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In the first part we review how elements of algebraic geometry can be used to give an algebraic formula for
the string partition function. In the second part we generalize these ideas o include arithmetic surfaces, i.e.
surfaces defined over an algebraic number tield K. We will calculate explicitly the volume of the lattice
formed by K-rational tangent vectors at a K-rational point in moduli space, with respect to the Polyakov
measure.

L Introduction
Polyakov’s formulation [1] for quantizing the closed bosonic string theory has various advantages over
other quantization schemes due to its profound geometrical interpretation.

It is the purpose of this paper to discuss this in more detail. In section 1 we will give an outline of
the proof of the Belavin Kniznik theorem [2] which states that after gauge fixing of the classical sym-
Metries of the string, the so-called partition function for genus p surfaces becomes the square of the
absolute value of a holomorphic function on the complex moduli space 9% of stable curves. In section
2 we use elements of Faltings’ work on Arakelov intersection theory to obtain an algebraic formula
for the Polyakov measure i. the string partition function [14,16]. Subsequently, we consider the
String partition function at K-rational points in moduli space. These are special points, corresponding
to so-called arithmetic surfaces i.e. surfaces defined over an algebraic number field K.

As a new result we present a detailed calculation of the volume of the lattice spanned by K-integral
vectors tangent to a K-rational point of 9 with respect to the Polyakov measury using a Riemann
Roch formula on Spec(Ox), O the ring of integers of K. At each infinite place of X the result reduces
to the usual partition function. This will clarify some of the ideas presented in [3 (sect. 4.4), 4].

Part of this work, sect. 4.1 and 4.2 has been done in collaboration with B. Edixhoven. This part has
also been reported in [22].

2. Determinants, isometries between holomorphic line bundles and the Belavin-Kniznik theorem.
We will first give a rough sketch of the content of the B-K theorem. The path integral for the bosonic
String for genus p surfaces reads according to Polyakov:

Z, = fdgdx-*S[x.g) .n
M,XS

Where M, is the space of all metrics g that can be realized on the Euclidean (world) surface X and &
18 the space of all embeddings x:X —R? of the surface into d-dimensional Euclidean space-time.
§ [x,g] is Polyakov’s action:

Talk presented at XVI-th Collogquium on Group Theoretical Methods in Physics at Vamna, Bulgania, June 1987



588

Sixgl = 3 [Vgg®d,xd;x 22)
X

The metric g is defined on M and corresponds only at the stationary points of S with the induced
metric from the embedding x : X—R“.

In a number of papers 5] it is shown that after gauge fixing, (2.1) reduces to a finite dimensional
integral over the complex moduli space 91 of stable curves (corresponding to compact Riemann sur-
faces) of genus p (including those with a finite number of isolated nodes):

z,= | 3/'_’1':?]3¢i/\$",-(det(w,,wj))‘ 4/2G (2.3)
i
ders, | T dera
B det(w,v,wj)f\/g_ {det(¢1’¢j) }

where A, n =12, --- are I)iaplacians on holomorphic n-differentials on M. The prime denotes the
{-function regularization of the determinants. That is, with

56 = Sqr MO 24
where A; are the eigenvalues of A, we define

det, = exp—{(0), {(s) = %f(s) 2.5)

The set (w;}#., forms a basis for T(X,Qx) the space of holomorphic 1-forms. The quadratic
differentials {¢; )77 serve as holomorphic coordinates on 9.

The B-K theorem says that for d =26 the integrand in (2.3) is the squared modulus of a holo-
morphic function on 9, so it represents a real valued volume form on 9. (In physical terms this
means that the left and right moving oscillator modes in the string fully decouple.) If d = 26 we
refer to the integrand as the Polyakov integration measure. The proof of the theorem requires 2
detailed study of the {-function regularized determinants. For this we refer to [6,7]; for a more physi-
cal treatment see [3,8,9]. Here we recall some relevant facts.

