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Abstract

This paper is mainly concerned with the construction of new off-shell higher spin N = 1 supermultiplets 
in three spacetime dimensions. We elaborate on the gauge prepotentials and linearised super-Cotton tensors 
for higher spin N = 1 superconformal geometry and propose compensating superfields required to formu-
late off-shell massless higher spin supermultiplets. The corresponding gauge-invariant actions are worked 
out explicitly using an auxiliary oscillator realisation. We construct, for the first time, off-shell massive 
higher spin supermultiplets. The gauge-invariant actions for these supermultiplets are obtained by adding 
Chern–Simons like mass terms (that is, higher spin extensions of the linearised action for N = 1 confor-
mal supergravity) to the actions for the massless supermultiplets. For each of the massive gravitino and 
supergravity multiplets, we propose two dually equivalent formulations.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In three spacetime dimensions (3D), the off-shell structure of N = 1 supergravity was un-
derstood in the late 1970s [1–3] and further elaborated in [4]. Since then, there have appeared a 
number of important developments in minimal 3D supergravity, including the N = 1 topolog-
ically massive supergravity with and without a cosmological term [5,6], various approaches to 
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N = 1 conformal supergravity [7–12], 3D compactifications of M-theory with minimal local su-
persymmetry (see [13] and references therein), and higher-derivative models for massive N = 1
supergravity [14–17]. The latter locally supersymmetric theories, which generalise the models 
for massive gravity proposed in [18,19], possess remarkable properties such as unitarity in the 
presence of curvature squared terms. Since these massive theories are nonlinear in the curvature 
tensor, their explicit construction would be extremely difficult to achieve without making use of 
the off-shell multiplet calculus for N = 1 supergravity.

The general massive gravity models of [18,19] and their supersymmetric cousins, including 
those proposed in [14–17], may possess higher spin generalisations, see e.g. [20]. Surprisingly, to 
the best of our knowledge, off-shell massive higher spin N = 1 supermultiplets in three dimen-
sions have never been constructed. The on-shell massive higher spin 3D N = 1 supermultiplets 
have been formulated recently, both for the Minkowski and anti-de Sitter (AdS) backgrounds 
[21,22], building on the elegant gauge-invariant construction of massive higher spin fields in AdS 
[23]. However, since the massive higher spin supermultiplets of [21,22] lack auxiliary fields, it 
could be difficult to use this approach to generate consistent cubic and possible higher-order cou-
plings (as it often happens in supersymmetric field theory). The aim of this paper is to construct, 
for the first time, off-shell massive higher spin N = 1 supermultiplets.

Our paper is a continuation of the recent work [24] in which the off-shell massive higher 
spin N = 2 supermultiplets were constructed in three dimensions. The structure of these 3D 
N = 2 massive supermultiplets is similar to that of the off-shell 4D N = 1 massless supermul-
tiplets [25,26] (see [27] for a review) in the sense that there are two dually equivalent series of 
off-shell formulations. As will be shown below, the 3D N = 1 case is more similar to the non-
supersymmetric Fronsdal actions [28,29], for there is essentially a single off-shell formulation 
for each massive higher spin supermultiplet (modulo auxiliary superfields). A remarkable fea-
ture of our massive N = 1 supermultiplets is that they are formulated in terms of unconstrained
superfields, unlike their N = 2 counterparts [24]. This makes the off-shell higher spin N = 1
supersymmetric theories more tractable than the N = 2 ones.

This paper is organised as follows. In section 2 we define on-shell massive superfields and 
present a manifestly supersymmetric expression for the superhelicity operator. In section 3 we 
elaborate on the higher spin superconformal gauge multiplets and the corresponding gauge in-
variant field strengths. Section 4 describes the massless higher spin gauge prepotentials. The 
off-shell realisations for massless low spin supermultiplets are given in section 5. In section 6
we present the off-shell massless higher spin supermultiplets, and the massive case is presented 
in section 7. Concluding comments and open problems are discussed in section 8. The main 
body of the paper is accompanied by two technical appendices. Our 3D notation and conventions 
correspond to those introduced in [10,30].

2. Massive (super)fields

In this section we discuss on-shell (super)fields which realise the massive representations of 
the 3D Poincaré and N = 1 super-Poincaré groups. The material in subsection 2.1 is taken almost 
verbatim from [24].

2.1. Massive fields

Let Pa and Jab = −Jba be the generators of the 3D Poincaré group. The Pauli–Lubanski 
scalar
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W := 1

2
εabcPaJbc = −1

2
P αβJαβ (2.1)

commutes with the generators Pa and Jab. Irreducible unitary representations of the Poincaré 
group are labelled by two parameters, mass m > 0 and helicity λ, which are associated with the 
Casimir operators,

P aPa = −m21 , W = mλ1 . (2.2)

One defines |λ| to be the spin.
In the case of field representations, it holds that

W = 1

2
∂αβMαβ , (2.3)

where the action of the Lorentz generator with spinor indices, Mαβ = Mβα , on a field φγ1···γn =
φ(γ1···γn) is defined by

Mαβφγ1···γn =
n∑

i=1

εγi (αφβ)γ1···γ̂i ...γn , (2.4)

where the hatted index of φβγ1···γ̂i ...γn is omitted.
For n > 1, a massive field, φα1···αn = φ̄α1...αn = φ(α1···αn), is a real symmetric rank-n spinor 

field which obeys the differential conditions [31] (see also [32])

∂βγ φβγα1···αn−2 = 0 , (2.5a)

∂β
(α1φα2...αn)β = mσφα1...αn , σ = ±1 . (2.5b)

In the spinor case, n = 1, eq. (2.5a) is absent, and the massive field is defined to obey the Dirac 
equation (2.5b). It is easy to see that (2.5a) and (2.5b) imply the mass-shell equation1

(� − m2)φα1···αn = 0 , (2.6)

which is the first equation in (2.2). In the spinor case, n = 1, eq. (2.6) follows from the Dirac 
equation (2.5b). The second relation in (2.2) also holds, with

λ = n

2
σ . (2.7)

The spin of φα(n) is n/2.

2.2. Massive N = 1 superfields

Let Pa , Jab = −Jba , Qα be the generators of the 3D N = 1 super-Poincaré group. The super-
symmetric extension of the Pauli–Lubanski scalar (2.1) is the following operator [34]

Z = W − i

8
Q2 = 1

2
εabcPaJbc − i

8
QαQα , (2.8)

which commutes with the supercharges,

[Z,Qα] = 0 . (2.9)

1 The equations (2.5a) and (2.6) prove to be equivalent to the 3D Fierz–Pauli field equations [33].
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The operator Z is analogous to the 4D N = 1 superhelicity operator introduced in [27]. Irre-
ducible unitary representations of the N = 1 super-Poincaré group are labelled by two parame-
ters, mass m and superhelicity κ , which are associated with the Casimir operators,

P aPa = −m21 , Z = mκ1 . (2.10)

Our definition of the superhelicity agrees with [34]. The massive representation of superhelicity 
κ is a direct sum of two massive representations of the Poincaré group with helicity values (κ −
1
4 , κ + 1

4 ). If κ − 1
4 is not an integer, the supermultiplet describes anyons. The case 2κ ∈ Z

corresponds to the so-called semion supermultiplets, of which the κ = 1
2 supermultiplet was first 

studied in [35].
When dealing with the supermultiplets containing particles of (half-)integer helicity, it appears 

more convenient, by analogy with the N = 1 case in four dimensions [27], to define a shifted 
superhelicity operator, κ̂ = κ − 1

4 , which takes integer or half-integer values. However, here we 
will use the definition introduced in [34].

In the case of superfield representations of the N = 1 super-Poincaré group, the infinitesimal 
super-Poincaré transformation of a tensor superfield is

δ� = i(−baPa + 1

2

abJab + εαQα)� = i

(
1

2
bαβPαβ + 1

2

αβJαβ + εαQα

)
� , (2.11)

where the generators of spacetime translations (Pαβ ), Lorentz transformations (
αβ ) and super-
symmetry transformations (Qα) are

Pαβ = −i∂αβ , ∂αβ = (γ m)αβ∂m , (2.12a)

Jαβ = iθ(α∂β) − iMαβ , (2.12b)

Qα = ∂α + iθβ∂αβ , ∂α = ∂

∂θα
. (2.12c)

Using the explicit expressions for the super-Poincaré generators, the superhelicity operator (2.8)
can be written in a manifestly supersymmetric form

Z = 1

2
∂αβMαβ − i

8
D2 . (2.13)

For n > 0, a massive superfield Tα(n) is defined to be a real symmetric rank-n spinor, Tα1···αn =
T̄α1...αn = T(α1···αn), which obeys the differential conditions [17]

DβTβα1···αn−1 = 0 =⇒ ∂βγ Tβγα1...αn−2 = 0 , (2.14a)

− i

2
D2Tα1...αn = mσTα1...αn , σ = ±1 . (2.14b)

It follows from (2.14a) that

− i

2
D2Tα1...αn = ∂β

(α1Tα2...αn)β , (2.15)

and thus Tα(n) is an on-shell superfield,

∂β
(α1Tα2...αn)β = mσTα1...αn , σ = ±1 . (2.16)

Making use of the identity (A.5d), we also deduce directly from (2.14b) that2

2 The equations (2.14a) and (2.17) provide the N = 1 supersymmetric extensions of the 3D Fierz–Pauli equations.
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(� − m2)Tα(n) = 0 . (2.17)

For the superhelicity of Tα(n) we obtain

κ = 1

2

(
n + 1

2

)
σ . (2.18)

We define the superspin of Tα(n) to be n/2. The massive supermultiplet Tα(n) contains two ordi-
nary massive fields of the type (2.5), which are

φα1...αn := Tα1...αn |θ=0 , φα1...αn+1 := in+1D(α1Tα2...αn+1)|θ=0 . (2.19)

Their helicity values are n2σ and n+1
2 σ , respectively.

As an example, let us consider the following model for a massive scalar multiplet

SSM[X] = − i

2

∫
d3|2zDαXDαX + mσ

∫
d3|2zX2 , σ = ±1 . (2.20)

Throughout this paper, the N = 1 superspace integration measure3 is defined as follows:∫
d3|2zL = i

4

∫
d3x D2L

∣∣∣
θ=0

. (2.21)

The equation of motion for the action (2.20) is

− i

2
D2X = mσX , (2.22)

which shows that the superhelicity of X is κ = 1
4σ .

