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The *Gibbs-Heaviside vector algebra is widely used in problems pertaining to three
dimensional Euclidean space. In this paper we introduce a remarkably similar complex
three dimensional vector algebra for use in four dimensional spacetime. A complex vector
has the geometric interpretation of a bivector in spacetime.

PACS numbers: 03.30.+p, 02.10.+w

Introduction

It is widely believed that the Gibbs-Heaviside vector algebra is stricktly limited to
three dimensions because only in three dimensions there is a unique vector (up to an
orientation) which is perpendicular to the plane defined by two vectors. This belief is usually
accompanied with lamentation, because it is generally recognized that greater conceptual
clarity is possible when geometric ideas are expressed in a vector formalism than when
expressed in the tensor/matrix/spinor formalisms that are usually resorted to when
studying properties of spaces of dimension greater than three. In this paper we show that
the above mentioned belief is unfounded by constructing a complex vector algebra for use
in the Minkowskian spacetime. Whereas the present work only concerns spacetime, the
appropriate generalization to n dimensions, based on Clifford algebra, has been developed
in [1].

In Section 1, we set down the axioms for the complex three dimensional vector algebra.
A complex vector will be interchangeably referred to as a spacetime bivector to emphasize
its geometric interpretation as a bivector in the abstrat Dirac-Clifford algebra of spacetime
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[2; p. 20]. The linear space structure of the algebra is best described as a formal sum of
the space of complex numbers, and a three dimensional complex vector space. The complex
vector algebra is algebraically isomorphic to both the algebra of Pauli matrices, and
the complex quaternions [3; p. 186].

In Section 2, we derive basic identities which give the complex vector algebra the
appearance of being a complexified version of the Gibbs-Heaviside vector algebra of Eucli-
dean space. However, the geometric product of complex vectors, which unites the symmet-
ric complex-valued inner product and the anti-symmetric vector-valued cross product
into a single sum, has no paralle] in the ordinary Gibbs-Heaviside vector algebra, and
it is this feature which gives the complex vector algebra its manifestly rich structure. Canon-
ical forms for complex vectors are derived and it is shown that, with respect to the complex
symmetric inner product, a complex vector is either null, or can be uniquely factored
into a positive magnitude, a complex phase, and a unit direction in spacetime.

In Section 3, the product of complex vectors is expressed in exponential form, and
a generalized Euler formula involving a complex angle between unit directions in spacetime
is derived. Complex angles have a geometric interpretation which, for real angles, reduces
down to the well-known representation on the unit circle; this representation is illustrated
in a figure.

In Section 4, we introduce the operation of complex conjugation with respect to a
given inertial frame. The space vectors of this frame will appear in the inertial frame
of a stationary observer, to be real vectors (with respect to the conjugation). On the other
hand, if the observer has a relative velocity, then the space vectors of the given iner-
tial frame will appear in the frame of the observer to be complex vectors with both real
and imaginary vector parts. Imaginary vectors of an inertial frame have the geometric
interpretation of space bivectors. Lorentz rotations between different inertial frames
are defined and characterized in terms of the exponential mapping of a spacetime
bivector.

The complex vector algebra set down in this paper has already demonstrated its
merit by greatly simplifying the classification of the Riemann curvature tensor and the
so-called Petrov classification, and by revealing the hidden structure of a linear operator,
found in its characteristic equation when eigenvalues are given a geometric interpretation
[4], [5]. Here-to-fore, spinor methods were considered to be the most powerful [6, p. 1165].
It is anticipated that the complex vector algebra can be fruitfully applied to any problem
which is today expressed in the spinor formalism. Future papers demonstrating the power
of this new formalism are planned along two lines. In a paper entitled ‘“Geometric Exten-
sion of Linear Operators’, it will be shown that complex cigenvalues can always be given
a direct geometric interpretation when the original operator is extended in the proper way.
A second paper entitled: “Geometry of Null Bivectors”, will make clear the relationship
of the complex vector algebra to the transformation groups SL(2, C), SU(3), and SU(2, 2),
groups of recognized importance in physics {7]. Finally, we note that a powerful complex
vector analysis of spacetime can be developed by suitably combining the pertinent ideas
and methods from both the Gibbs-Heaviside vector analysis, and the rich complex analysis
of the complex number plane {8}, [9}
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1. Axioms of the algebra

