, the collapsing shell from the infinity continues to collapse to r = 0.2099.

This is inside of rex. By the generalized Birkhoff’s theorem, the exterior spacetime is static extreme
black hole solution. This means that the degenerate horizon is formed. However, below r = 0.2099, the
shell moves spacelike. There is another region where the shell can move below r = 0.05922. However, if
the shell moves in this region, the degenerate horizon exist from the beginning. This does not mean the
formation of the degenerate horizon.

For the case with M̃s = 2M̃ex, the shell moves timelike in all the region. The shell from the infinity
continues to collapse to the center and would form the central singularity. In this case the degenerate
horizon is formed without any irrelevant phenomena. This can be the counter example to the third law
of the black hole thermodynamics.
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Abstract
The stochastic background of gravitational waves may be polarized by the mech-
anisms involving the parity violation in the early universe and/or the preferential
alignment of unresolved sources. Here, we present the detection method of a polarized
gravitational-wave background and discuss the sensitivity of space interferometers to
the polarized gravitational waves.

1 Introduction

The stochastic background of gravitational wave contains valuable cosmological information to probe
the dark side of the universe. In particular, primordial gravitational-wave background produced during
inflation is one of the most fundamental prediction from the inflationary theory and detection of it provides
a stringent constraint on the inflation model. Recently, several space missions to detect such a tiny signal
have been proposed and feasibility of direct detection was intensively discussed. Although there still
remain practical issues such as the subtraction of the overlapping signals coming from the neutron star-
neutron star binaries and/or the unknown unresolved sources, aiming at the future direct detection, the
infrastructure such as new characterization and/or data analysis technique of gravitational-wave signals
should be developed furthermore.

Along the line of this discussion, one important aspect is the polarization character of the gravitational
wave background (GWB). As it is well known, gravitational waves have polarization degree of freedom
due to its spin-2 nature. While the standard prediction from inflation leads to an un-polarized GWB,
there might exist some physical mechanisms to generate a polarized GWB [1]. Detection of polarized
GWB may thus be important to identify the physical origin of each GWB.

In this article, based on the cross-correlation technique, we present a formalism to detect a polarized
GWB. The observational characteristics for polarized GWB are discussed in a specific detector, LISA.
Further, we discuss how the geometry of detectors affects the sensitivity to a polarized GWB.

2 Formalism

To begin with, let us write down the basic equation characterizing the gravitational waves. In the
transverse-traceless gauge, the metric perturbation becomes

hij(�x, t) =
∑

A=+,×

∫ ∞

−∞
df

∫
dΩ̂hA(f, Ω̂) ei 2π f(t−Ω̂·�x) eA

ij(Ω̂), (1)

where the unit vector Ω̂ is the propagation direction and the quantity e+,×
ij is the polarization basis

satisfying the transverse-traceless conditions. For our interest of the stochastic signals, the amplitude hA

has random nature, whose statistical properties including the polarization characters are described by
the power spectra. Defining the right and the left-handed tensor amplitudes as, hR ≡ (h+ − ih×)/

√
2

and hL ≡ (h+ + ih×)/
√

2, we have [2, 3]⎛⎝ 〈
hR(f, Ω̂)h∗R(f ′, Ω̂′)

〉 〈
hL(f, Ω̂)h∗R(f ′, Ω̂′)

〉〈
hR(f, Ω̂)h∗L(f ′, Ω̂′)

〉 〈
hL(f, Ω̂)h∗L(f ′, Ω̂′)

〉 ⎞⎠ =
δD(f − f ′)

2
δD(Ω̂, Ω̂′)

4π

(
I + V Q+ i U
Q− i U I − V

)
. (2)

1E-mail:ataruya.at.utap.phys.s.u-tokyo.ac.jp
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The quantities I, V and (Q ± i U) are the stokes parameters for gravitational waves, which are the
standard notations characterizing the polarization states, in analogy to characterize those of the electro-
magnetic waves. While the quantity I denotes the total intensity, V represents the asymmetry between
left- and right-handed gravitational waves, leading to the circular polarization. On the other hand,
(Q± i U) characterize the linear polarization states and have spin-±4 properties. These are all functions
of frequency f and the direction Ω̂. For later convenience, we write down the power spectra in terms of
the spherical harmonics. For the intensity I and V , the harmonic expansions become

I(f, Ω̂) =
∑
,m

Im(f)Ym(Ω̂), V (f, Ω̂) =
∑
,m

Vm(f)Ym(Ω̂). (3)

As for the linear polarization, due to its spin-4 nature, these are expanded by the spin-weighted spherical
harmonics ±4Ym [3]:

(Q± i U)(f, Ω̂) =
∑
,m

P
(±)
m ±4Ym(Ω̂). (4)

Notice that the combinations (Q± i U) are not invariant under the rotation around a specific direction.
For a better characterization, we introduce the electric- and the magnetic-mode decomposition of linear
polarization:

Em(f) =
1
2

{
P
(+)
m (f) + P

(−)
m (f)

}
, Bm(f) =

1
2 i

{
P
(+)
m (f) − P

(−)
m (f)

}
. (5)

These two combinations behave differently under parity transformation: while E remains unchanged, B
changes its sign.

With the harmonic coefficients Im, Vm, Em and Bm, anisotropies and frequency dependence of
polarized GWBs are completely characterized. We then move to discuss how one can detect such polarized
GWBs. First recall that the gravitational-wave signal received at the detector α, hα, can be written as

hα(�x, t) =
∑

A=+,×

∫ ∞

−∞
df

∫
dΩ̂Dij

α (f, Ω̂; t) eA
ij(Ω̂) hA(f, Ω̂) ei 2π f(t−Ω̂·vecx), (6)

where the function Dij
α represents the detector response tensor, which explicitly depends on time due to

the (orbital) motion of detector. If we have another data set, hβ , obtained from the detector β which is
located near the detector α, the cross-correlation analysis may be applied to detect a stochastic GWB
and we have the non-vanishing amplitude of cross-correlation signal, Cαβ(t) ≡ 〈hα(t)hβ(t)〉. The Fourier
counterpart of it, C̃αβ , which is related with Cαβ by Cαβ(t) =

∫
df
2 C̃αβ(f ; t), becomes [3]

C̃αβ(f ; t) =
1
4π

∑
,m,m′

{
�Sm′(f) · �Fαβ, m(f)

}
D()

m′m

(
ψ(t), ϑ(t), ϕ(t)

)
, (7)

where D()
m′m is the rotation matrix. In deriving the expression (7), we have assumed that the time

variation of detector’s orientation is described by the Euler rotation with angles (ψ(t), ϑ(t), ϕ(t)) in the
co-moving frame of rigidly moving detectors α and β. Here, the vectors �Sm and �Fαβ, m are

�Sm(f) =
{
Im(f), Vm(f), Em(f), Bm(f)

}
,

�Fαβ, m(f) =
{
a
(I)
m(f), a(V )

m (f), a(E)m (f), a(B)m (f)
}
,

where quantities a(X)
m (X = I, V, E ,B) represent the multipole coefficients of antenna pattern function for

each polarization state. Eq.(7) implies that polarized anisotropies of GWBs can be detected through the
time variation of correlation signal C̃αβ and the sensitivity to each polarization anisotropy depends on
the amplitude of the multipole coefficient a(X)

m . The explicit expressions for each multipole coefficients
are given as follows. Defining the quantity FR,L

α (f, Ω̂) by FR,L
α = Dij

α (f, Ω̂)eR,L
ij (Ω̂), we have [3]

a
(I)
m(f) =

∫
dΩ̂ ei 2π f Ω̂·(�xβ−�xα)

{
FR

α FR∗
β + FL

α FL∗
β

}
Ym(Ω̂), (8)
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a
(V )
m (f) =

∫
dΩ̂ ei 2π f Ω̂·(�xβ−�xα)

{
FR

α FR∗
β − FL

α FL∗
β

}
Ym(Ω̂), (9)

a
(E)
m (f) =

∫
dΩ̂ ei 2π f Ω̂·(�xβ−�xα)

{
FR

α FL∗
β −4Ym(Ω̂) + FL

α FR∗
β 4Ym(Ω̂)

}
, (10)

a
(B)
m (f) = i

∫
dΩ̂ ei 2π f Ω̂·(�xβ−�xα)

{
−FR

α FL∗
β −4Ym(Ω̂) + FL

α FR∗
β 4Ym(Ω̂)

}
. (11)

Here, the vectors �xα and �xβ represent the position of detectors α and β, respectively. Note that the phase
factor ei 2π f Ω̂·(�xβ−�xα) arises from the arrival-time difference of gravitational waves between detectors α
and β.

3 Detector characteristic: low-frequency limit of LISA

The expressions (8)-(11) derived in previous section play a central role in detecting a polarization
anisotropy of GWB. We then wish to understand the sensitivity of gravitational-wave detector to a polar-
ized GWB in a specific detector configuration. In this section, as an illustrative example, we consider the
low-frequency limit of LISA and investigate the characteristic properties of the polarization sensitivity.
Here, the term, low-frequency, implies the frequency lower than the characteristic frequency fcrit given
by fcrit = c/(2πL) with L being the arm-length of detector. With L = 5× 106km, low-frequency limit of
LISA indicates f � 0.1mHz. In this frequency range, LISA has effectively two output signals sensitive to
the gravitational waves, called A and E variables, which are constituted by a time-delayed combination
of six one-way data streams.