3. N = 2 → N = 1 superspace reduction: superconformal gauge multiplets

In general, off-shell N = 1 higher spins supermultiplets in three dimensions may be obtained 
by applying the N = 2 → N = 1 superspace reduction to the N = 2 supermultiplets constructed 
in [24]. We denote by Dα and D̄α the spinor covariant derivatives of the N = 2 Minkowski 
superspace M3|4. They obey the anti-commutation relations

{Dα, D̄β} = −2i ∂αβ , {Dα,Dβ} = {D̄α, D̄β} = 0 . (3.1)

In order to carry out the N = 2 → N = 1 superspace reduction, it is useful to introduce real 
Grassmann coordinates θα

I for M3|4, where I = 1, 2. We define these coordinates by choosing 
the corresponding spinor covariant derivatives DI

α as in [30]:

Dα = 1√
2
(D

1
α − iD2

α) , D̄α = − 1√
2
(D

1
α + iD2

α) . (3.2)

From (3.1) we deduce{
DI

α,DJ
β

} = 2i δIJ (γ m)αβ ∂m , I, J = 1,2 . (3.3)

Given an N = 2 superfield U(x, θI ), we define its N = 1 bar-projection

U | := U(x, θI )|θ2=0 . (3.4)

3 This definition implies that 
∫

d3|2zV = ∫
d3x F , for any scalar superfield V (x, θ) = · · · + iθ2F(x).
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It is clear that U | is a superfield on N = 1 Minkowski superspace M3|2 parametrised by 
real Cartesian coordinates zA = (xa, θα), where θα := θα

1 . The covariant derivative of N = 1

Minkowski superspace Dα := D
1
α obeys the anti-commutation relation{

Dα,Dβ

} = 2i (γ m)αβ ∂m . (3.5)

3.1. Higher spin superconformal gauge multiplets

In accordance with [24], the higher spin N = 2 superconformal gauge multiplet is described 
in terms of a real unconstrained prepotential

Hα(n) := Hα1...αn = H(α1...αn) = H̄α(n) , (3.6)

which is defined modulo gauge transformations of the form

δHα(n) = gα(n) + ḡα(n) , (3.7a)

where the complex gauge parameter gα(n) = gα1...αn = g(α1...αn) is a longitudinal linear superfield 
constrained by

D̄(α1gα2...αn+1) = 0 =⇒ D̄
2gα(n) = 0 . (3.7b)

This constraint can always be solved in terms of a complex unconstrained potential Lα(n−1) by 
the rule

gα1...αn = D̄(α1Lα2...αn) . (3.8)

However we will not use this representation in the present paper.
Making use of the representation (3.2), the longitudinal linear constraint (3.7b) takes the form

D2
(α1gα2...αn+1) = iD1

(α1gα2...αn+1) . (3.9)

This tells us that, upon reduction to N = 1 superspace, gα(n) is equivalent to two complex un-
constrained N = 1 superfields, which are obtained by Taylor-expanding the N = 2 superfield 
gα(n)(θI ) = gα(n)(θ1, θ2) in powers of θα

2 and which may be chosen as

gα1...αn | , D2 βgα1...αn−1β | . (3.10)

Upon reduction to N = 1 superspace, the gauge prepotential Hα(n) is equivalent to four uncon-
strained superfields

Hα1...αn | , D2
(α1Hα2...αn+1)| , D2 β

Hα1...αn−1β | ,
i

4
(D2)2

Hα1...αn | . (3.11)

Here the first and the fourth superfields are real, while the other superfields are real or imaginary 
depending on n.

Since the N = 1 gauge parameters (3.10) are complex unconstrained, it is in our power to 
choose the N = 1 supersymmetric gauge conditions

Hα1...αn | = 0 , D2 β
Hα1...αn−1β | = 0 . (3.12)

In this gauge we stay with the following real unconstrained N = 1 superfields
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Hα1...αn+1 := in+1D2
(α1Hα2...αn+1)| , (3.13a)

Hα1...αn := i

4
(D2)2

Hα1...αn | . (3.13b)

The residual gauge freedom, which preserves the gauge conditions (3.12), is described by real 
unconstrained N = 1 superfield parameters ζα(n) and ζα(n−1) defined by

gα1...αn | = − i

2
ζα1...αn , ζ̄α(n) = ζα(n) , (3.14a)

D2 βgα1...αn−1β | = −in
n + 1

n
ζα1...αn−1 , ζ̄α(n−1) = ξα(n−1) . (3.14b)

This leads to

δHα1...αn+1 ∝ D2
(α1δHα2...αn+1)| = D2

(α1gα2...αn+1)| + D2
(α1 ḡα2...αn+1)|

= iD1
(α1gα2...αn+1)| − iD1

(α1 ḡα2...αn+1)| = D(α1ζα2...αn+1) , (3.15)

where we have used the longitudinal linear constraint (3.9) and the explicit expression (3.14a)
for the residual gauge transformation. The final result for the gauge transformation of (3.13a) is

δHα1...αn+1 = in+1D(α1ζα2...αn+1) . (3.16a)

In a similar way we determine the gauge transformation of (3.13b) to be

δHα1...αn = inD(α1ζα2...αn) . (3.16b)

This agrees with (3.16a) if we replace n → n + 1. The superconformal prepotential Hα(n) and its 
gauge transformation (3.16b) were introduced in [37].

In discussing N = 1 superconformal multiplets, we follow the formalism described in [30,
36]. The N = 1 superconformal transformations are generated by conformal Killing supervector 
field.

ξ = ξa∂a + ξαDα . (3.17)

By definition, the N = 1 conformal Killing supervector field obeys the equation [ξ, Dα] ∝ Dβ , 
or equivalently

[ξ,Dα] = −Kα
βDβ − 1

2
σDα , (3.18)

which implies

ξα = i

6
Dβξβα , (3.19a)

D(γ ξαβ) = 0 , (3.19b)

of which (3.19b) is the N = 1 superconformal Killing equation. In (3.18) we have introduced 
the z-dependent parameters of Lorentz (Kαβ ) and scale (σ ) transformations

Kαβ := D(αξβ) , σ := Dαξα = 1

3
∂aξ

a . (3.20)

These parameters are related to each other by the relation

DαKβγ = −εα(βDγ )σ , (3.21)
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which implies

D2σ = 0 . (3.22)

A symmetric rank-n spinor superfield �α(n) = �α1...αn is said to be primary of dimension d�

if its superconformal transformation is

δξ�α1...αn = ξ�α1...αn + nKβ
(α1�α2...αn)β + d�σ�α1...αn . (3.23)

We now require both the gauge field Hα(n) and the gauge parameter ζα(n−1) in (3.16b) to be 
primary superfields. This is consistent if and only if the dimension of Hα(n) is equal to (1 −n/2), 
as stated in [37]. Thus the superconformal transformation law of Hα(n) is

δξHα1...αn = ξHα1...αn + nKβ
(α1Hα2...αn)β + (1 − 1

2
n)σHα1...αn . (3.24)

3.2. Higher spin superconformal field strengths

To start with, it is worth recalling the N = 2 superconformal gauge-invariant field strength, 
Wα(n) = W̄α(n), introduced in [24]

Wα1...αn := 1

2n

�n/2	∑
J=0

{(
n

2J

)
��J ∂(α1

β1 . . . ∂αn−2J

βn−2J Hαn−2J+1...αn)β1...βn−2J

+
(

n

2J + 1

)
�2�J ∂(α1

β1 . . . ∂αn−2J−1
βn−2J−1Hαn−2J ...αn)β1...βn−2J−1

}
, (3.25)

where �x	 denotes the floor (or the integer part) of a number x, and the operator � is

� = i

2
D

α
D̄α = i

2
D̄

α
Dα . (3.26)

There are three fundamental properties that Wα(n) possesses. Firstly, it is invariant under the 
gauge transformations (3.7). Secondly, it obeys the Bianchi identity

D
β
Wβα1...αn−1 = 0 ⇐⇒ D̄

β
Wβα1...αn−1 = 0 . (3.27)

Thirdly, the real symmetric rank-n spinor Wα(n) is a primary N = 2 superfield of dimension 
(1 + n/2). As explained in [24], the conditions that Wα(n) is primary and obeys the constraints 
(3.27) are consistent if and only if the dimension of Wα(n) is equal to (1 +n/2). If the prepotential 
Hα(n) is chosen to be primary of dimension (−n/2), then its descendant (3.25) proves to be 
primary of dimensions (1 + n/2). It is important to emphasise that the most general solution to 
the constraints (3.27) is given by (3.25), as discussed in [37].

In the n = 2 case, the field strength Wαβ(H) coincides with the linearised version [38,24] of 
the N = 2 super-Cotton tensor [39,12]. Thus the field strength (3.25) for n > 2 is the higher-spin 
extension of the super-Cotton tensor.

We now turn to reducing the field strength Wα(n) to N = 1 superspace. In the real basis for 
the N = 2 spinor covariant derivatives, the Bianchi identities (3.27) read

DIβ
Wβα1...αn−1 = 0 , I = 1,2 . (3.28)

These constraints imply that, upon reduction to N = 1 superspace, Wα(n) is equivalent to the 
following real N = 1 superfields
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Wα1...αn := Wα1...αn | , Wα1...αn+1 ∝ in+1D2
(α1Wα2...αn+1)| , (3.29)

each of which is divergenceless, in particular

DβWβα1...αn−1 = 0 . (3.30)

We now compute the bar-projection of (3.25) in the gauge (3.12) and make use of the identities

� = − i

4

{
(D1)2 + (D2)2

}
, �2 = 1

8

{
4� − (D1)2(D2)2

}
. (3.31)

Making use of these identities leads to the N = 1 field strength4

Wα1...αn(H) := 1

2n

�n/2	∑
J=0

{(
n

2J

)
�J ∂(α1

β1 . . . ∂αn−2J

βn−2J Hαn−2J+1...αn)β1...βn−2J

− i

2

(
n

2J + 1

)
D2�J ∂(α1

β1 . . . ∂αn−2J−1
βn−2J−1Hαn−2J ...αn)β1...βn−2J−1

}
. (3.32)

This real superfield, Wα(n) = W̄α(n), is a descendant of the real unconstrained prepotential Hα(n)

defined modulo the gauge transformations (3.16b). The field strength proves to be gauge invari-
ant,

δHα1...αn = inD(α1ζα2...αn) =⇒ δWα(n) = 0 , (3.33)

and obey the Bianchi identity (3.30). Using the superconformal transformation law of Hα(n), 
eq. (3.24), one may check that the superconformal transformation law of the field strength (3.32)
is

δξWα1...αn = ξWα1...αn + nKβ
(α1Wα2...αn)β + (1 + 1

2
n)σWα1...αn , (3.34)

and therefore Wα(n) is a primary superfield of dimension (1 + n/2).
For n = 1 the field strength (3.32) is

2Wα = −∂α
βHβ + i

2
D2Hα = iDβDαHβ , (3.35)

as a consequence of the anti-commutation relation (A.4). The final expression for Wα in (3.35)
coincides with the gauge-invariant field strength of a vector multiplet [4]. For n = 2 the field 
strength Wαβ given by (3.32) can be seen to coincide with the gravitino field strength [4]. Finally, 
for n = 3 the field strength Wαβγ given by (3.32) is the linearised version [17] of the N = 1
super-Cotton tensor [11,12]. At the component level, field strength (3.32) for n = 2s contains 
(as the θ -independent component) the bosonic higher spin Cotton tensors proposed by Pope 
and Townsend [40], as shown in [37]. In the n = 2s + 1 case, the fermionic (θ -independent) 
component of Wα(2s+1) was given in [37]. The fermionic component of Wα(3), known as the 
Cottino tensor, was first introduced in [14].

It should be pointed out that (3.32) is the most general solution of the constraint (3.30), as 
was emphasised in [37]. The simplest way to prove this is the observation that the field strength 
(3.32) may be recast in the form5 [37]

4 It was given without derivation in [37].
5 The numerical coefficient in the right-hand side of (3.36) was not computed in [37].
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Wα(n) = (−i)n

2n
Dβ1Dα1 . . .DβnDαnHβ1...βn . (3.36)

It is completely symmetric, Wα1...αn = W(α1...αn), as a consequence of (A.6). If the supercon-
formal prepotential is constrained to be transverse, DβHβα(n−1) = 0, the expression for the 
super-Cotton simplifies,

DβHβα1...αn−1 = 0 =⇒ Wα(n) = ∂α1
β1 . . . ∂αn

βn

Hβ1...βn . (3.37a)

This result can be fine-tuned as follows:

Wα(2s) = �sHα(2s) , (3.37b)

Wα(2s+1) = �s∂β
(α1Hα2...α2s+1)β = �s∂β

α1Hα2...α2s+1β . (3.37c)

Associated with Wα(n)(H) is the gauge-invariant Chern–Simons action

SCS[H ] = in
∫

d3|2zHα(n)Wα(n)(H) , (3.38)

which is also invariant under the superconformal transformations (3.24). The action (3.38) co-
incides for n = 1 with the topological mass term for the Abelian vector multiplet [3]. In the 
n = 3 case, (3.38) proves to be the linearised action for N = 1 conformal supergravity, as may 
be shown using the results in [4,11].

4. N = 2 →N = 1 superspace reduction: massless gauge multiplets

There are two series of the massless half-integer superspin N = 2 multiplets [24], which are 
dual to each other. Here we describe their N = 2 → N = 1 superspace reduction. Throughout 
this section, we fix an integer s > 1.