Let ¥ be the complex number field. We adopt the somewhat unusual convention
of denoting the imaginary unit by a capital 7, because in addition to its usual algebraic
property I2 = —1, I'is to have the geometric interpretation of being the unit pseudoscalar
of the associated abstract Dirac-Clifford algebra, as will be explained in Section 4. Thus,
a complex number z = x+y/ € 4, consists of a scalar part x, and a pseudoscalar part yI,
where x and y are real numbers. We will also need a complex three dimensional vector
space # over ¥. Complex vectors B e & will also be referred to as spacetime (s.t.) bivectors
to emphasize their geometric interpretation as bivectors in the associated abstract Dirac-
-Clifford algebra. If {E;| kK = 1,2, 3} is a linearly independent set of complex vectors
in 4, then an arbitrary complex vector Be # can be uniquely expressed in the form
B = B*E,, where summation over the indices k = 1, 2, 3 is assumed and where the complex
scalars f*e 4.

Now let # = €®% be the formal sum of the elements of ¥ and #. An arbitrary
element P € # has the form P = z+B. For P, = z,+By, P, = z,+B, € & and a, B ¥,
we assume the following properties

Axiom la. aP = az+aB = Pa, and (xf)P = o(SP).
Axiom 1b, P, +P, = (z,+z,)+(B; +B,).
Axiom le. (a+ )P = aP+pP.
Axiom 1d. a(P,+P,) = oPy+oP,.
We give & the structure of an associative algebra by defining the geometric product:

BRAB — P. Let A, B, C e 4, then the geometric product AB e & is characterized by the
following properties

Axiom 2a. ABe? and AB = 1 (AB+BA)+% (4AB—BA), where (i) AOB = (4B
+BA)e ¥, and (ii) AxB = 3 (AB—BA)e A.

Axiom 2b. A(B+C) = AB+ AC and (B+C)A = BA+CA.

Axiom 2c. a(AB) = («A)B = A(xB).

Axiom 2d. A(BC) = (AB)C.

The geometric product just defined on #®% can be extended in a natural way to Q2
by assuming that

Axiom 3. PP, = z,z,+2,B,+2,B,+BB,.
Finally, we assume an axiom which guarantees non-degeneracy:

Axiom 4. There exist s.t. bivectors 4, B, C € # such that ABC = 1. We¢ sometimes
refer to 2 as the abstract Pauli algebra because it is algebraically isomorphic to the algebra
of Pauli matrices; 2 is also isomorphic to the algebra of complex quaternions, see [3, p. 186].

The remaining sections of this paper are devoted to revealin'g the geometric structure.
of & as a consequence of the above axioms,
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2. Algebraic identities

Recalling axiom 2a, the geometric product of s.t. bivectors 4, B is the sum of a symmet-
“ric, complex-valued inner product AQOB, and an anti-symmetric, bivector-valued cross
product A x B. In symbols,

AB = AQB+AXB, n
where

AQOB = B0OA and AxB= —BxA. 3]

An immediate consequence of the linearity and distributivity of the geometric product
AB, as given in axioms 1d, 2abc is the linearity and distributivity of the inner and cross
products AQOB and 4 x B. We state this important result in the following

Theorem 1. (i) a(AQOB) = (¢ A)OB = AQO(@B). (ii) x(AxB) = (aA)xB = A x(aB).
(iii) AQ(B+C) = AOB+AQOC. (it) Ax(B+C)= AxB+AxC.

Since, by axiom 2a, AQB e ¥, we can make the following

DEFINITION |. AOB = A-B+AAB, where A-B = {AOB)satsr purv and AAB
= <AoB>pseudoscular part®
In definition 1, we have introduced unorthodox symbolism for the real and imaginary
parts of the complex number 4OB because this symbolism suggests the geometric inter-
pretation of the inner and outer products of bivectors. We will have more to say about
this geometric interpretation in Section 4. We could have also defined 4 - B = 4 (40OB
+ACB) and AAB = 3 (4A0B— AOB), where AOB is the complex conjugate of 4QOB.