Adopting the coordinate system defined in Ref.[2], the projected detector responses FR,L
A and FR,L

E

are explicitly written as

FR,L
A (Ω̂) =

1
2
(1 + cos2 θ) cos 2φ ∓ i cos θ sin 2φ (− : R, + : L), (12)

FR,L
E (Ω̂) =

1
2
(1 + cos2 θ) sin 2φ ± i cos θ cos 2φ (+ : R, − : L). (13)

Then, substituting the above equations into the expressions (8)-(11), we compute the multipole coefficients
a
(X)
m . Using the fact that �xα = �xβ , the resultant non-vanishing coefficients are summarized as follows:

I-mode : a
(I)
00 =

4
√
π

5
, a

(I)
20 =

8
7

√
π

5
, a

(I)
40 =

2
√
π

105
, a

(I)
44 = ±1

3

√
π

35
,

E-mode : a
(E)
40 =

2
3

√
2π
35

, a
(E)
44 = ±2

√
π

3
(+ : AA,− : EE)

for the self-correlation signals, (α, β) = (A,A) or (E,E), and

I-mode : a
(I)
44 = i

1
3

√
2π
35

,

E-mode : a
(E)
44 = i

2
√
π

3
,

V -mode : a
(V )
10 = −i 8

5

√
π

3
, a

(V )
30 = −i 2

5

√
π

7

for the cross-correlation signals, (α, β) = (A,E). From this, important properties of polarization sensi-
tivity in the low-frequency limit can be found:

• Visible multipole components of anisotropic GWB are restricted to � = 0, 2, 4 for I-mode, � = 1, 3
for V -mode and � = 4 for E-mode. As for the B-mode, all the multipole moments vanish.

• There exists degeneracy between I- and E-modes (� = 4). To be precise, the relation a
(I)
4m/a

(E)
4m =√

1/70 holds for the non-vanishing components m = 0 and 4,

which are generic properties in the low-frequency limit of co-located detectors.
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4 Improving the sensitivity to a polarized GWB: worked exam-
ple

The polarization sensitivity of LISA shown in previous section seems a little bit problematic in a sense
that no useful information about linear polarization modes (E and B) can be obtained. While this may
be a generic low-frequency property, we wish to remedy this by introducing some physical effects. There
are two possible effects: (i) finite arm-length effect on detector’s response (f >∼ fcrit) and (ii) effect of
finite separation between two detectors �xα �= �xβ . Here, we examine the latter case and study how the
sensitivity to the linear polarized GWB can be improved.

First note that the influence of finite separation is incorporated into the phase factor in Eqs.(8)-(11).
The non-vanishing contribution of the phase factor ei 2π f Ω̂·(�xβ−�xα) leads to the frequency-dependent po-
larization sensitivity and depending on the propagation direction, the response to a polarized gravitational-
wave signal can be different between two detectors. As a worked example, we consider the two set of
LISA-type detector labeled by I and II, which are separated by a distance d. The two detectors are
assumed to be co-aligned and the position vector �xI−�xII is normal to the arms of each detector. In Fig.1,
specifically focusing on the � = 4 component, the resultant multipole coefficients are plotted as ratio,
a
(X)
4m /a

(E)
4m, which are given by a function of normalized frequency, f/f∗ with f∗ ≡ c/(2π|�d|). The left

panel shows that the degeneracy between I- and E-modes can be broken as increasing the frequency f (or
the separation d), while the right panel reveals that sensitivity to B-mode polarization can be recovered.

Although the polarization sensitivity shown in Fig.1 indicates a monotonic dependence on the fre-
quency, the actual detector response to each polarization mode is a complicated function of the frequency
f/f∗. Relaxing the assumption of co-aligned detectors, there are six parameters to characterize the ge-
ometric configuration of two detectors: orientation, alignment and separation between two detectors.
Optimizing these six parameters, one can obtain the most sensitive detector set to the polarized GWB
at a given frequency band. Improvement of the sensitivity is important and helpful to extract useful
cosmological information. This issue will be discussed in details in a separate publication.

Figure 1: Ratio of the
multipole coefficients
for antenna pattern
function, a

(I)
4m/a

(E)
4m (left)

and a
(B)
44 /a

(E)
44 (right), as

function of normalized
frequency (see Eqs.(8)-
(11) for definitions). In
left panel, the blue and
the red lines represent
the ratios a

(I)
40 /a

(E)
40 and

a
(I)
44 /a

(E)
44 , respectively.
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Abstract
Formulation of the Einstein equations is one of the necessary implements for realizing
long-term stable and accurate numerical simulations. We re-examine our formula-
tion scheme, that intends to construct a dynamical system which evolves toward the
constraint surface as the attractor, by adjusting evolution equations with constraints.
We propose an additional guideline which may delay the final blow-up. The new idea
is to avoid multipliers to the evolution equations which produce non-linear growth of
the constraints in the later stage. Slight but actual improvement can be seen in our
test simulations.

1 Introduction

With the purpose of the predictions of precise gravitational waveforms from the coalescence of the binary
neutron-stars and/or black-holes, the research field of “numerical relativity” has been developed for the
past three decades. The difficulty of numerical integrations of the Einstein equations arises both from its
mathematical complexity of the equations and from high-level requirements for computational skills and
technology.

In 2005-2006, several groups independently announced that the success of the inspiral black-hole
binary merger [1, 2, 3, 4, 5]. There are many implements for their successes, such as gauge conditions,
coordinate selections, boundary treatments, singularity treatments, numerical discretization, and mesh
refinements, together with the re-formulation of the Einstein equations which we will discuss here.

There are many approaches to re-formulate the Einstein equations for obtaining a long-term stable
and accurate numerical evolution (e.g. see references in [6]). In a series of our works, we have proposed
to construct a system that has its constraint surface as an attractor. By applying eigenvalue analysis of
constraint propagation equations, we showed that there is a constraint-violating mode in the standard
Arnowitt-Deser-Misner (ADM) evolution system [7, 8], which has been used for simulations over 20
years, when it is applied to a single non-rotating black-hole space-time [10]. We also found that such
a constraint-violating mode can be compensated if we adjust the evolution equations with a particular
modification using constraint terms like the one proposed by Detweiler [9].

Our predictions are borne out in simple numerical experiments using the Maxwell, Ashtekar, and
ADM systems [10, 11, 12, 13]. There are also several numerical experiments to confirm our predictions
are effective [14, 15].

The recent binary black-hole simulations also applies such ideas. Pretorius [1] uses harmonic decompo-
sition of the Einstein equations with constraint damping terms. NASA/Goddard, UTB, and LSU groups
applied modified BSSN formulation [16], while PSU group applied another modified BSSN formulation
[15]. Here, BSSN is the widely used modification of the ADM formulation which was originally proposed
by Kyoto group[17, 18].

In this report, we re-examine our formulation scheme and propose the additional guideline which
may delay the final blow-up. The new idea is to avoid multipliers to the evolution equations which may
produce non-linear growth of the constraints in the later stage. We applied the idea to the adjusted ADM
formulation, and also show our test simulations. We think that killing or compensating the constraint
violation mode is the essential to this formulation problem, and for that purpose, the ADM formulation
is the best benchmark to work with.

1E-mail:shinkai@is.oit.ac.jp
2E-mail:yoneda@waseda.jp
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2 Adjusted system and Constraint Propagation

2.1 Our idea of adjusted system

Suppose we have a dynamical system of variables ua(xi, t), which has evolution equations,

∂tu
a = f(ua, ∂iua, · · ·), (1)

and the (first class) constraints,
Cα(ua, ∂iua, · · ·) ≈ 0. (2)

Note that we do not require (1) to form a first-order hyperbolic form. We propose to investigate the
evolution equation of Cα (constraint propagation, CP),

∂tC
α = g(Cα, ∂iC

α, · · ·), (3)

for evaluating violation features of constraints.
The character of constraint propagation, (3), will vary when we modify the original evolution equa-

tions. Suppose we modify (adjust) (1) using constraints

∂tu
a = f(ua, ∂iua, · · ·) + F (Cα, ∂iC

α, · · ·), (4)

then (3) will also be modified as

∂tC
α = g(Cα, ∂iC

α, · · ·) +G(Cα, ∂iC
α, · · ·). (5)

Therefore, finding a proper adjustment F (Cα, · · ·) is a quite important problem.
Hyperbolicity analysis may be a way to evaluate constraint propagation, (3) and (5) [19]. However,

this requires (3) to be a first-order system which is easy to be broken. (See e.g. Detweiler-type adjustment
[9] in the ADM formulation [10]). Furthermore hyperbolicity analysis only concerns the principal part of
the equation, that may fail to analyze the detail evaluation of evolution.

Alternatively, we have proceeded an eigenvalue analysis of the whole RHS in (3) and (5) after a
suitable homogenization,

∂tĈ
α = ĝ(Ĉα) = Mα

βĈ
β , where C(x, t)α =

∫
Ĉ(k, t)α exp(ik · x)d3k, (6)

and conjectured that the system is more stable, if the eigenvalues of Mα
β [we call them constraint

amplification factors (CAFs)] has a negative real-part or non-zero imaginary-part [10, 11, 12, 13].

