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Abstract. We present a periodic infinite chain of finite generalisations of the exceptional
structures, including the exceptional Lie algebra e8, the exceptional Jordan algebra (and
pair) and the octonions. We will also argue on the nature of space-time and indicate how
these algebraic structures may inspire a new way of going beyond the current knowledge of
fundamental physics.
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1. Introduction
The exceptional Lie algebra e8 is presented as an interplay between orthogonal sub-algebras
with their spinors and Jordan pair valued representations of a2 - the complex form of su(3). It
is exceptionally interesting for Physics that the exceptional algebras are built out of orthogonal
algebras and spinors since the spinors are not only viewed as representations of the orthogonal
sub-algebra but they have a non trivial adjoint action among themselves, like fermions, and with
the generators of the orthogonal sub-algebra, that can be associated to bosons. The Jordan
structure is clearly exhibited by the magic star, arising from the projection of the roots of e8 on
the plane of an a2. It is remarkable that the same structure of sub-algebras, spinors and Jordan
algebras can be extended to an infinite chain, called Exceptional Periodicity, of finite dimensional

algebras e
(n)
8 of rank N = 4(n+ 1), n = 1, 2, .... For n = 1 we have e8, whereas for n > 1 e

(n)
8 is

not a Lie algebra, but maintains many properties of it except for the Jacobi identity, which fails
in the spinorial part. The Jordan structure generalises to a Hermitian matrix algebra structure,
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Figure 1. The Dynkin diagram of e8

Figure 2. The roots of e8 projected on the Coxeter plane

dubbed T-algebra, which also maintains many properties of the Jordan algebras, including the

content of three scalars, one vector and two Weyl spinors of an orthogonal sub-algebra of e
(n)
8 .

The lack of the Jacobi identity for the algebras in the Exceptional Periodicity implies that these
algebras cannot be exponentiated to a group. A discussion on the nature of space-time will
indicate how this is not an issue as these algebras assume the role of discrete vertex operator
algebras for a theory in which a discrete space-time is created by the interactions in an intuitive
way.

2. From e8 to Exceptional Periodicity
The way e8 is usually presented is through its Dynkin diagram, see Fig. 1, or through its
beautiful projection on the Coxeter plane, see Fig. 2.

The Dynkin diagram of e8 can be obtained from that of d7 by adding a d8 Weyl spinor:

d7

∆ = {
︷ ︸︸ ︷
k1 − k2 > k2 − k3 > ... > k6 − k7︸ ︷︷ ︸ > k6 + k7 > − 1

2
(k1 + k2 + ...+ k8)}

a6

One gets from these simple roots all the roots of d8 plus all its 128 spinors to form the root
system of e8 (240 roots):

±ki ± kj 1 ≤ i < j ≤ 8 112 roots
1
2(±k1 ± k2 ± k3 ± k4 ± k5 ± k6 ± k7 ± k8) even # of + 128 roots

(2.1)

In the same way we obtain the generalised simple roots of the Exceptional Periodicity of
dimension N = 4(n+ 1), n = 1, 2, ....
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Figure 3. The generalised simple roots of e
(n)
8

Figure 4. Magic star of e8 on the plane of ac2

The dN spinor that we add to the roots of dN−1 is − 1
2
(k1 + k2 + ... + kN ) that has the right

scalar products with the other simple roots but norm (square length) = n + 1, see Fig. 3. We
get the set of generalised roots

±ki ± kj 1 ≤ i < j ≤ N 2N(N − 1) roots
1
2(±k1 ± k2 ± ...± kN ) even # of + 2N−1 roots

(2.2)

They do not form a root system, since they are not invariant under Weyl reflections nor 2
(α, β)

(α, α)
is an integer, for all roots α, β, due to the norm of the spinors. Note that this extension of the
Dynkin diagram of e8 is completely different from the extension giving rise to the Kac-Moody
algebras e9, e10 and e11, [13], which are all infinite-dimensional.

