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Abstract In scenarios of strongly coupled electroweak
symmetry breaking, heavy composite particles of different
spin and parity may arise and cause observable effects on sig-
nals that appear at loop levels. The recently observed process
of Higgs to γ γ at the LHC is one of such signals. We study
the new constraints that are imposed on composite models
from H → γ γ , together with the existing constraints from
the high precision electroweak tests. We use an effective chi-
ral Lagrangian to describe the effective theory that contains
the Standard Model spectrum and the extra composites below
the electroweak scale. Considering the effective theory cutoff
at � = 4πv ∼ 3 TeV, consistency with the T and S param-
eters and the newly observed H → γ γ can be found for a
rather restricted range of masses of vector and axial-vector
composites from 1.5 to 1.7 and 1.8 to 1.9 TeV, respectively,
and only provided a non-standard kinetic mixing between the
W 3 and B0 fields is included.

1 Introduction

One of the possible signals of composite Higgs boson models
is the deviation of the h → γ γ channel from the Standard
Model (SM) prediction, as it is a loop process sensitive to
heavier virtual states. For instance this signal was predicted
in the context of Minimal Walking Technicolor [1]. Con-
sequently the recent h → γ γ signal reported by ATLAS
and CMS collaborations [2–5], which is very close to the
SM prediction, implies an additional constraint on compos-
ite models. In this regard, it is important to explore the con-
sequences of this new constraint on composite models, in
conjunction with those previously known from electroweak
precision measurements.
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Given the recent evidence of the Higgs boson, a strongly
interacting sector that is phenomenologically viable nowa-
days should include this scalar boson in its low energy spec-
trum, but it is also assumed that vector and axial-vector res-
onances should appear as well, in a way that the so called
Weinberg sum rules [6] are satisfied [7–9].

Here we formulate this kind of scenario in a general
way, without referring to the details of the underlying strong
dynamics, by using a low energy effective Lagrangian which
incorporates vector and axial-vector resonances, as well
as composite scalars. One of these scalars should be the
observed Higgs and the others should be heavier as to avoid
detection at the LHC. Our inclusion of the vector and axial
resonances is based on a 4-site Hidden Local Symmetry,
which requires three scalar sectors (link fields) responsible
for the breaking of the hidden local symmetries. This setup
naturally leads to a spectrum that contains three physical
scalars.

The main reason to still consider strongly interacting
mechanisms of electroweak symmetry breaking (EWSB)
as alternatives to the Standard Model mechanism is the so
called hierarchy problem that arises from the Higgs sec-
tor of the SM. This problem is indicative that, in a natu-
ral scenario, new physics should appear at scales not much
higher than the EWSB scale (say, around a few TeV) in order
to stabilize the Higgs mass at scales much lower than the
Planck scale (∼1019 GeV). An underlying strongly interact-
ing dynamics without fundamental scalars, which becomes
non-perturbative somewhere above the EW scale, is a possi-
ble scenario that gives an answer to this problem. The strong
dynamics causes the breakdown of the electroweak symme-
try through the formation of condensates in the vacuum [10–
16].

Many models of strong EWSB have been proposed which
predict the existence of composite particles such as scalars
[17–48], vectors [49–62], both scalars and vectors [63–79],
and composite fermions [80,81]. These predicted scalar and
vector resonances play a very important role in preserving
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the unitarity of longitudinal gauge boson scattering up to the
cutoff � � 4πv [56,82–88]. One should add that a compos-
ite scalar does not have the hierarchy problem since quantum
corrections to its mass are cut off at the compositeness scale,
which is assumed to be much lower than the Planck scale.

In this work we assume a scenario where there is a
strongly interacting sector which possesses a global SU (2)L

×SU (2)R symmetry. The strong dynamics spontaneously
breaks this global symmetry down to its diagonal SU (2)L+R

subgroup. As the electroweak gauge group is assumed to be
contained in the SU (2)L × SU (2)R symmetry, the breaking
of this symmetry down to the SU (2)L+R subgroup is in fact
the realization of electroweak symmetry breaking. Conse-
quently, the interactions among the Standard Model particles
and all extra composite resonances can be described by an
effective chiral Lagrangian where the SU (2)L × SU (2)R is
non-linearly realized. The explicit SU (2)L+R that remains
plays the role of a custodial symmetry of the strong sector.

Just as in the SM, the custodial symmetry is explicitly
broken by the hypercharge coupling g′ and by the difference
between up- and down-type quark Yukawa couplings. The
strong dynamics responsible for EWSB in our scenario gives
rise to composite massive vector and axial vector fields (V a

μ

and Aa
μ, respectively) belonging to the triplet representation

of the SU (2)L+R custodial group, as well as two composite
scalars (h and H ) and one pseudoscalar (η), all singlets under
that group. We will identify the lightest scalar, h, with the
state of mass mh = 126 GeV discovered at the LHC. All of
these composite resonances are assumed to be lighter than
the cutoff � � 4πv, so that they explicitly appear as fields
in the effective chiral Lagrangian. Composite states of spin
2 and higher are assumed to be heavier than the cutoff, and
so they are disregarded in this work.

These composite particles are important signatures of the
strongly coupled scenarios of EWSB and they could mani-
fest themselves either by direct production or as virtual states
in loop corrections. The lack of direct observation of these
particles at the LHC or any previous collider is expected if
their masses are large enough, but their loop effects may
still be detectable. In this work we study two types of quan-
tities where loop effects are important: the corrections to
the oblique parameters S and T [89–94] and the decay rate
h → γ γ . Specifically, we use the high precision results on
S and T and the recent ATLAS and CMS results at the LHC
on h → γ γ to constrain the mass and coupling parameters
of the model. The rate h → γ γ is particularly important
in our study as it is a one-loop process which is sensitive
to the existence of extra vector and axial-vector particles. In
this sense, we are studying whether composite models are
viable alternatives to electroweak symmetry breaking, given
the current experimental success of the Standard Model [95].

Besides the presence of the heavy vectors, another feature
of composite scenarios is that the fermion masses may not

be exactly proportional to the scalar–fermion couplings as in
the SM. In particular, we found coupling of the Higgs to top
quarks to be slightly larger than what is obtained in the SM
through a Yukawa term.

The organization of the paper is as follows. In Sect. 2 we
introduce our effective Lagrangian that describes the spec-
trum of the theory. In Sect. 3 we describe the calculations of
our quantities of interest, i.e. the T and S oblique parameters
and the rate h → γ γ , within our model. In Sect. 4 we study
numerically the constraints on the model parameters, mainly
masses and couplings of the extra composite fields, in order
to be consistent with the high precision measurements as
well as the two-photon signal recently observed in the LHC
experiments. Finally in Sect. 5 we state our conclusions.

2 The effective chiral Lagrangian with spin-0
and spin-1 fields

In this work we formulate our strongly coupled sector by
means of an effective chiral Lagrangian that incorporates
the heavy composite states by means of local hidden sym-
metries [96]. As shown in Appendix A and described in
detail in Ref. [56], this Lagrangian is based on the symme-
try G = SU (2)L × SU (2)C × SU (2)D × SU (2)R . The
SU (2)C × SU (2)D part is a hidden local symmetry whose
gauge bosons are linear combinations of the vector and axial-
vector composites, and the SM gauge fields [cf. Eq. (A.21)].
The SM gauge group, on the other hand, is contained as a
local form of the SU (2)L × SU (2)R global symmetry of the
underlying dynamics.

As the symmetry G is spontaneously broken down to
the diagonal subgroup SU (2)L+C+D+R , it is realized in a
non-linear way with the inclusion of three link fields (spin-
0 multiplets). These link fields contain two physical scalars
h and H , one physical pseudoscalar η, the three would-be
Goldstone bosons absorbed as longitudinal modes of the SM
gauge fields and the six would-be Goldstone bosons absorbed
by the composite triplets Vμ and Aμ.

The starting point is the lowest order chiral Lagrangian
for the SU (2)L ×SU (2)R/SU (2)L+R Goldstone fields, with
the addition of the invariant kinetic terms for the W and B
bosons:

Lχ = v2

4

〈
DμU DμU †

〉
− 1

2g2

〈
WμνW μν

〉− 1

2g′2
〈
Bμν Bμν

〉

+cW B

4

〈
U †WμνU Bμν

〉
. (2.1)

Here 〈 〉 denotes the trace over the 2×2 matrices, while U
is the matrix that contains the SM Goldstone boson fields πa

(a = 1, 2, 3) after the symmetry is spontaneously broken. U
transforms under SU (2)L × SU (2)R as U → gRUg†

L and
can be expressed as
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U = e
i
v
πaτa

, (2.2)

where τ a the Pauli matrices. DμU is the covariant derivative
with respect to the SM gauge transformations:

DμU = ∂μU − i BμU + iU Wμ, (2.3)

and Wμν and Bμν are the matrix form of the SM tensor fields,
respectively,

Wμν = ∂μWν − ∂νWμ − i
[
Wμ, Wν

]
,

Bμν = ∂μBν − ∂ν Bμ, (2.4)

where Wμ = gW a
μ τ a/2 and Bμ = g′B0

μ τ 3/2 are the gauge
boson fields in matrix form. Note that we added a kinetic mix-
ing term W 3–B0, proportional to a (so far arbitrary) coupling
cW B .

The vector and axial-vector composite fields formed due
to the underlying strong dynamics are denoted here as Vμ =
V a

μτ a/
√

2 and Aμ = Aa
μτ a/

√
2, respectively. They are

assumed to be triplets under the unbroken SU (2)L+R sym-
metry.