2.2 Additional idea

Suppose that RHS of the constraint propagation equation (5) accidentally includes C2 terms,

∂tC = −aC + bC2, (7)

then the solution will blow-up as

C =
−aC0 exp(−at)

−a+ bC0 − bC0 exp(−at)
. (8)

The blow-up will appear when C2-term is comparable to C-term, that is, the last stage of simulation
supposing the constraint surface is the attractor. We therefore have to prohibit the adjustments which
simply produce self-growing terms (C2) in constraint propagation, ∂tC.
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3 Adjusted ADM system

In the ADM system, we can write possible adjustments generally as [10, 11, 12]:

∂tγij = −2αKij + ∇iβj + ∇jβi

+PijH +Qk
ijMk + pkij(∇kH) + qklij(∇kMl), (9)

∂tKij = αR
(3)
ij + αKKij − 2αKikK

k
j −∇i∇jα+ (∇iβ

k)Kkj + (∇jβ
k)Kki + βk∇kKij

+RijH + SkijMk + rkij(∇kH) + sklij(∇kMl), (10)

with constraint equations

H := R(3) +K2 −KijK
ij , (11)

Mi := ∇jK
j
i −∇iK. (12)

Along to the discussion in §2.2, by carefully observing the constraint propagation equations ∂tH = · · ·

and ∂tMi = · · · with above adjustments, we conclude that the adjustments using p, q, P,Q-terms in the
above (9) and (10) may produce non-linear terms in constraint propagation equations. Therefore, we
have not to put too much confidence for adjustments using these terms. Conversely, several adjustments
are safe for this points, and are expected to compensate such non-linear term effects.

In Fig.1, we demonstrate numerical evolutions of such an adjusted ADM system. We plot violation
of Hamiltonian constraints versus time for Teukolsky wave evolution with harmonic slicing, and with
periodic boundary condition, which is one of the benchmark test of the formulation problem proposed
by the Mexico NR workshop in 2002 [20]. We apply two sets of adjusted ADM equations: The Case (I)

∂tγij = (first line of (9)) − κ1αγijH (13)
∂tKij = (first line of (10)) + κ2αγijγkl ∂kMl (14)

and the Case (II):

∂tγij = (first line of (9)) − κ1α3γijH (15)
∂tKij = (first line of (10)) + κ1α

3(Kij − (1/3)Kγij)H + κ2αγijγkl ∂kMl

+κ1α2[3(∂(iα)δkj) − (∂lα)γijγkl]Mk + κ1α3[δk(iδ
l
j) − (1/3)γijγki](∇kMl), (16)

where the terms with coefficient κ1 in Case (II) were those in Detweiler [9], while the terms with coefficient
κ2 in Case (I/II) are newly introduced adjustment along to the above discussion.

We see in Fig.1 that the evolution with the standard ADM system is the shortest lifetime in simulation,
while Case (II) makes twice as much longer evolution available. Moreover, the newly added term helps to
extend the lifetime of simulation. The new term works effectively, makes 10% longer evolution available,
while this is not yet perfect nor drastic.

We are now investigating CAFs of these new adjustments, blow-up time estimations, together with
other numerical demonstrations. These will be reported elsewhere near future.
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Figure 1: Comparisons of numerical evolutions of adjusted ADM systems, using Teukolsky wave propa-
gation. L2 norm of the Hamiltonian constraint H is plotted. (Left panel) The Case (I). (Right panel)
The Case (II). Cactus-based original (3+1)-dimensional code was applied.
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Abstract
The final fate of the Gregory-Laflamme (GL) instability is one of the most interesting
problems in the black hole physics. To know the effects of charge in this context, we
construct non-uniform black strings with a magnetic charge by higher-order perturba-
tions. At the linear order of the perturbation, we see that the GL mode vanishes at the
point where the background solution becomes thermodynamically stable. This van-
ishing resembles a second-order phase transition which is characterized by a universal
power-law behavior. Solving the higher-order perturbations, the thermodynamical
stability of the non-uniform strings in microcanonical, canonical and grandcanonical
ensembles is investigated. We find that for fixed spacetime dimensions there exist
critical charges at which the stability of non-uniform states changes. The charge can
serve as a parameter that controls not only the stability of uniform black strings but
also that of non-uniform states. Possible three dimensional (mass-tension-charge)
phase diagram is proposed.

1 Introduction

It is known that black objects with translational symmetries, such as black branes and black strings,
suffer from the Gregory-Laflamme (GL) instability, breaking the translational symmetries [1]. To know
the endpoint of the instability, there are extensive studies to construct black objects in Kaluza-Klein
(KK) spacetimes [2]. See [3] for reviews. One of the interesting features is that the phase structure,
therefore the endpoint of the GL instability, would depend on the spacetime dimensions [4, 5].

Owing to the extensive studies, the phase structure of KK black holes in vacuum has been clarified
gradually. However, the gravity in fundamental theories inevitably couples to other fields, such as gauge
ones. Although we know that the linear perturbation of black branes strongly depends on the extremality
of background solutions, the roles of extremality in non-linear regimes have not been known so far.
Our understanding of the phase structure of charged black strings/branes is restricted to very special
cases [6, 5], in which the systems can be translated to a vacuum system. The aim of this work is to see
effects of a charge in non-linear regimes. We perform the higher-order static perturbations of magnetic
black strings, and then investigate the thermodynamical properties of constructed solutions in detail. We
see that the charge (extremality) controls the stability of black strings in non-linear regimes as well as in
the linear regime 3.

2 Method: higher-order static perturbation

We consider D = (d+1)-dimensional spacetime in which the gravity couples to a (d− 2)-form field Fd−2.
The governing equations are

Rμν =
1

2(d− 3)!
F μ2...μd−2

μ Fνμ2...μd−2 −
d− 3

2(d− 1)!
gμνF2, ∇μFμμ2...μd−2 = 0, dFd−2 = 0. (1)

1E-mail: umpei at gravity.phys.waseda.ac.jp
2E-mail: kudoh at utap.phys.s.u-tokyo.ac.jp
3This article corresponds to a short version of paper [7] with some new results and figures added.
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Figure 1: The charge dependance of the GL critical wavenumber, (a), and that of critical mass, (b).

We will find non-uniform black string solutions perturbatively with the metric ansatz given by

ds2 = −e2a(r,z)f+dt
2 + e2b(r,z)f−

(
dr2

f+f2−
+ dz2

)
+ e2c(r,z)r2dΩ2

d−2,

f±(r) = 1−
(r±
r

)d−3
, Fd−2 = Qm VolΩd−2 , (2)

where r = r+ and r = r− correspond to an outer and an inner horizons. Qm is a constant proportional
to a magnetic charge Q. By setting a = b = c = 0, we have a uniform black string solution. Note
that the form field Eq. (2) is a general solution even for a, b, c �= 0. This fact makes our analysis simple
since we do not have to perturb the form field independently. The physical property of the background
solution to be noted is that the specific heat, which specifies the thermodynamical stability, is negative
for small charge 0 ≤ Q < QGM and positive for QGM < Q < M , where QGM and M are a critical charge,
characterized only by dimensions, and the mass, respectively. The Gubser-Mitra (or correlated stability)
conjecture asserts that the GL instability exists iff the string is locally thermodynamically unstable [8].
Indeed, we will see that the GL instability does not exist for Q > QGM.

We expand the metric function X(r, z) (X = a, b, c) around the uniform solution as

X(r, z) =
∞∑

n=0

εnXn(r) cos(nKz), Xn(r) =
∞∑

p=0

ε2pXn,p(r), K =
∞∑

q=0

ε2qkq, (3)

where X0,0(r) = 0 is imposed. Here, K is the GL critical wavenumber and ε is an expansion parameter.
Substituting these expansions into the Einstein equations, we obtain ODEs for Xn,p(r) at O(εn+2p).

3 Results: properties of non-uniform charged strings

Solving the first order perturbations, the GL critical mode for each given charge Q is obtained [10].
The charge dependence of the critical wavenumber is shown in Fig. 1(a). One can see that the critical
wavenumber vanishes at Q = QGM. In addition, we find that the vanishing of the wavenumber obeys
a power law near the GM point, k0 ∝ |Q − QGM|β , irrespective of dimensions. The universal “critical
exponent” β is nearly 1/2, which resembles a second-order phase transition [9]. In Fig. 1(b), we show the
charge dependence of the conventionally-used dimensionless mass parameter for the critical string. The
mass parameter in the present case is defined by

μ ≡ 16πGDM

LD−3 , (4)

where GD is a D-dimensional gravitational constant and L is the compactification length of the z-
direction. The critical mass μGL is estimated by setting L = 2π/k0. The uniform string can exist stably
for a parameter region of μ > μGL and 0 ≤ Q < M in the (μ,Q) plane.
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Figure 2: The difference of entropy and free energies between the uniform and non-uniform black strings
in suitable ensembles. One can find three critical charges, at which the stability of non-uniform solution
changes.

Solving the higher-order perturbations (up to third order), we can compare the entropy S, Helmholtz
free energy F (= M−TS) and Gibbs free energy G (= M−TS−νQ) between Uniform and Non-Uniform
black strings in suitable ensembles. We denote the differences of these thermodynamical functions by

SNU/SU � 1 + σ2ε
4, FNU/FU � 1 + ρ2ε

4, GNU/GU � 1 + κ2ε
4. (5)

For example, the fourth-order coefficient of the Gibbs free energy is given by

κ2 = −d− 3
2

[δS1 + (d− 2)δT1] δT1 −
(d− 1)qd−3

2(1− qd−3)

[
δQ1 + 2(d− 3)δT1 −

1− (d− 2)qd−3

1− qd−3 δν1

]
δν1, (6)

where q ≡ r−/r+ and (δS1, δT1, δQ1, δν1) are the second-order changes of entropy, temperature, charge,
and chemical potential, respectively. See [7] for the similar expressions for σ2 and ρ2. In Fig. 2, we show
the charge dependence of these quantities for D = 6, (a), and D = 14, (b).

First, let us focus on the behavior of entropy difference σ2 in D = 6. σ2, being negative at Q = 0,
increases as the background charge Q increases and become positive in an intermediate charge region,
QI,cr < Q < QII,cr. For QII,cr < Q < QGM, σ2 is negative again. The non-uniform black strings are
entropically favored over the uniform one in the intermediate region. This also suggests that the phase
transition from uniform to non-uniform phases is second (or higher) order. This behavior is common for
5 ≤ D ≤ 13. For D ≥ 14, the increase/decrease-behavior of σ2 is similar but there is a different feature
that σ2 is positive at Q = 0 [4]. Therefore the first critical charge QI,cr does not exist for D ≥ 14.

