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PREFACE 

SIX's second Summer Institute on Particle Physics was held at 

Stanford on J‘uly 29-August 10, 1974. This year the meeting was jointly 

sponsored by Stanford University, the Atomic Energy Conmission, and the 

National Science Foundation. The motivation for the meetings derives from 

the need for continuing education of young people who are working in the 

field and the desire of the SLAC faculty to contribute to this post- 

graduate educational process. Because of the rapid progress in the field 

and its concentration at fewer and fewer research centers, it is important 

to offer the opportunities both for initial review of recent major progress 

and for the continuing education of the post Ph.D. research commmity. 

Two hundred and twenty participants, drawn from all corners of the 

world, joined in a program combining summer school and topical conference 

formats. A ten-day school of a highly pedagogic nature was followed by an 

intense three-day topical conference in which experts in the field described 

their current work. The topic for this year's Institute was "The Strong 

Interactions" which, together with last year's coverage of the weak and 

electromagnetic interactions, provides a broad overview of the entire field 

of high energy physics. 

The success of this year's Institute was again due, in large part, 

to the careful and thoughtful organization by the coordinator, Martha C. Zipf 

with the assistance of Sharon Traweek. Ms. Zipf also collected and edited 

these proceedings of the 1974 Institute. 

We would like to thank Rosemarie Stwnpfel for typing the manuscripts 

and for her assistance and advice in the preparation of the finished copy. 

David W.G.S. Leith and Richard Blsnkenbecler 

Program Directors 
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I. INTRODUCTION 

1. General 

These lectures are intended to review "hat we know of diffractive pro- 

cesses--to summarize the avaiLable data and what it teaches us about the struc- 

ture of the proton and the dynamics of high energy scattering. 

Despite the large volume of data presented in these notes, there are 

some topics "hich I know (and probably many more that I am not so aware of), 

that have not been discussed--I apologize for the omissions. 

Finally, I list a set of review papers l-20 that I have found invalu- 

able in preparing my lectures--I recommend them to you for further study. 

Diffraction is an important phenomenon in high energy physics, aCCOunt- 

ing for - 30$ of the total cross-section. Our motivations for studying these 

procesees range through the folloving viewpoints: 

* That the diffractive processes are not the most fundamental or inter- 

eating processes in themselves, but that they cover up, t or conceal, 

the remaining two-thirds of the cross-section which is accounted for 

by a variety of processes which exhibit a great deal of exciting 

structure, and from which one is going to learn about the dynamics of 

two body scattering, particle production and perhaps, the internal 

structure of the nucleon. In other words, one has to understand the 

one before proceeding to the other; 

. That diffraction is simply related to geometry, optics and absorption, 

and also represents the single largest cross-section we deal with in 

particle physics--therefore we should try to understand it before moving 

on to the more complex, smaller cross-section processes; 

. or perhaps we feel that because diffraction is basically the reflection 

of all the absorptive processes, that through its study "a might find 

other insights into the regularities of the inelastic scattering, or 

into the structure of the proton itself; 

tApologies to R.M.N., Rodino, Ervin et al. 

Whatever our motivation, we are going to spend the next four lectures 

thinking about these diffractive processes. 

2. Models 

Diffraction scattering can be discussed in terms of two pictures-- 

the t-channel or the s-channel pictures. In the t-channel, or exchange picture 

the scattering is thoughttopmceed through the exchange of a singularity 

called the Pomeron. The language of this picture is that of Reae exchange 

models, and we "ill discuss below the properties of the Pomeron trajectory 

and how we use this picture to learn more of the Pomemn. The s-channel 

picture or direct channel, is seen in geometric or optical terms--here diffrac- 

tion is generated by the absorption due to the competition among the many in- 

elastic channels. 'Ihe target proton is talked of in terms of an absorbing disc 

of a given size and with a given opacity, and sometimes with some edge structure. 

The experience has been that both the s-, and t-channel points of vie" 

seem to be important for the description of the various systematic features of 

elastic and inelastic amplitudes. In general, the t-channel picture has been 

more successful in explaining the energy dependence of hadronic amplitudes, 

"bile the s-channel picture has been very useful in understanding the structure 

of amplitudes as a function of momentum transfer. In discussing the Pomeron, 

or the diffractive mechanism, we will be using both points of view. 

A. The t-channel view 

In Regge theory the scattering amplitude j.8 given by 

F(s,t) = p(t) w . (;) 
a(t) 

, 

where 'c = + 1 for even or odd signature trajectories, and where the trajec- 

tory of the exchange system is 
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a(t) = a0 + a'.t . 

In general, the physical interpretation of this am$itude is that the 

crossed chanzel Regge pole represents the collective amplitude dce to Single 

exchanges of all the particles that lie on the trajectory. 

Within this model, the energy dependence of the cross-section is con- 

trolled by the trajectory properties of the exchanged particle-- 

a(s) oc p(o)-1 

Also the behaviour of the differential cross-section is given by 

g (s, t) P s2a(t)-2 

So, studies of the s-, and t-depcrl&nce of the cross-SectiOllS Of 

diffractive processes will teach us about the Pomeron trajectory. 

Tne zssumption that the asymptotic beheviour of total cross-SeCtimS 

would be a constant required that the leading trajectory have a(O) = 1 and 

5 = + 1. 
21 In fact Khuri has shown that in any unitary theory satisfying the two 

conditions-- 

. that an exclusive cross-section for producing n particles does not 

nvtgrow the total elastic cross-section by a power of the energy, 

* that the multiplicity of secondaries must grow slower than a power 

of the energy 

then a(O) = 1.. The data from high energy interactions suggest that these 

conditicns are easily fulfilled. 

The Pomcron has quite an unusual rsle in particle physics, i? thaz-- 

. no other pole has a trs.jectory w;th a(O) = 1.0; 

0 there is no known mrticle to be associated with this tra;ectory-- 

i.e. unusual behaviocr of the trajectory in t > 0 region 

. the behaviour of the trajectory for t < 0, as seen in the shrinkage 

of the differential cross-section, is quite different from other 

trajectories. The Pomeron trajectory is observed to have a rather 

flat t-dependence, with 

a&t) = 1 + cL1.t and 0 < a' < 0.3 , 

while most Regge trajectories for meson exchanges behave like 

s(t) = 0.5 f I.0.t i.e. a' - 1.0 . 

0 the Pomeron behaves in scattering processes as though it carried 

the quantum numbers of the vacuum, whereas it behaves with respect to 

the enera dependence of cross-sections, as though it carries spin 1. 

In all of these properties the Pomeron is quite different from the other 

known Regge trajectories. Further, we have no idea about the physical origin 

of this siogularlty. 

R. 'l%s s-channel view 

The geometrical model describes scattering in terms of the size and 

opacity of the object from which scattering. 

-*here 

and 

g = IrjF(s,t)\2 

F(s,t) = + i d2b e iq'b f(s,b) 

0-z -t J-- 

b = impact parameter 

and f(s,bj is the partial '&ve amplit-ude corresponding $0 angular momentum 

& - bk. 
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In the eikonal form, 

f(s,b) = i [l - 2i6(0)l e 

where 6(s,b) = 6R(s,b) + i6&s.,b). 

For diffraction scattering, we assume the scattering is due to the 

absorption of the incoming wave caused by the many open inelastic channels. 

For this case 6 
R 

m 0. 

Im f(s,b) = $ 1 - e 
( 

-5(%b) 

) 

If we define R(b) = 261 as the opqueness of the target, we have 

uT = 4~ Jo (1 - e-'('))b db 
0 

oe,=2s~ (1-e -R(b))2b db 

%I =~RI (I- e -2n(b))b db . 

The differential cross-section is a measure of the size of the scatter- 

ing object, and of its opacity. Tne determination of n(b) allows B mapping 

of the blackness, and size, of the scatterer. 

The transformation from t-space to impact parameter space is given by 

(for given s), 

F(t) m ' 7 b db JO(bfi).f(b) 
0 

For 8 peripheral collision, the t-dependence is then a JO Bessel 

function giving a peak at small t; a central collision will result in either 

* Jl Bessel function, or an exponential, t-dependence dependzing on how 

sharp the edge is in f(b). Various examples are given in Fig. 1. It is in- 

teresting to see how defonnatione of f(b) from a gaussian distribution in 

b affect the hi&rib&ion of f(t) and hence the elastic differential cro6s- 

section. If one adds some large partial wave contributions to f(b), they 

result in an increase of the slope of F(t) near t = 0. (See Fig. 2.) If 

one absorbs out some low partial waves from f(b), then this produces large 

t structure in the exponential F(t), producing a dip followed by 8 secondary 

maximum. (Again see Fig. 2.) 

It is therefore of interest to study the 6-, and. t-dependence of the 

diffractive cross-sections to determine f(s,b) or R(s,b), within the direct 

channel picture and through them learn of the proton's structure. 

C. s-channel unitarity and the overlap function 

One can extend these simple geometrical ideas by formally applying the 

idea that diffraction scattering is the shadow of absorption, which in turn 

is due to the many open inelastic channels. 

Cme may write (following Van Hove22 and others), 

where the T's represent the initial and,final states in inelastic (in) and 

elastic scattering (el). This may be illustrated as shown in Fig. 3. Usually 

the two terms on the left-hand side above are written as Gel + Gin, the elastic 

and inelastic overlap functions. 

So we see that the imaginary part of the elastic amplitude is built up 

by two parts--the shadow of the inelastic channels and the elastic scattering 

itself. The strong lesson from these studies is that not only are the magni- 

tudes of the inelastic amplitudes important in making up Gin, but also the 

phases of all the open channels. 

It is interesting to transform this relationship into impact parameter 

space--there the s-channel unitarity relation becomes 

Im a(s,b) = [*(s,b)[2 + ain 



where a. is the inelastic overlap function. Notice that this equation 3. The Data In 
connects the inelastic and total overlap functions at the same impact parameter! .- Now, having discussed the viewpoints from which we may analyze the 

This makes the impact parameter representation very convenient to study uni- diffraction scattering, let us consider the processes that we may study. 

and 

therefore 

tarity effects. 

For a purely imaginary high energy amplitude we have the above relation 

rewritten 

e 

*tot(%b) = *el(s,b) + *&>b) 

. 
2 

*T = ‘el 

‘[l-JT-XC-I. *tot = 5 in 

The relationship of the various overlap functions, as a function of the 

inelasticity are shown in Fig. 4. Notice that [o 5 *in 5 l/41. 

Bere we see the rapid variation of the elastic amplitude with inelas- 

ticity; for full absorption, ain = l/4 end aei/otot = l/2. But as the 

scatterer becomes just slightly less than black, the elastic contributions fall 

quickly and (iel/otot falls rapidly from l/2. For ain '2 75$, the ratio is 

about 25%. 

So, once more, for small inelasticity the imaginary part of the elastic 

smplitude is given by the inelastic contribution--as the inelastic cross-section 

grows, the elastic part increases. 

This picture of the impact structure of high energy collisions is very 

useful, and we will return to it in trying to interpret the structure of the 

proton from high energy proton-proton scattering and diffraction inelastic 

A+BiA+B 

Elastic scattering, and through the optical theorem, the total cross- 

section, allows study of the Pomeron, or the absorption profile. These 

data are reviewed in Chapter II. 

A+B+A*+B 

A +B*. 

Inelastic exclusive diffraction scattering. This process was discussed 

by Good and Walker 23 in analogy to optical diffraction by an opaque 

disc. They predicted that such processes would occur, that they would 

proceed coherently in nuclei ,<and that the scattering properties would 

be very similar to those of elastic reaction. This data is reviewed 

in Chapters 311 and IV. 

A+B-+A+X 

-+X+B. 

Leading particle inclusive scattering. This process becomes of con- 

siderable interest at high energies. These data are reviewed in 

Chapters VI and VII. 

4. 'Ibe Rules 

Unfortunately beyond the two pictures discussed above, we have no good 

theoretical description of the dynamics of diffractive processes, or no basic 

understanding of what the Pomeron singularity is--we rather have a set of 

scattering. phenomenological rules which allow us to identify what we mean by diffraction-- 

These rules are listed below. 12 

--energy independent cross sections (to factors of 1% s) 

--sharp forward peak in do/dt 

--particle cross sections equal to antiparticle cross sections 



--factorization 

--mainly imaginary amplitude 

--exchange processes characterized by the quantum numbers of the vacuum 

in the t-channel (i.e. I = 0, C = +l). Also, the change in parity 

in the scattering process follows the natural spin-parity series 

(-QJ or Pf = Pi.(-l)m, where 6.J is spin change. 

--the spin structure in the scatterirg is s-chamelhelicity con- 

serving (SCHC). 

These rules and how well the diffractive processes obey them, are 

discussed in Chapter V. 

II. TOTAL CROSS-SECTIONS AND TKE ELASTIC SCATPERING REACTION 

1. Total Cross-Sections 

The most classical of particle experiments is the measurement of the 

total cross-section. Interest in these measurements stems from the insi&t 

into the behaviour of the elastic scattering amplitude obtained through the 

optical theorem: 

UT(S) = Im f el (6, t = 0) 

where f el is the forward spin-averaged eLastic scattering amplitude. The 

linear relationship between or and Im fel allows 8 study of the different 

contributions to the elastic amplitude and their separate energy dependence, 

without the difficulty of unscrambling the information from expressions involving 

the absolute squares of amplitudes, as determined in studies of the elastic 

scattering reaction itself. 

From the optical theorem, the s-dependence of UT is fixed when the 

behaviour of the elastic scattering amplitude is defined. This is usually 

done through Regge pole fits, since this theory has done B fair job of describing 

two-body peripheral processes. In these fits two components are postulated-- 

. an energy independent term due to the exchange of the Pomeron, with 

trajectory a(t) = 1, 

. an energy dependent term due to the exchange of p, (0, f, A2 tmjec- 

tories, which are usually assumed to have the same fOrIn-- 

a(t) = $ + t 

mis formalism leads to the simple parametrization-- 

uT(AB) = a(AB) + b(AB) p -l/2 

oT(AB) = a(JiB) + b(aB) p 
-l/Z 



. 
. 

. 
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When the ISR--the proton-proton storage rings at CERN--started doing 

experiments, there were almost immediately rumors of large p-p absorption cross- 

sections. Last year these preliminary reports settled down, and the picture of 

the elastic amplitude has again been shattered--the pp total cross-section 

rises - &zb through the ISR energy region (- 200 - 1500 GeV/c equivalent 

momentum range). It is now clear that statements on ";r becoming constant 

must be modified--it mma become constant asymptotically or it may not. 'Ibe 

simple picture in which there are just two contributions--an energy independent 

one, due to Pomeron exchange, and a decreasing contribution as energy inCreaSeS 

due to Regge exchange, is not a good model. It is now clear that the region 

which gave credibility to the idea of constant asymptotic cross-section is 

actually only a local minimum, where the s-dependence of the various contri- 

butions cancel. Whether eventually oT does approach a constant (this time 

from below), or continues to rise indefinitely, remains for some experimenters 

of the future. (See Fig. 10.) 

Let us oow review these exciting new measurements in more detail. The 

data (when finally the 1% was running reliably enough to make precision cross- 

section measurements) came from two groups using two quite different methods-- 

1) CERN-Romez3' They measure the forward scattering angular distribu- 

tion do/dt, with a scintillation counter telescope and extrapolate to find the 

the forward cross-section, do/dtlt=O. They also measure the real part of the 

forward scattering amplitude in this energy range and find it small and essen- 

tially negligible. From the optical theorem, they can then determine the total 

cross-section 
2 

'T = 
16~ 2 

t=o 

This experiment normalizes their total cross-section measurement two 

ways--(a) internally, by measuring the elastic scattering into small enough 

angles to observe the Coulomb scattering, which can be absolutely calculated, 

and (b) externally, by using the Van der Meer luminosity measurement of the 

circulating proton beams. Both methods agree well. 

2) Plsa-Stony Brook.31 They measure the reaction rate in pp collisions 

with an almost 4~ counter hodoscope. This experiment is normalized using two 

external methods--the Van der Meer beam displacement measurement, and actual 

measurement of the individual beam profiles by scattering in gas. Again, both 

these methods of normalizing agree well. This group has made the highest energy 

measurement, when the stored 25 GeV/c proton beams were accelerated in the stor- 

age ring to 31.4 GeV/c in each beam. 

The results of these experiments are shown in Fig. 11, and summarized in 

Table III. 

Good agreement is obtained between these two groups in the cross-section 

rise. It is interesting to note that they depend quite differently on the lumi- 

nosity measurement-- 

CEFN-Rome 

Pisa-Stony Brook 0 aEse_ 
T L 

So if there were systematic problems with the measurement of the ISR luminosity, 

it would affect the total cross-sections of these two experiments in a markedly 

different way. The agreement is evidence that they indeed do measure L re- 

liably. 

A further interesting comment should be made on the independence of the 

rise in (rT(pp) on the luminosity measurement. It js clear from the above dis- 

cussion that the ratio of the measured quantity in these two experiments is a 

measure of the total cross-section, completely independently of measurements of L. 

: 
-. : 
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If the proton beam phase Space and luminosity does not vary around the 

ring, then the data from the two groups taken simultaneously (a small fr*CtiOn 

of their total running) could be used to perform this check. It is interesting 

that the results confirm the measured rise in o,(pp), but with poorer error 

since one has to add the errors of the two measurements and only a small frac- 

tion of the data satisfied conditions of simultaneous running, and well steered 

beams. The cross-sections are given in Table IV.2 

To summarize, the luminosity measurements Seem to be well understood and 

in good agreement, and the 4 mb rise in the pp total cross-section through the 

ISR energy range, an established fact. 

This rise in oT(pp) was also indicated in an analysis of very high 

energy proton flux at an atmospheric depth of 550 g,/cm* on a mountain top in 

Bolivia, compared to the flux at the top of the atmosphere. This analysis (by 

Yodh, Pal and Trefi1)32 indicated that the nucleon-nucleon cross-section in- 

creased with energy significantly at laboratory energies about 500 GeV. The 

lower bound for the energy dependence, from their analysis, agrees well with 

the measured increase through the ISR--and is indicated in Fig. 12 by the 

dashed line. 

One amusing thought, while still considering this rising crOSS-Section: 

for many years we have been concerned about how fast the pp cross-section is 

falling as the energy increased, and wondering when it would filially fall suffi- 

ciently to reach the pp cross-section to fulfill the Pomeranchuck theorem. 

Now the pp cross-section has risen so high that we now have the situation that 

the Gp total cross-section will have to turn around and increase with energy 

to catch up with the pp cross-section. 

Kycia3' will report on the new precision measurements for T'N, KfN, 

p'N at NAL at the Topical Conference. 

The energy dependence of the oT(pp) have been shown to be compatible 

with both a ln s and ln2 S growth with energy. 

2. Elastic Cross-Section 

We first review the p-P scattering &ta through the ISR energy region, 

and then follow other particle scattering up through Serpukov energies. 

At the ISR the CERN-Rome 34 and ACGRT36 groups measured the elastic 

scattering distribution (described in the next section), and by integration 

obtain the elastic cross-section. lhis data, together with measurements from 

the NAL bubble chambers 36 is summarized in Fig. 13, and Table V. The elastic 

cross-section increases by - lO$ through the ISR region--the Same fraction as 0T. 

!l?x 205 GeV/c X4L-LBL-Berkeley HBC lr-p experiment 37 has measured the 

.rrP elastic cross-section as (3.03 2 0.3)mb. !IMs result is plotted with other 

r-p data in Fig. 14. Also Shown are the energy dependencies for K-p and $p 

elastic scattering. The r-p data shows evidence if flattening out, similar 

to the p-p data. (The extrapolated value of the 205 GeV/c cross-section if the 

lower energy s-dependence had continued would have given gel'- 2.3 mb.) 

New-measurements of the high energy elastic cross-section are summarized 

in l&ble VI, and the fitted energy dependencies of the cross-sections given in 

Table VII. (Remember that this slow falling of the cross-section eventually 

flattens out as shown for s-p and pp in Figs. 13 and lb--and that the eel 

at sufficiently high energy starts to rise with UT, as shown in Fig. 13 for PP.) 

The new elastic scattering eqeriments at NAL will be reviewed by Ritson 

at the Topical Conference.38 

Before finishing our examination of the elastic scattering data, I 

would like to consider two interesting ratios: a) (u,&), **d b) 

[u(AB +AB)/&iB -+JLB)]. 

a) In asymptotic geometrical models, where the proton is seen as a com- 

pletely absorbiw black disc of radius R, the ratio of the elastic to the total 

cross-section is 0.5. However, for a gaussian distributed absorption, lOO$ at 

R = 0 the ratio is - 0.15-0.20, being 0.185 for R = If. The ratio is plotted 

in Figs.15 and 16 for p-p and r-p interactions, respectively. The rather 

sparse data for other processes is given in Table VIII. Clearly, the ratio is 

10 



far from 0.5, and, moreover, for the IT-~ and p-p reactions (where there is 

data at high energy), has reached a plateau value which is independent of 

energy. 

b) Kartin3' has proved (for quite general assumptions on the analyt- 

icity of the elastic scattering amplitude) that one should expect the elastic 

(diffractive) cross-section for particle processes to equal the antiparticle 

elastic cross-section at asymptotic energies. This work has been generalized 

to include inelastic quasi-two-body cross-sections too. 40 Table IX summarizes 

some data on the ratios of particle to antiparticle elastic cross-sections. 

It is surprising the extent to which the equality seems to be preserved, even 

at energies where one knows that Regge exchange processes contribute substan- 

tially, and therefore, the scattering cannot be all due to Pomeron exchange. 

3. Elastic Differential Cross-Sections. 

In this section we review the data on da/dt for elastic processes, 

first the p-p scattering at 1% and NAL and then working down in energy, for 

both beryon-baryon and baryon-meson scattering. 

A. Baryon-batyon scatterin& 

The forward angular distribution in pp elastic scattering is sharply 

peaked, as expected in a diffractive process. However, recently, very accurate 

measurements at the bjR have shownthepresence of some interesting Stn\CtU?X 

.3I-OUIld t - 0.15 Ge?. ( This possibility had been pointed out many years earlier 

by Carrigan, 41 who noted that at (10-30) GeV energies the value of the slope in 

pp scattering differed experiment to experiment. He suggested the changes were 

due to the different t ranges being studied. However, no sufficiently syste- 

matic and accurate experiments had been done before the ISR studies brought the 

feature to clear light.) 

The small t-region (t < .15 GeV2) has been studied by CERN-Rome 42 and 

ACGHT43 at the ISR, and by L&USSR group 44 at NAL. Lower energy measurements 

are also available from Serpukov. 

The large t-region of the forward scattering (.2 < t < .5 Ge $1 has 

been studied by the ACGaP group at ISR. 43 The same group has also measured 

2 45 large t-scattering out to t values of w 5 GeV . 

We first consider the systematics of the forward region. The general 

conclusion is that the region with t < .15 GeV2 has a steep slope (= l2 GeVs2), 

which shrinks as energy increases. The region with (.2 < t < .5 GeV2) has a 

somewhat flatter angular distribution (about 2 units smaller slope value), and 

exhibits essentially no energy dependence. 

Typical data is shown in Fig. 17, where (a) shows data from the highest 

energy ISR studies of the ACGRT group --the two regions of the scattering dis- 

tribution are clearly visible; (b) shows data from the US-USSR collaboration 

at one of the energies in this NAL experiment--this experiment measures entirely 

in the "small t-region" discussed above. Notice in the very forward direction 

the observation of p-p Coulomb scattering. 

There has been much discussion as to whether there really are two 

distinct regions or whether the slope smoothly decreases as the scattering angle 

increases. New data from CERN-Rome 42 at 4s = 53 GeV show that the slope is not 

continuously changing through the "small t region," but that one value of the 

slope parameter describes all of the data. If the cross-section within this 
da "small t." interval Is fit with x = g .e-bt , then for 

0 

0.01 < t < 0.6 Ge $ they find b = 13.12 0.3 GeV -2 

0.04 < t < 0.16 Ge $ they find b = 13.0 + 0.3 GeV -2 

Further confirmation of this effect can be seen in Table X, where all of the 

ISR forward slope measurements are gathered.3 
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The slope of the larger t region is also quite stable with t interval 

used. The results of the fitting in this region are also given in Table X.3 

The situation on the s-depend&ce of the slope prior to the NAL experi- 

ment is shown in Fig. 18. The data were fit to an exponential in the two 

ranges, t < 0.1 Ge P and 0.15 < t < 0.5 GeV2, from 1 GeV/c beam momentum 

through the ISR energy (- 2000 &V/c equivalent momentiun). The Serpukov data 

were lowered by &b - 0.4 GeV -2 , which is within their quoted systematic error. 

The da'& show b increasing with increasing energy, but the rate of change be- 

coming relatively constant above 30 GeV/c, The data above 30 GeV,/c were fit to 

b(s,t) = ho(t) + 2a'(t) In" . 
0 

The fits are quite good and result in the following parameters 

(low t region): bO = (7.0 + 1.2), a' = (0.37 + 0.09) 

(larger t region): b. = (9.2 + 0.94), 0' = (0.10 + o.c4) 

In other words, the cross-section is made up of a forward region which exhibits 

substantial shrinkage, and a larger t region which is essentially constant in t. 

The ES-USSR group 44 at NAL have studied small t pp elastic scattering, 

detecting the recoil proton from 'beam-hydrogen gas jet' collisions in an array 

of solid staze cour?ters. A typical do/at was shojin in Fig. 17. This group 

found their data consistent with a logarithmic growth of the slope with energy, 

and fitting their data above 5 - 100 cev2 to 

yid3ed 

b(s) r b. + 251' In s 

bO = 8.23 + 5.27 GeV -2 

for t < 0.15 GeV2 
a' = 0.278 0.024 GeV-2 2 

The most complete analysis of all of the data is shown in Fig. 19 

(from Amaldi '73), where the dashed line corresponds to the parameters 

bO = a.32 GeTIT 1 

J 
for t < 0.12 Ge v2 

a' = 0.275 + 0.02 GeV -2 

Tne ACGHT group 45 have extended their studies of elastic pp scatter- 

ing out to larger mcmentum transfers by using a double arm wire chamber spectro- 

meter with momentum analysis in both amus. This set-up provides enough discrim- 

ination against the inelastic background that they can follow the cross-section 

down seven orders of magnitude. The scattering distributions are shown in Fig. 

20 for four energies at the ISR. The break in the pp scattering cross-section 

for t - 1.2 Ge $ observed at lower energies now becomes a sharp dip, with a 

secondary peak. The position of the dip, and the height of the secondary peak 

are essentially independent of energy. 

[At London, apparently the CHVO group reported preliminary results on 

a second generation study of large angle pp elastic scattering. Toi. new 

data is claimed to shov the position of the dip moving in (i.e. to smaller t- 

values) as the enera increased , and the height of the secondary maximum also 

increasing.] 

The break in the pp scattering distribution at low energies is shown 

in Fig. 21 and again in Fig. 22 where the measured cross-section has been 

divided by G4(t), where G(t) is the electromagnetic form factor 

r-(t) = [(l + t/$2)21-l, 2 
a33 p = 0.71 GeV'. (This is the optLcalmode1 of 

Chou-Yang, where the matter dersil;y is assumed to have the same d:stribution as 

the charge density. 'Be shape of this curve is shorn in Fig. 21.) Not too much 

energy dependence is apparent. 
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!I& ACGHT group report the t-value of the dip, as a function of energy: 

J;;(GeV) t dip (G+f) 

23.5 -- 

30.7 1.45 + .1 

44.9 1.38 + .04 

53.0 1.37 + .04 

me cs(tJ4 description clearly does not fit the data, but the model 

has been extended by Dwand and Lipes (and others) to give a good representation 

of the scattering of ISR energies. 'Obese fits will be discussed later. 

me data on np elastic scattering shows very much the same structure 

as the pp data discussed above. Two experiments--one at CERN studying 

np +np up to 24 &v/c 46 and the other at Serptiov 47 measuring up to 65 GeV/c 

--are reviewed. ?he da/dt of the CERN experiment are presented in Fig. 23 

and clearly show the development of the large t-dip. Figure 24 compares the 

n-p scattering distribution with the data of Allaby et al. at lg.2 GeV/c--the 

agreement is very good. 

Tne shape of the angular distribution has been analyzed in terms of the 

exponential slope, b. 23~ results below 30 GeV/c are shown in Fig. 25, where 

the p-p and n-p data have been fit for t < 0.3 Ge ?. The higher energy 

data has been obtained in a gas jet target experiment at Serptiov, and measures 

only the small t-region. The value of the slope for t < 0.05 Ge V% for np 

scattering data between (10-65) GeV/c is given in Fig. 26, where it is compared 

to tee dashed line--which represents the fit to the small t pp data discussed 

above. For both experiments the agreement between the np and p-p data is 

good. 

It is interesting to notice that the small t slope for np is 1-2 

units in b larger than the slope measured for data with .07 < t < .3 Ge ?, 

in keeping with the effect observed for pp scattering (i.e. 2 region in da/dt). 

As a final comment on baryon-baryon scattering, the hyperon beam group 

at BNI (the Yale-N4L group)48 have studied the slope of IT-P and C-p elastic 

scattering at 23.3 &V/c, while setting up to study the C-decays. Figure 27 

shows the two differential cross-sections. me data are well represented by 

do/& = Ae -bt ; with 

bT = 7.99 + 0.22 GeV 

-2 

I 

(0.07 < t < 0.21 Cd, 

$ = 8.97 _+ 0.26 GeV -2 

The slope parameter for Ep is, not surprisingly, very similar to the 

slope in p-p scattering at the same energy. (The p-p data in Fig. 25 are 

taken over a similar t-range -2 , and indicate a value of the slope - 8.8 GeV .) 

B. Meson-baryon scatterin@; 

We now move on to consider meson-baryon scattering data. 

Some recent data on r-p el&stic scattering is summarized in Table XI. 

Three experiments, covering similar t ranges analyzed the cross-section in 
-bt terms of do/dt = Ae , and the slope values are given in the top part of the 

table. Weak evidence of shrinkage is observed. Bowever, it is clear from the 

high statistics studies at 14, 49 25, 405' GeVjc that there is curvature in the 

cross-section, and that if one attempts to fit the dat% out to large t, a 

quadratic term is required--see Figs. 28 and 29. The slope b from this 

analysis is given in the bottom part of Table XI, and displayed in Fig. 30. 

Very clear evidence of shrinkage is observed. 

Figure 29 also shows the differential cross-section for K-p and pp 

elastic scattering at 25, 40 GeV,fc from Serpukov. 50 The slope parameters are 

summarized in Table XII. 

TIP CERN-Serpukov group 50 studied the shrinkage of the fox-ward peak by 

fitting all the available data for 10 < s < 70 Ge $, at t = 0.2 Ge $ with 

the slope parametrized as 
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b=bO+2a'lns. 

They found quite small shrinkage for the dp, K-p scattering, and very sub- 

stantial antishrinkage for pp. 

a'(T-) = 0.18 _+ .04 

a'(K-) = 0.19 + .04 

I 

at t * 0.2 Ge v2 

a'(G) z-o.5 + .05 
J 

However, they also observed a rather strong t-dependence to the shrinkage. 

This effect is shown in Table XIII where 2a' is listed as a function of the 

t-value at which it was evaluated. The r-p and K-p scattering is seen to 

ha;re very substantial shrinkage for t < 0.1 Ge $ with a -, (p.26-0.36) GeV-*, 

while for t larger then 0.2 Ge ? the shrinkage is quite small with 

a' - 0.1 GeV -2 . 

This is very reminiscent of what we have learned of the a m ------- 

above. 

Another experiment commenting on the curvature of the differential 

cross-section is reported by 10 GeV/c K-p CENT-HBC collaboration. 51 They report 

a slope of 9.8 + 0.5 G~v -2 for the ela&ic K-p peak for t < 0.1 GeV2, and 

a slope of 7.1 + .2 GeV -2 when .12 < t < .4 Gej!. - 

A word of caution is in order here. Tne curvature of the differential 

cross-section in processes like r'p, K-p and pp elastic scattering at low 

(or even moderate) energies should not be taken as indicative of diffractive 

behavior. It x be associated with the behavior of p-p scattering at the ISR 

(and hence the "Pomeron"), but it may very well not--since we do have an alter- 

native explanation. 

We know that there is substantial Regge exchange contribution to the 
* 

r P, K-P elastic amplitudes in the (5-40) GeV/c range--if from nothing else, 

the IT-P +r"n, K-p +?'n cross-sections or from the energy dependence of the 

difference in total cross-sections discussed in II.1 above. We believe these 

Regge components to be peripheral, and so contribute a term like JO(RG) to 

the differential cross-section. The diffractive contribution we believe is 

central in impact parameter space, and behaves like m exponential, e -bt . There- 

fore, the do/at for these processes is the sum of the Bessel function and the 

exponential, which certainly shows curative or may even look like two exponen- 

tials. (See Fig. 31.) A good example of such behaviour is shown in Fig. 32 

where K+p and K-p elastic do/dt at 5 GeV/c is shown. 'Ike K'p process 

is believed to be mainly diffractive (with very little Regge), while the K-p 

is believed to have quite substantial peripheral Regge amplitude in addition to 

the diffractive contribution. Tne K-p cross-section is seen to start higher 

than the K+p forward cross-section, fall faster and then oscillate about the 

essentially exponential K+p data. This is just the behavior one would expect 

from the above model. 

We should therefore be skeptidal of assuming the drr/dt behaviour of 

the r&p, K-p is the same phenomenon observed in p-p. It will be interesting 

to see the results of high statistics studies of K+p scattering in the (5-20) 

GeV/c region, and the behaviour of all of these processes at NAL. If the NAL 

experiments find the small t steepening of the cross section, and it proves 

to be s-independent, then we will be forced to associate this behavior with 

that observed in pp scattering at ISR, and of course, with the Pomemn. It 

will be especially interesting to see the results of the NAL K+p experiments 

and the very high statistics K+p scattering at %&Z--here the Regge contribu- 

tions are known to be small. 

If the experimental evidence supports that indeed the small t steepen- 

ing is due to the Pomeron, the same two component mechanism discussed above may 

be at work (i.e. a Jo(R&) term adding to a central, e -bt , term)--where now 

the peripheral contribution may be associated w?th the Pomeron, an additional 

piece coming from the grey ring around the edge of the proton. We discuss such 

a mode152 for the Pomeron later. 
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In addition, some data is available from 8 GeV/c rr+p and I.2 G&/c K+p 

experiments at LBL.56 The diffractive scattering is isolated by choosing small 

t for the meson-scattering, selecting M(pn+) > 1400 MeV to remove the strong 

pion exchange reaction, and requiring M(m) or M(KT) to be greater than 

1600 MeV to isolate the diffractive scattering from the 'Is-channel" resonance 

formation processes. 

For t i 0.3 GeV* they find 

b(mr) = 4.14 1: .22 GeV -2 

b(KT) = 4.10 + .25 GeV -2 

D. Cross-over phenomenon 

The differential cross-section for the elastic scattering reaction 

?p -+%p is known to have a steeper slope and a larger forward intercept than 

the reaction Xp +Xp. This leads to the well-known cross-over effect in which 

the differential cross-sections cross at a t-value of M 0.2 GeV2. The differ- 

ence in these cross-sections is due to the imaginary part of the non-flip odd 

C amplitude in the t-channel. This phenomenon is understood in terms of 

the Dual Absorption Model in which the K'p and pp reactions (being exotic 

in the s-channel) have dominant contribution from the Pomeron, while dp, 

K-p and pp all have a mixture of Pomeron and Regge terms. The KN and NN 

data show clear cross-avers (since the Regge contribution appears only in one 

term), while the ~'p differential cross-sections have very similar slopes and 

magnitudes, since both terms (Regge and Pomeron) contribute to both cross-sections. 

A beautiful experiment 57 at Argonne has studied these phenomena in the 

(g-6) GeV/c region--the data is displayed in Figs. 37-40 and summarized in 

Table XIV. !Che cross-over in particle antiparticle cross-section were found 

to be quite energy independent 

lT: tc = 0.14 + .03 Ge? 

K : tc = 0.19 + .0-d Gejl 

p : tc = 0.16 + .004 Ge v2 - 

At SIAC a high statistics wire chamber experiment 58 is in progress 

studying K&p scattering at 6, 10, 14 GeV/c, and dp and p+p scattering 

at 10 GeV/c. A preliminary measurement was performed at 13 GeV/c for K'p 

(see Fig. 41), and indicated tc = 0.21 2 .03 Ge?. Final results on the 

SLAC systematic study should be available shortly. (Representative cross- 

sections are shown in Fig. 42.) 

The s-independence of tc indicates that the effective radius of the 

peripheral amplitude (the odd C Regge exchange term) is constant and not ex- 

panding as the energy increases. 

E. Real lze.rts of forward scattering amplitude 

Typical differential cross-sections are shown in Figs. 43 and 44 

for the NAL experiment 59 and the CERN-Rome ISR epxeriment, 60 respectively. 

This quantity is becoming very interesting, given the observstion of 

rising total cross-sections. Dispersion relations provide a connection between 

the behavior of the ratio of the real to imaginary parts of the forward scatter- 

ing amplitude, p, and the energy dependence of the pp and cp total cross- 

sections. This integral relation is such that p measured at energy E is 

sensitive to the behavior of o,(pp) and o&pp) for energies larger than E. 

Khuri and Kinoshita 61 have shown that total cross-sections, rising 

indefinitely as a power of the logarithm of the energy, imply p approaching 

zero from above. The argment goes as follows: 

An amplitude that corresponds to oT 0 (In s)" at high energies 

is F+(s) = i(y+js (log s)~+ . 
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However, this amplitude does not satisfy the requirements of analyticity and 

crossing in the complex energy plane. Such an amplitude can, instead, be 

written as 

F+(s) = i\r+Js (log 8 - i $)V+ 

+ 
- i(Y+ls (log s)y+ + F y+s (log p+ 

Thus 

The derivation is for the sum of the pp and pp amplitudes (i.e. the even 

signature amplitude), but for no pathological bebaviour of pp it may be 

assumed to apply to the pp data alone. 

Then, for the total cross-section approach a constant from above, the 

p goes to zero from below, but for a rising cross-section, the p must be 

positive (and if the d(o,)/ds stops, p approaches zero from above). 

Therefore, one may use careful measurements of p to try to gain in- 

sight on the s-dependence of c$ at still higher energies. How sensitive is 

it? Bwtels and Diddens 62 have investigated this sensitivity by calculating 

P(S) for UT becoming constant at various energies. The results are shown 

in Fig. 45.. Clearly, precision measurements through the ISR region would allOW 

useful limits to be placed on the high energy behavior of QPP). 

The measurements for pp are shown in Fig. 46 up through 400 GeV/c, 59 

while new data on the real part for np scattering at Scrpukov 47 is shown in 

Fig. 47. It is interesting to see the agreement between this data and the p-p 

data discussed above. 

Finally, Fig. 48 shows the real part measured in a-p scattering 

through Serpukov energies. 63 It will be interesting to see what is measured 

at I!L4L, both in terms of the oT(r'p) and their real parts. 

F. Some theoretical comments 

I. Asymptotic Bounds 

At asymptotic energies, the bound of Lugunov and Van Hieu (Topical 

Conference on H.E. Collisions, Vol. II, p. 74, 1968) may be written 
2 

but we know 

u ,2-k- 
e1 - (In s)2 

a <U el- T 

Then, if UT a (In *Ia, 

for 0 = 1, 

and a=2, 

constant < be1 <_ In s - 

a el * ln2 s 

2 -bt Further, if du/dt = oT'e , then 
2 

aT b=- 
uel 

and 

for a = 1, ln2s > b > In E - - 

and cx=2, 
2 bsln s 

One interesting point of these bounds is that if the oT ever saturates 

the Froissart bound and increases like s, then the energy dependence of 

b must change from the present In s behaviour. 

II. Fits to High Energy p-p Scattering 

Ihere are two main types of models for the Pomeron in pp elastic 

scattering: 

(a) the two component models typical of the work of Cheng-Walker-Wu, 64 

Kane,8'9'10 Barger-Geer-Willips, 65 Allcock-Cottingham-Michael, 66 which are 

summarized in Fig. 49. 



The main contribution to the Pomeron is from the central CollisiOnS 

giving rise to the exponential,(or e at Jl(RJ-t), t-dependence arising from 

absorption from a disc of radius of about 0.6 f. The e at modifier accounts 

for the smoothing of the edge of the disc. The dip at t - 1.4 Ge? is 

the diffraction zero from the disc. 

In addition to this central piece there is a peripheral contribution 

from the edge of the proton. Constructive interference between these two terms 

produces the upward curvature in do/& for small t. 

There are differences in the details of the models, but the essential 

two components are as described. 

Allcock et .l.66 make the point that the edge component may be due to 

2~ exchange. Their calculation indicates that in shape and in magnitude the 

27r exchange term fits the extra high partial wave tail that is the character- 

istic of the second component. 

Henyey et al. 10 describe this component as due to dissociation of the 

incoming particle; 64 Cheng-Walker-Wu ascribe Diffraction Dissociation to the 

ring component. 

(b) The pole and cut models, typical of the work of Durand-Lipes, 67 

thou-Yang, 60 Frautschi-Xargolis, 69 etc. These models are described in Fig. 50. 

The dip at large t is generated by the destructive interference of a structure- 

less pole term, with a cut of opposite sign. 

The small t structure has to be explained by introducing modifications 

to the pole term (e.g. the 2a contribution discussed in the above models 

could be used to modify the pole term). 

A typical fit to the scattering data at the ISR is shown in Fig. 51. 

The height of the secondary maximum is related to the total cross-section used 

in the optical model calculation (40 mb in this case), so a more realistic uT 

would allow for better fit in this t range. 

4. SLImmary 

. u,&pp) increases for (200-1500) &V/c by (10 + 2)$, 

ael(pp) increases for (200-1500) GeV/c by (I.2 + 4)$, 

0 - 0 for 300 GeV/c 

slope, b, increases for (200-1500) GeV/c by (112 3)s 

uinel(pp) increases for (200-1500) G&J/c by (10 + 2)s. 

This data is consistent with an optical model picture of a gray absorb- 

ing disc of constant oFcity, (bel/uT flat), and with the radius increasing 

with energy. 

Since, in this picture c+ b, eel, oinel are all proportional to R2 

--the radius of the proton--then R should have increased by - 5s. If we 

interpret the deep dip in pp scattering as a diffraction minimum, then this is 

a measure of the radius of the scatterer: the dip should move in t-value--it 

seems that it probably does. 

If-one looks at the rate of change of R with energy--the uTT b are 

consistent with (ln s) growth in 2 R , while the diffraction minimum seems 

consistent with moving to smaller t-values like J- In s- agaIn things make a 

consistent picture. 

If one looks more carefully, this picture requires more fine structure. 

The small t p-p scattering implies that the proton has an outer edge or 
II 
r=%3, ' and that this is expanding quite rapidly with energy, -In s. The large 

t scattering gives US information on the 'core' of the proton, which even at 

ISR energies is not black but - 92% of its unitary value, and quite constant 

with energy. 

. The real part crossing zero and going positive for momentum - 300 GeV/c 

is consistent with the measured rise in oT up throwh 2000 GeV/c. Careful 

measurements of the real part in pp scattering up through 2000 GeV/c would 

give useful constraints on the behaviour of a,(pp) up to (lo4 - 105) GeV. 

c 



. T%e elastic scattering data shows that diffractive scattering is sharply 

peaked and well parametrized as as(do/dt) - AeNbt for small t. Good indica- 

tions for steepening of the do/dt as a function of t are observed for ITCH 

and K-p in the (5-40) GeV/c energy region, which is ~rametriz.4 as two expo- 

nentials or one exponential with quadratic t dependence. A straightforward 

explanation for the steepening of da/at for these processes is found in a peri- 

pheral Regge exchange contribution to the t-channel amplitude. However, similar 

behaviour is observed in p-p scattering at 2000 GeV/c where Regge is not expected 

to play a great role. This may imply a peripheral piece to the Pomeron. 

The slope parameter, b, is steeper in ?p scattering than for Xp 

scattering. This fact, together with the observed equality of the integrated 

cross-sections (i.e. Uel(%P) = Oe,(XP)), implies a cross-over of the differ- 

ential cross-sections. This cross-over phenomena has been studied for p C 

15 GeV/c and no s-dependence found. It will be interesting to follow these 

studies at ?&L. 

'ihe slopes of the scattering distribution are observed to change with 

energy--the K+p and pp systems exhibiting strong shrinkage, the ?r'p and 

K-p slopes being essentially flat, and the sp scattering showing an anti- 

shrinkage behaviour. !&is shrinkage phenomena observed in K+p and PP scatter- 

ing, is normally understood as being due to the slope of the Pomeron trajectory-- 

the effect is masked by Regge effects in the other elastic reactions. 

. Pomeranchuck theorem predicts asymptotically uT(AB) = uT(aB), while 

Martin has shown that usl(AB) should equal oe,(~B), and the slope,b(AB)=b(LB). 

The data is consistent with these predictions; the differences in 

particle and antiparticle total cross-section are falling like -0.5 s , while 

elastic cross-sections are equal even at low energy. The slopes of the differ- 

ential cross-section seem consistent with an asymptotic commonvalue for particle 

and antiparticle scattering. 

III. PHOTOPRODUCTION OF VECTOR MESONS 

In this section we review data on the photoproduction of vector mesons, 

(Pt % e).19 Within the spirit of the Vector Dominance Model,(VDM), these pro- 

cesses should be more properly considered with the elastic scattering reactions 

(see Fig. 52), than considered together with the other exclusive inelastic 

diffraction processes. Tne early experimental results on rho production with 

polarized photons strongly supported that picture. 7o (See Fig. 53 where the 

p +28 decay distributions show that the p has fully taken over the polari- 

zation of the photon, and that no longitudinal p decays are observed.) We 

shall summarize the data on cross-sections and angular distributions. 

1. Cross-Sections 

The cross-section for rp +p"p is shown in Fig. 54, for photon energies 

between (l-15) GeV/c. The cross-section falls rapidly as the energy increases 

up to - 5 GeV, above which it has a rather slow energy dependence. For compari- 

son the energy dependence of the TIN elastic cross-section is shown; it exhibits 

an s-dependence very similar to yp 'pp. 

The u photoproduction cross-section is shown in Fig. 55 from threshold 

to 9 GeV. Again one sees a very rapid fall-off of the cross-section at low 

energies, flattening out around 5 GeV. The SIAC-Berkeley-Tufts experiment 71 

using a polarized photon beam (obtained by backscattering a laser besm on the 

primary SLAC electron beam) is able to separate the cross-section into the 

natural parity and unnatural parity t-channel contributions at 2.8, 4.7 and 

9.3 GeV.+ The unnatural parity cross-section falls very rapidly, in good 

agreement with the one-pion exchange model, and is essentially zero by 9 GeV. 

The natural parity exchange cross-section, which one would hope to be diffrac- 

tion dominated, falls off like the p photoproduction data shown above, and 

hence like the ti elastic data. 

t For natural parity exchange the pions from p decay, emerge preferentially 
in the plane of the photon polarization, while for unnatural parity exchange 
they emerge perpendicular to it. 
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!tbke $ photoproduction cross-section is plotted in Fig. 56. ?he 

energy dependence for this process is either flat or rising very slowly-- 

however, it is a small cross-section reaction and not very well measured. 

2. Differential Cross-Sections 

The differential cross-section for up + pop is shown in Figs. 57 

and 58, for two representative experiments. In Fig. 57, the do/at is dis- 

played for a hydrogen bubble chamber experiment at 9.3 GeV,'L while Fig. 58 

shows the cross-section from (g-16) GeV from a wire spark chamber experiment. 72 

The differential cross-section have been fit to the form 

da do -bt 
dt=dtt=O' e 

and the resulting slopes piotted as a function of photon energy, in Fig. 59 

(from an analysis by Moffeit 19 of all the rp +p*p data that could be 

analyzed in a standard way). Note the different t-ranges used in obtaining 

these slopes--especially remembering what we learned of the t-dependent 

shrinkage behaviour in elastic scattering in Chapter II. Figure 60 shows 

do/dt (from the SBT bubble chamber, acd frcm the SLAC wire chamber) for the 

sm.11 t region, where the two experiments overlap--the agreement is good. 

However, the slopes obtained from the two experiments are different by - 2.5 

units when the full t-range of the HBC data is used--perhaps an indication of 

the same steepening of the da/dt slope as t becomes sznaller, that we 

observed for ti scattering in the (5-40) GeV/c energy region. The slopes 

show very little energy variation (at most 1 - l/2 units for 3-16 GeV), and 

are consistent with the s-dependence of the average cf the ~'p elastic 

scattering slopes in the region 0.1 < + < . 4 GeV2, shown as a dashed line in 

l-%2. 59. 

We might ask again, why a diffractive process should show so little 

shrinkage. Chadwick et al. 73 have performed an analysis on the energy depen- 

dence of the slope for yp + pop, similar to that of Dsvier 53 described in the 

nN elastic section in Chapter II. mey assume a central Pcmeron and a peri- 

pheral fC-meson exchange dominate the reaction, &. Ls Dsvier, and hence unccver 

shrinkage in the Pcmeron contribution to yp +p$, which behaves just like 

the "K+p Pomeron" and the "Davier TIN Pomeron." Their fits to the data, and 

the results of the Pomeron and f" slopes as a function of energy are shown 

in Fig. 61. 

The (u differential cross-sections, from the S-B-T collaboration, 
71 

are given in Fig. 62. The slope of the cross-section is reported as - 7 GeV 
-2 

and quite independent of energy. (An analysis of the natural parity contri- 

bution results in the same conclusion, but with somewhat larger errors.) 

'he study of the photoproduction of the @ raeson has been an interest- 

ing area. Since the @ meson decouples from other mesons we do not expect 

any strong t-channel amplitudes other than the Pomeron. Thus, the study of 4 

photoproduction should be an ideal laboratory to lesr? of the Pomer~n's prop- 

erties--much better in principle than the study of K+p or pp where the 

Pcmeron dominance depends on cancellations of Hegge a!nplitudes through exchange 

degeneracy. 

The 0 is observed to be strongly produced coherently from cctnplex 

nuclear targets, and the t-channel amplitude in lp 4 Op is essentially purely 

natural parity (from asymmetry studies with polarized photons). These observa- 

tions support the Pcmeron exchange dominance hypothesis. 
74 

The data on the diflerential cross-section is rather sparse and quite 

inconclusive as to whether there is any shrinkage of the forward slope, never 

mind any quantitative measure of how much it shrinks: Figure 63 shows the 

S-B-T bubble chanber data for (2.8 + 4.7) GeV and 9.3 GeV, respectively, and 

compared to neighboring energy data from other groups, there is clearly very 

little energy dependence st large t, and unfortunately, essentially no data 
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in the small t region, where we have seen from elastic scattering the strong- 

est s-dependence may be expected. Figure 64 shows another Summry of the data 

on do/dt (yp --) @p), displaying new data from a Bonn group measuring at 2 GeV. 

Asummary =,19 of the slopes from these experiments is given in Fig. 65. 

A recent SLAC experiment 75 measures the s-dependence of the @ CIOSS- 

section at a fixed t = 0.6 Ge T. Their data, together with the 2 GeV Bonn 

point76 are shown in Fig. 66. Clearly the data support the 'no shrinkage" con- 

clusion, and more quantitatively, when fit to .a slope with the usual energy 

dependence 

b=bO+2CI'lns 

find a' = 0.14 + O.Og GeV -2 . This is in strong contrast to the strong energy 

dependence found in p-p scattering at the Same energies--see Fig. 67. 

It is interesting to note that the analysis of T-P and K-p elastic 

scattering reported in Chapter II and summarized in Table XIII, gave CL' = 

0.04 2 0.03 Gev -2 and C$ = 0.00 + 0.04 GeVq2 for t-values around 0.4 Ge T$ . 

Further, at high energies the pp scattering distributions for approximately 

the same t-values show no energy dependence. !Ihe fits to the ISR p-p Scatter- 

ing data in this t range yield a' = 0.10 -f 0.06. These results are remark- 

ably in agreement with-the @ photoproduction data. This prompts the question 

of whether the s-dependence observed in p-p scattering in the (5-20) GeV/c 

region (see Fig. 67) is due to Regge, or other non-diffractive effects and 

that the bare Pomeron properties are seen in the very high energy Scattering. 

'Ihen r 40 may indeed be exhibiting Pomeron like behaviour at low energies, 

5.8 expected. 

An interesting explanation of the lack of shrinkage is offered in the 

two component model of the Pomeron described by Kane. He introduces a CentrS.1 

contribution (the conventional Pomeron) and .%I additional peripheral piece 

which accounts for the small t shrinkage observed in high energy p-p Scatter- 

ing. These two contributions would then lead to the picture shown in Fig. 68. 

The centml contribution has a slow (or zero) energy dependence while the peri- 

pheral contribution shrinks quite rapidly (like In s). The peripheral contri- 

bution behaves in t-space like a Bessel function and has its first zero around 

t- 0.2 Ge?. As s increases there is a region in t around - 0.5 Ge$ where 

the peripheral contributions cross for different S values, and which there- 

fore displays no (or very weak) energy dependence. This model allows an explana- 

tion of the small t shrinkage, and the lack of it in the large (- 0.4-0.8 

Ge P ) region. 

It would be nice to have some good tits. at small t, to See if the 

Y +Q cross-section does indeed shrink for Small t. 

21 



IV. DIFFXRCTION DISSOCIATION (MCLUX-VE INELASTIC DIFFRACTION) 

1. Introduction 

By Diffraction Dissociation we mean the non-elastic processes in which 

either the incident particle or the target particle is excited to a low mass 

system. These excitations seems to be strongest near to quasi-two-body thres- 

holds and it is far from clear whether they are due to resonant behavior or to 

some kinematic effect which enhances the scattering cross-section. There is 

a growing mount of evidence that at least the dominant effect is due to kine- 

matices. For the moment ne will not try toanswerthe question of whether 

these inelastic processes are kinematic in origin or are caused by resonance 

production, but merely observe that production of "the A region" by B'S, 

or'the Q region" by K's, or "excited N*'s" by N's are well defined, 

clearly indentifiable reactions characterized by natural parity exchange in 

the t-channel and dotinated by a single well defined spin-parity state in the 

meson decay system. The cross-sections for these processes are slowly varying 

in energy, and the differential cross-sections are sharply forward peaked. 