Their kinetic and mass terms in the effective Lagrangian
can be written as

Lkin
V = −1

4

〈
VμνV μν

〉+ 1

2
M2

V

〈
VμV μ

〉
, (2.5)

Lkin
A = −1

4

〈
Aμν Aμν

〉+ 1

2
M2

A

〈
Aμ Aμ

〉
. (2.6)

Here the tensor fields Vμν = 	μVν − 	νVμ and Aμν =
	μ Aν−	ν Aμ are written in terms of a covariant derivative in
order to include the electroweak gauge symmetry embedded
in SU (2)L × SU (2)R [56]:

	μ Vν = ∂μVν + [
μ, Vν

]
,

	μ Aν = ∂μ Aν + [
μ, Aν

]
, (2.7)

where the connection 
μ satisfies 

†

μ = −
μ and is given
by


μ = 1

2

[
u† (∂μ − i Bμ

)
u + u

(
∂μ − iWμ

)
u†
]
,

with u ≡ √
U . (2.8)

Assuming that the underlying strong dynamics is invariant
under parity, the composite fields Vμ and Aμ can be included
in the effective Lagrangian as combinations of gauge vectors
of a hidden symmetry, also spontaneously broken. In that
formulation further interaction terms appear in the effective
Lagrangian, as derived in Appendix A. The terms that contain
one power of Vμ or Aμ, according to Eq. (A.32), are given
by

L1V = − fV

2
√

2

〈
V μν

(
uWμνu† + u† Bμνu

)〉

− igV

2
√

2

〈
V μν

[
uμ, uν

]〉

− iκ f A

2
√

2

〈(
∂μuν − ∂νuμ + [
μ, uν

]− [
ν, uμ

]) [
V μ, uν

]〉
,

(2.9)

L1A = f A

2
√

2

〈(
∂μuν − ∂νuμ + [
μ, uν

]− [
ν, uμ

])
Aμν
〉

− i f A

2
√

2

〈(
uWμνu† + u† Bμνu

) [
Aμ, uν

]〉
, (2.10)

where uμ = u†
μ = iu† DμUu† is a quantity that transforms

covariantly under SU (2)L+R . For later convenience we have
also redefined the couplings in terms of the dimensionless
quantities fV , gV , and f A [see Eqs. (A.32) and (A.38)], which
depend on the masses of Vμ and Aμ according to

fV ≡ 1

gC
=
√

1

1 − κ

v

MV
, gV = 1 − κ2

2
fV , f A =−κ fV ,

(2.11)

where κ = M2
V /M2

A [see Eq. (A.38)]. In this way, the inter-
actions of the vector fields V a

μ with two longitudinal weak
bosons are characterized by the coupling gV , while the inter-
actions of V a

μ with one longitudinal and one transverse gauge
boson are characterized by both gV and fV . In turn, the inter-
actions of the axial-vector fields Aa

μ with one longitudinal and
one transverse gauge boson are characterized by the coupling
f A. Finally, the mixing of V a

μ and of Aa
μ with the SM gauge

fields are proportional to g fV and g f A, respectively.
Now, the terms with two powers of Vμ and Aμ, as shown

in Appendix A, are

L2V = −1 − κ2

8

〈[
Vμ, Vν

] [
uμ, uν

]〉

+κ2

8

〈[
Vμ, uν

] ([
V μ, uν

]− [V ν, uμ
])〉

+ i

4

〈[
V μ, V ν

] (
uWμνu† + u† Bμνu

)〉
, (2.12)

L2A = −1 − κ2

8

〈[
Aμ, Aν

] [
uμ, uν

]〉

+κ2

8

〈[
Aμ, uν

] ([
Aμ, uν

]− [Aν, uμ
])〉

+ i

4

〈[
Aμ, Aν

] (
uWμνu† + u† Bμνu

)〉
, (2.13)

L1V,1A = − iκ

2

〈
Vμν

[
Aμ, uν

]〉− iκ

2

〈
Aμν

[
V μ, uν

]〉

− iκ

2

〈(
∂μuν − ∂νuμ + [
μ, uν

]− [
ν, uμ

])

× [V μ, Aν
]〉

. (2.14)
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The terms with three powers of Vμ and Aμ, also derived
in Appendix A and included in Eq. (A.32), are

L3V = igC

2
√

2

〈
V μν

[
Vμ, Vν

]〉
. (2.15)

L3A = − κgC

2
√

2

〈[
Aμ, Aν

] [
Aμ, uν

]〉
, (2.16)

LV,2A = igC

2
√

2

〈
Vμν

[
Aμ, Aν

]〉+ igC√
2

〈
Aμν

[
V μ, Aν

]〉
,

(2.17)

LA,2V = − κgC

2
√

2

〈[
Vμ, Vν

] [
Aμ, uν

]〉

− κgC

2
√

2

〈[
Vμ, uν

] ([
V μ, Aν

]− [V ν, Aμ
])〉

.

(2.18)

The interactions given in (2.15)–(2.18) are controlled by
the dimensionless parameter gC , which is the coupling con-
stant of the hidden local symmetry SU (2)C and SU (2)D . In
particular, L3V describes the cubic self-interactions of Vμ.
Notice that, since gC = 1/ fV [cf. Eq. (2.11)], these self-
interactions are strong when the mixings between the heavy
vectors and the SM gauge bosons [cf. Eqs. (2.9, 2.10)] are
weak.

Continuing with the expansion given in Eq. (A.32), the
quartic self-interactions of Vμ and of Aμ are proportional to
g2

C and described by the terms

L4V = g2
C

8

〈[
Vμ, Vν

] [
V μ, V ν

]〉
, (2.19)

L4A = g2
C

8

〈[
Aμ, Aν

] [
Aμ, Aν

]〉
. (2.20)

L2V 2A = g2
C

4

〈[
Vμ, Aν

] ([
V μ, Aν

]− [V ν, Aμ
])〉

+g2
C

4

〈[
Vμ, Vν

] [
Aμ, Aν

]〉
. (2.21)

Since V a
μ and Aa

μ are linear combinations of the gauge
bosons of the hidden local symmetry SU (2)C ×SU (2)D and
of the SM gauge fields [see Eq. (A.21)], the field strength ten-
sors corresponding to the gauge bosons of this hidden local
symmetry will include the field strength tensors of V a

μ and
Aa

μ as well as those of the SM gauge bosons [cf. Eqs. (A.23,
A.24)]. Because of this reason, additional contact interac-
tions involving the SM gauge fields and Goldstone bosons
having couplings depending on fV , f A, and gV (see Eq. 2.11)
will automatically emerge from the invariant kinetic terms for
the gauge bosons of the SU (2)C × SU (2)D sector. These
contact interactions are given by

Lcontact = − f 2
A

8

〈((
∂μuν − ∂νuμ + [
μ, uν

]− [
ν, uμ

]))

× ((∂μuν − ∂νuμ + [
μ, uν
]− [
ν, uμ

]))〉

+ g2
V
8

〈[
uμ, uν

] [
uμ, uν

]〉

− f 2
V
8

〈(
uWμνu† + u† Bμνu

) (
uWμνu† + u† Bμνu

)〉

− i fV gV

4

〈[
uμ, uν

] (
uWμνu† + u† Bμνu

)〉
,

(2.22)

and they ensure that the scattering amplitudes involving SM
particles have good behavior at high energies. For example,
as shown in Ref. [71], the second term in Eq. (2.22), which
contains four derivative terms involving only the SM Gold-
stone bosons, is crucial for having a consistent description of
high energy WW scattering.

In addition to Vμ and Aμ, there are two composite scalar
singlets, h and H , and one pseudoscalar singlet, η. We will
identify the lightest of these fields, h, with the m = 126 GeV
boson recently discovered at the LHC. The kinetic and mass
terms for these spin-0 fields, as well as their interaction terms
with one power in h, H or η, are derived in Eqs. (A.4), (A.34),
(A.37), and (A.38) of Appendix A, and they are given by

Lh = 1

2
∂μh∂μh + m2

h

2
h2 − g2

Cv

2
√

2 (1 − κ)
h
〈
VμV μ

〉

+
g2

C

(
1√
κ

− 1
2
√

1−κ

)
v

√
2

h
〈
Aμ Aμ

〉

+
[
2κ

3
2 − (1 − κ)

3
2

]
v

4
√

2
h
〈
uμuμ

〉

−gC
(√

1 − κ + 2
√

κ
)
v

2
h
〈
Aμuμ

〉
, (2.23)

LH = 1

2
∂μH∂μH + m2

H

2
H2 + g2

Cv

2
√

2 (1 − κ)
H
〈
VμV μ

〉

+
g2

C

(
1√
κ

+ 1
2
√

1−κ

)
v

√
2

H
〈
Aμ Aμ

〉

+
[
2κ

3
2 + (1 − κ)

3
2

]
v

4
√

2
H
〈
uμuμ

〉

+gC
(√

1 − κ − 2
√

κ
)
v

2
H
〈
Aμuμ

〉
, (2.24)

Lη = 1

2
∂μη∂μη + m2

η

2
η2 + g2

Cv√
1 − κ

〈
Vμ Aμ

〉
η

+gC
√

1 − κv√
2

〈
Vμuμ

〉
η. (2.25)

In turn, the interaction terms with two powers of these
fields, according to Eqs. (A.34), (A.37), and (A.38), are given
by
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L2h = g2
C

16
h2 〈VμV μ

〉+ 5g2
C

8
h2 〈Aμ Aμ

〉

+ 1

32

[
(1 − κ)2 + 4κ2

]
h2 〈uμuμ

〉

+gC (1 − 5κ)

8
√

2
h2 〈Aμuμ

〉
, (2.26)

L2H = g2
C

16
H2 〈VμV μ

〉+ 5g2
C

8
H2 〈Aμ Aμ

〉

+ 1

32

[
(1 − κ)2 + 4κ2

]
H2 〈uμuμ

〉

+gC (1 − 5κ)

8
√

2
H2 〈Aμuμ

〉
, (2.27)

L2η = g2
C

8
η2 〈VμV μ

〉+ g2
C

8
η2 〈Aμ Aμ

〉

+ (1 − κ)2

16
η2 〈uμuμ

〉

+gC (1 − κ)

4
√

2
η2 〈Aμuμ

〉
, (2.28)

Lh H = −g2
C

8
h H
〈
VμV μ

〉+ 3g2
C

8
h H
〈
Aμ Aμ

〉

+4κ2 − (1 − κ)2

16
h H
〈
uμuμ

〉

−gC (1 + 3κ)

4
√

2
h H
〈
Aμuμ

〉
, (2.29)

Lhη = − g2
C

2
√

2

〈
Vμ Aμ

〉
hη − (1 − κ) gC

4

〈
Vμuμ

〉
hη,

(2.30)

LHη = g2
C

2
√

2

〈
Vμ Aμ

〉
Hη + (1 − κ) gC

4

〈
Vμuμ

〉
Hη.