Next, let us see the the behavior of ρ2. ρ2 monotonically decreases as the charge increases for all
dimensions. For vacuum cases it has been known that ρ2 is positive for 5 ≤ D ≤ 12 and negative for
D ≥ 13 [5, 11]. Thus, there exists a critical charge for 5 ≤ D ≤ 13, which almost coincides with the
critical charge QI,cr.

Last, let us see the stability in a grandcanonical ensemble, which was not discussed in [7]. The Gibbs
free energy is compared between the uniform and non-uniform strings with the temperature and chemical
potential kept fixed. For D = 6, κ2 is always positive to imply the non-uniform configuration is unstable
for all non-extremal black strings. While, for D = 14 (in fact for D ≥ 13) κ2 is negative around the
neutral point and increases as the background charge increases. Thus, a “third”critical charge QIII,cr,
below which the non-uniform string is favored in the grandcanonical ensembles, appears.

4 Future prospects

The non-uniform charged black strings are constructed by the static perturbations for various dimensions.
We have seen that the charge controls the stability of non-uniform strings as well as that of uniform strings.
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Figure 3: A possible (M,n) diagram, (a), and a (M,n,Q) diagram, (b) of Black Hole (BH), Uniform
Black String (UBS) and Non-Uniform Black String (NUBS). Projecting (b) onto the Q = 0 plane, we
obtain (a). Each arrow indicates the direction of the non-uniform string branch emanates.

We show possible phase diagrams in Fig. 3 suggested by the perturbation analysis in this paper. It is
necessary to give some physical/intuitive understanding to the sign changes of (σ2, ρ2, κ2) and those phase
diagrams. The application of the Landau-Ginzburg theory of phase transition would provide us good
understanding of these [11]. The roles of the critical charges in the time evolution of GL instability and
the gauge theories, predicted by the gauge/gravity dual, will be interesting [12].
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Abstract
The braneworld model of Dvali-Gabadadze-Porrati realizes the self-accelerating uni-
verse. However, it is known that this cosmological solution contains a spin-2 ghost.
We study the possibility of avoiding the appearance of the ghost by slightly modifying
the model, introducing the second brane. First we consider a simple model without
stabilization of the separation of the brane. By changing the separation between the
branes, we find we can erase the spin-2 ghost. However, this can be done only at
the expense of the appearance of a spin-0 ghost instead. We discuss why these two
different types of ghosts are correlated. Then, we examine a model with stabilization
of the brane separation. Even in this case, we find that the correlation between spin-0
and spin-2 ghosts remains. As a result we find we cannot avoid the appearance of
ghost by two-branes model.

1 Introduction

The present-day accelerated expansion of the Universe [1] is one of the hotest topic in cosmology. Most
of ideas to explain this phenomenon are modifications of scalar (spin-0) sectors of the cosmology model.
But there is another direction which has not been explored much so far. That is modifying the gravity
theory in spin-2 sectors. The simplest gravity model with modified spin-2 sector would be the massive
gravity theory [2]. Since the models which have the terms quadratic in metric perturbations can be
regarded as a massive gravity theory, most of the modified gravity models fall into this category. If we
introduce the mass of the graviton to explain the accelerated expansion of the universe, its value would
be the same order as the present value of the Hubble constant, mg � H. However, it is known that a
spin-2 graviton with mass in the range 0 < m2 < 2H2 in de Sitter background has a ghost excitation in
its helicity-0 component [3]. The Hubble parameter is larger in an earlier epoch of the universe. Hence it
seems difficult to avoid appearance of a ghost throughout the evolution of the universe in simple models
that are arranged to explain present-day accelerated expansion. Here we would like to raise a simple
question whether we can build a model in which modification of the spin-2 sector explains the accelerated
cosmic acceleration, simultaneously escaping from the ghost appearance.

The DGP brane world model [4] (See Ref. [5] as a recent review paper), in which the 4D Einstein-
Hilbert term is assumed to be induced on the brane, is known to give a mechanism to realize the late-time
accelerating expansion of the Universe without introducing additional matter [6]. The existence of a ghost
excitation is pointed out in the self-accelerating branch of the DGP brane world model [7, 8, 9]. The
lowest Kaluza-Klein mass of gravitons m satisfies m2 = 2H2 [8, 9]. If the analogy to the massive gravity
theory could hold, this would mean that the self-acceleration branch of the DGP brane world model does
not have a ghost excitation. However, it was shown by a detailed analysis that there is still a ghost in
this model [9]. Based on the DGP brane world model, we attempt to build a ghost-free model which
simultaneously explains the accelerated expansion of the universe due to the effect of a spin-2 sector. The
first idea is to push up the lowest graviton mass by putting another boundary brane. We call this model
two-branes model. We will successfully make all masses of gravitons satisfy 2H 2 < m2. Then, however,
a spin-0 excitation, which originates from the brane bending degrees of freedom, is transmuted into a
ghost [12]. We will find that a ghost excitation cannot be eliminated in this two-branes model.
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Usually spin-2 modes are decoupled from spin-0 modes at the level of linear perturbation. However, a
spin-2 mode can be composed of a spin-0 mode by operating a differential operator when and only when
its mass squared takes the specific critical value. At the critical mass, a spin-2 mode can exceptionally
couple with a spin-0 mode. In addition to that, the critical mass corresponds to a threshold for the
appearance of a ghost in spin-2 sector. If the mass of spin-2 mode is smaller than the critical mass,
this spin-2 sector has a ghost excitation as previously mentioned. Moreover, a unique spin-0 mode that
appears in the two-branes model has also the critical mass. Hence the spin-2 mode can couple with the
spin-0 mode when it crosses the critical mass. This fact partly explains why the ghost can be transferred
between spin-2 and spin-0 modes.

Then, we consider a model with stabilized brane separation by introducing a bulk scalar field in two-
branes model [10, 11]. Since the mass spectrum of spin-0 mode changes, spin-0 mode at the critical mass
does not remain to exist in this stabilized two-branes model. Then, it is expected that the ghost will not
be transferred between spin-2 and spin-0 modes. However, by studying this stabilized two-branes model
in detail, we will find that this naive expectation goes wrong.

This paper is organized as follows. In §2 we will discuss the two-branes model. In §3 extension to the
stabilized two-branes model is performed. We will summarize our results in §4.

2 Two-branes model

In order to make a model which does not have spin-2 ghost modes, we introduce another brane into the
DGP model. The action describing this model is given by

S =
1

2κ2

∫
d5x
√−gR+

∑
σ=±

∫
d4x

√
−g(4)σ

(
1

2κ24
R(4)

σ +
1
κ2

Kσ − τσ + Lmσ

)
. (1)

where R, R(4)
± , g(4)± , K±, τ± and Lm± are five dimensional Ricci scalar, four dimensional Ricci scalar,

the trace of the four dimensional induced metric gμν , the trace of the extrinsic curvature Kμν , the brane-
tension and the matter Lagrangian on the (±)-brane, respectively. We assume Z2 symmetry across
the brane. We assume vacuum without any matter field, Lmσ = 0, as an unperturbed state. The five
dimensional metric is given by

ds2 = dy2 + a2(y)γμνdx
μdxν, a(y) = a+ + y. (2)

where γμν is the four dimensional de Sitter metric with unit curvature radius. The range of y-coordinate
is from 0 to (a−−a+). The positions of (+) and (−)-branes are at y = y+ := 0 and at y = y− := a−−a+,
respectively. Notice that the bulk geometry of the above solution is nothing but the five dimensional
Minkowski spacetime written in the spherical Rindler coordinates.

Now we study perturbations around the background mentioned above. Besides the transverse-traceless
conditions, one can impose the conditions of vanishing {yy} and {yμ} components of metric perturbations.
Then the perturbed metric is given by

ds2 = dy2 +
(
γ̃μν + h(TT )

μν

)
dxμdxν, with ∇μh(TT )

μν = 0, h(TT )μ
μ = 0, γ̃μν ≡ a2γμν (3)

where ∇μ is the covariant derivative operator associated with γ̃μν . In raising or lowering Greek indices,
we use γ̃μν . Because the equations of motion of h(TT )

μν take the separable form, we expand h
(TT )
μν as

h(TT )
μν =

∑
j

h(j)μν (xμ)uj(y), (4)

The induced metric on the (+)-brane for the solution with source is given by

h̄(+)
μν = −2κ2

∑
i

u2i (y+)
�(4) − 2−m2

i

(
T (+)

μν − 1
4
γ̃μνT

(+) +
H−2+

3(m2
i − 2)

(
∇μ∇ν −

1
4
γμν�(4)

)
T (+)

)

+
κ2

6H2
+

γμν

(
2
H+

(2rcH+ − 1)−1 −
(∑

i

u2i (y+)
m2

i − 2

)
�(4)

)
1

�(4) + 4
T (+). (5)
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It is known that the equation of motion of the massive gravity is written as

h(mg)
μν = −α

(
Tμν − 1

4γμνT

(�(4) − 2−m2)
+

(m2 − 2)−1

3(�(4) − 2−m2)

(
∇μ∇ν −

1
4
γμν�(4)

)
T

)
− α

12(m2 − 2)
γμνT. (6)

So h̄
(+)
μν has the spin-0 propagation as

s =
κ2

6H2
+

γμν

(
2
H+

(2rcH+ − 1)−1 + 4

(∑
i

u2i (y+)
m2

i − 2

))
1

�(4) + 4
T (+), (7)

where s ≡ (h̄(+)
μν − h

(mg)
μν )γμν/4. This means that, when all spin-2 modes have no ghost (m2

i > 2), the
sign of spin-0 propagation has wrong; namely the spin-0 mode becomes ghost.

