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Tha problem of generation of baryon asymmetry of the Universe 
is investigated in the framework of left-right symmetric grand 
unified models . We show that in a class of grand unified theories 
like S0( 1 0 ) model the very existence of the baryon asymmetry of 
the Universe requires the right-handed weak #auge bosons to be al­
most as heavy as lept oquark bosons , Mw > 1 01 GeV. R 

Le probl�me de la Eeneration de l ' assymmetrie baryonique de 
l ' Univers est investigue dans lea cadres des grands modeles uni­
fies avec la symmetrie · gauche-droit e .  Nous montrons � que dans la 
classe des grandee theories unifiees comme S0( 1 0 )  modele l ' e.xisten­
ce-meme de l ' assym,metrie de l 'Univers exige , que lea bosons de j au­
ge ave c l 'helicite droite soivent extremement lourds , Mw > 1 012. GeV. 

R 

Lately there has been paid much attention to the problem of 
baryon asymmetry of the Universe (BAU) generation. It was shown in 
refs. 1 -1 0 ) that the necessary conditions for BAU generation star­
t ing with charge symmetric initial state consist in baryon number 
violation,  CP-nonconservation and deviation from thermal equilib­
rium at an early stage of the Universe expans�on. In refs�'3 ;7-1 0)  

a me chanism for the BAU generation was proposed based on CP-nonin­
variant baryon number violating de cays of heavy particles .  In this 
note we show that in left-right (LR) symmetric grand unified theo-
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ries like S0( 1 0) the BAU may appear only provided right-handed we­
ak gauge bosons are extremely massive in comparison with left-han­
ded one s ,  i. e .  the BAU argues strongly against LR-symmetry. 

First of all let us introduce several definitions . We consi­
der GUT ' s  with gauge symmetry group SU( 2 )L X SU( 2 )R embedded in the 
unifying group G .  Let (m,n) be the quantum numbers of a particle 
with respect to SU( 2 )L X SU( 2 )R' m and n being SU( 2 )L and SU( 2 )R 
indices respe ct ively. We shall call a theory LR-symmetric if : 

1 )  the particle content of the theory is LR-symmetric , i . e .  
if (m,n) E Ai then also (n,m) E Ai ' Ai being a representa­
t ion ( fermion, scalar, ve ctor) of G .  

2 )  the operator PLR defined by 

PLR \ Cm,n) ; p, o) • '� \ (m,n) ; -p, 6) ( 1 )  

commut es with the Hamilt onian. Here p is the 3-momen­
tum, 6 is spin and T/ is the phase factor of a particle . 

It is easy to see that operator PLR defined in such a way can ser­
ve as a generalizat ion of the parity operator P for the case of 
theories which are SU( 2 )L X SU( 2 )R symmetric. From 2) it follows 
immediately that masses and lifetimes of (m, n) and (n, m) states 
coincide . The same is true for partial decay rates into PLR - con­
jugated channels ( t ill now we had in mind unbroken SU( 2)LX SU( 2 )R) :  

A (<m,n) - ( k , l )) = A (C n,m) -+ ( l ,k>) • 

Besides LR-symmetric theories one may consider CPLR, CLR etc. 
symmetric theorie s .  Definitions of such kind theories are similar 
t o  LR-symmetric ones except for in 2 )  instead of PLR one should 
use the operator CPPLR ( CPLRet c . )  defined by 

CPPLR I ( n,m) • p, 6) = � I  (iii;ii) ;  +p, 6) . ( 2 )  

Here ( m,n) denotes the state which i s  charge-conjugated to ( m,n) . 
We observe now that an overall charge asymmetry cannot arise 

in any CLR or CPLR symmetric theory. ( Here charge means any CPT-odd 
operator. 'le discuss as usually the BAU generation due to charge 
non··conservation and OP-violation under non-equilibrium conditions 
from charge symmetric equilibrium initial state . )  Indeed, both 
density matrix of the system p ( t )  and the CPLR conjugate d  matrix 



p ' =( CPLR)+p ( CPLR) obey the same Liouville equation and same initi­
al conditions because CPLR commutes with the Hamiltonian. Hence 
always p ' { t ) =p( t ) . Consequently the average value of CPT-odd char­
ge B is equal t o  zero during the evolution of the system: 

The physical reason consists in the fact that the charge arising 
in processes with ( m,n) particles is completely compensated by the 
charge arising in processes with (ii';iii) particles though due to 
CP-noninvariance amplitudes of the processes (m,n) � ( k,l)  and 
( k,l)  ---+ ( m,n) may not coincide . The following equality holds 

( 3 )  

where a and b are the values of initial and final charges respec­
tively. 