The general trends of these data are very similar to the elastic scattering 

and photoproduction of vector meson processes reviewed in Chapters II and III. 

2. E!JX-plS 

A. N +NIT Dissociation 

We first examine the process N +N?r, from studies of 

TN + mrN 

NN -3NNTr 

(N.1) 

(Iv.21 

The cross-section for reaction (IV.l) is shown in Fig. 69. The data are con- 

sistent with a fall-off of p -1.6 
, which is typical of meson exchange processes. 

A CERN bubble chamber collaboration 77 studied the charge related reactions 

lr’p -3 7;rplr” 
lr+Tr+n 

at 4, 5, a, and 16 GeV/c, and were able to isolate the isospin of the (NIT) 

system. The cross-sections for the separate isospin states are shown in Fig. 

I = l/2 cross-section falls slowly like p- .6 70, where the while the 

I = 3/2 part falls like meson exchange, p -1.6 . Tne mass spectra for the 

separate I-spin states are shown in Fig. 71, for the 8 and 16 C&V/c data. 

The I = 3/2 plots show strong production of A, and the relative cross- 

section at the two energies reflects the steep energy dependence of this 

amplitude. The I = l/2 mass spectrum shows a smooth low mass enhancement, 

extending from below 1300 MeV to about 1700 MeV, but exhibiting no structure 

at the masses of known nuclear isobars. The cross-section for this low mass 

bmp char?&% very little between 8 and 16 GeV/c (at 16 GeV/c it is - l/2 

of the mrN cross-section). 

The same group77 studied both r+p --) mrN and .irp + 7i-nN at 1.6 GeV/c 

and were able to isolate the isospin exchanged in the scattering process (i.e. 

find It). The various matrix elements are shown in Fig. 72--where all 

312 moments are seen to be small except the Ml and $I2 ( i.e. isovector 

production of the I = 312 TN system, and isoscslar exchange leading to the 

I = l/2 TrN system). 
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A similar analysis has been performed in the reaction (3X.2) by 

another bubble chamber collaboration (Bonn-Hmburg-Munich), 78 working at 3.2 

and 24 cd/c. Ihe two cross-sections me shown in Fig. 73, and the $/'L and f 
312 

4 mass spectra are shown in Fig. 74 and 75 respectively. me same features 

of smooth, energy independent, low DEWS enhancement for the diffraction process, 

and the fast falling A production for the exchange process. 

This feature of low mass enhancement is confirmed in studies of 

n + plr-; Fig. 76 shows the results of .m experiment using a deuteron beam at 

25 GeV/c to study "stripped" neutron interactions in 8 hydrogen bubble chamber, 74 

especially the reaction-- 

np +pTr-p at 12.5 GeV/c; 

Fig. 77 shows the prr- mass plot for the reaction 

K+d dK+p?r-(ps) at I.2 &V/C. 80 

'Rx differential cross-section for n +p~- in this latter experiment 

is shown in Fig. 78 for three mass cuts. The cross-section has a very steep 

slope for the lowest masses, flatteniw out as the mass of (p?r-) increases. 

The values of the slopes found are:-- 

1.1 < M(~T) < 1.3 , b = 14 Gd 
-2 

1.3 M(pa) 1.5 b= 8 GeV 
-2 < < , 

1.5 < M(pa) -2 < 1.7 , b = 3.5 GeV 

Similiar behaviour is observed in the other studies. Tnis variation of 

the slope of the differential cross-section with the mass of the produced 

system is displayed in Fig. 79 (for the "deuteron stripping" experiment 79) 

and summarized in Table XV (from the Bonn-Hamburg-Munich experiment 78) . 

Gne sees for the diffractive channel (or rather, the It = 0, I pTr = 
l/2 channel), 

that the slope at threshold is very high (- 2 x elastic slope, b M 15 GeVm2), 

and falls very fast with increasing mass up to M2 ji - 2 Ge , at which point the 

slope is - 4-5 GeV-2 and remains rather constant for further increases in mass. 

The It = 312 slopes are not very dependent on mass, and both It = l/2, 

J/2 slopes do not change much with energy. 

Fig. 80 shows the mss plot of (PIT-) system produced by a high energy 

neutron beam from the AGS (mean momentum w 23 &v/c) 0n ~0mplex nuclear 

targets. 81 The sa;me smooth low mass enhancement is observed, produced with a 

characteristically coherent differential cross-section from the various nuclear 

targets. 

The decay angular distribution of the pi- system has been studied in 

each of these experiments. Typical results are shown in Fig. 81, where the 

Jackson angular distribution is shown for various t and M cuts. The data 

indicate that for small mass and small t, the angular distributions are rather 

isotropic, but as mass or t increase, the distributions become more complex, 

reflecting an increasing complexity of the spin structure in the (pn-) system. 

As one selects larger t, the mass distributions begin to reflect the 

presence of the well-known isobars--D13(1520), F 
15 

(1688)--and the angular dis- 

tributions may be well explained in terms of the known angular momentum of 

the expected resonances. However, the increased complexity in the Small t 

data does not accompany sny clear mass structure--the mass distributions remain 

smooth, just moving to larger mean masses as the t-cut is increased. 

lb summarize the data on N +NT: 

. a large cross-section for producing I = l/2 (NT) state is observed, 

. the process involves I = 0 exchange, 

. has & very slow energy dependence of the cross-section, 

. has a very steep do/dt for low masses; the slope decreases as the 

mass increases, 

. no resonance structure is observed for the small t, steep do/at, 

low mass component; as one looks at larger and larger t's, the expected 

resonances are observed, 

. this low msss process is observed to proceed coherently on nucleii. 



B. N -,Nn'rr dissociation 

Another strong diffractive channel for nucleons is observed to be 

N -3 (Nm). Typical mass plots are shown in Figs. 82 and 83, where 8 large 

low mass enhancement is seen, with some structure at * 1450 MeV and 1700 MeV. 

These are associated with the production of resonances, but only represent a 

fraction of the total low mass system. 

The cross-section for the production of this Nm system is observed 

to be almost flat as a function of energy, falling like p -0.4 . 

The differential cross-section is strongly peaked, and displays the 

same feature discussed above in- N?i--i.e. as the mass of the (Nm) system 

increases from threshold the da/dt become flatter. This is sumarized in 

Table XVI. It is interesting to note that the (Nm) and (NT) slopes seem 

to agree well, for a given mass of the baryon system. These studies also show 

that if the mass spectrum is examined for larger t values (e.g. t > 0.1 GeV*), 

the resonance signals become much clearer (just as discussed above for the 

NT system). 

Finally, there is strong evidence for the coherent production of this 

low mass (Nm) system. We will be hearing more of this in Gobbi's talk 82 
at 

the Conference. 

In sunmary, the N -+NTT, Nm reactions display the same properties. 

C. Nucleon dissociation at high energies 

Having reviewed the data on diffraction dissociation of the nucleon 

at (5-30) GeV/c energies, let us look at a few results from NAL. Several 

experiments have found evidence for the reaction 

PP + PN* 

at high energies, where N* refers to the phenomena we have been discussing 

above. 

First, the NAL US-USSR collaboration 83 using the solid state detectors 

to identify the recoil proton from'bem-hydrogen gas jet' collisions to study 

elastic scattering, have also measured the missing mass spectrum. This belongs 

mom properly in the chapter on Inclusive Diffraction, but it is interesting 

to refer to it here, since it measures in the low mass region and ties on 

nicely to what we have been discussing with respect to do/dt, and s-dependence 

of the cross-sections. (We will discuss this experiment again in the inclu- 

sive section, to review some recent results on dp +dX at 100-400 GeV/c.) 

lb missing mass spectrum is shown in Fig. 84. The resolttiion in 

missing mass is dominated by the angular resolution of the detectors and is 

typically + 100 MeV in the resonance region. The four histograms are the i@f 

distributions measured by four different counters placed at different angles 

(near 90") to the incident proton beam, for an incident beam momentum of 200 

GeV/c . Data were taken at 175, 200 and 400 &V/c. The arrows mark the 

positions of known isobars which could be diffractively excited N(1450), 

N(1560),N(1688), . . . . A preliminary analysis of the data indicate the cross 

section in the resonance region is indepcrident of energy. In particular, the 

cross-section in the 1400 MeV region exhibits a very steep t dependence, 

e -15t , and that the NAL cross-section is the same to within 209b as that measured 

at 20 GeV/c. 
- 84 Further, the 77 p and ppa5 bubble chamber experiments at 205 GeV/c 

have both studied the exclusive four body reactions-- 

r-p +T-lr+*-P 

pp +PTr+n--P 

and have isolated fairly clean samples. The mass distribution of the (pr'r-) 

system is shown in Figs. 85 and 86 for these two processes, and clearly shows 

the low mass enhancement, with some evidence of N(1450) and N(1700) structure. 

%ne proton experiment also shows the strong & component of this low msss 

region, just as is observed at low energies. 
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Figure 87 shows the topological cross-section for inelastic 2 prong 

reactions, from pp interactions from (12-300) GeV/c. The cross-section is 

falling with increasing energy. Also shown as a shaded band, is the estimate 

of the diffractive component in the two prong topology from model fits to the 

high energy multiplicity distributions and topological cross-sections (Miettinen, 86 

Hsrari87). Tb p' e lsos In analysis from the Bonn-Hsmburg-Munich group provides 

the cross-section for the (It = 0, I(NT) = l/2) process up through 24 GeV/c, 

at which point the 2-body diffractive cross-section is about equal to the pre- 

dicted total 2 prong cross-section. However, if the N +NIT cross-section 

keeps falling like p -0.5 --which it does up to 24 GeV/c--then would predict 

- 0.9 mb at 200 GeB/c, or about half the total topological limit. 

(Another rumor from London-SFM group studied pp +~TIT' at 4s = 53 GeV, 

and see cross-section falling off like p -"'5 up to 1500 GeV/c. They also see 

many of the same features discussed in this section for N --ANT diffraction-- 

. slow o variation (mentioned already), 

. sharp do/dt, being very steep for small mass, and flattening out as 

M(nT') increases, 

. cos epJn > O--smooth structureless low mass bump, where eJ is the 

Jackson polar angle, 

. cos ey < O--begin to see resonance structure in the mass plot.) 

D. Hyperon dissociation 

Before leaving the baryon system, we report the observation of a thres- 

hold enhancement in the reaction 

c- + z -? h- + z 

at 24.6 GeV/c from the NAL-Yale hyperon beam group at BNL. 88 !che mass spectrum 

for the fur- system is shown in Fig. &--it is interesting to see the same 

smooth, structureless, low-mass enhancement in this process as we have been 

discussing for t~wlcon diffraction. 

3. Meson Ms.5ociation 

A. Cross-sections 

For meson diffraction dissociation we have two basic processes to be 

studied 

JTN + (3r)N (N.3) 

KN + (KITT)N (Iv.4) 

The cross-section for reaction (IV.3) is displayed in Fig. 89 from 

2 w/c up through 205 GeVfc. The energy dependence of this data is very 

mild above 5 G&?/c, with a distinct flattening off at high energy. The high 

energy data is dominated by the N *(NIT) diffraction discussed above in 

Chapter IV.2 and the meson dissociation IT -3 3~. Typical mass distributions 

for the 3a system are shown in Fig. 82 for v'p at 16 GeV/c77 (from a bubble 

chamber study), Fig. 90 for r-p at 40 GeV/c (from a spark chamber spectro- 

meter experiment at Serpuk~v),~~ and in Fig. 91 for r-p at 205 GeV/c (from 

a HBC experiment at NAL). 84 All spectra show a rapid rise of the cross- 

section to form a broad peak called the Al, followed by a shoulder at around 

1700 MeV called the A 
3 

. For data cut on larger t values (e.g. t > 0.2 Ge 3 ), 

another structure becomes very prominent--the A2 meson. The A 1 
and A 2 

regions are observed to decay into plr, while the A 
3 

region is associated 

with the fr system. (mere is evidence from the Washington-Berkeley T-d 

HEX experiment" at 15 GeV/c of a HIT enhancement around 1900 MeV, which 

they name the A4.) 

The s- and t-dependencies of the reaction (rV.3) have been studied as 

a function of (Jr) mass, and the results are smrized in Table XVII. The 

energy dependence of the cross-section as a function of mass, evaluated above 

11 GeV/c, are given in the last column of the table, and indicate rather flat 

energy dependence--being very similar to the elastic cross-section energy de- 

pendence for small 5~ masses, (u = p -.3) and falling just slightly faster 

for masses in the neighborhood of 2000 MeV, (a = P-'~). 
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The energy dependence of the three enhancement regions--the Al, A2 

and A 3 regions--is given in Figs. 92, 93 and 94 from (5-40) GeV/c. Fitting 

the cross-section to 0 0: p -n they find 

n(Al) = 0.40 + 0.06 

n(A )natural 
2 = 0.51 + 0.05 

d,) unnatural = 2.1 - + 0.2 

n(A3) = 0.57 + 0.2 

It is interesting that the A2 cross-section (supposedly mainly vector 

and tensor exchange) has such a similar energy dependence to the Al and A 3 
regions (which are thought to be produced by Pomeron exchange). 

!Che fact that the Al energy dependence in Table XVII, and in the 

above fit are somewhat different implies that the a(Al) flattens out at higher 

energies. This is confirmed by the 205 GeV/c r-p experiment, which reports a 

cross-section for 0.8 < M(3~r) < 1.2 GeV as 160 + 40 pb. At the foot of Table 

XVII this is compared to the 25 and 40 GeV/c cross-sections. 

Tne energy dependence of reaction IV.~ is shown in Fig. 95 for K"P --t 

Q'P.+ The cross-section for Q" production is quite flat from 5 GeV/c-12 GeV/cJ91 

having a momentum dependence of p -.59+.16 . complementary data on Q+ proauc- 

tion is shown in Fig. 96 from the "world K+ collaboration. ~92 !Che energy de- 

pendence from (2.5-12.7) GeV/c is studied as a function of the (Km) mass, in 

40 MeV steps from 1200-1500 MeV. All six mass intervals exhibit the same be- 

haviour, with an average momentum dependence of p 
-.6~.05 . The K- -IQ- data 

(for MQ < 1.5 GeV), show a somewhat flatter dependence, with 0 = p -.3'.09. 

t The K$'T-p reaction cross-section rises rapidly from threshold, and then 
-1.2 falls off as Plab . 'his is somewhat more rapid than the equivalent reac- 

tions for Kfp and K-p, and is presumably due to the fact that the K'p 
reactions have substantial contributions from proton diffraction, (p 'pm), 

0 at the nucleon vertex, while such .a process is forbidden in the KL experi- 
ment due to the change of C at the e -)$ vertex. 

A CERN bubble chamber collaboration (CERN-Brussels-Krakow) 93 have per- 

formed an isospin decomposition for the diffractive processes K ~KTIT, N +NITT 

at 5.0 and 8.2 GeV/c. The various charge states for (K*s) and (air) were 

selected from the following reactions-- 

K+p *K+T--irfp 

K'TT+T'P 

K'dv+n . 

They find that the Km system is dominated by the I = l/2 amplitude, which 

is constant in magnitude between 5 and 8.2 GeV/c, as one would expect for a 

diffractive process. The mass distribwtions for the I = l/2 and 3/2 ampli- 

tudes are shown in Fig. 97. The low mass KITT enhancement--the Q region-- 

is clearly seen in the I = l/2 data, and quite absent for the I = 312 data. 

So we see that the cross-sections for these diffractive processes are 

quite flat as a function of energy, and that they fall off only slightly faster 

than the elastic scattering cross-sections themselves. The data exhibit another 

feature of the elastic cross-sections discussed in Chapter II--namely, the 

equality of particle and antiparticle cross-sections. Cornille and Martin 40 

predicted that asymptotically this ratio should be 1, even for inelastic diffrac- 

tive two body processes. 

In Fig. 98 the ratio of the cross-section for K"p --) Q"p and I?"p -I Gap 

is shown as a function of momentum from (2-12) GeV/c. The equal components of 

K" and K -' in the KL" beam, for this experiment, allow a comparison of these 

cross-sections to be made over the entire energy region free from problems of 

relative normalization between the strangeness states. Tne ratio is consistent 

with a constant value of 0.99 + 0.08 over the entire energy region. Similar 

studies have been performed around 16 GeV/c for ,' --t(j~)? in HBC94 and wire 

spark chamberg5 experiments, with the result, 

R = r P + (3Tj-P = 
Tr+p + (3TT) P 

1.00 2 0.07, 0.94 + 0.12 . 
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B. Differential cross-sections 

The (3~) data angular distributions have been analyzed to determine 

the spin-parity amplitudes involved in the reaction. These analyses are sum- 

marized below. 

l'ne Al region--(the 1100 MeV enhancement)--is associated with 2 = If, 

s-wave pi decay. (See the amplitudes in Fig. 99.) The phase of this wave 

shows very little energy dependence with respect to any of the background waves, 

and gives no indication of behaving like a Breit-Wigner resonance amplitude-- 

see Fig. 99. The differential cross-section for this region (selected in mass 

and only taking the l+ s-wave part of the data), is plotted in Fig. loo--where 

the slope is shown 8s e -(6.7*.8)t 

5% A2 region is identified as s = 2+ , with a d-wave p?r decay 

mode. The amplitude and phase of this wave is shown in Fig. 101, where the 2+ 

phase with respect to background is seen to move rapidly through the resonance 

ItKiSS, as would be expected from a Breit-Wigner amplitude. The mass and width 

is found to be M = (1315 2 5) MeV, and r = (115 + 15) MeV. The differential 

cross-section, for the 2' amplitude in the A2 region, is shown in Fig. 102, 

and exhibits 8 dip in the forward direction. 'l"ne data are fit with 

do/dt 0~ ItI -bt e with b = (8.6 + 1.2) GeV -2 . 

A similar analysis in the A region is shown in Fig. 103, where the 

enhancement is assigned Jp=2- 3 , and associated with an s-wave flT system. 

The mass and width are found to be M = (1650 + 30) MeV, and r = (300 + 50) MeV. 

Again the phase shows no mass dependence, like the Al(l+) wave, and not like - 

the resonant 2' A2 wave. (Purdue97 has reported finding a phase variation in 

IT'P +(3~)+p in contradiction to the above result from CERN-IHEP (Ascoli) 

analysis96 of a-p -t(jn)-p; however, Morrison 18 has reported that his CERN HEiC 

collaboration in analysing both dp .+(3n)'p at 16 GeV/c see "0 phase move- 

ment for the 2-A 
3 

phase; same for LBL. 98) The production distribution for the 

2- events in the A3 region, and the background events, are shown in Fig. 104, 

where the enhancement data is shown to be more peripheral (b = 9.9 + 1.2 GeV 
-2 

) 

than the background b = (6.4 + 0.6 GeV-2). 

The slope of the differential cross-sections, and the dependence on 

M(37r) has been mentioned above (Table XVII). Further data on this effect are 

given in Table XVIII for both ~'p and T-P at 16 GeV/c. It is interesting 

to note that there is not much sign of shrinkage for these slopes--see Table XM 

--the small t, small (3~) mass slope being the same at 16 GeV/c and at 40 GeV/c. 

Similar analysis of the decay distribution have been performed for the 

(Km) system--a typical set of amplitudes is shown in Fig. 105, where the dom- 

inant wave for the Q region is seen to be the P = 1+, and where the phase 

of this wave moves only slowly with energy--like the Al. 

Clear evidence for the low mass diffractive enhancement in K +KTT 

is given in Fig. 106 from a 14.3 GeV/c K-p bubble chamber experiment. 99 me 

mass of (K*T) is plotted against the mass of KT system. Two points are of 

interest--a) the Km system couples strongly to K*(@O)Trand K*(1420)~, 

b) the low mass enhancement is quite absent in the charge exchange reaction 
* 

K- -,(%'i~+i~-), where only the 3-body decay of the K1420 is observed. (me 

~~(1420) is the SU(3) partner of the A2 resonance discussed above in the 

3a data.) 

YJ.he differential cross-section from this same data is shown in Fig. 

107 where the distinct difference in slopes between the diffractive Q-region 

and the Regge exchange K*(1400) region is demonstrated. 

The dependence of the slope of the differential cross-section on the 

mass of the (Km) system is shown in Fig. 108 for K" + Q" and z" -i Go, and 

in Fig. log for K- + Q-. The slope values for the S = -1 data are in good 

agreement. This effect is very similar to that observed in the IT+ 3~ and 

N *NT, NOT data discussed above. 

Finally, the inelastic diffractive reactions exhibit the cross-over 

phenomenon in the differential cross-sections. We discussed this effect in 

Chapter II--it is caused by a C odd Regge exchange contribution to the process 
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in addition to the dominant Pomeron exchange. This additional contribution 

gives rise to different slopes in the differential cross-section for particle 

and for antiparticle scattering. An example of this phenomenon is shown in 

Fig. 110 where 13 GeV/c K'p and K-p elastic scattering data from the SIM 

wire spark chamber spectrometer experiment are displayed. 58 A clear cross- 
2 over of the two cross-sections is seen for momentum transfers, t w 0.2 GeV . 

Similar behaviour is observed for v'p +(gr)'p around 16 GeV/c from the 

SLAC wire chamber experiment 95 and from the cEFU 16 GeV/c r'p BBC experiment 94 

--see Fig. 111. Again, for KN reactions we show the cross-over for K" in 

Fig. 112, and for K'p in Fig. 113. The diffraction dissociation data is much 

less precise than the elastic data, but the positions of the cross-avers are 

consistent with the corresponding elastic reaction cross-over. Also, the 

change in slope between the particle and the antiparticle process is similar 

in elastic and in the inelastic reactions--see Table Xx. 

4. Summary 

. In swmary,we have seen that N irh, Nm; a + 3~; K +K?nr reactions 

exhibit large low mass enhancements. T?I~ cross-sections for the 

various processes are listed in Table XXI and compared to the elastic 

reactions. The inelastic processes seem to fall off a little faster 

than the corresponding elastic reaction. It is not clear whether this 

difference is important (or real), or just due to the technical diffi- 

culty of detenn;ning an "A" cross-section above background (or even 

knowing what an A cross-section really means:). However, it is clear 

that these inelastic diffractive processes are much more like the 

elastic reactions than the typical Regge exchange processes where cross- 

sections fall off like p -1.5 or faster. 

. The angular distributions for these inelastic diffractive processes are 

sharply peaked with slopes about twice the slope for elastic scattering 

for threshold mass of the diffracted system, and flattening out to a 

slope value of about half the elastic scattering slope for masses about 

1000 MeV above threshold. The slopes for some specific mass states are 

summarized in Table XXII. It appears that the same regularities found 

among the elastic slopes are to be seen in the inelastic slopes. 

. These reactions all exhibit the cross-over phenomenon in do/dt very 

similar to the elastic reactions and also have a(Ap) = &). 

It is interesting to see how similar the elastic and inelastic diffrac- 

tive processes are with respect to total cross-section and differential CL-oss- 

section behavior. 

5. Final Comment on Exclusive Diffraction Dissociation 

I have isolated this section from the general conclusions since it is 

a mixture of personal opinion and a sunnary of known facts. However, it may 

be helpful, if only to stimulate argument and catalyze you to forming your 

own "picture." 

We know that the pion, kaon and proton all produce low mass enhancements 

which have the following features: 

- mainly I = l/2; 

- mainly I = 0 in t-channel; 

smooth, featureless bump, rising quickly from threshold; 

cross-section only weakly s-dependent; 

can be produced coherently on nuclear targets; 

no sign of well-knwon resonance structure; 

sharp do/& with slope about twice the elastic slope at threshold, 

felling as the mass of the produced system increases, until about 

1 GeV above threshold it is rather flat, with slope about half the 

elastic slope; 
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- we also know that for larger momentum transfers, one sees signs of 

resonance structure in the mass distribution, and in the decay angular 

distributions. The ti, Kd experiments see clear signs of Dl3(1500), 

F,5(1700) when making larger t cuts--they also see zero phase differ- 

ence between these two production amplitudes, as would be expected from 

diffraction production; 

- there is also good evidence that for the small t smooth enhancement, 

the angular momentum in the decay is simplest (i.e. s-wave) for thres- 

hold masses and becomes more complex as the mass increases; 

- if cuts are made on the decay angle of the NT decay system for 8 -NT, 
NN for cos BJ > 0, see only the smooth bump, but for co6 8y < 0, begin 

to see the usual resonances being produced; 

- we have neglected the process y-p +T'T-P in our discussion of inelastic 

diffraction, because y + p was dealt with separately. However, here 

we have a reaction in which accidentally the "elastic" processes take 

place above the threshold for inelastic diffraction. However, there 

is a well-known diffractive non-resonant background below the rho meson, 

well described by the Drell diagram. It displays all the features we 

have learned of the other low mass diffractive processes. (An example 

of the dependence of slope on mass is shown in Fig. 114.) 

So we suggest that we have the following situation--there are two com- 

ponents in diffractive reactions: 1) a dissociation of the incoming beam, and 

2) diffractive production of resonances. The cross-section for dissociation 

starts at quasi-two-body threshold and rises rapidly followed by a long tail 

as a function of mass. (See Fig. 115.) 

Following Lubbatti and Moriyasu 100 we may think of the dissociation as 

the coupling of the incident (or target) particle to a whole string of virtual 

states 

v -I “P, flf, -- 

N +NTr, f3T, -- 

and in the collision, it picks up some longitudinal momentum to make up the 

change in mass. 

With these excited states populated, the particle has an effective 

size larger than its"ground state"size. As the mass of the excited state in- 

creases, the momentum distribution associated with the excited state incrm.seS 

and there will be a reciprocal decrease in the size of the hadron (from the 

uncertainty principle). A reasonable measure of the mean square momentum 

might be (M2 - 4) where M is the mass of the excited state and Mi is 

the mass of the constituents. Then R2 * (2 - ip. 

Lubbatti and Moriyasu have plotted the known slopes we have discussed 

above in this form--see Fig. 116--and find that the data seem to fall on uni- 

versa1 curves. 

There are deviations at the known resonances, and we might think of 

their being different anyway--that is, as having a size of their own. 

With respect to the second component--we know in N *NT, &r where 

we have a solid knowledge of the N* spectrum from s-channel studies, that there 

are resonances produced diffractively. Given the success of the whole strut- - 

ture of SU(3) and quark model classification schemes, it seems highly probable 

that Al and Q mesons do exist. The problem of experimentally isolating 

this signal from the dissociation background is very difficult (like sorting 

out p photoproduction from Drell background if the non-resonant m back- 

ground was the dominant amplitude). 

Perhaps with Omega, ME? and LASS systems coming into operation, 101 we 

will be able to see independent signs of these states from analysis of r'eac- 

tions like 

w+QA 

Kp -+AIA 
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or as SPEAR II, DORIS and PEP come along, in production experiments like 

e+e- -s nfi 1 

I?$ . 

Perhaps one of the more direct ways we will find out what is going on 

in diffractive processes will be from analysis of the Caltech-LBL-SUC 7r'p 

experiment 102 mth a hybrid spark chamber--bubble chamber set-up. !rhey are 

studying the baryon break-up for processes where a fast beam-like pion leaves 

the bubble chamber and triggers the downstream system--in particular they will 

have good information on p 'pm. See Fig. 117. An analysis of the Nm 

amplitudes obtained from this t-channel experiment and their comparison with 

the detailed amplitudes for the same state obtained in the SLAC-LBL s-channel 

phase shift analysis 103 should allow great insight into diffractipn processes 

and perhaps throw some light on this two component hypothesis. 

We will return to a discussion of the dynamics of diffraction at the 

end of the section on Inclusive Scattering. 

V. RULES OF DIFFRACTION 

1. Introduction 

As we discussed in the Introduction we have very little theoretical 

understanding of the diffractive process, and our main guide as to whether 

.a process is diffractive or not, is often how well it obeys our list of 

phenomenological "rules. Ml2 

These rules are listed below. 

*I energy independent cross sections (to factors of l.n s) 

b) sharp forward peak in da/dt 

C) particle cross sections equal to antiparticle cross sections 

d) factorization 

e) mainly imginary amplitude 

f) exchange processes characterized by the quantum nmbers of the vacuum 

in the t-channel (i.e. I = 0, C = +l). Also, the change in parity in 

the scattering process follows the natural spin-parity series (-1) J 

or Pf = P&-l)rn, where .4J is spin change. 

9) the spin structure in the scattering is s-channelhelicity conserving 

(SCHC). 

In Chapters II, III and IV we have seen points'(a), (b), (c), (e) 

all borne out by the data. We now examine the other points. 

2. Quantum Nmbers in Pomeron Exchange (point f) above): 

The "rules" for diffractive processes said that, from a t-channel 

point of view, the Pomeron would carry the quantum nmbers of the vacuum 

(i.e. C = tl, I = 0 exchange). How well does the data support this assertion? 
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(a) I = 0 character: 

We know from amplitiJde analysis of elastic scattering lo4 (which we 

suppose to be mainly diffractive) that the dominant amplitude is the non-flip 

isoscalar t-channel amplitude. We also know that processes involving a change 

of charge in the scattering (and hence I # 0 in the t-channel) have cross 

sections which fall quite rapidly with energy and do not have the character of 

diffractive reactions. 

Below we consider two examples of I = 0 character of diffractive 

processes from inelastic scattering: 

The reactions v-p +N7nr were studied at 16 GeV/c by the ABBCCHW 

collabor;ttion 105 and the NV mass spectra are shown for the various possible 

charge combinations (see Fig. 119). lhe (NT)+ combinations (i.e., p7~', nlr+) 

which can be produced with no charge exchange and hence accessible from I = 0 

exchange in the t-channel, exhibit a large low mass enhancement in the (1400- 

1'700) MeV range. !l%is enhancement has an almost energy-independent cross 

section and is related to the diffractive excitation of *I N 6. The (NT)- 

combinations (i.e. pi-, and n?r- respectively), which cannot be reached with 

I = 0 exchange, have no low mass diffractive enhancement. 

A similar example 105 is shown in Fig. 120 where 10 GeV/c K-p +l?(Nm) 

reactions have been studied. Again the (Nm)+ mass spectrum shows a low m&s8 
* 

enhancement associated with the diffractive production of excited N , while 

the (Nv.rr)' spectrum shows no such structure. 

Thus we see quite clearly that the observation of diffractive phenomena 

is closely connected with I = 0 in the t-channel. 

(b) C = +l character: 

To examine this property we compare the K-p +K-(pm) data. already 

displayed in Fig. 120 above, to data on ep +Kg(p7nr) of approximately the 

same energy, from the SLAC bubble chamber experiment. 91 The data is selected 

to isolate out the peripheral p +pm reaction mechanism and the resulting 

(pm) mass spectrum is shown in Fig. 121. The low mass diffractive enhance- 

ment in the K- reaction is not observed in the $ data, although these two 

reactions are so very similar. The difference lies in that the Kt and KS" 

are eigenstates of C with opposite sign and therefore the t-channel exchange 

in the e reaction must carry C = -1. This may be viewed as evidence of 

the C = cl character of diffractive processes. 

(c) Spin-parity changes: 

As per our "rules" we expect that diffraction will proceed most simply 

with no change of spin or parity for either the target or projectile particles, 

but that if there is a change it will follow the natural spin-parity sequence, 

viz. 

Pf = Pi(- 

This may be thought of as picking up angular momentum in the "Pomeron-diffrac- 

ting-particle" scattering. 

This is a phenomenological rule, 106 whose main claim to correctness 

is that there are no known diffractive processes which violate it. lhere exists 

rigorous proof for the spin zero case, but there is no general theorem for the 

more interesting spin situations. 

The main evidence for justification for this "r&t?" is negative in 

nature (as mentioned above); however, one recent confirmation of the rule comes 

from a bubble chamber experiment on T-n +~-v-p at 11.7 GeV/c by the River- 

side group. 107 They observe diffractive production of N*'s decaying into 

p7r- final state. The analysis is free from complications of r-* resonance 
* 

effects and deals with the well understood two-body elastic decay of the N ; : 

(i.e. it avoids,the complication of previous studies which have observed 

diffractive production of N" +Nm, and then applied assconptions about two- 

body decays into AII final states). The Riverside results show production 

of pll' QJ %5 N*'s(i.e. the correct parity sequence for the "rule") and no 

sign of the 
D15 

state. Further, the production phase between the 
D13 and 



. . . ._ 

F15 
processes was found to be O0 , in agreement with the hypothesis of diffrac- 

tive production. 

On the negative side, three threats to the rule existed over the last 

few years--vector K* production by K's, tensor A2 production by v's and 

axial vector B production by 7's. Each of these processes violates the 

natural spin-parity sequence, but claims of "diffraction-like" properties had 

been made. We discuss them at more length below: 

(i) K*(890) production: 

At the Oxford conference 108 data on K p +K&,p was reported imply- 

ing that the cross section, which had been falling like ~2, up to 8 GeV/c 

actually flattened out to an almost constant value for higher energies. !Rlis 

was taken as evidence of Pomeron contribution to K* production. 

However, new data up to 16 GeV/c is now available, 109 and the cross 

section seems to fall like p-Lb beyond 8 GeV/c and the production and decay 

characteristics are in good agreement with isoscalar, natural spin parity 

exchange. Presumably u" exchange takes over from T exchange at the higher 

energies, and this "threat" to the parity rule has disappeared. 

(ii) A2 production: 

There have been suggestions for some time that perhaps the A2 meson 

is produced via Pomeron exchange, thus violating our simple rule of natural 

spin-parity excitation in diffraction processes. Kruse et al. 96 have submitted 

an analysis of A2 production in bubble chamber dat? in the energy range from 

(5-25) GeV/c. There is also a piper from Ascoli et al. 96 on Al, A2, and A 3 
production at 40 GeV/c. The facts are summarized below: 

i. The % cross-section falls off as p -0.8+-0.08 in the (s-25) GeV/c range; 

ii. The relative energy dependence of Al, A2, and A 3 between 25 GeV/c and 

40 GeV/c are essentially the same; 

iii. The natural parity exchange contribution to A2 production falls off as 
p-o.57’o.09 

, 

iv. The t-channel exchange in A2 production is mainly isoscalar; 

v. The s-dependence of the cross section implies an effective intercept, 

o”effw - 0.7; 

vi. An analysis of the shrinkage of the 2 = 2+A2 differential cross- 

section yields an aeff(0) m 0.8. 

The energy dependence and aeff values quoted above are more in agree- 

ment with a strong Pomeron contribution to A2 production than the vector, and 

tensor meson contributions one expected. However, we must understand at least 

one other fact before throwing away our current picture of Pomeron processes-- 

the energy dependence for the A2 cross section as measured in the K? decay 

mode seems to be faster than -1.0 
'lab ' This is a clean reaction in which to 

study A2 production with very little background, and the observed momentum 

dependence is very much in agreement with that expected for meson exchange 

in the t-channel. Several experiments should be reporting new cross-sections 

for A2 +K? within the near future, and we wait impatiently for their 

results. Another indication that A2 is not diffractively produced comes from 

the differential cross-section shown in Chapter IV--it was well fit with 

do/dt = (t/e- bt , with a forward turnover. 

(iii) Photoproduction of the B-Meson: 

Finally, in this section on "bogey-men," we deal with the photoproduc- 

tion of the B-meson. 110 The reaction yp + Bp violates the natural spin-parity 

series expected in diffractive processes, yet the B signal is observed with 

the same strength at 2.8, 4.7, and 9.3 GeV. The energy independent cross- 

section has encouraged speculation as to the validity of the simple rules on 

spin couplings for the Pomeron. 

However, the statistics on these observations are rather limited, 

each energy point having a cross section of (1.0 + 0.4) pb. One could 

accommodate quite a variety of energy dependences within these measurements. 

It is an important reaction and to be followed with interest, but the present 
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results are not strong enough to call our ideas on Pomeron coupling to 

question--at least not yet. (This effect is most probably the diffractive 

production of a p' meson (coupling strongly to mu), with a mass close to 

the B-meson. 

For the moment the rule seems to be obeyed. 

(a) G-prrity: 

It is interesting to observe that G-parity is strongly recognized in 

diffractive processes. For K reactions, one sees strong diffractive cross- 

section for 3m, 5~ but not 1~n final states. This observation is confirmed 

in coherent processes with v on nuclear targets. 

Perhaps an even more interesting exsmple is the relative coherent 

production of Al and B systems in i experiment at 11.7 GeV/c in a 

heavy liquid bubble chamber. 111 These two systems have the same Jp = 1+, but 

Al has G = -1 like the TT, while the B Has G = +l. The experiment observes 

strong coherent Al production, with a cross-section of = Smb/nucleon, while 

there is no evidence of B- production with an upper limit of < 30 ub/nucleon. 

The Pomeron seems to care about G-parity. 

3. Spin Structure in Diffractive Processes point g above : 

Our "rules" assert that diffractive processes are s-channelhelicity 

conserving (SCHC). This hypothesis derives from the early experimental work 

of the SLAC-Perkeley-Tufts group 112 on their study of pO-meson photoproduction 

with the polarized photon beam, at 4.7 GeV. They found that the diffractively 

produced pO-meson maintained the photon helicity in the s-channel. Gihan and 

co-workers1=3 then hypothesized that all diffractive processes conserved s- 

channel helicity and showed that the understanding of the ti scattering 

smplitudes at that time was consistent with that assumption. 

New data on yp + pop at 9 GeV from the SBT group, 71. and measurements 

of the R, A parameters in TN and NN scattering by a Saclay group 114 con- 

firm, in the main, the early conclusions. The new experiments are discussed in 

more detail below. 

It is interesting to note that if s-channelhelicity conservation really 

holds, then the old 'lore" that the Pomeron behaves in the energy dependence of 

cross-sections like a particle of spin 1, but has the couplings of a particle 

of spin 0, cannot be true. SCHC requires quite specific couplings in the t- 

channel--In general helicities will flip and there must be quite specific rela- 

tions between the t-channel spin flip and non-flip couplings. 

The density matrix elements from the new SBT experiment at 9.3 GeV 71 

are shown in Fig. 122. They confirm the dominant behaviour as being SCHC and 

show that it holds out to larger t than previously observed. However, the 

plo element (i.e. SCH flip) is quite definitely non-zero as is shown more 

clearly in Fig. l23. It was confirmed that the effect was real and not due 

to a scanning bias, by rotating the plane of polarization of the incident 

photons with respect to the bubble chamber camera axis; no change in the result 

was found. Further, they find when isolating the separate exchange amplitudes 

that the effect belongs to the natural-parity exchange amplitude. It is also 

found that the magnitude of the effec t does not change rapidly with energy. 

All these factors imply that there is a smallhelicity flip amplitude, of about 

1546 the SCHC amplitude, which may be associated with Pomeron exchange. Results 

of their analysis of the helicity flip contribution are given in Table XXIII. 

The Saclay experiment 114 studied IT'P scattering at 6, 16 GeV/c from 

a polarized proton target. The recoil proton was detected in a spark chamber 

polarimeter. The spin rotation parameters R and A were measured. Actually 

good measurements of R were obtained and A found from the relation 

P2 + A2 + X2 = 1, using the existing precision measurements of the polarization 

(p), in p-p scattering. Rough measurements of A were taken to resolve the 
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quadratic ambiguity in the above equation. They find A to be close to +1 

as expected from SCHC. 

At 6 &V/c, an amplitude analysis 104 was performed using all the avail- 

able data on total and elastic fl cross sections, differential cross-sections, 

charge exchange cross sections , polarization for elastic and charge exchange 

reactions and their own new R and A parameters. Results for the isoscalar 

flip and non-flip amplitudes are shown in Fig. 124. The flip amplitudes has 

a kinematic zero in the forward direction but is certainly nonzero at larger t. 

For the region of t > 0.2 Ge 5 they find the ratio of flip to non-flip 

amplitude to be 0.17 + 0.2 at 6 GeV/c. 

There is not sufficient TN scattering data to perform a complete 

amplitude analysis at 16 GeV/e but a reasonable choice of solutions gives the 

flip to non-flip ratio, at 16 &V/c, to be 0.14 + 0.03. That is, the TN 

data shows that SCHC is the dominant amplitude but that again a small (- 15%) 

helicity flip amplitude is present and that it is isoscalar and weakly s- 

dependent--presmnably associated with the Pomeron. It is important to remember 

that although the r +p experiment and this TN experiment are both measuring 

155 helicity flip amplitudes which are isoscaler and weakly energy dependent, 

they are not measuring the same thing; the photon experiment measures the spin - 

structure at the meson vertex while the TN experiment measures the spin struc- 

ture at the nucleon vertex. 

The Saclay group also measured R, A parameters for p-p scattering at 
114 

6, 16 GeV/c, and found the ~rameters consistent with dominance of SCHC. 

There is not sufficient data to perform an amplitude analysis for p-p scatter- 

ing, but it is clear that this data would be consistent with a small helicity 

flip amplitude. 

Finally, we must consider the spin structure for inelastic processes. 

'Pable XXIV summarizes recent work on this question. 12,14 It shows that the 

vector meson photoproduction behaves very much like elastic scattering--SCHC 

in the main, but with a small helicity violating amplitude. The various 

diffraction dissociation processes do not conserve s-channel helicity. Most - 

of them are much more close to t-channel helicity conservation, but in general 

do not conserve that either. - Thus, although their inelastic processes looked 

very much like elastic reactions from the point of view of cross section and 

differential cross sections, they have bery different spin structure. This 

difference may be due to t.he fact that these processes are perhaps not really 

particle production, but kinematic enhancements, or alternatively, may be due 

to the spin change that occurs in these inelastic processes and the complex 

t-channel spin structure of the Pomeron. 

4. Factorization 

If we really believed that diffraction reactions are dominated by the 

exchange of a simple Pomeron, we should be able to factorize, or separate, 

the different vertices appearing in these processes. It is interesting to 

test how well the cross-section data supports the factorization hypothesis. 

Below we examine several tests: 

(1) A simple factorization test involving the isospin of the breakup 

of the low mass N?T enhancement may be performed, checking whether 

dpp -+p(nT+)) is actually 2. Studies on 19 GcV/c pp .interaction report 115 

O(PP dP(p?rO)) 
this ratio as 1.9 + 0.2. 

(2) Another test is found in the three sets of reactions, shown in 

Fig. 125, involving the excitation of the proton to N*(l688) in T-, K- or 

P- interactions. These cross-sections should have the same ratio with respect 

to elastic scattering, independent of the nature of the incident article. 

The results of the test are shown in Fig. 126 where the ratio [ 
Ap +AN*(16881 

AP +AP 1 
is plotted against momentum transfer, for two energies--8 and 16 G~V/C. 

Factorization is observed to hold within 20$ and even works well as a function 

of momentum transfer at least out to t - 0.2 Ge 3. 105 

(3) Consider the processes illustrated in Fig. l27, with elastic pion 



and proton scattering at the upper vertex, and proton diffraction into proton 

plus zero, one, two or three pions at the bottom vertex. 'Inne ratio between cross- 

sections for reactions involving the upper two vertex processes should be the 

same, independent of which of the four bottom vertices they interact. That is, 

R1_ = u(m +?~P)/u(PP +PP) should equal R2 = U('Q +B(T'))/~(PP -+P(PT')) 

etc. 

The cross-section for each of the bottom vertices was isolated in 16 

GeV/c 7-p and 19 GeV/c pp bubble chamber experiments, 
116 using the Van Hove 

Longitudinal Phase Space analysis 117 to isolate the diffractive components. Tne 

results are given in Table XXV. Good agreement is observed. 

(4) Another interesting test of factorization in diffractive processes 

is shown schematically in Fig. 128. If the Pomeron contribution were well 

behaved and factorizable, we would expect the ratio of cross-sections for each 
0 oftheupper vertex processes--r +p , T +T, p -,p--being joined in turn to 

both of the bottom vertex process--p +p, p -,(pr+~-)--to be equal. That is, 

we would expect to find 

The diffractive component for these reactions was again isolated using the LF'S 

analysis. 

The experimental values 118 for Rl, 5 and "3 are given in %ble XXVI 

for three different energy regions. Tne agreement is surprisingly good. 

(5) We may use the results of the various isospin amplitude studies 

discussed in Chapter IV to further test factorization. The integral over t 

of the isoscaZsr t-channel amplitude leading to the I = l/2 final state (NT) 

system is calculated for incident v, K and proton collision, (J1!#2/2 at). 

The ratio R(H) = [a(Hp +H(NT))/u(H~ +Hp)], where H = K, K, p. We expect 

R(B) = R(K) = R(p) if the factorization holds. The results are given in 

Table XXVII, where again quite remarkable agreement is found. 119 (The agree- 

ment is even better when one notes that the 24 GeV/c pp point includes some 

I = 1 t-channel exchange contribution since no pn data were available to do 

the t-channel I-spin decomposition.) 

(6) An interesting factorization test has been made possible by the 

study of the four body exclusive reaction in pp and T-P collisions at 

205 GeV/c. l20 Ike diffraction of the target proton into a (p'v-) system has 

been isolated in each experiment--see Fig. 129. 

the cross-section for m -+~(pm), ol = (180 + 36) cib 

The cross-section for pp *p(pvrf), n2 = (370 2 140 40) lib 

The cross-section for T-p reaction is Og2mE * $N9! 

The cross-section for the pp reaction is crg2 
PPP 

Now 

3.0 + 0.3 
= 

6.8 + 0.2 - 

= 0.44 2 0.05 

while 01/B are measured to be - 0.5. 

(7) A final example comes from a study of inclusive scattering at 

25 and 40 GeV/c at Serptiov. The CERN-DrEP collaboration 89 measured 

Ii--p -+x-p 

K-p +X-p 

with their missing mass spectrometer. The cross-sections (d20/dt dx) are 

shown in Fig. 130 where the dashed line represents the pion data, and the 

circles represent the kaon cross-sections. If factorization holds, we expect 
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topological cross-sections. It also appears that the mean mass of the diffrac- 

tive peak increases as the topology or multiplicity, n, increases. The tot*1 

cross-section of this low mass diffraction peak is estimated at - 6 mb, inde- 

pendent of energy. 

Tne same behavior is observed at ISR energies where the C Em=, 2 126 

and ACGRT 127 groups have demonstrated the existence of the low mass diffrac- 

tive enhancement. In Fig. 136 the missing mass distribution from the two arm 

spectrometer ACGHT experiment, is shown. They are able to make a rough multi- 

plicity assignment,using a scintillation counter hodoscope round the aperture 

of each spectrometer. These is clear evidence for the increase of mean mass 

in the diffractive peak 8s the multiplicity increases. 

It is interesting to note that the term I'low masstl peak is purely rela- 

tive and that these diffractive peaks include masses up to 7 GeV. 

Figure 13 shows the missing mass spectrum from the Columbia-Stony Brook 

experiment at NAL.128 This experiment uses polyethelene and carbon targets and 

detects the recoil proton in an array of solid state counters. The normaliza- 

tion is effected by counting the d, T, He3 and He 4 production in both the 

polyethelene and carbon targets simultaneously with the protons, thus allowing 

for a very accurate subtraction and hence reliable proton cross-sections. 129 

The resolution in missing mass squared is very good, being of order of 1 Ge P 

*em- x - 1, whereas the CHLM group has SP - 9 Ge? and the ACGHT group 

has 6 2 u2. - 20 Ge Their missing mass plot shows a very sharp peak with 

some structure around 3-4 Ge $ and becoming essentially flat for masses above 

16 GeV2. 

This missing mass distribution is quite different from the ISR data. 

Part of this difference is due to the missing mass resolution of the different 

experiments, but part is also due to the fact the measurements have been made 

at different t values; the ISR experiment has typically t w 0.8 Ge?, while 

the NAL experiment had t w 0.6 Ge $. We will come back to this point later. 

B. Enerm dependence, or scaling 

The energy dependence of the quasi-elastic pp scattering has been 

studied at NAL from (50-400) GeV/c by Rutgers-Imperial College group. 139 The 

recoil proton is detected and identified in a scintillation counter td.eSCOPe 

with s total absorption counter. The momentum of the proton is determined 

from time of flight measurements over 186 cm flight path. 

The invariant cross-section,for four different t values,is given in 

Fig. 138 for five energies between 50 and 400 GeV. For x values close to 

0.8 there is very little energy dependence, while for x values around 0.9, 

close to the quasi-elastic peak, quite considerable variation is observed 

through this energy region. In Fig. 139 the invariant cross-section is plotted 

against sm112 for the four t ranges measured, for x values of 0.83 and 

0.91. Again substantial s-dependence is clearly visible. 

They fit the data to the form 

s 9 =A(x) eb(+l + B(X) s-1/21 . d26 
dt 4 

This form represents the data well, with b being essentially independent of 

x and having a value of y 6 GeVb2. The best fit to the data gave 

x = 0.83 A = 71 + 7 mb/Ge? B = 1.9 + .7 GeV 

x = 0.91 A = 66 + 3 mb/GeV2 B = 4.3 2 .4 GeV 

Through the NAL energy range, there is - 2C$ change in the cross- 

section for x values near unity, and the fits to the data imply that the 

variation remaining in the cross-section through the ISR energy range will 

be less than lC$. 

The fall-off in the cross-section for x - .95 as measured in the 

four NAL ESC experiments and discussed above in Fig. 133 is also compatible 

with this s-dependence. 
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The experimental results from the CRLM group 126 at the ISR are given 

in Fig. 140 and show that in this region the cross-section is observed to scale 

to within loqb. Note that both the ISR and ML experiments are performed at 

intermediate t values. 

In summary then, the invariant cross-section s(d20/dt dM2) is observed 

to be almost energy independent for x values of order 0.8 from 50 GeV/c 

through 2500 GeV/c; for x - 0.9 the cross-section is observed to have a com- 

ponent with s -l/2 dependence which amounts to a 20$ effect through the NAL 

energy region ((50-400) GeV/c), but which is < lC$ effect through the ISR 

range (200-2500 GeV/c). 

C. Momentwn transfer dependence 

The momentum transfer dependence of the production of the diffraction 

peak has been studied at NAL by the bubble chamber experiments 122' and the 

Columbia-Stony Brook experiment I28 and at the ISR by the C IniP and ACGRT127 

groups. 

The t-dependence as a function of the missing mass squared, (x = l- &S), 

is shown in Fig. 141 from the 200 GeV/c KBC experiment. 125 For small masses, 

the slope of the inelastic diffractive scattering is close to, but a little 

less than, the elastic scattering slope. As the masses increase, the slope de- 

creases, until one reaches masses corresponding to an x value of w 0.9. 

For masses beyond that there seems to be only a weak M dependence left. 

In Fig. 142 the t-dependence of the diffraction peak is shown, from 

experiments at NAL and the ISR. The cross-section is exponential but with 

at least two slopes. The dashed line shows a fit which behaves like e -7t 

at small t and e -4t at large t. 

D. Aside on the missing mass distribution 

From the above discussion it seems plausible that the differential 

cross-section, da/dt, is mass dependent. The diffraction peak studied in 

Fig. 142 contains a wide range of masses (up to P - 50 GeV2) and the two 

exponential shape of that du/dt may be just & reflection of this mass depen- 

dence. Such a dependence would imply that the shape of the missing mass dis- 

tribution would change for different t values, and perhaps account for some 

of the difference between the x6,=7 128 
ISR and NAL (Columbia-Stony Brook) 

mass plots (Fig. 137). Indeed, if one assigns an e -7t dependence to the 

peak masses, and an e -4t dependence to the large mass region (2 e" 20 Ge?) 

then quantitative agreement between the measured missing mass distributions 

results. 

Further, if such a dependence exists then the peak to shoulder ratio 

(low mass to high mass ratio) should be seen to change for measurements at 

different t. In Figs. 143, 144 the missing mass squared distribution as measured 

by the CHLM group 
126 at the ISR, for four different t ranges is shown. Clear 

evidence of this effect is observed. 

Tnus it seems that in fact the different missing ma.68 distributions 

are in good agreement--there exist three separate regions in the mass plot: 

1. Ihe threshold region (x = 1.0) where the cross-section, d24/dt dx, 

is growing linearly with s (i.e., scaling in $1 and has 8 steep t depen- 

dence; 

2. 'Ihe diffraction peak (1.0 > x > .9) where the cross-section iS 

nearly constant in s--some 20% variation in the P&L region (50-400) GeV/c 

and less than lC$ variation at the ISR (200-2500) GeV/c, and with a du/dt 

that depends on P , becoming flatter as P increases. 

3. Multiparticle production region (.8 < x < .2), where the CTOSS- 

section seems essentially independent of s and where do/dt is rather flat 

(- .-4y and varying slowly with s and P. 



The mass dependence in the diffraction peak appears to be compatible 

with a l/2 fall m-f: 

1. The 200 GeV/c HBC expt. (Ref. Il25)(see Fig. 134). 

2. ACGBT group *7 at ISR find do,/& w (Mw2)1'15"1. 

3. CHLM group lSZ6 at ISR find do/d&? -2 0.98i.1 
=(M ) 

4. Columbia-Stony Brook 12' at NAL find an/ad compatible with -2 M . 

E. Back to momentum transfer studies 

Above we had shown that there was evidence that the slope of the 

differential cross-section for the diffraction peak became flatter as the 

diffracted mass increased, and that the do/dt for the whole peak (averaging 

over all masses) was exponential but with at least two slopes. 

In Fig. 145 the s-dependence of the do/dt is studied. The data. 

comes from the Rutgers-Imperial College group 130 at NAL. For x = 0.87 the 

differential cross-section, du/dt, is shown for s = 100 and 752 GeV2. 

Essentially no energy dependence is observed, at, these x values. 