3 Stabilization

We introduce a bulk scalar field to stabilize the brane separation [11]. The action is given by

S = S2 + Ss, Ss ≡
∫

d5x
√−g

(
−1

2
gabψ,aψ,b − VB(ψ) −

∑
σ=±

V (σ)(ψ)δ(y − yσ)

)
. (8)

By choosing the potential in the bulk VB(ψ) and the potentials on the branes V (σ)(ψ) appropriately,
we can stabilize the brane separation. In the following discussion we do not need explicit form of the
potential functions. The unperturbed background configuration is similar to the previous case. The bulk
metric is given by (2) and the branes are located at a fixed value of y(= y±) as before. But the functional
form of the warp factor a(y) is different.

We use “Newton gauge”, in which the spin-0 component of the shear of the hypersurface normal
vector vanishes, following Ref. [11]. In this gauge, using the traceless part and {yμ}-component of the
Einstein equations, we find that perturbations of the metric and the scalar field are related as

hyy = 2φ, hyμ = 0, hμν = h(TT )
μν − φγ̃μν , δψ =

3
2κ2ψ′

[∂y + 2H]φ, (9)

where H ≡ a′/a and h
(TT )
μν is a tensor which satisfies transverse-traceless conditions. Transverse-traceless

part h(TT )
μν takes the same form as given in Eq. (4).While the trace part is computed as

φ+ 2H+ξ̂
y
(+) =

2κ2

9H̃4
+

∑
i

v2i (y+)
μ2i + 4

1
�(4) − μ2i

T (+) − κ2

3H̃2
+

(
2κ2

3H̃2
+

(∑
i

v2i (y+)
μ2i + 4

)
+
a′

a

)
1

�(4) + 4
T (+), (10)

where for brevity we have introduced

H̃2
+ = H2

+ (2rcH+ − 1) . (11)

The above expression for h̄(+)
μν apparently contains a pole at the critical mass eigenvalue corresponding

to (�(4)+4)−1. The term proportional to ∇μ∇ν in Eq. (4) is pure gauge. Hence all the contribution from
the pole at the critical mass eigenvalue is in the form proportional to γμν(�(4) + 4)−1T (+). Collecting
such terms in h̄

(+)
μν coming both from the TT -part and from the scalar-part, the coefficient becomes

κ2

3H2
+

{
2

(∑
i

u2i (y+)
m2

i − 2

)
+

1
H̃2

+

(
2κ2

3H̃2
+

(∑
i

v2i (y+)
μ2i + 4

)
+H+

)}
. (12)

Calculating this coefficient, we can find that it vanishes as a whole.
When the mass eigenvalue is in the range 0 < m2

i < 2, such a mode contains a ghost in its helicity
zero component. In contrast, the coefficients of spin-0 component, βi, becomes negative when μ2i < −4.
In this case this mode becomes a ghost. Hence, to realize a ghost-free model, all masses of spin-2 modes
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and spin-0 modes must satisfy m2
i > 2 and μ2i > −4. However, it turns out to be impossible that both

conditions are satisfied simultaneously.
In order to show this, we consider continuous deformation of the model potentials of the bulk scalar

field. When the smallest eigenvalue of spin-2 excitations, m2
0, approaches 2 from below, u20(y+)/(m2

0 − 2)
in Eq. (12) diverges. Since this equality is always satisfied, this divergence must be compensated by the
other terms. The only possible way is that one of the eigenvalues of spin-0 exitations μ2j approaches
−4 from above Therefore, when the value of m2

0 exceeds 2, at least one of the valuevalues, μ2j , must be
smaller than −4. Hence, we cannot make both conditions m2

0 > 2 and μ20 > −4 satisfied simultaneously
by a continuous deformation. Any model specified by given potentials of the bulk scalar field is connected
with each other by a continuous deformation. Thus it is proved that we cannot realize a model free from
a ghost within the two-brane extension of DGP model with a bulk scalar field.

4 Summary

In the present paper, we have attempted to construct a ghost-free model by modificating the self-
acceleration branch of the DGP brane world model, in which a spin-2 sector drives the accelerated
expansion of the universe. We first tried adding another boundary brane in §2 and stabilizing the brane
separation by introducing a bulk scalar field in §3, respectively. In both cases, we found that the ghost
exitation survives. As we have already mentioned in Introduction, this is caused through the degeneracy
between spin-2 and spin-0 modes at the critical mass. This degeneracy enables the ghost property to
transmute between these two normally decoupled modes. But this degeneracy occurs only at this special
mass.

To conclude, we confirmed in this paper that it is really difficult to erase this ghost as far as we work
within the standard linear analysis. However, a different way to avoid appearance of ghost is proposed
in Ref. [13]. We think still further study is necessary to conclude whether this ghost is really harmful or
not.
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Abstract
We investigate the stability of the volume modulus in a warped, codimension two
braneworld model in a 6D gauged supergravity. The braneworld solution has two
3-branes, which are located at the positions of the boundary conical singularities.
For this brane solution, the shape modulus, i.e., the relative position of the branes, is
fixed via the tension-deficit relations, once the brane tensions are specified. However,
the volume modulus, i.e., the size of the extra dimensions, is not fixed, implying we
should take quantum corrections of bulk fields into account. Hence, we discuss the
one-loop quantum corrections of a massless minmally coupled bulk scalar field to
stabilize the volume modulus. We show that in most cases the volume modulus is
stabilized. Then, we make some suggestions on the original six-dimensional model.
Finally, we close this article, after discussing some phenomenological implications.

1 Introduction

String theory implies that our universe is not actually four-dimensional (4D), but in fact a submanifold (brane)
embedded into a higher-dimensional spacetime (bulk). Braneworld gravity and cosmology, especially based on
the proposal by Randall and Sundrum (RS) [1], have been developed a lot in the literature in the codimension
one context. String theory, however suggests that there are as many as six or seven extra dimensions and thus,
one may consider braneworld models with higher codimensions.

Stability of the moduli, i.e., ”volume” and ”shape” of the extra-dimensions, is a significant issue in braneworld.
For instance, in RS-type codimension one brane models, the interbrane distance, called the radion, should be
fixed at an appropriate value to realise a large mass hierarchy between fundamental energy scales, i.e., electro-
weak and gravitational scales. Several stabilization mechanisms of the radion have been discussed in the RS
model, both by dynamics of additional bulk fields [2] and quantum corrections to the bulk vacuum state [3].
Since the increasing number of the extra-dimensions implies increasing number of the moduli, the similar issues
on moduli stabilization could arise in braneworld with higher codimension.

We focus on codimension 2 braneworld solutions [4, 5] which is based on a six-dimensional (6D) gauged
supergravity [6] . Similar warped braneworld solutions have been recently discussed in [7], in the context of 6D
Einstein-Maxwell theory. In these two-brane models, the magnetic flux can compactify the extra-dimension.
Brane tensions are directly related to the deficit angles of the bulk, and thus, once the brane tensions are fixed,
a part of the moduli is fixed. In the models discussed in [7], all the moduli are completely fixed. However, in
the model, in 6D supergravity given by [4, 5], only the shape modulus is fixed even after specifying the brane
tensions. Hence, to fix the volume modulus, quantum corrections of bulk fields should be taken into account.
In this presentation, we introduce our recent analyses on the modulus stabilization by the quantum corrections
of a massless scalar field, based on our recent paper [8].

2 Codimension 2 brane model in 6D supergravity

We consider a six-dimensional Einstein-Maxwell-dilaton theory with a non-vanishing scalar potential as

S6 =
∫

d6x
√−g

(
1
2
R− 1

2
∂aϕ∂

aϕ− 1
4
e−ϕFabF

ab − 2g21e
ϕ

)
, (1)
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where ϕ is a dilaton field, Fab represents a U(1) gauge field strength and g1 represents the dilaton potential. This
theory corresponds to the bosonic part of the Salam-Sezgin, 6D gauged supergravity theory [6] with vanishing
2-form field and hypermultiplets .

This theory contains a 3-parameter family of static braneworld solutions:

ds2 = h(ρ)dθ2 +
dρ2

h(ρ)
+ (2ρ)(−dτ2 + dx22 + dx23 + dx24) ,

h(ρ) =
g21
2ρ3

(
ρ2+ − ρ2

) (
ρ2 − ρ2−

)
,

ϕ(ρ) = − ln(2ρ) , Fθρ = −g1ρ+ρ−
ρ3

, (2)

where ρ± are integration constants [4, 5]. In this model, the branes are located at positions which are determined
by the horizon condition h(ρ) = 0; and whence we also obtain the following useful relations. These give a direct
relation between the mass and charge of the magnetic flux. The global period of θ is called Δθ, which is
determined by the brane tensions through the tension-deficit relations as will be discussed later.