The crucial point is that the determinants in (2.3) are really sections of a determinant line bundle £
over 9N, associated with the Cauchy-Riemann operator ¥,,. In our case this elliptic linear differential
operator V¥, acts on the bundle of holomorphic n-differentials, Q%" on the Riemann surface X:

V. 09" 50300, (2.6)

Our first concern will be the precise definition of £, over M. The moduli space M is the complex
variety associated with the moduli space over Z (the integers) of stable curves of genus p over arbl-
trary ground fields. That is, 9% is given by polynomial equations with coefficients in Z. (The solution
of such equation may lie in an arbitrary number field. For the moment we take C, the comple*
numbers.) In what follows we also need the existence of a universal curve X over 9t This is a family
of smooth irreducible stable curves over M:



x —T = =X
\ l figure 1.
z

such that every curve occurs precisely once (up to isomorphism) in the family X and the curve over
Y €M is precisely the curve y. In fact in order to avoid singularities, and at the same time to be able
to define line bundles with sections over 9%, one has to consider 9N as a slightly more general object
viz. the moduli stack over Z.

We now introduce on 9% the following sheaves: {ly ,; which is the sheaf of holomorphic 1-forms
on 9; Rimew$ex, i=0 which are the higher direct images of the holomorphic n-differentials relative
o 7: X5, In addition we introduce Oy (4), the sheafl of meromorphic functions whose divisor is
called the compactification divisor A defined on the boundary of 9

A:A0+Al+”'+A(g/2) (2.7)

where 4, i =0,...,[p /2] are the boundary components of .
The determinant bundle £, introduced above can now be defined as

£, =det(Rmwiin) = (A" mwfq) @R 0 (2.8)
This definition can also be written as
B = (A" Hr ' (1), wfm ) @A™ H (7 (), ) 2.9)

Y€, We call £, the determinant line bundle associated with the Cauchy-Riemann operator 7,,. For
P>1 and n>1 is HY(X, 0§ is trivial hence we write £, as detm.w®y. At the basis of the B-K
theorem are two isomorphisms which we will now describe. One gives a relation between £ and the
determinant line bundle of the Kahler differentials detQsy, 7, on I

We have the exact sequence

0Ty m—Tx 27 Topyz -0 (2.10)
to which corresponds a homomorphism a, the socalled Kodaira-Spencer mapping
a: Ty sz = R'me(Tx o) @.11)

Where Ty sop 15 the dual of wy /Mo and Ty ,, the dual of Qy ,7, etc. In fact we will consider the dual
Map. Taking the determinant (i.e. taking the maximum exterior power) one can prove that « is an
isomorphism, called the Kodaira-Spencer isomorphism:

det(mew¥in) = detlloy , 7 B0y (A) (2.12)

The other isomorphism gives a relation among the £,, the determinant bundle of the relative
differentials w®fy, for different values of n. To find it we use the Grothendieck-Riemann-Roch
theorem. It characterizes relations between the line bundles by way of their Chern classes as elements
1n the Chow-ring 4 (W), i.e. it determines ¢(S,) up to linear equivalence.

The theorem states that

Cl(’ﬂ'-(a)?/nﬁm) = W‘[Chw?/"‘:m'rdn;/\%] (213)

Where Ch resp. Td denote the Chern character resp. Todd character.
Putting ¢ (mwy, =) = A ea(mewm) = A, we obtain upon expanding the right hand side of
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(2.13) Mumford’s formula [10]

n
A = A+ (I2A-8) (2.14)

where § denotes the class of compactification divisor: § = [0y(A)).
In particular we have the holomorphic isomorphism:

det(mwj(?,z.m) o (det?(th/om)®l3 ® B“m(_A} (215)
Combining (2.12-15), we than find
(delﬂowx/gn)@]a o (de[ﬂuwz) ® @um(zA) (216)

This isomorphism is unique (up to an overall constant). The Polyakov measure arises by defining
metrics on the determinant line bundles £, which for n =2 can be transferred onto the canonical lin¢
bundle of Mz, by means of (2.16). Up to a constant depending on the genus, the metric on detQuy, /2
obtained in this way is the Polyakov integration measure.

