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ABSTRACT

The partial wave eguation

L
do/an = |[1/21k] L (2% + 1)(1 - a,)P,(cos 6) )
£=0

has been used to fit most of the recent w+p differential cross section

measurements above 1 GeV/c. The a, Were determined by the method of

y/
weighted least squares, with the further requirement that they be real and
they satisfy either constraints of the form 1> 1 - a, >0 (which allows
the scattering to be interpreted as purely absorptive) or the more reiaxed
constraints 2 21 - a, > 0. This equation with the requirements does not
allow the scattering amplitude to have a spin-flip part or a real part, but
for one set of data further terms were added to allow these additional parts
of the scattering smplitude. For each differential cross section at the
various energies, a set of a, values was determined which in almost all
cases fit the measured cross sections quite well. These sets of a, para-

meters have two properties in common. PFirst, all a, except a, satisfy

121-3a, > 0. The a, parameters (s-wave amplitudes) required 1 - ao_i 1
except for the higher energies where 1 2> 1 - a, >0 was obtained. Second,
graphs of 1 - a, versus 1 (one graph for each different cross section
measurement) show that 1 - a, decreases rather smoothly with increasing 22
and that the slope is roughly either linear or concave upward. No striking

variations in the a, parameters are observed when the energy is close to

one of the T+p +total cross section resonances. The a, parameters are



interpreted using 1 - 2, as a measure of the absorption of the £-tn
partial wave by inelastic processes. Differential dQOSS section measure-
ments of 7 +p at 2.01 GeV/c and of W++p at 2.02 GeV/c previously pub-

lished only ... graphical form are given in the appendix.



I. INTRODUCTION

In the last few years a large amount of data on elementary particle
elastic scattering above 1 GeV/c has been produced.l Most of it has
been analyzed from the standpoint of the simpler form of the Regge
theory of elastic scattering in which the data was to be fitted with
only a few parameters, some of these parameters having physical signifi-
cance.Z,> The hope that such a simple theory would be satisfactory has
not been fulfilled. More parameters were required than first thought
necessary,¥s5,19,15 and the theory was found to be much more complex
than first supposed. Therefore, it is desirable to look at this recent
data from some other theoretical viewpoint. TIdeally one would like a
theory of elastic scattering derived from a general form of guantum
field theory or S-matrix theory, this theory at the same time containing
only a few parameters to be determined by experiment. It would be even
more satisfactory if at some level the theory, or its parameters, had
direct physical significance or gave some physical insight. No such
theory exists and, therefore, we have turned back to some older concepts
which while not directly related to any profound theory at least pro-
vide a way of fitting the data so that the values of parameters provide
physical insight. These concepts are the partial wave analysis of
scattering theory combined with the assumption that at high incident
momenta, most of the elastic scattering is absorptive.

We have analyzed the w+p elastic scattering above 1 GeV/c using
empirical partial wave amplitudes with two purposes in mind. First,

looking upon this analysis as a generalization of the optical



model, we wished to discover how well a generalized ontical model could
fit not only the diffraction peak pdrt of the elastic scattering, but
also the entire differential cross section.

Secondly, the resonances recently discovered above 1 GeV/c in
T+p total cross sections are sometimes related to a particular angular
mormentum state, whose identity 1s sought by studying the elastic differ-
ential cross section at the resonance energies. Thus, the large peak in
the back hemisphere in W++p elastic scattering at 1.5 GeV/c has been
related by both V. Cook et 2&.6 and J. Heliand7 to the 7+p +total cross
section maximum at 1.4 GeV/c; and the second peak in the W—+p differ-
ential cross section at 2.02 GeV/c has been related by Damouth et 2&.5
to the 2.1 GeV/c T +p total cross section maximum. However, L. M.

Simmons”

has shown that this second peak in W-+p differential cross
section at 2.07 GeV/c can be explained by a simple optical model. We
have investigated this point further.

In this paper the analysis is almost completely restricted tc
purely absorptive scattering; that is, we usually neglect the effects
of non-absorptive elastic scattering and spin-flip elastic scattering.
Originally we intended to include these effects, but as will be de-

scribed later the fitting problem becomes very complex when these

effects are included, and we have found no solution to the problem.



II. THEORY AND METHOD OF ANALYSIS

A general discussion of theories of elastic scattering has been

given by Perl, Jones, and Ting?

© and the reader is referred to that
paper and its references for the background. We begin here immediately
with the partial wave analysis of m+p scattering. For spinless
particles when no inelastic processes occur, Schiff'l shows that the

differential cross section in the barycentric system do(6)/dn 1is

given by
ac(e)/an = |a(8)|* (1)

where

A(6) = [1/21k] Z (24 + 1) (éxp (21%) - 1) Pz(cos 8) (2)
£=0

Here 4 is the orbital angular momentum quantum number of the partial

1

wave, k 1s the wave number in cm™~ in the barycentric system, & is

the scattering angle in the barycentric system, Pz(cos 9) is normalized

‘is the phase shift always taken to be

so that Pz(l) =1, and 5, ~

-n <&, <x . For the remainder of this paper all quantities will Dbe

y/
in the barycentric system and Pz(cos 6) will always be normalized
as above.

