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In the first pad we review how elements o! algebraic geometry can be used to give an algebraic formula for 
the string partition function. In the second part we generalize these ideas to include arithmetic surfaces, i.e. 
surfaces defined over an algebraic number field K. We will calculate explicitly the volume of the lattice 
formed by K-rational tangent vectors at a K-rational point in moduli space, with respect to the Polyakov 
measure. 

1. Introduction 
Potyakov's formulation [11 for quantizing the closed bosonic string theory" has various advantages over 
other quantization schemes due to its profound geometrical interpretation. 

It is the purpose of this paper to discuss this in more detail. In section 1 we will give an outline of 
the proof of the Belavin Kniznik theorem [2] which states that after gauge fixing of the classical sym- 
metries of the string, the so-called partition function for genus p surfaces becomes the square of the 
absolute value of a holomorphic function on the complex moduli space °.3L of stable curves. In section 
2 we use elements of Faltings' work on Arakelov intersection theory to obtain an algebraic formula 
for the Polyakov measure i.e. the string partition function [14,16]. Subsequently, we consider the 
string partition function at K-rational points in moduli space. These are special points, corresponding 
to so-called arithmetic surfaces i.e. surfaces defined over an algebraic number field K. 

As a new result we present a detailed calculation of the volume of the lattice spanned by K-integral 
vectors tangent to a K-rational point of M with respect to the Polyakov measury using a Riemann 
Roch formula on Spec(01¢), 0K the ring of integers of K. At each infinite place of K the result reduces 
to the usual partition function. This will clarify some of the ideas presented in [3 (sect. 4.4), 4]. 

Part of this work, sect. 4.1 and 4.2 has been done in collaboration with B. Edixhoven. This part has 
also been reported in [22]. 

2. Determinants, isometries between hoiomorphic line bundles and the Belavin-Kniznik theorem. 
We will first give a rough sketch of the content of the B-K theorem. The path integral for the bosonic 
String for genus p surfaces reads according to Polyakov: 

Z? = f dgdx-S[x,g] (2.I) 
M,×~; 

Where Me is the space of all metrics g that can be realized on the Euclidean (world) surface X and $ 
is the space of all embeddings x : X ~ R  d of the surface into d-dimensional Euclidean space-time. 
S[x,g] is Polyakov's action: 

"l'alk presented at XVl-th Colloquium on Group Theoretical Methods in Physics at Varna, Bulgaria, June 1987 
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six,g] =  -jvgrbooxo x (22) 
X 

The metric gab is defined on M and corresponds only at the stationary points of S with the induced 
metric from the embedding x : X-*R #. 

In a number of papers [5] it is shown that after gauge fixing, (2.1) reduces to a finite dimensional 
integral over the complex moduli space 91L of stable curves (corresponding to compact Riemann sur- 
faces) of genus p (including those with a finite number of isolated nodes): 

= J3Pl]3~,A~(det(w,,wj))-d-- /2G (2.3) % 

-at2 
det'AI [ det'A2 ] 

G = det(w,,wj)f Vgg t d ~ j )  
X 

where A., n = 1,2, - - .  are Laplacians on holomorphic n-differentials on M. The prime denotes the 
~'-function regularization of the determinants. That is, with 

~ ( s )=  . f f~s  ' hi ~:0 (2.4) 

where h, are the eigenvalues of a ,  we define 

det'A, ~ exp-~"(0), ~"(s) = d ~ ( s )  (2.5) 

The set {w~}¢=l forms a basis for F(X,f~x) the space of holomorphic l-forms. The quadratic 
differentials {q~i }}e~x serve as holomorphic coordinates on ~3IL 

The B-K theorem says that for d = 2 6  the integrand in (2.3) is the squared modulus of a holo- 
morphic function on q)ik so it represents a real valued volume form on 01L (In physical terms this 
means that the left and right moving oscillator modes in the string fully decouple.) If d = 26 we 
refer to the integrand as the Polyakov integration measure. The proof of the theorem requires a 
detailed study of the ~'-function regularized determinants. For this we refer to [6,7]; for a more physi- 
cal treatment see [3,8,9]. Here we recall some relevant facts. 