The do/dt as measured by the Columbia-Stony Brook group 
128 at NAL, 

for missing mass squared around 40 Ge j! is shown in Fig. 146, together with 

data from Rutgers-Imperial College 130 and from the 126 CHLM group at ISR. Good 

agreement is observed between the measurements. A flattening of the cross- 

section is observed for small t values (t < .2 GeV2,. For smaller masses, 

%his effect becomes a turnover in the very forward direction, with a ~Z&JUITI 

to the cross-section at t w 0.1 Ge $ , as shown in Fig. 147. Again the data 

comes from the Columbia-Stony Brook experiment. 128 Corrected data from a pre- 

vious run by the same group at 200 GeV/c is also shown. 131 

Similar behaviour is observed in some preliminary data from the (100 

+ 400) GeV/c HBC experiments at NAL. 132 1n Figs. 148 and 149 the pi distribu- 

tion is shown for small masses and large masses respectively. The low mass spec- 

trum shows the same tendency to a forward turnover as the NAL counter experi- 

ment, whereas the distribution for large missing masses seems to be quite linear. 

2. Pion Diffraction Scattering 

The first systematic study of high energy pion-proton collisions has 

been reported by the Berkeley-NAL collaboration working on a 205 GeV/c T-P 

exposure of the 30 NAL HBC. 133,134 Their results are briefly outlined below. 

They have analyzed the exclusive process 

T-p --) Tr-lr'lr-p 

and claim to have an event sample with less than 25% background. They see 

strong evidence of the pion diffracting into 31r, and the target proton diffrac- 

ting into a (PT+T-) system, Figs. 150 and 151. !I% cross-section for both 

these processes Is estimated to be 1.5 mb. 

In addition, the diffraction of .s T +T*, shown schematically in 

Fig. 152, has been studied using the same technique as in the p-p HBC experi- 

merits. The pictures were scanned for events in which a slow recoil proton 

could be identified by ionization. This selection works well for proton momenta 

up to 1.5 GeV/c. The missing mass distribution obtained from these events is 

shown in Fig. 153. A low mass peak is observed, extending out to d * 20 GeV2, 

associated with the diffractive excitation of the incoming pion. 

The mass dependence is shown in Fig. 154, where over a substantial 

range of masses, the data are consistent with a l/M2 fall-off. 

In Fig. 155, the composizion of this low mass diffractive peak by 

topology is presented and as in the p-p studies, one remarks that only the 

lowest multiplicities contribute to the peak. Again, the central value moves 

to larger masses as the multiplicity increases. The mean multiplicity in the 

diffraction peak is about half that of the overall multiplicity ((nd?hargedw4, 

(* all 
)charged - 8) and increases with P. 

The differential cross-section, du/dt, is shown by topology in Fig. 

156 and for two different mass regions in Fig. 157. No turnover in the forward 

dire&ion is observed, nor any sizable mass dependence of the slope. 
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In all these features the pion diffraction data show the same trends 

as the proton diffraction. Below, the invariant cross sections for IT-~ +X-p 

and pp -,pX+ are shown with a relative normalization set to compare the x 

distributions. (See Fig. 158.) Again good agreement is observed. 

3. Multiplicity in Inclusive Collisions 

As we noted earlier when discussing the structure of the low mass 

diffractive peak, these events are characterized by a smaller multiplicity, 

n, than the average. The NAL BBC experiments I22 report that the mean diffrac- 

tive multiplicity, (nd) is about half the total mean multiplicity, i.e. 

(n,) - $ (xl&l) . 

A similar study in the T-P 205 GeV/c bubble chamber experiment 84 finds the 

diffractive multiplicity, (n,) = 3.8 + 0.2 while the total multiplicity, 

(nail) = 8.02 2 0.12. The frequency distribution is given in Fig. 159. At 

higher energies, the CHLM group 126 at the ISR report that the mean charged 

multiplicity (n) is 2.8 2 0.5 for x > 0.99, while for x _ 0.8 it is 

measured as (n) - 6.7 + 1.0, in good agreement with the NAL bubble chamber 

conclusions. 

Both the p-p and T-P BBC groups at NAL have found an interesting 

correlation of multiplicity with energy available in the collision. They plot 

the multiplicity for diffractive reactions as a function of the mass squared 

of the excited system. 

They then plot the mean charged multiplicity of the entire reaction 

as a function of available energy in the center of mass, and find both sets 

of data fall on the same curve. l'ne results of the p-ion experiments are 

shown below in Fig. 1.61, but the proton experiments at 100, 200 and 300 GeV/c 

exhibit the same behaviour. 

The implication is that the final multiplicity depends on the avail- 

able energy but not on whether the initial state consisted of a pion and a 

proton or of a Pomeron and a proton. 

While discussing the multiplicity distributions it is interesting to 

ask what we can learn of diffraction from their frequency distributions and 

their correlations. 

For diffractive processes, we expect to find a large rapidity gap 

between the leading particle and the fragments of the excited system. (bpidity 

is defined as y = 2 ln[(E + pL)/(E - pL)], where pL is the longitudinal 

momentum of a prticle and E is its energy. A useful variable which approxi- 

mates y for high energy particles is q = In t&B/2).) We would therefore 

expect to find a "typical diffraction event" to look like Fig. 162 in rapidity 

space. Other inelastic processes are expected to be characterized by rather 

uniform distributions in rapidity space, on average. (See Fig. 163.) 

The Pisa-Stony Brook collaboration 135 at the ISR have studied the 

multiplicity distribution in high energy p-p collisions, measuring the angles 

of each charged particle in a large counter hodoscope system. They group 

their events according to the total multiplicity, and characterize each event 

by two numbers--they throw away the largest and smallest rapidities and then 

calculate a mean rapidity and a dispersion, for what is left. The two vari- 

ables are defined 

We may now expect diffractive events to show large values of t and 

a small dispersion about this ;, while the other inelastic events should be 

centered at t = 0, and with a broad dispersion. 

A three-dimensional presentation of the ssme plot for two energies-- 

the lowest and highest available at the ISR, c= 23.6 and 62.8 GeV--is shown 

in Fig. 165. Again, for low multiplicities the diffractive component ({ 



large and sharp), is seen to dominate over the non-diffractive component. As 

the multiplicity increases their roles reverse. As one goes to iarger energies 

the diffractive component contributes to larger and larger multiplicities. 

These correlations plots are a nice independent verification of the presence 

of the diffractive component and .e confirmation of several of the properties 

derived from the magnetic spectrometer studies. 

4. Single Particle Inclusive Studies at Low Energy (i.e. p < 50 GeV/c) 

The high energy single mrticle inclusive experiments from N&L and the 

ISR have shown the existence of a large energy independent cross-section for 

the production of a low mass peak. This process is assumed to be diffractive 

excitation of the target or projectile and has a cmss-section almost equal 

to the elastic scattering cross-section (i.e. 'diff y 6 mb). At the highest 

energies this low mass peak in fact includes rather large masses--up to 7 GeV. 

'&e low mass peak is made up mainly from low multiplicity channels and the 

mesn charged multiplicity is about half the total charge multiplicity for all 

Pl-OCeSSeS. The multiplicity increases with increasing mass. For recent review 

see Ref. (13). 

It is interesting to see what can be learned in similar processes at 

lower energies. Two groups have presented such data in the last year--the 

CERN-Serptiov collaboration 89 on the missing mass studies at 25 and 40 GeV/c 

for T- and K- beams, and a CERN bubble chamber experiment 136 on *+p + 

anything at 8, 16 and 23 GeV/c. 

The x distribution (where x = pll/pFlx) for the Ir' at all three 

energies from the CERN K&C experiment 136 are shown in Figs. 167, 168 and 169. 

One can clearly observe the build up of the diffractive x = 1 peak as the 

energy increases, but it is interesting to notice that the peak is fed only 

by the 2 prong and the 4 prong topologies. They show that indeed only three 

exclusive reactions make up m 80% of the forward peak cross sections-- 

T+p -inIT',' 

IJ'P +pr+7r" 

Tr+p -I lr+Tr+?r-p . 

!lhe x-distributions for these processes m-e shown in Figs. 170 and 171 where 

events were selected to emphasize the diffractive phenomena, by choosing only 

those in which the IT+ is the only particle going forward in the c.m.s. and 

all other particles are going backwards. These contributions are shown as the 

heavy lines in Figs. 170 and 171. The shaded area in Fig. 171 represents 

events in which the proton is the only particle going backwards in the c.m.; 

these events correspond to dissociation of the incoming pion. 

'I"ne sum of the contributions from the proton diffraction dissociation 

in the three exclzive reactions studied above, is compared to the diffractive 

peak obtained in the ISR p-p scattering experiments in Fig. 172. The ISR data 

were extrapolated to low transverse momenta (where the HBC data exists) under 

the assmption that 
3 

E do = A(x) e 
-B(~)P: 

d 

and then integrated over the entire pl range. (The ISR data w&s taken for 

0.7 < pI< 1.2 GeV/c.) They further assumed factorization of the diffraction 

dissociation process and scaled down the p-p cross-sections by 

= 3.08 

to compare to the ?r+p cross-sections. 

The errolls associated with these extrapolations are large and indicated 

on Fig. 172 as the hatched band. The data indicate that within 20-36 one 

can observe scaling of the forward peak in energy range, s = 3lto 2000 Ge ?. 

This scaling conclusion is also verified by the CERN-Serpukov experi- 

ment.89 The missing mass spectrum for T-P collisions is shown in Fig. 173. 

Production of peaks in the Al, A2 and A 
3 

regions are observed but no further 

41 



narrow high mass structure is seen. The invariant cross-sections a20/at dx 

and. do/dx are compared in Fig. 174. The cross-sections scale (i.e. are seen 

to be independent of s for a given x) and the ratio 

g (25 GeV/c) 

2 (40 GeV/c) 
for -0.90 < x < -0.75 

is given as 1.01 + 0.03. Also the slope of the cross-section in t is observed 

to be independent of energy--see Fig. 175. 

The same apparatus was used in the study of the reaction K-p 4X-p 

at 25 and 40 Gev/c. The missing mass distribution is shown in Fig. 176. The 

Q region is the only structure observed. The shape of the cross-section in 

t is observed to be energy independent and very similar to the a-p distri- 

bution (the dashed line)--see Fig. 177. The question of scaling was also 

addressed for the K- experiment and the invariant cross-sections are shown 

in Fig. 178 as a function of x. The scaling hypothesis holds well for this 

reaction, too. The dashed line represents the invariant cross-section for the 

pion data and lies somewhat about the K- cross-section. However, if factori- 

zation is assumed then the T and K data are observed to be in good agreement-- 

g (Tip) &,1(7iP) 

m= &l(K-P) 

1.20 2 0.07 1.18 2 0.04 

Another interesting measurement from Serpukov has been done by 

Derevshchikov et al. 137 who have studied the proton diffraction region from 

high energy pions-- 

711) i r-x for 0.9 < x < 1.0 , 

and for pion momenta of 42 GeV/c and 51 GeV/c. l%e invariant cross-sections 

are shown in Fig. 166 where the sharp diffractive peak at x * 1.0 is seen. 

The data exhibit the same general behavior as PP scattering. It will be 

interesting to see higher energy data from NAL, to see if the s-dependence 

matches that of pp scattering. 

5. Conclusions 

In conclusion, the single particle inclusive studies have shown the 

existence of a large energy independent cross-section for the production of s 

low mss peak. The process is assumed to be diffraction excitation of the 

target or projectile and has a cross-section almost equal to the elastic scatter- 

ing cross-section (i.e. IJ~ * 6 mb). The peak extends up to quite large masses 

(for example, at ISR energies, it extends up to 7 GeV), and seems to have a 

M-2 fall off. This diffractive peak is made up mainly from low multiplicity 

events, the mean multiplicity in the peak being about half the mean multi- 

plicity for all events. The multiplicity increases with the ~~6s of the 

diffracted system. The s-dependence of the cross-section for the peak is very 

slow, exhibiting a small component with s -l/2 behavior, which causes - 2096 

fall in cross-section through NAL (50-400 GeV/c), but which is less than a lC$ 

through the ISR range (200-2500 GeV/c). The momentum transfer behavior of 

the diffraction peak is consistent with an exponential fall off, in which the 

slope decreases as the mass of the diffracting system ix&eases. (This behaviour 

is very reminiscent of the exclusive diffraction reactions.) Very similar 

properties are observed for the diffraction of pions and for protons. 

Finally, the reports from London bring results from Cool et al.'6 138 

measurements on pd -,Xd through the energy range of NAL. Ey observing the 

recoil deutron from a deuterium gas jet target, they assure I = 0 exchange 

in the proton excitation. They study the diffraction scattering region for 

x > 0.93. 

As in the pp -,px experiment, discussed in Chapter IV above, they 

observe structure at small missing mass, but for M - 2 GeV they find the 

Spectrum falling off like M -2 . They also find the cross-section independent 
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3f energy, namely, VII. TRIPLE REXXE PHBNOMENOLCGY 

IV?-- do flat in s 

dM at (for M > 2 GeV). 
flat in M 

The region below 2 GeV they estimate has a total cross-section at 

300 GeV of around 0.75 mb, compared to - lmb at 20 GeV. This resonance 

diffraction region exhibits the flat energy dependence we expect. 

For the data above 2 GeV, integration over t gives a CrOSS-Section, 

U" (0.7 mb/M2), and now integrating over M, they find d - In 6, with the 

single diffraction cross-section at 305 GeV, oSD - 3 mb. 

If they Subtract off from the inelastic cross-section, the diffractive 

component indicated here, the resulting non-diffractive inelastic cross- 

section is flat through the NAL-ISR range, i.e. oinel - 2usn - unn = constant 

as function of S. So in addition to the other properties defined above, this 

nen NAL experiment gives more weight to the suggestion that the rise in the 

total cross-section observed in the ISR region is due to the expanding phase 

space of the diffraction process, and the constancy of the cross-section at 

each individual mass. 

1. Which Terms are Important? 

Analysis of the single particle distributions at high energies may be 

done through the application of triple-Regge theory. one wants to calculate 

the cross-section for processes of the type (a) in Fig. 179. Applying an 

equivalent of the optical theorem in 2 -a2 body scattering, the total cross- 

section is then given by the square of the forward scattering amplitude--so 

for processes of the type (a) we square the forward amplitude by multiplying by 

itself, shown diagrammatically in Fig. 179(b). This is then approximated by 

the triple-Regge diagram--Fig. 179(c). 

The cross-section obtained from this exercise is then written as 

d20 %3(t) & oll(t)w2(t) 
ST= c 

dt dM 1,233 ' 0 

201 (0) 

2 
M3 

It is supposed that such a description should be valid for (s/M2) 
2 

and M large. 

One then tries to fit the data as a function of s, M2 and t with 

an appropriate selection of the trajectories al' oc, and cx 3 (see Fig. 179). 

For Pomeron exchanges, P, a(O) is taken to be 1, and for Regge terms, R, 

a(O) is taken to be l/2. Excluding interference terms, there are four lead- 

ing terms to be used in fitting the data--PPP, PPR, RRP, and RRR. The s-de- 

pendence for fixed x and Z- dependence of each is summarized in Table XVIII 

and in Fig. 180. 

If the PPP contribution is not zero, 139 lt 1s expected to dominate at 

large s and large M2. Fits to the ISR data 140 show that the data is compatible 

with substantial PPP coupling, but important contributions from the other tra- 

jectories are also required and the fits are by no means unique. 
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The most systematic attempts to study the triple-Regge question have 

been performed by the Rutgers-Imperial College Group at NAL, 130,141 and the 

CHIN group at the ISR. 140,20 Fox' has recently given a critical review of this 

field (recommended reading). In the meantime, we will follow the work of these 

two experimental groups with the single wFox caution'( kept in mind--it is prob- 

ably not a good approximation only to keep the four leading terms--appreciable 

interference effects should be expected. 

The Rutgers-tiperial College data spans a large range in the important 

variables: 

100 < s < 750 GeV2 - - 

0.14 5 t 5 0.38 GeV* 

5 <_ s/2 _ < 12.5 

and has already been discussed (jn Chapter VI) with respect to the scaling 

behaviour of the cross-section. The wide energy range available in this experi- 

ment allows a clean separation of the energy dependent terms, PPR and RRR, from 

the energy independent terms, PPP and RRP. 

The data was divided into four t intervals--O.14 < t x 0.18, 0.18 c t 

< 0.22, 0.22 < t < 0.28, 0.28 c t < 0.38 GIVE, and fit to the triple-Regge 

cross-section formula given above, with the couplings being left free in each 

t interval. 

Five fits were attempted: (1) in which the four leading triple-Regge 

terms were used with Oh = 1 + 0.25 t and cxR = 0.5 + t. This fit was quite 

poor, not reproducing the dip structure for x - 0.88. It is interesting to 

note that the PPP term exhibits a dip in the forward direction with a maximum 

at t - 0.2 2 GeV --see Fig. 181; (2) which uses the same trajectories as in fit 

(1) but only fits the data for x > 0.84. This fit is much better but still 

not very good. The PPP term still shows the forward turnover; (3) in which the 

trajectory of the RW terms is Lakeuto be n = 0.2 + t (after Miettinen and 

Roberts) 142 to allow for the effects of lower lying traJectories. This provides 

a much better fit to the data, but now the PPP term has no forward turnOVer-- 

see Fig. 181; (4) is very similar to fit (3) but an explicit parametrization 

is used for a 7nrP term (due to Bishari) 143 , together with the four leading 

triple Regge terms with conventional trajectories. This gives a rather good 

fit to the data, and no forward structure to the PPP term; (5) in which the 

RRP term is replaced by an exponential emCX, as suggested by Capella et al. 144 

This provides the steeper x-dependence required by the data and indeed this 

parametrization gives the best fit. Again, the PPP term shows no forward turn- 

over--see Fig. 181. 

It is interesting to note that despite the uncertainty and variation 

in the PPP term between the several fits tried, the energy dependent term--PPR-- 

seems very stable, quite model independent and rather well determined. 

In summary, a clear separation between the s-dependent and s-independent 

terms has been observed. For the s-dependent terms the RRR contribution is 

small and negligible, while the PPR contribution is well determined. The energy 

independent part requires both the PPP and RRP terms, and no unambiguous isola- 

tion if the PPP coupling seems possible at this time. Fits with conventional 

trajectories yielded a PPP coupling which peaked for t - 0.2 Gej! and turned 

over in the forward direction, while better fits to the data (with modified 

trajectories) had a quite structureless PPP t-dependence. Therefore not much 

light can be shed on the question of whether gppP vanishes at t = 0. To 

make more progress in studying the triple-Regge phenomenology and in particular 

to identify unambiguously the PPP contribution new data extending further into 

the diffraction peak, to x values nearer 1, are urgently reqtired. 

Sens20 fits the CGKI &~-oup data, which is characterized by: 

s = 1995 GeV* 0.5 .c x < 0.82 0.7 -c PT < 1.2 GeV/c 

= 551 GeV2 5 < I?'-. 30 GeV2 .15 < PT i 1.25 w/c 

= 930 GeV 
2 

7 / h?< 50 GeV* .45 < PT < 1.65 Gevfc 



The medim x data at s = 1995 f&V2 were fit assuming that by this 

high an energy RRR components had died out, and only one term is dominating 

the cross-section, namely, the RRP contribution. This may be justified by 

inspection of Fig. 182, which shows s-independence in the medium x region 

(0.5-0.7), from VT= 23 Gev to G= 53 G~V. Terms like RRR, or interfer- 

ence terms may be apected to be small, or at least to contribute less than 2C$, 

to the cross-section. 

For this one term we may rewrite the triple Regge relationship: 

d3, E.---- 
dp3 

where f is the effective meson trajectory in the RRF term. 

Taking $ = 1 and g(0) = 1.0, this reduces to 

E & = GffP 
(t) 

- . 
dp3 16~~ 

The data at s = 1995 GeV2 , when fitted to this form,give 

af(t) = 0.45 + 0.75 t, 

and the results are plotted in Fig. 183. Tne dashed line gives the sensitivity 

of the data to the more usual unit slope of the meson trajectory. 

At h?gh x, the data is a mixture of diffraction dissocfation and high 

momentum fragments from the pion production region. This is especially true 

in a poor resolution situation. Sens subtracts out the high momentum fra@;ments 

assuming they are well explained by the RRP term just determined above. 

rf&,$-. dlstrlbutlon 1s shown in Fig. 184 and the extrapolated fraflenta- 

tion component under the diffraction peak is shown as the "background" curve. 

The mass spectrum falling like M -2 (see Fig. 184), and the s-indepen- 

dence of the cross-section for x - 1.0 shown in Fig. 185, suggests that the 

peak may be dominated by the PPP term. See Table XXVIII for 2 , x and s- 

dependence of the different terms. 

Sens then assumes only the PPP term, which gives 

I-2ap( t ) 

Fitting the data near x = 1, and making sure to remove the elastic 

scattering contamination of the data, allowing for the momentum resolution of 

the spectrometer and subtracting the high momentum fragmentation "backgroundtl 

using the RRP term, finally yields the Pomeron trajectory 

shown in Fig. 186. 

ap) = 1 + 0.2t 

This trajectory was compared to that derived from a study of elastic 

scattering assuming Pomeron dominance of the two-body reaction-- 

do - = f(t).s 
2cxp(t)-2 

dt 

Using elastic scattering data at s = 551,930 GeV2 they find good agreement with 

this Pomeron trajectory (shown as crosses, (x), on Fig. 186). This is also in 

good agreement with the best overall fit to all elastic pp scattering above 

s = 100 Ge $ , which gave a' m 0.275 GeV -2. (See chapter II.) 

This analysis shows that the triple Regge framework allows a consistent 

description of the cia-ta, but as Fox' points out, there are are so many parameters 

and the correlations in the data are so strong that it is difficult to learn 

anything at present. 

2. Decoupling of the Triple Pomeron Term as t -30. 

The question of the vanishing of the triple Pomeron coupling as t + 0 

is always of interest, and should be addressed before leaving the triple Regge 

chapter. 
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Abarbanel et al.1" have shown that the triple Pomeron coupling gp(t) 

is given by 

(d&24 (t) 

gp(t) = &-. dd- 

Before accepting that g --) 0 as 
PPP 

t -10 as fact, we should notice several 

other points: 

where 

E. A (diffractive) = $ . Gp(t) . $ 
dP3 M 

. First, if we use the extrapolated value of the PPP term (going to 

t = 0 with an exponential) from the Sens analysis, 20 and put Gp(0) 

and into the formula derived above, we find 

do - = Gp(t). ; . at dx 

and where aT, do/at el are the asymptotic values of the cross-sections. (This 

is strictly only true for ap(0) = 1.) 

This my be rewritten in the following way 

&i . + . g;(o) < 1 - oIp(o) 

The Abarbanel et al. paper points out that if the Pomeron is a factori- 

zable simple pole, that the above triple Pomeron relation cannot be self con- 

sistent unless OIp(0) < 1 or Gp(0) = 0. 

Hence the interest in the question of whether PPP vanishes at t = 0. 

The data of Columbia-Stony Brook =a, =9 discussed in Chapter VI, and 

shown again below as Fig. 187, show a dip at small t for 8<h?<14GeV2. 

This dip is not present for larger (20 < d -; 60 bkV2) or smaller masses. 

The interpretation of this turnover as a zero in g 
PPP 

may be justified by-- 

. 8 < I? < 14 GeV2 region is roughly optimal for seeing the triple 

Pomeron term at this energy. At lower masses the PPR term is domiant, 

while at larger masses the XRF term is important, 

. the value of (do/dtdM2) is non-zero for t = 0, but is in agreement 

with many of the fits for PPR and PJ?P contributions. (See Fox's 

review of all these fits.) However, away from t = 0 there seems to 

be a need for an extra contribution to the (PPR and RRP) to fit the 

data--is this an indication of the presence of the PPP term? 

1 - alp(o) z& 
P 

which implies for 0.05 < 01' < 0.5, the Pomeron intercept must lie in the range 

0.99 < ap(o) < 0.999 

Clearly this is not too serious a departure from n(O) = 1. 

'!&is means that the self-consistency equations do not demand that the 

triple Pomeron coupling have a sharp turnover as t + 0. 

If fact, if we write 

cYp(t) = 1 - E + cip(o)~t 

-2 _j 
then for a' = 0.25 GeV 7 El 2.10-'. This changes the definition of the 

cross-section 

da -E 
1+2&(t)+ 

dt== . GPO) . 

For small values of E, as those indicated, the scale breaking is very 

small. For E < 10 -2 the cross-section is still well approximated by a 

logarithmic growth. Indeed the sTE factor contributes only a 2% correction 

between s = 200 and 3000 Ge ?-. Therefore, the cross-section increases 

with s in this energy range. 
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We may also take the PPP term obtained in the Sens fit, 20 
. ana extra- 

polate to the t-range measured by the Columbia-Stony Brook experiment 

at NAL.129 Sens has attempted this comparison, adding to the PPP terms 

his RRP term (to account for high momentum fragmentation protons). The 

result is shown in Fig. 188. 

For 5 < d < 30 GeV'--the region of Sens high energy fit--the agree- 

ment may be interpreted as confirmation that down to t - 0.056 GeV2 

there is no sign of Gppp(t) turnover. 

. Finally, what do the bubble chamber experiments say on the question of 

the forward dip? (This questi on was reviewed in Chapter VI in discussing 

the t-dependence of the inclusive scattering.) 

The 200 GeV/c T-P and pp experiments looking at do/dtlM see no sign 

of a forward turnover for small masses-- 1.e. (' the 8 < l? < 14 GeV2 region 

studied in the Columbia-Stony Brook experiment). The data are repeated below 

in Figs. 189 and 190. The pp experiment does observe some flattening of the 

t-distribution for 2 above 25 Ge P. 

Wnder Velde,145 in a summary of all four pp experiments (102, 205, 

303, 405 G,eV/c) reports that for the broad hump region (i.e. 0.9 > x > 0.51, 

the do/at is exponential with a slope of exp(-8.5PF), and the region of large 

mass in the diffraction peak (x > .9 but 2 > lCGeV2) is also quite exponential 

with slope exp( -7PE). However, in studying the four prong data they do observe 

a dip in the forward direction for PF 5 0.4 GeV2 for 2 < 10 GeV2. Beyond 
2 

P T w 0.05 GeV2 the data are exponential with a slope of exp(-lOP$). See 

Fig. 191. 

The bubble chamber data do not help to clarify this question. It is 

important to establish the existence of the dip firmly, and then by studies 

of its s- and M2-dependence attempt to associate it with one of the triple 

Regge terms contributing to the process. In this vay, we may see some progress 

on the question of whether the triple Pomeron coupling vanishes as t -30. 

As mentioned before, unambiguous determination of the triple Pomeron term 

needs experiments measuring s-, t- and M2- dependences well inside the diffrac- 

tion peak for x nearer 1.0. 



1. 
a) 

b) 

Cl 

d) 

VIII. IMPACT PAF$WSTER AN&YSIS OF HIGH ENERGY SCATTERING 

Summary of Data 

OT increases by (10 2 2%) in NAL-ISR energy range. 

0 el increases by - lC$ in NAL-ISR energy range. 

'inel is responsible for most of rise in oT, it grows by Au u 3.3 mb 

('inel = 32.3 _+ .4 mb at &= 23.4 GeV and 35.6 + .5 mb at 53 G&I). 

Real part of elastic scattering amplitude at t = 0 changes sign around 

p w 300 GeV/c crossing from negative to positive values. 

Small t slope of da/dt (i.e. ItI < 0.15 GeV2), is steep - 32 GeV -2 , 

and grows like In s. Parametrizing this shrinkage in terms of a Pomeron 

trajectory yields CX' = (0.27 + 0.05)GeV -2 . - 

The slope of do/dt changes rapidly by Ab - 2 GeV -2 around 

t - 0.15 Ge ?. The cross-section for larger t values shows weak 

energy dependence. 

The break in do/dt observed in the lo-30 GeV/c energy region for 

t - 1.3 Ge $ develops into a beautiful diffraction minimum, at high energy. 

Production of a low mass peak in inelastic scattering with an s-inde- 

pendent cross-section; the peak extends up to masses of about 7 GeV at 

ISR energies and seems to behave like M -2 . 

The cross-section for the inelastic diffractive process is found to 

grow like In s, and to account for a substantial part of the rise in 

the total cross-section; (one experiment indicates that the inelastic 

cross-section minus the single and double diffractive contributions is 

a constant from NAL through ISR). 

h) 

i) 

j) 

2. 

Tne multiplicity in diffraction scattering is lower than for other pro- 

cesses--typically the mean diffractive multiplicity is about half the 

total mean multiplicity. This multiplicity increases with the mass of 

the diffraction excited system. 

lhe differential cross-section, d20/dM2dt, is peaked and consistent 

with an exponential behavior where the slope is a function of the 

mass of the diffracted system, d20/dM2dt 0~ exp(-b($)*t). The slope, 

b(M2), falls from s. value close to twice the elastic value for low masses, 

to - 4 GeVs2 for the high mass tail. 

The properties of pion diffraction, (K +T*), and proton diffraction, 

(P +p,), are observed to be very similar. 

Elastic Scattering Analysis 

In Chapter I we discussed diffraction scattering as the shadow of inelastic 

processes and through s-channel unitarity arrived at the relation-- 

Im Tfi = Gel + Ginel 

where Tfi is the elastic amplitude and G el' G. lnel the elastic and inelastic 

overlap functions. 

From the measured data on do/dt for pp elastic scattering one can 

determine Im bel(s,t) and Re bel(s,t). Most simply one can assune pure 

imaginary, non-flip for the elastic amplitude and solve for Im b,,(t) directly 

from the data. The next stage in sophistication is to attempt to find Re bel(t). 

aie real part is known only at t = 0, but a reasonable estimate of the phase 

is obtained by assuming that the imaginary part of the scattering amplitude 

vanishes for t - 1.3 GeV2 dip, and the measured cross-section gives the real 

part at that t-value. Using smoothness to connect, one may estimate Re b,,(t). 

(It turns out not to be at all sensitive to the phase assumed.) 



Given the elastic axnplitude, one may use the s-channel unitarity equa- 

tion to find Ginel(t)--see Fig. 192. 

Here we see the inelastic overlap function changing sign as 8. function 

of t, for t - 0.6 GeV2, and a second zero for t - 2.2 GeV2. The change of 

sign shows how important are the phases of the many open channels, in making 

up the inelastic overlap function. 

Perhaps one sees more clearly what is going on, if we Fourier- 

Bessel transform the Im bel(s,t) and Re bel(s,t) into b-space (i.e. impact 

parameter space). We may then find Ginel(s,b) from the relation 

IJII bel(s,b) = i b’el(%b)\2 + Ginelb>b) 

Figure 193 shows the result for the total, elastic and inelastic over- 

lap functions using the ISR pp scattering at &= 53 GeV. (This is from the 

analysis of Pirila and Miettinen, a,17 but all of the analyses are in fairly 

good agreement.) The "blackness" of the proton is observed to be - 94% of 

the unitarity black disc limit , and the inelastic overlap looks like a gaussian 

with average radius a little less than 1 fermi, On closer inspection, G. 1nel 
flattens out near b = 0, and has a long tail. 

This long tail of the Ginel(b), (or Im bel(b)--as far large b they are 

the same), is directly related to the sharp break in do/dt at t = 0.15 Ge ?. 

There is much discussion as to the origin of this tail--2?r contributions, 

dissociation, etc. 

The dip at t - 1.3 GeV2 is related to the flattening of Ginel as 

b + 0, but the corresponding effect in the elastic amplitude is very difficult 

to see. (Remember, the cross-section at the dip is between six and seven 

decades down from do/dt 0, so it does noi take a big change in the elastic 

amplitude). It is also interesting to note that if Ginel(s,b) did not level 

off near b - 0, it would violate unitarity. This suggests that absorptive 

effects are at least partially responsible for the small b flattening. 

It is of interest to study the s-dependence of the overlap function-- 

the same analysis was performed for & = 21, 30, 44 and 53 GeV. The results 

are shown in Fig. 194, where we see that the radius grows - $ throu& this 

energy range, but that the absorption at b = 0 stays constant at 94% of its 

unitary value. So the protons are getting bigger not blacker. 

In addition, if we look at where Ginel changes between 53 and 31 GeV, 

we find that the increase in the inelastic cross-section comes from a narrow 

region, a ring around 1 fermi. Perhaps it is not so surprising if we remember 

that the increase in the elastic cross-section comes mainly from the small t 

region--i.6 for large impact parameters. (See Fig. 194.) 

3. Inelastic Diffractive Scattering: Impact Parameter Analysis 

The measurements of the inclusive proton spectra at NAL and the ISR 

show that at high energies inelastic diffractive scattering and non-diffractive 

scattering populate different regions of phase space. This suggested that it 

may be useful to consider their contributions tothe elastic scattering sepa- 

rately. Hence the inelastic overlap may be split into two parts-- 

Ginel(t) = Gprod(t) + GD(t) 

Rewriting the s-channel unitarity relation, we have-- 

k~ Tfi(t) = G,,(t) + GD(t) + G prod(t) ' 

where G prod(t) is the shadow of the non-diffractive particle production pro- 

cesses and GD the same for the diffractive part. 

The analysis closely parallels the elastic study above, except NOW have 

to take into account spin and helicities in the inelastic scattering while "non- 

flip only"was taken in the elastic citse. Sakei and Whitelk' have done a care- 

ful analysis of this case--they assume that as the mass of the excited system 

grows, the spins involved grow quite rapidly. 



mey also assume that the diffraction scattering conserves helicity in 

the t-channel. (The data discussed in Chapter V showed that the data favOur 

TCHC over SCHC, but still shows some violation. However, Miettinen points out 

that the impact analysis is not crucially dependent on rigourous TCHC, but 

merely demand substantial SCH flip--which the data certainly confirms.) 

Sakai and White fit the (d*ci/cU?dt) f or the single particle spectra and 

find that the diffractive shadow GD(s,b) has a peripheral profile, and that 

diffraction occurs at the edge of the absorption region around b _ 1 fermi. 

See Fig. 195. (Note that if SCHC had been assumed, the impact profile for 

diffraction would have been central. Further note that the large b tail is 

ascribed to central inelastic amplitude in this model. Gin dominates for 

b<lfandfor b>lf.) 

4. Slope-I4ass Correlation 

This association of the diffractive production with peripheral impact 

parameters allows a very natural explanation of the observed correlation of the 

slope of the diffraction peak with the mass of the system. The production from 

a ring at large impact parameters will contribute a term (e 
at 

J&(Rfi)) to 

the differential cross-section, a20/a2at, where M is the helicity flip in- 

volved in the scattering and where the exponential accounts for the smearing 

of the edge of the ring. 

When the mass is close to threshold, the spin (J) is low and the con- 

tribution of helicity flip amplitudes are small. For this situation the shape 

of the amplitude is given by J&Rfi), which for R w 1 fermi gives a zero 

at t - 0.2 Ge $. This would mean that the very steep slope for the low mass 

diffraction is caused by a zero at small t values in the dominant helicity 

amplitude, and not by a large value of the exponential slope, a. 

As the mass of the system increases, this zero becomes washed out by 

contributions of the flip amplitude, and/or real parts--as the mass increases 

the spin increase and the helicity flip amplitudes grow--flattening out the 

cross section, do/dt. See Fig. 196. 

It will be interesting to see inelastic diffraction data from NAL at 

small mass and over large enough a t region to convincingly see this structure. 

At these energies the real parts should be small enough that if this is really 

what is going on, we should see the characteristic JO structure in the do/at. 

There is some confirmation of this suggestion,from two bubble chamber 

experiments--one on pp -3pnd at 19 w/c 147 --see Fig. 197--and the other on 

np +p~-p at 12.5 GeV/c 79 --see Fig. 198. For small masses of the diffractively 

excited (NT) system there are signs of small t structure. 

However, for the moment only a hint. 

5. Rise of U T 

In the summary of the data, we found that the rise in oT comes from 

0 
inel mainly, and that it originates for large impact parameters--from a narrow 

ring around b - 1 fermi. 

We have also argued that the inelastic diffraction is peripheral and 

comes from a narrow ring around b w 1 fermi. 

Further we have several experiments which indicate that the diffractive 

cross-section increases like In s, and could account for the increase in the 

total cross-section. 

It is very tempting to tie all of these points together; to be sure we 

would like to have C&(s,b) at several energies to find where the increase in 

diffraction comes from. This is a necessary precaution, because one can 

imagine a situation where the increase is due to a central contribution but 

which produces a peripheral increment to the total amplitude. 

Consider the case of vine1 being constant, but the elastic differential 

cross-section shrinks. This causes Ginel to fall at b = 0 and go up for 

large b. If, as the energy increases, we add a new central contribution then 
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. . 

the new total Ginel at the higher energy could be compensated such that G inel 
has not changed at b = 0, and the difference of the two G 

inel would peak 

at - 1 fermi (i.e. have produced a peripheral increase in G. 1tlel from a new 

central piece, plus a shrinking elastic amplitude). See Fig. 199. 

6. conclusion 

Finding the reason for this phenomenon of rising total cross-section 

is one of the most interesting questions in particle physics. It is clear that 

the rise is not due to the saturation of unitarity (Froissart, Chen-Wu), but 

which of the several other possible mechanisms nature is using is far from clear 

Is it due to an expanding core?, or to an expnding ring around the edge of 

the absorption region?, or to an increasing blackness of this outer ring? 

(or something else?). Defining the specific amplitude and mechanism for the 

growing cross-section is a very tantalizing and fundamental question! 

M. CONCLUSIONS 

Having completed a review of the data on diffractive processes, we now 

collect together some of the questions raised in the preceding chapters. 

1. Tots.1 Cross-sections--what is the asymptotic behaviour? Do they continue 

to rise with increasing energy or do they approach a constant value at high 

energy? See Fig. 200. 

Some useful insight on this matter will come from: 

-study of the llearly rising'l K+p cross-sections throu@ the NAL energy range; 

-good measurements of the magnitude of the real part of the forward scatter- 

ing amplitude in p-p scattering at highest energies of the ISR; 

-watching for changes in the s-dependence of u el' ~el/~tot, b (the slope 

of the forward cross-section) for all processes through the NAL energy 

range; 

-watching the energy dependence of the difference in total cross-section 

for particle and antiparticle processes through the NAL range, to see if 

(and when), the Pomeranchuk theorem will be satisfied. 

2. Elastic Cross-section--are there really two components to the Pomeron? 

There are three interesting areas to watch here: 

-study of the s-dependence of the small t cross-section, especially for 

the K+p system, though NAL energies. (Do we find diffractive amplitudes 

with upward curvature at small t?) 

-study of the s-dependence of the larger t cross-section and of the diffrac- 

tive dips, to provide more imformation on the "central collisions.~ (Do 

K+p, y + 6, ~'p reactions show deep diffraction dips? If so at what 

t-values and how do they move with energy?) 

-the determination of the real part of the elastic scattering amplitude at 

all t values--see Davier's lectures. 104 
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3. Inelastic Diffraction Scattering--here we have quite a long list of interes- 

ing questions: 

-understand the two components of exclusive diffraction (the threshold kine- 

matic amplitude and the diffractive production of resonant states), and 

their relationship to each other; 

-from studies at NAL energies of low mass exclusive diffraction, determine 

whether the slope-mass correlation is caused by a zero in the amplitude 

at small t (which gets filled in as the mass grows and spin structure gets 

more complicated), or is due to a real shrinkage of an exponential CTOSS- 

section as masses go to threshold. 

-understand the anomalous nuclear absorption in diffractively produced 

systems, wherein the absorption cross-section for (Jr) and (57~) states 

is the same as a single pion, (Km) like the K and (NTIT) like the 

nucleon. (See the lecture of B. Gobbi.a2) 

-where are the meson resonances, which correspond to the diffractive N* 

production? Hoepfully, with new tools becoming available 101 we will be 

able to study Al and Q production in non-diffractive channels-- 

K-p +A+ Q-A+ 

w -s Q A, AlA 

e+e- -I nil, i?Q . 

-is the inclusive diffractive amplitude peripheral? Is the increase in 

this amplitude, with increasing energy, peripheral or central? EOeS the 

increase in the diffractive cross-section account for the observed rising 

total cross-section? 

-if we think of the proton as an almost black disc with an edge contribution, 

are the disc and the edge both growing with energy? If so, how fast? Does 

the edge get blacker? 

-for a better understanding of the triple Regge picture experiments cover- 

ing a large s- and t-range and measuring x-values from x - 0.8 right up - 

to almost 1.0 s.re required. Such studies should also allow a better dis- 

cussion of the question of the decoupling of the triple Pomeron coupling 

at small t values. 

4. Factorization--we know from studies of two-body processes around 10 GeV/c 

that secondary processes (cuts, absorption, double exchanges, etc.) are impor- 

tant, and further the rising total cross-sections observed at high energies ex- 

clude a simple pole description. lhese observations lead us to expect a break- 

down of factorization. It would be interesting to have good experiments, with 

a few percent accuracy, to observe this breakdown and attempt to follow any 

s-dependence of the violation. 

5. Comment on the s-Dependence of the Impact Structure of Pomeron 

Since s-channel unitarity relates elastic and inelastic behaviour at a 

given impact paramter through the equation: 

Im f&b) = fel(s,b) f f inel(s>b) 

we have to be prepared for the impact structure of Pomeron to change with 

energy, despite our prejudice as to its constancy. 

We know that the total inelastic cross-section is flat (slowly rising-- 

but maybe if take out the diffraction dissociation contribution, then it would 

be flat). But we also know that there are different reaction channels con- 

tributing at any two energies sl and s2, being driven by quite different 

mechanisms. For example, at 10 GeV/c we have mainly quasi-two-body processes, 

which are very peripheral, while at 1000 GeV/c it is not mainly quasi-two body 

and I do not think peripheral--i.e. although the total inelastic cross-section 

is flat, the distribution in b-space will probably change--therefore the diffrac- 

tive b structure must change (since one is the shadow of the other). 
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Perhaps there is a neat collaboration in the turning-on of the diffrac- 

tive dissociation piece, which is peripheral and inelastic, and which feeds the 

Pomeron such that it picks up what is disappearing as the Regge two-body pro- 

cesses die out with increasing energy. (I think this is unlikely given the 

respective energy dependencies.) 

At any rate, a study of the change of the impact parameter structure of 

the Pomeron, and of the inelastic processes which are coming in or dying out, 

may allow a deeper understanding of what diffraction is and how the proton is 

built up. 

TABLE I 

'IOLD" REXXE POLE PAFAMEZRIZATION 

I 
u+,(.irp) = 21.3 + 17.6 p -112 mb 

u~(T+P) = 21.3 + 11.2 P -l/2 

ot(K-p) = 17.1 + 17.1 p -l/2 o&K-n) = 17.1 + 11.45 p -l/2 

o,(K+p) = 17.1 

$K+n) = 17.1 

ut(Pp) = 37.4 + 50.7 p-l/2 

u,(pp) = 37.4 + 7.4 p-l/2 

+-P) = 94.1 + 79.9 P -l/2 i;D 

ut(un) = 94.1 + 53.6 p-'r 

I 

TABLE II 

TKE VALUES OF THE PARAMETEW A AND n RWJLTING FROM THE FITTING OF 
THE TOTAL CROSS-SECTION DIFFERENCES ABOVE 3 GeV/c M THE FORMULA 

-n 
AU = Aplab . 

(The errors shown in the table have been evaluated taking into 
account statistical and systematic errors.) 

Cross-section 
differences n 

47rP) i 4.0 + 0.3 0.32 + 0.02 

4Kip) 18.1 + 0.3 0.54 + 0.02 

A(K%) 13 0 + 0.4 0.67 + 0.02 

4PTP) 63 +2 0.64 + 0.02 

4PF) 49 +7 0.61 + 0.05 
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TABLEVI TABLE VIII 

NE'.4 ELASTIC CROSS-SECTIONS RATIO OF ELASTIC TO TOTAL CROSS-SECTION, (uel/Utot) 

P 
:ev/c 1 Group (I; 

plab (GeV/c) Fatio 

5.5 .188 + .005 
lr- 55.0 .138 + .007 

IT+ 7.0 .192 + .004 
16.0 .170 + .006 

10 .140 + .003 
K- 40 .126 2 .014 

K+ 5 .225 + .a?4 
15 .196 + .017 

6 .294 2 .006 

60 
P 

.187 + .ocB 
200 .174 + .005 

1000 .176 + .007 

8.0 ,225 + .012 
13 16.0 .185 . + .olo 

40.0 .178 + .018 

25 CERN-IHEP 
32.8 IHEP 
35.4 IREP 
40.0 CERN-IHEP 
42.0 IHEP 
45.3 IBEP 
48.6 IBXP 

54.7 IEEP 
105.0 NAL-LBL-Berkeley 

25.0 CERN-MEP 
40.0 CERN-IHEP 

25.0 CERN-lHEP 
40.0 CERN-?XEP 

3.35 1: .o6 
3.912 .22 
3.40 2 .36 
3.32 + .C6 
3.23 + .lo T-P 
3.44 + .19 
3.22 + .12 

3.35 + .17 

3.03 + .3o 

2.46 + 03 
2.33 + .o3 

I 
K-P 

8.7 + .2 
7.2 + .3 PP 

TABJZ VII 

ENERGY DEPENDENCE OF ELASTIC CROSS SECTION 
-n 

0-P 

IParticle ExponeI;t, n Range of Fit 

v 
IT+ 

K- 
K+ 
5 

P 

-0.25 + .02 - 
-0.28 + .06 

-0.26 + .03 
-0.09 + .03 
-0.42 + .03 

-0.26 + .a 

(5-40) GeV/c 
(5-40) GeV/c 
(5-40) GeV/c 
(4-15) GeV/c 
(5-40) GeV/c 

(5-30) GeV/c 

TABLE IX 

RATIO OF O(xp 
o(%p +%p) 

10 40 

R(.rr/~++) 1.01 + .06 1.00 + .02 1.03 + .a 

R(K-/K+) l..og + .06 0.94 + .09 1.01 + .03 

R(</P) 1.26 + .06 1.19 + .04 1.05 + .ll 



TABLE X 

RESULTS ON THE EXPONENTIAL SLOPE b IN ELASTIC PROTON-PRUTON SCA'ITEPJNG 
AT TRE CEKN ISR. THE ERROR5 INCLUDE AN ESTIMATE OF TRE SYSTEK4TIC 

CONTRIBUTIONS TO THE ERROR 

Pl + p2 
(W/c ) 

10.8 + 10.8 

15.5 + 15.5 

22.5 + 22.5 

26.5 + 26.5 

31.4 + 31.4 

T ItI ( 0.15 Cd l- ItI 10.15 Gev2 1 
G 
(GeV) 

21.5 

30.6 

t-range slope b 

(Ge$) (GeV-2) 

0.05 -0.09 

0.05 -o.og 
0.015-0.06 

44.9 0.05 -0.09 
0.03 -0.12 
0.01 -0.05 

52.8 0.06 -0.11 
0.04 -0.16 
0.01 -0.06 

62.6 0.01 -0.06 

11.6 + 0.3 

11.9 + 0.3 
13.0 + 0.7 

l2.9 + 0.2 
12.9 7 0.4 
12.6 z 0.4 

12.4 + 0.3 
13.0 2 0.3 
13.1 2 0.3 

13.1 + 1.0 

TABLE XI 

T-P ELASTIC SLOPES 

t-range 
(Ge$) 

0.14-0.24 

0.14-0.24 

0.14-0.24 

0.17-0.31 

slope b 

(GeV-2) 

10.4 + 0.2 

10.9 + 0.2 

10.8 + 0.2 

10.8 + 0.2 - 

P t-Fange Slope, b 

w/c ) (W'? (G,zV-~) 

14 .05 c t c .7a 7.7 2 .o3 
55 .05 < t < .53 0.8 + .2 

!05 .03 < t < .60 9.0 + .7 

-bt-ct2 1 
3.0 
3.7 
5.0 
6.0 

14.0 

25 

40 

7.61 + .u 
.05 < t < .44 7.60 + .E 

7.66 + .09 
7.70 + .c8 

.05 < t < .78 a.26 + .10 - 

.l < t < .6 9.07 + .32 

9.63 + .31 
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TABLE XVIII 

CROSS SECTION (du/~%')t,=~ AND SLOPE PARAMETER b, FOR THE REACTIONS 

7itp -+(d,+,)p AND ~'p -+d(plr+.rr) AT 16 W/C, 

1.28-1.40 

1.40-3.00 

AS A FUNCTION OF (3~) AM) (pm) MASS 

lr-p -f (l+r,Tr+)P 

-2 b, GeV 

Tr+p -3 (&Jr+)P 

-2 b, GeV 

4.9 + 0.4 9.12 0.3 3.7 + 0.3 7.2 + 0.3 

1.0 + 0.1 14.6 + 1.8 0.58 + 0.05 11.3 + 0.5 

1.2 + 0.1 11.5 + 0.8 0.8 2 0.1 9.6 + 0.7 

1.2 + 0.1 9.8 + 0.7 1.0 + 0.1 7.6 + 0.6 

0.57 + 0.06 7.12 0.5 0.40 + 0.06 5.0 + 0.6 

1.3 + 0.2 7.2 + 0.7 1.0 + 0.1 5.7 If 0.3 

I I I J 

TABLZXM 

SLOPE PARAMETER FOR T +( 31r) AT 16 AND 40 GeV/c 

Mass (3v) 16 GeV/c 

(GeV) (ABBCCB collab~) 

40 GeV/c 
(Antipov et al. 24 ) 

(1.0 -1.2 ) (10.6 + 0.9) GeV 
-2 (11.2 + 0.9) GeV-2 

I (1.25-1.45) ( 7.1 + 0.5) GeV -2 ( 6.7 2 0.9) GeV -2 
I 

I (0.02 < t < 0.4 GeV2) (0.04 < t < 0.33 G&I 

55 



1 



TABLEXXII 

SLOPE OF DlFFERElUTIAL CRCGS-SECTIONS 

1 
PI-OCeSS Slope (GeV-2) ) 

- g-11 

- 9 

- 5-7 

- a-10 

N --) (~d1400 - 10-11 

N -+ (Nm)1700 - 5 
1 

For comparison, the elastic slopes are - 
I 

Slope (GeV-2) I 

TABLE XXIII 

s-CHANNEL RELICITY-FLIP AMPLITUDE RATIOS IN THIS EXPERX4XNT 

AND IN TN SCATI'ERING FOR .18 < ItI < .80 Ge P 

Experimental Values 
of Density Matrix Elements 

Amplitude Ratios* 2.8 GeV 4.7 GeV 9.3 GeV Average 

?hotoproduction 

ITOl~2/1T11~2 II Pzo -.OlL .03 .07 _ + .02 -.Ol - + .02 .01.8 + .ox 

~T~,l~2/bl,i2 : P;-~+ b P;ml .04 + .05 .11. _ + .05 -.02 + .05 .04 + .03 

h Tol/lTlll z 2 Re i'yo .16 2 .03 .12 + .03 .14 + .02 - .14 + .Ol 

rm T-ll/ITllI z P;-~ -.06 2 .03 -.05 + .03 -.lO + .02 _ _ -.03 + .02 

rrN Scattering 

Isospin 0 Exchange 6 GeV/c .15 - + .cQ 

* 
The nucleon helicities in the photoproduction amplitudes listed are 
$$ or-+-*,. 



I 
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TABLE xxv TABLE XXVIII 

FACTORIZATION TEST IN ?rN AND pp REKTIONS 

R1 = Mi = 0.43 

ENERCYAND Z- DEPENDENCE OF THE VARIOU3 TRIPLE COUPLINGS 
1 

%= 
0(?rp -+K(pTp)) 0.46 + .15 
O(PP -+P(Plp)) = 

A FACTORIZATION TEST FOR rp, m, and PP REACTIONS 

(6-10) 

0.053 1: 0.014 

Momentum (GeV/c) 

(10-14) 

0.035 + 0.014 

0.061 + .008 

0.061 + ,006 

0.052 + 0.005 

TABLEXXVII 
VALUES OF THE PARAKETEF3 R(H) 

(14-18) 

0.055 + 0.024 

0.060 + 0.0~3 

0.063 + 0.003 

0.059 + 0.003 

R(K) = o[Hp +H(Nr 1 
o[Hp *HP] 

R(p) = 0.14 2 0.02 

'lab 
[GeV/cl 

8 

16 

10 

12 

24 

Triple Regge Term 

PPP 

PPR 

s-dependence 
(fixed x) 

constant 

l/ &- 

R.Pz constant constant, (constant) 

RRR 1/ JF 1/% (l/(l-x)1'2) 

r/r? = (l-X)6 
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Figure Captions 

Schematic of several peripheral and central amplitudes, and how they 
transform from impact parameter space to momentum transfer space. 

Schematic of the effect on the scattering amplitude in momentum trans- 

fer space, of adding extra partial waves. 

Illustration of the s-channel unitarity equations. 

Relationship between the total, elastic and inelastic overlap functions. 

Plots of hadron total cross-sections versus (p,)- l/2 . Tne straight 
lines represent a Regge pole parametrization of the bT data below 

30 GeV/c. 

Plot of the photon total cross-section data versus (p,,) -l/2 
. 

Energy dependence of the pf, K', h cross-sections on hydrogen, up 
through 65 GeV. 

Energy dependence of Ap and An total cross-sections. 

Total photon cross-sections up through 30 GeV. 

Possible asymptotic energy dependence of the total cross-section. 

Total p-p cross-section as measured at Serpukov and the CERN ISR. 

The total pp cross-section measurements compared to the lower bound 

obtained from studies of cosmic-ray data. 

Energy dependence of the elastic pp cross-section. 

Energy dependence of the elastic r-p, K-p, and p-p cross-sections. 

Tne energy dependence of the ratio of the elastic to total cross- 
sections for pp scattering. 
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Differential cross-sections, do/dt, taken at (a) the ISR by the 
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Fig. 30. 

Energy dependence of the slope of the elastic p-p differential cross- 
section for two regions of momentum transfer--(a) It\ < 0.1 GeV2, 

(b) 0.15 5 ]tl < 0.5 GeV2. 

Compilation of the s-dependence of the slope of the pp scattering 
cross-section for small momentum transfers (i.e. It( < 0.12 GeV2). 