(2.31)

Finally, we also consider the fermion mass and Yukawa
terms:

LY = − v√
2

∑
i, j

(
ū(i)

L d(i)
L

)
U

(
1 + ah f f

h

v
+ aH f f

H

v

+ iaη f f
η

v

)(
λu

i j u( j)
R

λd
i j d( j)

R

)
+ h.c., (2.32)

where λu
i j and λd

i j are the up- and down-type quarks Yukawa
couplings, respectively. Here ah f f parametrizes in our model
a deviation factor from the SM Higgs–fermion coupling (in
the SM this factor is unity).

Since Vμ, h, and H contribute to the elastic WW scat-
tering amplitude, a good asymptotic behavior of the latter
at high energies will depend on the ahW W , aH W W , and gV

parameters. Because of the extra contributions of H and Vμ,
ahW W will turn out to be different from unity, in contrast to
the SM.

Summarizing, in the framework of strongly interacting
dynamics for EWSB, the interactions below the EWSB scale

among the SM particles and the extra composites can be
described by the effective Lagrangian:

Le f f = Lχ + Lkin
V + Lkin

A + L1V + L1A + L2V + L2A

+L1V,1A + L3V + L3A + LV,2A + LA,2V + L4V

+L4A + L2V 2A + Lcontact + Lh + LH + Lη

+L2h + L2H + L2η + Lh H + Lhη + LHη + LY .

(2.33)

Our effective theory is based on the following assump-
tions:

1. The Lagrangian responsible for EWSB has an underlying
strong dynamics with a global SU (2)L ×SU (2)R symme-
try which is spontaneously broken by the strong dynamics
down to the SU (2)L+R custodial group. The SM elec-
troweak gauge symmetry SU (2)L × U (1)Y is assumed
to be embedded as a local part of the SU (2)L × SU (2)R

symmetry. Thus the spontaneous breaking of SU (2)L ×
SU (2)R also leads to the breaking of the electroweak
gauge symmetry down to U (1)em .

2. The strong dynamics produces composite heavy vector
fields V a

μ and axial-vector fields Aa
μ, triplets under the

custodial SU (2)L+R , as well as a composite scalar sin-
glet h with mass mh = 126 GeV, a heavier scalar singlet
H , and a heavier pseudoscalar singlet η. These fields are
assumed to be the only composites lighter than the sym-
metry breaking cutoff � � 4πv.

3. The heavy fields V a
μ and Aa

μ couple to SM fermions only
through their kinetic mixings with the SM gauge bosons.

4. The spin-0 fields h, H , and η interacts with the fermions
only via (proto)-Yukawa couplings.

Our Lagrangian has in total eight extra free parame-
ters: the modified kinetic W 3–B0 mixing coupling cW B , the
scalar top quark couplings ahtt , aHtt , the pseudoscalar top
quark coupling aηt t , the heavy vector and heavy axial-vector
masses MV and MA, and the heavy scalar and heavy pseu-
doscalar masses m H and mη. However, from the expressions
in Appendix B we can see that the oblique T and S param-
eters have little sensitivity to the masses of H and η. There-
fore, taking into account the experimental bound 600 GeV
� m H , mη � 1 TeV for heavy spin-0 particles, we can con-
strain the couplings of the heavy H and η to the top quark,
aHtt and aηt t , that enter in the radiative corrections to the
masses of H and η. We are then left with six free parameters:
cW B , ahtt , aHtt , aηt t , MV , and MA. In what follows, we will
constrain these parameters by setting the mass mh at 125.5
GeV (the recently discovered Higgs at the LHC), imposing
the aforementioned experimental bound on m H and mη, and
imposing consistency with the high precision results on the
T and S parameters and the current ATLAS and CMS results
on the h → γ γ rate.
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3 Calculations of the rate h → γ γ , the parameters T
and S and the masses of h, H , and η

In the Standard Model, the h → γ γ decay is dominated by W
loop diagrams which can interfere destructively with the sub-
dominant top quark loop. In our strongly coupled model, the
h → γ γ decay receives additional contributions from loops
with charged Vμ and Aμ, as shown in Fig. 1. The explicit
form for the h → γ γ decay rate is:


 (h → γ γ ) = α2
emm3

h

256π3v2

∣∣∣∣∣∣
∑

f

ah f f Nc Q2
f F1/2

(
β f
)

+ ahW W F1 (βW ) + ahV V F1 (βV )

+ ah AA F1 (βA)

∣∣∣∣∣∣

2

,

where

ahW W = 2κ
3
2 − (1 − κ)

3
2

2
√

2
, (3.1)

ahV V = − (1 − κ)
1
2

2
√

2
, ah AA = κ

(
1 − 2

√
1 − κ

κ

)
ahV V .

(3.2)

Here βi are the mass ratios βi = m2
h/4M2

i , with Mi =
m f , MW , MV and MA, respectively, αem is the fine struc-
ture constant, NC is the color factor (NC = 1 for leptons,
NC = 3 for quarks), and Q f is the electric charge of the
fermion in the loop. We should recall that κ = M2

V /M2
A

and MV = gCv/
√

1 − κ , as shown in Eq. (A.38). From the
fermion-loop contributions we will keep only the dominant
term, which is the one involving the top quark.

The dimensionless loop factors F1/2 (β) and F1 (β) (for
particles of spin-1/2 and spin-1 in the loop, respectively) are
[97–104]:

F1/2 (β) = 2 [β + (β − 1) f (β)] β−2, (3.3)

F1 (β) = −
[
2β2 + 3β + 3 (2β − 1) f (β)

]
β−2, (3.4)

with

f (β) =

⎧
⎪⎪⎨
⎪⎪⎩

arcsin2 √
β, for β ≤ 1

− 1
4

[
ln

(
1+

√
1−β−1

1−
√

1−β−1

)
− iπ

]2

, for β > 1.

(3.5)

From the previous expressions it follows that the contribution
of heavy vectors to h → γ γ strongly dominates over that of
axial vectors when MV � MA, since in this case we have
ahV V 
 ah AA.

Notice that we have not considered the contribution from
contact interactions of gluons, such as

LggV V = aggV V

�2 GμνGμνVαV α. (3.6)

to the Higgs production mechanism at the LHC, gg → h,
which could have a sizable effect that might contradict the
current experiments. Nevertheless, we have checked that this
contribution is negligible provided the effective coupling
aggV V < 0.5. We recall that the heavy vector and heavy
axial-vector resonances are colorless, and therefore they do
not have renormalizable interactions with gluons.

Here we want to determine the range of values for MV

and MA which is consistent with the h → γ γ results at the
LHC. To this end, we will introduce the ratio Rγ γ , which
normalises the γ γ signal predicted by our model relative to
that of the SM:

Rγ γ = σ (pp → h) 
 (h → γ γ )

σ (pp → h)SM 
 (h → γ γ )SM

� a2
htt


 (h → γ γ )


 (h → γ γ )SM
. (3.7)

Fig. 1 One-loop Feynman
diagrams in the unitary gauge
contributing to the h → γ γ

decay
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Fig. 2 The ratio Rγ γ as a function of κ for gCv = 0.8 TeV and ahtt =
2.6. The horizontal lines are the Rγ γ experimental values given by CMS
and ATLAS, which are equal to 0.78+0.28

−0.26 and 1.55±0.23, respectively
[106–108]

This normalization for h → γ γ was also done in Ref. [105].
Here we have used the fact that in our model, single Higgs
production is also dominated by gluon fusion as in the Stan-
dard Model.

The inclusion of the extra composite particles also mod-
ifies the oblique corrections of the SM, the values of which
have been extracted from high precision experiments. Con-
sequently, the validity of our model depends on the condition
that the extra particles do not contradict those experimental
results. These oblique corrections are parametrized in terms
of the two well known quantities T and S. The T parameter
is defined as [89,91–94]:

T = �33 (0) − �11 (0)

M2
W αem (m Z )

. (3.8)

where �11 (0) and �33 (0) are the vacuum polarization
amplitudes at q2 = 0 for loop diagrams having gauge bosons
W 1

μ, W 1
μ, and W 3

μ, W 3
μ in the external lines, respectively.

The one-loop diagrams that contribute to the T parameter
should include the hypercharge gauge boson B0

μ, since the g′
coupling is one of the sources of custodial symmetry break-
ing. The other source comes from the difference between up-
and down-type quark Yukawa couplings.

In turn, the S parameter is defined by [89,91–94]:

S = 4 sin2 θW

αem (m Z )

g

g′
d�30

(
q2
)

dq2

∣∣∣∣
q2=0

, (3.9)

where �30
(
q2
)

is the vacuum polarization amplitude for a
loop diagram having W 3

μ and Bμ in the external lines.
The corresponding Feynman diagrams and details of the

lengthy calculation of T and S that includes the extra particles
in the loops are included in Appendix B.

Let us now address the masses of the composite scalars
h, H , and η. In order to fit the particle spectrum observed so

far, the model should contain one scalar with mass at 125.5
GeV, which we call h, while the heavier H and η should
have masses satisfying the experimental bound 600 GeV �
m H , mη � 1 TeV. These masses have tree-level contribu-
tions directly from the scalar potential, but also important
one-loop contributions from the Feynman diagrams shown
in Appendix C. All these one-loop diagrams have quadratic
and some have also quartic sensitivity to the ultraviolet cut-
off � of the effective theory. The calculation details are
included in Appendix C. As shown there, the contact interac-
tion diagrams involving Vμ and Aμ in the internal lines inter-
fere destructively with those involving trilinear couplings
between the heavy spin-0 and spin-1 bosons. As shown in
Eqs. (2.26) and (2.27), the quartic couplings of a pair of spin-
1 fields with two h’s are equal to those with two H ’s. This
implies that contact interactions contribute at one-loop level
equally to the h and H masses. On the other hand, since the
couplings of two spin-1 fields with one h or one H are differ-
ent, i.e., ahW W �= aH W W , ah AA �= aH AA, ahW A �= aH W A,
ah Z A �= aH Z A, these loop contributions cause the masses mh

and m H to be significantly different, the former being much
smaller than the latter (notice that in the Standard Model,
ahW W = bhhW W = 1, implying an exact cancelation of the
quartic divergences in the one-loop contributions to the Higgs
mass). As it turns out, one can easily find conditions where
the terms that are quartic in the cutoff cause partial cance-
lations in mh , but not so in m H and mη, making mh much
lighter that the cutoff � (e.g. mh ∼ 126 GeV) while m H and
mη remain heavy (Fig. 2).