With the following theorem we put a suitable metric on £, = delw.w?f}uw:

THEOREM 1 {7]. Let the bundle w$/y have a smooth Hermitian metric for each n, induced from the
usual L,-metric on each fibre. Furthermore let {¢;}-y, m = (2n—1)}p —1) be a basis for
Hm Y(y).0§rw). Denote by s the section of £, given by s = (¢; /A -+ - Ad,) ™"

The Quillen norm ||}, defined as

det’A
sl = — .17
e = Geitgran
is a smooth metric on £,. The curvature of this metric is given by
Curve, = 8dloglsl} (2.18)

which represents a (1,1) form on 9.

The following remarks are in order.
The Laplacian 4, is computed using the Hermitian metric on each fibre 7~ '(y),y €9N. Note that the
theorem is independent from the metric used to compute the Laplacian 4,. This fact will be used 11
the next section. Observe also that the Quillen norm differs from the usual L, norm: (cf. [7,11])
Il-lg = lI-Il,det'd,. (The L, norm does not very smoothly with the fibres.)

Using the definition and the theorem above, (2.3) can be rewritten as

3p -3 -
ZP - Jw{ zplll ¢: /\¢I da(wnwl)id/zHS2“2Q”5‘ Héd (219)

We now apply a theorem of J. Bismut and D. Freed [12] which is a refinement of the G-R-R theore®
to the level of differential forms. It states that the Chern class of £, represented as a two form (using
the Quillen metric), is given by:

cilfulillg) = — feh(wfym)Td@x ") (2.20)
4

where the Chern character and the Todd character on the right hand side are computed with the Her*
mitian metric put on the bundles w$/y and Q3.

Using the isomorphism (2.16) we thus obtain a holomorphically flat metric on (&) ¢/2®g, fof
d=26, which generates a second order pole at the boundary of 9. (The partition function therefor®
generates a fourth order pole, which physically signals the presence of a tachyon.)
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3. Analgebraic formulation of the Polyakov measure
One can be more explicit about the nature of the Polyakov partition function (i.e. the integrand in
(2.19)), by giving an algebraic expression for the Quillen metric on L,. For this purpose we use some
of the ideas of Faltings on Arakelov geometry [13,14].

We begin with constructing a special metric on an arbitrary line bundle L over a compact Riemann
surface on X. As before let w,..,w, be an orthonormal basis for the space of holomorphic Kihler
differentials T'(X,2y). Then one defines a Hermitian metric

W Wy > = wal/\x;; 3.h
2 X
Using the set {w; }?—, one constructs a Kahler 1-1 form w on X
i —
W= — Sw Aw, (3.2)
2p ,ﬁ::; 7O
which is normalized by
Ju=1 (3.3)
X

Now by a theorem of Arakelov [13] that there exists for any line bundle L a metric |-l unique up to
scalar mutliplication of which the first Chern class satisfies:

ci(L) = 2mideg(L)w (3.4)
where
ey(L) = ddloglisl?sel 3.5)

and

-1 (43 2
degl = 2m_kfaaloglls(|

Such a metric on L is referred as an admissible metric.

It's associated Green'’s function g(P.Q) = logG(P.Q), P, X, satisfies [14] 3dlogG(P.Q) = 2miw.
(It is not difficult to show, that logG(P,Q) is the inverse of the scalar Laplacian whence the terminol-
ogy.) The function G(P,Q) has a logarithmic singularity at P = Q; for P it is C*-function.
Using the function G(P,Q), one puts a metric on the bundle Oy(Q) of holomorphic functions at Q by
setting the norm of the unit section 1 equal to

I Hlep(Q) = G(P.Q) (3.6)

Taking tensor powers gives an admissible metric on Ox(D) called the Green’s metric (D a divisor on
X). The residue of a differential at P gives an isomorphism from the fibre at P of the line bundle

Qx(P) = QxB0x(P) (3.7
to C with its usual metric |-|. There is unique metric on the relative differential wy,« (since Qy and
Wy,ay are isomorphic as line bundles), for which the residue map is an isometry for all P.