The differential cross-section, da/dt, in pp elastic scattering out 
to very large t, as measured by the ACGHT group at the ISR. 

The differential cross-section for PP elastic scattering from 
(j-1500) GeV/c. The dashed curve represents the fourth power of the 
electromagnetic form factor, G(t) = l/(1 - t/p2)', with p2 = 0.71 GeV*. 

Normalized differential cross-sections for pp elastic scattering, 

(do/dt)/(du/dt)O, divided by G4(t) where G(t) is the electro- 
magnetic form factor. 

Differential cross-section for np elastic scattering from 
(13-21) GeV/c. 

Comparison of pp and np elastic scattering cross-sections at 19 GeV/c. 

Energy dependence of the slope for Pp and np elastic scattering from 

(2-30) GeV/c. 

Slope of the forward neutron-proton elastic scattering cross-section, 

as a function of energy. The dashed line represents the behaviour 
of pp scattering in the same t-range. 

Production angular distribution for elastic rr-p and C-P scatter- 

ing at 23 GeV/c. 

lhe differential cross-section for Tip elastic scattering at 
14 G&'/c. (Also shown for comparison, are the results of previous 
measurements at 15 and 16 GeV/c.) 

Differential cross-section for elastic T-P, K-p and $p scattering 

at 25 and 40 GeV/c. 

Shrinkage of the differential cross-section for T-P elastic scattering. 
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Fig. 39. 

Fig. 40. 

Fig. 41. 

Two components of the forward elastic cross-section--an exponential 
part usually associated with the Pomeron contribution, and a 'Jol( 
Bessel function piece which may be associated with the peripheral 
Regge contribution or with an additional Peripheral hart of the 
P0IlEr0n. This second contribution causes an upward curvature in 
the cross-section at small t. 

The differential cross-section for K+p and K-p elastic scattering 

at 5 GeV/c. 

The energy dependence of the slope of the cross-section (evaluated 

at t = .2 GeV2) for elastic $, K' and p' scattering in hydrogen. 

The energy dependence of the slope parameter of the Pomeron contri- 
bution in K+p scattering (shown as the shaded region) and ~'p 
scattering (shown as the circles). 

T-T scattering angle distributions in the dipion rest SyStem (e) 

and invariant four-momentum transfer squared in r-8 scattering for 
the reactions 7i+p *T-T++ n and ?rp +?r-+ T- + A'*. Note that 
the scales for the sections of M(m) are nonlinear. 

Elastic and total cross-section determinations for T-- T' and 
IT-- 7r- scattering as a function of the dipion invariant mass. 

Differential cross-section for scattering of T', f t 
K,P on protons 

at 3 GeV/c. 

Differential cross-section for scattering of ir', 
+ + 

K,P on protons 

at 3.65 GeV/c. 

Differential cross-section for scattering of 8, K', pi on protons 

at 5 GeV/c. 

Differential cross-section for scattering of T', + 
K , p' on protons 

at 6 GeV/c. 

Preliminary production angular distribution for 13 GeV/c K+p and 

K-p elastic scattering. 
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Fig. 42. 

Fig. 43. 

Fig. 44. 
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Fig. 46. 

Fig. 47. 

Fig. 48. 

Fig. 49. 

Fig. 50. 

Fig. 51. 

a. Production angular distribution for p'p elastic scattering at 

10.4 G@l/C. 
b. Production angular distribution for Kfp elastic scattering at 

10.4 GeV /c . 

Differential cross-section for pp elastic scattering St 50 and 400 

GeV, in the very forward direction, showing the Coulomb scattering 

contribution. 

Differential cross-section for pp elastic Scattering at two energies 
of the CEPN ISR in the very forward direction, showing the Coulomb 
scattering contribution. 

Calculated energy dependence of the ratio of the real to imaginary 

parts of the forward scattering amplitude in pp elastic scattering, 

assuming the total cross-section stops rising at 100, 1000, 10,000 
and 100,000 GeV, respectively. 

The measured energy dependence of the ratio of the real to imaginary 

parts of the forward pp scattering amplitude. 

The measured energy dependence of the ratio of the real to imaginary 
parts of the forward np scattering amplitude. 

The measured energy dependence of the ratio of the real to imaginary 
parts of the forward T-P scattering amplitude. 

Two-component Smplitudes from the model of Cheng-Walker-Wu, 
64 

Kane 8,9,10 65 66 
Barger-Geer-Phillips, Allcock-Cottingham-Michael. 

The two contributions are associated with a central process and & 
peripheral process respectively. 

Two-component amplitudes from the models of Durand-Lipes, 67 

chou-Yang, 68 Frautschi-Margolis. 69 The two components are associated 

with a pole term and a cut term respectively. The observed Structure 

in the angular distribution comes from the interference of these two 
contributions. 

Fit to the ISR pp elastic Scattering cross-section using the optical 

model approach of Ihuand and Lipes. 67 

Fig. 52. Schematic for the vector dominance model description of rho meSon 
photoproduction. 

Fig. 53. !I'he decay correlations for TP +p"p at 9.3 C&V, in the SLAG-Berkeley 
experiment using polarized photons. 

Fig. 54. The energy dependence of the cross-section for rp -i pop. 

Fig. 55. Tne cross section for yp 4 urp aS a function of energy, also Showing 

the natural parity (oN) and unnatural parity (0') contributions 
at 2.8, 4.7 ana 9.3 GeV. 

Fig. 56. The cross-section for the reaction y-p -3 @p as a function of energy. 

Fig. 57. 'Ihe differential cross-section for rp -a pop at 9.3 GeV. 

Fig. 58. The differential cross-section for yp *pop at energies from 9 
to 16 GeV. 

Fig. 59. The energy dependence of the slope of the differential cross-section 
for yp +p"p. 

Fig. 60. Comparison of the data on the forward cross-section for yp +p"p 

at 9 GeV. 

Fig. 61. (a) Fits of do/dt of p" photoproduction to sum of P and f 
exchange, utilizing Dual Absorption Model. (b) P and f exchange 
amplitude Slopes as obtained from fits of dU/dt. The errors in 
Yp *pop are statistical only. The systematic uncertainties are 
estimated to be + lC$. 

Fig. 62. The differential cross section for the reaction up -JUQ at 2.8, 

4.7 and 9.3 GeV(O) and the natural parity contribution to the differ- 
ential cross-section c-i-,. 

Fig. 63. Reaction rp +pO at 2.8, 4.7 and 9.3 GeV. Differential croSs section: 

(a) 2.8 and. 4.7 GeV data combined: (b) 9.3 GeV: (cl shows the exoeri- 
mental values for du/dt for e photoproduction at I.2 GeV as a func- 

tion of -t from 0.2 to 1.0 (G~V/C)~. 



Fig. 64. the differential cross-section for rp -.I @p for energies between 

(2-L?) GeV. 

Fig. 65. The slope of the differential cross-section for up + @p as s 

function Of energy. 

Fig. 66. The energy dependence of the cross-section for n + @p at t = 0.6 Ge'?. 

Fig. 67. The elastic pp differential cross-section for momenta between 3 and 
16 GeV/c. 

Fig. 68. Schematic representation of the amplitudes in the two-component 

~omet-on model. 

Fig. 69. The energy dependence of the cross-section for TN +mN. 

Fig. 70. The energy dependence of fl +T(TN) where the I = J/2 and l/2 

ti contributions are displayed separately. 

Fig. 71. me separate mass spectra for the I = 1/2 and 312 contributions 

to the reactions T+P +T+(NT)+ at 8 and 16 GeV/c. 

Fig. 72. The mass spectra for the various exchange isospin and (ti) decay 

isospin amplitudes in the reactions ~'p+(N?r)rr at 8 and 16 GeV/c. 

Fig. 73. 'Ihe cross-sections for pp -)N(NT) as a function of energy. The 

contributions for (NT) with isospin 3/2 and l/2 are shown separately 

Fig. 74. !l'he mass spectra in the reaction pp +N(N?r), for I = 0, 1 in We 

t-channel, and (NT) with isospin l/2, are shown for incident proton 
momentum of 32 and 24 Cd/c. 

Fig. 75. The mass spectra in the reaction pp +N(NT) for I = 1 in the 
t-channel and (NIT) with isospin j/2, are shown for incident proton 
momentum of 12 and 24 GeV/c. 

Fig. 76. (a) Invariant mass of the pp~- system in the reaction np +pnT-p 
P 

at X2.5 GeV/c. The shaded histogram is for events with M(pprm) < 

M(pn.rr-). 

(b) Invariant mass of the pn?r- system. The shaded histogram is 

for events with M(pn~-) < M(pp~-). 

Fig. 77. 

Fig. 78. 

Fig. 79. 

Fig. 80. 

Fig. 81. 

Fig. 82. 

Fig. 83. 

Fig. 84. 

Fig. 85. 

Fig. 86. 

Fig. 87. 

Mass of the pi- system for K+n -+K+T-p at U GeV/c. 

The differential cross-section, do/dt, for three ranges of M(plr-), 

(a) l.l< M(~T-) < 1.3 GeV, (b) 1.3 < M(~T-) < 1.5 GeV, 
(c) 1.5 <: M(~T-) < 1.7 GeV. The curves correspond to exponential 
fits with slopes equal to 14, 8 and 3.5 GeV -2 , respectively. 

Slope-mass correlation for np +(p,~-)p~, The slope b is determined 

bt' by fitting the differential cross-section, da/dt', to Ae in each 
mass bin, for t intervals ranging from 0.02 < t' < 0.3 GeV2 near 
threshold to 0.05 < t' < 0.6 GeV2 in the higher mass bins. 

brass distributions (events per 10 MeV) for the pi- system observed 

with carbon, copper, and lead targets. The efficiency of the appratus 
vs. mass, shown by the dashed curve in (a), has not been unfolded. 

Distributions in cm 0 
J and BJ for the proton (p,) in 

nP -'P (P YJ-). !I?E distributions are of the Gottfried-Jackson frame. 
(a) -5 F 0.1 Ge? and M(p a)) < 1.4 GeV; (b) -t' > 0.1 GeT2 and 

M(P,T-) < 1.4 GeV; (e) -t' <nO.1 Ged 
(d) -t' < 0.1 GeV2 

and 1.4 < M(pn~-) < 1.8 Get’; 

and 1.4 < M(pnn-) < 1.8 GeV. 

The mass distribution for (,'T',) and (PT+TT-) from the reactions 
dp + IT'IT+T-p at 16 GeV/c. Below the ratio of the mass distributions 
for the 7;rp and r-p reactions are also shown. 

Mass distribution for (Nm) for IT and K induced reactions. The 

(i%m) shows familiar resonance structure at low masses. 

Missing mass distribution in PP +pI?* for an incident proton energy 
of 260 GeV/c. 

The effective mass distribution for (PT'TT-) from 200 GeV/c 

7T-p -? pTr+lr-lr- . 

(a) The effective mass distribution for (~IT'T-) from 200 GeV/c 

pp -3 ppTr+lr- . (b) and (c) show the mass spectra for the ~7;' and 
pr- subsystems. 

The cross-sections for the inelastic two prong events and for the 
separated isoscalar t-channel, I = (N~r)/2 amplitude, as a function 
of beam momentum. 
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Fig. aa. lhe mass spectrum for M(AT-) from the reaction Z-p -+&r-p at 

24.6 Gevlc. The curve is a Monte Carlo calculation of the De& 
diagram in the figure. 

Fig. 89. l%e cross-section for 7ip +T-T-T+P a6 a function of energy. 

Fig. 90. !Be (3s) and (2~) effective mass distributions from the CEPJi IETP 

experiment on T-P .+T-T+T-p at 40 GeV/c. 

Fig. 91. The effective mass distribution of (T+T-T-) from 200 GeV/c 

lr-p +lr+?T-lr-p. 

Fig. 92. Tne energy dependence of the cross-section for dp +Alp where Al 

is defined as 1000 < M(3a) < 1200 MeV. L > OK 
Fig. 93. The energy dependence of the cross-section for ~-p -+A2p where A2 

is defined as 1200 < M(~K) < 1400 MeV. L > PIJ 

Fig. 94. Tne energy dependence of the cross-section for T-P +A3p where A 3 
is defined as 1500 < M(3s) < 1800 MeV. I- > fa 

Fig. 95. The cross sections for the process KEp +Ki?jL~-p, and the subprocess 
<p + Q"p as a function of energy. 

Fig. 96. !Ibe cross section for K+p + Q+p as 6, function of energy for six 
regions of (Km) m&ss from (X200-1500) MeV. 

Fig. 97. !Che maas distribution for the K*.rr system from the reaction 

K+p -+K*(89O)nii at 5 G&/c ana 8.2 &V/C for I = l/2 and I = 3/2 
amplitudes separately. 

Fig. 98. The ratio of the cross sections K"p +Q"p and .?"p + 6"~ as 
a function of momentum. 

Fig. 99. The energy dependence of the 37~ amplitudes in the Al region. 

Fig. 100. lhe differential cross section for r-p *A-p at 40 GeV/c. lbe 
Al region is here defined as the l+ spin parity amplitude for 

1.215 < M(37~) 5 1.415 GeV. 

Fig. 101. The energy dependence of the 3~ amplitudes in the A2 region. 

Fig. 102. The differential cross-section for a-p +A2p (A2 -a~") at 25 and 

40 GeV/c. 

Fig. 103. 'iBe energy dependence of the 3s amplitudes in the A 3 
region. 

Fig. 104. 'Ihe differential cross-section for T-P +A3p (A3 +fa) at 40 GeV/c. 

Fig. 105. The energy dependence of the Km amplitudes in the Q and L regions. 

Fig. 106. Scatter plot of M(Ks) 

?oPT-,o and I?'r,,+v- 

Fig. 107. The production angular 

K-p -aK-prr+~-, ~~.'PT-T' 

- - 
against M(K?r!r) for K p -aK PT+T-, 

at 14 GeV/c. 

distribution for low ma6 (Km) in 

and t?'n?r+~- at 14 GeV/c. 

Fig. X8. Exponential slope parameter, b, averaged over the interval 

4 < 'beam < I2 GeV/c and plotted versus the m&s8 of the K*(890)'~- 

(squares) and the m&s6 of the ~*(890)-T+ (circles). 

Fig. log. The mass dependence of the slope of the differential cross-SeCtiOn 

in K-p + Q-p at 14 GeV/c. 

Fig. 110. Y&e differential cross-section for K+p and K-p elastic scattering 

at 13 GeV/c. 

Fig. 111. The four-momentum transfer distribution, do/at', for the reaction 

~'p +(d$~-)p in the pion-dissociation sector. 

Fig. 112. Differential cross sections for K"p -+Q"p (squares) and ?p +?p 

(circles) over the momentum range 4 to I2 GeV/c. ?he scale of the 
ordinate is determined for neutral Q mesons decaying into K~T'T-. 
'Ihe curves result from the following exponential fits: 

$$ (Q'p) = 0.83 exp(5.9t') mb/GeV2, 

$$ (pp) = 1.36 exp(p.7t.l) mb/Ge?. 

Fig. 113. 'Ihe differential cross-section for K'p -aQ'p at energies around 
14 .GeV/c . 

Fig. 114. Reaction yp +pv+, at 9.3 Gev. Results of fits of the form 

in the interval 0.O2 < t 5 0.5 Ge 3. 'Ihe ccrve is from the S3ding 

model. 
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'ig. 115. Mass spectra showing the elastic peak and the threshold enhancement 
for inelastic diffraction, for a, K, N and y reactions. 

pig. 116. Plot of the slope of the differential cross-section, b, versus 

l/(M2 - mz), where M is the mass of the jr, KIIT or NT diffractively 
produced systems, and Mi is the sum of the constituent masses. 

pig. 117. Schematic diagram for the peripheral production of PT'T- system, 

pig. 118. Diagrams for the s-channel and t-channel production of (NTT) 

systems. 

Fig. 119. Eass spectrum for (NIT) in TN +TITN at 16 GeV/c. 

'ig. 120. Mass spectrum for (NTT) in ?N +I?(NTT) at 10 GeV/c. 

'ig. 121. Mass spectrum for (NTIT) in ?(N~nr) collisions; 10 GeV/c K- and 

(6-z) GeV/c KE. 

'ig. 122. Density matrix elements for p" photoproduction by polarized photons 
at 9.3 GeV. 

'ig. 123. The momentum transfer dependence of the matrix element, plo, for 

Tp +p"p at 2.8, 4.7 and 9.3 GeV. This matrix element indicates 
the presence of a spin flip amplitude. 

'ig. 124. The momentum transfer dependence of the flip and non-flip isoscalar 

TN scattering amplitudes at 6 GeV/c. 

'ig. 125. Schematic diagrams for elastic 6, K- and p scattering and diffractive 
production of $(1690). 

'ig. 126. The ratio of the elastic cross-section to the N*(1690) production 

cross-section for incident T-, K- and 5 at 8, 16 ~ev/c, as a f'unction 

of momentum transfer. 

'ig. l27. A schematic of diffractive reactions studied in a test of factorization. 

The ratios 5-R4 refer to the rat-io of the cross-section for the re- 
actions when the top two vertices (pion and proton elastic scattering) 
are joined successively to the bottom four vertices representing proton 
diffraction into a proton plus zero, one, two or three pions respec- 
tively, e.g. 

Fig. U8. A schematic of diffractive resctions studied in a test of factorization. 

Y&e ratios Rl, %, 3 refers to the ratio of the cross-sections when 

each of the upper vertices (y +p, p +p, B +a) is connected with the 
two lower vertices representing proton diffraction into a proton or 8. 

(pm) system, respectively. 

Fig. 129. Schematic diagrams for the diffractive production of (pn'~-) systems 

in m +(~TT)s and pp +(prrrr)p reactions. 

Fig. 130. The invariant cross-section for the process K-p +pX- .st 25 and 40 
Gev/c as a function of x. 

Fig. 131. (a) The invariant cross-section d2,/dt dx, as a function of x, for 

the process pp +pX. The cross-section exhibits & large haup for 

0.2 < x < .8 which is characteristic of the multiparticle production 
region, then a minimum for 0.8 < x < .9, followed by a sharp peak for 

0.9 < x < 1.0 which is characteristic of diffractive quasi-elastic 
scattering shown diagmmma tically in (b). 

Fig. 132. 'Ibe missing mass distribution in pp +pX at 100, 200, 300 and 400 

GeV/c, as measured in the NAL BBC experiments. 

Fig. 133. The invariant cross-section for pp +pX as .a function of x for the 

100 and 400 GeV/c NAL IBC experiments. 

Fig. 134. The missing ma66 distribution in pp -+pX at 200 GeV/c as measured in 

the NAL HEE experiment. 

Fig. 135. The missing mass distribution in pp +pX at 200 G~V/C for each 

topology as measured in the 200 GeV/c NAL HBC experiment. 

Fig. 136. The missing mass distribution in pp -,pX at the ISR, as measured by 

the ACGHT group. 

Fig. 137. 'he missing mass distribution in pp +pX at 300 GeV/c as measured 

by the Columbia-Stony Brook collaboration. 

Fig. 138. The invariant cross-section for pp +pX as a function of x, for 

100 5 x 5 750 Ge P , as measured by the Rutgers-Imperial College 

group. Data is presented in four t intervals. 

Fig. 139. The invariant cross-section for pp +pX as a function of s -l/2 

for x = 0.83 and 0.91. 
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Fig. 140. 

Fig. 141. 

Fig. 142. 

Fig. 143. 

Fig. 144. 

Fig. 145. 

Fig. 146. 

Fig. 147. 

Fig. 148. 

Fig. 149. 

Fig. 150. 

Fig. 151. 

Fig. 152. 

Fig. 153. 

Fig. 3.54. 

Fig. 155. 

The ims.riant cmss-secti0n for pp +pX as a function of x, for a 

fixed PT = 0.8 I%'?. rata comes from the CKIN group at the ISR, 
for & = 22, 31 and 45 GeV. 

!?he differential cross-section, do/dt, for pp *pX, as a function 
of the missing mass. Cata comes from the 200 GeV/c NAL HPC experiment. 

The t-dependence for the production of the diffraction peak in 

pp +pX at high energies. 

Missing mass spectra for pp +pX as measured by the CHLM group at 

the ISR at s = 930 Ge I? and for t = 0.35, 0.55, 1.05 and 1.75 Ge $. 

Missing mass distribution at fixed t for &-= 53 GeV, as measured 

by the CKLM group at the ISR. Data is presented for t = 1.2 and 

1.4 Ge v2. 

Differential cross-section for pp +pX for x = 0.87 and for 6 = 108 

and 752 GeV2. 

Differential cross-section for pp +pX for missing mass squared 

- 40 GeV*. 

Differential cross-section for pp +pX for 8 5 P<_14Gev2. 

2 Pr distributions for small missing masses in pp +pX. Preliminary 
data from the 100, 400 GeVjc ML HEE experiments. 

(a,b) Pi distribution for large missing masses in pp +pX. Preliminary 
data from the 100, 400 G&/c ML HEC experiments. 

The effective mass distribution of (T'T-T-) from 200 GeV/c 
T p -3 Tr-IT-lr+*. 

The effective mass distribution for (p~'~-r) from 200 GeV/c T-P ' - - -rPTlTT 

Schematic diagram for the pion dissociation process. 

The missing mass squared distribution for v-p +pX at 200 GeV/c. 

The missing mass squared distribution for ?rp +pX at 200 GeV/c. 

The missing mass squared distribution, topology by topology, for 
T-P +pX at 200 G&/c. 

Fig. 156. 

Fig. 157. 

Fig. 158. 

Fig. 159. 

Fig. 160. 

Fig. 161. 

Fig. 162. 

Fig. 163. 

Fig. 164. 

Fig. 165. 

Fig. 166. 

Fig. 167. 

The momentum transfer distribution, topology by topology, for 

v-p +pX at 200 GeV/c. 

The momentum transfer distribution for T-P +pX at 200 GeV/c 

for 2 V2and10<M2<<OGeV2. < 10 Ge 

Comparison between x dependences for p inclusive invariant 
cross sections in pp interactions and s-p interactions. The relative 

normalization is arbitrary, 0:s = 551 Ge j, f Pl" .15 GeV/c (CR-N); 
2 . .:s = 380 GeV , integrated over pl (Berkeley NAL). 

The charged particle multiplicity distribution for T-P +anything 

(did curve), and for pion diffraction (dashed curve). 

Schematic diagram for the diffractive dissociation of an incident 

particle with a system of charged multiplicity, n, and mass M. 

The mean charged multiplicity for all events, T-P +anything, is 
plotted against the square of the available center of mass energy, 
while the multiplicity of the diffractive system in ?r-p +Xp, 
is plotted against the square of the mass of the diffractive system. 

The rapidity spectrum of a "typical" diffractive event. 

The rapidity spectrum of a "typical" non-diffractive event. 

Eehaviour of the density of events as a function of t and c(i) 

(see text) for various charged multiplicities at C.M. energy 
&= 62.8 GeV. The curves are polynomial interpolation of the 

points of equal density. 

(a,b) Three dimensional representation of the density of events as 

a function of { and g(t) for various charged multiplicities at 
the two extreme ISR energies. 

Eerevshchikov et al. data on x dependence of the r-p interactions 

of two incident momenta and two p intervals. %Pinc = k2 GeV/c, 

o:pinc = 51 GeV/c. 

The x-distribution for the fast forward ?rt in 7;'~ -,T+ + (anything) 

at 8 GeV/c. me distribution is broken down topology by topology. 



'ig. 168. 'ihe x-distribution for the fast forward T' in r+p +T' + (anything) 

at 16 GeV/c. The distribution is broken down topology by topology. 

'ig. 169. The x-distribution for the fast forward T' in r'p +T+ + (anything) 

at 23 GeV/c . The distribution is broken down topology by topology. 

'lg. 170. The x-distribution for the forward 7~' in the reactions 7;;? +~T'TT', 

w+~+ at 8, 16 ana 23 &V/C. 

'ig. 171. The x-distribution for the forward T+ and backward proton in the 

reaction IT+P +T+T~T+~ at 8, 16 and 23 GeV/c. 

'ig. 172. The invariant cross-section, da/at, for the proton dissociation in 

r'p +T' + (anything) at 8, 16 and 23 G~V/C. Tne ISR pp data are 
also shown, after being extrapolated to small pI and adjusted for 

the difference in r'p and pp total cross-sections (see text for 
details). 

'ig. 173. The missing mass distribution in T-P +px- at 25 and 40 GeV/c. 

'ig. 174. Ihe invariant cross-section a.s a function of x for T-P +pX- at 25 and 

and 40 GeV/c. 

'ig. 175. The slope of the differential cross-section for r-p +pX- at 25 e.nd 

40 GeV/c a8 a function of x. 

'ig. 176. The missing mass distribution in K-p +pX- at 25 and 40 GeV/c. 

'ig. 177. The slope of the production angular distribution in K-p +pX- at 
25 and 40 GeV/c BS a function of x. 

yg. 178. The invariant cross-section for the process K-p +pX- at 25 and 

40 GeV/c as a function of x. 

'ig. 179. The triple Regge calculation of the single particle inclusive cross- 
section. (a) is the forward scattering amplitude for the single 
particle inclusive process, and (b) represents diagrammatically 
the square of that amplitude, (c) is the triple Regge generalization 
of diagram (b). 

pig. 180. A qualitative map of the P and x dependence of the triple Regge terms 

for inclusive proton scattering. 

Fig. 181. Plot of GpPP and G PPR 
versus t for the five fits discussed in the 

text. For all fits GppR(t) li es within the shaded band. The shape 

and magnitude of Gppp(t) depends on the fit assumption. 

Fig. 182. Inclusive proton spectra at various ISR energies at fixed pT versus x. 

Fig. 183. The effective meson trajectory obtained in a triple Regge analysis 

of the data on pp -+pX at s = 1995 Ge v2. 

Fig. 184. The mass dependence of the forward scattering peak in pp + pX showing 
the decomposition into contributions arising from leading protons 

and from fragmentation protons. 

Fig. 185. Inelastic proton spectra at various ISR energies and fixed pT at 

high x. 

Fig. 186. The effective Pomeron trajectory obtained by fitting the PPP triple 

Regge term to the pp +pX data at s = 551 and 930 Ge? (after 
correction for elastic contamination, resolution and the contribution 
of fragmentation protons). The crosses (x), indicate the Pomeron 
trajectory obtained from an analysis of elastic pp scattering at the 
same energies. 

Fig. 187. The differential cross-section for pp +pX for 8 <_ l? 5 14 Ge'?. 

Fig. 188. The PPP cross-section obtained from ISR data at 0.15 < t < 1.25 Ge $, 

extrapolated down to t * 0.056 GeV2 and compared to the NAL inelastic 

pp scattering data. TIE PPP term was obtained in the mass interval 
5<M2<30GeV2. 

Fig. 189. !lBe momentum transfer distribution for r-p -apX at 200 GeV/c for 

P $ < 10 Ge and 10 < M2 < 40 GeV2. 

Fig. 190. !t'he differential cross-section, do/dt, for pp +pX, as e. function 
of the missing mass. Data comes from the 200 GeV/c NAL E%! experiment. 

Fig. 191. The gT dependence of protons from the NAL EE!C experiments. 0, 102, 
405 GeV/c for four prong or higher multiplicities and with 0.9 < x < 0.6; l 

102, 205, 303, 405 GeV/c for four prong events with P 3. < 10 Ge 

Fig. 192. The inelastic overlap function calculated from the 1500 GeV/c proton- 
proton data. 
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Fig. 193. The impact structure of proton-proton scattering at 4s = 53 GeV. 

Shown are Im h,,(s,b) and the inelastic and elastic overlap functions 
extracted from the experimental data. The "black disc limit" indi- 
cates the maximrrm value of the inelastic overleap function allowed 
by unitarity (i.e., lCC$ absorption). 

Fig. 194. a) Inelastic overlap functions calculated from the 4s = 21, 31,44, 

and 53 GeV ISR data. 
b) Difference of the 48 = 53 and 31 GeV inelastic overlap functions, 

CG inel(s,b), showing that the cross-section increase comes from a rather 

narrow region around 1 fermi. 

Fig. 195. The decomposition of the imaginary part of the elastic scattering 

amplitude into its components assuming t-channel helicity consecration 
in inehstic diffraction. 

Fig. 196. Schematic illustration of the origin of the mass slope correlation 

in the peripheral model of inelastic diffraction. 
a) P small. The non-flip amplitude dominates, faking a steep 
exponential t-dependence in the small t region. 
b) M2 large. Severe.1 helicity amplitudes contribute appreciably. 
The differential cross-section 18 much flatter than in the CBS a). 

Fig. 197. Differential cross-section for the process pp +pnlr' at 19 G&/c 

for (tm') masses in the interval (1200-1300) MeV. The curves 
illustrate the possible peripheral diffraction mechanism: -*-*- 

is the contribution of the imaginary part of the non-flip amplitude 
given by Ae at IJo(R&t)12; z--- is the smooth background (Bebt) 
which includes real contributions. 

Fig. 198. a) 'Ihe differential cross-section, do/&', for np +(p~-)p at 
12.5 GeV/c for m(pr-) less than l200 MeV. 
b) The differential cross-section, do/dt', for np +(p~-)p at 
12.5 W/c for four ranges of (PIT-) mass--(a) M(~T-) < 1300 Mev, 
(b) 1300 < M(pr-) < 1450 Me'?, (c) 1450 < M(pr;) < 1600 MeV, 
(d) 1600 < M(pr-) < 1800 MeV. 

Fig. 199. Illustrations of how central channels opening up may generate a 
peripheral LGinel(s,b). (a) The inelastic cross-section stays 
constant but the elastic differential cross-section shrinks. 

G&s,b) decreases at b = 0 and increases at b > 1 fermi. 

(b) Same as for (a) but some new channels open up causing the inelastic 
cross-section to rise. The new processes are central, and they com- 

pensate the decrease of Ginel(s, b = 0) due to shrinkage. AS a 
result the cross-section increase appears peripheral. (cl !rk 
difference of the two overlap functions of (b). 

Fig. 200. Tne energy dependence of the total cross-section at high energy-- 

which way will it go? 
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THE PHENOMXNOLffiY OF DIFFRACTIVE PRODUCTION 

OF THREE+PION SYSTEMS 

LorelLa Jones 

University of Illinois 
Urbana, Illinois 61801 

INTRODUCTION 

me reaction lip +~-r',-p has diffractive energy dependence when 

the mass of the three-pion system is above 1 GeV. Descriptions of the dynam- 

ics of this diffraction depend strongly, however, on whether or not the three 

pions originated from a resonance. Hence it is important to be able to sep- 

arate the resonant and non-resonant production in the data. 

As emphasized by Roger Cashmore, a resonance tends to produce both a 

bunp in the mass spectrum and rapid phase variation in one partial wave as - 

the mass moves through the region of the bump. Hence resonance separation 

requires a proper partial wave analysis of the produced 3-pion system. This 

was first carried out in an isobar model (FIT) by Ascoli and coworkers 1) who 
o- o- use as basis states E r, p r and f"T- in various orbital angular momenta. 

(Their E 0 is a very broad ?r+r- s-wave located somewhere near the p O.1 

Their analysis program has also been applied by other groups; it is the pro- 

gram used to obtain the intensities and phases of three-pion partial waves 

shown by certain of the lecturers in this summer school. 

Some of their many results may be summarized as follows: 

i) The % is a pi D-wave with resonant phase variation 

ii) The Al is a PT S-wave without resonant phase variation 

iii) !&he A 
3 

is an fa S-wave without resonant phase variation 

iv) Tnere are some sizable ET waves, also without resonant phases 

v) Relative phases between all the large partial xaves are determined as 

a function of $T 

vi) The Al is predominantly t channel helicity zero. 

These detailed results must now be confronted by phenomenologists. 

In today's seminar I will neglect the resonant A2, and focus on the 

various important non-resonant waves in the system. My message will be that 

a Reggeized 1) Deck model of relatively naive form works well for these non- 

resonant waves, and helps one to understand both their magnitudes and their 

phases. In the following section I outline the model, and point out certain 

features which bear directly On the partial waves obtained from it. 

Deck Model 

The basic idea in the Deck model is that pion exchange is important, 

and we think we can calculate it quantitatively. Deck') pointed out that the 

process depicted in Fig. 1 (where the hatched blob represents elastic r-p 

scattering) will produce a par- state with diffractive energy dependence, 

with rather a lot of events in the Al region just above the p?r threshold. 

Since his article, a number of improvements have been made which in- 

crease agreement with the data and allow comparison with final states other 

than POT-. These are: 

i) Reggeization of the pion exchange (Eerger 1) ) 

ii) Inclusion of all ~'r- partial waves from m phase shift analysis, 

instead of having just a p" resonance 

iii) Inclusion of ~-7; scattering 

iv) Symmetrization in the identical ?r- particles, once improvement ii) has 

escalated the situation from a 3 body final state to a 4 body final 

state. 

Tne diagrams to be calculated in this improved model are shown in Fig. 2. Here 

the hatched blobs represent m and w elastic scattering, and the row of 

)ww[ represents exchange of a Reggeized pion. 

At this stage, the actual calculation proceeds by Monte Carlo methods. 

However, certain of the important properties of the model can be understood 

with much less labor. In particular, one can show fairly simply that S waves 
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and M = 0 (t-channelhelicity zero) will predominate in the 31r final state. 

Let e1 *nd IP~ be the angles of the outgoing bachelor IT-, in the 

3s rest frame, using the incident beam as the z axis. ('he bachelor 71 

is the one tiich is not in a IT'?T- resonance.) Then the partial wave ampli- 

tudes may be computed as 

A very clever argument invented by Stodolsky 1) can be used to show 

that the original Deck model amplitude has little dependence on these angles. 

Consider the process illustrated in Fig. 1. For high incident energy, when 

the p"lr- mass is held at a low value (1 or 2 GeV), the energy in the IT-P 

system es.* get quite large. In most of the phase space available, therefore, 

the i~-p scattering can be replaced by Pomeron exchange without serious loss. 

Furthermore, the amplitude for Pomeron exchange is peaked sharply forward; a 

large part of the overall process will thus occur near t = 0 (see Fig. 3). 

At t = 0, the amplitude for Pomeron exchange is up to numerical factors) 

sT$O. 
Hence we see that 

(2) 
Here p and LY are nuclear spin indices, J is the total spin of the 317 

system, S is the spin of the r'r- system, and L is the orbital angular 

momentum between this dipion and the bachelor ?r-. M is the z projection 

of the total spin J. Using the arguments of Gottfried and Jackson, 1) M is 

also the t channelhelicity of the 37~ system, 

To begin with, disregard the factor ds (6). 
OP 

It is then clear that 

if the amplitude has little el or & dependence, L = 0 and M = 0 will 

dominate. !J3e rotation by 6 is from the ?;'?; rest frame into the 3~ 

rest frame. It depends on 81, but not on 'pl. However, near the ET, P?T, 

or fa thresholds this dependence on Q1 is not very strong, and our conclu- 

sion that L = 0, M = 0 should dominate is unaffected. Thus, in order that 

the model have some hope of describing the Al and A 
3 

regions, which data 

analysis shows are predominantly S-waves with t channel helicity zero, it 

must have little f3 and cp dependence. More realistically, the amplitude 

should have little dependence on these angles in those regions of phase space 

where it is large. 

Nox one must write out S and t 
Topo x in terms of 81 and (pl 

(for S 
T'opO 

and S large), to see how Eq. 2 behaves. In general this is 

laborious, and here is where Stodolsky's trick comes in. First calculate 

the kinematic boundary in t at the $p vertex, using an approtimate formula 

good for large s 

2 
(* 

ttin ir - 3a 
- *J 2 2z 

S2 
(3) 

The same formula can be used for the two body subreaction with ?ro and p. 

in the final state, if we treat t as the mass 2 
x 

of an incoming particle 

(and assume S 
To'opo 

large). 

Equating these expressions, we find 
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-. 

S 
=opo S 

2 =;22 
P - 5 *3lr - lJ 

(5) 

One can see from the right hand side that there is no dependence on el and 

'pl' so L = 0 and M = 0 ought to dominate in the partial wave analysis of 

o- the model (at least near E s , par- and f?r ' - threshold). These general 

conclusions are still true for the Reggeized and "improved" version, even 

though the arguments above are more approximate for this case. 

Another important feature of the model is that the Reggeization pro- 

vides a signature factor (exp[-iKXr(t,)] + 1). Because tx has anmlar 

dependence (tx = rni t S23 - 2EA(MJIT - El) + 2plpA cos e1 in the 3n rest 

frame, where 2 and 3 are outgoing TT'S in the dipion, 1 is the outgoing 

bachelor r, and A is the incident TT), different partial waves will auto- 

matically have different phases. These phases, first discussed by Froggatt 

and I@.nft,l) will vary from calculation to calculation depending on the over- 

dl e 1 dependence of the amplitudes inserted. They can be compared with 

the detailed phases extracted from the data; this puts the model to a much 

more sensitive test than simply exaztning mass distributions. 

A group at Illinois (Ascoli, Cutler, Jones, Kruse, Wberts, Weinstein 

and Wyld) have recently done a detailed comparison of the updated Deck model 

with the data. We used all the contributions shown in Fig. 2, and inserted 

the best available ?nr and fl scattering amplitudes for the blobs. The 

agreement of both magnitudes and phases for most non-resonant partial waves 

is quite good, and hence the distributions in most mass variables are well 

reproduced. In particular the Al effect seems to be adequately described. 

I will restrain myself from showing slides of all possible distributions, and 

just refer you to our papers (phys. Rev. ~3, p. 3894; Phys. Rev. D9, p. 1963) 

for details. Instead of dwelling overlong on this one calculation, let me 

devote the rest of this seminar to some more general (and doubtless more im- 

pxtant) questions in 37~ phenomenology. 

Recent Studies of the Fart&l Wave Analysis 

'ke 3~ partial wave analysis program has been subjected to a good 

deal of close scrutiny lately, and rightfully so. All OUT conclusions about 

the dynamics of the system hinge on the validity of the partial wave analysis; 

the question of Al phase variation in particular is of great interest. One 

can scrutinize the particular details of the Ascoli fitting routine; or, on a 

more general level, one can argue that the early implementations of isobar 

model analysis are hopelessly crude in that they neglect 3 body unitarity. 

Let us look at each of these in turn. 

Ihe isobar analysis is really written with the production and decay 

of resonances in mind. A state with spin J and projection M is produced, 

and it then decays into a dipion of spin S and a bachelor ?r in relative 

orbital angular momentum L. 'Ihe two contributions shown in Fig. 4 are added 

for Bose symmetrization in the identical ~7 particles. In order to have a 

finite number of parameters in FIT, various approximations are made, some of 

which are motivated by resonance considerations. One might wonder whether 

the program can adequately handle the sort of manifestly non-resonant situation 

given by the Deck model. 

The Deck model can be used to test FIT, because it can be explicitly 

partial wave analyzed according to Eq. 1. The procedure is as follows: 

i) Calculate the partial waves explicitly from the foxmuls. above 

ii) Generate Monte Carlo data from the model, and run this data through FIT. 

We find from the explicit partial waves that not all the approximations made 

in FIT are valid in the Deck model, although they are valid for the larger 

putial waves over much of the region. However despite the complications 

introduced by many small waves, the results of FIT agree well with the ex- 

plicit partial wave analysis for the big waves. We conclude that FIT handles 

Deck-like sitwtions well, even though it was written with resonances in mind. 

Hence there seems to be little point in worrying about changing details of 

the Ascoli fitting program; if some feature of the analysis is wrong it is 
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probably in the original concept of the simple isobar model. 

All of the information on relative phases of the partial waves de- 

pends, in the isobar method, on the asswnption that the dipion mass dependence 

of the overall amplitude is properly approximated by Breit-Wigners. However, 

we know that this parametrization does not account for all T+T- interactionsj 

and hence it cannot provide a completely accurate description of the T+IT- 

cuts in the 377 amplitude. The reason is that rescattering, of the sort 

shown in Fig. 5, should be included. One might therefore desire to have a 

fitting function which automatically has unitarity, in the sense that it has 

the correct dipion cuts. Fits using such a function might possibly be better 

in the same way that the (q, e 2i61 - 1)/2i parametrization is good for 

partial waves of two-body processes. 

Two groups have been working on the implementation of these ideas: 

L.B.L.: Goradia, Lasinski, !Cabak, and Smadja 

Illinois: Ascoli and Wyld 

Although the two groups use rather different language in discussing their 

methods, both end up with the same equation and both have essentially the same 

results .2) Basically, they formulate an integral equation which the amplitude 

must satisfy if it has the correct discontinuity across the dipion cuts. 'hey 

then solve this equation with isobar model input to find new states. These 

new states then include the rescattering, and fitting with these states 

essentially strips away the rescattering to get at the original production 

process. 

Let Rl, % be the old fitting functions, and Sl, S2 the new 

fitting functions, where the index I indicates that the last scattering 
+ 

occurred between TT~ and B . Then the integral equations to be solved may 

be written schematically as 

sl = s + itlp AaS 
(6) 

s2 = 5 + it2p A21Sl 

Here ti is the riiri scattering amplitude, p is a phase space, and Aij 

is a recoupling coefficient in momentum and isospin space. The rescattering 

tends to '?mix" states of a given J and parity, so that a state produced as 

a l+ps S-wave may emergy as a ~+ET P-wave. 

Fits with these new functions yield the following results: 2) 

I) The A2 doee exhibit a resonant phase 

ii) The Al bump is still in the l+p~ S-wave 

iii) 5%~ Al does not exhibit a resonant phase. 

Essentially, therefore, the qualitative conclusions are unchanged from those 

obtained with the original isobar model. Of course, numerous details of the 

results are' different. 

The fitters are somewhat unhappy with the new functions because the 

X2 is not as good as with the old isobar model, and not all the distributions 

are reproduced as well by the fit. Interpretation of these facts is still up 

in the air. A complete understanding of these "unitaryll fits has not yet been 

reached, but it is unlikely that any further major improvement of the analysis 

can be achieved in the near future. 

Where do we go from here? 

Work is in progress by the fitters to understand the role of their 

various approximations, both using the isobar states and the new "unitarized" 

states. This will inevitably lead to refinements in the results; at present 

no one seems to believe that it will lead to a qualitative change in the 

results. 

Theories like the Deck model, which have no rescattering, should really 

be compared with the results of the new analysis rather than the old. A 
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cursory look at this indicates that agreement will improve in some regards 

and decrease in others, but that the overall impression of agreement will 

remain. 

Similar experimental and theoretical remarks apply to the Q 

region. 

References 

1. All work mentioned in this seminar, except that discussed in Reference 2, 

is properly referenced in two papers by Ascoli et al.: PhyS. Rev. M, -- 

p. 3894; and Phys. Rev. I@, p. 1963. Needless to say, these papers also 

contain references to other important work which failed to find its way 

into the talk. T%e interested reader is thus urged to peruse the reference 

lists in the above papers (whether he reads the texts or not!). 

2. Phase shifters are notoriously cautious and it is difficult to obtain 

written copies of their work until they have checked everything many 

times. This reference, therefore, of necessity refers to extant but un- 

published work. 

Both Ascoli and Lasinski gave talks at the Meson Resonance Conference, 

Boston, 1974. Hence some of their work should appear in the proceedings 

of this conference. 

Both groups are also preparing & longer version for publication. 

As further fitting of data will probably be done before these papers 

reach the physical sheet, the time of publication is uncertain. 
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Fig. 3. Labelling of Variables for Eq. 2. 
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OUTLINE 

AMPLITUDE SlWJCTURE IN TWO- AND QUASI-TWO-BODY PROCESSES 

Michel Davier 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California $305 

INTRODUCTION 

I. GENERALITIES AND COMPLE333 EXTPACTION OF AMPLITUDES FROM DATA 

1. 

2. 

3. 

4. 

Generalities on amplitudes (spinology), 

(a) helicity formalism 

(b) invariant amplitudes 

(c) density matrix and polarizations 

(d) observables in 0 
- If 

F -aO- 2 
+ 

scattering 

IIN Amplitudes at 6 GeV/c 

(a) data and observable6 

b) amplitude extraction 

(c) experimental problems 

Cd) results 

(e) future of complete amplitudes analy6e8 

mucharge Exchange Reactions 

(a) decay angular distribution of m unstable bsryon 

(b) application to amplitude analysis 

Generalization to Several Spins; Resonance Production and Joint-Decay 

Distributions 

(a) transversity amplitudes 

b) naturality of exchange 

(c) applications 

(a) joint-decay distributions; statistical tensors 

(e) polarized proton beams 
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II. GENERAL FFATUIIES OF MCWNGE PROCESSES 

1. Kinematic Dependence 

(a) s dependence 

(b) t dependence and helicity structure 

2. Quantum Numbers Exchanged 

(a) allowed exchange 

(b) exotic exchanges 

Cc) su(3) symmetry 

3. Phases 

(a) t = 0 

b) t#O 

III. EXTRACTING AMPLITUDES FROM INCOMPLETE DATA 

1. Projection of one amplitude: exchanges in elastic scattering 

(a) cmi3s-over effect 

(b) polarizations 

2. Making Use of Analyticity Properties of Amplitudes 

(a) application of dispersion relations to fl amplitude analyses 

(b) derivative anslyticity relations 

(c) application of derivative analyticity relations to amplitude 

analyses 

IV. DUALITY AND ABSORPTION 

1. Duality 

(a) two descriptions of 2-body scattering 

(b) relating low and high energy descriptions: FESR 

(c) two-component duality 

(d) application of duality: exchange degeneracy 

(e) duality and quarks 

(f) semi-local duality ? 

2. Absorption 

(a) classical absorption 

(b) absorption zeroes vs signature zeroes 

(c) due.1 absorption 

V. MODELS AND SPECUIdTIONS 

1. Models for Two-Body Scattering 

(e.) dual absorptive model 

(b) strong absorption models 

2. Speculations on the Pomeron 

(a) Pomeron from high energy pp data 

(b) Can we extract Irn P(s,O) at lower s? 

(c) application to m -+ @p 

(a) implications for exchange degeneracy 
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I - GENERALITIES AND COMPLETE EXTRACTION OF AMPLITUDE? FROMMT4 

INTRODUCTION 

In this series of lectures we are concerned with the experimental 

determination of two-body amplitudes and their phenomenology. Even though 

two-body and quasi-two-body processes represent only a small fraction of 

the total interaction, their study is very important in several respects: 

(1) They provide the simplest laboratory for studying the exchange 

forces between hadrons in a rather controllable way: energies, spins, particle 

identities and quantum numbers can be varied separately. 

(2) Two-body processes constitute a testing ground for--as well as 

inducing--theoretical ideas in hadron dynamics. Concepts like Regge poles, 

duality, absorption have been brought forward in trying to understand ex- 

change processes. In turn these new ideas have been applied to more complex 

situations involving multiparticle final states. 

(3) Even at super-high energies where the cross sections for known 

identifiable two-body processes will become very small--except for elastic 

scattering--we still hope two-body scattering ideas will be relevant. Indeed 

in a multiparticle event subenergies will still be rather small and two-body 

exchanges will probably still happen. 

In these lectures we would like to focus our interest on the structure 

of the amplitudes. Rather than discussing two-body scattering data in a 

general way, we are going to translate and summarize our knowledge in terns 

of amplitudes. In the first chapters, we shall try to make as little refer- 

ence as possible to our sometimes preconceived theoretical ideas, but instead 

try to extract the maximum unbiased information from the data. 

1. Generalities on Amplitudes (Spinoloa) 

(a) Helicity formalism. 1,2 

Consider the scattering process 

1+2+J+4 

where each particle is labelled by a set of quantum numbers: hi (hellcity), 

Ji (spin), qi (Prity), ml (mass) and si (momentum). The naturality 5 is 

defined by: 

5 = (-1)J r) = 77) 

where T is the signature. The process can be described in either the s or 

the t channel with helicity amplitudes: 

s-channel 

1 3 

S----t 

x 2 4 

t-channel i t I 3 

x 2 '4 

t 
Fhjh&A2(sJt) 

The amplitudes can be decomposed into amplitudes with well-defined total 

angular momentum J using the Jacob-Wick expansion: 



leading to: 

s(J) 
to,+) = F (25 + 1) FA3A4Alh2 e 

At high energy amplitudes are built up by exchanges in the 

t(u) channel. Usually a given exchange is characterized by a set of 

quantum numbers: q, T, SU(3) quantum numbers, etc. . . . . Although t-channel 

helicity amplitudes show simple relations for a well-defined t-channel ex- 

change, s-channel amplitudes are more widely used now: kinematic constraints 

are easier to take into account in pole models and more importantly they 

probably have a more physical interpretation. 

-exchange of well-defined natumlity in the t-channel3 

Consider s.n exchange with quantum nmbers J, q inthe t-channel. 

Parity conservation at vertex 2LJ reads: 

t(J) 
Fhhhh 

3iS2 

= ~2ylw 
J+J4-J2 t(J) 

FA h -A -A 
3i 4 2 

t 
FA ,, h h = (2J + 1) dhJ&) F;(;jA h 

3iL2 3i42 

h = h -A ) 
i 3 

j.l= h -h 
2 4 

At hrgh energy (to leading order in 8) we have 

A -A 
F:Ahh = IlwJ y12 C-1) 4 2 C-1) 

3i42 

where 5 = ~)(-l)~ 1s the exchanged naturality. A similar relation holds for 

the i3J vertex. An'important consequence of these formulae is that amplitudes 

with opposite naturality do not interfere in the unpolarized differential 

cross section. 

To see the effect on the (J,q) exchange on s-channel amplitudes, 

one must make use of the s-t crossing matrix. After some more non-leading 

terms in s are dropped, the following relations hold: 

= L l12q+(-1) 
J4-J2 ( -,)h4-h2 Fs 

h3-h4-Al-$ + o# 

J3-Jl (-1) 
h -A 

= 5 y13(-l) 
3 IFS 

-h3A4 - hlh2 + a;) 

As an example, let us consider the processes IIN -+pN or pN*. 

At the np vertex, for high energies, one has the relation 

h 
F;hh = 

~42 
-I C-1) ’ F:,ph4h2 

so that 5 = +l exchanges contribute only to helicities ho = + 1, while 

5 = -1 exchanges populate all helicities ho = 0, 2 1. 

-nmnber of independent helicity amplitudes 

Restrictions on helicity amplitudes are imposed by invariance 

under discrete symmetries: parity, time-reversal, charge conjugation. 

d$et) = (-l)h d;,(dt) + C(i) 

(CO8 Bt 41) 
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parity 

Fhjh4v2 
= '11'12q3'14(-l) 

Jl+J2+J3+J4 (-1) A1+h2+h3+h4 F -As-h4-Al-$ 

time reversal (restricts the number of amplitudes only for elastic scattering 

charge conjugation (for charge-conjugate reactions like & -+k) 

Fh3"4"lh2 = El"2E3E4 Fh4A3?Ql 

Using these rules enables one to determine the number of inde- 

pendent amplitudes required to describe a given process: a few simple 

examples are shown in Table 1. A general remark is that except for reactions 

of the type 0 $ + 0 ,$ with only 2 amplitudes, the number of amplitudes 

for processes of interest is large (2 4) and consequently the separation 

of individual amplitudes is a somewhat tedious experimental task. 

(b) Invariant amplitudes 

Helicity amplitudes refer explicitly to the centre-of-mass frame. 

When calculating scattering amplitudes from field theory, or when studying 

analytic properties, it is useful to write down explicitly invariant amplitudes. 

If no spins are involved, the only Lorentz scalars are s and 

t (u) and the scattering amplitude is a scaLar 

T = f(s,t) 

When some of the mrticles have spin, Lorentz invariants I, 

can be constructed from 4-vectors and spin tensors: 

where the fn are invariant amplitudes. Invariant amplitudes are related 

linearly to helicity amplitudes: 

where (h) represents a set of helicities and the 
Aw 

are known kinematic 

functions. 

-example: O- $++ O- $+ elastic scattering. 

Using the 2 Dirac spinors, it is possible to form 2 invariants 

and the general form of the amplitudes in terms of the 2 invariant amplitudes 

A and B is: 

A(s,t) + ; B(s,t) t& + fi41 3 ~2 

Assuming ml = m3 << m2 = m4 = M, one canexpressthe s-channelhelicity 

amplitudes in terms of the invariant amplitudes A and B: 

F A + - ++ (v &)B 1 
F 'M 6 M 4Mv - t + 4M2 4Mv - t 

+- = - sin z 
4lT.L -[ 2.G 2M2 

A+TB 1 
where v = (6+)/4&T and the following notation has been used: 

F C- ZF 
o-:0; 

do -= 
dt $ [lF++12 + iF+-12l 

Athigh s and for t not too large, we have the simpler 

expressions: 

T = c fn,(s,t) I n n 



so that 

i 

F - M(A+vB)=A~t 
++ - 4lr.K 4*& 

42 
F v + M)A + MvB] -> -A 

6 +- sa&- 

= 2 [b++12 + bf+-121 

The amplitudes A end B ere free of kinematic singularities 

end possess simple properties under s-u crossing. Defining the amplitudes 

A(+) end B(') for TN scattering: 

A(+) = $ [A(Is = $) + 2A(Is = $1 =&A& = 0) 

A(-) =$ [A(Is = ;) - A(Is = $1 = ;A(It = 1) 

(end similar relations for B(+)), s-u crossing means: 

A(')(s,t,u) = + A(+)(u,t,s) 

B(+)(s,t,u) = i B(+)(u,t,s) 

(c) Density matrices end polarizations 

The initial state is described by e density matrix pi with 

Tr pi = 1. If no polarization is observed in the final state, the differ- 

ential cross section is expressed by 

For unpolarized initial state pi is a diagonal unit matrix multiplied by 

e normalization constant: 

T 
pL = 12Jl + lj(2J2 + 1) 

!Ihe polarization information on the final state is described by 

.a density matrix of: 

(dq pf = 1 &iM+ 
zz 2 

S 

The expectation value of en observable A referring to the 

spins of the final state particles is given by: 

(A) =n(pfn) 
Tr Pf 

For the construction of density matrices describing polarization 

states for arbitrary spins,see Ref. 4. 