It is worth noting the following .  
1 .  We have nowhere used the spe cific structure of the group 

SU( 2) LX SU( 2)R. Our statement on the overall asymmetry is obvious­
ly true also in the case when Lagrangian is invariant under group 
G ' x G" and under the transformation Cg , g transforming G '  into G " ,  
G being any group . 

2 .  The definition of CPLR ( or CPPLR) transformation can....,be 
somewhat extended .  Let the Hamilt onian be invariant under CPLR 
transformation such that it coincides with "old" CPLR transforma­
t ion on the states (m,n) with m � n. On some states with m = n the 
6PLR acts as 

i . e . in the usual way, CPLR = CPLR' while on the other states it 
acts as 

CPLR 1 < 1 ,1 ) ' t. 6)= 11 I ( l , l ) ' -p , c>) • 

i . e .  coincides with PLR. In this case our statement on the overall 
asymmetry remains true for those charges B which are CPLR antisym­
metric, ( CPLR) +:B( CPLR) a -B . In particular it holds true for B be­
ing the baryon number only in the case when there do not exist 
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exotic quarks transforming as ( 3 ,  2 ,  2) , ( 3 ,  1 ,  1 )  etc.  under 
SU( 3 ) c X SU( 2) L X SU( 2 )R • 

As an example of CPPLR symmetric unified the ory one may con­
sider the S0( 1 0) model1 1 ) * .  It can be shown that CPPLR transfor­
mation in S0(1 0)  coincides with the proper rotation generated by 
an operator V :  

( 4) 
If , for example , fermions are placed in the 1 6  representation 

of S0( 1 0) as follows 

(where indices A and C denote ano- and catho-fermions respective­
ly) then the operator V may be written in the form: 

V = exp i 'rt (  6 81 0  - 6 26)/ 2 , ( 5 )  

6ij being S0( 1 0) generators . Under V ,  j ust as is required by CPPLR 
transformation,  qA be comes qA etc. 

SU( 2)1 x SU( 2)R symmetry in realistic models is usually spon­
tane ously broken. We turn now to the question on how large should 
be the violation of SU( 2 )R symmetry in order that the BAU were 
close to the observational data. Denote by VR the vacuum expe cta­
t ion value of the field which violates SU( 2)R; the mass of the 
particle which gives rise to the BAU is �· m, n be ing 
SU( 2)1 X SU( 2)R quantum numbers . 

For the amplitude of the particle de cay we have 

( 6 )  

At VR/��1 there occurs effective restoration of the broken 
SU( 2)R symmetry ( see , e .g. 1 2> ) . Asymmetry resulting from de cays of 

*rt was found in ref . 9 ) that there are particles in S0( 1 0) 
contributing much to the BAU generation. Here we stress that it is 
important to sum contributions over the S0( 1 0) ensemble thus reve­
aling the VR dependence of the overall asymmetry. Our)present re­
sults show that the value of the BAU found in ref.  � is corre ct 
provided the SU( 2)R violation takes place on the first stage of 
S0( 1 0) breaking. 



( m,n) state is 

( 7 )  

According to Eq . ( 3 ) �mn( O)=-�nm.( 0) ,  therefore the overall asymmet­
ry at VR < Mmn is at most 

6 "'"'  L O"mn(O)O(VR/la\im) • (mn) (8)  

Now we turn to the consideration of constraints on VR anali­
zing the contributions of different particles to  the BAU.  Consider 
first the case when the BAU is due to de cays of leptoquark bosons 
( scalar or vector) which are dire ctly coupled to fermions . The 
difference of partial decay widths arises due to the interference 
of tree and loop diagrams . The lowest order radiative corre ctions 
of interest are shown in Fig. 1 .  Diagrams of the type d behave smo­
othly under variation of masses of the theory, therefore 

( 9 )  
where h i s  the absolute value of Yukawa or Higgs coupling cons -

** tant • Diagrams of the type a , b , c depend on masses as follows (we 
take into account both the mixing through fermion and boson loops ) 

a b c 

Fig. 1 .  
Examples of radiative corrections 
to leptoquark decay into fermions . 