It is possible to transfer this metric onto the associated determinant line bundle, by virtue of the
following theorem:

THEOREM 2 ((14]). There is a unique way of assigning to any line bundle L on X with an admissible
Metric a Hermitean metric on the space
detRT(X,L) = A" H (X, L)®(A™H' (X, L))" (3.8)

Such that the following (functorial and compatibility) properties hold
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1) Anisometry f:L—L’ induces an isometry from det RI'(X,L) to det RI'(X,L").
2) If the metric on L is changed by a factor >0 then the metric on det RT(X,L) is changed by
oX't) where

x(L) = dimH%(X,L)—dimH'(X,L)
= degL—p+1

3) The metrics on det RI'(X,L) are compatible with the Green’s metrics on &(D){P] in the following
sense. Suppose D| and D are divisors on X such that D = D\ +P,PeX. Then the isomorphism

detRI(X, (D)) = detRT(X,(D,))@UD) P}, 3%
which is induced by the exact sequence
0-8(D )& D)—KD)P]-0 310

is in fact an isometry.
4) The metric on detRT(X,Q) = A?H%(X,y) is the one determined by the canonical scalar pro-
duct (3.1) on HY(X, Q).

We will give the line of reasoning in the proof of this theorem, because it has an interesting conse-
quence in string theory. It is essentially enough to prove property 1, because the metric may be put
on the detRI'(X,L)'s in a unique way so that properties 2,34 hold. Recall that one can construct
always a divisor D such that &(D) and § are isomorphic as line bundles. Since we have the Green's
metric on &(D), which is a scalar multiple of the fixed metric on Qy, conditions 2 and 4 determine the
metric on detRT{X,0(D)). With property 3 it then follows that one may determine a metric op
detRI(X,(D")), for any divisor D’ by adding or subtracing points. G(P,Q) is symmetric in P,Q s0
the order in which one adds or subtracts points is irrelevant for the metric on detRT'(X,&(D")).

It, therefore remains to prove that any isometry &(D) ~ &(D’) induces an isometry

detRT(X, D)) =~ detRI(X,(D")).

For this purpose one adds or subtracts points such that the divisors D and D’ are both of degree
p — 1. Then they can be written as

E”"’éP{
i)

for a fixed divisor £ and some points P,....P, on M. For ¥ = (P,...P)eX . (X" = X® - -+ ®X,r
factors). Define L(%) to be &£ — 3 P’). One then proceeds in proving property 1) by constructing

i=1
a line bundle N on X’ whose fibre at 9 is naturally identified with detRT(X,L(%)). The isomorphism
classes of this line bundle are easily obtained since they belong to the Picard group of line bundies of
degree p — 1, Pic, - |(X). We thus have a mapping

¥ M"—Pic, - (X) 3.1

r
which sends (Py,...,P,) to (E — 3, P)).
i=1
Now, recall that in Pic, _;(X) there is the theta divisor, 6, of trivial bundles over X. One can prove
that the bundle M is in fact given by the pull back of ¢ [14]:

N = &8 (3.12)

in which the unit section of & —#) goes over into the meromorphic section s of N. Since the fibre of N
at P has been identified with detRT(X,L(%)), the metrics that have been put on detRI(X,L) yield 3
metric |-y on N. Property 1) is thus proved if the curvature of this metric is equal to the curvatur®
of the Hermitian metric IIll, on ©@). This can be done by using the Green’s metric on &(). (W¢
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refer to [14] for this part of the proof.)
Important for us is, that apparently there exists a scalar A such that

-y = All-llg (3.13)

When appropriately normalized, this factor can be expressed in terms of the new invariant 8(X) on a
Riemann surface introduced in 14 (pp. 401-403).