The branes are codimension two boundaries, embedded onto conical deficits at ρ = ρ±, whose actions are
given by

S± = −
∫

d4x
√
hσ± , (3)

respectively, where σ± denotes the brane tensions. These choices of the brane action are onlu ways to embed
a codimension two branein the present set-up. The brane tensions are related to the conical deficit angles by
σ± = M4

6 δ±. Then, the angle period Δθ is determined by

Δθ(r, δ+) =
2π − δ+

− 1
2h
′(ρ−)

=
2π − δ−
1
2h
′(ρ+)

=
2(2π − δ+)
g21(1− r2)

. (4)

Once the brane tensions, σ+ and σ− are fixed, then r is also fixed and thus, we now regard the free parameters
as r and δ+, along with the dilaton bulk coupling g1. The remaining degree of freedom used to determine the
bulk geometry is the absolute size of the bulk, i.e., ρ+. Due to the scale invariance of the background brane
solution, ρ+ can only be fixed by quantum corrections of bulk fields. Note that there is also magnetic flux
constraint given by ∫ ρ+

ρ−
dρ

∫ Δθ

0

dθFρθ = −ΔθA
( 1
ρ2−
− 1
ρ2+

)
= −2(2π − δ+)

g1r
, (5)

but the magnetic flux only depends on r and δ+ and does not contribute to the volume of the bulk. Thus, the
overall size of the extra-dimension ρ+ behaves as the modulus, i.e., the volume modulus. We also note that the
dilaton is also fixed once we can fix the volume modulus and hence ρ+ is only the modulus in the present model.
We consider the modulus dynamics in a 4D effective theory in the conext of the moduli space approximation,
in which we regard ρ+ as a function of the coordinate on the brane xμ and we get the modulus kinetic term
with the correct sign [8]. This approximation should be valid for sufficiently low energy scales.

3 One-loop effective potential of the volume modulus

Next, we introduce a massless, minimally coupled scalar field as a simple analogue of the bulk gravitons. From
this we can investigate the one-loop effective action for such a scalar field and thus, the effective potential of
the volume modulus on the co-dimension two warped brane background. From now on, we shall work mainly
in Euclidean space, rather than in the original Lorentzian frame. The action for the massless scalar field
perturbations is given by

Sscalar = −1
2

∫
d6x
√
gφΔ6φ . (6)

The one-loop effective action for a massless minimally coupled scalar field is defined as

W6 =
1
2
ln det(−Δ6) , (7)
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where Δ6 is the six-dimensional Laplacian, which is UV divergent and needs to be regularized and renormalized.
We employ the zeta function regularization technique to obtain the renormalized effective action. Since there
is still divergence due to the infinite volume of the 4D spacetime, it is useful to define the effective potential

W6,ren =
∫ (

d4xρ2+
)
V6,eff =

∫
d4x̃V6,eff . (8)

Due to symmetries of the background solution, the form of the effective potential can be reduced to the following
form

V6,eff(r, δ+, ρ+, μ) =
A6(r, δ+)−B6(r, δ+) ln(μ2ρ+)

ρ2+
, (9)

where A6(r, δ+) and B6(r, δ+) are related to a background heat kernel coefficient. Clearly, if B6(r, δ+) > 0, then
the volume modulus is stabilized at

ρ∗+ = μ−2e(2A6+B6)/(2B6) . (10)

Thus, the evaluation of B6(r, δ+) is the first important task to judge the stability. B6(r, δ+) can be decomposed
into the contribution of the bulk and branes (conical singularities). There are several reasonable choices of μ,
such as the bulk curvature scale g1(ρ+)−1/2 and the gravitational scale M6 (these become g(ρ+)−1/2 and M4

in 4D alternative model, which is discussed in the next section). However, the stability itself does not depend
on the scale, because it is determined solely by the value of B6(r, δ+) (this is B4(r, δ+) in the 4D model).

4 Volume stabilization and its implication on the hierarchy problem

Due to the lack of formulations of the relevant conical heat kernel in 6D, we consider a toy model in 4D
supergravity with almost the same Langrangian as the original 6D theory, only except for the number of
dimensions. The coupling g1 should be replaced by g. The corresponding coefficients in the effective potential
A6(r, δ+) and B6(r, δ+) are also replaced by A4(r, δ+) and B4(r, δ+), respectively.

As B6(r, δ+), the function B4(r, δ+) is also composed of two parts; a bulk and conical brane contribution.
As a result, the sign of B4(r, δ+) is always positive for the most of values of the parameters (r, δ+). Thus, the
volume modulus is stabilized. We should add comments on the stability of the volume modulus in 6D. In 6D
model, only the bulk part of B6(r, δ+) is calculable and has very similar behavior to the 4D toy model.

After making the stabilization of the volume modulus, we can give discuss some phenomenological impli-
cations. For instance, we discuss the suggestions for the hierarchy problem between the fundamental energy
scales.

In the original six-dimensional model, the effective four-dimensional Planck scale is

M2
pl �

ρ+(2π − δ+)
g21

M4
6 . (11)

If we assume a brane localized field whose bare mass is given by m2 on either brane at ρ± then the observed
mass scales are m2

+ = m2,m2
− = r2m2. Thus, the mass ratio between the field and the effective Planck mass is

given by

m2
+

M2
pl

�
(μ2m2

M4
6

) g21
2π − δ+

e−(2A6+B6)/(2B6) ,
m2
−

M2
pl

�
(μ2m2

M4
6

)
r2

g21
2π − δ+

e−(2A6+B6)/(2B6) , (12)

where we have used the value of ρ+,∗, given by Eq. (10), at stabilization. We assume that the factor of
(μm/M2

6 )2 takes the optimal value of O(1) at the unification of the fundamental scales. At present, the best
we can do is use the results obtained from the four-dimensional model

R(r, δ+) :=
g2

2π − δ+
e−(A4+B4)/B4 (13)

The results of the values of R(r, δ+) are shown in the Figure and indicate that smaller values of g and r lead to
a large hierarchy on both branes.

− 273 −



0.2 0. 0. 0. 1

12

10

2

2

Figure 1: log10(R(r, 0.01)) is shown as a function of r, for δ+ = 0.01. The red (solid), green (dashed, with wider
intervals) and blue (dashed, with shorter intervals) curves correspond to g = 0.5, 5, 50, respectively.

5 Summary

We have discussed the stability of the volume modulus of a warped codimension two brane modelin 6D super-
gravity, by taking the one-loop quantum corrections of a massless scalar field into account.

The branes are located at the boundary conical singularities. The shape modulus is determined once one
specifying the brane tensions. But, the volume modulus is not completely determined even if the flux conser-
vation law is taken into account. In order to stabilize the volume modulus, we consider quantum corrections of
a massless scalar field (as an analogue of the bulk gravitons).

The form of the one-loop effective potential can be fixed, due to scale invariance of the background solution.
In the actual investigation of stability, we have used an alternative model in 4D supergravity due to the lack of
formulation of the relevant conical heat kernel coefficients in 6D. We then showed that the heat kernel coefficient
is positive definite for most dilaton couplings, g, independently of the choice of r and δ+. The contribution
from the bulk is positive, whereas that from the conical branes is negative for smaller r; though they are of the
same order. For all of the cases with g ∼ O(1), the bulk dominates over the brane parts and thus, the volume
is stabilized.

We also discussed some phenomenological issues, for instance, here we pick up the hierarchy problem between
the fundamental energy scales. The 6D results were extrapolated from the corresponding results in 4D. We
found that in the hierarchy problem, the ratio between the energy scale of the brane localized field and the
gravitational scale becomes much smaller than unity, especially for larger degrees of warping r � 1.
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Ambiguity of black hole entropy in loop quantum gravity II

Takashi Tamaki1 and Hidefumi Nomura2
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Abstract
We reexmine some proposals of black hole entropy in loop quantum gravity and
consider a new possible choice of the Immirzi parameter.

1 Introduction

Loop quantum gravity (LQG) has attracted much attention because of its background independent for-
mulation, account for microscopic origin of black hole entropy [1], etc. The spin network has played a
key role in this theory [2]. Basic ingredients are edges and vertices. In Fig. 1, edges are expressed by
lines lebeled by j = 0, 1/2, 1, 3/2, . . . reflecting the SU(2) nature of the gauge group. A vertex is an
intersection between edges. For three edges having spin j1, j2, and j3 that merges at an vertex, we have

j1 + j2 + j3 ∈ N , ji ≤ jj + jk, (i, j, k different from each other.) (1)

to garantee the gauge invariance of the spin network. Using this, expressions for the spectrum of the area
can be derived as [3] A = 8πγ

∑√
ji(ji + 1), where γ is the Immirzi parameter. The sum is added up

all intersections between a surface and edges as shown in Fig. 1. The number of states that determines
the black hole entropy was first estimated as [1]

S =
A ln(2jmin + 1)

8πγ
√
jmin(jmin + 1)

, (2)

where A and jmin are the horizon area and the lowest nontrivial representation usually taken to be 1/2
because of SU(2), respectively. In this case, the Immirzi parameter is determined as γ = ln 2/(π

√
3) to

produce the Bekenstein-Hawking entropy formula S = A/4.
However, the formula (2) was corrected as [4, 5] S = γMA

4γ , where γM is the solution of

1 =
∞∑

j=Z/2

2 exp(−2πγM

√
j(j + 1)) , (3)

where j takes all the positive half-integer. In this case, γM = 0.23753 · · ·. Interestingly, another possibility
has also been argued. It is to determine γM as the solution of [6, 7]

1 =
∞∑

j=Z/2

(2j + 1) exp(−2πγM

√
j(j + 1)) . (4)

In this case, γM = 0.27398 · · ·. These provide us with the following question: which is the best choice for
the Immirzi parameter? Therefore, we reanalyze these possibilities. This is important in the following
reasons. (i) In string theory, number counting for microscopic states of black holes has been considered. In
future, it is desirable for us to have a connection with the number counting in string theory. Probably, we
will need to proceed many steps toward this purpose. However, there is a subject which can be attacked
soon. This is (ii) the possible relation to the quasinormal mode which has been argued as another
consistency check of the Immirzi parameter. Using (2), an encounter between LQG and the quasinormal
mode was considered first in Ref. [8]. This means that if we have jmin = 1, we can determine γ as

1E-mail:tamaki@gravity.phys.waseda.ac.jp
2E-mail:nomura@gravity.phys.waseda.ac.jp
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Figure 1: Spin network and a surface.

ln 3/(2π
√

2) which gives A = 4 ln 3. Moreover, the quasinormal mode analysis that originally performed
in Schwarzschild black hole [9] has been extended to single-horizon black holes [10]. Thus, we also want
to know which is the best choice for the Immirzi parameter in this view point.