If inelastic processes can occuy then Eq. (2) is modified by the

addition of quantities a, where O <a

) g <1l and

A8) = [1/2ik] Z (22 + 1) (az exp (218)) - 1) P,(cos 6). (3)

£=0



If there are no inelastic processes in the {-th wave, then az = 1; if

the 4-th wave is completely absorbed by inelastic process, then az = 0.

Thus, a is the degree of elasticity.

y
Finally, if one of the particles has spin 1/2 and the other spin O,
as In the 7T+p system, then for each 4  there are two possible total

angular momentum states =4 ¢ 1; Eq. (3) becomes

o

A(8) = [1/2ik] Z [(/&+ 1) (a;F exp (215;) - 1)

4=0

+ {4a£ exp (2162) -l)J Pﬁ(cos 2) (4)

But a second amplitude appears also, B(8), where

]

.
B(6) = [1/2ik] E: [az exp (218;) - az exp (QiSE{J

£=1
sin 6 [iPz(cos éVd(cos Gi} (5)
and do(68)/dq is now given by
as(6)/aa = | a(8)| % + EHOlk (6)

This B(6) results from that part of the elastic process in which the
orientation of the spin of the proton is changed. B(G) is referred to

as the spin-flip amplitude in this paper.



A(6)

Equation (4) may be rewritten

(o

i

= [1/21‘&]«% E (L + 1)(a;f cos 25; - 1) + 'ﬁ(a; cos 25;a - 1)} P,(cos 8)
{£=0
3

+ i E:[({,+ l)(a; sin 25;) + {,(a; sin 26;)] Pz(cos 9)>

£=0 )

= a.(6) +a(6) . (La,

If all 6; and. 6; are zero then the real term Ar(G) is zero and
A(8) is then referred to in this paper as purely absorptive. This name
simply indicates that there is no phase shift of the partial waves, only
gbsorption of them. When some 5; or 6; are not zero, then scme
non-absorptive scattering is said to be present. When this phrase non-
absorptive is used, one should recall that it means not only that the
real part Ar(e) is non-zero but also that the imaginary part Ai(e)
is modified.

Just as A(G) can be separated into real and imaginary parts, so

can B(6). Thus Eq. (6) is rewritten

do{8)/an = |Ai(e)|2 + ]Ar(e)i2 + EBi(e)f;f + EB (6)1

where

(1/2ix] z (L + l)(a; cos 25; - 1) + '&(a; cos 28~ - 1)] P (cos 8) |

Y/ £

£=0

- [1/2x] Z (2 + 1)(s, stn 28%) + s} sin 257)] 7, (cos o)

£=0 - (6a
= [1/21k] Z [az cos 25; - a; cos 26;] sin 6 [dPﬂ(cos 6)/d(cos 6)] |

=0 §
= [1/2k ] Z [az sin 28, - &, sin 20} ]sin 6[aP,(cos 6)/d(cos 6)1] J

i=o

-5_



Now the partial wave analysis is useful only if a small number of
£ values contribute to the scattering. This has been the basis of its
very extensive use at low energies for T+p and p+p scattering. How-
ever, for elementary particle scattering above 1 GeV/c, partial wave
amplitudes at least through £ = 4 must be used; and since for each 1
value there are four numbers to be determined, at least twenty parameters
should be determined. When one considers that the data 1s usually not
of sufficient statistical accuracy to determine twenty parameters, that
there are ambiguities, and that these are non-linear equations, 1t is
clearly not possible simply to go ahead and evaluate these parameters
without any restrictive assumptions.

In fact, it has been customary to make some very specific physical
assumptions in order to solve this problem, and the most often used
assumptions lead to the optical model. 1In this model one assumes that
Bj = 0 and that az = a; . In the simplest case of the optical model

one goes further and sets

a,=a<l, o<d<L

where L >>1 (7

&

1, 2>L

which leads to the result,

L
[(L - a)/2ik] Z (2t + l)Pﬂ(cos o)

A(B) =
£2=0
B(6) =0
L 2
ao(8)/an = [(L - a)3/hk?] 2(2& + 1)P£(cos 9) (8)
£=0



Physical significance is given to this model by thinking of a spheri-
cal interaction region of radius R, where R 1s the range of the inter-
action force. Then if the wavelength of the particle being scattered is
small compared to R one can think of the scattering as a semi~classical
process in which the distance of closest approach of the scattered parti-
cle to the center of the scattering force is {h/p ={/k. Here p 1s the
momentum of the particle and 4 is the orbital quantum number of a par-
ticular angular momentum state. Then for {/kﬁ< R or £ <Rk the incom-
ing waves are partially absorbed and a, < 1l. PFor 4yk >R or 4 > Rk,
there is no interaction and a = 1. With this reasoning Eq. (8) becomes,