4.1. Longitudinal formulation

The longitudinal formulation is realised in terms of the following dynamical variables:

V‖ ={
Hα(2s), Gα(2s−2), Ḡα(2s−2)

}
, (4.1)

where the real superfield Hα(2s) = H(α1...α2s ) is unconstrained, and the complex superfield 
Gα(2s−2) =G(α1...α2s−2) is longitudinal linear,

D̄(α1Gα2...α2n−1) = 0 . (4.2)

The dynamical superfields are defined modulo gauge transformations of the form

δHα1...α2s
= gα1...α2s

+ ḡα1...α2s
, (4.3a)

δGα1...α2s−2 = s

2s + 1
D

β
D̄

γ gβγα1...α2s−2 + is∂βγ gβγα1...α2s−2 , (4.3b)

where the complex gauge parameter gα1...α2s
= g(α1...α2s ) is an arbitrary longitudinal linear super-

field, eq. (3.7b). Clearly, Hα(2s) is the higher spin superconformal gauge multiplet with n = 2s

introduced in section 3.1. The superfields Gα(2s−2) and Ḡα(2s−2) should be viewed as compen-
sators. The gauge-invariant action is
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S
‖
s+ 1

2
[H,G, Ḡ] =

(
−1

2

)s
∫

d3|4z
{

1

8
H

α(2s)Dγ D̄2DγHα(2s)

− 1

16

(
[Dβ1 , D̄β2 ]Hβ1β2α(2s−2)

)
[Dγ1 , D̄γ2]Hγ1γ2α(2s−2)

+ s

2

(
∂β1β2H

β1β2α(2s−2)
)
∂γ1γ2Hγ1γ2α(2s−2)

+ i
2s − 1

2s

(
G− Ḡ

)α(2s−2)
∂β1β2Hβ1β2α(2s−2)

+ 2s − 1

2s2
G · Ḡ− 2s + 1

4s2

(
G ·G+ Ḡ · Ḡ)}

. (4.4)

The N = 2 → N = 1 superspace reduction of the superconformal gauge multiplet Hα(2s)

was carried out in section 3.1. It remains to reduce the compensator Gα(2s−2) to N = 1 super-
space. From the point of view of N = 1 supersymmetry, Gα(2s−2) is equivalent to two complex 
unconstrained superfields, which we define as follows:

Gα1...α2s−2 := Gα1...α2s−2 | , �α1...α2s−3 := iD2 β
Gβα1...α2s−3 | . (4.5)

Making use of the gauge transformation (4.3b) gives

δGα1...α2s−2 = 2is2

2s + 1
∂βγ gβγα1...α2s−2 − is

2s + 1
D1 βD2 γ gβγα1...α2s−2 , (4.6a)

D2 βδGβα1...α2s−3 = 2is2

2s + 1
∂βγ D2 δgβγ δα1...α2s−3 − s

2s + 1
D1 β∂γ δgβγ δα1...α2s−3 . (4.6b)

At this stage one should recall that upon imposing the N = 1 supersymmetric gauge conditions 
(3.12) the residual gauge freedom is described by the gauge parameters (3.14a) and (3.14b). 
From (4.6) we read off the gauge transformations of the N = 1 complex superfields (4.5)

δGα(2s−2) = s2

2s + 1
∂βγ ζβγα(2s−2) − (−1)s

i

2
Dβζβα(2s−2) , (4.7a)

δ�α(2s−3) = − s

2(2s + 1)
Dβ∂γ δζβγ δα(2s−3) + (−1)ss∂βγ ζβγα(2s−3) . (4.7b)

In the N = 1 supersymmetric gauge (3.12), Hα(2s) is described by the two real unconstrained 
superfields Hα(2s+1) and Hα(2s) defined according to (3.13), and their gauge transformation laws 
are given by eqs. (3.16a) and (3.16b), respectively. Now it is useful to split each of Gα(2s−2) and 
�α(2s−3) into their real and imaginary parts,

Gα(2s−2) = Xα(2s−2) + iYα(2s−2) , �α(2s−3) = �α(2s−3) + i�α(2s−3) . (4.8)

Then it follows from the gauge transformations (3.16a), (3.16b) and (4.7) that in fact we are 
dealing with two different gauge theories. One of them is formulated in terms of the real uncon-
strained gauge superfields

V‖
s+ 1

2
= {

Hα(2s+1),Xα(2s−2),�α(2s−3)} , (4.9)

which are defined modulo gauge transformations of the form



S.M. Kuzenko, M. Tsulaia / Nuclear Physics B 914 (2017) 160–200 171
δHα1...α2s+1 = (−1)s iD(α1ζα2...α2s+1) , (4.10a)

δXα1...α2s−2 = s2

2s + 1
∂βγ ζβγα1...α2s−2 , (4.10b)

δ�α1...α2s−3 = is

2(2s + 1)
Dβ∂γ δζβγ δα1...α2s−3 , (4.10c)

where the gauge parameter ζα(2s) is real unconstrained. The other theory is described by the 
gauge superfields

V‖
s = {

Hα(2s), Yα(2s−2),�α(2s−3)} , (4.11)

with the following gauge freedom

δHα1...α2s
= (−1)sD(α1ζα2...α2s ) , (4.12a)

δYα1...α2s−2 = −1

2
(−1)sDβζβα1...α2s−2 , (4.12b)

δ�α1...α2s−3 = (−1)ss∂βγ ζβγα1...α2s−3 , (4.12c)

with the gauge parameter ζα(2s−1) being real unconstrained.

4.2. Transverse formulation

The transverse formulation is realised in terms of the following dynamical variables:

V⊥ ={
Hα(2s), �α(2s−2), �̄α(2s−2)

}
, (4.13)

where the real superfield Hα(2s) = H(α1...α2s ) is unconstrained, and the complex superfield 
�α(2s−2) = �(α1...α2s−2) is transverse linear,

D̄
β�βα1...α2s−3 = 0 =⇒ D̄

2�α(2s−2) = 0 . (4.14)

The dynamical superfields are defined modulo gauge transformations of the form

δHα1...α2s
= gα1...α2s

+ ḡα1...α2s
, (4.15a)

δ�α(2s−2) = s

2s + 1
D̄βDγ ḡα(2s−2)βγ . (4.15b)

The gauge-invariant action is

S⊥
s+ 1

2
[H,�, �̄] =

(
−1

2

)s
∫

d3|4z
{

1

8
H

α(2s)DβD̄2DβHα(2s)

+H
α(2s)

(
Dα1D̄α2�α3...α2s

− D̄α1Dα2 �̄α3...α2s

)
+ 2s − 1

s
�̄ · � + 2s + 1

2s

(
� · � + �̄ · �̄)}

. (4.16)

From the point of view of N = 1 supersymmetry, �α(2s−2) is equivalent to two complex 
unconstrained superfields, which we define as follows:

�α1...α2s−2 := �α1...α2s−2 | , ϒα1...α2s−1 := iD2
(α1�α2...α2s−1)| . (4.17)

Making use of the gauge transformation (4.15b) gives
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δ�α(2s−2) = − is

2s + 1
∂βγ ḡα1...α2s−2βγ + is

2s + 1
D1 βD2 γ ḡα1...α2s−2βγ , (4.18a)

iD2
(α1δ�α2...α2s−1) = s

2s + 1

{
i∂γ

βD1 β ḡα1...α2s−1γ + iD1 β∂γ
(α1 ḡα2...α2s−1)βγ

+ ∂β
(α1D

2 γ ḡα2...α2s−1)βγ − i

2
(D1)2D2 γ ḡα1...α2s−1γ

}
. (4.18b)

From here we read off the gauge transformations of the N = 1 superfields (4.17)

δ�α(2s−2) = s

2(2s + 1)
∂βγ ζα1...α2s−2βγ − (−1)s

i

2
Dβζα1...α2s−2β , (4.19a)

δϒα(2s−1) = − 2

2(2s + 1)

{
∂γ

βDβζα1...α2s−1γ + Dβ∂γ
(α1ζα2...α2s−1)βγ

}

− 1

2
(−1)s

{
∂β

(α1ζα2...α2s−1)β − i

2
D2ζα1...α2s−1

}
. (4.19b)

Now it is useful to split each of �α(2s−2) and ϒα(2s−1) into their real and imaginary parts,

�α(2s−2) = Xα(2s−2) + iYα(2s−2) , ϒα(2s−1) = �α(2s−1) + i�α(2s−1) . (4.20)

Then it follows from the gauge transformations (3.16a), (3.16b) and (4.19) that in fact we are 
dealing with two different gauge theories. One of them is formulated in terms of the real uncon-
strained gauge superfields

V⊥
s+ 1

2
= {

Hα(2s+1),Xα(2s−2),�α(2s−1)} , (4.21)

which are defined modulo gauge transformations of the form

δHα1...α2s+1 = (−1)s iD(α1ζα2...α2s+1) , (4.22a)

δXα1...α2s−2 = s

2(2s + 1)
∂βγ ζβγα1...α2s−2 , (4.22b)

δ�α1...α2s−1 = is

2(2s + 1)

{
∂γ

βDβζα1...α2s−1γ + Dβ∂γ
(α1ζα2...α2s−1)βγ

}
, (4.22c)

where the gauge parameter ζα(2s) is real unconstrained. The other theory is described by the 
gauge superfields

V⊥
s = {

Hα(2s), Yα(2s−2),�α(2s−1)} , (4.23)

with the following gauge freedom

δHα1...α2s
= (−1)sD(α1ζα2...α2s ) , (4.24a)

δYα1...α2s−2 = −1

2
(−1)sDβζβα1...α2s−2 , (4.24b)

δ�α1...α2s−1 = −1

2
(−1)s

{
∂β

(α1ζα2...α2s−1)β − i

2
D2ζα1...α2s−1

}
, (4.24c)

with the gauge parameter ζα(2s−1) being real unconstrained.
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4.3. Off-shell formulations for linearised N = 2 supergravity

The limiting case s = 1 for the longitudinal and transverse formulations corresponds to lin-
earised N = 2 supergravity. As discussed in [24], the longitudinal s = 1 model is equivalent to 
the linearised action for type I minimal N = 2 supergravity [41]. The transverse s = 1 model is 
equivalent to the linearised action for w = −1 non-minimal N = 2 supergravity [41].