In particular we have that for a given line bundle of degree p — 1 without holomorphic sections, the
norm on detRT(X,L)==C is independent of the metric on L, and by virtue of the theorem is propor-
tional to the inverse of the norm of the unit section of &#). The factor is most conveniently described
by computing the metric on detRT(X, Q@K Z7_, P,)). One then finds the equality [14]

lidetw; (Pl
R = —_ ____._-"_
f1eyd P;, Pp, D)l = exp(—6/8) HG(P,, Py HG(P,.Q) (3.14)
The expression on the Lh.s. denotes the norm of the unit section of &—¥) in (Pic, -, —#6) depending

on the degree p —1 divisor D=2f_,P;—(Q. (The representation of the proportlonahty factor is for
convenience and will be clarified below).

One can lift the discussion above to a family of curves 7: X -9 In this case we have the analogue
of the exact sequence (3.10) for L on X:

0> L(—D)-L—0*L—>0 (3.15)

where o* is the pull-back of the section of # which assigns to each y €9 a point on the fibre. The
choice of D is such that L{— D) is of degree p —1. Using (3.15) one has the isomorphism

det Roe Lo detRo*L(— D)®o*L (3.16)

Putting the Quillen metric on both sides and using the G —R —R theorem in the form (2.20) one

proves easily (see e.g. [3]) that (3 16) is indeed an isometry, for the Quillen metrics.
Applying this to L =detm.w§/ one finds

11G(P,.P)

i#]

(| detgy (Pl

where s is a section of £,, and s’ a section of the determinant line bundle associated to 7. w’}, o (SN).
Because 7w o(— D) is of degree p —1 by construction, the Quillen metric on the associated
determinant bundle is isometric to the usual flat metric on €, and only on the isometry class of
Tew’y,on(— D). Hence, the Quillen metric on detm. (w},(— D) can be related to the metric on the unit
section of the §-divisor lifted to the universal curve [14] as follows. We consider the relative Picard
variety Pic? ~!-»91 whose fibre over (e% is Pic, - ((X). We can associate with it a relative §-divisor,
Which gives a line bund]e on Picf 7', whose restriction to Pic, - ((X) is the line bundle &@x). We

sty = lls'lh 3.17)

denote by I1g(P;, - -, P,)ll the norm of the unit section of @( ) lifted to the universal curve. By
virtue of the G-R-R theorem in the form (2.20) one has the isometric isomorphism:
detme(whm(— D) =m0(—8) (3.18)

(Note that the definition of detRT(X,L) in (3.8) is dual to the definition of £,. In the derivation of
(3.18) and the formulae (3. 2}—23) one therefore has to incorporate an extra minus sign.) This implies
that the Quillen metric lis’ll in (3.17) is proportional to the norm on 1y, where the proportionality is
Siven by the invariant 8. We will now make this explicit. Choosing an odd theta characteristic, or
Spin bundle, (which has degree p —1) on the (spin covering of the) universal curve X, one obtains
Using the G-R-R theorem, the isometry

(B2) 2y (3.19)

Where £1 is the associated determinant line bundle of w¥fn. Subsequently, one may prove the
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following isometric isomorphism
(1P ()" B(& ). (3.20)

As a result we can express the Quillen norm on £ entirely in terms of exps. First we conclude from
(3.18-19) that the norm on 5’ in (3.17) is identified with

det’d ot
sy = AJ——————=1 "W§{Py, - .Pp.O)I% 3.21)
§Silp p[ det(W,,wj) [ \/g—] 0‘1’( | P
L)

Where A, is constant only depending on the genus. This together with the identity (2.14) generalized
to the universal curve yields, for the Quillen norm on £:

det’A; 8
sy = [——————=]= A, exp(— = (3.22)
5 7] de{(w“wj)’[ V/é‘] y4 p 6)
7 {y)

Computing a similar expression for the Quillen norm on the canonical line bundle, one finds that the
partition function can be given as:

9 Ag‘G(P;,Pf)
Alor A - - Ay, 3 Pexp(= ) T————slllgl(Py, - - -, Py 7.11)
rl Py 2P gyt | n) (
This expression is independent of the points P; and of the coordinates ¢; on 9. It is thus possible t0
write the partition function in terms of Riemann theta functions [15,16).