The crucial point is that the determinants in (2.3) are really sections of a determinant fine bundle f~ 
over ~ associated with the Cauchy-Riemann operator 27,. In our case this elliptic linear differenti~ 
operator 27, acts on the bundle of holomorphic n-differentials, fix ~", on the Riemann surface X: 

27,: ~2x ~" ~ £ ~ ® f i x  (2.6) 

Our first concern wilt be the precise definition of ~, over ~ The moduli space ~ is the complex 
variety associated with the moduli space o v e r / '  (the integers) of stable curves of genus p over arbi- 
trary ground fields. That is, 9r~ is given by polynomial equations with coefficients in Z. (The solutioo 
of such equation may lie in an arbitrary number field. For the moment we take C, the complex 
numbers.) In what follows we also need the existence of a universal curve X over ~ This is a family 
of smooth irreducible stable curves over 9~C: 
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figure 1. 

such that every curve occurs precisely once (up to isomorphism) in the family X and the curve over 
Y~£JI~ is precisely the curvey. In fact in order to avoid singularities, and at the same time to be able 
to define line bundles with sections over ~ one has to consider o~ as a slightly more general object 
viz. the moduli stack over l .  

We now introduce on °3~ the following sheaves: f ~ / z  which is the sheaf of holomorphic 1-forms 
on ~ Ri~r.~/.~, i>~O which are the higher direct images of the holomorphic n-differentials relative 
to ~: X ~ 3 ~  In addition we introduce t3~(A), the sheaf of meromorphic functions whose divisor is 
called the compactification divisor A defined on the boundary of °3iL 

,k = ~0+A 1 + . . -  + ~ / 2 1  (2.7) 

where A,, i = 0  ..... [p / 2] are the boundary components of 
The determinant bundle g, introduced above can now be defined as 

- -  ® n  ~__ [ A r n a x  ® n  ' ~ * , ~ D I  ® n  f~:det(R~r.~x/~) ~, , ~r.~x /,,:~) ~ , , . ~ x / ~  (2.8) 

This definition can also be written as 

~n (/XmaXH°('/r-t~v),c0x~-~))*®/kmaxnl('n "-l" " ~®" ~) (2.9) 

Y~G.31L We call ~ the determinant line bundle associated with the Cauchy-Riemann operator % 7  For 
P > I  and n > l  is H l ( X , w ~  is trivial hence we write t~ as det~r.w.~fl~. At the basis of the B-K 
theorem are two isomorphisms which we will now describe. One gives a relation between £2 and the 
determinant line bundle of the Kiihler differentials de t f l~ / z ,  on 91L 

We have the exact sequence 

O~ Tx/,~ ~ Tx /z  ~ r ' T ~ / z  ~ 0  (2.10) 

to which corresponds a homomorphism a, the socalled Kodaira-Spencer mapping 

a: Tx / z  ~ Rl~r'(Tx /~-~) (2.11) 

~vhere T x / ~  is the dual of ~ x / ~ ,  and Tx/z ,  the dual of fix~z, etc. In fact we will consider the dual 
map. Taking the determinant (i.e. taking the maximum exterior power) one can prove that a is an 
~Somorphism, called the Kodaira-Spencer isomorphism: 

det(~r.o~x~/~) ~ det~-~/z ®~,~(A) (2.12) 

]'he other isomorphism gives a relation among the f~, the determinant bundle of the relative 
differentials wx/~,®" for different values of n. To find it we use the Grothendieck-Riemann-Roch 
theorem. It characterizes relations between the line bundles by way of their Chern classes as elements 
in the Chow-ring A (~iL), i.e. it determines ct(ff,,,) up to linear equivalence. 

The theorem states that 

~ ~ ( ~ . , ~ )  : , r . IC~,~.  ra~)~] (2.13) 
Where Ch resp. Td denote the Chern character resp. Todd character. 

Putting c~(¢r.oax/,.~) = ~, c, Or*w~x~/~:~) = h, we obtain upon expanding the right hand side of 
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(2.13) Mumford's formula [ 10] 

n 

X, = 3.+(2)(t2~,-~ ) (2.14) 

where 3 denotes the class of compactification divisor: 8 = [O~.~(A)]. 
In particular we have the holomorphic isomorphism: 

det(:c.~x~!~) ~ (det~r.t%/~-~) ®~3 ® ~3~-~(--A) (2.15) 

Combining (2.12-15), we than find 

(det~r.~0x/,:~rD ~13 ~ (detfL~z) ® t~)~(2A) (2.16) 

This isomorphism is unique (up to an overall constant). The Polyakov measure arises by defining 
metrics on the determinant line bundles ~ which for n = 2 can be transferred onto the canonical line 
bundle of ~-~l, by means of (2.16). Up to a constant depending on the genus, the metric on det~,~/z 
obtained in this way is the Polyakov integration measure. 