We will now prove a theorem expressing the duality of the scalar and pseudoscalar
parts of AQOB.

Corollary 1. (i) (IA) - B = I(AAB). (ii) (IA)AB = I(A - B).

Proof: First note the identities:

I(AOB) = I(A - B)+I(AAB) and (IA)OB = (I4) - B+(IA) A B,
which are obvious consequences of definition 1 and the distributivity of complex
multiplication. By using part (i) of theorem 1, we see that the left hand sides of these
identities are equal, and therefore we can equate the scalar and pseudoscalar parts on the
right hand sides,” which gives (i) and (i7).

Corollary 2. AQOB = A -B+I1(—14) - B.

Proof: By definition 1, 4OB = 4 - B+ A4 AB. Multiplying part (i) of corollary 1
by —1 gives AAB = —I(IA4) - B, and so the corollary quickly follows.

Next, we wish to establish a number of identities which bear striking resemblance
to their counterparts in the Gibbs-Heaviside vector algebra. First we establish the

Lemma 1. AO(BxC) = 3 (CAB—BAC) = 3 (BCA— ACB).

Proof: To show the first equality, we write the steps

3 (CAB—BAC) = 3 C(AOB+ A x B)—} (BOA+Bx A)C

=} (CAxB+AXBC) = CO(4%xB) = (Cx A)OB 3)
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which can be justified by using axiom 2d, the identity (1), axioms 3, 1a, and 2a, respectively.
In a similar way it can be established that

1(BCA—ACB) = (BxC)OA = BO(Cx A). @)

Because of (2), the right hand sides of (3) and (4) are equal, and therefore, so are the left
hand sides, and the proof is complete.

Theorem 2. (i) AQ(BxC) = (AxB)OC = BO(Cx A4). (i) Ax(BxC) = (A0B)C
~(AQO)B. (iii) AX(BxC) =(AXxB)xC+Bx(4AxC).

Proof: (i) The proof of this part is contained in the proof of lemma 1. (i) The
proof of this part is contained in the steps

A(BxC) = } (ABC— ACB) = } (AB+BA)C—4 (AC+ CA)B+% (CAB—BAC)
= AOBC—AOCB+AOBXC,

which can be justified by using axioms 2ab and lemma 1. The proof is completed by noting
from (1) that

ABxC) = AOBxC)+Ax(Bx (),

so that the term AQ(Bx C) can be subtracted from both the left aad right sides of the
first and last equalities. (iif) This part is an expression of the Jacobi identity, and can be
established directly by using the definition of 4 x B.

We have refrained from introducing an orthonormal basis in & to emphasize the
independence and simplicity of the proof of theorem 2, without any reference to a basis.
In fact, the notion of linear independence, itself, can be characterized by the symmetric
and cross products:

DEFINITION 2. (i) Two -complex vectors 4, B are said to be linearly independent iff
AxB # 0. (ii) Three complex vectors 4, B, C are said to be linearly independent iff
AOBXC # 0.

We will now show how the existence of an orthonormal frame of s.t. bivectors is a
consequence of axiom 4.

Theorem 3. There exists an orthonormal basis {E,| k' = 1, 2, 3} satisfying the prop-
erties: (i) E,QFE; = 6;;. (ii) E,xE, = E\E, = IE;, E,xE; = E;E3 = IE;, E;xE,
= E;E, = IE,. (iii) E\QE,xEy = E\E,F3 = I

Proof: By axiom 4, there exist complex vectors A4, B, C such that ABC = 1. Multi-
plying both sides of this relationship by A gives 42BC = IA. If A2 =0, then I4 =0
so that 4 = 0 also. But this is impossible, for then we would have that 0 = ABC = I.
Similarly, it follows that C? # 0. To see that B? # 0, assume the contrary, and note that
this implies