-examples. 

o&o& the density matrix describing the nucleon polarization 

has the general form p = $ [I + ?- 21 corresponding to e polarization Pi 

of the nucleon along the axis i 

R.Ly) 
pi=.+ - 

-P 
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11 11 gyH-+HF: the most general density matrix with correlations will involve 

the tensor products between I, 21 and G2: 

P=+ [ I + qz @ I + g2*2 @ I + c 
i,j=x,y,z 

"ij'i @ 'j] 

(d) observables in O- $ 
+ 

+O- g 
+ 

scattering (such es fl +nN, fi -+Kc, 

i?N -BM, etc.) 

The amplitude is a 2 X 2 matrix in helicity space end parity 

conservation gives the form: 

1 
<- -M e-i(“/2) h2 +- M e-i(~/2) ++ M .i(9/2) 

++ 

M= 
M ei(@/2) 

f- 

(axes convention; 0 = 0) 

cos 4 = 9.2 

Pi = ; 

[ 

l+P; Pi$iPi 
Y 

P:+iPi 
Y 

1-P' 

where ? i is the initial 

polarization vector of the 

nucleon. It is straightforward, 

although tedious, to compute the 3 components of polarization of the final 

baryon. Defining: 
do 
x = -$ [b++12 + b$-~21 

p=- 
2 Im M+ MT- 

h++12 + bf+,_12 

A’ = 
IM++12 - lM+-12 

lM++i2 + bf+-12 

R' = - 
2Re M++ MT- 

lM++i2 + b+-12 

one finds the final polarization components: 

P', Tr of =A'Pi + Pi[R' cos e - P sin e] + Pi [R' sin 6 + P cos $1 

PE TX- pf = - R'P; + A'P; + A'Pi 
Y 

PC Tr of = Pi + P - Pi sin b 

with Tr of =l-PP:sine+PP~cose. 

For & stable baryon, polarization can be experimentally analyzed 

in a rescattering experiment: in this case only the transverse component of 

the polarization is measured end one must consider different orientations of 

the target polarization in order to separate A' end R'. Usually the 

rotated A and R parameters (corresponding to the transverse polarization) 

are measured: 

A =A' sin ei + R' CDS 8: 

(lab angle) 
R=-A'cos$ + R' sin g L 

4 

For small t, 6: -ST/~ end A +A', R +R'. P, A and R are 

not 3 independent observebles since P2 + R2 + A2 = 1 end in general P 

end R measurements will suffice, except for the sign of A. Figure 1 shows 

schematically the experimental configurations in the scattering plane to 

measure A and R when only transverse polarization is measured for the 

outgoing baryon. 



2. niX Amplitudes at 6 GeV/c 

This represents the only case where all observables have been measured, 

therefore permitting the separation of all helicity amplitudes. It is worth 

looking with some detail since it represents, in principle, the only unbiased 

source of information on individual amplitudes. 

(a) Data and obser?rables 

In addition to helicity subscripts, we will use the isospin exchange 

in the t-channel It to label amplitudes. We have: 

F(dp +T"P, = F" T Fl 

F(?rp -?~'n) = fi F1 

In terms of "particle" exchange F" corresponds to (Pomeron + f) 

exchange while Fl corresponds to p exchange. To describe the 3 'reactions, 

one needs 4 independent amplitudes, therefore 8 real numbers for each t 

value. Tne observables for each reaction exe: 

-P g = 2 Im(F++ F;-) 

-R E = [/F++12 -lF+-12] cos BL + 2 Re(F++ Fz-) sin BL 

A $ = [lF++12 - lF+-/21 cos eL - 2 Re(F++ Ft-) cos BL 

The measured obserrables around PL = 6 GeV are: 5-u 

drr+ do- dc" 
dt' dt' dt 

p+ , 

R+ , 

p- , 
R- 

(A-) 

PO 

(b) Amplitude extraction 

For t i 0 amplitudes can be determined up to an overall phase. 

Since FT+ is the dominant diffractive amplitude, thus mostly imaginary, 

all other amplitudes sre projected on F0 ++. Tnerefore at each t value 

there are 7 unknown real numbers to be determined: F;+, (PO+- )\I > (F;- )I~ 
1 ($+)I[, (Ft+)L, (F:-),I and (F+-)L (where 1, II denotes component 

orthogona1,collinee.r to Fy+). It follows that: 

F,O+ 

+ - 
is mostly determined from g+g- 

(F:-)II is mostly determined from R- 

(F:- )I is mostly determined from P+ $ + P- & 

(F:+)ll 

+ 
is mostly determined from do- - - g dt 

and (Ft-)L is mostly determined from 
+ 

P + da dt - P - da- dt 

could be determined from R-(do-/dt) - R+(do*/dt), but data 
t 

on R is not good enough to proceed in this way: so that, in practice, 

the remaining two amplitudes (Ft-)ll and (Ft-)L are determined by two 

quadratic equations involving do'/dt snd PO. 

In general two solutions for the F0 amplitades sre found, whereas 
1 4 solutions emerge for (F,)L and ($)I/. Continuity from t = 0 together 

with the sign of R-(do-/dt) - R+(du+/dt) seem sufficient to remove the 

ambiguities. At larger t values (-t > 0.5 Ge$) ambiguities appear again 

because of insufficient information on R. 

(c) Experimental problems 

Besides the difficult experiments to measure R' (it is significant 

that only one experimental group has performed that experiment so far), the 

determination of the TN amplitudes suffer from uncertainties of experimental 

origin. 
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da- do+ --it is hard to measure dt - dt and hence F(t+)li. 

At 6 GeV, da-/dt * 40 eTeTt and do+/dt - 37 = 7'1t (in mb/GeV2), giving a 

cross-over zero around tc = - 0.15 Ge v2 ( approximately the zero of 

(F1 ) ). If normalization uncertainties are 5$, then the error in location 
++ II 

of t c is ate = 0.1 Gej?, namely, its accurate position is not known. 

This situation has been improved by the experiment of Ambats et al. who 

claimed a normalization uncertainty of + 1.5% between ?r+p and r-p,. 

giving a Ate error of + .D25 Ge P. 

--measured values of P" are spread over a wide range outside 
11 

quoted errors. Argonne points are typically lower (- 0.2) than CERN points 10 

(- 0.4). This particularly affects the determination of (Ft+)l as its Zero 

can be moved from t = -0.25 to -0.5 Ge $ according to what PO measure- 

ments are used. 

(d) Results 
13-16 There have been several analyses, all using essentially the 

s*me sets of data. We are going to discuss the latest analysis5 by the 

Argonne group since it uses their neQ data on dO'/dt. 

--It = 0 exchange (P + f) (Fig. 2). 

FcO+ is large and is the dominant amplitude; it is roughly expo- 

nential in t. FO,- is small, but predominantly imaginary so that s-channel 

helicity is approximately conserved. To express the deviation in a quanti- 

tative way, it is useful to consider the invariant amplitudes A and A': 

214 IFye1 

G @+I 
= 0.32 + 0.04, 0.10 < -t < 0.5 GeV2 

!TLhe same ratio computed from t-channelhelicity amplitudes yields a value 

of 1.5. 

It is important to note that P and f exchanges cannot be 

separated since they have the same quantum numbers and consequently they 

always appear together in the obsembles. It is only through the energy 

dependence of the F" amplitudes over a large 6 range that P and f 

could be disentangled; unfortunately we only have 6 GeV so far. 

--It = 1 exchange (p), (Fig. 3). 

(F' ) ++ II has a zero at -t - 0.15 GeV2 and is strongly peripheral. 

A Bessel-Fourier transformation into impact parameter space shows a broad 

peak centered at about 1 f. (Ft+jL also g oes through zero in the same t 

range, although at a larger value than (Ft+),,: it occurs at -t - 0.25 GeV2 

with the Argonne polarization data 11 while it moves out to -t - 0.4 Ge? 

with the CERN data. 10 The modulus of F:- vanishes around -t - 0.6 Ge$. 

Ambiguities preclude from making a precise conclusion above 0.6: in 

particular (although there is a hint in the data) it is not possible 

to see if there is a single zero in (F~-)II and a double zero in (F+-)I 

as would be expected from a p Regge pole amplitude. !l%e behaviour of the 

phase difference between Fs), and Ff- is interesting since it is essen- 

tially independent of t for -t < 0.4 Gel?: if p exchange is Regge- 

behaved in the helicity-flip amplitude, it therefore means that the phase 

of Fy+ is changing significantly with t. This is important to keep in 

mind since FR is the reference amplitude and consequently the correspondence 

between L and I/ components and real and imaginary parts is unfortunately 

not straightforward. 

(e) Future of complete amplitude analyses 

In TN scattering, R- measurements already exist at 16 and 

40 GeV,17 but PO measurements do not extend beyond 11 GeV. At 16 GeV 

some information can be obtained on F" amplitudes: 
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294 IF:- 1 
&. lFR, = o-26 c 0.06 

i.e. not very much smaller than the value at 6 GeV. 

In KN and ?N scattering there are 8 independent amplitudes 

and therefore 15 unknown quantities (+ overall phase). Eight independent 

observable6 have so far been measured around 8 GeV: 

g (K+P) $f (K;P -+K;P) 

2 (K-p +pn) s (K"n +K'p) 

P(K+p) P(K-p +?n) 

while a measurement of P(K+n + K'p) is underway at CEFN. So at least 

6 other experiments are needed to measure: 

g (K'n) 

P(K;P +K;P) 

P(K'n) 

R(K+p) 

!?he complete extraction of KN and G amplitudes at high energy will 

remain a dream still for some time. 

3. 'Sypercharge Exchange Reactions 

In hypercharge exchange processes the final baryon is a A', 

z+ 
* 

ora Y decaying into A or C. It is therefore possible to measure 

all the components of its polarization vector with the observation of the 

angular distribution of the weak decay (we exclude final states with co 

which decays electromagnetically). Examples of such processes are: 

++ 
~+p +K C 

K-p +?pA" 

T+P 
+ *+ 

-rK Y1 

L- > c+Tr", a"Tr+ 

(a) Decay angular distribution of an unstable baryon 

Generally the decay angular 

distribution is given by: 

where pi;;', is the density matrix 

for the finalstate plarization in the 

Y reaction (p refers to the helicity 

x state of the particles accompanying 

the hyperon in the final state). 

For a weak two-body decay (A0 +pxr-, Cf +plr') where 3 can be taken along 

the final proton, the elements Ah' B take the following form: 

&B=+ 1 + cx cos B) 

B-g -3 = & (1 - cx CDS e) 

B-S--S =gei6 sin 0 

-L i B2 2 =2=-i@ 
4Tr 

sin 0 

where CI is the decay parameter in the plrity-violating weak decay, measuring 

the interference between S and P waves: 

a. = 2 Re S*P 

IsI2 + I4 
2 



Using the expression used previously for the density matrix elements 

of a spin l/2 particle expressed in terms of the polarization vector, we get 

where Py is the hyperon polarization vector. Btperimentally the situation 

is hopeful: 

a(~' +p~-) = 0.65 

a@+ -4 pro, =-0.98 ( 

a@ -iAT-) =-0.39 

a@ .+*,O, vo.44 

a@+ -+nd) = 0.07 j 

(b) Application to amplitude analysis 

(very good analyzers) 

(useless ) 

For an unpolarized target experiment, the obsel?ration of the hyperon decay 

measwes the P parameter as defined ir~Section 1: 

w(s,m) = rT (1 + a P sin m sin e) 

If the target is polarized along the direction 2 with components 

Pi = Pi cos Jr, Pi 
Y 

= Pi sin $,Pi with respect to the reaction plane ($ 

azimuthal angle), then the complete observation of the angular distribution 

of the decay measures all three polarization parameters P, R', A': 

WC@, +I 

= & [1+ a$ sin Q sin 6 + P(a sin 0 sin e + c&) 

+ R'(CYPi co6 0 - CL?: co6 $ sin e) + A'(cY.?~ cos 0 sin f3 + OFi z CO6 e)l 

We note that P can be measured in two ways: observation of the hyperon decay 

with an unpolarized target 18 or left-right asymmetry with a polarized target. 19 

It is ccmforting that the two experiments agree well. 

An experiment designed to measure R' in the process ~-p +K"Ao 

is planned at CERN. 20 Contrary to R' in elastic scattering, it is expected 

that R can be large in non-diffractive exchange reactions and therefore Will 

be very useful to sort out the underlying amplitudes. 

4. Generalization to Several Spins; Resonance Production and Joint-Decay 

Distributions 

When higher-spin Particles are produced, or when several particles in the 

final state have spin, the number of observables increases sharply and can exceed 

the number of independent real amplitudes. For example, in the process r-p + 

(spin J meson)’ + A0 where the ho and meson decays are observed the number of 

observable6 with unpolarized target is 2(J+1)(2J+l) while there are only 

4(25+1)-l independent real amplitudes. There is therefore some degree of re- 

dundancy in the measurements and it becomes extremely important to understand 

the relations between all the observables and to define a set of independent 

observable6 tc be measured with a minimum use of polarized targets. 

Our purpose in this section is not to derive results In detail but rather 

to present a formalism to describe any two-body process with any spins in order 

to reconstruct amplitudes from experimental data in the most efficient way. 

(a) Transversity amplitudes21-23 

When several particles with spin are involved it becomes more interesting 

to use the transversity--rather than helicity--quantizatlon axes. 



reaction plane and 

center-of-mass of 

particle 3 

The following reference frames are defined: 

(X 6 y 2s) s-channel 

I 
helicity axes 

(x t y Zt) t-channel 

(2 XsY) s-channel 
S 

transversity axes 
(2 t Xt Y 1 t-channel 

In the s-channelhelicity frame the third axis is collinear to the 

momentum (a )I z3), while they are orthogonal (2 J.4) in the transversity 

frame. Going from helicity to transversity frames only involves a rotation 

with Euler angles ~12, 1r/2 and -IT/~. 

As we shall see, transversity amplitudes are very useful because they 

are much more closely related to the measured observable6 than helicity amplitudes: 

in particular the redundancy between several measurements is easier to see and 

it is simple to define a set of independent measurements, both problems not 

being very transparent in the helicity quantization. 

-parity conservation: ?I 
helicity amplitudes . . . 

T r... transversity amplitudes 

B”3h4hl?$ = +lF- H-h3-h4-hl-h2 

for unpolarized initial state "3% - (-1) 
4'4h; - 

=o if q(-1) 
T1e2-T3-T4 = -1 

for unpolarized initial state ?A _ p, T, - 
44 

o for T~-T;+T,+-T~ odd 

-naturality conserving amplitudes 

With linear combination of helicity amplitudes, one can define natWalitY 

amplitudes to leading order in s as in Section 1 of this chapter. 

with ~(h h ) = 17 rl =xp[idv + J3 - A3 + Jl - hl)l 
31 13 

and v = 0 for boson exchange, v = l/2 for baryon exchange. 

Let us write down the transformation from helicity to transversity 

amplitudes: 

T 52 
Tj'4T1T2 

where R is the rotation R($ , $, - $1 

1 =- 2 c D b D, % 
J J2 J3 J4 

%V3h4 3A4hlh2 
+&lv3 exp[idv + Jl-hl+J3-h3)l 

x H-h3A4-Al$ 1 
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We therefore have the important result that T amplitudes are naturality- 

conserving amplitudes with 

In conclusion, transversity amplitudes are simpler to work with because 

of the parity relations (some amplitudes are plainly zero) and they correspond 

to well-defined naturality in the t channel. These properties make them closer 

to experimental data. However, helicity amplitudes have a more physical inter- 

pretation and one needs to know all of the transversity amplitudes to reconstmct - 

any one of the helicity amplitudes. 

(b) Naturality of exchangeg3 

Since transversity amplitudes correspond to pure naturality exchange, 

they constitute the simplest description of a two-body process in terms of t 

or u channel exchanges. More practically, they tell us what measurements are 

needed to extract the different naturalities and their interference. 

The transversity density matrix elements for particle 3 when the Initial 

state is unpolarized, are: 

* 
P r3r; = ii c 

'lhT4 
TT3r4'lr2 T ' '3%'1'2 

and the only non-zero elements have r3-T$ even. 

-With unpolarized initial state and measurement of one final polarization, 

all observable6 can be expressed by (superscript = naturality) 

and are therefore insensitive to the relative phase between opposite naturalities. 

-When particle lhas spin 0, p, T, is the form 
33 

c T;T; or c T;T-* 
P 

and isolates the exchanged naturality. In the hellcity description, one has 

to combine 4\3h; elements to project out a given exchanged naturality. 

-If both particles 1 and 3 have spins, the naturality separation requires 

polarization of 1 and analysis of polarization of 3 through its decay or in a 

rescattering experiment. When particle 3 decays strongly some polarization 

information is obtained and allows the naturality separation when a meson is 

produced (1 = meson, 3 = meson) but not when a baryon is produced (1 = meson, 

3 = baryon decaying strongly). 

-To measure the interference between opposite naturality exchanges requires 

polarization measurements at opposity vertices; for example, measurement of the 

double density matrix elements T4T4 
p 

T3r; 
with T~-T; and ~~-7; both even. 

These results are summarized below in a pictorial way@with diagrams 

representing incoming and outgoing particles~ lines can be reversed at the same 

vertex. All pw.-ticles have spin (otherwise indicated) and a vertical arrow has 

the meaning of a polarization measurement (either incoming polarized particle, 

or measurement of an outgoing particle polar.ization) 

measurements amplitudes measured 

I 
spin 0 

'-I 

---I+ incoherent sum of naturalities 

($I2 + b;12 

+I+ 
opposite naturalities separation 

1$12 

199 



t 

(c) Applications 

(1) 

spin 0 

---I+ 

spin 1 

I 

interference between opposite 
naturalities 

A complication which should be accounted for is due to the presence of 

an S-wave TT which interferes with the p amplitudes. An example Of the J- 

amplitude separation is shown in Fig. 4. 

+ -* 
TAT P 

rN -a TN 

The naturallty separation is particularly clear in this reaction where 

it is achieved by using linearly polarized photons. 

Exchanged naturality 
Transversity Helicity 

density matrix elanents density matrix elements 

5 = 111Q3 
T 

PO0 
H H 

Pll + 5-l 

5 = -?lq3 
T T 

Pll + Pl-1 
H 

PO0 

T 
R= Pl-1 

T 
Im Pl-1 

H H 
31 - Pl-1 

H 
Re PlO 

rN -3 pN 

5 = +1 

5 = -1 

(P”u + P;-l) g 

H do 
PO0 TE 

"cu, A 'I 
2 ~2z~, 1) 

"IF exchange 
(helicity 0) 

(P& - “T” exchange 
(helicity 1) 

5=+1 =dt (Pr perpendicular to the scattering plane) 

5=-l 

The separation is shown in Fig. 5 for up +?pp at 6 GeV. Extensive measurements 

of that typehavebeen carried out for I$ photoproduction (yii -PITN and 

rN +rA). 
24 

(2) 

+I+ 
A well-known example is vector meson photoproduction with linearly 

polarized photons where the meson decay measures the amount of natural and 

unnatural parity exchange. 25 This is particularly striking in the case of 

(0 production where around 5 GeV both ir exchange and diffraction occur in 

similar magnitude and can be fully separated by this technique. 
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(3) 

-T+ 
t I 

An experiment of this type is in progress at CE RIP with ?;pt +p'n. 

lh upper vertex determines the exchanged naturality while correlations between 

proton polarization and p" decay distributions relate to the interference be- 

tween opposite naturafities. Even ignoring the S-wave problem this experiment 

still does not measure all the helicity amplitudes in this process (see next 

section) since the p decay is parity-conserving. 

(d) Joint-decay distributions, statistical tensors 

If both pwticles 3 and 4 decay, the joint-decay distribution takes a 
LL' simple form when expressed in terms of statistical tensors tMM,: 

W(‘J3qe4”4) = c F3(L3) F4(L4) tMp 5 
LjL4 

L3L4 uLj(e303) Yp4*4) 

M3M4 

where F(L) are known coefficients depending of the spin on the decaying 

particle and its decay mode. If mrity is conserved in the decay, then 

F(L) = 0 for L odd: an important consequence is that strong decays only 

measure even polarization tensors (even L 
3 

and even L4). Experimentally 

the elements t;: are measured by evaluating moments: 

L3L4 F3(L3) F4(L4) t”3M4 = 

lIhe statistical tensors are related to the double density matrix 

elements: 

h A’ 
PA3A7 = c l-1) 

J3+hj-L3+J4+A4-L4 L3L4 

44 LJL4 

(Jj - h3; J3h;ILjM3)(J4-h4;J4hlj L4M4)tM M 
34 

M4”4 

and have the following properties 

normalization 

hermicity 

helicity frame 
parity 

too 1 
O" =&2J3+1)(2J1;tl) 

( 1 L3L4 *= 
tM3M4 

(-1) $+M4 tL3L4 

-3-M4 

transversity frame L3L4 _ 0 
tM3M4 - "s 

+M 4 odd. 

Let us see in one example how to use statistical tensors in the trans- 

versity frame. 

?r+p +K+Y*( 1385) 

I- > ho,+ 
L- > PT- 

Four amplitudes are necessary to describe this reaction and therefore 

we have seven unknown quantities to solve for at each t value. Here, since 

A decays weakly, both L odd and even components of $ are non-zero; how- 

ever due to parity conservation in the production all M = 1 components vanish 

in the transversity frame. SO there are 6 non-vanishing tensor elements: 
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To relate the amplitudes let us come back to the density matrix elements 

in the transversity frame. 'Ibe following elements 

are linear combinations of the t L o components and yields the magnitude of the 

4 amplitudes while the elements 

P$ -; = py* 2 = '-J 9*1 1 
2 -5 -5 -5 

are linear combinations of the complex ti components and measure two of the 

three relative phases. Without a polarized target it is thus possible to 

separate amplitudes up to an overall phase and to the phase between amplitudes 

with opposite target transversities. 

Tfie previous conclusion is quite general: with an unpolarized target 

one can at best (when all components of polarizations are measured, in a weak 

decay) measure N-l real amplitudes with an arbitrary overall phase convention 

when N numbers are needed to extract all the amplitudes: this last unmeasured 

phase necessitates the use of a polarized target. When a polarized target is 

used, many more observables can be measured, providing constraints for the 

amplitude determination. The situation is summarized in 'LBble 2 for typical 

resctions.27 Reactions like TN +K*A and IIN +ICY* should be very helpful 

in our understanding of strong amplitudes: analyses of the type described pre- 

viously will involve high-statistics experiments with large solid-angle systems 

to observe the decay correlations. 

(e) polarized proton beams 

Experiments are being done at ANL with P. polarized proton beam; in 

particular elastic scattering in pure spin states has been measured. 28 To 

understand We meaning of the data in terms of the more familiar heliclty empli- 

tudes29-30 it 

states Isz = 

Is necessary to transfoorm spin states lsy = 2 i) into heliclty 

2;): 

Proton-proton elastic scattering is described by 5 helicity amplitudes: 

Hl = (++jMj++) 1 
% = (++(MI--) overall no helicity flip 

H3 = (+-lMl+-) ] 

H4‘= (+-IMj-+) double helicity flip 

HS = (++lMl+-) single helicity flip 

Cne can then express the pure spin states cross-sections shown in Fig. 6 in terms 

of the amplitudes Hi or even better in terms of linear combinations of H 

isolating pure naturality exchange. It is then Casy to show that g (tt A), 

g (44 + ++) and g (t+ + t+) only involve natural prity exchange, while 

g (tt -) $4) and g (t+ + 4t) correspond to pure unnatural prity exchange. 
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Thedataat6GeVand t=0.5GeV2 h s ows that these unnatural parity cross 

sections are small, typically lO$ or less of the dominant natural parity 

cross sections. 

TABLE1 

Number of helicity amplitudes 
no discrete 

Reaction type sylrrmetry using P using T using c using Ppc 

lrN+lTN 4 2 2 2 

TN +ITA 8 4 4 

rN +rN 16 8 10 6 

TN -apN I.2 6 6 

NN*NN 16 a 10 5 

F7N-tF-Y 16 0 12 6 

TABLE 2 

measwed 1 . . , . \ otxemaoles { + consmauns j Number 
of real 

Number of independent unpolarized polarized 
Reaction type amplitudes obsenrables 

target 
target transverse longitudinal 

lrN+llN 

w 

PN 

K+h 

TA 
KY* 

PA 

K+Y* 

2 3 1 
2 3 2 

6 11 4 

6 11 10(+2) 

4 7 4 

4 7 6(+2) 
I.2 23 20 

12 23 22(+26) 

2 

3(+3) 

10 

=(+25) 

7(+3) 

7(+17) 

23(+33) 

23(+=1) 

II - GENERALFYUTURES OFEXCHANGEPROXSSES 

We shall discuss almost exclusively non-diffractive two-body processes, 

althou& in sane ce.ses the diffractive part cannot be easily separated out, such 

as in elastic scattering for It = 0 exchange. We are going to summarize prop- 

erties of data on two-body scattering in order to gather information on the 

behaviour of the underlying amplitudes. We have seen that OUT knowledge of single 

amplitudes is rather limited; on the other hand there is a wealth of tits on 

cross sections and polarizations which can cast some light on our problem. 

1. Kinematic Dependence 

(a) s dependence 

-4 = 0 

Very useful information on the behaviour at t = 0 of the imaginary 

parts of the amplitudes can be extracted from tote.1 cross section measurements. 

These measurements are rather complete--lr', K' 
f 

and p on protons and neutrons-- 

and cover a wide range of 6 values from threshold to - 400 122. It is use- 

ful to project each forward amplitude onto t-channel quantum numbers, conveniently 

labelled by mrticles' names: 

bT(TrkP) = PT + fT F PTT 

oT(K+p) = PK + fK : "k 5 PK + 4( 

bT(dn) = PK + fK 7 UJK + 4( - AK 

oT(p'p) = pp + f : wp 7 P 
P P 

+ Ap 

oT(p'n) = pp + f 7 0) + P - A 
P P-P P 
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Defining sums and differences 

A(Ap) = oT(A-P) - oT(Atp) 

Z(Ap) = cT(A-p) f ~,(A+P) 

we can express the pure t-channel exchanges io terms of the measured cross 

sections: 

2PT = 4mrp) 

4pK = A(KP) - A(Kn) 

3 = A(Kp) + A(Kn) 

: 

and similar relations for p'N 

4"k = I - C(Kn) 

Experimental problems are obvious in these extractions: systematic differences 

between experiments show up, particularly in different energy regions; also 

neutron data comes from deuterium experiments where a Glauber correction has 

to be applied. In regard to the last remark it is interesting that a better 

determination of the s dependence of yc and w 
P 

comes from A(Kd) and 

f$pd) directly. We are not going to discuss here f and P exchanges 

since they cannot be separated simply; we shall come back to this problem in 

the last chapter. 

The s-dependence of the imaginary part of exchange amplitudes at 

t = 0 has some remarkable properties: 

(i) from well measured differences, amplitudes are seen to be power- 

behaved in s (or p,) after a few oscillations at low energies. Energies 

around 3-4 GeV are typical lower limits for the simple power behaviour. We 

parameterize the 6 dependence in the form 

for example P, = 6, 6 

$1 

(ii) all the exponents ai that can be isolated cluster around 0.5 

(2 0.1). Accurate values depend sensitively on low 8 cut-offs, uncertainties 

in neutron data and resolution of discrepancies between experiments. Values 

found using the data of Ref. 31-35 are shown in Table 3. A typical example of 

the power behaviour is displayed in Fig. 7 with A(Kd) and &pd). 

(iii) Same exchanges in different processes show a close similztrity 

in their energy dependence. In particular C$ is equal to X$ within errors 

and is also consistent with the badly determined a:. Also the very accurately 

determined Ju and 4", are the same, as can be seen directly in Fig. 7. One 

therefore concludes that,within the limited range of processes and exchanges 

afforded by elastic scattering, the power behaviour of a given t-channel ex- 

change is not affected in a strong way by s-channel effects (like absorption) 

at t=o. 

The s dependence of amplitudes at t = 0 can also be obtained from 

measurements on differential cross sections, (do/at) t-O. Experimentally this _ 

is not always easy: if a recoil particle has to be observed, data will only 

exist up to some minimum ltl value and extrapolation at t = 0 will be 

necessary with the corresponding uncertainties; if, on the other hand, no recoil 

is observed t = 0 can be easily reached, if not smeared by resolution effects 

or not affected by Coulomb effects, such as in elastic scattering where Coulomb 

scattering (r exchange) has to be subtracted out. When well-defined t-channel 

quantum numbers can be isolated, information is thus obtained on the 6 depen- 

dence of the modulus of the corresponding amplitude and is therefore complementary 

to the information contained in total cross-sections. 

Experimental determinations of the s dependence of some (dU/dt)t=O 
_ s2cX-2 are shown in Table 4. An immediate conclusion when results in Tables 

3 and 4 are compared is that (Y values obtained from (do/dt)t=O and uT are 

consistent with one another when the same exchange is involved: this is very 

important because it means that the phase of the amplitude at t=o is 

essentially energy-independent. This, as we shall see in Chapter 3, is a 

ConseWence of analy'Cicity in energy and power behaviour. 
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Is-t-a on differential cross sections have traditionally been parametrized 

using: 

"8 lope " 
do -= 
at A(s) eB(s)t 

'Ia " * =As2aeff (tb2 
eff at 

The experience has been that s dependence of slopes is not 

particularly illuminating for exchange reactions and the aeff approach 

has been in general more fruitful. However we would like to warn against an 

abusive use of a eff: if, in non-diffractive reactions, it seems that cross 

sections are reasonably well power-behaved (see ?rp +~'n in Fig. 8), it is 

not the case in elastic scattering and aeff determinations depend on the 

energy range considered and can be very misleading. 

'BE most reliable o"eff determination comes from T-P +~'n over a 

very wide 8 range (with the new ML &ta3' ) and shows a simple linear function 

aerr( t )36 

ap(t) = (.56 + .m) + C.97 + .04)t 

out to t values around -1.5 Ge? (Fig. 9). 

The situation is not so pretty for the case of A2 exchange where a 

crude linear behaviour seems to exist for 0 > t > -0.5 Ce? but larger It.1 

data is too imprecise to pin down unambiguously the s dependence. Inforlmtion 

on the o aeff is still very primitive. 

(b) t dependence and helicity structure 

Exchange amplitudes generally exhibit an exponential fall-off in t, 

but even some of the crudest characteristics of the t dependence are determined 

by the relative amount of the different helicity amplitudes present in a given 

process. 

In the forward t region the presence of a peak or a turn-over 

imediately informs us of the relative importance of overall helicity non-flip 

amplitudes and flip amplitudes at small t, since flip amplitudes have to 

vanish kine!natically at t = 0. We observe: 

?r-p 4 1pn: 

K-p +i?'n: 

K+n -+K'p: 

-+K;P: 

p exchange mostly helicity flip (confirmed by 
complete amplitude analysis) 

P> A2 mostly helicity flip 

(= p++ and Im A++ given by oT data and are 
smallat t=O) 

from the peak at t = 0, cu mostly helicity no-flip. 

Dips for t f 0 (or absence of dip) provide direct information on 

helicity amplitudes, although it is hard to translate the facts into statements 

on real or imaginary ~132s of the amplitudes: 

-from TN amplitudes at 6 GeV, both Re p+- and Im p+- vanish for 

-t- 0.6 Ge $ producing a dip in do/dt (IT-~ +~'n). 

- do/dt(T-p + qn) is dcminated by A+- but no dip is seen at 0.6, 

so that we do not know simply the behavior of Re A+- and Im A+- there. 

-It = 0 exchange can be isolated in TN +pN: 

(El 
It'0 

= $ [s (Tr-P -'P-p) + !$ (Tr+p +p+p, - $! (7;p -+pOn, 3 

and it is seen to be almost completely natural parity exchange as given by 

(& + py-l)(ds/dt)I =o. 
t 

It strongly resembles ]P+-/~ (Fig. 10) with a forward 

turnover and a dip at 0.6 Ge $. It therefore tells us that, because of the 

helicity flip at the upper vertex, o exchange is predominantly non-flip at 

fi vertex--a fact we already knew from <p +K;p forward peak. 
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A summary of our qualitative knowledge on dominant helicity couplings 

to baryon-antibaryon is indicated in Table 5. 

One interesting phenomenological exercise is to follow the position 

of these dips as a function of s. It is remarkable that over a very large 6 

range above a few Ge j! their position is essentially at fixed t (or u) al- 

though the accuracy to detect a change is somewhat limited: for example the 

dip at 0.6 GeV2 in r-p +?'r'n is rather well measured but it is difficult 

to assign a precise value to its location at high energies because of the steep 

fall-off of dojdt. There are a few cases where a systematic dip displacement 

has been observed, all of them in the low energy region. One remarkable example 

is given by the dip at u - -0.2 Ge 2 in 7r'p backward Scattering 40 (see 

Fig. 11) which shows, not a fixed u position, but a fixed u' = u - urnin. 

More interestingly, the same phenomenon is seen in the crossed channel process 

pp +a-T+ where the dip appears at larger lul but is well accounted for by 

a constant u' position. Such an observation is consistent with a geometrical 

origin of this dip since u' is directly related to the scattering angle, 

IU’I - p2e2. 

Measurements of polarization are very useful tools to study the helicity 

structure of amplitudes. However, besides elastic scattering, data are rather 

poor and most of the time not wry informative regarding '6 dependence. Gn 

the other hand the s dependence has a characteristic feature: 

(I) for elastic processes, fixed-t polarization is generally power- 

behaved in s corresponding to the interference between a dominant (P + f),, 

amplitude slowly varying in s with a flip amplitude (p+-, A+-) falling 

like a power. 

(ii) for inelastic processes, P is rather independent of energy, as 

expected from the interference between helicity amplitudes falling with S at 

similar rates. 

2. bntum Numbers Exchanged 

It is an experimental fact that exchange amplitudes are connected 

with the existence of particles with the ssme quantum numbers; In particular 

when t or u-channel quantum numbers do not correspond to any known particle 

the corresponding amplitudes are always small. 

(a) Allowed exchange 

We have so far mainly talked about (P + f), p, 0) and A2 exchanges. 

Let us complete here a rapid survey of meson exchange. 

K" exchange 

A large amount of data exist on hypercharge exchange cross sections and 

polarizations. Of particular importance, line-reversed reactions such as 

have been measured over a wide range of energies. Unfortunately the measurements 

are not complete yet for an amplitude analysis and only model-dependent studies 

have been made. An interesting fact is the absence of a forward turn-over, 

such as in T-P +T'II and r-p -Ann indicating that these reactions will be 

in principle very powerful tools to study non-flip amplitude with < and 

exchange, and compare them with their non-strange SU( 3) partners. 

lr exchan@: 

Good spectrometer data exist at 6 GeV 41 and 17 GeV. 26 Unnatural 

parity exchange as given by 

iS thought to be dominated by T exchange. As seen in Fig. l2, so shows no 

shrinkage between 6 and 17 GeV for 0 < -t < 0.5 GeV2 corresponding to a 

constant a - 0. eff - 
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Natura1parityexchange 

also has o"eff : 0 for -t < 0.15 GeV2 but seems to behave more like expected 

A2 exchange at larger ItI although aeff is a bit too large there. 

Good data relevant to IT exchange exist on KN +K*N at 6 41 and 13 

GeV,42 24 T photoproduction ytN -9r'N, and ~*'a (mostly natural parity ex- 

change) and np +pn, :p -+&. 

Reactions with IT exchange are rather complex in the fact they 

generally involve many exchanges,and it is clear that the underlying amplitudes 

can only be uncovered by complete measurements. There is however good evidence 

here that the identification of t-channel quantum numbers with "pure" exchanges 

fails, presumably because of large absorption correction to T exchange, spilling 

over to 5 = +l amplitudes. Of course the proximity of the K pole from t = 0 

makes IT exchange something unique where some of the Regge character shown by 

other exchanges may be washed out. For practical purposes it is very important 

to understand TT exchange since it is one of the most productive areas of 

meson spectroscopy through no and Ka scattering, and improved knowledge of 

the T exchange amplitudes will consolidate the process of extrapolating to 

the pion pole. 

Paryon exchange 

L&e experimental situation is rather poor since cross sections in the 

backward direction are small at high energy. For allowed baryon exchange, s 

dependence vary between a(O) = 0 and a(O) = -0.7. Looking at the 6 depen- 

dence of the backward peak over a large energy range (for example in Fig. 131, 

we notice that s channel effects are still present at energies - 5 GeV: a 

consequence of this fact is that data at higher energies are needed in order to 

see the distinct properties of 'smooth" u-channel exchange. It is interesting 

that before the s dependence of baryon exchange sets in, the fall-off in s is 

fairly steep, s -7 -11 to s , averaging over resonances. 

The closest we come to u-channel amplitudes is in IJN scattering 

around 6 GeV where 
i i - 0 TP-,PT,B~-,~TT differential cross sections and 

Tr*p -I plr' polarizations have been measured. In terms of I, = 1 (R) and 

I, = i$ (A) 
2 

quantum numbers we have (summing over nucleon helicities) 

do+ do 
z =du (T+P +p?r) = $ )2N + Al2 

do0 ;r;- = g (T-p + n7r") = $ (N - Al2 

da- da 
-=x du (T-P +PT-) = lAl2 

and therefore 

lNl2 = $ [3,$+ + g) - $1 

Re(N*A) = 3 [&+ - 2 $ + ';- $1 

From the data (Fig. 14) we see that 1~1~ possesses a dip at u - 0.2 

Ge P while Ial2 is structureless. However accurate analyses of the data are 

not easy since they rely critically on the relative normalizations of the 

different sets of data. 

Important information could be gathered from the line-reversed reactions 

observed in pp two-body annihilations, i.e., pp + T'T', allowing one to 

separate the different signatures. Eata exist at 4-5 GeV4j but relative normal- 

ization with TN data is difficult and the energy probably not high enough. 

In any case s dependence of annihilation data is generally compatible with 

the corresponding backward data. 
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(b) Exotic exchanges 

Two definitions of an exotic exchange can be adopted; 

1st kind: when quantum numbers are dlfferent from those of the 1 and 

‘8 su(3) P re resentations for mesons or 8 and g for baryona. 

2nd kind: where quantum numbers cannot be generated by a simple quark 

model with q;i for mesons and qqq for beryons (more 

restrictive definition) 

-experinlental evidence to look for them through their interference with allowed smplitudes. For example, 

I = 2, I = 312 meson exchange 

Cross sections for forbidden centre-of-mass hemisphere for the processes: 

J-5 5 A(ir-p +KOXo) = T A1,2 + 3 A3/2 

A(7;'p -+K+C+) = - 2A 3 i/2 + $ A3/2 

(AIt ) 

7r-p + K+C- 
+ *- 

IT-p -3K Y 

K-p +,+,E- 

pp -+T+z- 

T-P -B T+A- 

+ *- 
Kp+aY 

K-p +K 0 -*o : 

K-p +K 
+ -*- 

" 

all show fast fall-off in 8 (- s -6 ) and are typically of the same order of 

magnitude (- 
- ++ 1 pb at 5 GeV), with the notable exception of pn -PA A 

(- 100 lb at 5 GeV). Almost all of these reactions do not show a peak at 

small momentum transfer, thus failing to show the usual distinctive appear- 

ance of crossed-channel exchange: an exception is l;p +?Z- at 5.7 Gev/c 

although the slope is somewhat small (- 1 GeV2). 

The B dependence of (du/dt)t,o shows a more interesting behav- 

iour (Fig. 15), particularly for ?;p TK'Z-,44 although only meagre informa- 

tion on t dependence is provided. A significant change in s de~ndence 

seems to occur near 4 GeV/c however from looking at the t dependence it is 

still possible that the flattening could come from fluctuations in the angular 

distributions (as caused by s channel resonances, for instance). Higher s 

data are needed before a clear-cut conclusion ce.n be drawn. Concerning the 

order of magnitude, let u6 note that at 5 GeV 

In view of the smallness of exotic amplitudes, it seems more fruitful 

where A3/2 
is the exotic amplitude. It follows that: 

+ 
k A1/2 A3/2 1 g (~+p -iK+Z+) - 2 $j (r-p +K°CO) 

IAl/,12 = - ' g (?~+p +K+C+) + 2 (r-p -+K°Co) 

At 3.6 GeV, this ratio is .025 + .045 witha systematic error of + .017 and 

therefore no evidence for It = 3/2 exchange is found at the 5% level if the 

two amplitudes are in phase; the limit could obviously be much worse if some 

large phase difference existed between A l/2 and A3/2' 
Evidence for It = 2 and It = 312 exchanges comes from photopro- 

duction4* canwring the reactions: 
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. . . 

Re AlA 

pi,,: = 
.lO + .015 

L Tr+ 
II It = 2 

A- 
(a) 

Exotic baryon exchange 

Fast s dependence (- s -10 ) is seen for exotic banon exchange (see 

Fig. 16 for pp +Kk- and Fig. 17 for K-p +pK-) compared with dependence 

like s-' - se4 for allowed exchange. It is interesting that exotic channels 

continue the trend observed in the high-mass resonance region with no evidence 

of a change in trend observed so far. Nevertheless a backward peak has been 

observed at 5 GeV 43 in both K-p +pK- and pp +$ (Figs. 18 and 19) which is 

at least a good hint of some kind of exchange. It is unfortunate however that 

these healthy peaks have almost disappeared in the preliminary data of Ref. 46 

at 6.2 GeV/c. So there again it seems that fluctuations (s-channel effects?) 

are occurring over and above a steeply falling s dependence which still pre- 

vail at 6 GeV. Ihe ratio: 

is - 10 -2 at 5 GeV/c, but has already fallen to - 210 -3 at 6.2 G&/c. 

-experimental difficulties 

Some difficulties in interpreting an exotic peak have been pointed 

out when a resonance is produced. 47 As an example let us consider r-p +,'A-. 

lr+ lr- 
-9=- B 

t IT+ 

P 
(b) n 

One would like to describe phenomena with diagram (a); however processes 

(b) can also contribute and reflect into the h+) mass spectrum at low mass 

simulating a false A peak. It is amusing that to achieve this effect 

lr+lr- + T-7: scattering has to occur--also an exotic backward process--but it 

will do so at a much lower s value and hence the process will still be 

dominated by mr resonances. Since these reflections are still badly under- 

stood, we think it is safe to use data involving only stable particles, i.e., 

pp -+E+z-, K-p -+pK- and Pp -,pP. 

-inter retations. 

Real exotic particle exchange is not likely in view of the absence of 

a persistent peak at small t (u) although the s dependence of K-p +pK- 

ci eff z-4 does not rule out a 2* of mss 2-2.5 GeV for a canonical cx' = 1 

Regge trajectory and a spin of l/2 or 5/2. 

Direct channel effects could be responsible for fluctuations in the 

angular distribution around a collective steep s dependence. It is then 

expected that at some energy some exchange will take place in the crossed 

channel where the most likely candidate is double particle exchange which 

certainly is the cheapest way to generate exotic quantum numbers. However 

they have not been seen yet. 
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-violation of quark selection rules 

In the simple quark model the @ meson is a Ax system and therefore 

couples very weakly to non-strange particles. This is observed for example in 

backward scattering around 5 GeV where processes like K-p -,hp and K-p jlw, 

occur, but K-p -,A$ has not been detected yet. 

Recent results on @ forward production in T-P + @n have been obtained 

recently48 showing a very fast decrease of the cross section like 6 -' (Fig. 20) 

where a corresponding allowed process r-p +UXI behaves as s -2.4 . The differ- 

ential cross section is flatter for @ (slope 1.4 Ge v2 at 5 GeV) than 0 (Slope 

- 3 GeV-2) production. This reaction is rather interesting because all channels 

are suppressed by the quark model: s-channel non-strange resonances will not 

couple to 4n, u channel exchanges are prohibited by the same properties and 

t-channel exchanges are suppressed because they cannot couple to both upper and 

lower vertices. !&e only reasonable candidate to generate some amplitude seems 

to be two-particle exchange such as K-K* which is not prohibited by the quark 

model. Although such an explanation would not be inconsistent with the ratio 

u(ap +On l- 3.5 10-3 
oclr-P -+(m) 

at 5 GeV, and the shape of do/dt, the steep s depen- 

dence is somewhat surprising. 

(c) En(j) symmetry. 

We know that SU(3) can only be an approximate symmetry of the strong 

interactions but it is important to see how useful a tool it can be in under- 

standing two body reactions. Even though it is not exact, it can still be help- 

ful in organizing our systematic understanding of exchanges. 

t=o 

The difference between alp(0) = .57 + .Ol and c&(O) = .40 + .03 

is not accounted for by the p-u mass difference and linear trajectories 

of same slope since it yields cy' = .97 + 
P 

.04 and a; = 1.2 + .l. It there- 

fore seems that p and (0 exchanges break W(3) symmetry, while P exchange 

with different external prticles is consistent with symmetry (cYF(O) : $0)). 

On the other hand the residues show a 20$ breaking 

P 
-IL = 1.6 + .I 
4c - 

instead of 2 for exact SU(3). 

The relationship between the residues of p. and uK cannot be tested 

well because, since C$ # CL$, the comparison depends on any scale factor so in 

( s/so)a. 

tfo 

W(3) can be applied to two-body reactions and yields relations inde- 

pendent of any dynamics producing the reactions. For example, the following 

equalities between amplitudes are predicted: 

A(K-p +K 'so) = A(K-p YIT+C-, 

A(K-p +K-p) = A(T-p *T-P) + A(K-p *T-C+) 

A(K+p +K*+p) = A(lr+p +p+p, t A(T+P *K*+C+) 

&- A(yp +,+n) = GA(rp dK+A') - A(yp +K+C') 

These relations are in general badly violated but they do not teach us 

a lot about the structure of the breaking. It is more useful to isolate t- 

channel exchanges in different reactions and relate them using SU(3). Such an 

exercise awaits some complete amplitude analysis such as in hypercharge reactions 

to compare K" exchange to p and 0) exchanges. Before this is done we can 

go a few steps in this direction in writing down SU(3) relations when some 

restrictions are imposed on the t-channel exchanges. In particular, if we 

assume exotic amplitudes identically vanish, then some new N(3) relations 

can be found: for example, take the general SU(3) relation 
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A(K+p +K'A") +GA(K-p +*-Cc) =GA(K-n +K+x-) - A(K-n +K'E-) 

where the amplitudes on the right-hand side are exotic in the t-channel and 

can be set to zero; we obtain the simple relation: 

f$ (K'p +K'A+') = 3 z (Kmp -,r-S+) 

expre~~ing m(3) 6pd.ry between (P,<) and (A~,K:) exchanges. However 

this kind of relation is expected to be more reliable when there is a dominant 

helicity amplitude such as for p and A2 exchange: 

2 (K-p +?n, + g (K+n +K'p) = g (r-p +,'n) + 3 g (T-P +qn) 

Such a prediction is successfully compared to experiment 49 in Pig. 21. 

SU(3) symmetry applied to vertices can help us understand the empirical 

helicity couplings which we have derived from experiment. Ihe coupling of vector 

and tensor mesons to R% is expressed in terms of a syrmnetric octet coupling 

(a), an antisymmetric octet coupling (f) and a singlet coupling. Expressing 

the fact that 0 and f' ccmpletely decouple from # leads to SU(3) 

couplings depending only on f and d for each helicity amplitude. Table 6 

shows the couplings for vector mesons and their numerical values, as compared 

to ppp helicity non-flip, obtained with (f/d)++ = -3 (in order to reproduce 

(~:p/cui;p)++), (f/d)+- = l/3 (so that (a&+- = 0) and (pip)+-/(pip)++ = 3 

from TN amplitude analysis at 6 GeV. We see that, as is experimentally 

observed, the < couplings--also the KG couplings--do not show a dominant 

helicity transfer. 

3. - Phases 

The phase of an amplitude is in general hard to measure experimentally. 

At t = 0, the optical theorem give one method while, at t # 0, one need some 

interference with a known amplitude. 

(a) t=O 

coulomb interference 

Existing measurements are still very fragmentary. ir'p is the only 

systematic study from 8 to 20 GeV 50 and the data can be used to measure the 

phase of (P + f) and p exchange at t = 0. It shows that the phase is given 

correctly by dispersion relations, hence checking the analyticity properties 

of the forward amplitude. The phase of the even-crossing part (P + f) is 

- looO, while for the odd-crossing part no more than the sign is really 

measured (Re p/Im p > 0). 

At 2 GeV/c in the dp system, a new piece of data 51 yields: 

I Re(P + f) = -(6.2 + .45 

Im(P + f) = 32.45 mb 

I 

R~ o = (2.25 + .45) mb 

Im p = 3.35 mb 

where the p Regge phase iS 39". 

mb 

o = (34 2 6)” 

'J&e situation in K&p is still worse, since we have only a few good 

low energy points 52 and very questionable high energy determinations. Below 

3 GeV, Re(K+p) is large and negative (a: = Re/Im = -0.44 at 2.6 GeV) tiile 

Re(K-p) oscillates in the resonance region and then seems to settle to very 

small values. lhe corresponding phases are found to be: 

pL(Gev/c) 

1.2 

1.8 

2.6 

e(+)(P + f +A2) 0% + d 

97" (22 f. 5)” 

98" (35 + 2)O 

loo0 (38 + 3)” 
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where the (0 Regge Phase (UJ dominates over p at t = 0) is 53" for 

a&o) = 0.41. Reliable high energy determinations of the forward phases in 

K'p are Particularly wanting. 

Special Case of <p -K;P 

One can use the CP violating decay c + 7T+Yr- to interfer with KS" 

regenerated from a hydrogen target. Knowing the decay Phase O+, both the 

regeneration amplitude and its phase are measured at t = 0 by observing the 

interference Pattern as a function of the K" decay time. !Be probability 

distribution of events is: 

g =lR12 4-rs') + lr1+-12 exp(-rLT)+ 2\Q+-( exp[-(rs+rL) $1 cod67 + @- @+-I 

where [A(Kip +KiP)]t=, = Re'*, q+-e 
I@+- 

is the CP violating amplitude, 

6 the K$Ci mass difference and PS and r L the K$ and K 0 
S inverse 

lifetimes. 

The results show53 that between 10 and 50 GeV: 

-0 is roughly independent of s 

0 = (-1312 8)" = T + (49 + 8)" 

-aeffb) = .47 + .13 in agreement with the 8 dependence of 

o&K-n) - o,(K'n) related by SU(2) invariance to b,@p) - a,(K'p), the 

imaginary Part of KEP +Kip at t = 0. 

Using the optical theorem 

Measurements at t = 0 of do/dt yields (Re A)2 + (Im A)2 *n-d 

using the optical theorem (Im A w uT) on can deduce the absolute value of 

Re A. !Fnis approach has not been very successful in elastic scattering because 

of the smallness of the real parts and problems connected with relative 

normalization and Possible curvature of do/dt at small t. However the 

approach hss been most fruitful for odd-crossing amplitudes, 

k Im A(?;p +,'n) = - - 
4&-s 

rq7;P) - qT+P)l 

ImA(<p +Kip) = - gT [uT(K-n) - o,&K'n)] 

Figure 22 shows the ratio cr = Re A/Im A for T-P -+~'n, yielding a phase 

0 = T + (43.5 + 2.5)' corresponding to a Regge so(O) = .52 + .04 in good 

agreement with the 6 dependence of the imaginary part. In ep +K"p s 

the phase is 0 + (40 2 10)' giving q(O) = .55 + .ll in accord with direct 

phase measurements and the 8 dependence of the corresponding total cross 

sections. 

A more interesting exercise can be carried through for the KN and 

?H change exchange reactions: 

[Im(K-p +i?on)]2 = & [u&K-n) - c~,(K-p)]~ 

[Im(K+n -iK"p)12 = y& [~,&K'P) - u,l,(Kf*)]2 

In Fig. 23 we compare the values of [En Al2 to the differential 

cross sections at t = 0: it strikingly shows that the process K-p +pn 

is purely imaginary at t = 0, while its counterpart K'n -+K"p is purely real. 

l3iS result confirms some of the duality ideas that we are going to discuss 

in Chapter N. 

(b) tf 
A very attractive method which can be used in p and u) production 

is provided by p - (u electromagnetic mixing as observed in the TT'T- decay 

channel, leading to the exciting Possibility of measuring the production phase 

difference between p and u). 



..- 

Corresponding to the production amplitudes: 

B C 

lr+ / / / 0 4 

T 
\ \ \ Tr- 

B C 

one can observe interferences of the form: 

where 5 is a coherence factor and 0 is the phase difference including the 

phase of w +7r+v- (known and checked in e+e- production or p and a, photo- 

production where the hadronic phase difference is small). Ideally if all the 

amplitudes were sorted out one could measure the phase difference for each 

helicity state; however experiments have not reached that point yet and several 

helicity states are still summed over so that a coherence factor has still to 

be used. 

This method has been used recently by en Argonne group in a rather 

elegant way.34 They measured the charge-symmetric processes 

v-p + ir+:1; n 

Tr+n -Blr-d p 

for different hrrrr and natw-alities 5. 

Figure 23 shows the t-dependence of the phases and some idea of the 

s dependence. !lhe phase of the unnatural mrity exchange A0 is (I-22 2 6)" 

where one would expect 90' for s - B exchange degeneracy (s in p production 

and B in o production). The phase A*, the amplitude with natural parity 

exchange, is changing with t going from 90" at t = 0 to about 0' at 

t = -0.3, there, p - A2 exchange degeneracy would predict - 90" and so, again, 

we see a strong departure at small t from the expected exchanges, a dis- 

crepancy already noticed with the behaviour of aeff(t). 

A p - (0 interference analysis has been carried out by the CEFiN-Munich 

group55 observing only a-p +v+?r-n et 17 GeV/c. Iheir results for the phsse 

of the natural parity exchange is in agreement with the previous analysis, but 

they disagree on the phase of the unnatural parity exchange with hm = 0: 

with the phase convention of the Argonne group, they find phases below 90", 

showing either an unsuspected 6 dependence or some experimental disagreement. 