3. The Magic Star for e8
The beautiful projection on the Coxeter plane does not show the substructures of e8. We now
focus on a particular projection of the roots of e8 on a plane, the magic star, which corresponds
to astonishing algebraic properties, introduced in [1] and later in [2], with a different perspective
involving Jordan Pairs [3].

There are four orthogonal sets of roots in Φ8 corresponding to four a2 root systems. The
projection of the e8 roots on any of these 4 planes is the magic star like the one in Fig. 4,
which is obtained, for instance, by projecting on the plane of the a2 with roots ±(ki − kj),
i < j = 1, 2, 3, dubbed ac2, and by arranging the e8 roots according to the scalar products (r, s),
where, for each root α, r := (α, k1 − k2) and s := (α, k1 + k2 − 2k3).
The roots that are projected on the origin (0, 0), labeled by g0, form the root system of e6 which
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Figure 5. A unifying view of the roots of exceptional Lie algebras

in turn, as we shall show in the next section, can be projected onto a magic star.
The real “magic”of the magic star is in its algebra content, so clearly represented in its picture.

3.1. Jordan algebras and Jordan Pairs
A Jordan Pair, [3], is just a pair of modules (J+, J−) acting on each other, but not on themselves,
through a quadratic map Uxσ : J−σ → Jσ and its linearisation Vxσ ,y−σ : Jσ → Jσ, where σ = ±,
xσ ∈ Jσ, y−σ ∈ J−σ.
It has been proven in [2] that three Jordan pairs, pairing Jordan algebras of 3× 3 matrices, are
at the core of the exceptional Lie algebras as the magic star of Fig. 5 explicitly shows.

There are three Jordan pairs (Jn
3 ,J

n
3), each lying on an axis, symmetrically with respect to

the center of the diagram. Each pair doubles a simple Jordan algebra of rank 3, Jn
3 , the alge-

bra of 3 × 3 Hermitian matrices over H, where H = R, C, Q, C for n = 1, 2, 4, 8 respectively,
stands for real, complex, quaternion, octonion algebras. Exceptional Lie algebras f4, e6, e7, e8
are obtained for n = 1, 2, 4, 8, respectively. g2 can be also represented in the same way, with
the Jordan algebra reduced to a single element. The Jordan algebras Jn

3 (and their conjugate
Jn
3) globally behave like a 3 (and a 3) dimensional representation of the outer a2. The algebra

denoted by g0 in the center (plus the Cartan generator associated with the axis along which the
pair lies) is the algebra of the automorphism group of the Jordan Pair (Jn

3 ,J
n
3), the structure

group of the corresponding Jordan algebra Jn
3 .

Remark 3.1. The quadratic formulation of Jordan algebras and Jordan pairs particularly suits
our purposes of finding Jordan algebras, based on a symmetric product, having only commutators
in our hands. If one looks at Fig. 5 and focuses on just one dot where a Jordan algebra sits
then the commutator of two elements there is obviously 0, since the sum of two roots projected
on that dot is certainly not a root. If one considers however a pair (x+, x−) in (Jn

3 ,J
n
3) then

[x+, x−] is either zero or is in g0 ⊕ C, therefore [[x+, x−], y+] is in Jn
3 . Moreover the Jacobi

identity applied to these elements reads:

[[x+, x−], y+] = [[y+, x−], x+] symmetric in x+, y+

being [x+, y+] = 0. We get a trilinear product like Vx+,x−z
+, which is symmetric by definition

in x+, y+. The Jordan Pair axioms follow directly from the Jacobi identity, [4].
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In fact Jordan pairs are strongly related to the Tits-Kantor-Koecher construction of Lie
Algebras [5]-[7]:

L = J ⊕ str(J)⊕ J̄ (3.1)

where (J, J̄) is a Jordan pair, with trilinear product Vxσ ,y−σz
σ = [[xσ, y−σ], zσ], str(J) is the

structure algebra of J which is also the algebra of derivations of the Jordan pair (J, J̄).
In the case of (complex) exceptional Lie algebras this construction applies to e7, with J = J8

3,
the 27-dimensional exceptional Jordan algebra of 3× 3 Hermitian matrices over the octonions,
and str(J) = e6⊕C (C, the complex field). An e7 sub-algebra is clearly exhibited by the magic
star by taking the central e6 and a (J8

3,J
8
3) pair on opposite side with respect to the center. The

fundamental 56 dimensional representation of this e7 is also easily shown: it is a Freudenthal
triple system, [8] [9], containing a J8

3, a J8
3 and two dots from a2, lying in the same direction of

e7, parallel to it.