4. Computation of the Polyakov volume for arithmetic surfaces
In this section we will describe a string partition function for arithmetic surfaces, which correspond 10
K-rational points in moduli space. )
Let O be the moduli stack over Z as before. Pick a K-rational point x in 9% for some algebrai
numberfield K and consider the tangent space Toy ,z(x) at x, which is the complexification of the vec-
tor space formed by the K-rational tangents. (The complexification arises by considering the product
K®yC.) Out of these vectors. We select the integral tangents to build a lattice and we will compute
using the techniques of [14,24], the volume of this lattice with respect to the Polyakov measure. The
result suggests an alternative definition of the string partition function, as proposed in [3,4] which at
each infinite place of K and upon taking the limit over the net of all K, reduces to the usual partitio?
function. For genus 1 and 2 this can be checked explicitly [3,4].

Preliminaries on Arithmetic surfaces and metrized line bundles.
The definitions of the sheaves in section 2 commute with base changes; that is the following diagram
defining the arithmetic surface A4, is commutative
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Using the base change operator defined by P one can define the sheaves of section 2 on the algebraic
stack S = Spec(8x) (O the ring of integers of K). In particular we have in this way the £ module
P* T,z on S which will be used frequently in the sequel.

The fibres of p:A-sS are stable curves of genus p>1. We denote by S, the set of infinite places of
K associated to the infinite primes o;:

0, K=C, i =1, -n =[K:Q] 4.1.0

p: A5 together with the fibres over each o, is referred as a compact arithmetic surface 4 of genus p
{c.f. [14, 19]). To define line bundles on A, we introduce an Arakelov divisor D which is a finite for-
mal linear combination

D = Dy, + Diy=3KC + I AF, 4.1.2)

i VoS

where the K; are integers, C; is a sub-scheme of A (of codimension 1). The index i runs over the set
of finite places of K. F, denotes the fibre of A over the infinite place veSiy. For each infinite place v
we introduce a Hermitian metric g, on the surface 4,=4 ®,C. Denote by w, its volume element, and
assume the normalization

fo, =1 (4.1.3)
4,
One can now introduce a metrized line bundle on A as a line bundle L having a Hermitian metric |-l
on L which is the line bundle over the infinite place included by L. The metric is induced by the
inner product on each fibre. The bundie L is said to be admissible if each £, is admissible with respect
to the metric on 4,, i.¢.

cifL,) = 2ndeg L, o, (414

To do explicit calculations, it is useful to express the relation between L and its Arakelov divisor D.
For this purpose we define the bundle €,(D) as the bundle of which €4(Dgy) is the underlying bun-
dle, which indudes a bundle over each infinite place. We can put a metric on the induced bundle by
Mmeans of the Arakelov Green's function discussed earlier. Thus the admissible bundle 8,(D) has its
Green’s metric at each infinite place.

The divisor div of a section s of an admissible metrized line bundle is defined as [13]:

div(s) = Sgn + 2 WSF, (4.1.5)

VE S

where v,(s) = — floglisll,w,
i

and Sy, is the finite part of the divisor of 5. By construction, admissible metrics on a line bundle L
are unique up to scalar multiples, so L is isometric to O,(div(s)), where s is a section of L correspond-
lng to the unit section 1o, of O4(din(s)). Let w,,s be the dualizing sheaf for p:4—S. This sheaf is
isomorphic to Q, the sheaf of I-forms 4. At each infinite place we have the metric (3.1), and by the
Same construction as given in the previous section we obtain a Hermitian metric on w,,g, at each
Wfinite place.