4.3.1. Longitudinal formulation: type I minimal N = 2 supergravity
In the s = 1 case, the constraint (4.2) means that the N = 2 superfield G is chiral. The specific 

feature of s = 1 is that the second N = 1 superfield in (4.5) does not exist in this case. According 
to (4.7), the scalar G =G| transforms as

δG = 1

3
∂αβζαβ + i

2
Dαζα . (4.25)

We introduce the real and imaginary parts of G, G = X + iY . From the point of view of N = 1
supersymmetry, the original N = 2 theory is equivalent to a sum of two models. One of them 
realises an off-shell N = 1 supergravity multiplet. It is described by the real gauge fields

V‖
3/2 = {

Hαβγ ,X} , (4.26)

with the following gauge transformation law:

δHαβγ = −iD(αζβγ ) , δX = 1

3
∂αβζαβ . (4.27)

The second model realises an off-shell N = 1 gravitino multiplet. It is described by the real 
gauge fields

V‖
1 = {

Hαβ,Y } , (4.28)

with the following gauge transformation laws:

δHαβ = −D(αζβ) , δY = 1

2
Dαζα . (4.29)

4.3.2. Transverse formulation: non-minimal N = 2 supergravity
For s = 1 the transverse linear constraint (4.14) is not defined. However, its corollary 

D̄
2�α(2s−2) = 0 can be used; for s = 1 it defines a complex linear superfield. Then the gauge-

invariant action (4.16) corresponds to the linearised action for w = −1 non-minimal N = 2
supergravity [41]. Upon reduction to N = 1 superspace, this dynamical system describes two 
off-shell N = 1 supermultiplets, a supergravity multiplet and a gravitino multiplet. The super-
gravity multiplet is described by the real gauge superfields

V⊥
3/2 = {

Hαβγ ,X,�α} . (4.30)

The gravitino multiplet is described by the real gauge superfields

V⊥
1 = {

Hαβ,Y,�α} . (4.31)
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4.3.3. Type II minimal N = 2 supergravity
The linearised action for type II minimal N = 2 supergravity [41] is

S(II)[H,S] =
∫

d3|4z
{
− 1

16
H

αβDγ D̄2DγHαβ − 1

4
(∂αβH

αβ)2 + 1

16
([Dα, D̄β ]Hαβ)2

+ 1

4
S[Dα, D̄β ]Hαβ + 1

2
S

2
}

, (4.32)

where the real compensator S̄= S is a linear superfield,

D̄
2
S =D

2
S = 0 . (4.33)

Such a superfield describes the field strength of an Abelian N = 2 vector multiplet. The action 
(4.32) is invariant under the gauge transformations

δHαβ = gαβ + ḡαβ , δS = −1

3
(Dα

D̄
βgαβ − D̄

α
D

βḡαβ) . (4.34)

The linear constraint (4.33) is equivalent to two constraints in the real basis for the covariant 
derivatives. The constraints are{

(D2)2 − (D1)2
}
S= 0 , (4.35a)

D1 αD2
αS= 0 . (4.35b)

Thus S is equivalent to the following real N = 1 superfields

X := S| , Wα := −iD2
αS| , (4.36)

of which the former is unconstrained and the latter is the field strength of an Abelian N = 1
vector multiplet (see, e.g., [4]),

DαWα = 0 . (4.37)

To derive the gauge transformations of X and Wα , we should rewrite the gauge transformation 
of S, eq. (4.34), as well as its corollary D2

αδS, in the real basis for the covariant derivatives. We 
obtain

δS = i

3
∂αβ(gαβ − ḡαβ) + i

3
D1 α(D2 βgαβ + D2 βḡαβ) , (4.38a)

−iD2
αδS = − i

3

(
Dβ∂α

γ gβγ + ∂β
γ Dγ gαβ + i∂α

βD2 γ gβγ

− 1

2
(D1)2D2 βgαβ

)
+ c.c. (4.38b)

From the point of view of N = 1 supersymmetry, the dynamical system under considera-
tion splits into two N = 1 supersymmetric theories. One of them describes the off-shell N = 1
supergravity multiplet realised in terms of the gauge superfields

V(II )
3/2 = {

Hαβγ ,X} , (4.39)

with the gauge transformation of X being identical to that of X in (4.27). The other provides an 
off-shell realisation for N = 1 gravitino multiplet realised in terms of the gauge superfields

V(II )
1 = {

Hαβ,Wα} . (4.40)

Their gauge transformation laws are:

δHαβ = −D(αζβ) , δWα = iDβDαζβ . (4.41)
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4.3.4. Type III minimal N = 2 supergravity
Type III supergravity [41] is described by the action

S(III)[H,T] =
∫

d3|4z
{
− 1

16
H

αβDγ D̄2DγHαβ − 1

8
(∂αβH

αβ)2 + 1

32
([Dα, D̄β ]Hαβ)2

+ 1

4
T∂αβH

αβ + 1

8
T

2
}

, (4.42)

where the real compensator T̄= T is a linear superfield,

D̄
2
T =D

2
T = 0 . (4.43)

The action (4.42) is invariant under the gauge transformations

δHαβ = gαβ + ḡαβ , δT = − i

3
(Dα

D̄
βgαβ + D̄

α
D

βḡαβ) (4.44)

compare with (4.34).
The compensator T is equivalent to the following real N = 1 superfields

T := T| , Zα := −iD2
αT| , (4.45)

of which the former is unconstrained and the latter is the field strength of an Abelian N = 1
vector multiplet,

DαZα = 0 . (4.46)

Upon reduction to N = 1 superspace, the theory describes two off-shell N = 1 supermultiplets, 
a supergravity multiplet and a gravitino multiplet. The supergravity multiplet is realised in terms 
of the gauge superfields

V(III)
3/2 = {

Hαβγ ,Zα} . (4.47)

Their gauge transformations are:

δHαβγ = −iD(αζβγ ) , δZα = −1

3
DβDαDγ ζβγ . (4.48)

The gravitino multiplet is realised in terms of the gauge superfields

V(III)
1 = {

Hαβ,T } , (4.49)

with the gauge freedom

δHαβ = −D(αζβ) , δT = Dαζα . (4.50)

5. Off-shell formulations for massless low spin supermultiplets

Consider an arbitrary N = 2 supersymmetric theory with action

S =
∫

d3|4zL(N=2) , (5.1)

where the Lagrangian L(N=2) is a real scalar N = 2 superfield. The action can be reduced to 
component fields by the rule
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S =
∫

d3x L(N=0) , L(N=0) := 1

16
D

2
D̄

2L(N=2)

∣∣∣
θI =0

, (5.2)

or to N = 1 superspace

S =
∫

d3|2zL(N=1) , L(N=1) := − i

4
(D2)2L(N=2)

∣∣∣ . (5.3)

Here the Lagrangian L(N=1) is a real scalar N = 1 superfield.

5.1. Scalar and vector multiplets

As an example, we consider the low-energy model for an Abelian N = 2 vector multiplet with 
Lagrangian L(N=2) =F(S), where the vector multiplet field strength S is a real linear superfield 
constrained as in (4.33). Upon reduction to N = 1 superspace, the action becomes

S = i

4

∫
d3|2z

{
F ′′(X)WαWα −F ′(X)D2X

}
= i

4

∫
d3|2zF ′′(X)

{
DαXDαX + WαWα

}
, (5.4)

where the N = 1 components of S, X and Wα , are defined as in (4.36). We recall that the N = 1
field strength Wα obeys the Bianchi identity (4.37), which is solved according to (3.35). For a 
free N = 2 vector multiplet, F(S) = −S

2.
The model for a massless N = 1 scalar multiplet is

SSM = − i

2

∫
d3|2zDαXDαX . (5.5)

The model for a massless N = 1 vector multiplet is

SVM = − i

2

∫
d3|2zWαWα = 1

4

∫
d3|2z

{
−iHα�Hα + 1

2
Hα∂αβD2Hβ

}
. (5.6)

Here we have made use of the gauge prepotential Hα for the vector multiplet, eq. (3.35). The 
models SSM and SVM are dual to each other [44]. It is worth reviewing this duality, for we will 
meet other examples of dual N = 1 supersymmetric field theories. Consider a model for the 
vector multiplet Wα coupled to a background superfield 
 with action

S = − i

2

∫
d3|2z
WαWα , DαWα = 0 . (5.7)

This model is equivalent to a first-order model with action

Sfirst-order = − i

2

∫
d3|2z
WαWα +

∫
d3|2zWαDαX , (5.8)

in which the dynamical variables are an unconstrained real spinor superfield Wα and a real scalar 
superfield X. Varying X gives DαWα = 0, and hence Wα = Wα . As a result, the action (5.8)
reduces to (5.7). On the other hand, we can integrate out the auxiliary superfield Wα from (5.8)
to result with the dual action

S(dual) = − i

2

∫
d3|2z
−1DαXDαX . (5.9)

The inverse duality transformation is obtained by replacing (5.9) with an equivalent first-order 
action
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S̃first-order = − i

2

∫
d3|2z
−1YαYα +

∫
d3|2zWαYα , (5.10)

in which Yα is an unconstrained imaginary spinor superfield, and Wα the field strength of a 
vector multiplet.

5.2. Gravitino multiplet

An off-shell formulation for the massless N = 1 gravitino multiplet can be realised in terms 
of two real unconstrained gauge superfields, a three-vector Hαβ = Hβα and a scalar X. The 
superfield Lagrangian has the form

LGM = − i

2

{
HαβD2Hαβ + DαHαβDγ Hγ

β − 2DαHαβDβX − DβXDβX
}

, (5.11)

and proves to be equivalent to the Lagrangian introduced by Siegel [3]. The action associated 
with (5.11) is invariant under the gauge transformations

δHαβ = Dαζβ + Dβζα = 2D(αζβ) , δX = Dαζα (5.12)

where the gauge parameter ζα is real unconstrained. The superfield X is a compensator, for its 
kinetic term in (5.11) has a wrong sign as compared with the scalar multiplet (5.5).

The gravitino multiplet possesses a dual formulation obtained by dualising the scalar com-
pensator in (5.11) into a vector multiplet. The dual Lagrangian is

L
(dual)
GM = − i

2

{
HαβD2Hαβ + 2DαHαβDγ Hγ

β + 2iWαDβHαβ − WαWα

}
. (5.13)

It is invariant under the gauge transformations

δHαβ = Dαζβ + Dβζα , δWα = 2iDβDαζβ . (5.14)

5.3. Supergravity multiplet

An off-shell formulation for the massless N = 1 supergravity multiplet can be realised in 
terms of two real unconstrained gauge superfields, a symmetric rank-3 spinor Hαβγ = H(αβγ )

and a scalar X. The superfield Lagrangian is

LSGM = i

4
Hαβγ �Hαβγ − 1

8
Hαβγ ∂γρD2Hαβ

ρ − i

4
∂αβHαβγ ∂ρσ Hρσ γ

+ 1

2
∂αβHαβγ Dγ X + i

2
Dγ XDγ X . (5.15)

The Lagrangian (5.15) is invariant under the gauge transformations [4]

δHαβγ = i(Dαζβγ + Dβζαγ + Dγ ζαβ) = 3iD(αζβγ ) , δX = −∂αβζαβ . (5.16)

The supergravity multiplet possesses a dual formulation obtained by dualising the scalar com-
pensator in (5.15) into a vector multiplet. The dual Lagrangian is

L
(dual)
SGM = i

4
Hαβγ �Hαβγ − 1

8
Hαβγ ∂γρD2Hαβ

ρ − i

8
∂αβHαβγ ∂ρσ Hρσ γ

+ i
∂αβHαβγ Wγ + i

WαWα . (5.17)

2 2
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It is invariant under gauge transformations

δHαβγ = i(Dαζβγ + Dβζαγ + Dγ ζαβ) , δWα = 1

2
DβDαDγ ζβγ . (5.18)

At this stage it is worth pausing in order to discuss some of the results obtained. According to 
the classification of linearised off-shell actions for 4D N = 1 supergravity [42], there are three 
minimal models with 12 + 12 off-shell degrees of freedom. The three-dimensional N = 2 ana-
logues of these models (with 8 + 8 off-shell degrees of freedom) were constructed in [41] and 
called the type I, type II and type III minimal supergravity theories. We discussed these models 
in sections 4.3.1, 4.3.3 and 4.3.4, respectively. The difference between the 3D N = 2 minimal 
supergravity models becomes quite transparent upon their reduction to N = 1 superspace. Every 
N = 2 action becomes a sum of two N = 1 actions, one of which describes the gravitino multi-
plet and the other corresponds to the supergravity multiplet. Each of the N = 1 actions is realised 
in terms of two N = 1 superfields, of which one is universally the superconformal gauge field 
(Hαβ for the gravitino multiplet, Hαβγ for the supergravity multiplet), while the other is a com-
pensator. The difference between the three minimal N = 2 supergravity models is encoded in 
different types of N = 1 compensators. In the case of type I supergravity, both the N = 1 super-
gravity and gravitino multiplets are characterised by scalar compensators, devoted X and Y , 
respectively, in section 4.3.1. The type II and type III formulations are obtained by dualising one 
of the scalar X and Y into an N = 1 vector multiplet. In principle, it is possible to dualise both 
X and Y into vector multiplets. This would lead to a new linearised action for N = 2 supergrav-
ity involving a double vector multiplet [43] as the corresponding N = 2 compensator. However, 
such an action proves to possess N = 2 supersymmetry with an intrinsic central charge, which 
is less interesting than the standard N = 2 Poincaré supersymmetry.