This paper is organized as follows. In Sec. 2, we summarize the framework [1] (which we call the
ABCK framework.). In Sec. 3, we argue various possibilities that determine the number of state. In Sec.
4, we summarize our results and discuss their meaning. For details, see [11].

2 Summary of the ABCK framework

First, we introduce the isolated horizon (IH) where we can reduce the SU(2) connection to the U(1)
connection. Next, we imagine that spin network pierces the IH. By eliminating the edge tangential to
the isolated horizon, we can decompose the Hilbert space as the tensor product of that at the IH HIH

and that in the bulk HΣ, i.e., HIH ⊗HΣ. If we specify the points that are intersections of edges having
spin (j1, j2, · · · , jn) and the IH, we can write HΣ as the orthogonal sum HΣ =

⊕
ji,mi

Hji,mi

Σ , where mi

takes the value −ji, −ji + 1, · · ·, ji. This is related to the flux operator eigenvalue emi

s′ := 8πγmi that
is normal to the IH (s′ is the part of the IH that have only one intersection between the edge with spin
ji.). Since we eliminate the edge tangential to the IH, we have mi �= 0. The horizon Hilbert space can
be written as the orthogonal by eigenstates Ψb of the holonomy operator ĥi, i.e., ĥiΨb = e

2πibi
k Ψb.

Next, we consider the constraints in the bulk and at the IH, respectively. In the bulk, the Gauss
constraint is already satisfied and the diffeomorphism constraint means that the place to which the edges
stick the IH is not relavant. It is assumed that the bulk scalar constraint does not affect (j,m). At the IH,
we do not consider the scalar constraint since the lapse function disappears. If we require that the horizon
should be invariant under the diffeomorphism and the U(1) gauge transformation, The horizon area A is
fixed as A = 4πγk, where k is natural number and it is the level of the Chern-Simons theory. In addition,
it is required that we should fix an ordering (b1, b2, · · · , bn). The area operator eigenvalue Aj should
satisfy (i) Aj = 8πγ

∑√
ji(ji + 1) ≤ A. From the quantum Gauss-Bonnet theorem, (ii)

∑n
i=1 bi = 0.

From the boundary condition between the IH and the bulk, (iii) bi = −2mi modk. All we need to
consider in number counting are (i)(ii)(iii).
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3 number counting

If we use (ii) and (iii), we obtain (ii)′
∑n

i=1mi = n′ k2 . In [5], it was shown that this condition is
irrelevant in number counting. Thus, we perform number counting only concentrating on (i) below.

For this purpose, there are two different points of view. The one adopted in the original paper [1, 4, 5]
counts the surface freedom (b1, b2, · · · , bn). The second counts the freedom for both j and b [6, 7].

We first consider the second possibility since (we suppose) it is easier to understand. To simplify the
problem, we first consider the set Mk by following [4], that is

Mk :=

{
(j1, · · · , jn)|0 �= ji ∈

Z

2
,
∑

i

ji ≤
k

2

}
. (5)

Let Nk be the number of elements of Mk plus 1. Certainly, N(a) ≤ Nk, where N(a) (a := A
8πγ ) is the

number of states which account for the entropy. Note that if (j1, · · · , jn) ∈ Mk−1, then (j1, · · · , jn, 12 ) ∈
Mk. In the same way, for natural 0 < s ≤ k,

(j1, · · · , jn) ∈Mk−s ⇒ (j1, · · · , jn,
s

2
) ∈Mk . (6)

Then, if we consider all 0 < s ≤ k and all the sequence (j1, · · · , jn) ∈Mk−s, we found that (j1, · · · , jn, s
2 )

form the entire set Mk. Moreover, for s �= s′, (j1, · · · , jn, s
2 ) �= (j1, · · · , jn, s′

2 ) ∈Mk. The important point
to remember is that we should include the condition mi �= 0 (or equivalently bi �= 0). Thus, each ji has
freedom 2ji for the ji integer and the 2ji + 1 way for the ji half-integer. They are summarized as 2[ 2j+1

2 ]
where [· · ·] is the integer parts. For this reason, the recursion relation is

Nk =
∑
s=1

2[
s+ 1

2
](Nk−s − 1) + 1 . (7)

This is the point which has not been examined out so far.
As a stright forward extension of this, we can consider N(a), which is

N(a) :=

{
(j1, · · · , jn)|0 �= ji ∈

Z

2
,
∑

i

√
ji(ji + 1) ≤ k

2
= a

}
. (8)

In this case, we obtain the recursion relation

N(a) = 2N (a−
√

3/2) + 2N (a−
√

2) + · · ·+ 2[
2j + 1

2
]N(a−

√
ji(ji + 1)) + · · ·+ [

√
4a2 + 1− 1] . (9)

If we notice that the solution of
√
ji(ji + 1) = a is ji = (

√
4a2 + 1− 1)/2, meaning of [

√
4a2 + 1− 1] is

obvious. If we use the relation N(a) = Ce
AγM
4γ , where C is a constant, that was obtained in [5], we obtain

1 =
∑

j=Z/2

2[
2j + 1

2
] exp(−2πγM

√
j(j + 1)) , (10)

by taking the limit A→∞. Then if we require S = A/4, we have γ = γM . In this case, γM = 0.26196 · · ·.
Next, we consider the first possibility that counts only the surface freedom. This means that even if

(j1, j2, · · · , jn) is different, it is regareded as the same surface state if the horizon area and (b1, b2, · · · , bn)
are same. For example, (j1, j2) = (3/2, 1/2) and (1/2, 3/2) both give the possibility (b1, b2) = (−1,−1).
Then, it should not be distinguished in this description. This following is the method taken in [4], i.e.,
we rewrite (i) as (i)′ 8πγ

∑
i

√
|mi|(|mi|+ 1) ≤ A. Let us compare (6) with

(m1, · · · ,mn) ∈Mk−s ⇒ (m1, · · · ,mn,±
s

2
) ∈Mk . (11)
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At first glance, it might seem that we abondon the freedom mn+1 = − s
2 + 1, · · · s

2 − 1. However, it is not
the case since we obtain that freedom from Mk−s+2, Mk−s+4, · · ·. It is the crucial difference from (6)
where the freedom of j is counted. In this way, we have the relation

Nk =
∑
s=1

2(Nk−s − 1) + 1 . (12)

Therefore, we obtain (3).

4 Conclusions and discussion

In this paper, we have considered two possibilities for the number of states of black holes in the ABCK
framework. One of them gives a new value for the Immirzi parameter. From these results, we consider
whether or not there is a consistency between the area spectrum in LQG and the area spectrum in the
quasinormal mode. Since the area spectrum obtained from the quasinormal mode is dA = 4 ln 3, it is
obvious that we do not have the same consistency if we adopt the Immirzi parameter determined by (3)
or (10). Then, how about the case in which only j = jmin survives, as considered in [12] ? Unfortunately,
both (3) and (10) do not provide consistency that is different from the case in (4). This means that if we
take the consistency to the quasinormal mode seriously, we will need new considerations.

Finally, we want to consider which of the two candidates is the better choice. The reason why only
surface degree was counted in [1, 4, 5] is to separate surface degree from the bulk freedom. If we admit
j as an independent variable, it is difficult to separate it from other bulk freedoms since that in the bulk
can communicate with infinity. However, as pointed out in [7], it is j that determines area eigenvalue
and other bulk variables are irrelevant. Moreover, since quantum horizons would fluctuate [13], it may
be a problem to consider the IH as a sharp boundary. For these reasons, it is too early to abondon the
possibility that we could count j as an independent variable. Of course, it is also important to consider
the other method in the calculating the number of freedom as in [14]. We also want to examine these
possibilities in future.
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Mass, tension and thermodynamics of Kaluza-Klein black holes
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Abstract
We study the thermodynamics of charged black holes with squashed S3 horizons in
five-dimensional Einstein-Maxwell theory. The free energy of the black hole is ob-
tained on two different backgrounds; one is four-dimensional Minkowski times S1 and
the other is the Kaluza-Klein monopole spacetime. The black hole has different val-
ues for the Hamiltonian, the Abbott-Deser mass and the Komar mass, and each mass
satisfies thermodynamic first law. It is shown that the Hamiltonian, these masses and
the free energy can be related each other in terms of Legendre transformations with
respect to some thermodynamic variables. We find a new couple of thermodynamic
variables that represents the squashing of the outer horizon. It gives a work term to
each first law. In stead of them, the gravitational tension and its conjugate are also a
couple of thermodynamic variables and give a work term to each first law except for
that of the Komar mass, though the Komar mass satisfies Smarr’s formula and would
be thought of as a thermodynamic mass. In this case, the Komar mass can not be
related to the free energy and other masses using Legendre transformations. We also
investigate thermodynamic stability of the black hole in many thermodynamic envi-
ronment. In environment with fixed gravitational tension, the most globally stable
state is the Kaluza-Klein monopole. We find a phase transition between the black
hole and the four-dimensional Minkowski times S1 in an enviromnent with fixed tem-
perature, electric charge and gravitational tension. In isolated system, smaller extra
dimension is entropically favored, and the five-dimensional Reissner-Nordstörm black
hole has the smallest entropy in the sequence of the black holes with the same mass
and the same electric charge. Therefore, the Reissner-Nordstörm black hole might be
the most unstable state in the sequence.