( 1 0) 

d 

**Here we assume that the CP-violation is maximum but this is 
not essential for our considerations . 

5 2 9  
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On diagrams of the type a,b , c  the mixing takes place between dif­
ferent particles x, 1 and x 2 carrying the same SU( 3 ) c;< SU( 2)1 X SU( 2)R 
quantum numbers . If' 1'4!)- �) I �  �) then the total macroscopic 
asymmetry ti ( experimentally fl "'  1 0- ) is of the order2•3 ;7-1 0) 

( 1 1 )  

where N is the number of leptoquarks contributing to the BAU, M is 
their generic mass , N is the total number ot the particle degrees 
of freedom. Having in mind the constraint on the masses of lepto­
quarks contributing to the BAU8) 

where dx, is the ;x, de cay constant , we obtain the lower bound on the 
magnitude of SU( 2)R violation: 

( 1 2) 

If the BAU is due to the de cays of Higgs bosons , then c:l� "-' h2, i . e .  
VR �L�N1 1 2  N.X,1 Mp1 "' 1 01 2  GeV. If the ve ctor particles contribute 
to the BAU,  then d.;l/"' dGUT "' 1 0-2, i . e .  VR � 1 01 2h-2 dGUT A.> 1 01 4 GeV, 
h rv 1 0-3 is the generic Yukawa coupling. Therefore we arrive to an 
exciting conclusion that the magnitude of SU( 2 )R violation should 
be almost as large as the violation of the unifying group G .  

If the mixing occurs on mass shell ( similarly to the K0 - i0 
system) )�>- �> 1� rnm., rmn being the largest of the widths of 
( m,n) then the magnitude of omn is no longer given by Eq . ( 1 0) .  It 
is independent of absolute values of coupling constants depending 
only upon phase relations between them. In this case &nm may be of 
the order of 1 .  Note that oscillat ions x1 �x2 in the x1 , X2 sys� 
tem may occur . Now the dependence of �nm on ex, , X 2> mass diffe­
rence has "resonance" behaviour shown in Fig. 2. One can see that 
the magnitude of � is then 

( 1 3 ) 



Taking r ...., 1 o-6 M, we obtain 
VR"' 1 00 GeV . Thus if the mixing 
takes place near the mass shell 
then the violation of SU( 2)R 
symmetry should not ne cessarily 
be extremely large . In order 
that the mixing of X, 1 and X, 2 
occured on the mass shell X 1 
and X 2 should have the same 
conserved quantum numbers . Coin­
cidence of X1 and X2 masses se­
ems natural only if they b.elong 
to one and the same or to the 
conj ugated representations of 
the unifying group G .  

If the BAU has originated 
from de cays of Higgs bosons 
which do not couple directly to 
the fermions then the main con-

Fig.  2. 
Dependence of asymmetry on mass 
difference of mixing particles . 
The total "resonance " width is 
of the order of total ,X.1 and ,t 2 
de cay width. 

clusions will be as follows . If there are no mixing near the mass 
shell then the inequality VR >r. oc�0 should hold. The VR may be re­
latively small only when the X-boson width is extremely small ( as 
'j.,' s do not couple directly t o  the fermions , d.ecays may- occur only­
in higher orders of perturbation theory) . Say, with VR "' 103 GeV 
( experimental lower bound on J.Wn is :n.;,. � 311\y 1 3 ) ) we obtain 
o<.�VR/Mp1rv1 0-1 6 •  If the mixing takes pl�ce on �he mass shell 
then just as above SU( 2)R violation should not be necessarily 
large . 

Very strong constraint on magnitude of VR can be derived in a 
somewhat different way. At high temperatures there may occur sym­
metry re storation1 4> . The temperature of phase transition from 
the unbroken to the broken SU( 2)R is apparently of the order 
Tc"' Mw/g "'Va• If the phase transition really takes place then it 
is ne cessarily for the BAU generation that the temperature at 
which nonequilibrium de cays begin should be less than Tc. Therefore 

'flw./g "' Tc � T ( texpan = r -1 ) � cix llo 
-1 2, te:xpan .. T Mo 

( 1 4) 

5 3 1  
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C:onsequently if the widths of all the particles in the theo­
ry which contribute to the BAU generation are not extremely small 
then 1;he SU( 2 )R symmetry should be broken j ust on the first stage 
of superstrong violation of the unifying group G .  