2
with L = RX,

do(8)/an = (1 - a)® x°R* [Jl(kRG)/kRe]a , (82)

which is the usual form. This very simple model has only two parameters,
R and a, -and it does not fit the data at all well.
Our extension of the simple optical model is based on two Observa-

2,

. L2,13 . .
tions. First, we observed as several authors have, that it is not

necessary to use conditions (7). Rather, a more general condition can be

used:
- -
82 =5, =0
el =2 =a
L L T8
a, =0 (or at least < 1) for small 4
&, »1 as Low (9)



The physical significance of this generalization is that the idea
of an interaction region of range R and uniform strength has been
replaced by an interaction region of non-uniform strength. We assume
only that the interaction is purely absorptive and that there is zero
absorption at very large £ values. Remembering that the interpreta-
tion is still semi-classical, we associate the az at small 4 values
with the strength of the interaction at small distances 4949 the a,
at large 4 values with the strength of the interaction at large

distances f/k. Thus a sudden rise of a, from nearly O to 1 at some

Y/
£ﬁ. would be interpreted as a sharp drop in the interaction force at
distance =4%/k. On the other hand, a slow rise of a, from O to
1 would mean no sharp boundary to the interaction region. Finally,
if az for small 4 were larger than az for some intermediate
4 values, this would be interpreted as a hollow core.

A way of visualizing this is to use a graph in which 1 - aﬂ is
plotted versus £ as shown in Fig. 1. Usually the sharp cutoff of
the simplest optical model (curve A in Fig. 1) is replaced by a gradual
cutoff such as the decline of a Gaussian curve (curve B in Fig. 1).
If one assumes that the variation of a, with 4 is smooth, then
approximate analytic methods can be used to calculate do(6)/4q.
Two informative papers, one by Greider and Glassgoldlg and the other
by Frahn and Venter,13 use approximate analytic methods to discuss

the generalized optical model, even with B, #0 and B(6) #0 in

some cases.



Our second observation is that these approximate analytic methods
which are very useful for understanding the behavior of dc(e)/dQ for
various assumptions as to aﬁ behavior, are not appropriate or necessary
for T+p elastic scattering in the 1 GeV/c to, say, the 10 or 20 GeV/c
range. They are not appropriate because in many cases the maximum £
value at which a, is still significantly less than 1, is only L or 5,
and thus the sum cannot be replaced by an integral. They are not
necessary because it is possible to calculate the exact do(8)/dQ for
any set of a£ values.

But more important, with a computer it is possible to do the re-
verse problem. Namely, given an experimental differential cross sec-
tion, one can find the set of real a, values which gives the best
fit to the equation for the differential cross section with purely
absorptive scattering

2

T
do(6)/dq = | [1/2ik] Z (2 + l)(az - l)Pz(cos 6) . (10)
£=0

The purely absorptive scattering demands that 0 <a < 1 but with

£
some loss of consistency one may require -1 < aﬁ < +l. This is -
equivalent to allowing B, # 0, so that (az - 1) —>(az cos 25, - 1).

The loss of consistency comes from not including the (az sin 262) terms.
If there were no constraints on the a, values then the fitting

of the equation

L
[dc(@)/dﬂ]% = [1/21{]2 (2 + l)(az - l)Pz(cos 8) ,

£=0



which is linear in the parameters a,, can be treated by the standard
weighted least squares methods. The constraints on az make the
problem much more difficult and we were fortunate in having available
a program written by C. Moore,14 entitled CURVE, which fits parameters
by the standard method of minimizing the weighted sum of the squared
residuals.

Given an initial estimate of the parameters 8,5 the program
evaluates the function and obtains the residuals at each of the data
points. It is these residuals which are then fitted by using matrix
inversion to solve the standard system of normal equations, formed by
taking the derivatives with respect to each of the parameters. This
procedure yields the correction increments to be applied to the origi-
nal values of the parameters. In the linear case without constraints,
only one iteration is sufficient. However, in the non-linear case,
the function having been first expanded by means of a Taylor series,
repeated iterations are required, always fitting successive residuals
to obtain smaller and smaller correction increments to be applied to
the previous set of values of the parameters.

In the case of constraints, the situation becomes slightly unpre-
dictable, since a constraint equation is added to the system if,and
only if, the parameter to be constrained falls outside the designated
range due to the fact that it was adjusted by too great an amount on
the previous iteration. A test on all the constraint cases is made
at the end of each iteration, and if a constraint is viclated, the
appropriate constraint equation is added to the system, and another

iteration 1s required.

- 10 -



+
III. EMPIRICAL PURELY ABSORPTIVE T +p PARTIAL WAVE AMPLITUDES

BELOW 3 GeV/c

In order to make a meaningful application of the least squares
method described at the end of the last section, it is necessary to
have data on the differential cross section at all angles. Above
3 GeV/c existing w+p differential cross-section measurements con-
cern only the diffraction peak; there are no large angle measurements.
Therefore, the least squares analysis is only applied to the data at
3 GeV/c and below, which is listed in Table I.