1 Introduction and Summary

It has a long history to formulate black hole thermodynamics in terms of quantum theory of gravity.
Especially, the Euclidean path integral for gravitational field in saddle-point approximation is successful
and gives the Bekenstein-Hawking formula for black hole entropy [1]. The Euclidean path integral method
is consistent formulation for black hole thermodynamics and has a feature that it gives a thermodynamic
free energy. The free energy is approximately given as the Euclidean classical action of the solution times
its temperature.

Recently, spacetime structure of charged static black holes with squashed S3 horizons in five-dimensional
Einstein-Maxwell theory was studied by one of the authors and his collaborator [2]. The metric has three
parameters characterizing mass, electric charge and the deformation of the S3 horizon from round S3

or the size of the extra dimension. The squashed S3 can be thought of as a twisted S1 fiber over S2

base space with different circumference radius; the circumference radius of S1 does not equal that of S2.
The spacetime asymptotes to a twisted S1 bundle over four-dimensional Minkowski spacetime, which is
not flat spacetime and not solution of the Einstein equation. The size of S1 is asymptotically constant
and, if its size is adequately small, the spacetime is effectively asymptotically four-dimensional spacetime
with one extra dimension. In this sense, the black hole has the properties of Kaluza-Klein black holes.
Furthermore, the solution includes the Kaluza-Klein monopole spacetime in a no horizon limit, which is
originally found by Gross and Perry [3], and Sorkin [4].

The thermodynamics of this black hole was firstly investigated by Cai et al.[5]. They showed that
the mass defined by the counter-term method equals the Abbott-Deser (AD) mass [6] on the locally

1E-mail:kurita@sci.osaka-cu.ac.jp
2E-mail:ishihara@sci.osaka-cu.ac.jp
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flat spacetime to which the black hole spacetime asymptotes. It was shown that these masses satisfy a
thermodynamic first law if one parameter is treated as a constant. In the investigation, they assumed
that entropy, temperature, electric charge and electric potential difference are thermodynamic variables
for the black hole. Furthermore, they discussed that there might exist other thermodynamic variables
representing the deformation of the horizon and its conjugate generalized pressure.

In this paper, we study the thermodynamics of the black hole in more detail. The free energy
of the black hole can be evaluated using traditional background subtraction method on two different
backgrounds. The free energy (FBH − F flat) is evaluated on four-dimensional Minkowski times S1

spacetime which is a flat spacetime obtained by neglecting the twisting of the S1 fiber in the locally flat
spacetime. The other free energy (FBH − FGPS) is evaluated on the Kaluza-Klein monopole spacetime.
We consider the Hamiltonian which is formulated by Hawking and Horowitz [7] and the Komar mass in
addition to the AD mass. We find that the Hamiltonian is a Legendre transform of the free energy with
respect to temperature,

HB−f = (FBH − F flat) + TS, and HB−G = (FBH − FGPS) + TS (1)

in both cases of the flat background and the Kaluza-Klein monopole background. In the above equation,
HB−f and HB−G are the Hamiltonian of the black hole on the flat and the Kaluza-Klein monopole
background, respectively. T is temperature defined by the Hawking formula and S is entropy given by
the Bekenstein-Hawking formula. The AD mass on the flat background MAD is a Legendre transform of
the Hamiltonian with respect to the electric potential difference

MAD = HB−f +QΦ, (2)

where Q is the electric charge and Φ is the electric potential difference between that at the outer horizon
and at the spatial infinity. The Hamiltonian and the AD mass satisfy the following thermodynamic first
laws:

dHB−f = TdS −QdΦ + TfdL (3)
dHB−G = TdS −QdΦ + TGdL (4)
dMAD = TdS + ΦdQ+ TfdL, (5)

where Tf and TG are graviational tension [8] evaluated on the flat spacetime background and the Kaluza-
Klein monopole background, respectively. L is its conjugate and given by the period of the compact fifth
dimension, or equivalently, the size of S1 fiber at the spatial infinity. The Legendre transformations with
respect to these variables are summarized as follows:

(FBH − F flat) T→S−−−−−−→ HB−f Φ→Q−−−−−−→ MB−f
AD

for the flat background and

(FBH − FGPS) T→S−−−−−−→ HB−G Φ→Q−−−−−−→ W1

for the Kaluza-Klein monopole background. W1 is defined as W1 := HB−G +QΦ.
On the other hand, the Komar mass can not be related to other masses or the free energy in terms of

Legendre transformation with respect to those already known thermodynamic variables. However, since
the Komar mass satisfies Smarr’s formula [9]

MK −QΦ =
3
2
TS. (6)

then, it would be thought of as a thermodynamic mass and would be related to the free energy by a
Legendre transformation with respect to some thermodynamic variable. In order to do so, we introduce
a couple of thermodynamic variables (X,Yf ) or (X,YG), depending on choice of the background. X is
proportional to square of L and Yf or YG is its conjugate on the flat background and on the Kaluza-Klein
monopole background, respectively. Especially, YG can be written as

YG = − π

16G
2

R+r+

(r+
2
−R+

)2
, (7)
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where

R+ =
r+
2

√
r2∞ − r2−
r2∞ − r2+

(8)

is the circumference radius of S2 base space at the outer horizon and r+/2 is the circumference radius of
S1 fiber there. Therefore, YG vanishes when the size of S2 at the outer horizon equals that of S1 and the
horizon is a full-orbed three sphere as in the case of the extreme black hole. In this way, YG represents the
squashing of the horizon. On the other hand, Yf does not have this property because the flat background
does not have any spherically symmetric limit unlike the case of the Kaluza-Klein monopole background.
With these new variables, the Komar mass satisfy the following first laws:

dMK = TdS + ΦdQ+XdYf , or dMK = TdS + ΦdQ+XdYG. (9)

The last terms are new thermodynamic work terms. Furthermore, the Komar mass can be related to the
free energy by Legendre transformation with these new variables as

FBH − F flat = MK − TS −QΦ−XYf , (10)
FBH − FGPS = MK − TS −QΦ−XYG. (11)

Then, the Legendre transformations are summarized as follows:

(FBH − F fl) T→S−−−−−−→ HB−f Xf→Yf−−−−−−→ W2⏐⏐:Φ→Q

⏐⏐:Φ→Q

MB−f
AD

Xf→Yf−−−−−−→ MK

for the flat background and

(FBH − FGPS) T→S−−−−−−→ HB−G X→YG−−−−−−→ W2⏐⏐:Φ→Q

⏐⏐:Φ→Q

W3
X→YG−−−−−−→ MK

for the Kaluza-Klein monopole background. From equation (6), it is found that W2 = 3
2TS.

The new quantities X and its conjugate Yf or YG also give a new work term to the first laws of the
Hamiltonian and the AD mass.

dHB−f = TdS −QdΦ + YfdX (12)
dHB−G = TdS −QdΦ + YGdX (13)
dMAD = TdS + ΦdQ+ YfdX. (14)

Thus, thermodynamic first law for each Hamiltonian or AD mass is not unique. For example, HB−f is
a function of (S,Φ, X) as well as of (S,Φ, L). On the other hand, the gravitational tension does not give
any work term to the first law of the Komar mass. And, it is found that any Legendre transformation
with respect to the gravitational tension or its conjugate quantity can not relate the Komar mass to the
free energy and the other masses.

We also investigate thermodynamic stability of the black hole. There are many thermodynamic
environment depending choice of a set of independent thermodynamic variables. The specific heat of the
black hole is apt to be negative and then it is unstable under thermal fluctuation. For near extremal black
hole in environment with fixed electric charge, it tends to be positive and then, the black hole is locally
thermodynamically stable. On the other hand, in environment with fixed electric potential difference,
the specific heat is always negative and the black hole is always locally thermodynamically unstable. In
environment with fixed X or L, the most globally stable state that has the minimum free energy is the
flat spacetime whereas, in environment with fixed Y , the most globally stable state is degenerate both for
the flat spacetime and the Kaluza-Klein monopole. With fixed gravitational tension T , the Kaluza-Klein
monopole is the most globally stable state. It is found that, there is a phase transition between the black
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hole with positive specific heat and the flat spacetime in environment with fixed T , Q and T . In this
situation, the most stable state is the Kaluza-Klein monopole spacetime and the black hole is thought of
as a meta-stable state. These result are summarized in the following table:

　 Environment The most stable state local stability of the BH phase transition
(T,Q,L) flat only near extremal none
(T,Q,X)
(T,Q, Y ) flat = KK monopole only nearextremal none
(T,Q, T ) KK monopole not only near extremal BH ↔ flat
(T,Φ, L) flat alway unstable none
(T,Φ, X)
(T,Φ, Y ) flat= KK monopole alway unstable none
(T,Φ, T ) KK monopole alway unstable none

In isolated system, we have an interest in thermodynamic stability with respect to the size of the
extra dimension, that is the size of the S1 fiber at the spatial infinity L. We consider the sequence of the
solutions with the same mass and the same electric charge. Then, the entropy of the black hole with the
same mass and the same electric charge is a monotonically decreasing function with respect to the size
of the extra dimension (

∂S

∂L

)
M,Q

< 0, or
(
∂S

∂X

)
M,Q

< 0. (15)

Therefore, smaller extra dimension is entropically favored. In the limit that L becomes infinity, the black
hole becomes the five-dimensional Reissner-Nordstörm (RN) black hole. Therefore, the five-dimensional
RN black hole has the minimum entropy. In this sense, it might be the most unstable state in the sequence
of the black hole solutions with the same mass and the same electric charge.
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