Out of this construction Kantor drew the conclusion that there are no Jordan Algebras: there
are only Lie algebras. On the other hand McCrimmon said: if you open up a Lie algebra and
look inside, 9 times out of 10 there is a Jordan algebra (or pair) which makes it tick.

4. Exceptional periodicity
We now introduce the concept of Exceptional Periodicity, a chain of finite structures of
dimensions 4(n+ 1), with n = 1, 2, ... that extend e8, the case n = 1, both as a set of roots and
as an algebra.

4.1. Exceptional periodicity generalised roots
We force the definition of root system to include what we call generalised roots not obeying the

symmetry by Weyl reflection, nor the fact that 2
(α, β)

(α, α)
be integer for all roots α, β.

For any n = 1, 2, ... we introduce N = 4(n + 1) and define the generalised roots of e
(n)
8 as in

(2.2). This is a root system only in the case n = 1, being e8
(1) = e8. The generalised roots of

f
(n)
4 , e

(n)
6 , e

(n)
7 can also be obtained in a similar fashion.

For any N the sets of generalised roots form a magic star as in Fig. 4, once projected on the
plane spanned by k1 − k2 and k1 + k2 − 2k3.

Similarly to the case of e8, the roots 1 of e
(n)
6 lie in the center of the magic star of

e
(n)
8 and those of e

(n)
7 can be writen as e

(n)
7 = e

(n)
6 ⊕ T(r,s) ⊕ T(−r,−s), for a fixed pair

(r, s) ∈ {(1, 1), (−1, 1), (0,−2)}, where T(r,s) is the (r, s) set of roots α such that (α, k1− k2) = r
and (α, k1 + k2 − 2k3) = s.

We denote by Φ the set of roots of e
(n)
8 in the Euclidean vector space of dimension

N = 4(n+ 1), n = 1, 2, ... and by ΦO and ΦS the following subsets of Φ:

ΦO = {(±ki ± kj) ∈ Φ} ΦS = {1

2
(±k1 ± k2 ± ...± kN ) ∈ Φ} (4.1)

Remark 4.1. Notice that ΦO is the root system of dN. The set of generalised roots is closed
under the Weyl reflections by all roots if and only if n = 1. Nonetheless the set ∆

∆ = {k1 − k2 > k2 − k3 > ... > kN−2 − kN−1 > kN−2 + kN−1 > − 1
2
(k1 + k2 + ...+ kN )} (4.2)

is a set of generalised simple roots, by which we mean:

1 By abuse of definition we shall often say root, for short, instead of generalised root.
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i) ∆ is a basis of the Euclidean space V of finite dimension N ;

ii) every root β can be written as a linear combination of roots of ∆ with all positive or all
negative integer coefficients: β =

∑
`iαi with `i ≥ 0 or `i ≤ 0 for all i.

4.2. The LMS algebra for EP

We define the LMS algebra (LMS = e
(n)
8 in this paper) by extending the construction used for

Lie algebras, [10]-[12].
We give LMS an algebra structure of rank N over a field extension F of the rational integers Z
in the following way 2 :

a) we select the set of simple generalised ordered roots ∆ = {α1, ..., αN} of Φ

b) we select a basis {h1, ..., hN} of the N -dimensional vector space H over F and set hα =∑N
i=1 cihi for each α ∈ Φ such that α =

∑N
i=1 ciαi

c) we associate to each α ∈ Φ a one-dimensional vector space Lα over F spanned by xα
d) we define LMS = H