In Fig. 3a, b we show the sensitivity of the light scalar mass
mh to variations of MV and ahtt , respectively. These figures
show that the values of MV and ahtt have an important effect
on mh . We can see that these models with composite vectors
and axial vectors have the potential to generate scalar masses
well below the supposed value around the cutoff, but only in
a rather restricted range of parameters. The high sensitivity
to the parameters, however, does not exhibit a fine tuning in
the usual sense: that deviations from the adjusted point would
always bring the mass back to a “naturally high” value near
the cutoff. Here, the adjustment of parameters could bring the
light scalar mass either back up or further below the actual
value of 126 GeV.

4 Numerical study of the effects on T , S, and h → γ γ

Let us first study the masses of h, H , and η up to one loop.
The one-loop diagrams are shown in Appendix C. In order
to reduce the parameter space, we assume approximate uni-
versality in the quartic couplings of the scalar potential, i.e.
κ1 = κ2 = κ3 = λ1 = λ3 = 1, with the sole exception of
λ2 which is given by Eq. (A.12) in order that h, H , and η

become mass eigenstates (see Appendix A for details). As
stated in the previous section, we define h to be the recently
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Fig. 3 Light scalar mass mh as a function of MV for κ = 0.76, ahtt = 2.62 TeV (a), ahtt for κ = 0.76, MV = 1.6 TeV (b). The horizontal line
corresponds to the value 126 GeV for the light Higgs boson mass

discovered Higgs boson of mass 125.5 GeV, while H and η

should be heavier, their masses satisfying the experimental
bound 600 GeV � m H , mη � 1 TeV. The masses mh , m H ,
and mη depend on five free parameters: ahtt , aHtt , aηt t , MV ,
and κ = M2

V /M2
A. We will constrain ahtt , MV , and κ by the

following observables: the Higgs boson mass mh = 125.5
GeV, the two-photon signal 0.78 � Rγ γ � 1.55 (where we
use 0.78 and 1.55, the central values of CMS and ATLAS
recent results, respectively) and the oblique parameter T . On
the other hand, aHtt and aηt t will be more loosely constrained
by the masses of H and η. Finally, regarding the modified
W 3–B0 mixing coupling cW B [see Eq. (2.1)], it will be con-
strained by the S parameter.

Let us now analyze in more detail the constraints imposed
on our parameters by the values of T and S obtained from
experimental high precision tests. The definitions of T and S
and their calculation within our model are given in Appendix
B [see Eqs. (B.1) and (B.30)]. As shown there, our expres-
sions for T and S exhibit quartic, quadratic and logarithmic
dependence on the cutoff � ∼ 3 TeV. However, the con-
tributions from loops containing h, H , and η are not very
sensitive to the cutoff, as they do not contain quartic terms in
�. As a consequence, T and S happen to have a rather mild
dependence on m H and mη. In contrast, most of the other
diagrams, i.e. those containing the spin-1 fields (SM gauge
bosons and composite Vμ or Aμ) have quartic dependence
on the cutoff, and as a consequence they are very sensitive to
the masses MV and MA.

We can separate the contributions to T and S as T =
TSM + �T and S = SSM + �S, where

TSM = − 3

16π cos2 θW
ln

(
m2

h

m2
W

)
, SSM = 1

12π
ln

(
m2

h

m2
W

)

(4.1)

are the contributions within the SM, while �T and �S con-
tain all the contributions involving the extra particles.

The experimental results on T and S restrict �T and �S
to lie inside a region in the �S–�T plane. At the 95 % CL
(confident level), these regions are the elliptic contours shown
in Fig. 4. The origin �S = �T = 0 corresponds to the
Standard Model value, with mh = 125.5 GeV and mt =
176 GeV.

We can now study the restrictions on ahtt , MV , and κ

imposed by the value of the Higgs mass mh = 125.5 GeV,
by the h → γ γ signal within the range 0.78 � Rγ γ � 1.55,
and the previously described bounds imposed by the T and
S parameters at 95 % CL.

After scanning the parameter space we find that the heavy
vector mass has to be in the range 1.51 TeV� MV � 1.75
TeV in order for the T parameter to be within its bounds.
Regarding the mass ratio κ = M2

V /M2
A and the Higgs–top

coupling ahtt , we find that they have to be in the ranges
0.75 � κ � 0.78 and 2.53 � ahtt � 2.72, respectively.
Therefore, the Higgs boson, h, in this model couples strongly
with the top quark, yet without spoiling the perturbative

regime in the sense that the condition
a2

htt
4π

� 1 is still fulfilled.
Concerning the coupling of the top quark to the heavy

pseudoscalar η, by imposing the experimental bound on
heavy spin-0 particles 600 GeV � mη � 1 TeV, we find that
the coupling has the bound aηt t � 1.39 for MV � 1.51 TeV,
κ � 0.75 (lower bounds), and aηt t � 1.46 for MV � 1.75
TeV, κ � 0.78 (upper bounds).

Regarding the coupling of the top quark to the heavy scalar
H , we find that it grows with m H and, at the lower bound
m H ∼ 600 GeV, it is restricted to be aHtt � 3.53, which
implies that H also couples strongly to the top quark. Lower
values of the coupling aHtt will result if H were lighter than
600 GeV, the experimental bound for heavy spin-0 particles.
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(a) (b) (c)

Fig. 4 The �S–�T plane in our model with composite scalars and
vector fields. The ellipses denote the experimentally allowed region at
95 % CL taken from [109]. The origin �S = �T = 0 corresponds to
the Standard Model value, with mh = 125.5 GeV and mt = 176 GeV.
a–c Correspond to three different sets of values for the masses MV

and MA, as indicated. The horizontal line shows the values of �S
and �T in the model, as the mixing parameter cW B varies over the
ranges 0.228 ≤ cW B ≤ 0.231 (a), 0.208 ≤ cW B ≤ 0.212 (b), and
0.180 ≤ cW B ≤ 0.182 (c)

Nevertheless, as before, this large coupling aHtt is still con-

sistent with the perturbative regime as it satisfies
a2

Htt
4π

� 1.
Besides jeopardizing the perturbative regime, these large

couplings may cause violation of unitarity in longitudinal
gauge boson scattering. Accordingly, we also checked that
the aforementioned values of top quark couplings ahtt , aHtt ,
and aηt t do not cause violation of the unitarity constraint
for the scattering of gauge fields into fermion pairs for any
energy up to

√
s = � � 3 TeV.

Let us now study the restrictions imposed by the h → γ γ

signal, expressed in Eq. (3.7). We explored the parameter
space of MV and κ (κ = M2

V /M2
A) trying to find values for

Rγ γ within a range more or less consistent with the ATLAS
and CMS results. In Fig. 2 we show Rγ γ as a function of
κ , for the fixed values gCv = 0.8 TeV and ahtt = 2.6.
We chose ahtt = 2.6, which is near the center of the range
2.53 � ahtt � 2.72 imposed by a light Higgs boson mass of
mh = 125.5 GeV, as previously described. In turn, the value

gCv was chosen in order to fulfill the condition
g2

C
4π

� 1,
which implies gCv � 0.9 TeV. In any case, we checked that
our prediction on Rγ γ stays almost at the same value when
the scale gCv is varied from 0.8 to 1 TeV. This occurs because
the loop function F1 (β) [see Eq. (3.4)] is rather insensitive
to β in the corresponding range.

Considering the bounds for κ shown in Fig. 2, together
with the restriction imposed by T to be within its 95 % CL,
we found that MA should have a value in a rather narrow
range 1.78–1.9 TeV, while MV � 0.9MA. To arrive at this
conclusion, we selected three representative values of the
axial vector mass MA, namely at 1.78, 1.8, and 1.9 TeV,

and then we computed the resulting T and S parameters. We
recall that SM point, which corresponds to �T = �S = 0
is included in the allowed parameter space identified in our
analysis.

For each of these values of MA, we found that the corre-
sponding values of MV have to be in the ranges 1.54 TeV
� MV � 1.57 TeV, 1.56 TeV � MV � 1.59 TeV and 1.65
TeV � MV � 1.68 TeV in order to have Rγ γ within the
range 0.78 � Rγ γ � 1.55 and the light Higgs to have a mass

mh = 125.5 GeV, without spoiling the condition
a2

htt
4π

� 1.
Now, continuing with the analysis of the constraints in

the �T –�S plane, we also find that, in order to fulfill the
constraint on �S as well, an additional condition must be
met: for the aforementioned range of values of MV and MA,
the S parameter turns out to be unacceptably large, unless
a modified W 3–B0 mixing is added. Here we introduce this
mixing in terms of a coupling cW B [see Eq. (2.1)]. While �T
does not depend much on this coupling, �S does depend on
it, because this coupling enters in the quadratically divergent
loop diagrams involving the π1π1W 3 B0 and π2π2W 3 B0

contact interactions (where π i are the SM Goldstone bosons),
as well as in the W 3–B0 tree-level mixing diagram.

In Fig. 4a–c we show the allowed regions for the �T
and �S parameters, for the three sets of values of MV and
MA previously indicated. The ellipses denote the experi-
mentally allowed region at 95 % CL, while the horizontal
line shows the values of �T and �S in the model, as the
mixing parameter cW B is varied over the specified range in
each case. The lines are horizontal because �T does not
depend on cW B . As seen in the figures, cW B must be in the
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ranges 0.228 ≤ cW B ≤ 0.231, 0.208 ≤ cW B ≤ 0.212
and 0.180 ≤ cW B ≤ 0.182 for the cases MA = 1.78, 1.8
and 1.9 TeV, respectively. Notice that the case cW B = 0
is clearly excluded, as �S would be smaller than its lower
bound (the point would be further to the left of the corre-
sponding ellipse).