Similar measurements could be extended to other reactions such as 

E-P -'(P,~)A 

where the interference effects could be even more visible due to about equal 

cross sections for p and (0 production; in constrast p production in TN 

is larger than 0 production end the smallness of the decay rate u) +'rr'~- 

renders the observations rather difficult. 

which should have equal cross sections except for.SU(2) electromagnetic break- 

ing. Tne interference pattern is striking in the mass spectrum of Fig. 24, 

showing a constructive interference for r-p +T'v-n and a destructive one for 
+ 

lr n +ir-T’,. The Interference term can be projected out: 
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TABLE 3 !E+BLE 5 

Amplitude B (*b) 

plr 4-200 3.43 + 0.07 .57 + .Ol 

% 3-200 2.16 + 0.~ .57 2 .03 

"K 3-200 13.0 + 2.6 .3g + .Ol 

AK 3-200 1.8 + 0.2 .4a 2 .05 

a(Kd) - WC 6-200 .41 

a(N) - 0) 6-200 .41 
P 

TABLE4 

Reaction exchanges a (t = 0) Ref. 

lr-p -3 IrOn 

BP+* 

K-p -i&I 

Kh +K"p 

eP -+P 

K> .+K;d 

P 

A2 

P + A2 

P - A2 

P+m 

(u 

.58 + .03 36 

.47 + -07 37 

.43 38 

Exchange Dominant helicity coupling to B% 

Pif 

(u 

P 

% 

IT 

<l 

+* 

++ 

f- 

f- 

+- 

? (++ important) 

VBE vertex w(3) coupling 
helicity non-flip hellcity flip 

coupling coupling 

PPP 

PP 

& (f + d) 

% (-3f + d) 

1. 3. 

-5. 0. 

K*A; 2 (3f + a) 2.3 2.6 

K*C+p -f+d -2.8 2.1 
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III - EXTRACTING AMPLITUDES FROM INCOMPLR'IT EATA 

There is so much data in incomplete form and so little information on 

amplitudes, that it seems worthwhile to try methods where a few amplitudes can 

be extracted out in an approximate way. On the other hand we have treated real 

parts and imaginary parts as two independent sets of observable6 where we know 

that snelyticity relates them: so it seems that analyticity can be used in 

amplitude analyses in order to reduce the number of measurements to be carried 

out. 

1. Projection of One Amplitude: Exchanges in Elastic Scattering 

Amplitude analyses et 6 GeV tell us that the It = 0, fl amplitude is, 

to a good approximation, helicity non-flip. This point is also established in 

PO photoproduction, e process with very similar amplitudes (P + f). Further- 

more, from the energy dependence of elastic scattering we know that the dominant 

part of this amplitude is contributed for by the Pomeron at energies above a 

few GeV. We also know that the phase at t = 0 is very close to 1r/2 and we 

do not suspect that it will change drastically away from t = 0, es long as we 

stay in the very forward region. (We shall come back later on to this assumption.) 

With these experimental facts (and one assumption) in mind, it is easy to see 

that elastic processes will provide very direct and interesting information on 

exchange amplitudes from their interference with the dominant (imaginsry, heli- 

city non-flip, It = 0) diffractive amplitude. 

(a) Cross-over effect 

Consider the elastic scattering of particle A and antiparticle A 
f 

on protons, expressed in terms of even and odd-crossing amplitudes F : 

g (Ap) = c IF; - F;12 
A 

g (lip) - $ (Ap) = c 4 Re(FiFi*) 
h 

$ (ap) + s (AP) = c 2[1F;12 + IF;121 
?I 

At high energy FI+ becomes the dominant amplitude and we are going 

to project all amplitudes onto it. We shall further neglect IF -2 ) in front 

of lF+12 and Fz- in front of FI+. We have therefore 

f$ (lip) - z (AP) = 4 Ff+(F;+),l + 4@)/( @;-)I\ + 4@:-)1 @;-)I 

z 4F:+(F;+)/I 

$ (A,) tg (Ap) = 2(F=+)2 + 21F=-12 + 21F;+12 + 21F;-12 

1 2(F;+)2 

leading to 

@;+)I, = 
2 (lip) - g (AP) 

=A A 

8tg 6~) + E (AP)] 

4, 
can be measured in 3 processes isolating the following amplitudes: 
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dp 

Kfp 

PiP 

This method was applied first to K*p scattering at 5 GeV/c 56 and 

clearly showed that Im uKH had zeroes at t = -0.2 and * - 1.3 Ge? 

(Fig. 26) and could be fitted rather well to an expression 

Im CL!!+ = F(t) = AeBt JO@- 

with R - If. It is rather illuminating to transform the amplitude into impact 

parameter space using a Fourier-Bessel transformation: 

F(b) = P 0 
dt F(t) JO(bfi) 

With the pxrsmetrization for Im o):+, we find 

= “++ 
-2 =$ =xp (- z&q IO(g) 

where IO(x) c/‘K is a Bessel function of an imaginary argument. Im CD++ has a 

strong peak around b m R and most of its strength is given by the impact 

parameters around this value. Alternatively, it is probably better to use 

the exact Legendre expansion at lower energies: 

= K+ ..G 
= 2 c (J + ;) di $") aJ 

k J 

aJ = m2: + 1) J dt Im "+ 

Figure 27 shows the aJ amplitudes from the data of Ref. 43: the peripheral 

nature of Im at+ is very d-tic. This is to be contrasted with the impact 

parameter structure of the Pomeron amplitude which is best approximated by the 

K+p amplitude itself. 56 Figure 28 shows that the Pomeron amplitude receives 

contributions from all partial waves up to the most peripheral waves, Con- 
-K 

sistent with an optical picture of-diffraction. Notice that Im u++ in 

Fig. 28 appears as a relatively minor correction to the dominant diffractive 

term. 

More information can be gathered from the systematic data between 3 

and 6 GeV obtained by the Argonne group, 5 an example of which can be seen in 

Fig. 29. All the measured "amplitudes" s,K,p are fitted well with the form 

Ae Bt J&R&) for 0 < -t < 0.8 Ge? (Fig. 30). Of course, & is small and 

and its t dependence is not well measured and suffers most of all from 

systematic uncertainties between ?r' and ir- data. Beyond -t > 0.8 cte v2 

the data deviate considerably from the low t fit especially at lower energies% 

we ascribe these failures to helicity-flip amplitudes and real parts and expect 

the effect to decrease with energy. Already at 6 GeV, the fitted form for A 

works well up to -t w 1.2 Ge $, namely, the second cross-over zero. It is 

hard at these rather low energies to make aquantitative study of the 8 depen- 

dence of Im CL:+ and Im G* since s-dependent effects affect the extraction 

of the amplitude. Qualitatively we have the following behaviour: 

-R is approximately constant at about lf and does not change too 

much between the three processes. 

-Ihe shrinkage question is not settled (s dependence of B). 

The partial wave amplitude aJ is then given by 
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and Im I& are becoming more and more similar in shape as 

the energy increases, up to a constant factor of 3 predicted by the quark 

model. 

It is interesting that the peripherality of the (0 exchange amplitude 

has the consequence that total elastic cross sections for K'p and K-p on 

one hand, and pp and $p on the other hand, are nearly equal, although the 

differential cross sections are very different. Indeed we have: 

J- dt [$ (1~) - $ (Ap)] = &A'/dt e(B+B')t J,(R&) 

where 

giving 

6 [$ (lip) + 2 (Ap)] -A' eBlt 

0,,(6p) - uel(Ap) = $+%qq&n) 

Numerically at 5 GeV the difference amounts to .3 mb for kp (8s) while 

it is 3.3 mb for p'p (23%). 

This method of extracting the imaginary part of the odd-crossing 

amplitude~througb elastic scattering has limitations of both theoretical and 

experimental origins. 

-on the theoretical side, limitations occur from 2 opposite directions. 

C-1 On one hand, if Im F,, is small (as in dp), then its extraction becomes 

(-) sensitive to neglected amplitudes (flip); on the other hand, if Im F++ 

becomes too large, one can no longer safely neglect \,(-)I2 involving the 

knowledge of Re P++ (-) in particular. Therefore we can say that qualitatively 

the method will work best for K'p, will improve with energy for p'p and 

could be questionable for ~'p. It is fortunate that the worst case of dp 

can be tested against the results of the complete amplitude analysis at 

6 GeV: in Fig. 31 we see that A, agrees very well with the "exact" 

amplitude (F1 ) 
++ II 

giving us some confidence in the method. For TN however, 

one does not need even to neglect \F C-),2 In the sum since it is measured by 

da/at (T-P +~'n) and can be subtracted out: 

T p -+T-p) + g (S+p +T+p) - $ (T-P -+~'n) = 21F (+),2 

-on the experimental side, relative normalization between Ap and 

Ap measurements is of crucial importance for measuring the shape of a(t) and 

in locating the position of the zeroes. The uncertainty in the cross over 

position tc IS 

At =a 
c b -b 

li A 

where &TN/N is the relative normalization uxertainty and b-, bA are the 
A 

elastic slopes. For example, dp at 6 GeV have the following slopes: 

b+ = 7.1 , b = 7.7 (in GeVm2) 

yielding an uncertainty Ate = . 04 Ge? fo r a 2% relative normalization 

uncertainty. 

Detailed studies of elastic scattering will teach us several important 

(-) features of the peripherality picture we have of Im F,, . To see that, let us 

C-1 consider the successful parametrization Im F++ = AeBt JO(Rfi): the peak 

position in b space is determined by R and the width of the distribution 

is controlled by B. Then for a given amplitude, say na F!;)(Kp), one would 

like to know the s dependence of R and B: for example, if B increases 

with s (shrinkage), does R also increase, thus preserving the peripherality 

picture? Also the comparison of T', K' 
* 

and p at an energy higher than 

6 GeV would be very interesting since these processes have different inter- 

action volumes, as indicated by the wide range in the total cross section 

values. The indications, at 6 GeV, are that there does not seem to be any 
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simple relationship between the absoqtion radius R and the interaction 

radius as measured by the total elastic slope. New experiments are in progress 

at SLAC and NAL and it is interesting that, from the preliminary measurements, 

C-1 . the method of extracting Im F,, ~111 probably work in K'p and p'p up 

to rather large energies (- 100 GeV) since the difference in slopes does not 

decrease too fast with s (Fig. 32). 

(b) Polarizations in elastic scattering 

Let us consider polarizations for elastic scattering of particle A 

and antiparticle l on protons and isolate leading terms in the sums and the 

differences. 

P E (ip) = - 2 lin[(F=+ + F;+)(F=- + FL-)*] 

P g (AP) = - 2 Im[(F=+ - F;+)(Fr- - F;-)*I 

AP = P $ (ap) - P g (Ap) 

= - 4 Im[F=+ F;; + F;+ F;;] 

= - @+(F;-)~ + (F-+)11 (F;-)l - (F;+)L @;-),,I 

: - 4 F=+@;-)I 

Cp = P $ (a,) + P 2 (Ap) 

= - 4 Im[F=+ F;; + F;+ F;:] 

= - 4[F;+(F;-)I + @;+I,, (F;-jL - (F;+Jl (F;-)I/] 

: - '@;+(F:- )I 

In the case of ~'p scattering , one gets the exact relation: 

P 2 (r-p) + P g (T'+P) - P z (T-P *Ton) = -4Fl+(FI-)I 

These relations can be applied to ?r'p and K'p data and teach us the 

following properties: 

-7iN scattering 

(F;- )I is approximately equal to Re p+-, in excellent agreement with 

the complete amplitude analysis, as seen in Figs. 33 and 34. It has a double zero at 

-t - 0.6 GeV2, like a pure Regge pole amplitude 

R= p+- = tan y Im p+- 

where both Im p+- and tan(m/2) vanish at -t = 0.6 me?. The energy 

dependence of (F;-)I between 3 and 14 GeV shows a slightly faster fall-off 

than given by the p trajectory as measured in charge-exchange scattering. 

However (F;-)I is not quite Re F;- since the phase of F:+ can be changing 

with t, hence inducing a false t dependence in (F;-)I. 

(F:- )I is obtained from the exact relation between polarizations and 

shows no clear structure (Fig. 35); an f Regge pole would not have structure 

either since 

R= f+- =<c+Imf +- 

Accurate polarization data at 10 and 14 GeV seem to indicate a single zero 

around -t = 0.8 Ge $. It is not clear whether this is due to the Pomeron, 

f exchange, or both. 

-KN scattering 

(F;-)I is dominated by p exchange since (0 is mainly helicity non- 

flip; it is rather poorly determined from the data, but it is consistent with 

R= Py- data scaled using W(3) symmetry (Figs. 36 and 37). 

Contrary to TN, the amplitude (Fr-)l is large indicating a large 

coupling of A2 exchange to helicity-flip (as we already knew). The data 

clearly show that Re A+- does not vanish for 0 < -t < 1.2 GeV2 unlike 

R= p+- (this is consistent with the Regge phase even if Im A+- = 0 at 

-0.6 Ge?). 
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2. Making Use of the Analyticity Properties of Amplitudes 

Fixed -t analyticity provides in principle a very powerful constraint 

on amplitude analyses. This constraint is generally expressed as a dispersion 

relation satisfied by the invariant amplitudes where the real part at s = s0 

is related to an integral over the imaginary part as a function of s. Thus 

knowing Im F(s,t) over a large range of s values from threshold to smax 

determines Re F(s,t) for s <-C smBx, therefore halving the number of inde- 

pendent real amplitudes in that interval. 

Dispersion relations have been experimentally tested at t = 0 only 

and in a few cases: lr*p between 8-20 GeV and pp over a larger energy range. 

We will assume the validity of the analyticity properties of the amplitudes at 

all t values. 

(a) Application of dispersion relations to TN amplitude analyses 57-59 

The main idea is to develop an iterative procedure using the data on 

do/dt and the dispersion relations, Starting from the fact that do/dt is 

predominantly (Im Al)2, one can use v da dt as a seroth order input to the 

dispersion integral, which result is used to correct da/dt and so on. 

Schematically, 

g z (Im A;('))' 

1 
*A,(O) Dispersion relation 

+ > Re A;(') 

. . . <- Im A;(')!$$ 

For the Ai even amplitude, the dispersion relation reads: 

with 

vF;( v, t ) 2 
Re A:(v,t) = t 

l-2 
+ c+(t) + + P 

m dV, b A;(v’,t) 
J 

7 $2 - ,2 
4M vO 

VO 
=lR 

.+& 

F;(s,t) = ; 7% 

ii 
- v 

VB = "+L 
-2i 4M 

(Born term) 

and where g is the TNN coupling constant (g2/4r - 14.6) and c+(t) 

is a subtraction function. 

These analyses make use only of da/dt (~'p), du/d'c (i'r-p), 

do/dt (IT-P +m'n), P(r'p) and P(T-p). They do not use any data on 

P(T-P +m'n), nor do they rely on A and R measurements. The main conclu- 

sions reached by these studies are: 

-the t dependence of Re Ai shows a slow variation with t of 

the phase: e++ increases from 101' to 117' when -t increases from 0 to 

0.4 Gej! (Fig. 39) corresponding to a flatter t dependence for Re A; as 

compared to Im A: (Fig. 38). Uncertainties in Re A; arise mainly from the 

low-energy part of the dispersion integrals. 

-the determination of Re R+(s,t) is not so reliable and does inVOlVe 

some assumptions. However good agreement is found with R' data at 6 GeV. 

It is interesting to note that, in general, only using P and do/dt data 

leaves an ambiguity between flip and nonflip amplitudes; this problem is solved 

here since in the phase shift region the full amplitudes can be reconstructed 

and propagated to high energy. 
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-Re A' shows a zero much closer to the cross over zero of the imaginary 

Iart than indicated by amplitude analysis; this effect could come from the t 

dependence of 4++ since conventional analyses assume Q ++ = 7r/2 independent 

)f t. This shows a much closer similarity between the t dependence6 of 

ie Ft+ and Im Fi+, with both zeroes around - -t = 0.15 GeV2. Also, since the 

lehaviour of Re Ft+ was mostly derived, in the 6 GeV amplitude analyses, 

Tram the charge exchange polarization--a weak measurement--we suspect this new 

result to be more reliable. Actually this analysis can be used to predict PO 

%nd it is seen in Fig. 40 that it prefers the Argonne results to the CERN 

results (in agreement with our discussion of amplitudes at 6 GeV). 

-Re B shows a remarkable Regge phase (Fig. 38) as we already knew 

from just looking at AP. 

This method using analyticity appears most interesting in that it pro- 

vides solid constraints for amplitude analyses and does not use the weaker and 

nest controversial sets of data. However the use of dispersion relations is 

xmbersome, really dependent on low energy data, suffering from inconsistencies 

between different sets of data over these large energy ranges and finally not 

very transparent. 

(b) Derivative analyticity relations 

We will show that at high energy the nonlocal connection between real 

and imaginary parts can be replaced by a quasilocal relation between the real 

part and the derivatives of the imaginary part at the same energy. 

-derivation 60 

Consider an even-crossing amplitude F+(s,t) normalized to 

Im F+(s,O) = s'J; 

It satisfies a subtracted dispersion relation where the subtraction constant 

C+(t) and Born terms have been omitted for simplicity: 

2 - ds, h F+(s’,t) 
Re F+(s,t) =$-P J -7 

sO 
612 - s2 

2s2 
= 7 lim E +o [ 

s-s 
s 

ds' Im F+(s',t) - ds, Im F+(s',t) 

61 s 12 - s2 
+ 

.I- -7 s 12 - s2 
(E>O) "0 s+s 

Integrating by parts, we get 

s-s 

I 

where the first term disappears when taking the principal value except for a 

term 

which is negligible for s >> so. The dispersion integral then reads: 

Re F+(s,t) = t Pj $ In(s) [$T - 3 ] Im F+(s',t) 

sO 

Introduce the rapidity variable ey = 6 

Re F+(y,t) = $ P 
J- 

dy' e-" In (coth w) [$ - l] Im F+(Y:t) 

YO 

More generally we can rewrite this last equation as: 
00 

Re F,(y,t) = $ P / 
dy' ,b-OY' ln (coth w)[a - 1 + $T] (Im F+(y:t)e-WI) 

YO 
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_: 

+ = -/ dJ e(J-l)y T'+(J,t) tan[; (J-l)] 

= - tan(- ;&)/LT e(J-l)y T'+(J,t) 

leading to 
Re M+ -= 

s tan$ $) ($) 

For an odd amplitude: 

M-(s,t) = i/d, sJ T-(J,t) [l - i tax@ J)] 

Re M-(s,t) =/dJ sJ T-(J,t) tan(; J) 

= tanp 2 2 dY)/ 
dJ sJ T-(J,t) 

Re M- = tan($ $) Im M- 

-application to total cross sections. 60 

Separating into symmetric and antisymmetric parts we have: 

Re F+ = s tan($ -&&) ~$6) 

Re F- = tan(z&) SD;(S) 

Above the resonance region o;(s) 1s a smooth function and retaining 

only the first derivative is a good approximation (Fig. 41). Good agreement 

is found with calculations using dispersion relations. 

We have seen in Chapter II that in general $8) was power-behaved, 

(T;(s) - 2-l and consequently: 

a result generally labelled 'Regge'l but in fact following directly from power 

behaviour and analyticity. 

If asymptotically 0; w (In s}' (p 5 2) It follows that: 

ReF+ -s 718 

Im F+ 
2ln.5 

ahowIng that (i) if oT rises asymptotically, then the real part becomes 

positive (as observed in pp scattering above 300 GeV) and (ii) the real 

part increases with ln 8 one power down compared to the total cross section. 

(c) Applications of derivative analyticity relations to amplitude 

analysis62 

With quasi-local analyticity relations, we are now in a position to 

incorporate the analyticity constraints in a convenient form, most suited to 

amplitude analyses. 

-formalism 

Let us consider for simplicity a process with one even amplitude: 

s2 g = (Re F+)2 + (Im F+)2 

Re F, 
-= 8 

The iterative method outlined in paragraph (a) on dispersion relations 

can be implemented now in its most convenient form, For OUT purposes it is 

somewhat more practical to use a phase-magnitude relation. Writing the 

amplitude explicitly with modulus and phase: 

F+(s,t) = R+(s,t) e 
i@+(s,t) 

Re F- -= 
Im F- 

tan(T) 
the relation between R and m reads: 
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4+(G) = - s&y (In R+) 
or 

similarly for an odd amplitude: 

e-(a,t) =; - ;A (ln R-) 

or 

For amplitudes with pure power-behaviour we find the "Regge'I phases: 

R-s a =-A 4+ = - : a 

4 =$(1-a) 

corresponding to Pegge amplitudes (e -ilKi + 1). _ 

In the single amplitude case we have, for positive signature: 

These simple equations have the following important physical consequence for 

elastic scattering at sufficiently high energy where Pomeron exchange (even 

amplitude) dominates. One expects the differential cross sections to increase 

in the forward direction and the t-slope to increase also. This means that 

there is a finite value of t at which the function (R+/s) is essentially 

constant. This 'cross overW in the same amplitude at different energies tells 

us that the real part has a zero at this t value (see chapter v). 

Let us now turn to a case with two helicity amplitudes, where both the 

differential cross section and polarization are measured. It is always possible 

to combine the different measured quantities in order to project out amplitudes 

with well-defined signature. Therefore consider two even-signatured amplitudes 

F and F+- with modulii R R We have the two ++ ++' +- and phases 4++, 4+-. 

equations: 

2 au A'=Rz++R:-=S ;if: 

A2P = 2R++ R+ sin(4++ - 4+-) 

Using the derivative relations, R+- can be eliminated and a differential 

equation is obtained for R++: 

2R++ ;tkf* 

Given data as a function of s, A(s) and P(s), this equation can be 

solved numerically at each t value and F++ and F+- can be reconstructed. 

!lhere is an arbitrary integration constant which depends only on t and must 

be determined at one energy value from A and R measurements. An even 

more attractive approach is to extend the analysis down to energies where 

complete phase-shift solutions exist and amplitudes can be fully reconstructed. 

It is well known that the arbitrary constant is related to an arbitrary 

rotation in the flip no-flip plane which arises as a consequence of using only 

do/at and P as input. To see that explicitly, let us define 

R = A cos 0 ++ 
(0 = flip no-flip rotation angle) 

R = A cos 6 +- 

and solve for 8 

de 
=dy= 

- sin 20 sin-l(&) 
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If the polarization is small (one amplitude is small or they both have the same 

6 dependence) then one has the approximate solution 

e(y,t) = e,(t) - 1 
J 

IT Yo 
dY' P(Y') 

where e,(t) is the s-independent integration constant which corresponds 

physically to a rotation in the helicity plane and must be determined at 

Y = Yo' 

-mathematical examples 

Before using this method on real data, it is very instructive to test 

it on a few examples in order to learn about possible pitfalls. 

(i) difference of two Regge poles 

A numerical comparison of the exact phase with the approximate one is shown 

in Fig. 42 for the values ~1 = 1, p2 = 0.5, al = 0.9 + t and 01~ = 0.5 + 0.6t. 

The zeroes of the amplitude are at 

u B2/Bl) lns7------+i; 
4-9 

tie sees that the approldmately reconstructed smplitudes follow quite 

well the input functions except when the latter have dips which have been 

completely smeared out. Away from the zeroes, the procedure is quite accurate. 

(ii) absorbed Regge pole (Pomeron) 

M+ = se-i(T/2) [,Bt A A, B e(ABt/A+B)] 

with B = 0.5(l.n s - I z) and A = 4. 'Ihis amplitude is predominantly imagi- 

nary and the differential cross section resulting from it somewhat realistic. 

The simple phase method gives good results except where M+ has zeroes 

(Fig. 43). Since Re M+ is quite small, it is sensitive to details of the 

procedure and is reconstructed quite well except for the point where Im M+ 

and the differential cross section have a dip and vary rapidly. 

The above two examples are of value to show that the method is work- 

able and particularly to help develop an intuition about how to proceed with 

real data. 

-wlications to data 

(1) <P -K;P. 

The amplitude for this process has odd signature only and there- 

fore it is straightforward to use ow method. In general the amplitude will 

have heliclty flip and non-flip parts, respectively dominated by p and 0 

exchange and, since no polarization data are available one cannot perform a 

general amplitude analysis. However the helicity-flip contribution vanishes 

at t = 0 and presumably t z -0.5 Cev2 and therefore we can hope to measure 

the phase of the heliclty non-flip amplitude at these t values. 

At t = 0 there are actually two Independent ways of measuring the 

phase: (1) from the 8 dependence of (dddt)t=O 

l&q 
dt t=O 

or (2) from the s dependence of the Imaginary part of the amplitude as 

given by the optical theorem 

$ = F+.c (-I = c+,(K'n) - u&K-n) < 0 

It is remarkable that experimentally both (do/dt)t=O and Im F!;) 

are power-behaved from a few GeV/c to 60 GeV/c (see Chapter II) and therefore 

the phase can be obtained most easily. The results for methods (1) and (2) 

ape shown in Fig. 44 and are in good agreement with independent measurements 

urLng C-KS" interference 0~ optical point extrapolations. 



,(-I = _ pj. ++ Y 
(In g, =; (l.C2 + .22) 

indicating a very small real part in qualitative agreement with Re p+- in 

ti scattering. 

(ii) 7-P ‘T-P. 

Compton scattering is a nice example with an even-signatured 

amplitude. The helicity non-flip amplitude is large and dominated by P and 

f exchange, while the flip amplitude is much smaller. In the forward direc- 

tion, It = 1 exchange (mostly A2, flip) has been measured to be small by 

comparing m and rd Compton scattering. There is no direct experimental 

information on the helicity structure of It = 0 exchange, however, we know 

from nN scattering and y-p +p"p that it is helicity non-flip to a good 

approximation and we expect yp to exhibit the same character. We therefore 

neglect helicity-flip contributions and assume the phase we obtain from da/dt 

is that of the dominant helicity non-flip amplitude. Using the data of Ref. 

64-66, the real part is obtained at mean momenta of 4 and 10 GeV (Fig. 45). 

The comparison between.the two momenta shows a marked energy dependence, in- 

dicating that probably f exchange dominates the real part at these energies, 

as one would expect a priori. Comparing Im F,, and Re F++ at 10 GeV 

(Fig. 46) reminds us very strongly of the nN, It = 0 amplitudes at the same 

energy (Fig. 38). Between t = 0 and -t = 0.8 GeV2 the phase O++ changes 

from 102O to llo", in good agreement with ti scattering. 

(iii) further applications in progress 

The ?rN system is currently being investigated using only 

(do/dt) (asp), (do/at) (r-p +r'n) and P(?r'p). The flip no-flip ambiguity 

(e,(t)) can be fixed at 6 GeV using the known amplitudes or at lower energies 

using phase shifts. 

Hypercharge exchange reactions constitute an interesting area for 

applications since signature can be dealt with using the appropriate line- 

reversed pairs of reactions. Denoting even-signatured amplitudes by Th 

(mostly < exchange) and odd-signature8 amplitudes by VA (mostly < 

exchange) we have 

leading to the four equations: 

; C = lT++i2 + lT+-i2 + lV++12 + b+-i2 

i a = Re(T++VT+ + T+-$-) 

i (IS') = DdT++T;- + V+++ 

i (a~) = Im(T,+V;- f V++T;-) 

When the phase-magnitude relations are taken into account, one obtains 

a system of 4 differential equations which can be solved numerically at each 

t value, giving back the amplitudes with some ambiguities. 

We have tried to show how analyticity can, in a powerful and very 

practical way, improve our tools to extract amplitudes from incomplete data. 
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IV - DUAJJTYANDABSORFTION 

In this chapter we are going to briefly review some of the most impor- 

tant ideas and concepts in the phenomenology of two-body scattering, as they 

relate in a relevant way to the experimental facts we have gathered through 

the couL‘se of the preceding sections. 

1. Duality 

(a) Two descriptions of two-body scattering 

At low energy (&s 2 GeV), our knowledge of two-body scattering is 

embodied in s-channel phase-shifts describing the data with resonant and non- 

resonant (background) waves. As s increases this description ceases to be 

practical because of too many waves. 

At high energy we have seen that amplitudes are clearly related to 

t-channel exchanges and that, in general, only a few exchanges are required 

to describe the experimental situation. 

If at low energy there is little uncertainty in the analytical descrip- 

tion of s-channel resonances, the situation is less clear at high energy: 

we know most amplitudes manifest some kind of Regge behav'iour, with the phase- 

energy relationandtrajectories approximately related to the particle spectrum. 

Hence, as a starting point, it is not too unreasonable to assume that t-channel 

exchanges are mediated by Regge poles. Iater, considering some of the diffi- 

culties encountered, we shall come back on this assumption. 

(b) Relating low and high energy descriptions: FFSR67 

There must be some relation between low s and high s regions Since 

the scattering amplitude is analytic in energy. Using analyticity and Regge 

behaviour for high energy one can derive a finite energy sum rule (FXSR). 

Consider a scattering amplitude F(v) which is supposed to be a real 

analytic function of the variable v every where in the v plane except for 

inelastic cuts from -= to -v. and from v 0 to m and some isolated poles 

on the real axis. We assume a Regge behaviour at high energy: 

F(v) =cP 
1 + 'k e-I* 

k k sin % 

Iv\ ’ NJ &J % functions of t. 

Now if we apply Cauchy's theorem 

to the closed contour I'% 

/F(V) v"dv=O 
r 

-v’ 

s 

0 N +n+l 

Im F(v) v" dv + 
/ 

Im F(v) v" dv + c N% 

-N 
k a, F [Tk - (-1)"l = 0 

VO 

where pole terms are formally included in the dispersion integrals. The 

expression becomes simpler if F(v) has a well-defined signature; if F(V) 

is odd 

F(v) = -F(-v) 

then the FESR reads 

and Tk = -1 

N 
NT 

+n+l 

ImF(v)v*dv=~B - 
k k %+n+l 

YO 

(n even) 
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Thus if we know (from phase-shifts) the behatiour of Im F(v) below 

v = N, we have a way to use analyticity in order to get some information on 

high energy parameters, provided (i) the asymptotic form chosen was correct 

and (ii) the cut-off N is taken high enough for this asymptotic form to be 

valid. This procedure has indeed been applied with some success. 

!lhe limitation that phase-shifts data exist only for low s, well 

below the ltasymptoticW Regge region has been actually a rather favourable 
68 

situation since it led to the concept of duality. Dolen, Horn and Schmid 

investigated the TR charge exchange amplitudes taking N = 1.1 GeV as 

their cut-off: they were able to reproduce the main features of t-channel 

p exchange (dominance of B, p trajectory, zeroes) even though N w&s 

low and resonance behaviour was still seen at higher energies at t = 0 

(Fig. 47): the high energy amplitude is behaving like the average of the 

s-channel resonances. An important aspect of the result is that s-channel 

resonances actually dominate the left-hand side of the FFSR with no notice- 

able background, leading to the powerful idea that, s-channel resonances or 

t-channel poles are alternate descriptions of the same process with the smooth 

high 6, t-channel pole amplitudes averaging out the s-channel resonant structures. 

A powerful use of F'FSR is realized when both s and t channel 

descriptions make use of the same singularities; in this case it provides a way 

of bootstrapping these singularities. Consider, for example, the process 

7r+7r" + lr"7r+ where p exchange occurs in both s and t channel: requiring 

the first zero of both amplitudes to coincide leads to l/a' - 2 m2 or -2 P 
a' - 1.1 Ge v2 , a value rather close to the experimental number. 

Many applications of PESR have followed for TN, KN, photoproduction 

etc. . . . . It would be very interesting to have reliable F'ESR analyses to 

learn about those amplitudes not easily accessible at high energy in the t 

channel. For example we know very little about even crossing s.mpYtudes 

(in particular, f exchange in TN elastic scattering, f and AS exchanges 

in KN, i?N elastic scattering). In principle we can learn about A2 exchange 

using i?ESR and low energy KN and i?N data: however, in practice, this is 

somewhat unreliable since K&n low energy data are not yet very complete, 

nor very accurate and consequently the phase shifts with proper quantum numbers 

cannot be completely trusted. 

For example a recent FESR analysis 69 of KN and fi scattering with 

a cutoff pL = 1.5 GeV/c shows the expected features for the dominant amplitudes 

like In a++ and Im p+- while Im A++ and 3s A+- seem to behave differ- 

ently from IID u++ and Im p+- respectively. One must keep In mind however 

that the cutoff is rather low, the phase shifts solutions not always reliable 

and some of the amplitudes are quite small in magnitude and subject to un- 

certainties. Such methods will be nevertheless very useful, as the quality 

of the KN phase shifts improves, to study specific exchanges in the intermediate 

energy region. 

Let us emphasize at this point the dominance of the FEAR integral 

by resonances is expected to make sense only for the imaginary part of the 

amplitude, while real parts of resonances can contribute to very distant 

energies, even outside the physical domain. 

(c) Two-component duality 

The generalization of the duality concept to elastic scattering has 

been made.70-71 While s-channel resonances are dual to t-channel exchanges, 

the background under the resonances builds up the diffractive amplitude--the 

exchange of the Pomeron. 

s-channel resonances <===Z t-channel exchanges 

s-channel background <==+ Pomeron exchange 

The consequences of this principle are well known: 
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--if the s-channel has exotic quantum numbers, no resonances will 

contribute and high energy exchanges will only involve Pomeron exchange, at 

least in the imaginary part 

ImF -Imp s large - 

In order to achieve that, allowed t-channel exchanges have to cancel each 

other (exchange degeneracy). For .example K'p scattering is exotic in the 

s-channel and we expect that, at high energy, 

ImfK=ImcDK 

so that 

ImA(K+p) 2 P 

h A(K-P) z P+21mcoK+21mpK 

This result is only expected to hold for the imaginary part since the 

real part of K+p scattering can receive contribution from the distant Y* 

resonances of the s-u crossed channel and is seen experimentally to be large. 

It is amusing to see that for Regge exchanges with some u(t) we have 

In Fig. 48 it is shown that indeed the low energy part of Im(p + A)K 

is large and dominated by resonances while I&p - A)K is much smaller and 

structureless. 

--if the s-channel is exotic and no Pomeron exchange is allowed, we 

expect the scattering amplitude to be essentially real. This is the ce.se in 

K+N charge exchange scattering: we have seen in Chapter II that the phase 

of the forward amplitude for K+n -+K'p was very close to zero. We expect 
0 ++ ++ similar results for K+p +K A , pn +np and pp +nA . At the same time 

the corresponding non-exotic channels are expected to be mostly imaginary, 

as observed in K-p +I?'n. 

--imaginary parts of amplitudes for non-diffractive scattering should be 

dominated by resonances. This is observed in TN scattering 72 where clean 

Argand loops show up in It = 1 amplitudes (no Pomeron) (Fig. 49); the aspect 

of It = 0 diagrams is different with & large imaginary background (Pomeron) 

superimposed to rescmance patterns. 

(d) ~lication of duality: exchange degeneracy (MD) 

The following set of assumptions (duality) leads to very strong conse- 

wences for t-channel exchanges: 

(1) snalyticity 

(2) asymptotic Regge behaviour 1 
FESR 

(3) absence of exotic amplitudes (for imaginary 

parts only in non-diffrnctive channels) 

Re AR(K+p) = 2($ + $) sa 

Im AR(K+p) = 0 

Re AR(K-p) = 2(~; + $ cos m sa (z 0 a-t t = 0) 

Im AR(K-p) = - 2($) + BF) sin IM sa 

--trajectories -. 

Consider exotic 71+x-+, K+K+, K+K" scattering. Exchange degeneracy 

tells us that the p and f trajectsries should be the same and the same 

result should hold for (f,m) and (p,A2) leading to a LL?ique trajectory fcr 

p, CL>, f and A2 exchange. A look at the Chew-Frautschi plot shows that it 

is rather well satisfied by the wrticle spectrum (Fig. 50). From the mass 

Y 



spectrum alone we would deduce B linear trajectory: 

a(t) = 0.46 + o.gt 

when compared to experiments.1 trajectories a(t) =a(O) + a't measured in the 

space-like region 

a(o) a’ 

P .56 .97 

A2 .48 .P 

(0 .40 ? 

f 1 ? 

-t < 1.5 GeV2 

-t < 0.4 Ge? 

we see that the sgreement is not ovemhelming. In Fig. 51 we directly compare 

ap(t) snd aA from T-P +r"n and T-P +qn. 

--residues 

Duality imposes equality between residues in exotic channels. 

--line-reversed reactions 

Consider the peir of s-u crossed reactions: 

a+b+c+d (1) 

;+b+a+d (2) 

asymptotically the two amplitudes have to be equal, but MD makes some very 

strong requirements at any s (sufficiently large). L& us separate out odd 

and even amplitudes: 

A+ = B+(l + e 

A- = ~~(1 - eSim)sa = 2iB e -ids/2) sin z2 sa 
2 

A+ and A- me 7~/2 out of phase and consequently 

(%),= (%g2 
with 

IA+ + A-l2 = 4~~~-‘(ff + $1 

This result follows uniquely from the identity between the two tra- 

jectories a+ and a-. 

Let us now explicitly show helicity mplitudes: 

++ ++ ++ 
C- 

A+ 
= 2e-ida/2) sa 

[ 
0+- + cos F + ip+- sin T 

3 

leading to a plarization: 

p do = 4.3@ 
dt 

++ ++ 
'Ihe equality of residues, @I- = 0+-, imposed by duality, leads to no polarization 

in both processes. 

It Is interesting to compare processes involving the same ED exchanges 

and one expects: 

g (ab +cd) g (a'b' -,c'd') 

g (cb -tad) = 2 (;'b' +,a'd') 

--e xperimental tests of line-reversal 

We have experimental information on: 

g (K-p +I?'*, K'n +K'p) 

s (TN -KY, Ii;N +-rrY) 

P(K-p +I?'!?) 

(Fig: 52) 
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P(TN -BKY, EN -BTY) For example, at ap = 01 
A2 

= 0 we have 

BP+- = 0 

Re P+- = 0 

but ReA+-f0. 

These results are in good agreement with experiment for the flip 

amplitudes. The foll&ng processes are dominantly hellcity-flip and should 

be related by EXD and W(3): 

$ (K-p +f'n, K-n +K"A-) 

g (K+n -?K'p, K+p -+K'A++) 
(Fig. 53) 

Agreement with MD is not good in general. However one does not have to blame 

duality as a whole since some other assumptions were used in particular the 

assumed Regge pole behsviour with its factorization properties. Since we have 

numerous examples where the simple Regge-pole description breaks down, mostly 

through factorization, one may still hope to retain basic dual properties 

once the structure of the singularities is better understood. Along this di- 
-0 rection it is instructive to compare the non-zero polarizations in K-p +K n 

(duality + Regge pole behaviour predicts zero polarization) and in T-P -Ton 

(Regge pole assumption leads to zero polarization). 

--dip mechanisms 

In a Regge amplitude 

A+ = 0, g Sa 

the residue function e+(t) must have zeroes to cancel the possible poles 

of sin xx. 

a=0 sin 710 = 0 =a p+(u = 0) = 0 

Then exchange degeneracy forces the same zero on the corresponding exchange 

@-(a = 0) = 0 

where the pole is already cancelled and therefore the amplitude has a zero. 

$ (T-p 4 nPn) - 6: sin2 F - 2 sin2 F 

s (K-p +l?'n) - 26 -1 

In Fig. 54 these relations .we compared to experimental data: we see that 

there is good agreement between the shapes (a statement about duality and 

Regge behaviour for flip amplitudes) and even in magnitude (W(3) symmetry). 

The same qualitative agreement is found in vector meson production" 

KN -+K*N, iiN + i?*N, TN +pN 

where I t = 0 exchange (f,cu) can be isolated. 

lhis nice systematics obviously will not work for helicity non-flip 

amplitudes with their zeroes completely uncorretited With wrong-signature points. 

(e) duality and quarks 

mlity and the absence of exotic states leads to properties usually 

attributed to the quark model: 

--in meson-meson scattering with W(3) symetry, duality leads to 

none-t structure for t-channel exchanges. 

--considering Kkf and Kk" scattering, we find the canonical quark- 

model mixing angle between 0 - 0 and f-f' 
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cos2h = 1 
3 

This intriguing correction has been exploited in the duality diagrams, 74-75 

but will not be developed here. 

(f) semi-local duality? 

It is interesting to see how resonances can average and build up the 

smooth Regge behaviour: in particular let us find experimentally what is a 

typical momentum range for cancellations to occur. For example, consider 

backward K-p -+i"n scattering 76 which has exotic quantum numbers: Fig. 55 

shows the energy dependence of the imaginary part of the amplitudes showing 

resonance-produced oscillations around the zero value predicted by duality. 

A typical range aPL u 1 GeV/c corresponds to the short-range cancellation 

between resonances. 

This semi-local duality can be exploited as a method to learn about 

t-channel amplitudes. Having a complete description in terms of phase-shifts 

over some (low) energy domain, we can reconstruct s-channel helicity amplitudes 

with well-defined t-channel qmntm numbers in a local sense. Then, by 

observing the s-dependepce of these amplitudes over some range of momenta 

(- 1 GeV/c) we can hope to learn about them. 

77 --example: EN scattering 

This type of study is particularly interesting and important for I?N 

scattering where phase-shifts exist and are usually parametrized in terns of 

resonances superimposed to a background: each partial wave is taken as the 

sum of background and resonant parts 

fR 
B 

f,, = ),+ + fQ+ 

contributes a negligible amplitude to It = 1 exchange in strong support of 

the Harari-Fremd proposal. 

Helicity amplitudes reconstructed from the resonant parts of the EN 

partial wave amplitudes are shown in Fig. 57. Even at momenta l-l.3 GeV/c the 

features of high energy t channel exchange are well established with a zero 

at t m -0.2 GeV* for Im F, (both It = 0 and It = 1) and a zero at 

t - -0.5 for Im F+- (It = 0, 1). 

As a final remark, let us note that a linear separation between back- 

ground and resonances 

ImF=ImP+ImR 

does not obey unitarity. Indeed for a given partial wave P, we have the S-matrix: 

s e 

background resonance 

and consequently 

TV = $ + Ti(l + 2i$) 

Im T' = Im $ + Im Ti + 2 Re(T3;) 

The last term is generally ignored in most analyses. 

2. Absorption 

(a) classical absorption 

In a scattering process, both the incident and outgoing waves can be 

absorbed out and it is convenient to describe the overall scattering amplitude 

in the impact parameter space: 

The amplitudes reconstructed from the background shows dominance of 

the heliclty non-flip, It = 0, imaginary part in accordance with Pomeron 

exchange properties (Fig. 56). It is remarkable that the background only 
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FA(bt) 
= J b db T$&b,s) Sel(b,s). J,(bfit) 

where Sel(b,s) is the transmission at 

the Impact parameter b, and M the 

overall helicity change. 

Sel(b,s) = 1 + iTel(b,s) 

z 1 - ITel(b,s)l 

Therefore the dominant effect of 

absorption is the removal of low partial 

waves leading to peripherality of the 

absorbed amplitude in b space. 

For a purely imaginary elastic 

amolitude with M = 0 

Tel(b) 
I 

T(b) 
li:, 

=- 
Lo J "J-t da F,,(t) Jo(b 6) 

iaT -b2/2B 
=Gze 

R b 
and therefore total absorption of low 

partial waves if 

Typically LT~ = 25 mb, B = 7 GeV-' leading to uT/4rB - 0.7; so that 

in order to absorb completely the central waves one needs some additional 

absorption. For example it has been suggested 78 that all the inelastic 

diffractive states should be included as intermediate states leading to an 

increase in absorption. 

For strong enough an 

absorption the t-distribution 

i- 

can present dips due to the inter- 

ference between the bare pole 

amplitude and the cut resulting 
-\ 

I 
--- cut R QP 

Iamplitude 
from the convolution integral. 

The cut is destructive at t = 0 
pole R 

t since Tel is imaginary. 

Absorption has a qualitatively 

different effect on different 

helicity amplitudes due to the kinematic zero at t = 0 for flip amplitudes. 

Schematically we have: 

cut large 

232 



P I 



Thus the looked-for relationship is: 

J-L- 

J A 
leading trajectory 

Above the curve J -&- we expect angular momentum barrier effects, 

while below the amplitude is suppressed by absorption of low partial waves lead- 

ing to the overall peripheral picture. 

This behaviour can be checked against the observed N* 
* 

and Y 

baryon spectrum in Figs. 58 and 59. It seems satisfied although the deviation 

from the leading trajectory is still noz clearly perceived. There is neverxhe- 

less a noticeable lack of low spin resonances at large mass: it seems that one 

should look experimentally a little harder into this question of low-lying 

"daughter" resonances, in order to pin down the idea of peripherality. 

In Fig. 60 we plot the location of the first zero of the M = 0 and L% = 1 

helicity amplitude from the prominent Y* resonances: fixed t structures occur 

already in the lower mass states. 

We have seen therefore that the dominance of "peripheral" resonances 

leads to a peripheral Im R while no insight is gained on the real part. 0~ 

the other hand, classical absorption has for consequence that both real and 

imaginary parts are peripheral. 

--discussion 

It is an experimental fact that known resonances (log J) contribute 

a zero at 0.2 GeV2 in ID R,, and that Im R++ at high energy also possesses 

such a zero (at least for the obser?red vector exchanges) as a result of absorption. 

TQe most logical connection between these two facts is to assume that resonances 

are dual to Regge poles + absorption cuts. 79 

Alternatively one could still have resonances dual to poles alone. 

If central resonances continue to be excited, dips can occur at larger t 

(- 0.6 GeV2) corresponding to the signature zeroes of Regge poles. Also at 
n 

high energy absorption moves zero down to 0.2 GeVL thereby breaking duality. 

This alternative seems much less natural, but cannot be completely excluded at 

the present time. 

This situation has an immediate consequence for exchange degeneracy: 

in the first case ED will be satisfied at the same level than duality itself 

while in the.second case there will be s-wong violations of duality due to 

absorption corrections. 

Even though we are not yet seeing overwhelming evidence for peripheral 

high-mass resonances (in the 3 -& sense), the low mass resonances do exhibit 

striking peripheral properties in b space: 80 see, for example Fig. 61 where 

the i%i resonant partial wave amplitudes are used to recoxistruct 3~ R,+. 'Ihe 

peripheral resonance contributions peak around If in a clear way almost outside 

the diffractive impact parsmeter distribution (Fig. 62). This feature is not 

unique to l?N scattering and is also observed in TN phase shifts: Fig. 63 

shows the pJ11 amplitude Im R++ + Im P where the resonance contribution is 

clearly visible on the edge of the diffractive background distribution of central 

character. From the same EN analysis it is interesting to follow the zero 

positions at 0.2 and 0.5 Ge j! 
(It=O) 

of i3ne resonant amplitudes Zn R,, and 

zm Rot=l) 
which are essentially constant within the accuracy of the different 

phas::shift analyses (Fig. 64). 



V - MODELS AND SPECULATIONS ID Fah - J,(RG) 

1. Models for Two-Body Scattering 

From what we have seen in the preceding chapters it is clear that any 

model for high energy scattering should incorporate or possess the following 

properties: 

-some Regge features, in particular in M = 1 amplitudes 

-strong absorption of the bare exchanges by Pomeron cuts 

-duality for the imaginary parts 

-approximate W(3) symmetry for residues 

Different models will have their emphasis on a few properties and 

will generally try to "explain" the remaining properties. Pure pole models 

are not reliable, except for flip amplitudes, and cannot yield a complete 

description of two-body processes. Strong absorption appears to be an impor- 

tant ingredient which has to be included in any realistic model. 

We are not going to review all potentially successful models but 

rather select two of them in order to illustrate different assumptions and 

problems: on one hand, the dual absorptive model where duality and absorp- 

tion are strongly linked together; on the other hand the strong absorption 

model where the accent is put on calculating strong-absorption cuts with no 

relationship to duality. 

(a) Dual absorptive model (Harari 81 ) 

--rules 

The imaginary part of a non-diffractive t-channel exchacge is built 

up by peripheral resonances. 'he J-x&- peripheral resonances are dual to 

the sum 3f poles and their absorption cuts: 

Resonances <=a R + R @ P 

For a change AA of helicity the imaginary part of an ampiitude has a zero 

struct.ue approximately given by JpA(RG) where R is around 1 f 

For M = 0 the cut correction is large while it is much smaller for M = 1. 

The structure of the real mrts is not given by duality requirements, 

but one can invoke analyticity: if Im F - *a then 

I 

- cot F (even exchange) 

tan F (odd exchange) 

These crossing relations are claimed to work only for M = 1 smpli- 

tudes where the a s dependence is not perturbed too much by cuts; in M = 0 

amplitudes strong cuts can introduce log factors in the amplitude and the 

crossing relation could fail. 

The Pomeron amplitude is assumed to be structureless in t, central 

in impact parameter space, mostly imaginary and helicity no-flip. 

--comparison with experiment 

(i) dips in inelastic processes (&A = 1 amplitudes) 

Imaginary parts behave like Jl(R&) while real parts are 

tan (F) Jl(Rm or -cot (F, J&Rfi) 

according to the signature: 



Odd 
(P) 

even 

4) 

Im 

0.6 

?- 

TIX most simple way to produce dips at -t - 0.6 G~V* in differential 

cross sections is when M = 1 amplitudes with zero dominate. If other 

helicity amplitudes are important they s.re likely to wash out any indication 

of a dip: for example [JO(R--6)]2 h as 8 bmp in this t region. In order 

to see if a given process will have a dip or not, it is sufficient to apply 

the helicity coupling rules derived empirically in Chapter II and find out if 

M = 1 dominates. If this latter condition is true, a dip will be observed 

if the exchange is odd under crossing since da/dt has the zero of 

[Jl(Rfi)12. 

The dip is predicted and observed for the processes: 

0 lr-P +n-n, .ti -PTA, YP -+TpP> (fi *N-J& =. . 
t 

For reaction dominated by M = 1 even exchanges, no such dip is observed: 

77-p -I qn, TN +qA. This is also true when both even and odd exchanges 

occur such as in K-p +l?'n, K+n -+K'p, KN +Ka and ti +I& 

When Al = 1 does not dominate, no dip is expected as in rp --) qp, 

TN -PUN, despite a strong p exchange. 

The behaviour of eLsstic polarizations is also in good agreement with 

the dual absorptive model, as a test of Re Rahzl. 

(ii) elastic scattering (M = 0 amplitudes) 

The (dominant) imagainary part of an etistic scattering amplitude 

receives contributions from resonances (or t channel poles) and the Pomeron. 

For exotic channels, only the Pomeron term survives, 8s in K’N and NIi scattering: 

F-P-Imp 

while for non-exotic processes, such as K-N and 8N scattering, we have 

the complete form 

ImF=ImP+ImR 

For s high enough, the M = 0, imaginary Pomeron amplitude dominates so 

that the leading terms in the differential cross section are: 

$ (exotic) - P2 

nonexotic) - P2 + 2P Im RhhCo 

where Im Rfizo behaves like a Jo(Rm function. We therefore expect 

the following pattern: 
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da 
dt 

do 
dt 

* 
-t 

non-exotic 

1 -t 

This behaviour is clearly seen in the data in the intermediate energy 

region for ?r'p (both non-exotic), kp and up to - 10 GeV for p'p where 

the resonance contribution is larger. Obviously as the contribution from the 

resonances slowly decreases 8s the energy goes up, we expect the two patterns 

to become more and more similar and the (Idip" in the non-exotic channel to 

fade away. We can translate this effect in terms of the exponential slope 

of the forward differential cross section which energy dependence comes from 

the proper 6 dependence of the Pomeron slope (which shrinks according to 

K+p and pp data) and the disappearence of the Regge term (producing an 

apparent anti-shrinkage). 'Ihe following trends are therefore expected in 

the dual absorptive model: 

\ P + large R(~P) 
P + small R(K-p, ~'p) 

/ (PP, K+p) 

--questions and problems 

Dips at t - -0.6 Gev2 in M = 1 amplitudes are explained by zeroes 

of Jl(Rfi); at the same time the complete systematics of the dips requires 

some connection with wrong signature zeroes (a = 0): in particular for even 

exchanges there is a delicate cancellation between 3 and sin(lM/2) where 

the J1 zero is completely determined by the absorption radius R. In order 

for this effect to happen at every energy, a and R should have the same 6 

dependence. Now experimentally 0: is pretty independent of s st least for 

P exchange for -t < 1 Ge $ and other exchanges at t = 0. It then follows 

that R should be more or less constant with s and it is hard to correkte 

this fact with the expanding radius of the shrinking Pomeron. 

!&e peripherality picture receives also 8 warning from the new NAL 

dat29 on T-P +~'n, still showing a dip at approximately the same value 

-t - 0.6 Ge ?. A flip amplitude 

Im Fl(t) = AeBt Jl(Rfi) 

corresponds in b space to: 

hi+) =+w(-$$) I$$) 

for b >> 2B/R. 

If B shows shrinkage 88 in the i~-p +IT'~ data, the impact parameter 

distribution becomes wider and the peripheral character slowly disappears. 

In Fig. 65(a), Im i+-(b) is plotted from the exact formula and 

B(s) = BO + 0~' ln s a' 2 1 Gev-2 

and are in good agreement with experimental data. 



Since for a flip amplitude Im ?l(O) vanishes kinematically at b = 0, 

peripherality is maintained in an artificial way. If the same shrinkage 

occurs for a M = 0 amplitude where no kinematic suppression operates 

at small b, peripherality is lost rather quickly (see Fig. 63(b)). It 

will be of crucial interest to check whether & = 0 amplitudes show shrink- 

age properties. 