⊕
α∈Φ Lα as a vector space over F

e) we give LMS an algebraic structure by defining the following multiplication on the basis
BLS = {h1, ..., hN} ∪ {xα | α ∈ Φ}, extended by linearity to a bilinear multiplication
LMS × LMS → LMS:

[hi, hj ] = 0 , 1 ≤ i, j ≤ N
[hi, xα] = −[xα, hi] = (α, αi)xα , 1 ≤ i ≤ N , α ∈ Φ
[xα, x−α] = −hα
[xα, xβ] = 0 for α, β ∈ Φ such that α+ β /∈ Φ and α 6= −β
[xα, xβ] = ε(α, β)xα+β for α, β ∈ Φ such that α+ β ∈ Φ

(4.3)

where ε(α, β) is the asymmetry function, [13], extended to the roots of e
(n)
8 as follows:

Definition 4.2. Let L denote the lattice of all linear combinations of the simple generalised
roots with integer coefficients. The asymmetry function ε(α, β) : L×L→ {−1, 1} is defined by:

ε(α, β) =
N∏

i,j=1

ε(αi, αj)
`imj for α =

N∑
i=1

`iαi , β =
N∑
j=1

mjαj (4.4)

where αi, αj ∈ ∆ and

ε(αi, αj) =


−1 if i = j

−1 if αi + αj is a root and αi < αj

+1 otherwise

(4.5)

Remark 4.3. For n > 1 the adjoint action adx : y → [x, y] is a derivation of the algebra LMS

(and hence exp(ζadx) is an automorphism of LMS) if and only if x ∈ dN.

This means in particular that the Jacobi identity does not hold for e
(n)
8 , except for n = 1. We

know that the exceptional chain of Lie algebras stops at e8, unless we jump to infinite-dimensions.

The algebras e
(n)
8 are an infinite chain of finite dimensional extensions of e8. The price to be

paid is to give up Jacobi. This means that the generators of e
(n)
8 , for n > 1, cannot be related to

the infinitesimal action of a group. We can disregard this problem, if we accept that the physical
transformations are discrete repeated actions of the generators and that space-time emerges from
the interactions, thus being discrete as well. We will come back to this point in section 5.

2 Specifically, we will take F to be the complex field C.
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4.3. Exceptional T-algebras
Let us concentrate on the set of roots T(r,s) on a particular tip (r, s) of the magic star in Fig. 4,
for instance on T(1,1) that we simply denote by T .
We will use T to denote both the set of roots and the set of elements in LMS associated to those
roots. An element of T is an F-linear combination of xα, xβ, ... for α, β, ... in T(1,1). The roots
of T(1,1) are:

−k2 − k3 , k1 ± ki i = 4, ..., N 2N − 5
1
2(k1 − k2 − k3 ± k4 ± ...± kN ) even # of + 2N−4 (4.6)

In [14] we gave T an algebraic structure with a symmetric product, thus mimicking the case
n = 1 when T is a Jordan algebra.
We define xP1, xP2 and xP3 as the elements of LMS in T associated to the roots ρ1 := k1 + kN ,
ρ2 := k1 − kN and ρ3 := −k2 − k3:

xP1 ↔ ρ1 := k1 + kN ; xP2 ↔ ρ2 := k1 − kN ; xP3 ↔ ρ3 := −k2 − k3 (4.7)

They are left invariant by the Lie sub-algebra dN−4 = d4n, whose roots are ±ki ± kj , 4 ≤ i <
j ≤ N − 1.
We denote by TO the set of roots in T ∩ΦO, by T ′O the set of roots in TO that are not ρ1, ρ2, ρ3

and by TS the set of roots in T ∩ ΦS . In the case we are considering, where T = T(1,1) we have

T ′O = {k1±kj , j = 4, ..., N−1} and TS = {1
2(k1−k2−k3±k4±...±kN )}, even # of +. We further

split TS into T+
S = {1

2(k1− k2− k3± k4± ...+ kN )} and T−S = {1
2(k1− k2− k3± k4± ...− kN )}.