We now use the commutativity of fig. 2, so that P wy,« becomes an admissible metrized line bun-
dle over S. Such a line bundle corresponds to a projective rank-1 8 module. One defines the Picard
Broup Pic (O) for these objects as the group of isomorphism classes of metrized O modules; ie.
x!lodules with metrics at each infinite place of K. (One says that two modules L, and L, are iso-

%)hjc if there is a unit « in O such that it preserves the »-norm for each v €S,qc. That is, if [IlI{",
I denote two Hermitian norms as L, then for L, =L, =L, we have

sl = ||, lIsll? for all seL). (4.1.6)
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The degree of an Ox-module is a real valued function:

deg:Pic(6x)--R 4.1.7)
defined as the degree of the associated divisor of L [17, 18]
deg L = log(order L/s-0x) — 3 ¢loglisll, 4.1.83)
Ve S

where ¢, is 1 (2) depending whether the embedding is real (complex). We will denote from now on
the Ox module P’ T,z by M. Observe that by means of the Polyakov measure, this is a metrized Ok
module. The metrics on M at infinity define a Haar measure denoted by vo/ on the real vector space
M®zR. To describe it now we recall the following natural isomorphism [17]

®K®1C o~ n:KIlC®°C (4.‘.9)

where the product is over distinct embeddings of K into €. By means of this isomorphism, together
with the Euclidean Haar measure on each factor in the product on the right hand side of (4.1.9), the
Haar measure on Oy ®,C is obtained.

So we conclude that M is a lattice in the vector space

M®1R = M®(¢)‘KK®QR = I;I M, (41]0)

The original problem, stated in the beginning of this section can thus be reformulated as, to compute
the volume of

M®,R/M @.1.11)

induced by the metric on M. We will show in the next sub-section how this can be done by applying
a Riemann-Roch formula.

The Riemann-Roch theorem on Spec (Ox)} and volume forms
Using the classical Riemann-Roch theorem [20] one can compute the Euler characteristic for a lin¢
bundle L on a Riemann surface Z:

x(L) = dim H%(Z.L) — dim H'(Z,L) 4.2.0
In the previous sections we showed that volume forms on the formal difference
HYZ,L) — H'(Z.L) 422

together with the isometric isomorphism (2.16) essentially determine the Polyakov measure. In this
section we will develop a metrized Euler characteristic for O¢ modules for which one has a Riemann-
Roch formula. This formula is used to calculate the volume of the lattice (4.1.12). We will define the
Euler characteristic x for an Ox module in two steps. First we suppose that M is a rank 1 module over
Z. Denote as before by vol the Haar measure on M ®;R. Then one defines

X(M.Z) = —log[vo(M®;R/M)) 4.2.3
If M is a (finitely generated) Ox module one uses (4.2.3) to define

x(M,8) = x(M,Z) — rankOx (M)x(%.Z) (424
where the Euler charactenistic for O, x{6x.Z) considered over Z is given by {15}

X(0k.Z) = tog(2"dx/§") (4.2.5)

where r, denotes the number of complex embeddings of X into €, and dx,q denotes the absolut®
value of the discriminant of O {17,21}.
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Before we proceed we will relate these definitions with the corresponding definitions for a line bun-
die on a complex Riemann surface. Recall the formula for the Euler characteristic for a line bundle L
over a complex Riemann surface X [20]:

X(L,C) = degL — p + 1 = degL — x(2.C) (4.2.6)

where x(Z,C) is the Euler characteristic of the surface 2. In particular we have for the holomorphic
one forms Qs :

deg @ = —2x(2,C) 4.2.7)

We will check that such relation also holds in the arithmetic case using the definitions made above.
That is, we will show that

degl,, = —2x(0.7) (4.2.8)