In the fitting of data by an infinite series, the question of
how many terms to use always arises. We have used the criterion
that the series be extended until the ratic of x?/D approaches a
minimum and then levels off or rises again. Here %2 has the
standard meaning of the sum of the squares of the ratios of the
residuals to the errors at each data point. D is the degrees of
freedom which we have taken as the sum of the number of data points
and number of constraints used minus the number of parameters.

Table II gives the values of the parameters (1 - az) for each set of
data for several maximum values of 4 around this minimum %2/D
point. The parameters are also given for the kinds of constraints,

0 <a, <1, which is designated by I, and -1 < &, < 1, which is

y/
designated by II. Constraint II, by allowing the additional range

-1 <a, <0, implies that = > ‘azl > n/2 is being allowed, or that

4
at least sz = x is being allowed. Thus Constraint II allows at

least a 90O phase shift in addition to the Oo phase shift of Constraint I.

- 11 -



We first b serve that the II constraint always gives better fits,
and sometimes substantially better fits, than the I constraint. How-
ever, we also observe that it is only a, which requires the II con-
straint. That is, it is only the S wave which is not purely absorptive.
There is no particular reason known for the S wave to be exempt from
the I constraint, but it is probable that the improvement in the fit
when 1 - &, > 1 1is due to the S wave taking up some of the negiected
non-absorptive and spin-flip scattering.

We have taken the II constraint parameters as being most meaningful
and Figs. 2 and 3 show the kinds of fits which are achieved. To simpli-
fy the comparisons, experimental cross sectlons at each momenta are
divided by the gquantity (katot/hn)z. This is the 0° differential cross
section given by the optical theorem if the scattering amplitude has no
real part. Since the real part is small, this normalized do/dn goes
roughly to 1.0 at 0°. The fitted curves follow the data guite well and
in no case is there a deviation between the two which could not be
taken account of by a small amount of non-absorptive or spin-flip
scattering. These neglected scattering terms could also account for
the low %2 oprobabilities which are listed in Table II. However,
these X2 probabilites should not be taken too seriously because the
errors used were purely statistical. No account was taken of system-
atic errors in the instrument or the analysis. In many of the experi-
ments it is reasonable to take the systematic errors as very roughly
equal to the statistical errors, which immediately increases the
probabilities drastically. These %2 oprobabilities are also listed

in Table II.

- 12 -



A few comments on Figs. 2 and 3 will now be made. All the plots are
semilogarithmic so that the fluctuations of the cross section at larger
angles (where statistics are poorer) are exaggerated. Similerly, the devi-
ations of the fitted curves from the data at these larger angles seem to be
more important than they really are. Conversely, the diffraction peak has
a very strong effect on the a, values because of the relatively high
statistics of the points on the peak.

For Wf+p at 1.33 GeV/c the fit at large angles is poor; since this
momentum is relatively low, the purely absorptive assumption may be quite
poor here. However, some of the fluctuations in the data occur over such
a small region of cos 6, that there is some possibility that there are
errors in the data, or that higher {4 values are needed. For T++p at
1.33 GeV/c the purely absorptive assumption is definitely wrong. The
reason for the fitted curve lying almost elways below the data is that

1 - ao < 2 was required. A further increase in 1 - ao immediately im-

proves the fit. This 1.33 W++p data of Helland” has been fit by him with

ji Ci(cos G)i -

1=0

an equation of the form

with no constraints on the Ci' He obtains a good fit but this series can-
not be resolved uniquely into our 8, and 5£ values, so we cannot inter-
pret it. To see if small amounts of higher 1 states would improve these

low momenta fits we have tried higher order fits which are the dashed curves
in Figs. 2a and 3a. The W-+p curve for these higher orders fits the data

+ .
well, but the 7 +p fit remains poor. This may be related to the resonance

in the w++p total cross section at this momentum.

- 13 -



Whether the fitted dc/dQ turns up or down as 6 approaches 180O
depends on the data near that point. In general, we find either large
uncertainties or possibly unrealistic fluctuation in dc/dﬂ near 1800.
Thus the do/dﬂ in 1.50 GeV/c n++p at 180O very probably turns up the
way it does at 1.55 GeV/c v++p; however, the statistics of the last point
at 1.50 GeV/c are not sufficiently high to force the turn up, unless {hax
is increased. The backward peak in the 2.92 GeV/c n++p and 3.15 GeV/c
T +p data comes from the fit at smaller angles and there is no proof of
its existence.

Finally, in the 2.02 GeV/c W++p we have also tried higher {hax fits
(the dotted and dashed curves) although the statistics do not warrant doing
this. The dotted curve which has {hax = 10 turns up at 180° while the
dashed curve which has {hax = 9 turns down, although both of these curves
follow the data quite well. Once again this indicates the uncertainties at
180° in do/an.