With the following theorem we put a suitable metric on 1~ = det~r.~x~%a: 

THEOREM I [7]. Let the bundle ~x~fl~t have a smooth Hermitian metric for each n, induced from the 
usual L2-metric on each fibre. Furthermore let {¢i}7'=~, m = ( 2 n - l ) ( p - 1 )  be a basis for 
H¢~(~ I ~,~ (y).~x/.~). Denote by s the section of %, given by s = (~l/~ " " • A~,,) -I  

The Quillen norm tI-tIQ defined as 

det'A, (2.17) 
Ilsll~2- det(e~,,/, A 

is a smooth metric on E,. The curvature of this metric is given by 

fu ry  ~ = ~)~logIIs II ~? (2.18) 

which represents a (I,1) form on 

The following remarks are in order. 
The Laplacian A, is computed using the Hermitian metric on each fibre ~r-I(y),y~_~lk Note that the 
theorem is independent from the metric used to compute the Laplacian AN. This fact will be used in 
the next section. Observe also that the Quillen norm differs from the usual L2 norm: (cf. [7,11]): 
I1"110 = 11.112det'A,. (The L2 norm does not very smoothly with the fibres.) 

Using the definition and the theorem above, (2.3) can be rewritten as 
r 3 p  - 3 

Zp - - .~  ,!!, ,/,i Aq,, det(w,,w,) a/211s2112olls,tl~ a (2.19) 

We now apply a theorem of J. Bismut and D. Freed [12] which is a refinement of the G-R-R theorenl 
to the level of differential forms. It states that the Chern class of E, represented as a two form (usir~g 
the Quillen metric), is given by: 

c t (if,,, tl'llq) = - f c h ( w ~ / . ~ ) T d ( f ~ x  i ) (2.20) 
x 

where the Chern character and the Todd character on the right hand side are computed with the Her" 
mitian metric put on the bundles wx~fl.~ and fl~t.  

Using the isomorphism (2.16) we thus obtain a holomorphically flat metric on (t~l) -a /z®t% for 
d=26 ,  which generates a second order pole at the boundary of ~ (The partition function therefore 
generates a fourth order pole, which physically signals the presence of a tachyon.) 
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3, Analgebraic formulation o f  the Polyakov measure 
One can be more explicit about the nature of the Polyakov partition function (i.e. the integrand in 
(2.19)), by giving an algebraic expression for the Quillen metric on t~. For this purpose we use some 
of the ideas of Faltings on Arakelov geometry [13,14]. 

We begin with constructing a special metric on an arbitrary line bundle L over a compact Riemann 
surface on X. As before let wl ..... }~ be an orthonormal basis for the space of holomorphic K~ihler 
differentials F(X, £x). Then one defines a Hermitian metric 

i [ A~-2 (3.1) _ ~ W I < w l , w 2 >  : 2 

Using the set {w,}¢=~ one constructs a Kahler 1-1 form ~0 on X 

_- i A g  (3.2) 
6o 2 p / =  I , 

which is normalized by 

f0~ = 1 (3.3) 
X 

Now by a theorem of Arakelov [13] that there exists for any line bundle L a metric till unique up to 
scalar mutliplication of which the first Chern class satisfies: 

cl (L) = 27rideg(L)oJ (3.4) 

where 

and 

c ~(L} = 3~logIIs It 2,s ~ L (3.5) 

Such a metric on L is referred as an admissible metric. 
It 's associated Green's function g(P,Q) = IogG(P,Q), P, QcX, satisfies [14] 3"~togG(P,Q) = 2~riw. 