As a final remark, we should notice that the model of
Ref. [110] is different from ours in the sense that they use a
tensor formulation instead of a vector formulation to describe
the heavy spin-1 fields, their spectrum does not include a
pseudoscalar and, more important, the interactions involving
more than one heavy spin-1 field are not considered, so that
vertices like hV V and h AA are absent. This implies that the
heavy spin-1 particles do not play a role in the h → γ γ decay.
However, that model does consider an interaction between
the scalar, the SM gauge bosons and the axial vector involving
a covariant derivative of the scalar field, which we do not
consider in the present work.

5 Conclusions

We studied a framework of electroweak symmetry break-
ing without fundamental scalars, based on an underlying
dynamics that becomes strong at a scale which we assume
� = 4πv–3 TeV. In general, below this scale there could be
composite states bound by the strong dynamics. The spec-
trum of composite fields with masses below � was assumed
to consist of spin-0 and spin-1 fields only, and the interac-
tions among these particles and those of the Standard Model
was described by means of a SU (2)L × SU (2)R/SU (2)L+R

effective chiral Lagrangian. Specifically, the composite fields
included here were two scalars, h and H , one pseudoscalar η,
a vector triplet V a

μ , and an axial-vector triplet Aa
μ. The light-

est scalar, h, was taken to be the newly discovered state at the
LHC, with mass ∼ 125.5 GeV. In this scenario, in general
one must include a deviation of the Higgs–fermion couplings
with respect to the SM, which we denote here as ah f f . In par-
ticular, the coupling of the light Higgs to the top quark, ahtt ,
is constrained from the requirement of having mh � 125.5
GeV and a h → γ γ signal in the range 0.78 � Rγ γ � 1.55
(where we use 0.78 and 1.55, the central values of CMS and
ATLAS recent results, respectively).

Our main goal within this framework was to study the
consistency of having this spectrum of composite particles,
regarding the loop processes that these extra particles may
affect, specifically the rate h → γ γ , which is a crucial signal
for the Higgs, and the high precision electroweak parameters
T and S.

Besides requiring that the scalar spectrum in our model
includes a 125.5 GeV Higgs boson, the other two spin-0
states, namely H and η, must be heavier and within the exper-
imental bounds 600 GeV � m H , mη � 1 TeV.

We found that the known value of the T parameter at the
95 % CL, together with the observed h → γ γ rate, restrict
the mass of the axial vector to be in the range 1.8 TeV �
MA � 1.9 TeV and imply that the mass ratio κ = M2

V /M2
A

should satisfy the bound 0.75 � κ � 0.78.
In addition, consistency with the experimental value on

the S parameter required the presence of a modified W 3–
B0 mixing, which we parametrized in terms of a coupling
cW B . We found that a non-zero value for this coupling was
necessary. The precise value depends on the masses MV

and MA, but within the ranges quoted above, cW B is about
0.2.

We also found that the T and S parameters have low sen-
sitivity to the masses of the scalar and pseudoscalar compos-
ites, because the dominant contributions to T and S arise
from quartic divergent terms, which only depend on the
heavy vector and axial-vector masses, not on the scalars.
Consequently, from the point of view of the T and S val-
ues, the masses of the heavy scalars and pseudoscalars are
not restricted.

Furthermore, we have found that one-loop effects are cru-
cial to account for the mass hierarchy between the 125.5 GeV
Higgs boson, h, and the heavier states H and η.

The requirement of having a light 125.5 GeV Higgs boson
without spoiling the T parameter and the h → γ γ constraints
implies that this Higgs boson must couple strongly to the
top quark by a factor of about 2 larger than the Standard
Model case. More precisely, the bound 0.78 � Rγ γ � 1.55
constrains the h to top quark coupling to be in the range
2.53 � ahtt � 2.72. Regarding the heavy scalar H , we find
that it should have a mass close to its lower bound of 600
GeV for a H to top quark coupling as low as aHtt ∼ 3.5.
This value implies that H also couples strongly to the top
quark. Lower values of aHtt will result in an H lighter than
the 600 GeV experimental lower bound. On the other hand,
we found that the value of the η to top quark coupling aηt t

can vary from 0 to about 1.5.
In summary, we find that composite vectors and axial vec-

tors do have an important effect on the rate h → γ γ , and
on the T and S parameters, and that one can find values for
their masses that are consistent with the experimental values
on the previous parameters. However, one does require an
extra W 3–B0 mixing, which in any case can be included in
the Lagrangian still respecting all the symmetries. We also
find that modified top quark to scalar and to pseudoscalar
couplings may appear, in order to have a spectrum with a
light 125.5 GeV Higgs boson, and with heavier scalar and
pseudoscalar states consistent with the experimental allowed
range 600 GeV � m H , mη � 1 TeV.

Note that we find quartic and quadratic divergences in
both T and S, while deconstructed models only yield log-
arithmic divergences for both parameters. This is due to
the kinetic mixings between the SM gauge bosons and the
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heavy spin-1 fields, which modify their propagators, intro-
ducing different loop contributions to the oblique parameters.
Also worth mentioning is that we did not include compos-
ite fermions below the cutoff scale � ∼ 3 TeV, which may
affect the oblique T and S parameters as well. An exten-
sion of the model could include composite quarks, a fourth
quark generation and/or vector-like quarks. Their effects on
the oblique parameters and on the h → γ γ decay rate may
be worth studying. Since the inclusion of extra quarks gives
a positive contribution to the T parameter as shown in Refs.
[24,26,38,81], we expect that an extension of the quark sec-
tor will increase the upper bound on the axial-vector mass
obtained from oblique parameter constraints, because the T
parameter takes negative values when the heavy axial-vector
mass is increased. Addressing all these issues requires an
additional and careful analysis that we have left outside the
scope of this work.
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Appendix A: Spontaneously broken gauge theory based
on SU(2)L × SU(2)C × SU(2)D × U(1)Y

Let us consider a theory with a gauge group of 4 sites,
SU (2)L × SU (2)C × SU (2)D × U (1)Y . We will assume
that the interactions at some energy scale above a few TeV
will cause the condensation of fermion bilinears, in a way
somewhat analogous to what happens in QCD at the chiral
symmetry breaking scale. The gauge symmetry is thus spon-
taneously broken to U (1)em . The dynamical fields that are
left below the symmetry breaking scale will obey an effective
non-linear sigma model Lagrangian of the form

L = Lgauge + Lgauge
χ − V (�LC , �C D, �DY ), (A.1)

where Lgauge is the Lagrangian of the gauge fields, Lgauge
χ

contains the kinetic terms for the Higgs fields that will
break the gauge symmetry when the Higgses acquire vacuum
expectation values, and V (�LC , �C D, �DY ) is the Higgs
interaction potential. They are given by

Lgauge = −
∑

I

1

2g2
I

〈
ωI

μνω
μν I
〉
, with I = L , C, D, Y,

(A.2)

Lgauge
χ = 2v2

LC

〈
Dμ�LC Dμ�

†
LC

〉

+ 2v2
C D

〈
Dμ�C D Dμ�

†
C D

〉

+ 2v2
DY

〈
Dμ�DY Dμ�

†
DY

〉
, (A.3)

and

V (�LC , �C D, �DY ) = −μ2
1v

2
LC

2

〈
�LC�

†
LC

〉

− μ2
2v

2
C D

2

〈
�C D�

†
C D

〉

− μ2
3v

2
DY

2

〈
�DY �

†
DY

〉

+ λ1v
4
LC

4

(〈
�LC�

†
LC

〉)2

+ λ2v
4
C D

4

(〈
�C D�

†
C D

〉)2

+ λ3v
4
DY

4

(〈
�DY �

†
DY

〉)2

+ κ1v
2
C Dv2

LC

×
〈
�C D�

†
LC�LC�

†
C D

〉

+ κ2v
2
LCv2

DY

×
〈
�DY �

†
LC�LC�

†
DY

〉

+ κ3v
2
C Dv2

DY

×
〈
�DY �

†
C D�C D�

†
DY

〉
. (A.4)

The covariant derivates are defined as

Dμ�I J = ∂μ�I J − iωI
μ�I J + i�I J ωJ

μ, (A.5)

where ωI
μ = (Wμ, ṽμ, ãμ, Bμ

)
with

Bμ = g′

2
B0

μτ 3, Wμ = g

2
W a

μτ a, (A.6)

vμ = gC

2
va
μτ a aμ = gC

2
aa
μτ a, (A.7)

where it has been assumed that gC = gD and the indices
I, J stand for I, J = L , C, D, Y . In turn, the field strength
tensors are generically given by

ωI
μν = ∂μωI

ν − ∂νω
I
μ − i

[
ωI

μ, ωI
ν

]
. (A.8)
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To ensure the correct normalization for the Goldstone bosons
kinetic terms, �LC , �DY , and �C D are defined as

�LC =
⎛
⎝1 +

η − 1√
2

h + 1√
2

H

4vLC

⎞
⎠ULC ,

with ULC = exp

[
i

4vLC

(
π − 1√

2
σ + 1√

2
ρ

)]
, (A.9)

�DY =
⎛
⎝1 +

−η − 1√
2

h + 1√
2

H

4vDY

⎞
⎠UDY ,

with UDY = exp

[
i

4vDY

(
−π − 1√

2
σ + 1√

2
ρ

)]
,

(A.10)

�C D =
(

1 + h + H

4vC D

)
UC D,

with UC D = exp

[
i

4vC D
(σ + ρ)

]
,

vLC = vDY , (A.11)

where π = πaτ a , σ = σ aτ a and ρ = ρaτ a , being πa ,
σ a and ρa the Goldstone bosons associated with the SM
gauge bosons, the heavy vectors and heavy axial vectors,
respecttively, and τ a the usual Pauli matrices. In turn, h and
H are the massive scalars and η is the massive pseudoscalar.