Of course, there is no proof that the parameters of Table II are unigque.
It is certainly possible by using large amounts of non-absorptive and spin-
flip scattering to get drastically different answers. However, on the as-
sumption that the scattering is mainly absorptive, the parameters of Table II
provide a set of partial wave amplitudes which describe quite well all the
varied shapes of the existing data. To visualize how these partial wave
amplitudes vary with 4, 1 - &, is plotted versus 4 for w++p in Fig 4

and W-+p in Fig. 5.

- 14 -



IV. EMPIRICAL PARTIAL WAVE AMPLITUDES ABOVE 3 GeV/c

To fit the data above 3.15 GeV/c we have extended a method of

Minami'® in which the data is first expressed in the form
2
do/aq = [A(9)]
A{8) = exp (aO +a cos 6) + ¢ + exp (- b, - b cos 8) .

This is a form suggested by the simple Regge theory in which the first
term is the exponential diffraction peak, the last term is a possible
peak for 1800 scattering and c¢ is a constant background term. Minami
uses this form to show the effect of the possible, but so far unde-
tected, backward peak on the partial wave amplitudes. For this simple
form the partial wave amplitudes can be found analytically. For T +p
at 4.13 GeV/c, Minami gives a, for the case in which there is no
backward peak and for the case in which the backward peak is 1/24 of
the diffraction peak in height. His values in the form 1 - a, are
given in Table III. The major difference between the 1 - a, values
in the two cases is that if there is no backward peak, 1 - a, de~
creases monotonically, whereas if there is a backward peak, 1 - a,
oscillates for small 4. This is a phenomenon which we frequently
observed in the course of these fits at momenta above 2 GeV/c. The
diffraction peak can be fit by a monotonically decreasing series of
1- aﬂ values or by a series in which either the even 2 or ocdada 4
values of 1 - a, are larger. However, the second situation always

leads to a backward peak. This can be understood by realizing that

for 6 close to 0, all Pz(cos 6) are positive and the partial waves

- 15 -



add. For 6 close to 1800, the P (cos 6) are positive for even 4

o

and negative for odd 4. If the amplitudes are monotonically decreasing

g
then there will be almost complete cancellation at 180°. But, if thne
even 4 or odd 4 amplitudes are unusually larger, there will be a
residual backward peak.

For %.95 GeV/c, T +p we have used the exponential Tit of Perl et

al.,t®

do/dn = exp (3.64 + 8.9t + 2.0t% + 0.1t%),

where t is the square of the four momentum transfer in [GeV/c]z.

The expansion in partial waves,

L
11
{}xp (3.64 + 8.9t + 2.0t% + o.1t3)J2 = [1/2k] ;;(1_- az)(e{,+ 1)P (cos 8) ,
4=0

was carried out by numerical integration. The 1 - aﬁ values sre

listed in Table IV.

Figure 6 shows the 1 - a, versus 4 plots for the no backward

peak case for 4.13 GeV/c and for 4.95 GeV/c. The 1 - a, versus L

behavicr is a clear continuation of the behavior at lower energies.

For the very high momenta such as the measurement of Caldwell e@
E}.,S or of Foley et E&"4 there is no point in writing down all the
partial wave amplitudes at this time since the large angle differential

s
cross section is completely unknown. At higher energies the 7w +p

differential cross section has very close to an exponential shape in

t. Therefore, the 1 - a versus 4 behavior as exhipited at lower
’ yi

. 3 Y P
energies will continue, namely, there will be a 1 - a, versus 4

behavior such as in Fig. 6, with 1 - a, <1l and a slow decrease in

1 -a as 4 increases. It is interesting to observe that below

£
- 16 -



3.15 GeV/c the best fit requires 1 - a_ > 1, but that above 3.15 GeV/c
all 1 - &, are less than 1, so that above 3.15 GeV/c the fit can be

purely absorptive.

V. COMPARISON WITH OTHER MODELS

The fits to the date found in Section III are much superior to the
fits obtained using the standard optical models. To illustrate this, we
have made the best fits to the data using the following models for az:
Sharp Cutoff Rectangular Model:

1l ~ a =1-a,0<’&<*&
- - mal

£ X
l-a, =0 s >4
£ max
Sharp Cutoff Gaussian Model:
l-a£=3/'&max\/2n, Of&f*’max

}.J
t

)
|

2 =2
£ (3/£ﬁax\/§;)eXp(- (% - {hax) /2{hax)’ t> {ﬁax

Median Cutoff Gaussian Model:

1 -8, =302 fox, o<ttt o
L e, = (320 VEee(- 9 - 4 VB, s >,

Pure Gaussian Model:

2

l1-a,s= (l/{hax VEE)exp(- {?/E{max) , all 4

The sharp cutoff rectangular model is self-explanatory: the co-
efficients are constant up to some maximum value of {q after which

the 1 - a, are zero. In the sharp and medium Gaussian cutoff models,

- 17 -



we have held the parameters constant up to some maximum {9 and then
let them decrease by following a Gaussian curve in which the mean is
{hax’ and the variance is {hax/B and Q{Eax/B’ respectively. The
pure Gaussian model represents an immediate Gaussian decrease in the
values of the 1 - L with no constant sequence at the beginning;
that is, the mean is equal to {hax’ which is equal to zero.