Then v ∈ T ′O is an 8n-dimensional vector and s± are 24n−1-dimensional chiral spinors of d4n.

We write a generic element x of T as x =
∑3

i=1 λixPi + xv + xs+ + xs− where

xv =
∑
α∈T ′O

λvαxα xs± =
∑
α∈T±S

λs
±
α xα (4.8)

We view λvα as a coordinate of the vector λv and λs
±
α as a coordinate of the spinor λs

±
; we

denote by λ̄v (λ̄s
±

) the vector ( spinor) in the dual space with respect to the bilinear form ωv

(ωs), that we are not going to specify here, and view x as a 3× 3 Hermitian matrix: λ1 λv λ̄s+
λ̄v λ2 λs−
λs+ λ̄s− λ3

 (4.9)

whose entries have the following F-dimensions:

• 1 for the scalar diagonal elements λ1, λ2, λ3;

• 8n for the vector λv;

• 24n−1 for the chiral spinors λs± .

We see that only for n = 1 the dimension of the vector and the spinors is the same, whereas
for n > 1 the entries in the (12), (21) position have different dimension than those in the
(31), (13), (23), (32) position. Nevertheless we now define a symmetric product of the elements
in T , which then becomes a generalization of the Jordan algebra J8

3 in a very precise sense. This
type of generalization of the Jordan Algebra is known in the literature, [15], where it is called
T − algebra. In our case, since we are generalizing the Exceptional Jordan algebra we call it
Exceptional T-algebra.

We denote by I the element I := xP1 + xP2 + xP3 and by I− the element I− :=
−x̄P1− x̄P2− x̄P3 of T̄ := T(−1,−1), where x̄P1, x̄P2 and x̄P3 are associated to the roots −k1−kN ,
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−k1 + kN and k2 + k3.
We give T an algebraic structure by introducing the symmetric product, [14]:

x ◦ y :=
1

2
[[x, I−], y] , x, y ∈ T (4.10)

We introduced in [14] an (associative) trace, a generalized norm, rank 1, rank 2, rank
3 elements just like in Jordan algebra, thus completing the generalization of the magic star
algebraic content of e8 to the whole chain of the exceptional periodicity.

5. A model for an expanding Universe

We now discuss a possible application of e
(n)
8 to Quantum Gravity. In particular we view e

(n)
8

as a code - a set of rules - for a Universe in which space-time is created and expands.

5.1. e
(n)
8 in a physical perspective

Exceptional groups and algebras and the underlying non-associative algebra of the octonions
have attracted the attention of many theoretical physicists since the pioneering work of F.
Gürsey, [16], see for instance [17]÷[22].

If we look inside e8 we see four orthogonal su(3)’s - a2’s in their complex form. Beside ac2,

for color we see af2 that we associate to flavor degrees of freedom and two more, in the center of
the flavor magic star that lies in the center of the colored magic star: in this sense at the core of
the core of the magic star. It is natural to associate these two a2’s to gravity, but in the context
of what theory?

It seems natural to think of e8, and in general e
(n)
8 , as a model for a theory of everything,

including space-time, whose classical concept needs to be reviewed in the light of the
incompatibility of quantum mechanics and general relativity at the Planck scale, which makes
it impossible to test, in particular, if space-time is a continuum.
An important feature of space-time is that it is dynamical and related to matter, as Einstein
taught us in his theory of general relativity. The Big Bang, for instance, is not a blast in empty
space. Physicists do not think there was a space and the Big Bang happened in it: Big Bang
was a blast of space-time itself, as well as matter and energy. If two galaxies withdraw from
each other it simply means that space is being created between them.
There is only one way physicists know to reproduce the process of creation: make particles
interact. We state that:

there is no way of defining space-time without a preliminary concept of interaction.