0 = A%B*C?* = ICBA <= (CBA4 = 0.
But CBA = 0implies that C2BA42 = 0 which implies that B = 0 contradicting that ABC = L

Hence we are free to define E, = A(4%)!, E, = B(B*™!, and E, = C(C?~'. The proof
is easily completed by checking that the E,’s satisfy the properties (i), (i) and (iii).
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In terms of the orthonormal basis {E,} defined in theorem 3, any complex vector
A € # can be expressed in the form
3
A =oE, = qE = Y AOE'E,
k=1
where o* = o, = AQE, €%, and E, = E*. Suppose now that complex vectors B = S*E,,

and C = y*E, are also given. We have the following corollary to theorem 3:
Corollary. (i) AQOB = o*f, = %p".

E, E, Ej;
i 1 2 3 3 1 1 2
(i) AxB = o o =% lE+|% “liE+ % % IE,
R B B B> B B B
B B B
;11 a2 a3i
3 |0 s 3
(iii) AxBOC = B~ B L
vy v3i

Parts (i/) and (iii) of this corollary show the equivalence of definition 2 to the usual notions
of linear independence. This corollary reveals the Gibbs-Heaviside like structure of the
spacetime bivector algebra, but the greater generality of the latter should be apparent.

3. Geometry of spacetime bivectors

We begin this section by proving a theorem regarding the structure of a bivector in
spacetime. First, we make the following

DEFINITION 3. A s.t. bivector N € # is said to be a null bivector if N? = 0. Otherwise,
a bivector Be #, with B # 0, is said to be non-null.

Theorem 4. (i) A non-null s.t. bivector B can always be uniquely expressed in the
canonical form B = ¢**1°B where — o0 < ¢ < o0, 0 < 0 < n, and where B is a unit s.t.
bivector with B? = 1. (ii) A non-trivial null bivector N can be put into the canonical form
N = a(l+A,)A, where a € €, and A, and 4, are spacetime bivectors satisfying the condi-
tions A7 = 1 = 42, and 4,04, = 0.

Proof: (i) Since B% # 0 is a complex scalar, it can be uniquely expressed in the form
B? = ¢*®*19 for real numbers ¢ and @ where —o0 < ¢ < o0 and 0 < 8 < 7. It then
follows that B = ¢?*B, where B = +B/(B?) with the + sign chosen appropriately.

(i) Since N e #, it can be expressed in terms of the orthonormal basis {E,} in the
form N = n*E, = n.E* where N2 = ni+n3+4n3 = 0. Without loss of generality, we can
assume that ; # 0. Now define E| = E|, E; = (—1/n,) (1,E, +13E;). The it is not hard
to check that N = y,(E}+1E;), (E})* = (Ey)? = 1, and E|QE, = 0. By defining E}
= IE4E}, N can be written in the form

N = n,(Ey + E3E}) = ny(1 +E3)E].
To complete the proof let « = n,, A; = Ej, and 4, = E].
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Now let B = ¢**"B be the representation of a non-null complex vector, and
N = %14 A,)A4, be the representation of a null complex vector as given in parts (i)
and (ii) of theorem 4. It is natural to make the following

DEFINITION 4. (i) For the complex vector B = e%¢"’B, ¢? is said to be the magnitude,
¢" is said to be the phase, and B is said to be the direction of the complex vector B. (ii) For
the null complex vector N = e®e’(1+4,)4,, ¢® is said to be the magnitude, ¢* is said
to be the phase, and (14 A,)A, the nullity of N with respect to the orthonormal basis
Ay, Az Az = — 14, A,.

Part (7) of definition 4 is the natural generalization of the concept of the magnitude
and direction of a real vector. In the case of the null complex vector N, such concepts can
only be defined relative to a given basis.

Consider now the identities:

(4+B)? = A2 +240B+ B 5
and
A2B? = (AB) (BA) = (AQB+AxB)(AOB— A xB) = (AOB)*—(4 x B), (6)

which are easily verified. We refer to (5) and (6) as the generalized law of cosines and sines,
respectively, because of their obvious similarity to the laws by these names. For unit
bivectors 4 and B we make the following

DEFINITION 5. (i) cos () = AORB. (ii) I'sin (¢) = CO(A x B) if (A x B)? # 0, where
C is the unit direction of A x B as defined in part (/) of definition 4. If (4 x B)? = 0, then
Isin () = 0.