Figure T shows the fit for the Sharp Cutoff Rectangular Model
(A), the fit for the best of the Gaussian Models (B), and the fit of
Section III (C), for 2.01 1 +p and 3.15 T +p. In considering the
goodness of fit of the models, one can neglect the points at which
the calculated curves go to O. These points lock very bad because
semi-logarithmic plots are being used, but a small amount of non-
absorptive or spin-flip scattering can adjust these points. However,
the important observations are first, that the Gaussian models are no
improvement over the Rectangular Model in spite of the usually held
idea that a Gaussian Model is more realistic. Secondly, both models
deviate from the data at both large angles, and in the diffraction
peek. Finally, they clearly need major modification (such as adding
a constant term) to improve the fit, so that one might as well go

directly to the fits of Section III.
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VI. DISCUSSION OF THE PURELY ABSORPIIVE WAVE AMPLITUDES

The conclusion from the last three sections is that we have found
a set of az values which change in a smooth way with energy and which
fit the data quite well. Except for the S-wave all the 1 - a, are
less than one. The maximum 4 used is roughly 1.5 to 2 times kR
if R 1is taken as 107*° cm. All of this is in accord with some opti-
cal models which have been previously used. However, there is a very
important difference between all previous models and these sets of
parameters. In previous models the values of 1 - a, are taken as 1

up to some {A, and then 1 - a, drops to O quickly or slowly depend-

£
ing on how sharp a cuteff is assumed.
However, looking at Figs. 4 and 5, it can be observed that, for

all our sets of parameters, 1 - a, decreases continuously to O with

)/

no indication of a break or change in the shape of 1 - a, versus 4.

£

There is no evidence of a surface region. The shape of the 1 - a,
versus 4 curve lies between linear and concave upward, and no in-
elastic channel is completely absorbed except for the S channel. 1In
terms of the plon-nucleon interaction this means that the rough picture
is one in which the forces decrease smoothly with distance, and which
indicates no surface region in which the forces change rapidly.

Of course this is the picture given by field theory also, and
the diffuseness of the pion-nucleon. interaction is, therefore, no
surprise. Perhaps the main point of this analysis is not the behavior
of the large 4 value amplitudes, which have always been assumed to

be decreasing smoothly to O. The point is that even the low £ states,

such as p and d, are incompletely absorbed.

- 19 -



We now turn to the relation between these a, fits and the higher

pion-nucleon resonances. As discussed in the Introduction, Simmons®
has shown that the Sharp Cutoff Rectangular Model can explain the
second peak at 2.0 GeV/c in the W;+p differential cross section.
Reference to Table II shows that the fitted values of 1 =~ aﬁ, which

reproduce the data quite well, exhibit no particularly large 1 - a,
value; that is, no {4 state seems to predominate. Therefore, we

agree with Simmons that the vi+p differential cross sections give

no evidence as to the angular momentum states which cause the 2.1

GeV/c maximum in the W-+p total cross sectilon.

Furthermore, the several fits to the W++p data in the 1.5 GeV/c
region show no dominant high angular momentum state. Therefore, the
large backward bump in the differential cross sections at these
momenta may not be related at all to the W+4p total cross-section
maxima at 1.4 GeV/c. As has been stated before, these fits may not
be unigue and there may be a set of amplitudes, particularly when non-
absorptive and spin-flip scattering appear, which do show that a higher
£ state is particularly large.

In connection with this, it is important to know that the sizes of

the coefficients <, in an expansion of the form

do(g)/dqn = y c [cos 61" (11)

n=0

are not directly indicative of the importance of a particular 4 state.

For example, if one considers a Sharp Cutoff Rectangular Model of the

- 20 -



form

1, 0<4<3

=
]

o
n

’_l
]
w
H

o, >3

then the relative sizesof the coefficients when do/dn 1is expressed

in the form of Eq. (11) are

c = 1
o]

c, = 9.1
C2 = l5.h
03 = -52.h
C, = =91.2
CS = 115.7
c, = 136.1

Thus, one might be tempted to ascribe particular importance to =2
or 4= 3 states since the cé, Cqs and g coefficients are so
large, whereas all states actually enter with exactly equal absorption.

As another example, condider a model with

1-a =1
1-a = 1/3
1-a,= 1/5
1-a,=1/7
l1-a, =1/9
1-a,=1/11
l-a_ = 1/13

1-a, =0, {'> 6.