It is worth mentioning that h, H , and η are physical scalar
fields when the following relations are fulfilled:

λ1 = λ3, κ1 = κ3, λ2 =
√

2κ2 + λ2
3
vLC

vC D
. (A.12)

The three Higgs doublets acquire vacuum expectation val-
ues, thus causing the spontaneous breaking of the SU (2)L

×SU (2)C × SU (2)D × U (1)Y local symmetry down to
U (1)em, while the global group G = SU (2)L × SU (2)C ×
SU (2)D × SU (2)R is broken to the diagonal subgroup H =
SU (2)L+C+D+R . The Goldstone boson fields UI J can be put
in the form

UI J = ξI ξ
†
J , where UI J ∈ SU (2)I × SU (2)J

H
,

I, J = L , C, D, Y. (A.13)

These ξI transform under the full SU (2)L × SU (2)C ×
SU (2)D × U (1)Y as ξI → gI ξI h

†
. Choosing a gauge trans-

formation gI = ξ
†
I we can transfer the would-be Goldstone

bosons to degrees of freedom of the gauge fields:

UI J → ξ
†
I UI J ξJ = 1, ωI

μ → ξ
†
I ωI

μξI + iξ†
I ∂μξI = �

μ
I ,

(A.14)

and the Lagrangian of Eq. (A.3) reduces to

Lgauge
χ = 2v2

LC

⎛
⎝1 +

η − 1√
2

h + 1√
2

H

4vLC

⎞
⎠

2 〈(
�L

μ − �C
μ

)2
〉

+ 2v2
LC

⎛
⎝1 +

−η − 1√
2

h + 1√
2

H

4vLC

⎞
⎠

2

×
〈(

�D
μ − �Y

μ

)2
〉

+ 2v2
C D

(
1 + h + H

4vC D

)2 〈(
�C

μ − �D
μ

)2
〉

+ 1

2
∂μh∂μh + 1

2
∂μ H∂μH + 1

2
∂μη∂μη. (A.15)

Specifically, we will do a partial gauge fixing resulting in
ξY = ξ

†

L = eiπ/4vLC and ξC = ξD = 1, which implies that
σ = ρ = 0 and UY D = UC L . This gauge fixing corresponds
to the unitary gauge where the Goldstone boson triplets σ and
ρ are absorbed as longitudinal modes of �C

μ and �D
μ . These

fields now transform under SU (2)L × SU (2)R according to

�C,D
μ → h�C,D

μ h† + ih∂μh†. (A.16)

The �C
μ and �D

μ can be decomposed with respect to parity
as

�C
μ = vμ + aμ, �D

μ = vμ − aμ, (A.17)

so that under SU (2)L ×SU (2)R one has the following trans-
formations:

vμ → hvμh† + ih∂μh†, aμ → haμh†. (A.18)

Defining

vμν = ∂μvν − ∂νvμ − i
[
vμ, vν

]
and

DV
μ aν = ∂μaν − i

[
vμ, aν

]
, (A.19)

we can write the interactions of the gauge sector of Eq. (A.2)
in the form [54,56]:

Lgauge =Lgauge,SM − 1

2g2
C

〈(
vμν − i

[
aμ, aν

])2〉

− 1

2g2
C

〈(
DV

μ aν − DV
ν aμ

)2
〉
. (A.20)

Now, due to mixing with the SM fields, vμ and aμ are not
mass eigenstates. The vector and axial-vector mass eigen-
states as Vμ and Aμ, respectively, are actually given by the
following relations [54,56]:
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Vμ = vμ − i
μ, Aμ = aμ + κ

2
uμ, (A.21)

where κ will be determined below, and 
μ is defined as


μ ≡ 1

2i

(
�Y

μ + �L
μ

)
(A.22)

= 1

2

[
u† (∂μ − i Bμ

)
u + u

(
∂μ − iWμ

)
u†
]
.

Considering these definitions, the strength tensors satisfy the
following identities:

vμν = Vμν − i
[
Vμ, Vν

]+ i

4

[
uμ, uν

]+ 1

2

(
uWμνu†

+ u† Bμνu
)

, (A.23)

aμν = Aμν − κ

2
uμν − i

[
Vμ, Aν − κ

2
uν

]

+ i
[
Vν, Aμ − κ

2
uμ

]
, (A.24)

where
Wμν =∂μWν −∂νWμ−i

[
Wμ, Wν

]
, Bμν =∂μ Bν −∂ν Bμ,

(A.25)

Vμν =	μVν −	νVμ =∂μVν −∂νVμ+[
μ, Vν

]−[
ν, Vμ

]
,

(A.26)

Aμν =	μ Aν −	ν Aμ =∂μ Aν −∂ν Aμ+[
μ, Aν

]−[
ν, Aμ

]
,

(A.27)

uμν =∂μuν −∂νuμ+[
μ, uν

]−[
ν, uμ

]
. (A.28)

With these definitions and the aforementioned gauge fix-
ing, the symmetry breaking sector of the Lagrangian becomes

Lgauge
χ = 4v2

LC

(
1 + H − h

2
√

2vLC
+ (H − h)2

32v2
LC

+ η2

16v2
LC

)

×
[
〈
VμV μ

〉+ 〈Aμ Aμ
〉

+
(

1 − κ

2

)2 〈
uμuμ

〉+ (1 − κ)
〈
Aμuμ

〉
]

+ 4vLCη

(
1 + H − h

4
√

2vLC

)

×
[〈

Vμ Aμ
〉+
(

1 − κ

2

) 〈
Vμuμ

〉]

+ 8v2
C D

(
1 + h + H

2vC D
+ h2 + 2h H + H2

16v2
C D

)

×
[〈

Aμ Aμ
〉+ κ2

4

〈
uμuμ

〉− κ
〈
Aμuμ

〉]

+ 1

2
∂μη∂μη + 1

2
∂μh∂μh + 1

2
∂μ H∂μH, (A.29)

where one defines

uμ ≡ �Y
μ − �L

μ = iu† DμUu†, with U = u2 = e
i
v
πaτa

,

(A.30)

and DμU = ∂μU − i BμU + iU Wμ, (A.31)

and where Dμ is a covariant derivative containing the SM
gauge fields only.

With the further replacement Vμ → gC√
2

Vμ, Aμ →
gC√

2
Aμ, the gauge sector of the Lagrangian becomes

Lgauge = Lgauge,SM − 1

4

〈
Vμν V μν

〉− 1

4

〈
Aμν Aμν

〉

− i
(
1 − κ2

)

8g2
C

〈[
uμ, uν

] (
uWμνu† + u† Bμνu

)〉

− κ2

8g2
C

〈
uμνuμν

〉+
(
1 − κ2

)2
32g2

C

〈[
uμ, uν

] [
uμ, uν

]〉

− 1

2
√

2gC

〈
V μν

(
uWμνu† + u† Bμνu

)〉

+ κ

2
√

2gC

〈
uμν Aμν

〉− i
(
1 − κ2

)

4
√

2gC

〈
V μν

[
uμ, uν

]〉

+ iκ2

2
√

2gC

〈
uμν

[
V μ, uν

]〉

+ κ
(
1 − κ2

)

4
√

2gC

〈[
uμ, uν

] [
Aμ, uν

]〉

− iκ

2
√

2gC

〈(
uWμνu† + u† Bμνu

) [
Aμ, uν

]〉

− 1

8g2
C

〈 (
uWμνu† + u† Bμνu

)

× (uW μνu† + u† Bμνu
) 〉

− iκ

2

〈
uμν

[
V μ, Aν

]〉− iκ

2

〈
Vμν

[
Aμ, uν

]〉

− 1 − κ2

8

〈[
Vμ, Vν

] [
uμ, uν

]〉− iκ

2

〈
Aμν

[
V μ, uν

]〉

+ κ2

8

〈[
Vμ, uν

] ([
V μ, uν

]− [V ν, uμ
])〉

− 1 − κ2

8

〈[
Aμ, Aν

] [
uμ, uν

]〉

+ κ2

8

〈[
Aμ, uν

] ([
Aμ, uν

]− [Aν, uμ
])〉

+ i

4

〈[
V μ, V ν

] (
uWμνu† + u† Bμνu

)〉

+ i

4

〈[
Aμ, Aν

] (
uWμνu† + u† Bμνu

)〉

+ igC

2
√

2

〈
V μν

[
Vμ, Vν

]〉+ igC

2
√

2

〈
Vμν

[
Aμ, Aν

]〉

+ igC√
2

〈
Aμν

[
V μ, Aν

]〉− κgC

2
√

2

〈[
Aμ, Aν

] [
Aμ, uν

]〉

− κgC

2
√

2

〈[
Vμ, uν

] ([
V μ, Aν

]− [V ν, Aμ
])〉

+ g2
C

8

〈[
Vμ, Vν

] [
V μ, V ν

]〉+ g2
C

4

〈[
Vμ, Vν

] [
Aμ, Aν

]〉
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+ g2
C

8

〈[
Aμ, Aν

] [
Aμ, Aν

]〉− κgC

2
√

2

〈[
Vμ, Vν

] [
Aμ, uν

]〉

+ g2
C

4

〈[
Vμ, Aν

] ([
V μ, Aν

]− [V ν, Aμ
])〉

, (A.32)

where the correct normalization of the kinetic terms of the
heavy spin-1 resonances implies [54,56]:

Vμ = 1√
2
τ a V a

μ, Aμ = 1√
2
τ a Aa

μ, (A.33)

while the symmetry breaking sector of the Lagrangian takes
the following form:

Lgauge
χ = 4v2

LC

(
1 + H − h

2
√

2vLC
+ (H − h)2

32v2
LC

+ η2

16v2
LC

)

×
[

g2
C

2

〈
VμV μ

〉+ g2
C

2

〈
Aμ Aμ

〉

+
(

1 − κ

2

)2 〈
uμuμ

〉+ 2gC√
2

(
1 − κ

2

) 〈
Aμuμ

〉
]

+ 4vLCη

(
1 + H − h

4
√

2vLC

)

×
[

g2
C

2

〈
Vμ Aμ

〉+ gC√
2

(
1 − κ

2

) 〈
Vμuμ

〉
]

+ 8v2
C D

(
1 + h + H

2vC D
+ h2 + 2h H + H2

16v2
C D

)

×
[

g2
C

2

〈
Aμ Aμ

〉+ κ2

4

〈
uμuμ

〉− κgC√
2

〈
Aμuμ

〉
]

+ 1

2
∂μh∂μh + 1

2
∂μH∂μH + 1

2
∂μη∂μη. (A.34)

Since Vμ and Aμ define the mass eigenstates, the term Aμuμ

should be absent in the previous expression, yielding the fol-
lowing relation:

(
1 − κ

2

)
v2

LC − κv2
C D = 0. (A.35)

In addition, the requirement of having the correct W gauge
boson mass implies

(
1 − κ

2

)2

v2
LC + κ2

2
v2

C D = v2

16
. (A.36)

The previous equations have the following solutions:

vLC = v

2
√

1 − κ
, vC D = v

2
√

2κ
, with 0 < κ < 1.