5.4. Transverse formulation

The models (5.11) and (5.15) correspond to the longitudinal formulation discussed in sec-
tion 4.3.1. It is of interest to compare them with the models originating within the transverse 
formulation sketched in section 4.3.2.

In addition to the dynamical variables Hαβ and X, the gravitino multiplet now contains an 
auxiliary spinor superfield �α . The Lagrangian has the form

L⊥
GM = − i

2
HαβD2Hαβ − i

2
DαHαβDβX − 1

2
�αDβHαβ

+ i

4
DαXDαX − i

2
�α�α − 1

2
�αDαX . (5.19)

The Lagrangian (5.19) is invariant under the gauge transformations

δHαβ = Dαζβ + Dβζα , δX = Dαζα , δ�α = ∂αβζ β + i

2
D2ζα . (5.20)

The superfield �α can be integrated out using its equation of motion

�α = − i

2
DβHαβ + i

2
DαX . (5.21)

Then the Lagrangian (5.19) reduces to (5.11).
Within the transverse formulation, the supergravity multiplet contains not only the dynamical 

variables Hαβγ and X, but also an auxiliary spinor superfield �α. The corresponding Lagrangian 
is
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L = i

4
Hαβγ �Hαβγ − 1

8
Hαβγ D2∂γρHαβ

ρ − 1

2
∂αβHαβγ (i�γ + Dγ X)

+ i

4
�α�α + �αDαX − i

2
DαXDαX . (5.22)

The action associate with this Lagrangian is invariant under the gauge transformations

δHαβγ = i(Dαζβγ + Dβζαγ + Dγ ζαβ) , (5.23a)

δ�α = i(∂βγ Dβζαγ − Dβ∂αγ ζ βγ ) , (5.23b)

δX = −i∂αβζαβ . (5.23c)

The auxiliary superfield �α can be integrated out using its equation of motion

�α = ∂βγ Hαβγ + 2iDαX . (5.24)

Then the Lagrangian (5.22) turns into (5.15).

6. Massless higher spin supermultiplets

To derive off-shell formulations for the massless higher spin N = 1 supermultiplets, one can 
apply the N = 2 → N = 1 superspace reduction to the actions (4.4) and (4.16). Here we will 
follow a different approach. We make use of the two pieces of input information: (i) the four sets 
of dynamical variables V‖

s+ 1
2
, V‖

s , V⊥
s+ 1

2
and V⊥

s defined by eqs. (4.9) (4.11), (4.21) and (4.23), 

respectively; and (ii) the corresponding gauge transformation laws given by eqs. (4.10), (4.12), 
(4.22) and (4.24), respectively. To construct gauge-invariant actions, we will make use of the 
oscillator realisation for higher spin fields, see [45] for a review.6 The oscillator construction is 
expected to be useful for deriving interaction vertices for higher spin supermultiplets.

Before we proceed, a comment on the terminology used below is in order. In three dimensions, 
the notion of superspin is defined only in the massive case, see section 2.2. When speaking of a 
massless higher superspin theory in three dimensions, we will refer to the kinematic structure of 
the field variables, their gauge transformation laws and the gauge-invariant action. Given an inte-
ger s > 1, the massless supersymmetric gauge theories described by the dynamical variables V‖

s

or V⊥
s will be referred to as massless integer superspin multiplets, for the gauge superfield Hα(2s)

carries an even number of spinor indices. When speaking of massless half-integer superspin 
multiplets, we mean the massless supersymmetric gauge theories described by the dynamical 
variables V‖

s+ 1
2

or V⊥
s+ 1

2
, for the gauge superfield Hα(2s+1) carries an odd number of spinor in-

dices.

6.1. Auxiliary oscillators

In order to simplify computations for higher spin superfields, let us introduce auxiliary oscil-
lators defined by the commutation relations

[aα, aβ+] = εαβ . (6.1)

An “n-particle” ket-state |�n〉 in this auxiliary Fock space is defined as

6 The oscillator formulation for the off-shell massless higher spin N = 1 supermultiplets in four dimensions [25,26]
was presented in [46].
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|�n〉 = 1

n!�α1α2...αn(z)a
α1+aα2+ . . . aαn+|0〉 , (6.2)

with the Fock vacuum defined by aα|0〉 = 0. Here �α(n)(z) is a symmetric rank-n spinor super-
field. The bra-state 〈�n| is defined similarly,

〈�n| = 1

n! 〈0|aα1aα2 . . . aαn�α1α2...αn(z) . (6.3)

We introduce the following operators

γ = aαDα , γ + = aα+Dα , (6.4a)

P = aα∂αβDβ , P + = aα+∂αβDβ , (6.4b)

Kl = aα1+ . . . aαl+∂α1β1 . . . ∂αlβl
aβ1 . . . aβl . (6.4c)

Some properties of these operators are listed in Appendix B.
The action of the operators (6.4a)–(6.4c) on a state of the form (6.2) can be translated as 

follows

γ |�n〉 → Dβ�β
α1...αn−1 , γ +|�n〉 → (n + 1)D(α1�α2...αn+1) , (6.5a)

P |�n〉 → Dβ∂βγ �γ
α1...αn−1 , P +|�n〉 → (n + 1)Dβ∂β(α1�α2...αn+1) , (6.5b)

Kl |�n〉 → (−1)l
n!

(n − l)!∂
β1

(α1 . . . ∂βl
αl

�αl+1...αn)βα...βl
. (6.5c)

We also introduce the “number operator” N = aα+aα which acts on |�n〉 as

N |�n〉 = n|�n〉 . (6.6)

6.2. Integer superspin multiplets

In this and the next subsections, we present massless gauge theories realised in terms of the 
dynamical variables V‖

s and V‖
s+ 1

2
defined by eqs. (4.11) and (4.9), respectively.

A Lagrangian formulation for a massless multiplet of integer superspin s, with s > 1, con-
tains a gauge superfield |H2s〉, a compensator |Y2s−2〉 and an auxiliary superfield |�2s−3〉. The 
superfield Lagrangian, L‖

s , is

(−1)s

(2s − 1)!L
‖
s = i

2
〈H2s |ND2|H2s〉 − i

2
〈H2s |γ +γ |H2s〉

− i

2
〈Y2s−2|γ 2|H2s〉 + i

2
〈H2s |γ +2|Y2s−2〉 + i

2
〈Y2s−2|D2|Y2s−2〉

− 〈�2s−3|γ |Y2s−2〉 − 〈Y2s−2|γ +|�2s−3〉 + 2i〈�2s−3||�2s−3〉 . (6.7)

The corresponding action proves to be invariant under gauge transformations

δ|H2s〉 = γ +|ζ2s−1〉 , (6.8a)

δ|Y2s−2〉 = γ |ζ2s−1〉 , (6.8b)

δ|�2s−3〉 = − i

2
γ 2|ζ2s−1〉 . (6.8c)

The equation of motion for |�2s−3〉 expresses this field in terms of |Y2s−2〉,



S.M. Kuzenko, M. Tsulaia / Nuclear Physics B 914 (2017) 160–200 181
|�2s−3〉 = − i

2
γ |Y2s−2〉 . (6.9)

Plugging this expression back into the Lagrangian (6.7) gives

(−1)s

(2s − 1)!Ls = i

2
〈H2s |ND2|H2s〉 − i

2
〈H2s |γ +γ |H2s〉 − i

2
〈Y2s−2|γ 2|H2s〉

+ i

2
〈H2s |γ +2|Y2s−2〉 + i

2
〈Y2s−2|D2|Y2s−2〉

+ i

2
〈Y2s−2|γ +γ |Y2s−2〉 . (6.10)

The above results can be readily recast in terms of ordinary superfields. We introduce the 
gauge superfields Hα(2s), Yα(2s−2) and �α(2s−3) as follows:

|H2s〉 = 1

(2s)!Hα1...α2s
aα1+ . . . aα2s+|0〉 , (6.11a)

|Y2s−2〉 = 1

(2s − 2)!Yα1...α2s−2a
α1+ . . . aα2s−2+|0〉 , (6.11b)

|�2s−3〉 = 1

(2s − 3)!�α1...α2s−3a
α1+ . . . aα2s−3+|0〉 . (6.11c)

The gauge parameters ζα(s2−1) are introduced similarly,

|ζ2s−1〉 = 1

(2s − 1)!ζα1...α2s−1a
α1+ . . . aα2s−1+|0〉 . (6.12)

The Lagrangian (6.7) is equivalently written as

(−1)sL‖
s = i

2
Hα1...α2s

D2Hα1...α2s + i

2
DβHβα1...α2s−1Dγ Hγα1...α2s−1

+ (2s − 1)Yα1...α2s−2∂βγ Hβγα1...α2n−2 + i

2
(2s − 1)Yα1...α2s−2D

2Yα1...α2s−2

+ 2i(2s − 1)(2s − 2)�α1...α2s−3�
α1...α2s−3

− 2(2s − 1)(2s − 2)�α1...α2s−3DβYβα1...α2s−3 , (6.13)

while the Lagrangian (6.10) coincides with

(−1)sLs = i

2
Hα1...α2s

D2Hα1...α2s + i

2
DβHβα1...α2s−1Dγ Hγα1...α2s−1

+ (2s − 1)Yα1...α2s−2∂βγ Hβγα1...α2s−2 + i

2
(2s − 1)Yα1...α2s−2D

2Yα1...α2s−2

− i(s − 1)(2s − 1)DβYβα1...α2s−3Dγ Yγα1...α2s−3 . (6.14)

The gauge transformation laws (6.8) turn into

δHα1...α2s
= 2sD(α1ζα2...α2s ) , (6.15a)

δYα1...α2s−2 = −Dβζβα1...α2s−2 , (6.15b)

δ�α1...α2s−3 = 1

2
∂βγ ζβγα1...α2s−3 . (6.15c)

Upon inspecting (6.14) one may see that the Lagrangian is also well defined for the cases 
s = 0 and s = 1 which have been excluded from the above consideration. For s = 0 only the first 
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term in the right-hand side of (6.14) remains, and the resulting Lagrangian corresponds to the 
massless scalar multiplet described by the action (5.5). In the s = 1 case, (6.14) coincides with 
the gravitino multiplet Lagrangian (5.11).

Since the Lagrangian (6.14) defines an off-shell massless supermultiplet for every integer s =
0, 1, 2, . . . , we may introduce a generating formulation for the massless multiplets of arbitrary 
superspin. It is described by the Lagrangian

L = i

2
〈H |(−1)N/2(D2 − N−1γ +γ )|H 〉

+ i

2
〈Y |(−1)N/2γ 2N−1|H 〉 − i

2
〈H |N−1γ +2(−1)N/2|Y 〉

− i

2
〈Y |(−1)N/2(D2 + γ +γ )(N + 2)−1|Y 〉

=
∞∑

s=0

1

(2s)!Ls , (6.16)

in which the dynamical variables are given by

|H 〉 =
∞∑

s=0

1

(2s)!Hα1...α2s
aα1+ . . . aα2s+|0〉 , (6.17a)

|Y 〉 =
∞∑

s=0

1

(2s)!Gα1...α2s
aα1+ . . . aα2s+|0〉 . (6.17b)

The action associated with (6.16) is invariant under gauge transformations of the form

δ|H 〉 = γ +|ζ 〉 , δ|Y 〉 = γ |ζ 〉 , (6.18)

where the gauge parameter is

|ζ 〉 =
∞∑

s=0

1

(2s + 1)!ζα1...α2s+1a
α1+ . . . aα2s+1+|0〉 . (6.19)

6.3. Half-integer superspin multiplets

A Lagrangian formulation for a massless multiplet of half-integer superspin (s + 1
2 ), with 

s > 1, contains a gauge superfield |H2s+1〉, a compensator |X2s−2〉 and an auxiliary superfield 
|�2s−3〉. The superfield Lagrangian, L‖

s+ 1
2
, is

(−1)s

(2s)! L
‖
s+ 1

2
= i

4
〈H2s+1|2N� + iK1D

2 − γ +2γ 2|H2s+1〉

+ i

2
〈H2s+1|γ +3|X2s−2〉 + i

2
〈X2s−2|γ 3|H2s+1〉

+ i〈X2s−2|(N + 2)D2|X2s−2〉 + 〈�2s−3|γ |X2s−2〉
+ 〈X2s−2|γ +|�2s−3〉 − i〈�2s−3||�2s−3〉 . (6.20)