Another possible problem is connected with even exchanges (f, A2, K$ 

which are predicted to be peripheral. There is no model-independent analyses 

of these amplitudes for M = 0 and therefore It is very difficult to make 

any sensible statement; however there exist now some evidence from FESR analyses 

in KN and hypercharge exchange reactions indicating that tensor exchanges 

may be less peripheral than vector exchanges. It would be very important to 

confirm this experimentally by a direct test: this could be done for A2 

exchange by studying the differences 

K $, = g (K+p) + g (K-p) - $ (K+n) - $ (K-n) 

It is remarkable that It = 0 exchange in fl scattering can be 
82 explained by a peripheral f 

Im f++ = Af e Bft Jo(&) 

if the Pomeron amplitude shrinks. There is then a nice consistency between 

~'p and K'p elastic scattering, all being described with peripheral ex- 

. changes and a shrinking Pomeron at energies j-20 GeV (Fig. 66). This har- 

monious situation is unfortunately shaken by data @,8’+ on 0 photoproduction 

where Pomeron exchange is expected to dominate in the t channel since non- 

strange exchanges do not couple strongly to 6: the data shows essentially 

no 6 dependence for do/dt (yp -'BP) at -t = 0.6 c,?. Even including 

some 6 dependence for b/dt)t=O leaves little shrinkage 

c$ - 0.1 - 0.2 GeV-2 

in the range 2 to 19 GeV. This is to be contrasted with Fig. 66 where in the 

same energy range a' w 0.6 GeV -2 . 
P- 

Regardless of the e data, it is also 

possible that a slope a; - 0.6 GeV-2 leads to some inconsistencies in the 

dual absorptive model analyses since It corresponds to a sizeable real part 

of the Pomeron amplitude at larger t values-- - 5C$ of the imaginary part 

at -t- 0.5 Ge?. 

(b) Strong absorption models (Kane et a1.84) 

--calculating R 8 P cuts 

In these models the cut is calculated explicitly as a convolution 

integral over the pole amplitude and the Pomeron amplitude: 

Rabs(s,t) = Rpole(s,t) + i/d,' dt'l K(t,t:,t") Rpole(s,t') P(s,t') 

where R poleb't) 1s a structureless amplitude, having no relationship to 

exchange degeneracy or duality and K(t,t',t") is a reel positive function. 

All dips seen in differential cross sections are explained as absorption 

zeroes coming from the destructive interference between pole and cut. 

In its early forms the model suffered from not representing correctly 

real parts. If P is an imaginary amplitude, both the real and imaginary 

parts of the pole term are equally strongly absorbed giving a w J1(R'&) 

behavior for both: 
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Such a form for Re p+- is ruled out by polarization data on ?'?p so that 

a new version of the model was developed. 

--a new model 

Since the trouble seemed to come from the assumption of 8 purely 

imaginary Pomeron (believing the procedure to compute cuts) an easy cure is 

to allow for a Pomeron real part. This was originally motivated by the 

steepening forward differential cross section observed in pp scattering at 

the ISR: parametrizing the imaginary Pomeron amplitude with 8 dominant 

central part and a peripheral part with expanding radius 

ImP =AeBt + Ce Dt J,(Rfi) 

R- X0== Ro&- 

one obtains via analyticity a real part proportionalto the derivative of JO 

Rep-d ay J&R- - Jl(Ra 

It Is easy to understand how the real PI% of P changes the con- 

clusions about real and imaginary absorbed amplitudes: 

Re Rabs = Re P pole - Re P pole @ th PI + nn Rpole @ IRe PI 

Im Rab, = h R 
pole 

- Fie P pole @ IRe PI - b Rple @ lb PI 

The result of absorption will now depend on the relative sign of Re P pole 

and ImP pole' leading to .s qualitatively different conclusion for odd and 

even exchanges: 

Odd 
M=( 

even 
LA= 

\ 

) 

\ 
0 

Re 

L; 

L- 

0.2 
-t 

I 

\ 

\ 

L, -t 
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merefore real parts of even exchanges and imaginary parts of odd 

exchanges are peripheral (first zero around 0.2 Ge ? ) while imaginary parts 

of even exchanges and real parts of odd exchanges exe rather central (with 

B broad minimum around 0.4 GeV2). 

Using these prescriptions, B zeroth order fit to the avaiLable data 

can be obtained with a few parameters, SU(3) symmetry and some sssumptions 

of simplicity. 

--problems 

First of all duality is never sstisfied at any level and would sadly 

appear 8s a mere accident. At the end the absorbed amplitudes have some 

kind of resemblance to exchange-degenerate amplitudes, but it is only approxi- 

mate, at sny rate worse than the data actually shows: for example do/dt 

for Kfp we not too different with K+p showing .s sizeable curvature which 

is not supported by the data. 

The rise in K'p total cross section (also pp) is explained by 

different energy dependence6 of f and o amplitudes. Since lb (u is 

more peripheral than Im f, the model predicts that 

Ihe data from N&L and ISR indicate'that P is B rising term as well and 

there seems to be little evidence for .a large effect from f-u energy 

dependence. 

Since absorption has a larger effect in non-flip amplitudes, one 

expects in this model 

eff eff 
a&o '"&l 

f 
In f, 0 

y-b 
I I 

-1 
I 

t 
~,(K+P,PP) I 

I 

since 

R abs -R -Rcut pole 

-6 a 1-h 1. I 

a+= -8 

(c > 0) 

for * limited 6 range 

where data on r-p +r"n and A(?rfp) do not seem to indicate a significant 

effect. It is interesting to see that the cut term has a strong effect on 

the phase of the amplitude at t = 0: if 

=S- Re R- - Ae 

Re R- - - tan(y 
In R- - 

So that one expects B larger real part at low s from the pole term alone: 

while the data show B small effect in this direction (see Fig. 22) it seems 

too small considering the large size of the absorptive cut. It is instructive 



to notice that the @se of an amplitude, being related to derivatives of the 

modulus with respect to 6, is a rather sensitive indicator of any change 

in the 8 dependence. 

At a more fundamental level, the magnitude of Re P required to fit 

the data may be too large. In Chapter III we have seen that the real parts 

of Itzo IT'P and yp elastic scattering were strongly s-dependent and 

probably related more to f exchange rather than Pomeron exchange. It does 

mean of course that f exchange should be not ignored in calculating cut 

diagrams but the whole problem has to be investigated separately--whether 

and how to compute R @ R' cuts. We have seen that for exotic quantum 

numbers these amplitudes are rather small and this should be understood 

before engaging in a systematic program to include pole-pole cuts in two-body 

processes. The half-success of the strong absorption models seems to indicate 

the need for real part effects in rescattering and R @ R' cuts are likely 

to pLay a role in them. 

2. Speculations on the Pomeron 

We have seen in many occasions that it is crucial to learn more about 

the Pomeron amplitudes at lower energies since it relates to the problems of 

understanding of elastic amplitudes, separation of f exchange, exchange 

degeneracy and absorption. Since experimentally the Pomeron is most accesible 

at very high energies, we shall try to start there and gather the relevant 

properties of Pomeron exchange. 

(a) Pomeron from high-energy pp data ISR 

We take the following points as clear experimental facts: 85 

. Im PCS, t = 0) is rising with 6 

. Re P(s, t = 0) is small, crossing zero and becoming positive 

. Iin P(s,t) is dominantly central, but hss a distinct peripheral piece 

(- Jo may be a good parameterizstion) 

. Im 'central (s,t) changes very slowly with 8 (cr' small) 

. IUIP peripheml(*~t) i* t3=o-h3 

The stronger shrinkage seen at small t can be induced by any of 3 

effects or a mixture of them: 

- the growth at t = 0 

- the shrinkage of the peripheral part 

- an expanding radius RinJo(R6j 

Since the first effect we mention is already clearly observed in the data, 

it is interesting to see if, by itself, one can achieve B good description 

of pp elastic scattering with other parameters only slowly varying. In 

this simple model we write 

h P(S,t) = AeBt + C(s) eB JO(Rfi) 

with A, B, D snd R are slowly changing with s and the main s depen- 

dence comes from C(s), growing with 6. 

Analyticity requires that 

Imp '\I 

'\ 
I \ 

\ 
\ 

Re P 

I -t 

L- -t 

Re P = tan(- g) Imp 

-$ em JO(RG) -- 

with dC/dy > 0. 

If C = C&y, then Re P 

is essentially s-lndepen- 

dent while Im P grows like 

In 8. 
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An excellent fit to the available ISR data yields 

B = 4.4 GeV -2 

D = 4.7 GeV -2 

R = 4.7 GeV -2 -If 

showing a rather broad peripheral distribution in b space. Let us note at 

this point that OUT picture is quite orthogonal to Kane's 04 where the main 

s dependence comes from the s dependence of R in the Jo argument. 

At lower energies we expect real parts from Regge exchange to con- 

tribute since, although Im R is not very large, Re P can be quite sub- 

stantial--** seen in Chapter IV. 

R~(PP) 

t 

t increasing s values 

We expect the same qualitative behaviour for meson scattering with 

R scaled geometrically with -J"T and the peripheral piece will lead to 

some curvature in do/dt at high energy. 

(b) Can we extract Im P(s,O) at lower s? 

We can isolate the combination (P + f) in TN, KN and NN elastic 

scattering. How to eliminate f exchange? Let us recall the following 

properties of exchange amplitudes: 

-PJ LLI and A 2 exchange is power-behaved at t = 0 and probably 

the same will hold for f exchange. 

-within the experimental uncertainty it appears that oI(O) for a given 

exchange is independent of the process; for example, c$(O) - $0) - af(o). 

-SU(J) symmetry is approximately true for residues at the 2C$ level 

W% for example). 

Guided by these facts we shall assume that the f amplitude has 

similar properties at t = 0: 

. Imf=fs 
af-l 

. a; = CJg (= a;, 

l 2fK=f 
T 

as given by SW(j). 

It is then possible to use cross sections data on dp, K'p and K'n 

to eliminate the f amplitude and obtain a "Pomeron" amplitude. The relation 

is 

; [I + z(Kn) - C(TPrp)l = 2PK - p TI 

and is evaluated using total cross section data in Fig. 67. Since we do not 

a priori expect a marked difference between the s dependence of PK and 

PT, it is fair to assume that we are seeing in Fig. 67 the 8 dependence of 

either PK or P,: data shows a rising Pomeron contribution from a momentum 

of 3 GeV up. Thus the asymptotic behaviour seen at the ISR for pp scattering 

and also for kp scattering at lower energies (2 20 GeV) seems to persist to 

qilite low energies, once Regge terms have been removed. 

Before going further we must check the stability of our result against 

the most crucial assumption of an SU(j)-symmetric f coupling to pseudoscalar 

mesons. From the branching ratio 

m = .@5 2 .Ol 
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u&W - $ [I + C(Kn) - C(rp)l 

- 2PK - P K 

TM6 serves as an independent check of the fK/fT ratio since values for 

oT(ON) in agreement with data occur for the SU(3) ratio (Fig. 68). We 

therefore expect o,&bN) to show a linear rise with In s from as low a 

momentum as 3 GeV and up: this can be experimentally checked by studying the 

s dependence of (du/dt),=O (l-p -+dp) and would be clear-cut confirmation 

of the Pomeron behaviour at low energies. 

(c) Application to yp 4 $1 

0 photoproduction is dominated by Pomeron exchange and the study 

of the t distribution of this process should have some similarities with 

pp elastic scattering as seen at the ISR. Let us parametrize the @ photo- 

production amplitude in the same way 

where 

F - Im P = AeBt + C(s) eDt JO(R&) 

-- B, R and D are scaled geometrically from pp scattering leading 

to R- 3.5 GeV-' (less peripheral than pp) 

-- c(s) is given by 2oT(KN) - a,(w) 

In Fig. 69, the above parameter-free description (except for overall 

s independent scale approximately given by vector dominance and f2 T-4 
from 

e+e- colliding beam data) is compared favorably with the data on n + @p 

from 2 to l2 GeV. There is shrinkage at small -t < 0.3 GeV -2 while the 

large t cross section is dominated by the central part and is quite inde- 

pendent of s (Fig. 70) in agreement with experiment. In Fig. 71 we show 

the different amplitudes making up the full Pomeron contribution at 12 GeV. 

It is clear that the effects are not very large and that we need 

new accurate experiments measuring forward 0 photoproduction down to t = 0 

and concentrating on the careful study of s dependence. At an easier level 

it should be verified that the integrated cross section is a growing function 

of s. 

(d) Implications for exchange degeneracy 

--t = 0 

A Pomeron 6 dependence of the form A + B In s implies a breaking 

of exchange degeneracy since a&K+p) and o,(pp) show some extra contri- 

butions at lower energies. At s - 10 GeV2 we have approximately 

DJI R(K-P) 1 Im(f + u) - 10 mb 

Im R(K+P) zIm(f-w)-l-2mb 

indicating a small violation < 205 of exchange degeneracy. If the breaking 

comes from absorption effects, then the f cut is weaker than the 0) cut, 

as expected from the new strong absorption model (see Section l(b) of this 

chapter); but breaking could also come from the pole terms, since the respec- 

tive values for CY(0) are not too different where a &rong absorption differ- 

ence would have an important effect. 

--t 

If exchange degeneracy is broken in K+p and pp elastic scattering, 

Im(f - m) is going to contribute to the shape of da/dt since it interferes 

with the dominant Pomeron amplitude: 

-if Im f+, and Im u++ have zeroes at the same t value 

(- - 0.2 Ge?), then do/dt (K+p) will be of the form P2 + 2P.11J011 with 

a “Jo” term about 5 times smaller than in K-p. Since the P term is 

essentially non-shrinking for -t > 0.2-0.3 Ge v2 the effect of the "Jo" 
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produces a slight anti-shrinking, at variance with the trend of experimental 

date showing a pronounced shrinkage. 

-if Im f++ and Im "++ have different zeroes the shape of Im(f-u)++ 

will depend on the separation between their zeroes. 

Im(f-cu) ++ 

zero at .2 GeV2 (like 0) 

Even for slightly displaced zeroes (0.2 and 0.3 Ge?), Im(f - WI++ 

can be very different from a Jo shape, leading to a much flatter amplitude. 

This results in an apparent shrinking of the K'p differential cross SeCtion 

since this rather flat amplitude is decreasing with energy: 

t slope t 
- P -t > 0.2 GFzV-~ 

It is interesting to notice that such a small change in the first zero has 

important consequences for the peripherallty of the amplitude: if Im f, = 0 

at -t - 0.3 Ge V2 it means that (R) - 0.5 f rather than (R) - 1 f for 

= "++ and that Im f++ is qw.lLtatively central in sgreement with strong 

absorption with important real parts, a convincing mechanism for which being 

still lacking. 

It thus seems that our picture of a mostly central Pomeron with very 

slow energy dependence with a growing peripheral (but wide) part leads to a 

consistent description of elastic processes and vector meson photoproduction. 

Small breaking of exchange degeneracy follows and has significant effects on 

the slopes of the differential cross sections; the breaking of exchange 

degeneracy is strong enough to allow the imaginary part f exchange to become 

significantly central. To verify these conclusions it is important to carry out 

accurate measurements of Tp --) .$I, and also have some model-independent look 

at the even exchanges such as in hypercharge exchange reactions and may be 

y-pp-'q and yn-~an. 

-2 ---- P -t < 0.2 GeV 

S 
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OUTLOOK 

There has been a qualitative change in understanding two-body reactions 

when experiments have been geared to extract individual amplitudes instead of 

just bi-linear products such as cross sections. Information gathered SO 

far is very limited and new experiments should expand OUT knowledge considerably. 

Major areas are : 

1) energy dependence of TN amplitudes 

2) getting closer to KN, i?N complete amplitude separation 

3) measuring even-crossing amplitudes through kd, yN +cuN and hyper- 

charge exchange reactions 

4) production of resona&es observing their correlated decays; mostly 

for lower spins 

5) accurate elastic scattering and polarization measurements at high 

energy (up to w 100 GeV) to determine the energy dependence of a 

few important amplitudes 

6) improving experimental knowledge of the Pomeron amplitude at lower 

energies, mostly through detailed measurements of yp -S @p 

7) determine the importance of non-exotic Regge @ Fiegge cuts through 

accurate comparison of processes sensitive to interferences. 

We also need to develop methods to incorporate the constraints of analyticity 

into amplitude analyses: while the derivative analyticity relations look promis- 

ing, one has to understand their limitstions more fully. It is possible that a 

clever use of analyticity will relieve some of the burden of carrying out com- 

plete experiments--a task out of sight in most cases. 

When unambiguous experimental measurements of even amplitudes are done it 

will become essential to understand absorption effects, the structure of PCm?rOn 

amplitudes and the importance of Regge cuts. 

?he present picture of a high energy amplitude is aesthetically not 

particularly pleasing; for example W(3) symmetry and concepts like exchange 

degeneracy are only appproximately verified by experiment to about 20$. How- 

ever we feel that much will be learnt when the breaking mechanisms are under- 

stood and then, may be, a simpler picture will emerge. 
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Table Captions Figure captions 

Table 1. Nmber of independent helicity amplitudes for typical processes. 

Table 2. Observables and measured quantities for reaction types with and 

without a polarized target. 

Table 3. Energy dependence of forward t-channel amplitu&s from total cross 

section data with a parametrization Bs 1-Q . 

Table 4. Energy dependence of forward differential cross sections parametrized 
2c&2 with s . 

Table 5. Dominant helicity couplings of mesons to baryon-antibaryon 86 deduced 

from experimental data. 

Table 6. SU(3) sPm?try for VE35 vertices and helicity couplings. 

- 1+ + 
Figure 1. Recoilbaryon polarization in 0 2 +d $ scattering with B 

polarized target. 

Figure 2. It = 0 TN mplitudes at 6 GeV/c from Ref. 5. 

Figure 3. It = 0 TN amplitudes at 6 GeV/c from Ref. 5. 

Figure 4. Naturality amplitudes in TN +pN at 17.2 GeV/c from Ref. 86, 

using data from Ref. @. 

Figure 5. Separation of naturality in 7p + Top using linearly polarized 

photons (Ref. 90). 

Figure 6. pp elastic scattering at 6 GeV with measurements of 2 or 3 spins 

(Ref. 28). 

Figure 7. Differences of total cross sections between K*d and p*d using 

data from Refs. 31, 33, 34, 35 and 91. 

Figure 8. do s dependence of z (v-p +r"n) at fixed t values (Ref. 36). 

Figure 9. p Regge trajectory from data on g (T-P -aron) (Ref. 36). 

Figure 10. Sewration of It = 0 exchange in TN +pN; data from Refs. 92, 

93, 94 and 94. 

Figure 11. Location of dip for nucleon exchange in rep +p~' and pp +T-S 

from Ref. 40. 

Figure 12. Differential cross sections for r-p +p"n with well-defined 

naturality in the t channel at 6 and 17.2 &V/c (Ref. 41). 

Figure 13. s dependence of the differential cross-sections for pp +PT at 

fixed t (u); data from Ref. 43. 

249 



0 “\ N
 



Figure 38. Even-crossing non-flip amplitudes in nN elastic scattering at 

10 GeV; real and imaginary parts are sepaarated using analyticity 

through dispersion relations (from Ref. 58). 

Figure 39. Phases of Ft+ and Fj- in 71pJ elastic scattering at 6 GeV 

(from Ref. 58). 

Figure 40. Predicted TN charge-exchange polarization from Ref. 58. 

Figure 41. Real and imaginary parts of elastic processes at t = 0 using 

derivative analyticity retitions (Ref. 60). 

Figure 42. Derivative analyticity relations: difference of 2 Regge poles 

reconstructed with first derivative only. The solid curve is 

the input amplitude while the dashed curve represents the recon- 

structed amplitude. (a) real part (b) imaginary part as a 

function of s (Ref. 62). 

Figure 43. Same as Figure 42 for an absorbed amplitude, as a function of t. 

Figure 44. Phase of <p+KZp at t=o. Hatched area is the result of 

derivative relations; data from Refs. 63 and 53. 

Figure 45. Real FW.-LS of helicity non-flip amplitude in m +~p scattering 

at 4 and 10 GeV using derivative analyticity relations and data 

from Refs. 64 and 65. 

Figure 46. Real and imaginary parts of helcity in non-flip amplitude in 

yp -'y-p at 10 GeV. 

Figure 47. Im A' for TN charge exchange at t = 0 from Ref. 68. 

Figure 48. I& + A2)++ from oT(K+N) data (Ref. 91). 

Figure 49. TN phase shifts projected on t-channel It = 0, 1 exchanges 

(Ref. 72). 

Figure 50. Meson spectrum and exchange degeneracy of Regge trajectories. 

Figure 51. p and A2 trajectories in the scattering region (Refs. 36 and 

37). 

Figure 52. Test of exchange degeneracy in K-p +z"n and K+n -+K"p 

(Ref. 100). 

FM-u-e 53. 
0 ++ Test of exchange degeneracy in K+p +K A and K-n +z'A- 

(Ref. 99). 

Figure 54. Test of exchange degeneracy (dips) and SU(3) for processes 

dominated by helicity flip amplitudes. 

Figure 55. Test of local duality in backward K-p +I?', scattering (Ref. 76). 

Figure 56. Helicity amplitudes reconstructed from the background in l?N 

phase shifts (Ref. 77). 

Figure 57. Hellcity amplitudes reconstructed from resonances in l?N low 

energy scattering (Ref. 77). 

Figure 58. Chew-Frautschi plot for N* resonances; the number inside the 

circles is equal to 10 times the elasticity of each resonance. 

Figure 59. Chew-Frautschi plot for Y* resonances and peripheral curve 

(Ref. 80). 

Figure 60. First zeroes in the decay angular distribution of Y* resonances 

as contributed to helicity flip and non-flip amplitudes. 
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Figure 61. Impact parameter profile for the imaginary part of the hellcity 

non-flip amplitude reconstructed from the background in ?N 

low energy phase-shifts; the 3 plots correspond to analyses in 

different energy regions (Ref. 80). 

Figure 62. Same as Fig. 61 for the resonant part of G scattering. 

Figure 63. Same as Fig. 61 for the sum of background and resonances in II% 

scattering at low energy. 

Figure 64. Zeroes of helicity amplitudes in i?i'J low energy scattering (Ref. 77). 

Figure 65. (a) Impact parameter profile of Im F+- from r-p +lr"n using 

experimental shrinkage; (b) same distribution for Im F,, 

assuming similar shrinkage and constant zero location. 

Figure 66. Slope of Pomeron amplitude from a dual absorptive model analysis 

of niI elastic scattering (Ref. 82); the hatched region corresponds 

to the slope of K+p elastic scattering. 

Figure 67. Total cross sections and 8 dependence of Pomeron amplitude. 

Figure 68. Dependence of Pomeron amplitude on the ratio 2fK/f,. 

Figure 69. Differential cross section for yp + @p between 2 and 12 GeV. 

Figure 70. s dependence Of -I ep) at fixed t. 

Figure 71. Central and peripheral Pomeron amplitudes in up 4 "p at 12 GeV. 

” A Geometry” 

A IPi1 -RIbI 

” R Geometry” 

Figure 1 

252 



t 

0 

4 Cl 

o (F,o_) 11 XI0 

. 

0 0.2 0.4 0.6 

-t (GeV21 15,8A11 

(a) 0 (F:+) II 
. (F:+)L 

t 0.3 

0.2 

0.1 
I 

i 

(b) O (F:- 1 II 

l (6-h 

SOLUTlON 17 i 

90” (cl 

P 

y+t- yt- 
60' 0 0 

+ 6 i 

0 0.2 0.4 0.6 0.8 

-t (GeV2) 1,11*14 

Figure2 
Figure 3 

253 



-0 
0 

I+ a + 
- 

F a 
- 

+ x 

111lllI 
l 

l 
llllII 

I 
I 

l 
1111II 

I 
I 

l 
‘0 

a- 

i 

cu 
d 

- 
7 0 

I 
0 

,4J9 
z,,(qfl) 

JPnl!ldW
 



I ” ” I ” “I”“1 

.5 - 

P+P-P+P - 

6 GeVc 
%-rr preliminary _ 

:,,#?yl, ‘,,,), ,- ,%-tl 90” 

1 

P; (GeVc: 2dSA10 

50 

20 

IO 

5 

2 

I 
2 20 

PL (GeV) 

Figure 7 
Figure 6 

255 



0) ” “I 
6 6 10 

I e 
IS 20 20 40 50 60 

P, GeVfc 1558A11 

Figure 8 

Re dt) 
1 

Figure 9 

256 



I 
N

I 
01 II " 

I 
=I 

1 I I 

+ \ + l 

a 

+t= t 

+F 

.: t, l 
l + 
*k 

. 

1! 
7 

” 

tl 
N

0l1V301 
dlQ

 

, 

-.( 

. ,, 

9 - 

t 0 z 
” 

t= H
” 





I w
 

+ Y t a 

‘k 

I w
 

+P t a 
I Y 

I 
N

 
” , 



+ I 
YY 
00 

.r.cir / / / / 
/ / 

I 
I”” 

1’ 
’ 

’ 
I”” 

” 
’ 

’ 
I”“” 

’ 
’ 

7. 
-0 

0 



I 

i 

e- 
f 

C
 

f 
f - 

-A 

Z-- 
-O

- 
- 

Q
 

(> 
f 



0 
5 f : 

-,r?- 
-x- 

-In 
-X--- 

-X- 
“W

 
-x- -- 

-x- 
51 

-N
 

I 

LJII 
I 

Y
 

III1 
I 

I 
Ill 

Y
 z 

,” 
0 

I%
 

- 0 
ro 

N
 

- 
(3 

m
 

z- 
8 

-SC
- 

-x- 
I- 

n 
2 

rJ 
h 

n- 
0 



I 
I 

, 
I 

, 
-k 

I 
I 

I 
I 

0 
T 

Y
 

0 
0 - 

- 
9 

(z*avqu) 



-0-Q
 

d 0 
I 

I 
ggogogo 
- 

(saaJ6aP)+d 

c 

b 0 

b 0 
b X

 



I 

c 



0.14 0.5 
1.0 

a, 

0.75 

1.5 2.0 
b (fermi) 

0.5 

0.25 

0 J 
L++ 2 13 2 17 2 21 2 25 2 

ll.?., 

Figure 28 

5 GeV/c 

4 
-50 

-20 

-10 

-5 

-2 

I 

-0.5 
7 

Figure 29 

266 



IT I.& K 

Figure 30 

I 1 I 1 I 1 I I I 1 

7T+p 6 GeV 

0 Al7 

::: :::. Im F,!, from amplitude analysis .c.: j:::: ..I_ . . . . . .: :.: J :.:iy:: .:..A. 2:::. .L...... 

I I I I I I I I I I 
0 0.2 0.4 0.6 0.8 1.0 

-t (GeV2) *55***3 

Figure 31 



4 

I 

01 I I I I I 
5 IO 20 50 100 200 500 

s (GeVB2) IllSAl. 

Figure 32 

0.6 

0.4 

0.2 

0 

0 0.4 0.8 1.2 

-t (GeV2> 

1.6 

FQwe 33 

268 



I 
I 

I 
I 

I 
I 

0 -. 0 

0 

I 
%

 
-+ LL 

E 
f5z 

L=” 

0-k k-l 
LL 

E 
$2” 

0 



h ” 



\ 
+ 

\“9’ 
\ 

0 u-l 
- 

0 
0 

E
 

In 

(=J6aP) 
3SVH

d 

r 
I 

I 
I 

I 
I 



0 I 
0.8 

0.4 

0 

: -0.4 
!i’ -ii ke 
r 2 4 6 8 10 20 [ GeV/c I 

IllllA.6 

5tms 
5 10 20 50 lOOs(GeV/c)' 

2558A.3 

Figure 40 Figure 41 

272 



N
 

u u E
 

“0 
E

 
“0 

n n 
O

J 
O

J 
0 0 

.- .- 
N

 
N

 
m

 
m

 
0 0 

0 0 
0 0 

0 0 
‘0 
‘0 

‘0 
‘0 

H
 

H
 

- - 
- - 

- - 
- - 

- - 
‘0 
‘0 

- - 
- - 

- - 

( S+!U
tl 

kJD
J(!(IJD

 
) 

III1 
1 

I 
1 

1111I I 
I 

I 
11111I 

I 
I 

lllllI 
I 

I 
” 

11lllII 
I 

~lllil’l 
I 

. 
I 

\/ 

I 

. ” %
 

cn 

al 

0 
0 - 

0 - 

( Sl!U
n 

AJD
Jl!qJD

 
) 



L 
1 a 
00-J 

- 
Y

 t 

--a 
- 

o-l 
- 

Y
 

I 
I 

I 
I 

I 
I 

cd 
d 0 6 

N
 

cu 

0 - 
0 

(S$!U
n 

AJO
Ji!qJD

) 

0 
- 

-6 
0 - 

- 



LIT 
E 
H

 

I 0 

0 

l 

0 

0 

I 
c -e- 

-o- 
LIT 

c? 
-o- 

t 

+ -o- 

14 

r L 

I 
I 

I 
I 

I 

+- 

” 

2 w
 

0 

” 
A

 

” 

I 

c9 
0 (9 
0 



t 

” + ‘I+ 
+ + 

-XT 
2 

a 
+ 

1 
Q

Q
 

-- E 
E 

H
 

I+ 
00 

cl3 
w

 
e 

c-d 
0 

a3 
W

 
d 

cv 
0 

- 
- 

- 
- 

-N
W

 



t I : 

t- s 



\ ib- 

/ /,” 
/:’ 
‘/ 
// 

1’ 
/ 



b. 
0 N

 
d 0 

a 
c 

t 
I 

;; 

+ 
-+=I- 

-+-7 
+ 

T 
-t--+- 

-P=+ 



7 -i 

‘hN
 

+ 
i 

=IN
 

I 
I 

A 1 



(b) I*=0 qm-, 

0 

-2 .o 
0 -0.5 -1.0 -1.5 

t (Gdk)’ 

-2.01 I 1 2.0 
0 -0.5 - 1.0 -1.5 

t (GrVfc)’ 

.LooL 

t (GeVlc)’ 
-0.5 -1.0 -1.5 

t (G*v/c)’ 255Bl69 

6 
TN RESONANCES 

0 

0 

0 I 2 3 4 5 6 
s (GeV2) 1511*37 

Figure 57 

281 

Figure 58 



PROMINENT Y* RESONANCES 

ax,(s)=-0.32+0.95s 

a,(s)= -0.66+ 0.95s 

Figure 59 Figure 60 

282 



0.4 

0.2 

0 

0.2 

I 

0.; 

I 

I- 

,- 

I- 

,- 

I I 
0 

Figure 61 

(al 

lb) 

0.5 1.0 

b= Jh fm 
Figure 62 



1.0 1.5 

b q J/q fm 2,11AbL 

Figure 63 

pL GeWc 

0.8 1.0 1.2 1.4 1.6 i.8 0.8 1.0 1.2 1.4 1.6 1.8 
1 1 p I I 

I a I,=0 Imf++ v 
'/ 

-3* \. 

Zeros of the resonoce omplitudes 
+-r-+-, Ch- H -c a-A-,R 

pL GeV/c 
0.8 1.0 I.2 1.4 1.6 1.80.8 1.0 1.2 1.4 1.6 1.8 

I ’ I ’ 

-2.5- , , , , , , 

Figure 64 

284 



“28 
N

 
i 

I 
: 

1 
: 

I 
: 

I 

0 
u-l 

0 
0 

- 

0 0 
!n 

0 
In 

0 
- 

- 

(sl!‘Jn kJ”Jl!qJO
) 3C

InllldW
V 



I 

l 

0 l 0 0 l 0 i 
0 0 

0 

0 

0 0 
0 0 0 0 0 

0 

0 

0 

0 0 0 0 0 
l 

1 

E 
0 0 -4 0 - 

u-l 
- (VJ) 

a 

I. 
0 - 



I-•
0.X 

9lf 



t 

x 
I_" 

N
 - =b" 

/ 
=z 
= 

b - 

SllN
fl 

huv’tlllaw
 



RESONANCES: EXPERIMENTAL REVIEW 

Roger J. Cashmore 

Oxford University 
Oxford, England 

INTRODUCTION 

The object of these first two lectures is to describe the experimental 

measurements and methods used to identify resonances and give their parameters. 

The following lectures (by F. Gilman) will give some idea of the order in these 

resonances and our present understanding of their properties (mass, widths, 

couplings, etc.). However before beginning such a discussion I want to emphasize 

the motivations behind studying resonances, the properties we actually wish to 

determine and then give a rough outline of the plan I want to follow. FinaLly 

a little background is necessary in order to bring some sense into the bevy 

of states that exist. 

(a) Motivations 

!ihe observation of resonances and their decays give us an insight into 

the underlying symmetries of the strong interaction. Indeed they have already 

lead to many of the conerstones in our present understanding of the strong 

interaction--6U(3), quarks, Regge trajectories, FE%%, etc. Even within the 

last year or so the first tests of Melosh transformation were made with 

resonance measurements, and that has once again helped us to see a little more 

clearly the symmetry structure of the strong interaction. As these resonances 

and their parameters become better and better known we can expect similar 

improvements In our understanding. Thus the pursuit of resonances continues 

to be a worthwhile task. 

(b) Properties 

Besides the sheer existence of a resonant state the other properties 

we would like to know are its spin, parity, isospin, mass, widths, decay 

channels and decay couplings. Ihe first three properties are important for any 

schemes which attempt to classify states while the latter are necessary for 

any dynamical models of these decays. 

(c) Plan 

I intend to describe just how these results are obtained and the re- 

liability to be associated with the measurements. Due to the limited sorts of 

beams and targets which are available for experiment we are Immediately forced 

into a discussion of two different types of experiments: 

(i) formation experiments: these are basically concerned with baryon states 

M-meson, B-baryon, R-resonance. 

(ii) production experiments: basically meson systems but also Z's. 
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The data from (I) are far more extensive and complete than from (ii) 

and this has resulted in the healthier state of baryon spectroscopy, compared 

with meson spectroscopy. 

(d) Some Background 

We have to introduce some framework in order to be able to keep some 

sense in the large number of states we observe and direct us to what are signi- 

ficant measurements that have to be made. 

(i) m--all hadronic states so far observed lie in irreducible represen- 

tations of SU(3). In pzticular the baryons always appear In 1, 5, 2, 

while the mesons lie in 1 and 8 representations. Thus if one of the 

states in such a representation is observed then we must necessarily 

see the other members. If we do not then we either have to invoke some 

specific mechanism for its absence or question the validity of N(3) 

(heresy!). 

(ii) Quarks and SU(6)--haryons lying in 1, 8, $s and mesons in 1, 26, 

suggested the quark model for hadrons. Baryons are qqq states and in 

group theory language we have 

while mesons are qi states 

3 x ?I=& + g 

If we now assume the quarks have spin l/2 we have for baryons in SU(~) 

(su(3) x w(2))-- 

The 20 is purely antisymmetric in quark labels, the 70's have mixed 

symmetry and the 56 is purely symmetric. An example of a g state has never 

been observed, while we have prolific examples of z's and 2's. This is due 

to the fact that selection rules prevent the decay of a 20 into any of the 

easily observed particles (and hence their production also). Thus we do not 

give up the idea of SU(~) because of the nonobservation of a 20 but rather give 

a plausible argument for the apparent absence. It is interesting to note the 

SU(3) X SU(2) breakdown of these larger representations 

56 -- 20, 410 

70 -- 21, 28 , 48 > 210 

(notation 2sc1SU(3) where s is the spin of the system). For the mesons we 

have 

6 x b=1, + z 

and here the SU(3) x SU(2) composition is 

1 -- 5 

JJ -- 10, 31, 30 

Finally in order to obtain the PC quantum numbers of the quark system we 

add internal orbital angular momentum to the system and use the quantum mechan- 

ical rules of angular momentum addition to give the total spin. 

'thus we expect baryons to be in 56’s and 70's with varying amounts of 

internal angular momentum while the mesons should lie in &'a and 2's. 

6 x 6 x 6=g + 70 + 70 + 2 
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(i) pure elastic scattering we have 
lm->7rim 

K-p -> Airir . 

Here the method of analysis (v1!3) is to write the reaction amplitude as 

Amp = c quasi-two body amp. 

= vA + No + NE + . . . 
I , 

used to date 

and then 

(i) to make a partial wave expansion of each quasi two body amplitude. 

(ii) to describe the M(m) variation by A Breit-Wigner or 6:. (through 

the Watson final state interaction theorem -e 16(sin 6)/qL+l). 

(iii) to make a maximum likelihood fit to all the data to determine 

nA Np aL , aL , . . . etc. 

in an energy independent manner. 

This method of analysis is not as sound as the 2 body analysis but 

describes the data well. It is a model and the problems associated with double 

counting and the exact form of the final state interaction are worrisome pints. 

(4) Properties of partial wave amplitudes. 

The aL's are related to the T-matrix. From unitarity we have that 

Re T 

6 is the phase shift 

218- 1 
T=L 21 

with the simple description in 

the Argand diagram. 8 is the 

phase shift. T is constrained 

to lie inside the unitary circle. 

(ii) elastic scattering when an inelastic channel has opened up (e.g. 

K-p +K-p "hen K-p + hrr 

ITILT exists) 
1 rl 

Jlliiz 26 
T=n 

,216 - 1 
21 

and Q is the inelasticity. 

T is always constrained to 

Re T be within the circle shown. 

Furthermore 

ctot" ; [l - '1 co6 261 

(from the optical theorem) 
S = 1 + 2iT with S+S = 1 

which implies 

For the cases of 
'inel p- i [l - q2] 
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(iii) the presence of a resonance 

1 z'riro a =p 

mO 
-m+!A 

ri -- partial width to incoming channel 

r0 -- partial width to outgoing channel 

If the resonance is purely elastic we have 

and 

ri = r. = rel = rtot 

1 rtot 
aL = 5 

m. - m -irtot 
2 

This means that Im T > 0. 

However if the resonance is inelastic we can have the following 

result for an inelastic channel ---- 

77 

x 

x 

R 

N A 

TX glrN PM 

m. - m -&2 
2 

Whereas in TN -+ IIN, Im T > 0 (g;) we can now have either-positive or 

negative sign for Im T depending on the sign of the product g&& 

(in e-=-l gin gout). h 

the partial wave 

must lie in the region 

and a resonance would 

shown, i.e. the 

circle can be above resonance 

or,below the real axis. In 

general we have that 

unitarity 
limit 1 

*=z 
Y 

mo-m-i rt 
-F 

where I- =qo = gigo~(~)i Cm)0 and FS is the phase space in the 

decay. This formula has the following properties: 

(a) It describes a circle with centre (0, y/2Pt) and radius r/2rt. 

(b) The amplitude moves most rapidly in the vicinity of m = mo. 

(c) r/r+, = + Go where xi, x0 are the branching fractions and the 

+ (couping sign) is determined by where the resonance loop lies in 

the Argand diagram. 

(a) The resonance amplitude moves in a counterclockwise direction (this corre- 

spondq to having the time develolxnent corresponding to a decaying state). 

Three examples are given of qvN +IIN) which demonstrate the different 

loops associated with resonances of different elasticities. Many more 

examples of such resonance loops can be found in Figs. 1, 2, 3 and 4. 
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/M = I.238 

p33 F15 I’15 

[The notation used is in general, L, 21, 25 where L is the incident 

orbital angular momentum, I the isospin and J the total angular momentum.] 

(i-J) a resonance and a background: we find that 

T=TB+e 
2i6R 

TR (from s = SBSR) 

Tne rotation induced by e 
2i6B 

is just enough always to keep a 

resonance loop (in TR) within the unitary limit. An excellent 

example of this is found in the S31 wave of ti scattering (see Fig. 1). 

Re T 

(v) Backward moving amplitudes: there is a maximum backward speed set by 

causality (Wigner Condition) 

where a is the diameter of the region of interaction. 

(5) How to identify a resonance and its properties 

We now list the points used in this process 

(a) Identification --loop structure in the Argand diagram 

(b) f,I --relevant partial wave amplitude 

(c) Mass --6 = 0, r/2, maximum 'speed' of amplitude 

(d) Width --shape of amplitude as function of 

centre of mass energy 

(e) Partial Widths - -r& from diameter of resonance 

circle. This gives I .JxIxoI 

(f) coupling sign --position of resonance loop in 

Argand diagram. 

(6) Results and Practical Estimation 

IrN system 

(a) fl final state--Here many resoances are observed as can be seen in 

Figs. land 2. 

(b) mrN final state--Here the same resonances are observed as in (a) (see 

Fig. 3) together with some other states, e.g. a Dl3(1700), Plj(- 1700) 

Here we see the value of studying inelastic channels. If a resonance 

has a small coupling (branching fraction) to the elsstic channel then its 

strength in ti +irN is proportional to gt whereas its strength in an 

inelastic channel is gigo, i.e. if go is large we have a much better 

chance of observing it. This is particularly the case with D13(1700). 
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K-N system 

(a) 2 body final states--Again many resonances are observed but due to the 

greater complexity expected and the harder experiments the state of 

Yi's and Yl's (8 = -lbaryons) is not as well defined. 

(b) 3 body final states--These have not as yet yielded any new resonances. 

As can be seen from Table 1 we now have all the N*, A states falling 

in the [56,0+],=,, [70,1-]n,2, [56,0+3,, and all but one in the [56,2+]. 

To compliment this we have observed all the Y$ YT states necessary to fill 

the 

11 
1- 3- 
51-5 

-3 a 1+ 1- 2' 3- 5- 5+ F f p 9 5, p 

&g, f+, $ 

If we look at less well identified states (usually high mass states) together 

with those of Table lwe have the impression that the following rule may be 

appearing 

Positive parity states lie in [561’s 

Negative parity states lie in [7O]'s. 

Only the obsenration of further states will or will not verify this 

conjecture. 

So far I have only summarized the identification and I sp for each 

state. Tnese are important for classifications but the couplings are essentia 

for dynamical schemes. Unfortunately these are hard to measure although in 

generalit is fairly simple to give the coupling sign. This only relies 

on observing whether the resonance loop is,up or down rather than on a 

detailed understanding of the variation of the amplitude with mass. 

(7) How difficult is it to measure masses and widths? 

In general it is very difficult and even the PEG now quote a range. 

'Obese problems are well demonstrated by the results below for two well 

known resonances, the D15 and F35 in m scattering. 

Dl5 F35 

M r M r 
1670 141 1890 260 estimate 
1666 159 1824 282 T-matrix pole 

~ 1692 174 1907 324 unitarity (BW background) 
fairly clean high inelastic 
elastic resonance resonance 

i.e.,differences - 10 - 100 MeV. 

'Thus a warning is in order: Always be wary of any quoted masses and 

widths or any fits to them. 

Poles in the T-matrix 

(a) An argument existed for a long while over the parameters of the 

~33(1238) resonance.Values for the mass and width varied by lo-20 MeV. This 

was all resolved when searches were made for the position of the pole in 

the T-matrix in the complex energy plane. All analyses gave the sme pole 

to within 1 MeV. Tnus we see that the results were parametrization dependent 

but the pole was cmmon to every analysis. 

(b) !&is result is also true for other resonances, e.g., P,,(1470)... 

Thus we appear to have a better way of describing resonances but there is an 

open question as to whether they are physically more sensible than Breit- 

Wigner type parameters. Tnis will only be resolved by further quantitative 

investigation. 
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Finally I would like to repeat my statement that these problems do 

not apply to the coupling signs and this is why they have played such a 

significant role in discussing baryon decay mechanisms. 

(8) summary 

In smmary we have a good understanding (although by no means complete) 

of the resonances observed in the reactions 

TN --> ti, qN, AK, M, nrN 

UN -> ni’I, qN 

i.e., S = 0, S = -1 baryons and their couplings. 

PRODUCTION MPERIMENTS: s = -2 BARIONS, MESONS 

In general the analysis of these reactions is complicated by the 

presence of other particles. Unfortunately it is in many casas the only 

way we can observe certain states. 

(1) 
,* s = -2, -3 Emyons, e.g. = , Cl's 

z *, _ s and Q*'s have to be observed in reactions of the type 

+ ,*- 
K-p +K " -> 

1 

K+Zr 

L> ET, AZ K+AK- 

K-p 
+ 0 *- 

-tK K n -> K+K' z if 

L > zi?, mr K+K"W 

Clearly these data are very difficult to obtain and this accounts for the 

paucity of information on these states. Indeed only the E*(l530) is 

reasonably well measured. Thus all we can hope for is the identification 
-* 

of possible : states (e.g. from bumps in mass spectra) and in general 

the JP assignment will be unknown, i.e. the z ' s are in bad shape and 

always will be. Of course similar comments apply to n*'s!! 

(2) Meson resonances and formation reactions 

Before proceeding directly to production experiments I do want to 

point out that it is possible to observe meson states in formation experi- 

ments. However the drawbacks are large. 

(a) e+e- annihilation: 

(b) & reactions 

In this case we are limited to 

mesons in the sequence PC = 1--, 

i.e., the vector mesons 

(P, 0)) 9, P’? ..* 1 

Here the liktations are of mass, i.e. 

Thus we see that the limitations are large and production reactions 

are of vital importance in the observation of meson resonances. 

(3) mr and Kr resonances or 'nearly formation reactions' 

Pion exchange is well known to be an important factor in many 

hsdronic reactions and to dominate often in the forward direction (the pole 

is then near the physical region) e.g., 
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extrapolation 

to the pole 

Thus by extrapolation to the pole we can effectively obtain information on 

nlT-dlrrr,IE 

UT -BKK 

and then apply all the techniques we have developed for dealing with fonaation 

experiments, i.e., partial wave analyses. 

The quality of the data on this type of reaction is demonstrated in 

Fig. 4. The presence of the p, f, g mesons is clearly indicated in the 

y;, yy and Yz moments and detailed partial wave analyses of Fig. 5 con- 

firm these besides producing evidence for new states (p'?). In the future 

we can expect similar results on Ka scattering (see Carnegie !Copical 

Conference). 

There are however limitations even to these reactions. One can only 

observe mesons in the natural spin parity series Jp = o+, 1-, 2+ , . . . . 

Furthermore if we consider pions, Bose symmetry imposes the further restric- 

tions that G = +l and (I = 0, C = +) or (I = 1, C = -) states only are 

possible. To identify such states we have to turn to other reactions. 

Even so many of the best identified states (see Table 2) in the meson 

system, the l-, 2+, 3- states, are found in these reactions. This accounts 

for the firmer standing of these meson resonance SU(3) multiplets. 'Ihe O+ 

octet of Table 2 is not yet satisfactorily identified. This suffers from 

one of the c-on problems of spectroscopy, i.e., identifying low spin states 

(J = 0) in the presence of high spin states (J 11) which produce the 

major angular structure. 

(4) Meson resonances in 3 particle final states 

The observation of 3s or Km final states allows study of resonance 

in the unnatural spin parity series 
- + - 

0 , 1 , 2 although again for Ja one 

is restricted to G = -1 states. 

The importance of the If states can be seen from inspection of 

able 2, two such states being required. Unfortunately such unnatural spin- 

parity states can be produced by diffractive excitation and thus any analysis 

will have a confused interpretation--is it resonance or is it a dynamical 

effect that produces the large l+ cross section? 

The analysis technique is essentially that described earlier for the 

similar formation experiments, i.e., the reaction is analyzed as 
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Let me immediately turn to the results. 

(i) In Fig. 6 the A2 resonance is clearly observed in the variation of 

both modulus and phase of the 2+ ~ppD wave. 

(ii) In Fig. 7 we see results for the l+ T~S wave which should contain the 

Al resonance. Even though the cross section is large the phase shows 

no similar variation to that exhibited by the A2. This has been an 

outstanding problem of meson spectroscopy for 10 years--no clear obser- 

vation of an Al resonance. Indeed the cross section is almost. accounted 

for by a dynamical mechanism (the Deck lr P V mechanism) although it fails in spe- 

cific details. Recently models have 
lr I 

'VT 
been made in which three terms are 

considered (a) the Deck diagram 

(b) rescattering in the Deck 

diagram (c) direct resonance 

(a) Deck Diagram 

production. 

The total amplitude can then be written 

Amp = D +Di sin 6 e 16 + R sin 6 e i6 

= D cos 6 e 16 + R sin 6 e i6 

Now if R- -iD we see that 

funP - Dei6(cos 6 - i sin 6) - D , 

i.e. all phase variation has been suppressed. Thus even though the usual 

signature of a resonance (its phase/amplitude variation) is not observed it 

may still be there. me parameters required are however rather unusual 

M - 1300 MeV, r - 200 MeV. Such a state should be observed in other reactions, 
+ - 0 ++ 

e.g. ?r'p +T T T A but unfortunately the indications are that it is absent. 

Thus we are once again faced with the problem of the Al. Its failure to 

appear would be interesting on quark model grounds since the D meson is 

present. However SU(3) does not require the Al since the D could be 

classified as a singlet. 

+ 

(b) Rescattering in Deck Cc) Direct resonance 
Diagram production 

(iii) A similar discussion occurs for the 2- state the A3. Once again it 

can be produced by a Deck type of mechanism. 

(iv) Tne situation in Kerr states is even more confusing at this time. 

Both Q mesons (If, s = +l states) should appear here as there is 

no G-parity selection rule. However no definite observation of 

resonance behavior has been made. In this case failure to observe 

at least one Q would be bad since such a state is demanded by the 

existence of the B mason. A recent high statistics spectrometer 

experiment here at SIAC should resolve this situation (if at all 

possible). 

Once again it might be hoped that study of charge exchange or hyper- 

charge exchange reactions would bring some insight since then we remove diffrac- 

tion dissociation as a possible strong mechanism. 



(5) Mesons in 4~ final states 

Here we ce.n obtain G = +l states of all spin parities (except O-). 

Indeed studies of the mu system (u -t37r) indicate the presence of the 1+ 

meson, the B. This is the best identified l+ state. The g meson (see 

Fig. 4) is also observed to decay to 4 pious. At this time little other 

information is available. 

(6) summary of status of meson states 

At present only the leading trajectory meson states are really well 

known. In general one has measurements of Ip and estimates of the mass 

and total width from ma68 spectra and Fe.rtial wave analyses. Some partial 

widths are known but there are no measurements of relative coupling signs. 

More sophisticated experiments and analyses will be required for this. 

In Table 2 we see the present reliable states. The difference between 

that and lbble 1 demonstrates the much poorer level of knowledge of mesons 

compared with baryons. When one realizes that the couplings are even more 

poorly known it is clear that baryons will be the major spectroscopy Laboratory 

for a substantial time. We can only hope that mesons will soon be brought 

to the same status. 

CONCLUSIONS 

'Ihe information on baryon states is abundant whereas the mesons need 

substantial improvement. With the continued increase of our knowledge we 

should be better placed to understand the systematics of the strong interaction. 

In the following lectures F. Gilman will demonstrate the present 

state of the art. 
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TABLE 1 cont. TABLE1 

Earyon States Observed 

States of the [56,0fln,0 

4 
+ 

10 ; d=36), 

28 
1+ 
v N(940), 

States of the [70,1-l 

3- 
P 

1- 
P 

5- 
H 

3- 
5 

1- 
H 

f- 

1- 
P 

3- 
2 

1- 
F 

A(l700), 

A(1610), 

N*(1670), 

N*(1710), 

N*(l660), 

N*(1520), 

N*(1510), 

~(1580) 

x(1740) 

~(1765) 

c(19401, 

cl 1, 

x(1660), 

cc 1, 

I(1530) 

c(1180), Z(l310) 

States of the [56,2+1 

4 10 7+ 
H A(1925), 

4 10 i+ 418601, 

4 10 7+ 5 A(l900)7, 

4 
10 

1+ p A(1850), 

28 g+ N*(1680), 

28 3+ N*(1730), 

Other States 

[56,0+1 radial excitation 

1+ 
P N*(l470) 

z+ A*(- 1600), 

t56,2+1 radial excitation 

C(2030) 

c 

c 

c 

.a1905), 

c 

C( 

CC 

d F15 (- 2000), c( 

d ? 

A( 1820) 

A( l@o) 

A( 

A( 
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RESON4NCES : A QUARK VIEW OF RADRON SFWTRCEXOPY AND TRANSITIONS 

Frederick J. Gilman 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

I. IRTRODUCTION 

At this time, when so much of our concern is already focused on what 

is happening in the TeV energy region for strong interactions, why be inter- 

ested in resonances? Of course, one might answer that the enumeration of what 

hadronic states exist and their quantum numbers is one of many subject areas 

within particle physics, and an incomplete one at that, which should be studied 

like any other as part of our understanding of physical phenomena. But this 

increasingly neglected area is still of great interest and importance for rea- 

sons other than that of completing a catalogue of states and their properties. 

First, the arrangement of states tells us about the synrmetries of 

strong interactions. As we all know, internal symmetry groups like isospin 

*nd SU(31, when realized in the normal manner, imply that single particle states 

fall into multiplets which correspond to irreducible representations of the 

appropriate group. Further, the existence of such a symmetry group implies re- 

lations among amplitudes, e.g., among three point functions appropriate to 

resonance decays. 

Second, if hsdrons are "made" of still simpler constituents like 

quarks, 1,2 this structure may be reflected in a recognizable way in the spectrwn 

of states. In fact, on the basis of a non-relativistic picture of building 

hadrons out of quarks, an SU(~) x O(3) d escription of the hadronic spectrum has 

arisen. Furthermore, one may employ this to calculate relations among transi- 

tion amplitudes, although to do so it is necessary to understand both the struc- 

ture of the states involved and the nature of the operators that induce the 
. . 

appropriate transitions. In such a picture the existence of additional "charmed, 

quarks should result in "charmed" hadronic states,which remain to be found. 3 

Third, resonances and their properties can tell one about the dynamics 

of strong interactions at many levels. At a fundamental level, those aspects 

of the spectrum and amplitudes which point toward an underlying quark basis 

for strong interactions require one to consider the question of quark confine- 

ment. Some very interesting recent approaches to this problem involve either 

the use of "infrared slavery" arising in asymptotically free gauge theories4 

or the "bag" model. 5 Farticularly in the latter case, a number of properties 

of the low-lying badron states come simply from the confinement of the quarks. 