- 21 -



The relative cn coefficients are:

CO = +l.O'
(o4 = +O.8
1

[¢] = -2.8
2

03 = —}4-.6
c = -8.4
4

(] = -0.0
5

c6 = =5.0
c, = +41.5
c, = +43.9
o, = -T1. 4
c = -64.0
10

¢, = +38.5
Cip = +35.0

Here again, the higher {4 states seem to predominate, whereas there

is actually a smooth dropoff in the absorption as 4 increases.

VII. INCLUSION OF NON-ABSORPTIVE AND SPIN-FLIP SCATTERING

Our original hope of being able to make complete fits using the
full Eq. (fa) was not fulfilled for two reasons. First, the computer
provlem proved to be very difficult since Eq. (6a) is non-linear and
there are constraints on ai and 5;. Unless the program was given

initial values for the parameters quite close to the best fit parame-

ters, the computation converged either very slowly or not at all.

- 22 .



Frequently, as the iteration proceeded, some constraints went in and
out of the calculation repeatedly so that the iteration became cyclic.
Therefore, in many cases when we attempted a complete fit we found no
solution and in no case could we be sure that we had found the solu-
tion with the lowest %2,

The second reason is that much more extensive data is required.
Not only is there the obvious need for polarization data to give the
spin-flip scattering, but for the differential cross section both good
statistics and close data spacing are required. For example, we find
at 2.01 GeV/c W-+p that the exact shape of the diffraction pezk

strongly controls the values of a This is the reason that the fit

s
to the second peak is not exact. Also, even though there are 7000
events in this measurement, the statistics at large angles are in-
sufficient. On the other hand, in the 1.55 GeV/c W++p data there are
good statistics at large angles, but the diffraction peak was not
measured at small enough angles, so its slope is relatively unsure,
and the values of az may be somewhat inaccurate.

However, as a first look at more complete fitting, we have taken
the 2.01 GeV/c 7 +p data of Damouth et a1.® This data, which has B
only been published previously in graphical form, is given in the

Appendix along with the 2.02 GeV/c W++p data of Damouth et al.®

The differential cross section is written in the form

£=0 1=0

£ 2 4 .l
max max
do(8)/aq = [1/LkZ] Z (e + 1)1 - az)Pﬂ(cos 6) +Z bi(cos e)l{ (12)
J

- 23 -



The by series 1is designed to allow for spin-flip scattering and the

sin 28y part of the non-absorptive scattering. The ay Wwere constrained

so that 0< 1 -a;, <2 and the Db; were constrained so that

i
max
Ej ‘bylcos 8)* >0, for all 8.

i=0

Figure 8 indicates the improved fit to the data, given by the solution

in Table V. Table VI lists dc(@)/dﬂ and the contribution of the b;
series for a selection of cos 6 values. In the very small angle region
the by contribution is always less than lO%, which agrees with the
requirement that the real part of the scattering amplitude and the spin-
flip scattering amplitude be small in this region. For some of the large
angles, however, the b; contribution is the major part, but here there

are as yet no theoretical ideas with which to compare these predictions.

- 24 -
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APPENDIX

Picn-proton differential cross section in barycentric systen.
The errors are statistical and do not include an overall nor-

malization error of *8% for T +p and +10%, -20% for T 4+p.

T-+p scattering at 2.01 GeV/c

cos & d0/d0 (mb/sr)
935 6.0k = .28
.925 5.28 £ .27
.915 h.7h £ .25
905 3.92 £ .2k
.890 3.16 = .15
.870 2.5k £ .14
.850 2.13 = .13
.83 1.86 £ .12
81 1.45 = .11
.79 1.02 £ .09
7 .79 = .08
) .63 = .07
-73 Sh £ .07
.71 .35 % .06
.69 .25 £ .05
.66 .20 = .03
.62 b 2,03
.58 .06 £ .02
S5k .10 = .02
.50 .05 £ .02
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Appendix (cont'd)

T +p scattering at 2.0l GeV/c

cos 8 do/df (mb/sr)
b6 .08 £ .02
A2 J11 £ .03
.38 17 .03
3k .15 = .03
.30 .18 £ .03
.26 .23 = .03
.22 .25 = .0k
.18 .18 = .03
b .23+ .03
.20 1k + 03
.06 .16 £ .03
.02 110+ .02
-.02 .16 .03
-.06 Ak .03
-.10 .09 = .02
-.16 .08 * .01
-2k .06 £ .01
-.32 .06 * .01
-.ho .05 £ .01
-.48 .06 = .01
-.56 .0 £ .01
-6k .02 £ .01
-.72 .01+ .01
-.80 .01 = .01
-.88 .02 .01

I+

-.9k _ o6 - .03 .02



Appendix (cont'd)

Tr+p scattering at 2.01 GeV/c

cos © d0/an (mo/sv)
.93 6.54 = |7k
.91 L.89 * .6k
.89 3.42 = .38
.86 3.35 = .27
.82 2.35 * .23
175 1.56 + .17
725 1.06 £ .1k
.650 A3 07
.55 .29 £ .05
s .18 = .ok
.35 25 = .05
.25 26 = .05
.15 32 £ .05
.05 .09 * .03
-.05 .13 = .0k
-.15 b £ ok
-.25 .12 = .0k
-.35 .18 £ .0b
-5 .07 £ .03
-.55 .12 £ .0k
-.65 .09 = .0k
-.75 .03 * .03
-.85 .0b £ .03
-.93 .06 £ .05
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Two possible models for the dependence of 1 - a, on L. curve A is
the Sharp Cutoff Rectangular Model and curve B is the Medium Cutoff
Gaussian Model, both defined in Section V.