The corresponding action proves to be invariant under the gauge transformations
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δ|H2s+1〉 = iγ +|ζ2s〉 , (6.21a)

δ|X2s−2〉 = i

2
γ 2|ζ2s〉 , (6.21b)

δ|�2s−3〉 = 1

2
γ 3|ζ2s〉 . (6.21c)

The field |�2s−3〉 can be integrated out using its equation of motion

|�2s−3〉 = −iγ |X2s−2〉 . (6.22)

Then the Lagrangian (6.20) turns into

(−1)s

(2s)! Ls+ 1
2

= i

4
〈H2s+1|2N� + iK1D

2 − γ +2γ 2|H2s+1〉 + i

2
〈H2s+1|γ +3|X2s−2〉

+ i

2
〈X2s−2|γ 3|H2s+1〉 − i〈X2s−2|γ +γ − (N + 2)D2|X2s−2〉 . (6.23)

Introducing the expansions

|H2s+1〉 = 1

(2s + 1)!Hα1...α2s+1a
α1+ . . . aα2s+1+|0〉 , (6.24a)

|X2s−2〉 = 1

(2s − 2)!Xα1...α2s−2a
α1+ . . . aα2s−2+|0〉 , (6.24b)

|�2s−3〉 = 1

(2s − 3)!�α1...α2a−3a
α1+ . . . aα2a−3+|0〉 (6.24c)

for the fields, and

|ζ2s〉 = 1

(2s)!ζα1...α2s
aα1+ . . . aα2s+|0〉 (6.25)

for the gauge parameters, one gets from (6.20) the Lagrangian in terms of the three fields

(−1)sL‖
s+ 1

2
= i

2
Hα1...α2s+1�Hα1...α2s+1 − 1

4
Hα1...α2sβ∂β

γ D2Hγα1...α2s

− i

2
s∂βγ Hβγα1...α2s−1∂δλH

δλα1...α2s−1

− 2s(2s − 1)Xα1...α2s−2∂βγ DδH
βγ δα1...α2s−2

+ i(2s)2(2s − 1)Xα1...α2s−2D
2Xα1...α2s−2

− i2s(2s − 1)(2s − 2)�α1...α2s−3�
α1...α2s−3

+ 4s(2s − 1)(2s − 2)�α1...α2s−3DβXβα1...α2s−3 (6.26)

from (6.23) the Lagrangian in terms of two fields

(−1)sL
s+ 1

2
= i

2
Hα1...α2s+1�Hα1...α2s+1 − 1

4
Hα1...α2sβ∂β

γ D2Hγα1...α2s

− i

2
s∂βγ Hβγα1...α2s−1∂δλH

δλα1...α2s−1

− 2s(2s − 1)Xα1...α2s−2∂βγ DδH
βγ δα1...α2s−2

+ i(2s)2(2s − 1)Xα1...α2s−2D
2Xα1...α2s−2

+ 4is(2s − 1)(2s − 2)DβXβα ...α Dγ Xγα1...α2s−3 . (6.27)
1 2s−3
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From (6.21) we read off the gauge transformations

δHα1...α2s+1 = i(2s + 1)D(α1ζα2...α2s+1) , (6.28a)

δXα1...α2s−2 = −1

2
∂βγ ζβγα1...α2s−2 , (6.28b)

δ�α1...α2s−3 = i

2
∂βγ Dδζβγ δα1...α2s−3 . (6.28c)

It can be seen that the Lagrangian (6.27) is well defined for the cases s = 0 and s = 1 excluded 
from the above consideration. For s = 0 it coincides (modulo an overall factor of) with the La-
grangian for the vector multiplet, eq. (5.6). For s = 1 it coincides (modulo an overall factor) with 
the Lagrangian for the supergravity multiplet, eq. (5.15).

Generating formulation

L = i

4
〈H |(−1)(N−1)/2(2N� + iK1D

2 − γ +2γ 2)N−1|H 〉

+ i

2
〈H |(−1)(N−1)/2N−1γ +3|X〉 + i

2
〈X|γ 3(−1)(N−1)/2N−1|H 〉

+ i〈X|(−1)N/2(γ +γ − (N + 2)D2)(N + 3)−1|X〉

=
∞∑

s=0

1

(2s + 1)!Ls+ 1
2

, (6.29)

where

|H 〉 =
∞∑

s=0

1

(2s + 1)!Hα1...α2s+1a
α1+ . . . aα2s+1+|0〉 , (6.30a)

|X〉 =
∞∑

s=0

1

(2s)!gα1...α2s
aα1+ . . . aα2s+|0〉 . (6.30b)

Gauge transformation

δ|H 〉 = iγ +|ζ 〉 , δ|X〉 = i

2
γ 2|ζ 〉 , (6.31)

where the gauge parameter is

|ζ 〉 =
∞∑

s=0

1

(2s)!ζα1...α2s
aα1+ . . . aα2s+|0〉 . (6.32)

6.4. Transverse formulation

In this subsection, we briefly describe massless gauge theories realised in terms of the dynam-
ical variables V⊥

s and V⊥
s+ 1

2
defined by eqs. (4.23) and (4.21), respectively.

6.4.1. Integer superspins
A Lagrangian formulation for a massless multiplet of integer superspin s, with s > 1, con-

tains a gauge superfield |H2s〉, a compensator |Y2s−2〉 and an auxiliary superfield |�2s−1〉. The 
Lagrangian for this supermultiplet, L⊥

s , is
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(−1)s

(2s − 1)!L
⊥
s = i

2
〈H2s |ND2|H2s〉 − i〈Y2s−2|γ 2|H2s〉 + i〈H2s |γ +2|Y2s−2〉

+ 〈H2s |γ +|�2s−1〉 + 〈�2s−1|γ ||H2s〉 + i

2
〈Y2s−2|(N + 2)D2|Y2s−2〉

− 2i〈�2s−1||�2s−1〉 − 〈Y2s−2|γ |�2s−1〉 + 〈�2s−1|γ +|Y2s−2〉 . (6.33)

The corresponding action is invariant under gauge transformations

δ|H2s〉 = γ +|ζ2s−1〉 , (6.34a)

δ|Y2s−2〉 = γ |ζ2s−1〉 , (6.34b)

δ|�2s−1〉 = (K1 + i

2
D2)|ζ2s−1〉 . (6.34c)

The auxiliary superfield |�2s−1〉 cane be integrated out using its equation of motion

|�2s−1〉 = − i

2
(γ |H2s〉 + γ +|Y2s−2〉) . (6.35)

Then the Lagrangian (6.33) reduces to (6.10).
The fields and the gauge parameters can be expanded in terms of the oscillators, in complete 

analogy with our analysis in subsection 6.2. Then the gauge transformation laws (6.34) turn into

δHα1...α2s
= 2sD(α1ζα2...α2s ) , (6.36a)

δYα1...α2s−2 = −Dβζβα1...α2s−2 , (6.36b)

δ�α1...α2s−1 = −2s∂β
(α1ζα2...α2s−1)β + i

2
D2ζα1...α2s−1 , (6.36c)

and the Lagrangian (6.33) becomes

(−1)sL⊥
s = i

2
Hα1...α2s

D2Hα1...α2s + 2(2s − 1)Yα1...α2s−2∂βγ Hβγα1...α2s−2

+ 2�α1...α2s−1DβHβα1...α2s−1 + is(2s − 1)Yα1...α2s−2D
2Yα1...α2s−2

− 2i�α1...α2s−1�
α1...α2s−1 − 2(2s − 1)Yα1...α2s−2Dβ�βα1...α2s−2 . (6.37)

6.4.2. Half-integer superspins
A Lagrangian formulation for a massless multiplet of half-integer superspin (s + 1

2 ), with 
s > 1, contains a gauge superfield |H2s+1〉, a compensator |X2s−2〉 and an auxiliary superfield 
|�2s−1〉. The Lagrangian, L⊥

s+ 1
2
, is

(−1)s

(2s)! L
⊥
s+ 1

2
= i

4
〈H2s+1|2N� + iK1D

2|H2s+1〉 + 〈H2s+1|γ +2|�2s−1〉

− 〈�2s−1|γ 2|H2s+1〉 + 〈H2s+1|γ +3|X2s−2〉 + 〈X2s−2|γ 3|H 〉
+ i〈X2s−2|D2|X2s−2〉 + 4i〈�2s−1||�2s−1〉 − 2〈�2s−1|γ +|X2s−2〉
+ 2〈X2s−2|γ |�2s−1〉 . (6.38)

The corresponding action is invariant under gauge transformations
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δ|H2s+1〉 = iγ +|ζ2s〉 , (6.39a)

δ|X2s−2〉 = i

2
γ 2|ζ2s〉 , (6.39b)

δ|�2s−1〉 =
(

1

2
γ +γ 2 + i

2
P

)
|ζ2s〉 . (6.39c)

The auxiliary superfield |�2s−1〉 can be integrated out using it equation of motion

|�2s−1〉 = − i

4
γ 2|H2s〉 − i

2
γ +|X2s−2〉 , (6.40)

which turns the Lagrangian (6.38) into (6.23).
The above results can be rewritten in terms of ordinary superfields (compare with subsec-

tion 6.3). The gauge transformation laws (6.39) are equivalent to

δHα1...α2s+1 = (2s + 1)iD(α1ζα2...α2s+1) , (6.41a)

δXα1...α2s−2 = −1

2
∂βγ ζβγα1...α2s−2 , (6.41b)

δ�α1...α2s−1 = i

2
(2s − 1)∂βγ D(α1ζα2...α2s−1)βγ + i

2
∂βγ Dβζγα1...α2s−1 . (6.41c)

The Lagrangian (6.38) is equivalent to

(−1)sL
s+ 1

2
= i

2
Hα1...α2s+1�Hα1...α2s+1 − 1

4
Hα1...α2sβ∂β

γ D2Hγα1...α2s

− 4is�α1...α2s−1∂βγ Hβγα1...α2s−1

− 4s(2s − 1)Xα1...α2s−2∂βγ DδH
βγ δα1...α2s−2

+ 2is(2s − 1)Xα1...α2s−2D
2Xα1...α2s−2 + 8is�α1...α2s−1�

α1...α2s−1

+ 8s(2s − 1)Xα1...α2s−2Dβ�βα1...α2s−2 . (6.42)

7. Massive higher spin supermultiplets

Before presenting the Lagrangians for massive supermultiplets and analysing the correspond-
ing equations of motion, it is useful to reformulate some of the results given in subsection 3.2 in 
terms of the auxiliary oscillators used in the previous section.

7.1. Higher spin super-Cotton tensor

One can check that the higher spin super-Cotton tensor (3.32) can be written in the form

|Wn〉 = (−1)n

⎛
⎝[n/2]∑

p=0

ap�pKn−2p + i
[n/2]∑
p=0

bp�pD2Kn−2p−1

⎞
⎠ |Hn〉 . (7.1)

The expression (7.1) is invariant under gauge transformations

δ|Hn〉 = γ +|
n−1〉 (7.2)

provided the constant coefficients ap and bp satisfy the equations

ap(n − 2p) − 2bp = 0 , ap+1 − 2bp(n − 2p − 1) = 0 . (7.3)
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These recurrence relations are solved by

ap =
(

n

2p

)
(2p)!a0 , bp = 1

2

(
n

2p + 1

)
(2p + 1)!a0 . (7.4)

In order to match the overall coefficient in (3.32), a0 has to be

a0 = 1

n!2n
. (7.5)

One may check that the gauge-invariant field strength (7.1) satisfies the Bianchi identity

γ |Wn〉 = 0 . (7.6)

7.2. Superfield Lagrangian

Now let us turn to describing our off-shell massive higher spin N = 1 supermultiplets. The 
Lagrangian for a massive superspin- n

2 multiplet is defined by

L(n/2)

massive = 1

(n − 1)!Ln/2 + in

2
nλ(〈Hn||Wn〉 + 〈Wn||Hn〉) , (7.7)

where the massless Lagrangian Ln/2 is given either by the equation (6.10) for n = 2s, or by 
(6.23) for n = 2s + 1. (We recall that the oscillator realisation for the super-Cotton tensor |Wn〉
is described in subsection 7.1.) Thus the massive Lagrangian is obtained from the massless one 
by adding the Chern–Simons like term.