For this purpose we need the following more abstract definition of the dualizing sheaf for
P:A->Spec(0k) [19]:

We, = Homl(GK,Z) (429)

where Homg, denotes all homomorphisms of O linear in Z.
In analogy with [20, p. 300 prop. 2.1] one has the following exact sequence

0—0¢ > wg, >, —0 (4.2.10)

where Qg , are the relative Kéhler differentials (i.e. 1 forms). The cananical section of wy, arises by

taking the trace of the unit section in Ox. (Note that this linear in Z). At each infinite place v we put
a metric on wg, such that

WTril, = I, (4.2.11)
The degree of we, can be expressed as:

degwe, = log(order wg, /0s) — 3 ¢loglll

VES

= log((order £y, ), 5w, . (4.2.12)

The module £, defines a lattice in the vector space
R, ®2R = 11 8, (@.2.13)
(Choosing a basis gy, - - *,0, of Qex,z at each infinite place v;,i=1, - - - ,n=[K:Q), one can compute
4.2.12):
log (orderQ,,) = log|det(v,()))
= log(2""%difq) 4.2.14)

Where the second equality follows from the definition of the discriminant of Ok (see e.g. [21]).

Substituting (4.2.14) and (4.2.5) in (4.2.8) leads to the required equality. We will now proceed with
the computation of the volume of M®;R/M, M =P detTo,z, using the Riemann-Roch formula
(4.2.4). We have

logvol (M®zR/M) = —degM — (3p —3)log(2"dx /&) (4.2.15)
The first term on the right hand side can be evaluated, using the fact for rank | modules M we have:
degM = degdet M (4.2.16)
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(compare e.g. the situation with line bundles).
Using (2.16) we thus obtain

deg det M = deg P"(detm.wy, 5 )% O (—24) (4217
=13 deg det Prwarss -2 deg @S(A)

where we used the commutativity of fig. 2. Note that we have by our earlier discussion in the previ-
ous section a metric on det p.wy,s. The metric on the sheaf ¢;(A) is trivial, so

deg 6,(A) = log(order O;(A)/8,(A)1) (4.2.18)
= log |Ng,084s5]

where Ng,q is the absolute norm and A, g the discriminant of the curve associated to the surface
p:A—S (see [18] for details).

At this point we recall the definition of Falting's modular height function {14} of a K-rational point
x in the moduli space of stable surfaces #: 4 —S of genus p:

]
(K:Q]
Then, (4.2.15) leads to

h(4y = deg det (paws,s) (42.19)

_d_
[vol (M@,R/M) XM =

2 -3
exp13a(A)(Ng,Bh4/s) W (277 dif 7)1 K:9 | for p>1 (4.2.20)

for p>1.

Using the formulae in [3,4,18] for genus | and 2 it follows that at each infinite place (4.2.20) reduces
to the original partition function. (For genus 1, the factor 13 should be replaced by 14 in the
exponent, and the factor 3p —3 by 1).

4. CONCLUSIONS
In this paper, we have given an outline of the proof of the Belavin Kniznik theorem, which defines thé
partition function of Polyakov's string theory, as an invariant real valued measure on the modull
space of stable curves of given genus. Subsequently, we computed the volume of the lattice of K-
rational tangents at a K-rational point with respect to this measure. At each infinite place of K on®
recovers for genus 1,2 the original partition function.

As was discussed already in [3,4], it thus seems natural to define the partition function as

Z = li;nz vol(M@zR/ M) (5.0

where the limit is taken over all finite field extensions of @, and the summation is over ali K-rational
points. Due to the higher dimensional Mordell conjecture, the convergence of (5.1) is presumably
much better, thus showing that arithmetic geometry is more restrictive hence more powerful than th¢
algebraic geometry of curves over the complex number field. It would be interesting to investigatés
whether arithmetic geometry could provide a natural frame work to describe d =2 conformal qua®
tum field theories in general.
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