Data and fitted curves for W++p systems. dc/dﬂ is normalized by
dividing the experimental differential cross section by (kctot/hn)z.
The vertical bars indicate the statistical experimental errors. The
meaning of the solid and dashed curves is given in Table II and in

the text.

Data and fitted curves for T +p systems. do/dﬂ is normalized by
dividing the experimental differential cross section by (kctot/hn)z.
The vertical bars indicate the statistical experimental errors. The
meaning of the solid and dashed curves is given in Table II and in

the text.

Values of 1 - az for W*+p systems. The vertical bars indicate

the statistical errors in the coefficients. These coefficients apply
only to the solid curves of Fig. 2.

Values of 1 - az for W’+p systems. The vertical bars indicate the
statistical errors in the coefficients. These coefficients apply only
to the solid curves of Fig. 3.

Values of 1 - a, for T +p systems at 4.13 GeV/c and %.95 GeV/c.
Date and fitted curves for the Sharp Cutoff Rectangular Model (A), the
best of the Gaussian Models (B), and the fit of Section III, for T +p
systems at 2.01 and 3.15 GeV/c.

Data and plot of curve for 2.01 GeV/c wr+p system, fitted with inclusion

of terms for non-absorptive and spin-flip scattering.



TABLE T
List of experimental differential cross sections below

and at 3.15 GeV/c which are analyzed in Section III.

System Initial Laboratory Momentum in GeV/ ¢ Reference
7T-+p 1.33 a
T 4p 1.33 b
T +p 1.50 c,d
7T++p 1.50 e
’IT++p 1.55 b
T +p 1.59 f
'n‘++p 2.00 e
7r-+p 2.01 g
'7T++p 2.02 g
7T++p 2.50 e
T4 2.92 h

T +p 3.15 h
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TABLE II (Page 4 of L)

Constraint T

Max 4

D

e

W’+p

n
v
C

39
103.69
< .005
.1C
1.365 +.013
0.634k4+,008k

0.3581£.0076

0.2735+.0062
0.209L.0060
0.0935%,0048

0.0279+.00k47

solid curve

1T

-

W
[0 Ul
=
N

< .005

.25

1.09 *.04
0.688%,022

0.515+.022

none

II

1k
3k, k2

< .005

(@]
w
0
W
it
O
Y
w

@]

H
\O

N

it

(@}

n

N




TABLE III

1 -a, values for T 4+p at 4.13 GeV/c, given by Minami.-®
1z 1l - aﬂ 1l - aﬂ
No Backward Peak Backward Peak
0 1.00 0.76
1 0.73 0.95
2 0.61 0.44
3 0.50 0.62
k4 0.48 0.31
> o.27 0.30
6 0.18 0.16
T 0.11 0.12
8 0.06 0.06
9 0.03 0.0k
10 0.02 0.02
11 0.01 0.01

12 0.00k 0.00k
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TABLE IV

values for 7 +p at 4.95 GeV/e.

l-a

]

0.

0.

0.

0

0

0.

89
82
69

ST
.46

35

2L
.18
.13
.09
.07
.05
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TABLE V

- &, values and b, values for T +p

1-a, i
0.99 0
0.689 1
0.383 2
0.172 3
0.226 4
0.117 5

at 2.01

GeV/c

|+

0.50566
~0.29936
-3.12056
-0.5424

5.8152

L.11546



TABLE VI

Fitted values of Eq. (12) given by solution in Table V for T +p data
at 2.01 GeV/c. Both terms have been normalized to show relative size

of b, term.
i

cos 6 do/dn 5? b, (cos 6)
i=o
0.935 0.36740 ~0.03565
0.850 0.12990 0.02025
0.750 0.03650 0.0089L
0.620 0.00822 0.00183
0.540 0.00k99 0.00026
0.460 0.00538 0.00000
0.380 0.00754 0.00052
0.300 0.0101k 0.0001k4
0.220 0.0119k% 0.00240
0.140 0.01220 0.0032%
0.060 0.01085 0.007383
-0.020 0.00847 0.00410
-0.100 0.00595 0.00406
-0.240 0.01268 0.00339
-0.400 ) 0.00335 0.00215
-0.560 0.00257 0.00109
-0.720 0.0006k4 0.00058

-0.880 0.00139 0.00030
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