Stated differently, a universe of non-interacting particles has no space-time: there is no physical
quantity that can relate one particle to another. Our basic principle implies that we have to
start with a model of interactions, consistent with the present observations, and deduce from it
what space-time is. This is the way we look at e8 and its extension to exceptional periodicity.
We are used to start from space-time because our point of view is that of an observer (who
measures things in space-time). However, if we want to describe extreme situations like at the
Planck scale or right after the Big Bang, we can no longer give any meaning to the concept of
observer.
We notice that all fundamental interactions look similar at short distances. Their basic structure
is very simple: it involves only three entities, like the product in an algebra. The first step in
our approach is to define objects and elementary interactions, with the hypothesis in mind,
similar to the Bethe Ansatz in integrable models, that every interaction is made of elementary
interactions. This hypothesis gives the interactions a tree structure, thus opening the way for a
description of scattering amplitudes in terms of associahedra or permutahedra or a generalisation
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thereof, to account for the expansion of space-time.
An elementary - or fundamental - interaction may be defined as the interaction between x and
y in LMS to produce the outcome z in LMS. It is represented by (x, y → z) ↔ [x, y] = z, see
Fig. 6.

Figure 6. Building blocks of the interactions and an elementary scattering process

5.2. Emergent Space-time: Outline
In order to build a model where space-time emerges from the interactions we must start from
scratch, namely from the initial conditions of a Big Bang. The minimal initial conditions are
those in which the least number of generators is taken, namely the generators corresponding to
a minimal set of roots whose linear combination generates all the roots. Since the universe is
bounded we assign a superposition of opposite 3-momenta ~p and −~p, as for a quantum particle
in a box, to all initial generators which are then allowed to interact among themselves. This
is interpreted, having in mind locality, by the fact that the initial particles are all at the same
point, even though there is no geometry, no singularity and actually no point of an a priori
space. The initial momenta are assigned according to a specific projection on 3D of the root
space. The initial particles are assumed to be on-shell massless. Energy-momentum conservation
is assumed from there on.
Each interaction has two effects: produce a new particle, according to the commutation rules,
and create two new points, ±~p/E apart from the point of the interaction, where (E, ~p) is the
4-momentum of the produced particle.
The quantum nature of the model is imposed by saying that each particle has a chance to
interact, thus producing new particles, but also a chance not to interact. In this latter case the
particle only creates two new points, shifted with respect to the previous position by ±~p/E,
(E, ~p) being its 4-momentum. The interaction probability amplitudes are given by the structure

constants of e
(n)
8 .

This is the first stage of interactions. We see the outcome and pass to a second stage and so
on. We can intuitively associate a cosmological discrete (quantum of) time with each stage of
interactions.
What emerges is a quantum field: we identify the field itself with a generator of e

(n)
8 , that spreads

as space-time is created as a quantum wave.
It is obvious that the space-time emerging in the approach outlined here is dynamical, finite
and discrete, being the outcome of a countable number of interactions among a finite number
of objects. This is in agreement with the two cutoffs coming from our current knowledge of
Physics: the background radiation temperature (finiteness) and Planck length (discreteness).
The granularity of space-time implies that the velocity of propagation of the interaction is also
discrete and finite. If the distance traveled from one level of interactions and the next one is 1
Planck length and the time interval is 1 Planck time then the maximum speed of propagation
is the speed of light. This quantum model is intrinsically relativistic. Our approach leads to a
finite model by construction, with the continuum limit as a macroscopic approximation.
We also have that all the infinities or continuities of the standard theories are not present: we
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have no symmetry Lie groups, just algebras. This is the reason why we look for extensions of e8,
like Exceptional Periodicity, which do not extend the Lie group E8 because of lack of the Jacobi
identity. A good reason for extending e8 is to have a larger amount of dark matter degrees of
freedom, as requested in modern cosmology, [23] [24].
A sentence by Segal gives us the appropriate conclusion to this argumentation:

To deal with all these issues is a tall order,
necessarily at best a matter of successive approximations;

but it is useful, and is quite possibly essential, for us from time to time
to view fundamental physics with maximal perspective. I.E.Segal, [25]
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