(It is not difficult to show, that logG(P,Q) is the inverse of the scalar Laplacian whence the terminol- 
ogy.) The function G(P,Q) has a logarithmic singularity at P = Q; for P@Q it is C~-function. 
Using the function G(P,Q), one puts a metric on the bundle Ox(Q) of holomorphic functions at Q by 
setting the norm of the unit section 1 equal to 

11 l lte~(e)(Q) = G(P,Q) (3.6) 

Taking tensor powers gives an admissible metric on Ox(D) called the Green's metric (D a divisor on 
X). The residue of a differential at P gives an isomorphism from the fibre at P of the line bundle 

fix(P) = ~x®~3x(P) (3.7) 

to C with its usual metric I" t" There is unique metric on the relative differential ~xCe~ (since £x and 
~Ox/,~ are isomorphic as line bundles), for which the residue map is an isometry for all P. 

It is possible to transfer this metric onto the associated determinant line bundle, by virtue of the 
following theorem: 

~EOPaSM 2 ([141). There is a unique way of assigning to any line bundle L on X with an admissible 
metric a Hermitean metric on the space 

detRF(X,L) ~ AmaxH°(X,L)®(AmaXH~(X,L)))" (3.8) 

Such that the following (functorial and compatibility) properties hold 

degL = - h  [0~logllstl 2 
2~ri x j 
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1) An isometry f :L- .L '  induces an isometry from det R I'(X, L) to det R F(X,L'). 
2) If the metric on L is changed by a factor a > 0  then the metric on det RF(X,L) is changed by 

a x~L) where 

x( L ) :: dimH°( X,L ) -  dimHl ( X,L ) 

= d e g L - p + l  

3) The metrics on det RF(X,L) are compatible with the Green's metrics on ~(D)[P] in the following 
sense. Suppose Dt and D are divisors on X such that D = Di +P, PEX. Then the isomorphism 

detR F(X, (D)) ~ detR F(X, (D I))®0(D){P ], (3.9) 

which is induced by the exact sequence 

O--~ O( D I )-.~ ~ D )--, O( D )I P 1--~0 (3.10) 

is in fact an isometry. 
4) The metric on detRF(X,~) = A?H°(X,~2x) is the one determined by the canonical scalar pro- 

duct (3.1) on H°(X, f~). 
We will give the line of reasoning in the proof of this theorem, because it has an interesting conse- 

quence in string theory. It is essentially enough to prove property 1, because the metric may be put 
on the detRF(X,L)'s in a unique way so that properties 2,3,4 hold. Recall that one can construct 
always a divisor D such that ~D)  and ~ are isomorphic as line bundles. Since we have the Green's 
metric on 0(D), which is a scalar multiple of the fixed metric on [~x, conditions 2 and 4 determine the 
metric on detRF(X,0(D)). With property 3 it then follows that one may determine a metric on 
detRF(X,O(D')), for any divisor D'  by adding or subtracing points. G(P,Q) is symmetric in P,Q so 
the order in which one adds or subtracts points is irrelevant for the metric on detRF(X,O(D')). 

It, therefore remains to prove that any isometry 0(D) --~ ~(D') induces an isometry 

detR F(X, 0(D)) "~ detR F(X, GO')). 

For this purpose one adds or subtracts points such that the divisors D and D'  are both of degree 
p - 1. Then they can be written as 

r 

E -  ~ P i  
i ~ l  

for a fixed divisor E and some points P1 ..... Pr on M. For ff = (Pi ..... P , )eX' ,  (X" = X® . . .  ®X,r 

factors). Define L(ff) to be 0 ( E -  ~] P'). One then proceeds in proving property 1) by constructing 

a line bundle N on X'  whose fibre at c2 is naturally identified with detRF(X,L(ff)). The isomorphism 
classes of this line bundle are easily obtained since they belong to the Picard group of line bundles of 
d e g r e e p -  i, Pie e _ l(X). We thus have a mapping 

~: mr ~picp -t(X) (3.11) 
r 

which sends (PI ..... Pr) to (E - ~ Pi). 
i = 1  

Now, recall that in Pie? I(X) there is the theta divisor, 0, of trivial bundles over X. One can prove 
that the bundle N is in fact given by the pull back of + [14]: 

N = q, '0(-0) (3.12) 

in which the unit section of 0 ( -0 )  goes over into the meromorphic section s of N. Since the fibre of N 
at P has been identified with detRF(X,L(~2)), the metrics that have been put on detRF(X,L) yield a 
metric I['llu on N, Property l) is thus proved if the curvature of this metric is equal to the curvature 
of the Hermitian metric I1"1[0 on ~0). This can be done by using the Green's metric on 0(0). (We 
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refer to [14] for this part of the proof.) 
Important for us is, that apparently there exists a scalar A such that 

I]-tbv = AII'Ito (3.13) 

When appropriately normalized, this factor can be expressed in terms of the new invariant ~(X) on a 
Riemann surface introduced in 14 (pp. 401-403). 