By using part (/) of theorem 4, definition 5 can be extended to apply to arbitrary
non-null complex vectors. For 4 = ¢°4, and B = ¢’B, we have

Theorem 5. (i) AOB = ¢*"?PA0B = ¢*** cos (¢), and if (4xB)? # 0, then AxB
= " Ax B = " PIC sin (). (i1) If (A x B)? # 0, then AB = ¢**#e'%_(iii) If (Ax B)? = 0,
then AB = " #(1 + N) = ¢**#e", where N = AxB.

Proof: The proof of (i) is an immediate consequence of definition 5. The proof of
(i) follows from the steps

AB = AOB+AxB = ¢***[cos (¢)+IC sin (¢)] = ¢** e’

The first step uses identity (1), the second step uses part (/) above, and the third step is
just a statement of the Euler formula for the complex plane of the bivector IC since
€y = —1.

The proof of part (iii) follows from the steps

AB = & [AOB+ A% B] = ™[I+ N] = &*" e,

where N = A x B. The first step uses the basic identity (1), the second step uses the general-
ized law of sines as expressed in (6), and the third step is a simple consequence of the fact
that

N _
e =

(1/kHN* = 1 +N,

M s

S
[l

o
since the powers of N vanish for k > 2.

/
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Let us now consider a simple example: Let 4 = E,, and B = E, + N where N = (1
+E)E,. It easily follows that 42 = 1 = B?> = 40B, and 4 xB = N. Therefore, from
definition 5, the complex angle ¢ between the unit complex vectors A and B is zero, but,
unlike the case for real vectors, 4 # B. This circumstance is possible for complex vectors
because of the existence of null bivectors in the Lorentzian geometry of spacetime.

1€
.
sinh @ cosh® ~ x
Y } sin 8 q
1 1 ’
N
Fig. |

We close this section by giving a geometric interpretation to the complex angle
@ = 8+ I between two unit complex vectors 4 and B, assuming that (4 x B)* # 0. For

this case, we know from part (ii) of theorem 5 that AB = cos g+IC sin ¢ = e'fe, We
decompose ¢'“? in the following steps:

P = ICOHIP)  PIC,=0C _ IC osh ¢+ IC¥CI sinh ¢
= ¢"Ccosh ¢+ P sinh¢p = X +1Y

where X = ¢®Ccosh¢ and ¥ = ¢®*¥D1C ginh ¢, Thus, we have decomposed ¢®’C into
the sum of two orthogonal complex vectors X and Y in the complex plane of IC. Note
also that |X| = cosh¢ and |Y| = sinh¢, so that |X|>—|Y|* = cosh® ¢ —sinh?¢ = 1.
Figure 1 below gives the pictorial description of these facts.

4. Conjugations and Lorentz rotations in spacetime

Let {E,} be an orthonormal frame of s.t. bivectors, and let 4 = «"E,.

DErFINITION 6. The spacetime bivector 4 = &'E, is said to be the complex conjugate
of A w.r.t {E.}.

A conjugation in a complex linear space has the following properties:
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Theorem 6. (i) A+B = A+B. (ii) a4 = &A4. (iii) 4 = A.
Proof: The proof is an immediate consequence of the definition.
Because # has the structure of an algebra, we have the following additional properties:
Theorem 1. (i) AB = BA. (ii)) AOA >0 and A0A =0 iff 4 = 0.
Proof: The proof of (i) follows from the steps

AB = AOB+AxB = AOB+AxB = A0B—AxB
= BOA+Bx A = BA.
The first and last steps are applications of the basic identity (1), the second step assumes
the natural extension of the conjugation to elements of £, and the third step uses parts
(7)) and (i) of the corollary to theorem 3. The proof of part (if) is an immediate consequence
of the positive definiteness of 404 = o*a,.
Corollary. The inner product defined by (4, B) = AQB gives # the structure of the
unitary space U(3). See Ref. [10, p. 310]. Thus, to each orthonormal basis {E,} there is

associated a unique unitary space with the inner product (4, B).
Now let Fe 4. The identity