How we turn to  the question of masses of the right-handed 
gauge bosons in the particular case of the SO( 1 0) grand unified 
model .. The BAU generation9 ' 1 O) through decays of gauge and. scalar 
bosons interacting directly with fermions ( 1 0, 1 20 ,  1 261 5 ) ) requi­
res WR to be superheavy. Indeed,  decay constant for Higgs par­
ticles from these multiplets is cix,"'(ml!aw

L
) 2 "'  1 o-6 • Therefore , in 

accordance with Eq.  ( 1 4) J.Wn � 1 01 2  GeV if the BAU originated from 
scala:i� decays and even larger if gauge bosons contribute to  
the BAU.  

J:n representations responsible for superstrong violation of 
S0( 1 0) ( 1 6 , 42. or �9 • 1 6> } there are no particles with almost equal 
masses and the same quantum numbers with respect to SU( 3 ) cX SU( 2)1x 
x su< ;li' therefore the mixing on the mass shell here does not take 
place • Therefore we have to put VR "-' M1 6  45 54 to obtain the 

I\ -8 ' ' '  
overall macroscopic asymmetry w rv 1 0  (see Eq . ( 1 1 ) ) .  We now can 
derivE1 the cosmological constaints on the masses of particles in 
.!§., !,1, �. assuming that they contribute to the BAU.  The masses 
of these particles should be larger than 1 01 2  GeV if they partici­
pate :Ln strong and/ or electroweak interactions , be cause in other 
case 1;heir concentration at freezing moment will be rather small 
due to  annihilation into light gauge bosons . Indeed,  it may be 
shown that the relative concentration of ;l' s at the freezing 
momeni; ( i. e .  when texpan = tanni ' t�i being the rate of the ann!_ 
hilat:Lon) is 

N_x, = ( 1 /24) {M/T)3/2exp ( -M/T) • ( 1 5 ) 

In order to obtain the observed value of the BAU we have to  put 
T "-'M when using h "' 1 o-3 . Then we arrive to  the constraint 

II > <!2 M / 24 N1 /2 "" 1 01 2  GeV ,..., X. Pl -
. ' ( 1 6) 

* * *  In fact since SU( 2)  x SU( 2) is broken , the transitions li-ke ( 3 , 2 , 2 )  � l J , 1 , 1 ) can 
1

occur. Rzlowever, their amplitude is 
proport ional to the magnitude of SU( 2)1 x SU( 2)R breaking and the­
refore 5':mn does not behave resonantly. 
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i . e .  VR � 1 01 2  GeV .  If we take the value h "' 1 o-2 we get T/:M "' 1 /7 
and VR � 1 01 0  GeV;. We note by the way that the value o:r microscopic 
asymmetry 8' > 1 o-4 seems unplausibl e .  

As to the neutral particles from 12. ,  i2_,.2,i, they can de cay 
into light bosons from 1 o, j_gQ, .1£§. due to the Higgs coupling of 
the form � + � ¢2 , h Tr 1l�2 , {;  belonging to 12., 'Y{ - to i2, or ll•a 
and '/' - to 1.Q, j_gQ, 1 26 .  Their widths are o:r the order of r "'  li :M 2. 
which gives , using Eq. ( 1 4) , VR >,, li :M0• If we do not artificially 
choose h to be extremely small then we obtain again that VR is of 
order of the largest mass parameter of the theory. 

Thus we conclude that in S0( 1 0) model and apparently in any 
other GUT with unifying group S0( 2N} , N � 5 ,  it follows from the 
fact o:r the BAU existence the extreme massiveness of right-handed 
gauge bosons . In other words we arrive to the interesting connec­
tion between the BAU and the absence of the right-handed currents 
in experiment . It is worth emphasizing that if nevertheless the 
right-handed currents were discovered then the GUT based on S0( 1 0) 
would be ruled out . 

We . gratefully acknowledge useful discussions with A.Yu. Igna­
tiev, V.A.Rubakov and A.N. Tavkhelidz e .  
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