In particular we have that for a given line bundle of degree p - 1 without holomorphic sections, the 
norm on detRF(X,L)~E is independent of the metric on L and by virtue of the theorem is propor- 
tional to the inverse of the norm of the unit section of 0(0). The factor is most conveniently described 
by computing the metric on detR F(X, ~ ® ~ Q ~ = 1Pi)). One then finds the equality [ 14] 

Ildetwi(P))[I 
IIl0~Pi, • ' " ,Pe,p)ll = exp(-6/8)H<jG(Pi,Ps) H) G(Ps'Q) (3.14) 

The expression on the l.h.s, denotes the norm of the unit section of 0 ( - 0 )  in (Pic e - i - 0 )  depending 
on the degree p -  1 divisor D--.Y.~,= i P i -  Q. (The representation of the proportionality factor is for 
convenience and will be clarified below). 

One can lift the discussion above to a family of curves ~r:X--,M. In this case we have the analogue 
of the exact sequence (3.10) for L on X: 

O~L( - D)--,L--,o*L ~O (3.15) 

where o* is the pull-back of the section of ~r which assigns to each yE°3~ a point on the fibre. The 
choice of D is such that L ( - D )  is of degree p - I. Using (3.15) one has the isomorphism 

det R~r.L~ detRqr*L(- D)®o*L (3.16) 

Putting the Quillen metric on both sides and using the G -  R -  R theorem in the form (2.20) one 
proves easily (see e.g. [3]) that (3.16) is indeed an isometry, for the Quillen metrics. 

Applying this to L =det~r,~0x~ one finds 

1-I G(Pi,Pi) 

Where s is a section of ~, and s' a section of the determinant line bundle associated to rr.w~v~(.~310. 
Because Ir°~}/,~(-D) is of degree p -  I by construction, the Quillen metric on the associated 

determinant bundle is isometric to the usual fiat metric on C, and only on the isometry class of 
~r.¢onx/M(-D). Hence, the Quil]en metric on detqr,(t~(/:~(- D) can be related to the metric on the unit 
section of the 9-divisor lifted to the universal curve [14] as follows. We consider the relative Picard 
variety P i ~ - l ~  whose fibre over v e r)l~ is Picp_ t(X). We can associate with it a relative 0-divisor, 
which gives a line bundle on P i ~ - ' ,  whose restriction to Picp_ t(X) is the line bundle ~(Ox). We 
denote by IIl0~P1, ' " ' ,P~)tl the norm of the unit section of 0 ( - 0 )  lifted to the universal curve. By 
Virtue of the G-R-R theorem in the form (2.20) one has the isometric isomorphism: 

detqr. (w~x/~a( - D))--~r. 0( - 0) (3.18) 

(Note that the definition of detRF(X,L) in (3.8) is dual to the definition of £,. In the derivation of 
(3.18) and the formulae (3.21-23) one therefore has to incorporate an extra minus sign.) This implies 
that the QuiUen metric llsql in (3.17) is proportional to the norm on la, where the proportionality is 
given by the invariant & We will now make this explicit. Choosing an odd theta characteristic, or 
Spin bundle, (which has degree p -  i) on the (spin covering of the) universal curve X, one obtains 
Using the G-R-R theorem, the isometry 

(L~_,)-2 ~e l  (3.19) 

~Vhere g ,  is the associated determinant line bundle of .t/2 wx/~. Subsequently, one may prove the 
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following isometric isomorphism 

(~,)8 _~(~)-, ®(~, )9 (3.20) 

As a result we can express the Quillen norm on E1 entirely in terms of exp& First we conclude from 
(3.18-19) that the norm on s' in (3.17) is identified with 

det'A t 
[Is']l~ -- Ap[ ................................ ] 2111#~(PI,-, . ,Pp,Q)II 2. (3.2l) 

det(w, wj) f V~g 
~ (y) 

Where A e is constant only depending on the genus. This together with the identity (2.14) generalized 
to the universal curve yields, for the Quillen norm on E~ : 

det'8~ 8 (3.22) 
llslt~? = [det(w,,wj) / V~g ] = Ae e x p ( - ~ )  

Computing a similar expression for the Quillen norm on the canonical line bundle, one finds that the 
partition function can be given as: 

98, i~j G(P''Pj) 
At, t ,  , m - - -  A,3e_312exp(-~ -, iideteoi(pj)ii ~ I t l s~Pl , -"  ,em)II 2. (7.11) 

This expression is independent of the points P~ and of the coordinates ,~ on .erL It is thus possible to 
write the partition function in terms of Riemann theta functions [15,16}. 