The action generated by (7.7) is gauge invariant since both terms in the action are separately 
gauge invariant. Indeed the term proportional to λ is invariant under the transformations (7.2)
due to the gauge invariance of |Wn〉 and the Bianchi identities (7.6). The gauge invariance of the 
first term was established in section 6. Note also that the mass term contains only the physical 
gauge superfield |Hn〉 and does not depend on the compensator.

In the integer superspin case, n = 2s, the gauge-invariant equations of motion derived from 
(7.7) are

|E2s〉 + 2sλ|W2s〉 = 0 , (7.8a)

|Q2s−2〉 = 0 , (7.8b)

where we have introduced the following gauge-invariant field strengths:

|E2s〉 = i

2
(ND2 − γ +γ )|H2s〉 + i

2
γ +2|Y2s−2〉 , (7.9a)

|Q2s−2〉 = − i

2
γ 2|H2s〉 + i

2
(D2 + γ +γ )|Y2s−2〉 . (7.9b)

These field strengths are gauge invariant, since they are proportional to the equations of motion 
for the massless model Ls . The field strengths |E2s〉 and |Q2s−2〉 obey the Bianchi identity

γ |E2s〉 = γ +|Q2s−2〉 , (7.10)

which expresses the gauge invariance of the massless action. Therefore the field strength |E2s〉
is transverse provided the equation of motion (7.8b) holds, that is

|Q2s−2〉 = 0 =⇒ γ |E2s〉 = 0 . (7.11)
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We point out that (7.8b) is the equation of motion for the compensator |Y2s−2〉.
One can consider the half-integer superspin case in a similar way. The corresponding equa-

tions of motion are

|E2s+1〉 + (−1)s(2s + 1)λ|W2s+1〉 = 0 , (7.12a)

|R2s−2〉 = 0 , (7.12b)

where we have introduced the gauge-invariant field strengths:

|E2s+1〉 = 1

4
(2N� + iK1D

2 − γ +2γ 2)|H2s+1〉 + 1

2
γ +3|X2s−2〉 , (7.13a)

|R2s−2〉 = − i

2
γ 3|H2s+1〉 − i((N + 2)D2 − γ +γ )|X2s−2〉 . (7.13b)

The Bianchi identity relating the field strengths (7.13a) and (7.13b) reads

γ |E2s+1〉 = − i

2
γ +2|R2s−2〉 . (7.14)

Therefore the field strength |E2s+1〉 satisfies the equation (7.11) provided |R2s−2〉 = 0.
Now we are in a position to analyse equations of motions for massive supermultiplets. We 

start with gravitino and supergravity multiplets and then generalise the analysis for an arbitrary 
superspin.

7.3. Massive gravitino multiplet

For massive gravitino multiplet one has the following expressions for the fields strength |E2〉
and |Q0〉:

|E2〉 = i

2
(D2 − iK1)|H2〉 + i

2
γ +2|Y0〉 , (7.15a)

|Q0〉 = − i

2
γ 2|H2〉 + i

2
D2|Y0〉 . (7.15b)

Taking the linear combination

|W2〉 := i

4
(D2|E2〉 − γ +2|Q0〉) (7.16)

and using the expressions (B.13) and (B.14) one obtains

|W2〉 = 1

8
(K2 + 2� + iK1D

2)|H2〉 , (7.17)

which is the same as the superconformal field strength (7.1) for n = 2.
Let us analyse the equations of motion. As mentioned above, the equation of motion (7.8b)

for the compensator is |Q0〉 = 0. Furthermore, the equation of motion for the field strength |E2〉
is

|E2〉 + i

2
λD2|E2〉 = 0 (7.18)

and, due to the Bianchi identity (7.10), the field strength satisfies γ |E2〉 = 0. The equation (7.18)
in turn implies
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(� − m2)|E2〉 = 0 , m2 = 1

λ2
. (7.19)

It is important to notice that since the Chern–Simons like mass term in (7.7) does not contain 
compensator superfields one can immediately recover two dually invariant formulations for the 
gravitino multiplet, alike those in the subsection 5.2. Explicitly the field strength has the form

Wα1α2 = −1

4
Dβ1Dα1D

β2Dα2Hβ1β2 (7.20)

and, therefore, the Lagrangian for the massive gravitino multiplet has the form

LGM = − i

2

{
HαβD2Hαβ + DαHαβDγ Hγ

β − 2DαHαβDβX − DβXDβX
}

(7.21)

− λHαβWαβ ,

while the dual Lagrangian is

L
(dual)
GM = − i

2

{
HαβD2Hαβ + 2DαHαβDγ Hγ

β + 2iWαDβHαβ − WαWα

}
(7.22)

− λHαβWαβ .

7.4. Massive supergravity multiplet

One can perform a similar procedure for the supergravity multiplet. The corresponding field 
strengths are

|E3〉 = 1

4
(6� + iK1D

2 − γ +2γ 2)|H3〉 + 1

2
γ +3|X0〉 , (7.23a)

|R0〉 = − i

2
γ 3|H3〉 − 2iD2|X0〉 . (7.23b)

Taking a linear combination

|W3〉 := 1

3! (−iD2|E3〉 + γ +3|R0〉) , (7.24)

one obtains

|W3〉 = − 1

3! · 8
(K3 + 6K1� + 3i

2
K2D

2 + 3i�D2)|H3〉 , (7.25)

which is the field strength (7.1) for n = 3. The equation of motion for the compensator is 
|R0〉 = 0, whereas the equation of motion with respect to |H3〉 is

|E3〉 + i

2
λD2|E3〉 = 0 (7.26)

which in turn implies

(� − m2)|E3〉 = 0 , m2 = 1

λ2
. (7.27)

Similar to the case of the gravitino multiplet, one can present two dual formulations for the 
massive supergravity multiplet. Since the linearised super-Cotton tensor is independent of the 
compensator,
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Wα1α2α3 = i

8
Dβ1Dα1D

β2Dα2D
β3Dα3Hβ1β2β3 , (7.28)

one can write the Lagrangian for the massive supergravity multiplet

LSGM = i

4
Hαβγ �Hαβγ − 1

8
Hαβγ ∂γρD2Hαβ

ρ − i

4
∂αβHαβγ ∂ρσ Hρσ γ

+ 1

2
∂αβHαβγ Dγ X + i

2
Dγ XDγ X + iλHαβγ Wαβγ , (7.29)

as well as its dual form

L
(dual)
SGM = i

4
Hαβγ �Hαβγ − 1

8
Hαβγ ∂γρD2Hαβ

ρ − i

8
∂αβHαβγ ∂ρσ Hρσ γ

+ i

2
∂αβHαβγ Wγ + i

2
WαWα + iλHαβγ Wαβγ . (7.30)

7.5. Arbitrary superspin

In order to analyse the case of an arbitrary integer superspin, let us consider the gauge-
invariant action for n = 2s

S
(s)
massive =

∫
d3|2z

{
Ls

(
Hα(2s), Yα(2s−2)

) + (−1)sλHα(2s)Wα(2s)(H)
}

, (7.31)

where the Lagrangian Ls is given by (6.14). Let us analyse the equations of motion. The gauge 
invariance (6.15) allows us to choose a gauge Yα(2s−2) = 0 in which the equation of motion 
for Yα(2s−2) amounts to ∂βγ Hβγα(2s−2) = 0, and the residual gauge freedom is constrained by 
Dβζβα(s2−2) = 0. On the mass shell, the residual gauge freedom can be used to impose a stronger 
condition on the gauge prepotential,

DβHβα(2s−1) = 0 . (7.32)

In this gauge the super-Cotton tensor becomes

Wα(2s) = �sHα(2s) , (7.33)

in accordance with (3.37). Under the same gauge condition, the equation of motion for Hα(2s)

reduces to
i

2
D2Hα(2s) + λWα(2s) = 0 . (7.34)

Combining the equations (7.33) and (7.34) gives

�(�2s−1 − λ−2
)
Hα(2s) = 0 . (7.35)

If we choose the solution �Hα(2s) = 0, the super-Cotton tensor vanishes, Wα(2s) = 0, in accor-
dance with (7.33). Then the equations of motion reduce to the massless ones, which means the 
gauge field can be completely gauged away. Thus the nontrivial solutions obey the equations(�2s−1 − λ−2

)
Hα(2s) = 0 , (7.36)

which implies7

7 Compare with a similar analysis in the N = 2 case [24].
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(� − m2
)
Hα(2s) = 0 , m = 1

|λ|1/(2s−1)
. (7.37)

The equations (7.33) and (7.34) also imply that Wα(2s) is an on-shell massive superfield in the 
sense of (2.14),( i

2
D2 + mσ

)
Wα(2s) = 0 , σ = (−1)s

λ

|λ| , (7.38)

and hence the superhelicity of Wα(2s) is κ =
(
s + 1

4

)
σ .

It is instructive to repeat the above analysis by making use of the oscillator realisation. The 
relation between the field strength (7.1) and |E2s〉 is

|W2s〉 =
⎛
⎝s−1∑

p=0

cp�pK2s−2p−1

⎞
⎠ |E2s〉 , (7.39)

where the coefficients cp are related to the coefficients bp given in (7.4) as cp = 1
s
bp . After gaug-

ing away the compensator |Y2s−2〉, imposing the corresponding equation of motion |Q2s−2〉 = 0
and the condition (7.32) on the gauge potential

γ |H2s〉 = 0 , (7.40)

one obtains

|W2s〉 = �s |H2s〉 (7.41)

and (
� − 2

|λ|1/(N−1)

)
|H2s〉 = 0 , (7.42)

with the latter being the same equation as (7.36). The equation (7.42) implies that the field 
strength |E2s〉 satisfies the same Klein–Gordon equation(

� − 2

|λ|1/(N−1)

)
|E2s〉 = 0 . (7.43)

The analysis of the equations for the half-integer superspin case simplifies due to an obser-
vation that there is a transformation that connects the systems of field equations for integer and 
half-integer superspins. Again we are considering a partially gauge fixed system when the com-
pensators |X2s−2〉 and |Y2s−2〉 are gauged away. Then one can check that the transformation

|H2s+1〉 = ξP +|H2s〉 , (7.44)

where ξ is some Grassmann even constant parameter, transforms the solutions of the equations 
(7.8) into solutions of the system (7.12) in the limit of zero mass (i.e., when λ → 0). Moreover, 
defining the operators E2s+1 and E2s as

E2s+1|H2s+1〉 = |E2s+1〉, E2s |H2s〉 = |E2s〉 , (7.45)

one has the following chain of equations:

E2s+1|H2s+1〉 = ξE2s+1P
+|H2s〉 = −1

4
ξP +γ +2γ 2|H2s〉 = − i

2
ξP +γ +2|Q2s−2〉 .

(7.46)



192 S.M. Kuzenko, M. Tsulaia / Nuclear Physics B 914 (2017) 160–200
Using the Bianchi identity (7.10) one finally gets

E2s+1|H2s+1〉 = |E2s+1〉 = − i

2
ξP +γ +γ |E2s〉 . (7.47)

After establishing this connection between field strengths for integer and half-integer superspins 
one can multiply the equation (7.43) with the operator P +γ +γ , to obtain the result that the field 
strength |E2s+1〉 satisfies the Klein–Gordon equation(

� − 2

|λ|1/(N−2)

)
|E2s+1〉 = 0 , (7.48)

as was the case of integer superspins. From the equations (7.43) and (7.48), one can see that 
the fields with integer and half-integer superspins have the same mass, as a result of the original 
N = 2 supersymmetry. Let us note however, that as soon as one considers N = 1 supersymmetry 
the parameter λ does not have to be the same for integer and half-integer superspins. Moreover 
for the case of free fields, which is our concern in the present paper, the parameter λ can be 
different from each separate value of a superspin, either it is integer or half-integer.