(A.37)

Then from the expressions (A.34) and (A.37) it follows that
the masses of V a

μ and Aa
μ are determined by the parameters

gC and κ as

MV = gCv√
1 − κ

, MA = MV√
κ

. (A.38)

We now see that the diagonalization procedure determines
κ in Eq. (A.21) as the mass ratio κ = M2

V /M2
A. On the

other hand, the strength of the gauge coupling gC determines
the absolute value of these masses. The coupling gC also
controls the kinetic mixing between V a

μ and the SM gauge
bosons, while the kinetic mixing between Aa

μ and the SM
gauge bosons is controlled by both κ and gC , as seen in
Eq. (A.32).

Consequently the Lagrangian that describes the interac-
tions among the composite spin zero fields, the composite
spin one fields and the SM gauge bosons and SM Goldstone
bosons is given by

L = Lgauge + Lgauge
χ − V (�LC , �C D, �DY ). (A.39)

This same Lagrangian is described in Eq. (2.33), where the
scalar potential has been expanded to quadratic factors of
the scalar fields. We did not include the cubic and quartic
scalar interactions in Eq. (2.33) as they are irrelevant to our
calculations of the h → γ γ decay rate and the oblique T
and S parameters.

Appendix B: Calculation of the T and S parameters

The T parameter is defined as [89,91–94]:

T = T̂

αem (m Z )
, T̂ = �33 (0) − �11 (0)

M2
W

, (B.1)

where �11 (0) and �33 (0) are the vacuum polarization
amplitudes for loop diagrams having gauge bosons W 1

μ, W 1
μ

and W 3
μ, W 3

μ in the external lines, respectively. These vac-
uum polarization amplitudes are evaluated at q2 = 0, where
q is the external momentum.

The one-loop diagrams that give contributions to the T
parameter should include the hypercharge gauge boson B0

μ

since the g′ coupling is one of the sources of the break-
ing of the custodial symmetry. The other source of custodial
symmetry breaking comes from the difference between up-
and down-type quark Yukawa couplings. The corresponding
Feynman diagrams are shown in Fig. 5 and we computed
them in the Landau gauge for the SM gauge bosons and
Goldstone bosons, where the global SU (2)L × U (1)Y sym-
metry is preserved. Regarding the heavy composite spin-1
resonances, we use the unitary gauge for their propagators
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Fig. 5 One-loop Feynman
diagrams contributing to the T
parameter

since the Lagrangian given in Eq. (2.33) does not include the
Goldstone bosons associated to the longitudinal components
of these heavy parity even and parity odd spin-1 resonances.
From the Feynman diagrams shown in Fig. 5, it follows that
the T̂ parameter is given by

T̂ = T̂(π2 B0) + T̂(V 3 B0,π2) + T̂(V 3 B0V 3,π2) + T̂(V 2 B0)

+ T̂(A2 B0) + T̂(V 3 B0,V 2) + T̂(A3 B0,A2)

+ T̂(V 3 B0V 3,V 2) + T̂(A3 B0 A3,A2) + T̂(V 3 B0,A2)

+ T̂(A3 B0,V 2) + T̂(V 3 B0V 3,A2) + T̂(A3 B0 A3,V 2)

+ T̂(V 3 B0 A3,V 2) + T̂(V 3 B0 A3,A2) + T̂(B0) + T̂(V 3 B0V 3)

+ T̂(A3 B0 A3) + T̂(V 3 B0 A3) + T̂(V 3−B0) + T̂(h B0)

+ T̂(H B0) + T̂(η,V 3 B0V 3) + T̂(h,A3 B0 A3) + T̂(H,A3 B0 A3)

+ T̂(h,A3 B0) + T̂(H,A3 B0), (B.2)
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where the different one-loop contributions to the T̂ parameter
are

T̂(π2 B0) � − 3αem

16π cos2 θW
ln

(
�2

M2
W

)

− 3αem
(

fV gV − 1
2 f 2

A

)2
32πv4 cos2 θW

�4

+ 3αem
(

fV gV − 1
2 f 2

A

)

8πv2 cos2 θW
�2, (B.3)

T̂(V 3 B0,π2) � − 3αem fV gV
(

fV gV − 1
2 f 2

A

)

16πv4 cos2 θW
�4

− 3αem fV gV

8πv2 cos2 θW

[
1−
(

fV gV − 1

2
f 2

A

)
M2

V

v2

]

×
[
�2−M2

V ln

(
�2 + M2

V

M2
V

)]
, (B.4)

T̂(V 3 B0V 3,π2) � − 3αem f 2
V g2

V

32πv4 cos2 θW

[
�4 − 4M2

V �2

+ 6M4
V ln

(
�2 + M2

V

M2
V

)
− 2M4

V �2

�2 + M2
V

]
,

(B.5)

T̂(V 2 B0) � 3αem
(
1 − κ2

)2
f 2
V

128πv2 M2
V cos2 θW

�4

+ 3αem
[(

1 − κ2
)

fV − 2gV
]2

64πv2 cos2 θW

×
{

�2 − M2
V ln

(
�2 + M2

V

M2
V

)}
, (B.6)

T̂(A2 B0) � 3αem f 2
A

128πv2 M2
A cos2 θW

�4

+ 3αem f 2
A

64πv2 cos2 θW

[
�2−M2

A ln

(
�2 + M2

A

M2
A

)]
,

(B.7)

T̂(V 3 B0,V 2)

� 3αem fV

64πv2 M2
V cos2 θW

{(
1 − κ2

)
fV �4

− 2
[
4gV −

(
1 − κ2

)
fV

]
M2

V �2

+ 2
[
8gV − 3

(
1 − κ2

)
fV

]
M4

V ln

(
�2 + M2

V

M2
V

)

−4
[
2gV − (1 − κ2

)
fV
]

M4
V �2

�2 + M2
V

}
, (B.8)

T̂(A3 B0,A2) � − 3αem f 2
A

64πv2 M2
A cos2 θW

{
�4 + 2M2

A�2

− 6M4
A ln

(
�2 + M2

A

M2
A

)
+ 4M4

A�2

�2 + M2
A

]}
,

(B.9)

T̂(V 3 B0V 3,V 2) � 3αem f 2
V

128πv2 M2
V cos2 θW

{
�4 + 4M2

V �2

−2M6
V

11�2 + 9M2
V(

�2 + M2
V

)2
}

, (B.10)

T̂(A3 B0 A3,A2) � 3αem f 2
A

128πv2 M2
A cos2 θW

{
�4 + 4M2

A�2

+ 18M4
A

[
1 − ln

(
�2 + M2

A

M2
A

)]

−2M6
A

11�2 + 9M2
A(

�2 + M2
A

)2
}

, (B.11)

T̂(V 3 B0,A2) � 3αemκ fV f A

64πv2 M2
A cos2 θW

{
�4+2

(
2M2

A−M2
V

)
�2

+ 2M4
V

(
M2

V − 3M2
A

)

M2
V − M2

A

ln

(
�2 + M2

V

M2
V

)

− 4M6
A

M2
A − M2

V

ln

(
�2 + M2

A

M2
A

)}
, (B.12)

T̂(A3 B0,V 2) � − 3αemκ f A

64πv2 M2
V cos2 θW

×
{(

1 − κ2
)

fV �4 +
[
4
((

1 − κ2
)

fV − 2gV

)
M2

V

− 2
(

1 − κ2
)

fV M2
A

]
�2

− 4
((

1 − κ2
)

fV − 2gV
)

M6
V

M2
V − M2

A

ln

(
�2 + M2

V

M2
V

)

+ M4
A

M2
A − M2

V

[
2
(

1 − κ2
)

fV M2
A

− 2
(

3
(

1 − κ2
)

fV − 4gV

)
M2

V

]
ln

(
�2 + M2

A

M2
A

)}
,

(B.13)

123



Eur. Phys. J. C (2014) 74:2822 Page 17 of 27 2822

T̂(V 3 B0V 3,A2) � 3αemκ2 f 2
V

128πv2 M2
A cos2 θW

×
{

�4 + 4
(

2M2
A − M2

V

)
�2

+ 2M4
V(

M2
A − M2

V

)2
[
3M4

V + 15M4
A

− 14M2
A M2

V

]
ln

(
�2 + M2

V

M2
V

)

− 8M8
A(

M2
A − M2

V

)2 ln

(
�2 + M2

A

M2
A

)

− 2M4
V

(
5M2

A − M2
V

)
�2

(
M2

A − M2
V

) (
�2 + M2

V

)
}

, (B.14)
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Now, considering the S parameter, it is defined as [89,91–
94]:

S = 4 sin2 θW

αem (m Z )
Ŝ, Ŝ = g

g′
d�30

(
q2
)

dq2

∣∣∣∣
q2=0

, (B.30)

where �30
(
q2
)

is the vacuum polarization amplitude for a
loop diagram having W 3

μ and Bμ in the external lines. As
before, here q is the external momentum.