4, Computation of the Polyakov volume for arithmetic surfaces 
In this section we will describe a string partition function for arithmetic surfaces, which correspond to 
K-rational points in moduli space. 

Let c~ be the moduli stack over Z as before. Pick a K-rational point x in M for some algebraic 
numberfield K and consider the tangent space To~t/z(x) at x, which is the complexification of the vec- 
tor space formed by the K-rational tangents. (The complexification arises by considering the product 
K®xC.) Out of these vectors. We select the integral tangents to build a lattice and we will compute, 
using the techniques of [14,24], the volume of this lattice with respect to the Polyakov measure. The 
result suggests an alternative definition of the string partition function, as proposed in [3,4] which at 
each infinite place of K and upon taking the limit over the net of all K, reduces to the usual partition 
function. For genus 1 and 2 this can be checked explicitly [3,4]. 

Preliminaries on Arithmetic surfaces and metrized fine bundles. 
The definitions of the sheaves in section 2 commute with base changes; that is the following diagrana 
defining the arithmetic surface A, is commutative 

h ~ X 

P S ~ 

figure 2. 
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Using the base change operator defined by P one can define the sheaves of section 2 on the algebraic 
stack S = Spec(~3x) (~x the ring of integers of K). In particular we have in this way the f~ module 
P" Tc~z on S which will be used frequently in the sequel. 

The fibres of p :A ~ S  are stable curves of genus p > 1. We denote by Si.f the set of infinite places of 
K associated to the infinite primes o,: 

oi:K=-~C, i = 1 , ' - - n  = [K:Q] (4.1.l) 

p:A ~ S  together with the fibres over each o, is referred as a compact arithmetic surface A of genus p 
(e.f. [14, t9]). To define line bundles on A, we introduce an Arakelov divisor D which is a finite for- 
rnal linear combination 

O = Ot~n + O i . f ~ K i C ,  + ~ h~F~, (4.1.2) 
V, S,n t 

where the Ki are integers, Ci is a sub-scheme of A (of codimension 1). The index i runs over the set 
of finite places of K, F~ denotes the fibre of A over the infinite place v•S in  f. For each infinite place v 
we introduce a Hermitian metric g~ on the surface A~--_~A ®~C. Denote by w~ its volume element, and 
assume the normalization 

fro v = 1 (4.1.3) 
,4, 

One can now introduce a metrized line bundle on A as a line bundle L having a Hermitian metric till 
on L which is the line bundle over the infinite place included by L, The metric is induced by the 
inner product on each fibre. The bundle L is said to be admissible if each ~ is admissible with respect 
to the metric on A,, i.e. 

cl(L,) = 27r deg L~ ~ (4.1.4) 

To do explicit calculations, it is useful to express the relation between L and its Arakelov divisor D. 
For this purpose we define the bundle ~,~(D) as the bundle of which 0A(D~,) is the underlying bun- 
dle, which indudes a bundle over each infinite place. We can put a metric on the induced bundle by 
means of the Arakelov Green's function discussed earlier. Thus the admissible bundle 0A(D) has its 
Green's metric at each infinite place. 

The divisor div of a section s of an admissible metrized line bundle is defined as [13]: 

div(s) = S~in + ~ y~(s)F~ (4.1.5) 
Ilff$1.r 

where y,(s) = - floglls I1~0~ 
A, 

and Snn is the finite part of the divisor of s. By construction, admissible metrics on a line bundle L 
are unique up to scalar multiples, so L is isometric to 0A(div(s)), where s is a section of L correspond- 
ing to the unit section le, of OA(div(s)). Let toA/s be the dualizing sheaf for p:A ~ S .  This sheaf is 
isomorphic to fl.4 the sheaf of I-forms d.  At each infinite place we have the metric (3.1), and by the 
Same construction as given in the previous section we obtain a Hermitian metric on wA/s, at each 
infinite place, 