8. Discussion

In this paper we constructed the off-shell higher spin N = 1 supermultiplets in three di-
mensions, both in the massless and massive cases. Our massive actions are actually defined for 
arbitrary non-zero superspin. They are labelled by a positive integer, n = 1, 2, . . . , and have the 
form

S
(n/2)

massive =
∫

d3|2z
{
Ln/2

(
Hα(n),Xα(2�n/2	−2)

) + inλHα1...αnWα1...αn(H)
}

. (8.1)

Here the compensator Xα(2�n/2	−2) is not present in the case n = 1, which corresponds to the 
topologically massive vector multiplet. In section 6, the compensator Xα(2�n/2	−2) was denoted 
Yα(2s−2) for even n = 2s, and Xα(2s+1) for odd n = 2s +1. The cases n = 2 and n = 3 correspond 
to the topologically massive gravitino and supergravity multiplets, respectively. The action (8.1)
is gauge invariant. It may be shown that the massless actions

S
(n/2)

massless =
∫

d3|2zLn/2
(
Hα(n),Xα(2�n/2	−2)

)
(8.2)

do not describe any propagating degrees of freedom for n > 1. Nontrivial dynamics in the mas-
sive case is due to the presence of the Chern–Simons like term (8.1).

In section 5, we constructed two dual formulations for the massless gravitino multiplet and 
for the linearised supergravity multiplet. Deforming the dual massless actions by Chern–Simons 
like mass terms according to (8.1), we end up with two dual formulations for the corresponding 
massive multiplets. At the nonlinear level, only one off-shell formulation for N = 1 supergravity 
has been constructed so far, and its conformal compensator is a scalar superfield, see [10] for a 
review. The fact that we now have two different off-shell actions for linearised supergravity is 
intriguing, and it may imply the existence of a new off-shell supergravity formulation.

Our massive supermultiplets can be coupled to external sources Jα(n) using an action func-
tional of the form

S
(n)
massive

[
Hα(n),Xα(2�n/2	−2)

] + in
∫

d3|2zHα1...αnJα1...αn . (8.3)
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In order for such an action to be invariant under the gauge transformations (6.15a) and (6.15b)
for n = 2s or under the gauge transformations (6.28a) and (6.28b) for n = 2s + 1, the source 
must be conserved, that is

DβJβα1...αn−1 = 0 . (8.4)

Such a superfield contains two ordinary conserved currents [47], which can be chosen as

jα1...αn(x) = Jα1...αn

∣∣∣
θ=0

, jα1...αn+1(x) = in+1D(α1Jα2...αn+1)

∣∣∣
θ=0

. (8.5)

It follows from (8.4) that

∂βγ jβγα1...αn−2 = 0 , ∂βγ jβγα1...αn−1 = 0 . (8.6)

In 3D N = 1 superconformal field theory, Jαβγ describes the supercurrent multiplet, Jα is 
present if the theory possesses a flavour symmetry, and Jαβ emerges if the theory possesses 
an extended supersymmetry, see [36] for more details.

In the N = 2 supersymmetric case, the massive higher spin supermultiplets constructed in 
[24] are gauge theories with linearly dependent generators, following the terminology of the 
Batalin–Vilkovisky quantisation [48] (see [49] for a pedagogical review). The Lagrangian quan-
tisation of such gauge theories is nontrivial.8 The remarkable feature of our 3D N = 1 massive 
higher spin supermultiplets is that they are irreducible gauge theories that can be quantised using 
the standard Faddeev–Popov procedure.

Our construction of the massive higher spin supermultiplets may be viewed as a generalisation 
of the topologically massive vector multiplet model [3]

STMVM = − i

2

∫
d3|2zWαWα − i

2
mσ

∫
d3|2zHαWα , (8.7)

where σ = ±1. The equation of motion in this theory is

− i

2
D2Wα = mσWα . (8.8)

In conjunction with the Bianchi identity DαWα = 0, this amounts to (2.14) with n = 1. Similar to 
(8.7), our higher spin gauge theories describe irreducible massive supermultiplets that propagate 
a single superhelicity state. For low spin fields, however, there is a more traditional way to gen-
erate off-shell massive supermultiplets that are parity-invariant and, therefore, do not describe a 
single superhelicity. They are extensions of the massive vector multiplet model

SMVM = − i

2

∫
d3|2z (WαWα − m2HαHα) , (8.9)

in which the mass term involves the naked prepotential Hα squared such that the action is not 
gauge invariant. The equation of motion for this action is

0 = − i

2
DβDαWα + m2Hα = ∂α

βWβ + m2Hα , (8.10)

which implies

8 This is similar to the off-shell 4D N = 1 massless higher spin supermultiplets [25,26], which are also reducible gauge 
theories. For the off-shell N = 1 massless higher spin supermultiplets in AdS4 [50], the Lagrangian quantisation was 
carried out in [51].
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DαHα = 0 , (� − m2)Hα = 0 . (8.11)

Due to the identity

(� − m2) =
( i

2
D2 + m

)( i

2
D2 − m

)
, (8.12)

it follows that the theory propagates two irreducible on-shell multiplets with superhelicity val-
ues κ = ±3/4, compare with (2.18). In the case of 4D N = 1 Poincaré supersymmetry, there 
have appeared various off-shell realisations for the massive gravitino and supergravity multi-
plets [52–57] that, conceptually, are similar to (8.9). Analogous massive models without gauge 
invariance may be constructed in the 3D N = 1 case as well. An interesting point is that our off-
shell massless 3D N = 1 higher spin supermultiplets appear to be suitable to lift the component 
on-shell massive gauge-invariant construction of [21] to superspace.

A topic of our particular interest is an application of our results to the systems of interacting 
higher spin fields on AdS backgrounds first developed in [58–61], which have received much 
interest in the last years. In relation to higher spin gauge theories our results can be a step towards 
a few further developments which we hope do address in future work. We conclude by listing 
possible future lines of work:

• The massive higher spin supermultiplets constructed in this paper can be extended to 3D 
N = 1 AdS superspace9 AdS3|2 (defined, e.g., in [62]). It would be interesting to quantise 
the gauge-invariant massive higher spin theories in AdS3|2 and to compute the corresponding 
partition functions.

• It would be interesting to construct a BRST formulation for these systems both on flat and 
AdS3 backgrounds. We would like to mention that in this respect, in terms of their structure, 
the field equations for the integer and half-integer 3D N = 1 higher spin supermultiplets are 
very similar to so-called triplet formulations for massless [63–69] and massive [70–72] re-
ducible higher spin fields, usually formulated in terms of the BRST formalism (see also 
[76–78] for a recent work on BRST-FV approach for massive and massless higher spin 
fields). Indeed, in both cases the Lagrangian system of equations contains a physical field 
and two auxiliary fields. One of these fields is eliminated via its own equation of motion, 
whereas the other one can be gauged away in a complete analogy with the higher super-
spin systems constructed in the present paper. On the other hand, since in the present paper 
we deal with irreducible higher spin supermultiplets, it would be also interesting to find a 
connection with the BRST formulation [73–75] for irreducible higher spin models as well.

• It would be of particular interest to consider cubic and possibly higher order Lagrangians on 
AdS3 in the “metric-like” approach following the lines of [79] (see also [80–88] for cubic 
interactions of higher spin fields on AdS background). One can investigate also a possibility 
of constructing cubic and higher order Lagrangians for analogous systems with 3D N = 2
supersymmetry which in principle can be more restrictive on the level of interactions com-
paring to N = 1 supersymmetry considered here.

• Vasiliev’s higher spin gauge theory [58,59] was extended to superspace [89,90], although no 
analysis appeared as to whether this approach reproduces the off-shell higher spin supermul-
tiplets in AdS4 [50] at the linearised level. Studying such issues in the 3D case seems to be 
less involved than in four dimensions.

9 To appear soon.
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• There has been much interest to higher spin (super)conformal field theories in three dimen-
sions [24,37,40,91–95]. We hope our results will be useful for formulating interacting higher 
spin superconformal theories.

• Higher spin gauge fields possess interesting patterns of duality, both in the bosonic (see 
[96,97] and references therein) and supersymmetric cases [37]. It would be interesting to 
continue studying the duality aspects of higher spin gauge fields.
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Appendix A. Some useful identities

Our 3D notation and conventions correspond to those introduced in [30,10]. In particular, the 
spinor indices are raised and lowered using the SL(2, R) invariant tensors

εαβ =
(

0 −1
1 0

)
, εαβ =

(
0 1

−1 0

)
, εαγ εγβ = δα

β (A.1)

using the standard rule:

θα = εαβθβ, θα = εαβθβ . (A.2)

The spinor covariant derivative of N = 1 Minkowski superspace is

Dα = ∂

∂θα
+ i(γ m)αβ θβ∂m = ∂

∂θα
+ iθβ∂βα , (A.3)

and obeys the anti-commutation relation

{Dα,Dβ} = 2i∂αβ . (A.4)

As a result of (A.4) we have the identities

DαDβ = i∂αβ + 1

2
εαβD2 , (A.5a)

DβDαDβ = 0 , (A.5b)

D2Dα = −DαD2 = 2i∂αβDβ , (A.5c)

D2D2 = −4� , (A.5d)

where D2 = DαDα and � = ∂a∂a = − 1
2∂αβ∂αβ . An important corollary of (A.5b) is

[DαDβ,Dγ Dδ] = 0 . (A.6)

As compared with the supersymmetry in four dimensions, the spinor covariant derivative 
possesses unusual conjugation properties. Specifically, given an arbitrary superfield F and 
F̄ := (F )∗ its complex conjugate, the following relation holds
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(DαF)∗ = −(−1)ε(F )DαF̄ , (A.7)

where ε(F ) denotes the Grassmann parity of F .
The supersymmetry generator is

Qα = i
∂

∂θα
+ (γ m)αβ θβ∂m = i

∂

∂θα
+ θβ∂βα . (A.8)

It anti-commutes with the spinor covariant derivative

{Qα,Dβ} = 0 . (A.9)

Appendix B. Some useful identities for the operators

The operators introduced in the subsection 6.1 obey some useful relations

{γ, γ +} = 2iK1 − D2 , γ +γ = iK1 + 1

2
ND2 , (B.1)

P +K1 = −iγ +2P + γ +N� , K1P = −iP +γ 2 − Nγ� , (B.2)

K1γ = −iγ +γ 2 − NP , γ +K1 = −iγ +2γ + P +N , (B.3)

[K1,P ] = �γ , [K1,P
+] = γ +� , (B.4)

PD2 = −2i�γ , D2P = 2i�γ , (B.5)

P +D2 = −2iγ +� , D2P + = 2iγ +� , (B.6)

[γ, γ +2] = −2iP + , [γ 2, γ +] = 2iP , (B.7)

γD2 = −2iP , D2γ = 2iP , (B.8)

γ +D2 = −2iP + , D2γ + = 2iP + , (B.9)

[N,γ +] = γ + , [N,P +] = P + , (B.10)

[N,γ ] = −γ , [N,P ] = −P , (B.11)

[N,�] = [N,D2] = ,0 [N,Kl] = 0 . (B.12)

One has also the identity

γ +2γ 2 = −K2 + N(N − 1)� , (B.13)

as well as “reduction” rules for the operators K1, K2 and Kl

K1Kl = Kl+1 + lKl−1(N − (l − 1))� , (B.14)

K2Kl = Kl+2 + 2lKl(N − l)� + l(l − 1)Kl−2(N − (l − 1))(N − (l − 2))�2 ,

where K0 = 1.
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