Corresponding to the Feynman diagrams shown in Fig. 6,
we decompose the Ŝ parameter as
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where the different one-loop contributions are
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Ŝ(π2V 1) = Ŝ(π1V 2), Ŝ(V 2 A1) = Ŝ(V 1 A2), (B.35)
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Fig. 6 One-loop Feynman diagrams contributing to the S parameter
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Ŝ(Hπ0) � −
αem

[
(1 − κ)

3
2 + 2κ

3
2

]2

384π sin2 θW

[
ln

(
�2

m2
H

)
− 1

6

]
,

(B.39)
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= Ŝ(A1)(V 3−B0), (B.50)
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(
2 f 2

V − 2cW B − f 2
A

)

8πv2 sin2 θW
�2. (B.59)

Appendix C: Scalar masses

The masses of the scalars h and H and pseudoscalar η receive
contributions at tree- and at one-loop level corrections. These
masses are given by

m2
h = (mh)2

three + �h, (C.1)

m2
H = (m H )2

three + �H , (C.2)

m2
η = (mη

)2
three + �η, (C.3)

where the tree-level contributions to the parity even and par-
ity odd scalar masses, which are obtained from the scalar
potential given in Eq. (A.4) are

(
m2

h

)
three

= 1

4
vLC

[(
2κ2 + λ2

3

)
vLC − 2

√
2κ3vC D

]
,

(C.4)

(
m2

H

)
three

= 1

4
vLC

[(
2κ2 + λ2

3

)
vLC + 2

√
2κ3vC D

]
,

(C.5)

(
m2

η

)
three

= 1

4

(
−2κ2 + λ2

3

)
v2

LC , (C.6)

with

vLC = v

2
√

1 − κ
, vC D = v

2
√

2κ
, κ = M2

V

M2
A

. (C.7)

while the one-loop level contributions to the masses of the
scalars h, H and pseudoscalar η can be decomposed as

�h = �
(spin−0)

h + �
(spin−1/2)

h + �
(spin−1)

h , (C.8)

�H = �
(spin−0)

H + �
(spin−1/2)

H + �
(spin−1)

H , (C.9)

�η = �
(spin−0)
η + �

(spin−1/2)
η + �

(spin−1)
η , (C.10)

These one-loop level contributions come from Feynman
diagrams containing spin-0, spin-1/2 and spin-1 particles in
the internal lines of the loops. For the contribution from the
fermion loops we will only keep the dominant term, which is
the one involving the top quark. From the Feynman diagrams
shown in Fig. 7, it follows that the spin-0, spin-1/2 and spin-
1 particles give the following one-loop level contributions to
the masses of the scalars h and H and pseudoscalar η:

�
(spin−0)

h �12λh4 I1 (mh)+2λh2 H2 I1 (m H )+2λh2η2 I1
(
mη

)
,

(C.11)

�
(spin−0)

H � 12λH4 I1 (m H )+2λh2 H2 I1 (mh)+2λH2η2 I1
(
mη

)
,

(C.12)

�
(spin−0)
η � 2λh2η2 I1 (mh) + 2λH2η2 I1 (m H ), (C.13)

�
(spin−1/2)

h � −12a2
htt

v2

[
I4 (mt ) + m2

t I3 (mt )
]

m2
t , (C.14)

�
(spin−1/2)

H � −12a2
Htt

v2

[
I4 (mt ) + m2

t I3 (mt )
]

m2
t , (C.15)

�
(spin−1/2)
η � −12a2

ηt t

v2

[
−I4 (mt ) + m2

t I3 (mt )
]

m2
t ,

(C.16)

�
(spin−1)

h � 2a2
hW W FA (MW ) + 2bhhW W FB (MW )

+ a2
hW W FA (MZ ) + bhhW W FB (MZ )

+ 3a2
hV V FA (MV ) + 3bhhV V FB (MV )
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Fig. 7 One-loop Feynman
diagrams in the unitary gauge
contributing to the masses of the
parity even h and H and parity
odd η scalars

+ 3a2
h AA FA (MA) + 3bhh AA FB (MA)

+ Jh (MW , MZ , MA) + �h(AW )

+ �h(AZ) + �h(V W V ) + �h(V Z V )

+ �h(V γ V ) + �h(AW A) + �h(AZ A), (C.17)

�
(spin−1)

H � 2a2
H W W FA (MW ) + 2bH H W W FB (MW )

+ a2
H W W FA (MZ ) + bH H W W FB (MZ )

+ 3a2
H V V FA (MV ) + 3bH H V V FB (MV )

+ 3a2
H AA FA (MA) + 3bH H AA FB (MA)

+ JH (MW , MZ , MA) + �H(AW )

+ �H(AZ) + �H(V W V ) + �H(V Z V )

+ �H(V γ V ) + �H(AW A) + �H(AZ A), (C.18)

�
(spin−1)
η � 2bηηW W FB (MW ) + bηηW W FB (MZ )

+ 3bηηV V FB (MV ) + 3bηηAA FB (MA)

+ Jη (MW , MZ , MV , MA) + �η(AW )

+ �η(AZ) + �η(V W V ) + �η(V Z V )

+ �η(V γ V ) + �η(AW A) + �η(AZ A), (C.19)

where the different dimensionless couplings are given by

λh4 = λH4

= 2v2
LC

(
2κ2 + λ2

3

)+ v2
C D

(
2κ2 + 8κ3 + λ2

3

)

1024v2
C D

, (C.20)

123



2822 Page 24 of 27 Eur. Phys. J. C (2014) 74:2822

λh2 H2 = 6v2
LC

(
2κ2 + λ2

3

)+ v2
C D

(
6κ2 − 8κ3 + 3λ2

3

)

512v2
C D

,

(C.21)

λh2η2 = λH2η2 = −2κ2 + 4κ3 + 3λ2
3

256
, (C.22)

ahW W = 2κ
3
2 − (1 − κ)

3
2

2
√

2
, aH W W = 2κ

3
2 + (1 − κ)

3
2

2
√

2
(C.23)

ahV V = − (1 − κ)
1
2

2
√

2
, ah AA = κ

(
1 − 2

√
1 − κ

κ

)
ahV V ,

(C.24)

aH V V = (1 − κ)
1
2

2
√

2
, aH AA = κ

(
1 + 2

√
1 − κ

κ

)
aH V V ,

(C.25)

bhhW W =bH H W W = (1 − κ)2+4κ2

8
, bηηW W = (1 − κ)2

4
,

(C.26)

bhhV V =bH H V V = 1 − κ

8
, bhh AA = bH H AA = 5κ (1 − κ)

4
,

(C.27)

bηηV V = 1 − κ

4
, bηηAA = κ (1 − κ)

4
, (C.28)

and the following loop functions have been introduced:

FA (M) = M4

v2 IA (M), FB (M) = M2

v2 IB (M), (C.29)

Jh (MW , MZ , MA) = (1 − κ)
(√

1 − κ + 2
√

κ
)2

M2
W M2

V

2v2 cos2 θW

× IAgen (MZ , MA)

+ (1 − κ)
(√

1 − κ + 2
√

κ
)2

M2
W M2

V

v2

× IAgen (MW , MA), (C.30)

JH (MW , MZ , MA) = (1 − κ)
(√

1 − κ − 2
√

κ
)2

M2
W M2

V

2v2 cos2 θW

× IAgen (MZ , MA)

+ (1 − κ)
(√

1 − κ − 2
√

κ
)2

M2
W M2

V

v2

× IAgen (MW , MA), (C.31)

Jη (MW , MZ , MV , MA) = 3 (1 − κ) M4
V

v2 IAgen (MV , MA)

+ (1 − κ)2 M2
W M2

V

v2 cos2 θW

× IAgen (MZ , MV )

+ 2 (1 − κ)2 M2
W M2

V

v2

× IAgen (MW , MV ), (C.32)

�h(AW ) = �H(AW )

= 3 (1 − 5κ)
√

1 − κ f A M2
W MV

2v3 I4gen (MW , MA),

(C.33)

�h(AZ) = �H(AZ)

= 3 (1 − 5κ)
√

1 − κ f A M2
W MV

4v3 cos θW
I4gen (MZ , MA),

(C.34)

�h(V W V ) = �H(V W V )

= 6bhhV V f 2
V M2

W M2
V

v4 I6gen (MV , MW ), (C.35)

�h(V Z V ) = �H(V Z V )

= 3bhhV V f 2
V

(
cos2 θW − sin2 θW

)
M2

W M2
V

v4 cos θW

× I6gen (MV , MZ ), (C.36)

�h(V γ V ) = �H(V γ V )

= 6bhhV V f 2
V sin θW M2

W M2
V

v4 I4 (MV ), (C.37)

�h(AW A) = �H(AW A)

= 6bhh AA f 2
A M2

W M2
A

v4 I6gen (MA, MW ), (C.38)

�h(AZ A) = �H(AZ A)

= 3bhh AA f 2
A M2

W M2
A

v4 cos θW
I6gen (MA, MZ ), (C.39)

�η(AW ) = 3 (1 − κ)
√

1 − κ f A M2
W MV

v3 I4gen (MW , MA),

(C.40)

�η(AZ) = 3 (1 − κ)
√

1 − κ f A M2
W MV

2v3 cos θW
I4gen (MW , MA),

(C.41)
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�η(V W V ) = 6bηηV V f 2
V M2

W M2
V

v4 I6gen (MV , MW ), (C.42)

�η(V Z V ) = 3bηηV V f 2
V

(
cos2 θW − sin2 θW

)
M2

W M2
V

v4 cos θW

× I6gen (MV , MZ ), (C.43)

�η(V γ V ) = 6bηηV V f 2
V sin θW M2

W M2
V

v4 I4 (MV ), (C.44)

�η(AW A) = 6bηηAA f 2
A M2

W M2
A

v4 I6gen (MA, MW ), (C.45)

�η(AZ A) = 3bηηAA f 2
A M2

W M2
A

v4 cos θW
I6gen (MA, MZ ), (C.46)

IB (M) = 4I1 (M) − 1

M2 I2 (M), (C.47)

I1 (M) = − 1

16π2

[
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, (C.48)

I2 (M) = 1

32π2 �4 − M2

16π2

[
�2 − M2 ln

(
�2 + M2

M2

)]
,

(C.49)
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