We now use the commutativity of fig. 2, so that P * ~ x ~  becomes an admissible metrized line bun- 
dle over S. Such a line bundle corresponds to a projective rank-1 0h, module, One defines the Picard 
group Pic (~gK) for these objects as the group of isomorphism classes of metrized ~3 x modules; i.e. 
raodules with metrics at each infinite place of K. (One says that two modules L~ and L2 are iso- 
rnorohic if there is a unit u in 0x such that it preserves the p-norm for each v~S,of. That is, if II-IIL l), 
It. (~ II. denote two Hermitian norms as L, then for Lt =L2 =L, we have 

[Isl[~ ~) = [ul~ Ilsll~ ) for all s~L). (4.1.6) 
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The degree of an 0K-module is a real valued function: 

deg: Pic(e~c)~R (4.1.7) 

defined as the degree of the associated divisor of L [17, 18] 

deg L = log(order L/s.~¢) - ~ (~logllsNv (4.1.8) 

where ~, is 1 (2) depending whether the embedding is real (complex). We will denote from now on 
the <3x module P* T,.~uz by M. Observe that by means of the Polyakov measure, this is a metrized ~3x 
module. The metrics on M at infinity define a Haar measure denoted by vol on the real vector space 
M ® z R  To describe it now we recall the following natural isomorphism [17] 

Ox®zC ~ II  ®oC (4.1.9) 
a :K~C 

where the product is over distinct embeddings of K into C. By means of this isomorphism, together 
with the Euclidean Haar measure on each factor in the product on the right hand side of (4.1.9), the 
Haar measure on 0K®zE is obtained. 

So we conclude that M is a lattice in the vector space 

M ® z R  =: M®e~K®oR = H M~ (4.1.10) 

The original problem, stated in the beginning of this ,section can thus be reformulated as, to compute 
the volume of 

M ® z R / M  (4.1.11) 

induced by the metric on M. We will show in the next sub-section how this can be done by applying 
a Riemann-Roch formula. 

The Riemann-Roch theorem on Spec (OK) and volume forrns 
Using the classical Riemann-Roch theorem [20] one can compute the Euler characteristic for a line 
bundle L on a Riemann surface ~: 

x(L) = dim H°(Y,L) - dim HI(Y,,L) (4.2.1) 

In the previous sections we showed that volume forms on the formal difference 

tlO(~.,L) - H I(~,L) (4.2.2) 

together with the isometric isomorphism (2.16) essentially determine the Polyakov measure. In this 
section we will develop a metrized Euler characteristic for 0K modules for which one has a Riemann- 
Roch formula. This formula is used to calculate the volume of the lattice (4.1.12). We will define the 
Euler characteristic X for an 0K module in two steps. First we suppose that M is a rank i module over 
1. Denote as before by vol the Haar measure on M ® z R .  Then one defines 

x(M, Z) ~. - log[vot(M®z R/M)] (4.2.3) 

If M is a (finitely generated) ~x module one uses (4.2.3) to define 

x(M, •x) ::- X( M, Z) - rankOx(M)x(t3K,Z) (4.2.4) 

where the Euler characteristic for ~x, X(0x,Z) considered over l is given by [191. 

X(0K,Z) = log(2"dK)6 2) (4.2.5) 

where r 2 denotes the number of complex embeddings of K into C, and dx/o denotes the absolute 
value of the discriminant of Ox 117,21]. 
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Before we proceed we will relate these definitions with the corresponding definitions for a line bun- 
dle on a complex Riemann surface. Recall the formula for the Euler characteristic for a line bundle L 
over a complex Riemann surface E [20]: 

x(L,C) = degL - p  + 1 = degL - X(Z,C) (4.2.6) 

where X(Y,C) is the Euler characteristic of the surface E. In particular we have for the holomorphic 
one forms ~ :  

deg ~x = - 2x(Y~,C) (4.2.7) 

We will check that such relation also holds in the arithmetic case using the definitions made above. 
That is, we will show that 

degree,, = -2X(0x,Z) (4.2.8) 

For this purpose we need the following more abstract definition of the dualizing sheaf for 
p :A ~Spec(0r )  [ 19]: 