F = 4 (F+F)+4 (F—F) = 4 (F+F)—} IUF+1F) = E+IB, %)

where E = (F)s = 3 (F+F)and B = (F), ., = -3 (F +IF), decomposes an arbitrary
complex vector into real and imaginary vector parts w.r.t the frame {E,}. For a discussion
of the bivector representation of an electromagnetic field, see [2, p. 29].

DerFINITION 7. (i) If A = A, then A is said to be a space vector of the orthonormal
Sframe {E\}. (i) If A = — A4, then A is said to be a space bivector of the orthonormal frame
{Ei}.

Thus, the real vectors are space vectors of the frame {E,}, and imaginary vectors are
space bivectors of the frame {E,}. Note also the duality of the space vectors and bivectors,
that is, if 4 = 4, then T4 = —JA, and conversely.

We can now identify the Gibbs-Heaviside vectors of an inertial frame as the real
vectors of the orthonormal frame {E,}. Let A = 4 and B = B be real space vectors of
the frame {E,}. We wish now to define the Gibbs-Heaviside ““dot” and ‘“‘cross’ products
of the space vectors A, B:

g

DerFINITION 8. (i) Ag-B = {AOB),.s1 = AOB. (ii) AXB =<{AXB);, = —IAxB.
With this definition, all the usual properties of the Gibbs-Heaviside dot and cross products
of space vectors follow as an immediate consequence of their complex counterparts given
in the corallary to theorem 3. Thus, our complex vector algebra can be regarded as the
appropriate ‘“‘complexification”” of the Gibbs-Heaviside vector algebra to apply in space-
time, where each inertial system is distinguished by its particular choice of an ortho-
normal frame of real vectors.

Alternatively, we can regard the elements of 4 to be the spacetime bivectors of an
encompassing Clifford-Dirac algebra, [2, p. 24]. Then, to each orthonormal frame of s.t.
bivectors {E,}, there will correspond a unique orthonormal frame of Dirac vectors {e,}
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satisfying

e

0 -
Ey=e4 /\e07£2=e2 /\eo E3=e3 /e
€3 (8)
e E—/—
e] IE3=92 /\97 ’

IE7=93 Aez IEZ: E7A83

where I = E E,E; = ege e,e;3. Thus, the {¢,} for u = 0, 1, 2, 3 can be considered to be
uniquely determined by the intersections of the spacetime planes of appropriately chosen
pairs of s.t. bivectors, as indicated by the arrows in (8) above. The {e,} form an orthonormal
basis of a Dirac algebra @ with signature 2 = 1 = —¢? = —¢3 = —e].

We wish now to derive several consequences of the decomposition given in (7).

Theorem 8. (i) F?> = E*—B*+2FE - BI. (i) If F? # 0 then F can be uniquely expressed
in the form F = e”e™*'A,, where w is given by part (i) of theorem 4, « is a real scalar,
and 4, and A, are orthonormal space vectors w.r.t the inertial frame {E,}. (iii) If F? = 0,
then F = e®(1+ A4,)A, for a unique real scalar ¢, and 4, and A, are unique orthonormal
space vectors of the inertial frame {E,}.

Proof: (i) By (7), F = E+1IB. Squaring this equality gives F? = E?4+2/EQB—B>.
Using the definition of F and B, we can further calculate

EB = —(I}4) (F+F)(F—F) = —(I]4) (F*+2F x F-F?).
Equating the scalar and bivector parts of this equation gives

EQOB = —(Ij4) (F*~F*) = E-B
and
ExB = }IFxF,

so the proof of this part is complete.
(if) Using theorem 4(i), we can write F = ¢“F. Applying the decomposition (7) to
F, we find that

E

s As+a3lA; = (x4, +a30A45)A,A4,
= (a+a34,)4; = €1 4,,

where «, > 0 and «, a5 are real non-negative scalars such that

FP=oal-a} =1,

and 4, = TA3A4,, A,, A, are real orthonormal vectors w.r.t {E,}. The fact that 4,, 4, are
real and orthogonal follows from part (/). The proof of part (if) is now easily completed.
(iii) The proof of this part is similar to part (i/) and is omitted.
Corollary. (i) EOB = —(I/4)(F?—F>) =E-B and ExB = }IFxF. (il F*=F F
=E’-B*°<E-B=0.
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We close this section with a discussion of Lorentz rotations.

DEFINITION 9. A transformation L: # — 4 is said to be a Lorentz rotation iff L(4)OL(B)
= AQOB for all 4, Be . '

Equivalently, L is a Lorentz rotation if for each orthonormal frame {E,}, the frame
{E.}, defined by E, = L(E)), is an orthonormal frame.

Theorem 9. A’ = L(A) is a Lorentz rotation if there exists a s.t. bivector D¢ #-
such that A’ = L(4) = e®Ae™P.

Proof: First, suppose that D e 4. Then

L(A)YOL(B)

Similarly,

s D4 —-D Dp ~D _ D -D
\€ Ae "¢ Be >complex scalar part — <€ ABe >com. sc. pt.

L(B)OL(A) = {e"BAe™"

>complex scalar part*

Hence
L(A)OL(B) = 3 [L(A)OLB)+ L(B)YOL(A)] = & e®(AB+BA)e™® = AQOB.

To prove the “only if** part of the theorem, assume that a Lorentz rotation L is given.
We shall show that a s.t. bivector C exists such that

A = L(4) = 4™
by directly solving this equation for the bivector C. First note the identity
= Z (1/n)C" = cosh (C)+sinh (C),

where cosh (C) € €, and sinh (C) € 4. We can now directly proceed with the proof by writ-
ing the steps

dL

i

& JL(A) = & 4°4e” € = [cosh (C)F 4A+ 8, sinh (C)A]e™ €
= [3 cosh (C)—sinh (C)]e™€ = 4 cosh (C)e™ €~ 1,

where we are incorporating the normalized bivector derivative & = 7 ,, and simple formulas
for differentiation w.r.t the bivector variable 4, f{irst introduced and developed in [4]
and [5]. Equating the complex scalar and bivector parts of the first and last expressions
in the above steps gives

d0OL = 4cosh?(C)—1 and JxL = 4cosh (C) sinh (C),

from which it follows that

1 +1
c_ - 2 h(CYl = —
e 4 cosh ( )[4 cosh® (C)+4 cosh (C) sinh (C)] 2(1 )1/2( +dL),

provided that cosh (C) # 0. For the cases when cosh(C) =

dOL = —1 and IxL =0,
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so that we can appeal to the Petrov classification as worked out in [4]. We can conclude
that L is type I, and since L = L', the eigenvalues of L must be +1, —1, —1, which
in turn implies that L can be put into the canonical form

L(4) = DAD,

where D = 4, +aN and D? = 4% = 1, N? = 0. Defining C = (n/2)I(4, +aN), it can be
readily checked that

L(4) = ¢4e™C = DAD

as required, and the proof is complete.
The proof of this theorem corrects and generalizes to spacetime a proof which can
be found in [11].

Corollary. L is a Lorentz rotation iff L(4)QOB = AQL-Y(B) for all A, Be 8.

DerFINITION 10. By the matrix of L w.r.t the orthonormal inertial frame {E,}, we mean
the matrix whose elements are given by L;; = L(E)OE;.

In terms of the orthonormal frame {E,}, the characteristic complex scalar § OL, and
the characteristic bivector & x L of the transformation L can be evaluated by the formulas

3
gOL = EkOL(Ek) = Z ka, (9)
k=1
and
IxL = E*xL(E,) = (Ly3—L3,)IE,; +(Lay— L) E, +(Ly,— Ly )IE;, (10)

as can be verified with the help of the corollary to theorem 3, and properties of the bivector
derivative given in [4].
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