~o~ = H o m z ( O x , 1 )  (4.2.9) 

where Horn z, denotes all homomorphisms of OK linear in Z. 
In analogy with [20, p. 300 prop. 2.1] one has the following exact sequence 

0~0K-°t°~--*~x,~ ~ 0  (4.2.10) 

where f~s,,, are the relative Kfihler differentials (i.e. 1 forms). The cananical section of weA arises by 
taking the trace of the unit section in 0x. (Note that this linear in Z). At each infinite place v we put 
a metric on ,% such that 

blTrl[v = IIlllv (4.2.11) 

The degree of ,0~, can be expressed as: 

degwe~ = log(order w ~ / O x . s )  - ~ ,  ~log[llll 
v ~S~nr 

= log((order ~e,,,), s ~ws,. (4.2.12) 

The module ~2e,,, defines a lattice in the vector space 

f~0,,,®zR = II  f~ (4.2.13) 
v 6" S, , ,  I 

Choosing a basis ol, "" . ,o ,  of ~ex/z at each infinite place vi,i = 1, . . .  ,n =[K:O],  one can compute 
(4.2.12): 

log (orderlies,,) = logldet(vi(oj ) )J 2 

= Iog(2'J2d~//40 ) (4.2.14) 

Where the second equality follows from the definition of the discriminant of et¢ (see e.g. [21]). 
Substituting (4.2.14) and (4.2.5) in (4.2.8) leads to the required equality. We will now proceed with 

the computation of the volume of M ® z R / M ,  M = P ' d e t T t ~ z ,  using the Riemann-Roch formula 
(4.2.4). We have 

log vol (M ® it R /M)  = - degM - (3/9 - 3) log(2 '~ d~-)~ 2 ) (4.2. i 5) 

The first term on the right hand side can be evaluated, using the fact for rank 1 modules M we have: 

degM = deg det M (4.2.16) 
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(compare e.g. the situation with line bundles). 
Using (2.16) we thus obtain 

deg det M = deg P'(det~r.c0x/,x)~3(9~(- 2A) (4.2.17) 

= 13 deg detp,~oA/s-2 deg (gs(A) 

where we used the commutativity of fig. 2. Note that we have by our earlier discussion in the previ- 
ous section a metric on det p.~oA/S. The metric on the sheaf (9~(A) is trivial, so 

deg 0s(A) = log(order 0s(A)/0s(A).I) (4.2.18) 

= log [NmoAA/S[ 

where NK/O is the absolute norm and A~/s the discriminant of the curve associated to the surface 
p :A ---,S (see [ 18] for details). 

At this point we recall the delinition of Falting's modular height function [14] of a K-rational point 
x in the moduli space of stable surfaces ~r: A ~ S  of genus p: 

h(A) - l deg det (p.~oA/S) (4.2.19) 
[K:Q] 

Then, (4.2.15) leads to 
I 

[vol (M®zR/M)} r:ol = 
-2 3p 

exp ! 3h (A)'(NK/o AA/S) t~ :O1 (2 ~ d,~//2o ) t,~ :ol, for p > 1 (4.2.20) 

f o r p > l .  
Using the formulae in [3,4,18] for genus 1 and 2 it follows that at each infinite place (4.2.20) reduceS 
to the original partition function. (For genus 1, the factor 13 should be replaced by 14 in the 
exponent, and the factor 3,o - 3  by 1). 

4. CONCLUSIONS 
In this paper, we have given an outline of the proof of the Belavin Kniznik theorem, which defines the 
partition function of Polyakov's string theory, as an invariant real valued measure on the moduli 
space of stable curves of given genus. Subsequently, we computed the volume of the lattice of K" 
rational tangents at a K-rational point with respect to this measure. At each infinite place of K one 
recovers for genus 1,2 the original partition function. 

As was discussed already in [3,4], it thus seems natural to define the partition function as 

Z = l i m ~ v o l ( m ® z R / m )  (5.1) 

where the limit is taken over all finite field extensions of O, and the summation is over all K-rational 
points. Due to the higher dimensional MordeU conjecture, the convergence of (5.1) is presumably 
much better, thus showing that arithmetic geometry is more restrictive hence more powerful than the 
algebraic geometry of curves over the complex number field. It would be interesting to investigate, 
whether arithmetic geometry could provide a natural frame work to describe d = 2  conformal quart- 
turn field theories in general. 
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