At a less fundamental level, the multiplet structure, the ordering of 

states, and the mass splittings between mnltiplets give us information on the 

"forces" involved between constituents. A popular model for many years has 

been that of quarks in a harmonic oscillator potential. 67 

Given a hadronic spectnan and two body decay amplitudes, then one may 

proceed to the next level of dynamics by building up the (non-diffractive) fonr- 

point function. According to duality one may obtain the imaginary part of such 

a non-diffractive amplitude either in terms of a complete sum of resonant states 

in the direct or crossed channel. In fact, many of the major successes of the 

duality approach arise from considering cases where one channel is exotic, i.e., 

where there are no resonances possible according to the quark model. !Ihus, re- 

sults of imposing duality such as exchange degeneracy follow from the resonance 

spectrum, and more particularly, from the absence of exotic states. Finally, 

the hadron states may be used as ' Born terms" in the t-channel to calculate 

elastic and inelastic two-body and multiparticle scattering amplitudes. As 

such, what happens at very low energies and how the hadronic resonance spectrum 

and couplings are organized has a very direct effect on what happens even in 

the TeV region. 
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II. SYMMETRIES ANJI NON-SYMMETRIES 

Throughout the following we shall assUme that the SU(2) group of iso- 

topic spin transformations is an exact syrmnetry of strong interactions. Evidence 

for this comes both from the observation of nearly degenerate isospin multiplets 

and from amplitude relations. Whatever breaking of the mass or amplitude rela- 

tions occurs is of order 01 and therefore seemingly attributable to electro- 

magnetic effects, although these have not actually been calculated since their 

magnitude depends on the details of strong interactions themselves. 

he larger symmetry group8 of SU(3) 1 s clearly broken at the 10 to 217% 

level in masses, but it still gives rise to many clearly identifiable SU(3) 

multiplets among mesons and baryons. With more than a dozen identified baryonic 

multiplets being slowly filled with states, no one seriously doubts the appli- 

cability and usefulness of SU(3) as a strong interaction symmetry. 

SU(3) has also had some success when applied to amplitudes. In par- 

ticular, application to matrix elements of currents, yielding relations among 

baryon magnetic moments and among the vector and axial-vector couplings in weak 

decays, 9 are in striking agreement with experiment. Results for decay ampli- 

tudes,l' say for baryon' +meson + baryon, are in fair agreement with exper- 

iment, although there is often some leeway in the choice of barrier factors 

and mixing parameters when comparison is made with experiment. More striking 

are the relative signs of amplitudes in reactions like ti +%4 and EN +rC 

which agree very well with SU(3). For four point functions there are major 

discrepancies when a naive comparison is made with SU(j), but this is well 

understood in terms of kinematic effects induced by SU(3) breaking on the masses 

of exchanged particles or on thresholds and barrier factors. 11 

Combining the SU(2) of quark spin with SU(3) gives one an SU(~)--usually 

called SU(~), where S stands for spin. In * non-relativistic picture of 

quarks bound in a spin and SU(3) independent potential, with total orbital 

angular momentum L, one could classify the bound states in terms of 

su(6) x o(3). Much investigation a decade ago showed that SU(~) cannot be 

a true symmetry in a relativistic theory. 12 Nevertheless, it has increasingly 

proven to be a very useful algebra with which to classify the hadron states 

we observe. Although other theoretical approaches (e.g. the bootstrap) pre- 

sumably have some applicability to hadron spectroscopy, and may well be com- 

plementary, it is the quark model which up to now has shown the most promise 

of a general and basic understanding of the subject. In the following, we 

shall examine in some detail the consequences of such a quark viewpoint as a 

basis of both hadron spectroscopy and transitions. 

The quark model rules for constructing states go as follows. Mesons 

are constructed out of a qs pair. Adding internal orbital angular momentum, 

2, to the quark spin, $, gives the total J' of the state. As quarks have 

spin l/2, S can only take the values 0 and 1. Given that quarks are in 

the basic 6 representation of SU(~), and antiquarks in a 6, all meson states 

are then in the representations contained In 6 X b = 35 + 1. l&se have the 

SU(3) and quark spin content: 

35: 8 of su(3) with s = 1 

8 of su(3) with S = 0 (1) 

1 of SU(3) with S = 1 

1: lof SU(3) with S = 0 . 

Since fermion and antifermion have opposite intrinsic parity, one has 

P = (-l)L.r-1 for the qi state. For neutral, non-strange mesons, C = (-l)L+S 

and G = (-l)L+s+*. 

With these rules there are two kinds of meson states which cannot be 

formed, i.e., exotic meson states: 

1. SU(3) exotics--only 1 and 8 representations of SU(3) are allowed. The 10, 

55 and 27 representations, for example, are exotic. 

2. CP exotics--only CP = tl natural spin parity (P = 0+, l-, 2+, . ..) states 

are allowed. There is no state with PC = o--. 

Up to this point, neither type of exotic meson has been found. 13 



. : 

For baryons one constructs states from three quarks with a wave func- 

tion which has overall symmetry in SU(3), L, and S. The antisymmetry expected 

for fermions may be avoided by postulating quarks to be parafermions6 (of rank 

31, or more simply, by introducing the new quantum number of color. 14 Insist- 

ing that allhadrons are singlets under the SU(3)' of color forces the three 

fermion quarks in a baryon into an antisymmetric 1 representation of color, 

leaving the remaining part of the wave function to be symmetric. 

From the standpoint of SU(~) one would then expect baryons to fall in 

the representations spanned by 6 x 6 x 6 = 56 + 70 + 70 + 20, whose Su(3) and 

total quark spin S content are given by: 

56: : 8 of Su(3) with S = l/2 

(symmetric) 10 of SU(3) with S = 3/2 

70: : 1 of SU(3) with S = l/2 

(mixed symmetry) 8 of su(3) with S = l/2 

10 of Su(3) with S = l/2 

8 of su(3) tith S = J/2 

20: 8 of su(3) with S = l/2 

(antisymmetric) 1 of su(3) with S = 3/2 

(2) 

Ihe parity will be simply given by P = (-l)L. Since only the 1, 8, and 10 

representations of SU(3) are contained above, any other representation (e.g. 

lo, 27) is exotic for baryons. Evidence for exotic baryons is not conclu- 

sive .15 

III. MESON STATES 

Let us then proceed to see how the known meson states compare with 

the ~$6) x O(3) picture outlined above. We do so with the vague idea that 

any reasonable "potential" will have states with small values of L lying 

lowest. 

3w 

For L = 0 we expect 35 + 1 states, all with parity P = -1, includ- 

ing 8 + 1 vector and 8 + 1 pseudoscalar mesons. The observed lowest mass 

mesons exactly fill this multiplet structure as shown l6 in Table I. As is 

well known, the physical (0 and q are mixtures of the octet and singlet 

states with a "magic" mixing angle S = COS-‘(~/~). The q may also be 

slightly mixed with the q' or higher mass states. Another candidate for the 

slot occupied by the n' (or mixed with it) is the E (1422). Although it 

is usually forgotten, it is entirely non-trivial that the lowest mass mesons 

have negative parity and that exactly those states required by the quark model 

are found, and no more! 

TABLE I 

Meson States with L = 0 

su(6) su(3) S 

35 8 0 

P 
-- 

0 

States17 

iT (140) 
K (495) 

q (550) 

-- 
35 8+1 1 1 P (770) 

K* (890) 
m (784) 

cp (1020) 

-- 
1 1 0 0 probably mainly 

q' (958) 

The next principal set of states we expect are those with L = 1, all 

of which have positive parity. We first examine those with quark spin S = 1, 
18 

shown in Table II. The B is now well established from massive lr'p 

bubble chamber experiments and has mu as a main decay mode. None of the 

other states is established, tith the K* state being lost in the non-resonant 



"Q-bmp" in K+N reactions. However, W(3) tells us that the rest of the 

octet had better be there. Nondiffractive processes are the obvious place 

to look. The H and/or H' may be very broad (decaying into .rrp), and 

correspondingly difficult to find. 19 

TABLE II 

Meson States 17 . with L = 1 and S = 0 

su(6) su(3) S PC States 

35 a 
f- 

0 1 B (1235) 
K* (1320?) 

H ? may 

1 1 0 1 f- H' ? be 
I mixed 

The S = 1 states with L = 1 are even more problematic, as shown 

in Table III. 

!I!ABLE III 

Meson States17 with L = 1 and S = 1 

~‘~(61 NJ) S PC States 

8+1 1 2 ++ 
35 A2 (1310) 

I? (1420) 

f (l.270) 
f' (1514) 

35 

35 

8+1 

8+1 1 

1 ++ Al (11001) 
IF (12401) 

D (1285) 
D' ? 

0 ++ 
6 (970) 
K* (1300?) 
E (700) ? 

s* (997) 
E' (1300) ? 

Here the JBc = 2++ states are all found, with the f and f' again being 

mixed octet and singlet states like the 0) and cp. The 1++ states are an 

embarassment with only the D now well established. The famous Al and its 

K* su(3) partner are not found as resonances in the dominantly diffractive re- 

actions np + (3~)p or Kp -+(Km)p. While there are hints of a Km state 

at - 1240 MeV in pp annihilations and in T-P *(Km)& these results are 

not conclusive by any means. A much more intensive look at nondiffractive 

channels is needed to search for these states, and in the process we should 

not be prejudiced by the "masses" for the corresponding diffractively produced 

non-resonant bmps. 

!the scalar mesons la are in fair shape now that the 8 (970) is 

established, with ?q as principle decay mode. With the s-wave KIT phase 

shift rising through 90" at - 1300 MeV, it seems likely there is an appro- 

priate K* near that mass. At present there are too many I = 0 candidates, 

although both the E and E' may not survive as resonant states. One possi- 

bility, explored by Morgan, 20 1s to form the scalar octet plus singlet out of 

6, K*, S* and e', 
* 

with-the S and E' mixed. 

Candidates to fill out the L = 2 multiplets are lacking in most cases. 

As seen in Table IV, only the 3-- states have been mostly established. The 

K* (1800) has only recently been established by a SLAC group investigating 

KT scattering. 21 The assignment, and even existence, of the Fl, p', and 

A3 
is somewhat speculative. 

There are hints of a few other multiplets for mesons. 22 One possi- 

bility is a radial excitation of the ground state 35 + 1 with L = 0. 

Candidates for this include the E (1420) and a proposed p' (1250) or the 

p' (1600). Note that given the quark model, not only does the proposal of a 

new state require in general the remainder of its SU(3) multlplet be found, 

but all of its SU(~) partners. Here one needs to see a K', an o', a cp', 

etc.--a nontrivial requirement which should make one somewhat skeptical on 

the existence of all these unseen states. 
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TABLE IV 

Meson States 17 with L=2 

su(6) su(3) S P States 

-_ 
35 8+1 1 3 g 0.680) 

K* (- 1800) 

4 (1675) 

(P3 (?) 

35 a+1 1 
-- 

2 Fl (1540)? 
? 

-- 
35 8+1 1 1 p' (1680) 9 

? 

35 8 0 2 -+ A3 (1640) ? 
? 

1 1 0 2 -+ ? 

At still higher mass there is now evidence 
18 from mr +KK for the 

first of the 4" states expected for L = 3. And then there are indications 

from pp reactions for bumps in the T (2190) and U (2360) regions. The par- 

ticularly interesting. possibility of towers of states has been raised from a 
24 

recent analysis 23 of ip H mr, although evidence could already be deduced 

for this from the spectrm of states at lower mass. How and if the quark model 

states coexist with a pattern of towers or of Regge daughter states is one of 

many unsettled questions concerning the spectrum of hadron states. 

N. BRRYON STATES 

Because of extensive phase shift analyses, baryon spectroscopy is a 

much richer experimental area with which to compare our theoretical expecta- 

tions. Even so, only the nucleon resonances below about 2 GeV in mass can be 

said to have been investigated with any claim of completeness. As such, we 

shall only list N* candidates for each SU(3) multiplet, with the exception 

of the ground state. The Y*'s are still only in fair shape, while the status 

-*I of : s can only be described as poor. 

The full set of states in the ground state 56 with L = 0 was completed 

ten years ago with the discovery of the G-. They appear 16 in Table V. 

TARLEV 

Baryons in the 56 L = 0 Ground State 

~~(61 su(3) S P States17 

56 

56 10 

a 112 1/2+ N ,(940) 
A (1115) 
c (1193) 
z (1317) 

J/2 3/2+ A (I-W) 
a~* (1385) 

z” (1530) 
R- (1672) 

The next highest mass states observed all have negative parity, as 

befits L = 1, and they fit nicely into a 70 of SU(~). As Table VI shows, the 

established negative parity *t N s below 2 GeV provide all the candidates for 

the SU(3) and JP multiplets in a 70 L = lwith no omissions or additions. 

Mixing of the two JP = l/2- NY’s, j/2- N*'s, and three l/2- A"'s, 3/2- c*'s, 

etc., can, and presumably does, take place. A recent discussion of candidates 

for the y* states (most of which are now known) and the possible mixing6 

can be found in Cashmore et al. 25 

Also essentially complete in having candidates for all the nonstrange 

states is a 56 with L = 2 and P = +l, as shmn in Table VII. 
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TABLEVI 

Non-Strange Baryons in the 70 L = 1 

su(6) 

56 

mBLE VIII 

Baryons in a radially excited 56 with L = 0 

su(3) S P States17 

a 112 1/2+ Pll (1470)... 

su(6) su(3) S s States 

70 1 l/2 1/2- IA* (140511 
3/2- [A* (152011 

8 l/2 1/2- Sll (1535)... 
3/2- D13 (1520)... 

10 112 1/2- s13 (1650)... 
3/2- DJ3 (1670)... 

8 312 1/2- Sll (I-700) 
3/2- D13 (1700)... 
5/2- D15 (1670)... 

'IXBLE VII 

Baryons in the 56 with L = 2 

su(6) 

56 

su(3) S P States17 

a l/2 5/2+ 

3/2+ 

F15 (1688)... 
p13 (1810)... 

10 3/2 7/2+ 

512' 

J/2+ 
1/2+ 

Fj7 (1950)... 
F35 (l89o)... 
Ps3 ("1900 ?)... 
Pjl (1910)... 

The remaining P33 state below 2 GeV we classify with the Roper 

resonance as forming a radially excited 56 with L = 0 (Table VIII). 

10 3/2 3/2+ P33 (16X))... 

We do this both for reasons of mass and because of inelastic amplitude signs, 

to be discussed later. 

Some other possible multiplets can be proposed on the basis of picking 

through the relatiyely few nonstrange baryon states remaining in the tables. 17 

First, the ~~~(1780) probably belongs in a second radially excited 56 L = 0. 

This requires finding yet another 
p33 

state, presumably around 2100 MeV, to 

be its non-strange companion in a 56. 

There are several negative parity states in the 2000-2200 MeV range 

which are good candidates for members of a 70 L = 3 multiplet. In particular 

the G17 (2190) and D15 (2100) states fit the S = l/2 octet slots in such 

a multiplet, while the Dj5 (1960) and an undiscovered G37 state could be 

the decuplet S = l/2 members. That leaves D13, D15, G17, and G19 states 

to be found, presumably several hundred MeV higher in mass, to fit into the 

required S = 312 octets. 

!Chere are also several candidates for a radially excited 70 L = 1 

multiplet in the s&me region. The D13 (2040) and Sill (2100) fit in as 

the octet S = l/2 states. The Ssl (1900) 
and a D33 

would be in the 

S = l/2 decuplet, leaving Sll, D13, and D15 states to be found at w 2200 

MeV to fill the octets with S = 3/2. 

As for higher mass positive parity states, there is the beginning of 

a 56 L = 4 multiplet containing the Hly(2200) and Fl7(1990) as octet 

S = l/2 members, and the H3,11 (2420) as the highest spin A*, with 5-,, Fj7, 



and F35 states yet to be found. for the remaining S = 312 slots. Finally 

another F15 state at - 2000 MeV would be the beginning of a radially excited 

56 L = 2 mu1tip1et. 

On looking back over the above classification of baryons into multi- 

plets there is an obvious pattern: 1592 56 representations have even L, 70 

representations odd L. While one could classify the observed states in 8 way 

which breaks this "rule," they fit it well and there is no compelling reason 

to do so. Note that this "rule" and the baryon spectrum we then not consistent 

with the states expected from a three dimenslonalhamonic oscillator potential 

where, for example, one expects6 8 70 L = 2, 70 L = 0, 56 L = 0, ana 20 L = 1 

in the same mass region as the 56 L = 2. If the spectrum of baryons is .as 

simple as it now 6eem to be, one hopes there would be a deeper reason for that 

simplicity. Another Interesting way of looking at the I = l/2 N" states 

we have been discussing is shown in Fig. 1. Is it possible we have a tower 

structure developing? And if so, 8s for mesom, what is its relation to the 

quark model picture we have been discussing? 

II 2 

3 

3 
J 

s 

a 

I 

0 

I I I I 

+ - 

-+ + - 

-+. - 

2 3 

M2 (GeV*) 

t- 

Figure 1 

spins vs. mass squared for the known I = l/2 N* resonances. 

Positive (negative) parity states are denoted by + (-). 
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V. TRANSITIONS AMONG HADRONS 

Given the spectroscopy of hadrons in terms of quark constituents which 

we have built up in the preceeding sections, we now turn to transitions between 

these states. We restrict ourselves to matrix elements of currents at q' = 0. 

For the vector current, such matrix elements are directly related to the ampli- 

tudes for one photon decay or excitation. The axial-vector current presents 

more of a problem in that few weak axial-vector transitions are measured. But 

via the PCAC hypothesis,26 one may relate such matrix elements to plon ampli- 

tudes, which are the mainstay of strong interaction decays. 

However, to be able to carry out a calculation of such matrix elements 

we must actually solve two problems at once. First, we must understand the 

currents, their syrmoetry properties, and commutation relations. Second, we 

must understand hadron spectroscopy, how different hadron states are related, 

and how these currents "flow" inside them. These two problems in fact have 

been partially solved in recent times by relating them, i.e. by finding a 

transformation between the quarks seen by currents and those which we used 

earlier as the building blocks of hadrons. 

The result is an approximate theory of photon and pion transition 

matrix elements within the context of the quark model. The theory yields many 

relations among decay widths and predicts with great success the relative ampli- 

tude signs in inelastic processes like fl -iN* +TA and rN +N* +fl. Tne 

agreement with experiment that is found leads one to have further confidence 

in the quark model for spectroscopy, particularly if the assignment of observed 

resonances to the states in the model, and lends support as well to the theory 

of current-induced transitions. 

VI. CL%RENTSANE QU4EKS 

In order to formulate a theory of current-induced-transitions smong 

hadrons composed of quarks we need a group theoretic frame work for labeling 

the states and operators involved. For this purpose it is natural to turn to 

an algebra of charges formed by integrating weak and electromagentic current 

densities over all space. 

To start with, consider vector and axial-vector charges: 

Q*(t) = /d3x V;(?,t) 

Q;(t) =/d3x A;(;;'& 

(3a) 

where CI is an SU(3) index which runs from 1 to 8 and VF(?,t) and A$x',t) 

are the local vector and axial-vector current densities with measurable matrix 

elements. The vector charges are just the generators of SU(j). These integrals 

over the time components of the current densities are assumed to satisfy the 

equal-time commutation relations proposed by Gell-Mann 
8 

[Q"l(t), Q'(t)] = if@@ d(t) 

[Qa(t), Q;(t)] = if@' Q;(t) 

[Q;(t), Q!(t)] = ifwr Qr(t) , 

(4) 
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where fm are the structure constants of SU(3). Sandwiched between nucleon 

states at infinite momentum, the last of Eqs. (4) gives rise to the Adler- 

Weisberger sum rule. 27 From this point on, we shall always be considering 

matrix elements to be taken between hadron states 28 with p, +-. 

For the purposes at hand we need a somewhat larger algebraic system 

then that provided by the measurable vector and axial-vector charges in Eqs. 

(3), which form the algebra of SU(3) x SU(3) according to Eqs. (4). To obtain 

the larger algebra we adjoin to the integrals over all space of 2p Vp) 

and Az(?,t), those of the tensor current densities ~zczt) and $x(r;',t). 

In the free quark model these charges have the form: 

-J d3x 4'+(x) @ IL Jr(x) 

j-a3x AZ(&) -/d3x q+(x) ($) uz Hx) (5) 

ld3x 'I$(+, -/ 

/ d3x Tfx(?,t) -1 d3x V+(x) ($1 Boy JI(x) 

where t(x) is the Dirac(and SU(3)) spinor representing the quark field. 

When commuted using the free quark field commutation relations, these charges 

act algebraically like the product of SU(3) and Dirac matrices (ha/2)n 

(A'/2)6,, (Ao1/2)@cx,, and (h"l/2)Soy respectively.30 The Mrac matrices 

I+ Boy, ana oz form the so-called W-spin. 31 They are invariant under 

boosts in the z-direction and the corresponding charges are "good," in the 

sense that they have finite (generally non-vanishing) matrix elements between 

states as p, -+a. This makes them the correct set of charges to use to label 

states in terms of their internal quark spin components. If we let 01 = 0 

correspond to the SU(3) singlet representation (and ho be a multiple of 

the unit matrix), then Eqs. (5) consists of 36 charges which close under 

commutation. They act like an identity operator plus 35 other generators of 

an Su(6) algebra. We call this algebra the SU(~), of currents3' because of 

its origin. Q' and *' &5 then essentially form a chiral SU(3) X SU(3) sub- 

algebra of this larger algebra. 

Given such an algebra, we define the smallest representations of it 

(other than the singlet), the 6 and 6 representations, as the current quark 

(q) and current antiquark (i) respectively. We may build up all the larger 

representations of SU(~), out of these basic ones. 

Can then realbaryons be written as three current quarks, qqq, and 

real mesons as current quark and antiquark, q& with internal angular momentum 

L, as in the constituent quark model used for hadron spectroscopy? While pos- 

sible in principle, it is a disaster when compared with experiment. For it 

lead5 to gA = 513, zero anomalous magnetic moment of the nucleon, no electro- 

magnetic transition from the nucleon to the 3-3 resonance (A), no decay of (u 

to y-r, etc. It would also yield results for masses like s = MA, MT = Mo, 

etc. The hadron states we see cannot be simple in terms of current quarks. 

They must lie in mixed representations of the SU(~& of currents. Work in 

past years has shown directly that hadron states are quite complicated when 

viewed in terms of current algebra. 32 

We may restate this complication in terms of the definition of an 

operator V for any hadron: 

IHadron) E Vlsimple qqq or qi state of current quarks) 

= lsimple qqq or qs state of constituent quarks) (6) 

All the complication of real hadrons under the SU(~& of currents (i.e., in 

terms of current quarks) has been swept into the operator V. On the other 
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hand, real hadrons are supposed to be simple in terms of the "constituent quarks" 

used for spectroscopy purposes, as indicated by the second equality in Eq. (6). 

In other words, the transformation V connects the two simple descriptions in 

terms of current quarks and constituent quarks. 33 It is for this reason that 

it is sometimes called the "transformation from current to constituent 

Up to this point we have only managed to restate the problem via Eq. (6). 

But as often happens, phrasing the problem right is a major way toward the solu- 

tion. For what we are after in the end are matrix elements of various current 

operators, a. Using Eq. (6) and assuming V is unitary we may write 

(Hadron'( @IHsdron) 

= ((simple current quark state)'lV-1dV I(simple current quark state)) 

(7) 

This has two important advantages. First, we may study the properties of 

V-l@V in isolation, and then apply what we learn to the matrix elements of 

d between any two hadron states. Second, even though V itself is very 

complicated and contains (by definition) all information on the current quark 

composition of each hadron, it is possible that the object V -1 QV for some 

operators 6 may be relatively simple in its algebraic transformation prop- 

erties. 

This Lsst possibility is of course exactly what we shall assume on 

the basis of calculations done in the free quark model. In that model, 

MeloshJ6 and other,37'38,3g have been able to formulate and explicitly cal- 

culate the transformation V. While one would not take the details of the 

transformation found there 86 correctly reflecting the real world, one might 

try to abstract the algebraic properties of some transformed operators 

V-l@V, from such 8 calculation. In cases of interest, this turns out to be 

equivalent to assuming that the transformed operators V -b V have the 

algebraic properties of the most general combination of single quark operators 

consistent with W(3) and Lorentz invariance. 

?hus, while Eq. (5) shows that 9 itself behaves under the ~(6)~ 

of currents as simply 

a direct calculation in the free quark model shows that algebraically V-1QyV 

behaves as a sum of two terms. 40 

V-l Q; V 

*(x) , 

(8) 
where the products of Dirac and SW(j) matrices are understood to be taken 

between quark spinors (and integrated over all space). Here vG is a vector 

in configuration space, so that vx + iv 
Y 

raises (lowers) the z component 

of angular momentum (Lz) by one unit. The particular combination of Dirac 

matrices and vector indices in the two terms in Eq. (8) is dictated by the 

demands that the total J, = 0 and the parity be odd for the axial-vector 

charge, and for V-l Qp. 

For the vector charge, Q", we must have 

V-lQ% = Qa , 

since we want these charges to be the generators of SU(j), both before and 

after the transformation. However, the first moment of the charge density, 41 

(10) 

is not a generator and is transformed non-trivially by V. One finds in the 

free quark model that in algebraic properties V -' D$I behaves as a sum of 

four terms under the SU(~), of currents:42 
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V-'D;V 

- (gf) n(vx 
Aa: Aa 

+ ivy' + (h) bux + WY) + CT) uzz(vx + ivy' 

+ ($) (Box - iWy)(v 
x 

+ ivy)(vx + ivyI , (11) 

where again the Dirac and SU(3) matrices are understood to be taken between 

quark splnors. 

We abstract the algebraic properties of V -1 a 

B 
Vand V-'DT Vgiven in 

Eqs. (8) and (11) from the free quark model and assume them to hold in the 

reel world. We are then able to treat matrix elements of QT and D T between 

hadron states as follows: 

(1) We identify the hadrons with qqq or qc states of the con- 

stituent quark model rhere the total quark spin S is coupled to the internal 

angular momentum L to form the total J of the hadron. The states so con- 

structed fall into SU(~)W x O(3) multiplets. 

(2) Since very fewweakaxial-vector transitions are measnrecl,given a 

matrix element of 
9t 

we use PCAC to relate it to a measured pion transition 

amplitude. Application of the golden rnle then yields: 

i-(H' -BT-H) = 1 P7r (Ml2 - d)* 
4ti2 2J'+l M,2 E I(H',AI (l/fi) (Qi - :QF)I H,h)12 , 

T 
(12) 

where f TT - 135 MeV. The factors in Eq. (12) are forced on us by PCAC and 

kinematics--there are no arbitrary phase space factors. 

For real photon transitions, matrix elements of D: + (l/G)Df s.re 

directly proportionalto the corresponding Feynman amplitudes. The width 

for H' -tyH is given by 41 

P3 
i"(H' +rH) =$&c \(H', h( Dz 

h 
+ (l/G, DfIH, h-1)12 . (13) 

(3) Given a matrix element of Q; or D; between hadron states which 

is related to measurements by either Eq. (12) or (13), we transform using V 

from simple constituent to simple current quark states. The particular matrix 

element is thus rewritten in terms of Vm1Q5V or V -lD+V, and simple current 

quark states. We know the algebraic properties of all these quantities under 

the SU(~), of currents via abstraction of Eqs. (8) and (11) from the free quark 

model and our identification of hadrons with quark model states. We may then 

apply the Wigner-Eckart theorem to each term to express it as a Clebsch-Gordan 

coefficient43 (of SU(~),) times a reduced matrix element. Since the same re- 

duced-matrix element occurs in many different transitions, relations among the 

corresponding transition amplitudes follow. 

VII. CONSEQUENCES FOR TFANSITION AMPLITTJDES 

The experimental consequences of the theory outlined in the last sec- 

tion have been considered by a number of authors. 36,44-53 !Fhese consequences 

fall into the following three categories: 

(1) Selection Rules. For transitions by pion or photon emission from 

states (either mesons or baryons) with internal angular momentum L' to those 

with L, one finds 46,‘+7 

IIL' - L( - l/ <_ e&L + L' + 1 (IL) 

IIL' - LI - l( <- jr 5 L + L' + 1 ) (14b) 

where a lr and j 
I- 

are the total angular momentum carried off by the pion and 

photon in the overall transition. 

For example, eT can be 0 or 2 (a, = 1 is forbidden by parity), but 

not 4 for a pion decay from L' = 1 to L = 0. Thus the decay of the D15(1670), 

the JP = 5/2-N* resonance with L' = 1, into TA is forbidden in g-wave 

(aT = 4), although otherwise allowed by kinematical considerations. Similarly, 

only j = 1 is allowed for L' = 0 to L = 0 photon transitions, although 
Y 
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j,=2 (andeven Jy = 3 for A' +rA) is generally permitted by kinematics. 

This particular rule is well-known for A 'TN, where it is just the successful 

quark model result 54 that the transition is purely magnetic dipole in character, 

i.e. the possible electric quadrupole amplitude is forbidden. The inequalities 

in Eqs. (14) might be regarded as the generalization of these prticular results 

to all L and L' in the present theoretical context. 

Note that for IL - L'1 > 3 the lower limit of the inequalities becomes 

operative in a non-trivial way, forbidding low values of j, or jr which 

would otherwise have been favored kinematically. Unfortunately, the relevant 

hadron states which would provide an interesting test of this have not yet been 

found. 

Selection rules of a different sort govern the number of independent 

reduced matrix elements. For pion transitions from a hsdron multiplet with 

internal angular momentum L' down to the ground state hsdrons with L = 0, 

there are at most two independent reduced matrix elements, corresponding to 

the two terms in Eq. (8). For real photon transitions between the same two 

multiplets there are at most four independent reduced matrix elements, Corres- 

ponding to Eq. (11). 

In general structure, the theory described above includes various 

concrete quark model calculations, both non-relativistic 55 and relativistic.56 

In fact, a one-to-one correspondence exists between the quantities calculated 

in such models and the reduced matrix elements in the present theory. However, 

such models are usually much more specific, with parameters like the strength 

of the "potential," quark masses, etc. fixed. Since the quantities correspond- 

ing to reduced matrix elements are expressed explicitly in terms of such 

parameters, they are computable numerically and the scale of the reduced matrix 

elements is determined. 

Alsoincluded in the general structure of the theory are the results 

following from assuming strong interaction SU(~), conserVation.31 For pion 

transitions, this Corresponds in the present theory to retaining only the 

first term in V 
-1 a 

Q5 
V. Since this hypothesis fails experimentally, various 

ad hoc schemes for breaking ~~(6)Whave been proposed. 57 Such schemes still 
-- 

fall within the general structure of amplitudes presented above, 
58 and they 

are similar in giving relations between amplitudes while not setting their 

absolute s~!ale.~~ However, as we shall see below, they are generally more 

restrictive in that they tie together pion and rho decay amplitudes. 

(2) Decay Widths. The simplest such set of relations are those for 

pion transitions from L' = 0 to L = 0 mesons. Here there is only one re- 

duced matrix element (the second term in Eq. (6) has ALs = + 1 and SO Cannot 

contribute when L' = L = 0), so that the amplitudes for p +TIT, K*(890) +nK, 

and u) +m are all proportional. The ratio of the amplitudes for the first 

two processes may be obtained from r(p +n)/ (K* +rK), while the amplitude 

for the latter is obtainable from 0 + 3~ and rho dominance. Within errors, 

the ratio of the three amplitudes is that predicted by the theory. 
60 

For pion transitions from mesons with internal angular momentum L' = 1 

to those with L = 0, both terms in Eq. (8) are possible and there are ConSe- 

quently two independent reduced matrix elements which describe all such decays. 

Rather than performing a fit to all the data, we choose two measured widths 

as input and thereby determine all the other decay rates. For this purpose 

we take r(A, +.irp) = 71.5 MeV, from the latest particle data tables, 
17 and 

LO(B *vu) = 0. This latter condition, the vanishing of the helicity zero 

(longitudinal) decay of B +w, is suggested by high statistics experiments 
61 

which find the transverse decay to be strongly dominant. While probably not 

exactly zero, we take this as a very reasonable first approximation to the 

data. Exact vanishing of rA=,(B + mu) corresponds to only the second term 

in V“QQV,with the algebraic properties of (ho1/2)[(~~x+i~by)(Vx-iVy) 

- box-Wy)bx + iv,)], having a non-zero reduced matrix element. This well 

illustrates the experimental necessity of a non-trivial transformation V; for 

if V =Il, only the term behaving as (Aa/2)o, would be present and the pre- 

dicted helicity structure for B +rm, would be completely opposite that 

observed. 
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The results6* can be seen in Table IX. The correct values for 

r(A2 +.irp)/r(K*(1420) '7K*) and r(f +mr)/r(K*(1420) +TK) may be regarded 

as testing the SU(3) component of the theory, while, for example, the value 

of r(Ag -+Tro) or r(K*(1420) +vK*) relative to r(f +m), r(K*(1420) +lIK) 

or r(A2 +m~) tests the full theory, including the phase space factors in 

Eq. (u), since one is relating d-wave pion decays into pseudoscalar vs. vector 

mesons. As for the other decays in the table, we note that: (a) other strong 

interaction decay modes of the B meson very likely exist, although m is 

certainly dominant; (b) the "real" A1 resonance still remains to be found 

for comparison with the theoxyJ (c) the now established I = 1 scalar meson, 

6, only has no as a possible strong decay channel, so the total width should 

almost coincide with that into ml; (d) we have chosen 1300 MeV, the mass where 

the s-wave 7iK phase shift goes through 90", as the mass of the strange, Jp = o+ 

meson. 63 The overall agreement found in 'fable IX between theory and experiment 

is quite good, with the exception of P(A2 +m'). While mixing of the pseudo- 

scalar mesons is such as to alleviate this discrepancy, reasonable mixing 

angles do not change the width appreciably from the value in Table IX. A more 

likely source of trouble lies in the theoretical assignment of the q' to be 

dominantly that W(3) singlet pseudoscalar meson associated with the octet 

containing the pion and eta. In any case, an actual measurement of the 

A2 -+ ml ' decay width, rather than an upper limit, would be an interesting 

quantity to determine experimentally. 

For L' = 2 mesons decaying by pion emission to the L = 0 states, 

there are again two independent reduced matrix elements. About the only decay 

width determined with any certainty is g +m. The meagre information avail- 

able on other decays is consistent with the theory within the large experi- 

mental errors.47 

For photon decays of mesons the data are even more sparse, although 

there are plenty of theoretical predictions. 52 In fact, only a few decays 

TABLE IX 

Decays of L' = 1 Mesons to L = 0 Mesons by Pion Kmission. 62 

D+X*y 
r(predicted) ~(experimental) 17 

(M@J) (MeV) 

A2(1310) 'W 

* 
K (1420) +TIK* 

f (1270) +m 

~"(1420) -+ nK 

A,(l310) -,rrl 

A2(1310) +7irl' 

B (1235) +W', h = 

71.5 (input) 71.5 2 8 

27 29.5 2 4 

112 141 + 26 - 

55 55 +6 

16 15 22 

5 <l 

0 0 (input) r total = I20 +20 
A=1 75 mu, with h = 1 

strongly dominant, 
only mode seen 

~~(1100) -+IT~, h = o 63 
?? 

h=l 31 

6 (970) "m 41 50 + 20 

K(l300) -1fL 380 ?, broad 

among L' = 0 mesons are actually measured, where there is just one possible 

reduced matrix element. Fixing this from D((LI +~TT), the predictions 64 are 

collected in Table X. What widths have been measured are consistent with 

the predictions of the theory, although at the limits of the error bars in 

several cases. 
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TABLEX 

Decays of L' = 0 Mesons to Other L = 0 Mesons by Photon tiission 

r(predicted) D(predicted) 
no mixing e = -10.5” 

' (KeV) 
D(experimental)17 

(KeV) (KeV) 

870 (input) 

92 

0 0 

36 56 

5 7 

220 170 

160 I20 

15 11 

0.5 0.6 

870 (input) 

92 

870 + 60 

30 + 10 80 + 10 

(Ref. 

< r 5 

65) - 

< 14 

< 160 

< 50 

1.26 + 46 

0.27r(q' -+ all) 

There are a large number of pion and photon transitions among baryons 

which are predicted by the theory. lhey are compared with experiment else- 

where. 46,47,52,25 Overall there is fair agreement between theory and experi- 

ment, with a number of predicted pion widths "right on the n068,~ but others 

off by factors of 2 to 3. In many of these cases there are large experimental 

uncertainties, as well as the theoretical uncertainty inherent in using the 

narrow resonance approximation to compute decays of one broad resonance into 

another. 

(3) Relative Signs. In the process TN +N* +TA, the couplings to 

both TN and rrA of all the N*'s with a given value of L are related 

by (sIJ(~&) Clebsch-Gordan coefficients to the same reduced matrix element(s). 
r 

The signs of the amplitudes for passing through the various N"'s in 

TN 4~0 are then computable group theoretically. The correctness of these 

sign predictions is crucial, for while, for example, one my be willing to 

to envisage a small amount of mixing of the constituent quark states, and 

corresponding corrections of say, 20$, to amplitudes (and 4O$ to widths), 

this will not change their signs. A wrong sign prediction could well spell 

the end of the theory! 

This in fact seemed to be the case last year 66 when a comparison of 

the theoretical predictions 46,67 was made with the amplitude signs observed 

in an earlier phase shift solution of ?rN +TA by the LBL-SLAC collabor- 

ation.@ Since then a newer solution 69'70 with much better X2 has been 

found--in fact, the new solution is the only one left once additional data 

in the previous energy 'gap" between 1540 and 1650 MeV is used as a con- 

straint.71 

The present situation with regard to amplitude signs for intermediate 

Rx's with L = 1 in TN +N* 4~0 is shown 72 in Table X. Aside from an 

overall phase (chosen so as to give agreement with the sign of the DD 15 (1670) 

amplitude), there is one other free quantity. This is the relative size of 

the reduced matrix elements of the two terms in V-'QF V 01, what turns out 

to be equivalent, the sign of an s-wave relative to a d-wave transition 

amplitude. In Table XI we have fixed this by using the sign of the SDjl(1640) 

amplitude. All other signs for N*'s in the 70 L = lmultiplet are then pre- 

dicted theoretically. The seven other signs determined experimentally agree 

with these predictions. The sign of the s-wave relative to d-wave amplitude 

is such as to show that the reduced matrix element of the second term in 

V“$ V with the algebraic properties of (hO"/2) [(Box + iSuy)(vx - ivy) 

- (BOX - iPuy)(vx + iv,)], is dominant for L' = 1 to L = 0 pion transi- 

tions of baryons, just as it is for L' = 1 to L = 0 pion transitions of 

mesons. 
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TABLEXI 

72 * 
Signs of Resonant Amplitudes =n TN -,N +rA for *, N s 
in the 70 L = 1 multiplet of W(6), X O(3). Amplitudes are 

labeled by (J&TA)21,2J and the resonance mass in t&V. 

Resonant Theoretical 
Amplitude Sign 

Experimental 
Sign7O 

nS,+l520) 

DDl3(1520) 

SDll(l550) 

~~~~(1640) 

nsj3(1690) 

DDj3(1690) 

DD15(1670) 

DS13(1700) 

DD,3(1700) 

+ 

+ (input) 

+ (input) 

+ 

SDll(1715) + + 

For N*'s with L = 2, many of the amplitudes have not been seen 

experimentally. As the overall phase is already fixed, there is just one 

parameter free. Again this is the relative size of the two possible reduced 

matrix elements, only now it corresponds to the sign of a p-wave relative 

to an f-wave pion decay amplitude. We use the FP15 (1688) amplitude in 

Table XII to fix this sign72 It corresponds to the reduced matrix element 

of the first tern in V -'q V behaving algebraically as (Aa/2)aZ, being 

dominant. All other signs (3) which are measured in Table XII agree with 

the theory. 

TABLE XII 

Signs of Resonant Amplitudes 72 in TN -iN* -+?rA for N*'s 

in the 56 L = 2 Multiplet of SU(6), X O(3). Amplitudes are 

labeled as in Table XI. 

Resonant 
Amplitude 

FP15 ( u5@ ) 

m15( 1~35) 

Theoretical 
Sign 

- (input) 

+ 

Experimental 
Sign70 

+ 

PP13(1860) 

pF13( 1860) 

FFJ70950) 

? 

+ 7 

FPj5(1880) 

FFJ5(1880) 

1 

+ 7 

+ I 

+ ? 

The signs of amplitudes for resonances in the radially excited 56 L = 

are given in Table XIII. The sign of the ~~3~(1690) amplitude is in fact the 

principal reason for its previous assignment as the partner of the Roper 

resonance, since the alternative assignment to e. 56 L = 2 leads to an oppositi 

sign prediction. 

TABLE XIII 

Signs of Resonant Amplitudes 72 in TN -a N* -I 1r0 for N*'s 

in B Radially Excited 56 L = 0 Multiplet of SU(~), x o(3). 

Amplitudes are Labeled as in Table XI. 

Resonant 
Amplitude 

Tneoretical 
Sign 

Experimental 
SignTO 

+ + 
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Another reaction where relative Signs are predicted is yN -BN* +i3i. 

This involves the theory at both the TN N* and TN N* vertices. Although 

the situation is more complicated, there are also more amplitudes determined 

experimentally. An analySiS50'52 of the situation shows that not only are 

there 15 or So signs correctly predicted, but the information on the TN N* 

vertex So obtained agrees with that from IIN -am* +TTA as to which tena 

in V-'QF V has the dominant reduced matrix element. 

What emerges from all this is another possible systematics: for 

pion amplitudes, both meson and baryon show that the term transforming &s 

(Ao1/2bz is dominant in known L' even +L = 0 transitions, while 

(ha/2 1 [BO+V- - B”-v+l is dominant for L' = 1 -tL = 0 transitions. This 

might generalize to all L' even and L ' odd decays. If it does, we will 

have yet another simple regularity to explain. 

VIII. CONCLUSION 

The theory of pion and photon transitions which we have outlined has 

had great SucceS8 in predicting the signs of amplitudes--more than 25 relative 

signs are correctly predicted in the reactions ti+N*+rA and yN+N*-,vN. 

There is also St least fair SUCCESS in predicting the relative magnitude of 

decay amplitudes, particularly for mesons. 

This SucceSS lends support both to the theory of current-induced-transi- 

tions we have presented and to the assignment of hadron states to constituent 

quark model multiplets. In particular, the amplitude signs found to be in 

agreement with experiment mean that, at least in a rough Sense, the relation- 

Ship between the wave functions of different hadrons is that of the quark 

model. At q' = 0 one SeeS evidence for a quark picture of hadrons which is 

just as compelling as that obtained in B very different way a.54 9' jrn in deep 

inelastic scattering. 

Aside from pushing further on questions like masses, the extension 53 

to q" # 0 current induced transitions, the relationship 73 of V and PCAC, 

etc., what is most needed is a deeper understanding of why we cw get away 

with such Simple assumptions--why can we abstract anything relevant about 

transformed current operators from the free quark model? Even given that, 

why can we recognize so clearly the hadrons corresponding to the constituent 

quark model states? Why aren't the multiplets more badly split in mass and 

mixed? Most of all, to SnSwer these and other questions we need at least part 

of the dynamics at which point we might be able to calculate magnitudes of 

the matrix elements 86 well. Then we truly will have a quark picture of hadron 

structure, spectroscopy, and amplitudes. 
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LFCIWES ON INCLUSIVERADRONIC PROCESSES 

Dennis Sivers 

Stanford Linear Accelerator Center 
Stanford University, Stanford, Callfonia 94305 

mhese are'low profile"lectures intended to present some 

ideas on inclusive processes with a minimum of extraneous fomal- 

ism. We discuss how many features of the data are empirically 

described by simple rules common to many models. Important 

questions in Mueller-Regge phenomenology are presented and some 

'aspects of cluster models are introduced. 

I. INTRODUCTION 

For a spell, the study of hadronic interactions was restricted largely 

to the properties of 2 +2 collisions even though, at high energies, such 

collisions constitute only a small fraction of events. (For example, the 
el tot M ratio 0 /o 
PP PP 

= .18 at the CERN ISR so that there is particle production 

more than 80% of the time.) For various reasons, people realized the impor- 

tance of confronting the problem of particle production even before there 

were effective methods of dealing with many-body final states. Some rationales 

for paying particular attention to production processes can be noted: 

1. Hadrons have structure resembling that of a simple quark model. 

However, when they are struck we do not see the quarks, just more hadrons. 

This intriguing fact makes hadronic collisions something intrinsically differ- 

ent than a high-energy rerun of atomic or nuclear collisions. The many- 

hadmn final states confront the physicist with a unique new type of phenomenon. 

2. The unitarity equation makes important connections between pro- 

cesses with different numbers of final-state particles. Experience suggests 

that it is doubtful we can anticipate an approximate understanding of a pro- 

cess if we try to deal with it in isolation. Unitarity forces us to worry 

about everything. 
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3. Hadron resonances with much in common with the stable mrticles 

have alternate decay schemes with different numbers of particles. 

Now, through the efforts of many people, we have developed what seems 

to be a powerful set of tools for the systematic exploitation of data on 

particle production. We have the concept of an inclusive measurement, the 

probability of detecting a particle emerging from a collison with a specified 

momentum without regard to other collision products, and a theoretical frame- 

work to deal with this concept. In the meantime we are steadily improving 

our understanding of exclusive processes where each particle emerging from 

the collision is analyzed. In addition, we are beginning to understand ways 

to deal with mixed or semi-inclusive measurements where something, but not 

all (no strange particles, nch > 8, etc.), is known about the other particles 

in the final state. 

Many of the early questions about production processes, such as whether 

short-range-order or diffractive-dominated mechanisms explain the bulk of the 

data, have been answered empirically by experiment. (See the reviews of 

Berger and Jackson for some historical perspective.) In other instances, 

experimental "surprises" such as the results on inelastic diffraction or the 

production of particles with large transverse momentum, have generated enough 

interest to spin-off into separate realms of specialization. I till not dealherc 

with well known facts or with the new fads but will concentrate on some 

topics in "garden variety'l inclusives which have been, by comparison, neglected. 

I have chosen to further restrict attention to topics which can be approached 

with a minimum of formalism. I ask the experts to bear with me because I 

think the topics demonstrate to what extent some very fundamental questions 

remain unanswered. Impatient theorists who have assumed one answer and gone 

on to calculate more complex problems are subject to embarrassment by tin- 

dictive experimentalists. 



II. A PRELMINARY SURVEYOF THE DATA 

There are several features of the data on high energy production pro- 

cesses which can be approached with a minimum of theoretical preparation. 

Not everyone agrees what this minimum theoretical input is, but let me list 

some empirical features of the data which are obviously important: 

1. Quantum number conservation. The final states are constrained 

by energy momentum conservation and by the conservation of additive quantities 

such as charge, baryon number, etc. 

2. Transverse momentum cutoff. The spectra of all particles is 

rapidly damped in transverse momentum. 

3. Tne leading particle effect. A large fraction of the energy in 

a typical collison is not "available" for particle production. For example, 

in pp collisions the leading protons carry off, on the average something 

near half the c.m. energy even at the ISR. It is important to note that this 

feature should be largely absent from the quasi-inclusive processes 

PP(annih --rlr + x* 

4. Clustering. Most observed particles are T'S, but these w's are 

not produced individually but are often found in resonances or clusters. 

The fact that these empirical facts already put strong constraints 

on inclusive spectra has long been known (Kryzwicki [1964l).mey are present 

in all the available models for inclusive processes. See, for example, the 

discussion in the review of Morrison. It is an interesting exercise to see 

to what extent the features (l)-(4) constitute input of the models and to 

what extent they may follow from more fundamental theoretical ideas but we 

will not delve into that question here. Our interest in l)-4) can be 

attributed to the fact that they explain quite directly several common 

features of hadronic production processes. 

The first such feature is the fact that hadronic prong cross sections 

show striking regularities. Figs. II.1 and II.2 show the topological cross 

sections for pp and T-p plotted against lab momentum. The energy depen- 

dence of a typical production cross section does not seem to be too sensitive 

to the quantum number of the beam. Figure II.3 shows the associated multi- 

plicity distribution for the process pp -+p + (N charged) plotted against 

the missing mass associated with the charged particles. Except for the fact 

that we have an odd number of charged particles the behavior is quite similar 

to the direct pp prong cross sections. 

The gross features of the energy dependence of the prong cross sec- 

tions can be understood from simple multiperipheralmodels or from one-dimen- 

sional phase space (DeTar, 1971). 

An important question which is still not entirely resolved involves 

the asymptotic behavior of the various prong cross sections. Experiments 

suggest that all total and elastic cross sections rise slowly through the 

NAL-ISR energy regime. !'ibe question whether exclusive production cross sec- 

tions exhibit a similar rise is quite important for our conception of "dif- 

fraction." So far there is no evidence for an increase, or even a flattening, 

of any of the prong cross sections. This corresponds to a certain lack of 

experimental support for the result 

g(S) +const.(mod logs) (11.1) 

which is an important aspect of the so-called two-component models. We won't 

discuss two-component models here because we don't have time to go too deeply 

into diffractive dissociationandthe topic of Professor Leith's lectures. 

An excellent treatment of the topic can be found in the review of Harari. 

Because the moments of the multiplicity distribution are given by 

integrals of the corresponding inclusive cross sections, e.g., 
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etc. 

(11.2) 

the measurement of the multiplicity distribution at a given incident energy 

constitutes a crude set of distributions (with one momentum bin). Toe multi- 

plicity distribution therefore provides an important first hurdle for theo- 

retical model-making types since it doesn't pay to spend too much time on the 

fine grained structure of a model which can't get the coarse structure correct. 

One possibility which emerges from comparing the multiplicity distri- 

butions of $p annihilation and pp collisions is that part of the broad 

dispersion in the latter may be due to the spread in inelasticities of the 

leading protons observable in the flat x distribution for pp +p anything. 

If we assume that the dominant process is pp +pp + (no) and denote by Q2 

the (invariant mas~)~ associated with pion system, we can write 

n2(s) = I F(Q2,S) D2(Q2) dQ2 + 1 F(Q2,S) [ri(Q2, - :@)I2 dQ2 (11.3) 

where 2 F(Q ,S) is the normalized inclusive distribution for PP -'PP + (Q2,. 

If we let E = Q2/S and assume F(Q2,S) z $ G(E) we can write the second 

term 

(11.4) 

and we may get a large positive contribution to the dispersion in (11.3) even 

if the D2(Q2) is small. It would be very instructive to compare the multi- 

plicity distribution for the process pp +pp + n(Q2) with that of 

PPannih 
2 -+n(Q ) in order to discern whether the annihilation process contains 

the same kind of clustering effects as other production mechanisms. This 

question is important for the bootstrap theories of inclusive spectra 

(Krsywicki and. Peterson, 1972; Finkelstein and Peccei 1972). 

Note that, in (11.4) above, if the average multiplicity is strictly 

logarithmic we do not get a growth of D2(S) proportional to (n(S))2 SiIlCS 

(l-$y2=(1-~)‘=“(*) (11.5) 

If there are regions with substantial corrections to logarithmic multiplicities 

we may have D = (n). 

One approach to the multiplicity distribution which has generated a 

great deal of theoretical speculation is the hypothesis of Koba-Nielsen- 

Olesen (1972) (KNO) scaling. Simply stated (see, for example, Van der Velde, 

1974), the assumption of KNO scaling is that the probability for producing 

n particles, Pn = c+inel' depends on the average separation of the par- 

ticles in one-dimensional phase space. If we denote Y = Jn(S/m2) then the 

statement is that Pn depends on n through the ratio n/Y. Putting in 

normalization we get 

Pn = Y -l f(t) 

or as it is sometimes written 

P* = -& qf$, (11.6') 

There is good solid evidence for the approximate validity of (11.6). 

See Fig. II.4 or for a more complete discussion the reviews of Boggild 

and Ferbel and of Wrobleski. This provides a good example of how an 

empirical result can have a profound effect on the way we think about 

collision processes. The prediction (11.6) can be contrasted to the Poisson 
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distribution expected in the simplest multiperipheral schemes, 

p = =-gY P”p 

n T!-’ 
11.7) 

with KNO scaling we necessarily have strong long range correlations since the 

multiplicity moments f(*) which measure the integrals of correlation func- 

tions 

f(")(y) =J c(")(~ . . . y ) dy ... 
1 nl dy = Yn n. (11.8) 

The difference between SRO models and KNO scaling doesn't begin to show up 

until, at very high energies, the f (*I of the former begin to be proportional 

to Y. For example, in a SRO model 

,(3) z CY / exp[-h)yl - ~~11 d(yl - ~~2) exp[-hly2 - ~~11 d(y2 - y3) 

: cy $1 - .-my z F (uy - gg + ... )’ 

where AY is the maximum spacing between particles sllowed kinematically. 

For moderate energies (11.9) looks more like Y3 then Y so all SRO models 

exhibit a kind of low energy KNO scaling. Thomas (1973) has discussed 

in more detail how a SRO may mock up en apparent KNO scaling result. There 

is a great deal of controversy, then, over whether the multiplicity scaling 

(11.6) will continue to find experimental support et higher energies. 

If we want to follow up on the KNO hypothesis, one promising approach 

might be the geometrical models which provide a relatively natural accommo- 

dation with (11.6). Geometrical models rely on the fact that the impact 

parameter is a hidden variable in production processes. Gur intuition 

suggests that since hadrons are fragile objects central collisions might 

produce different final states then glancing or peripheral collisions. Let's 

write the n-particle cross section es a superposition of the n-particle cross 

section et fixed impact parameter 

u n = / d2b u,(b) 

u(b) = :a,@) 

(11.10) 

where u(b) is the impact parameter representation of the overlap function 

(van Hove, 1964) which can be determined from unitarity and elastic scattering 

data. However, the u,(b) cannot be determined since they are sensitive to 

phases in the n-particles production amplitude. (See, for example, Henyey, 

1974.) We ten make the assumption that 

(n(b,S)) = (n(S)) w(b) (11.11) 

and that we have a narrow distribution of multiplicities et a given impact 

parameter 

o,(b) "= o(b) 6(n - ((b,S))) (11.12) 

so that 

un(s) = I d2b o(b) S(n - (*(b,S))) 

(11.13) 

where b. is determined by n = (n(bo,S)). This can be rewritten 

(11.14) 

b=bo 

which, given (II.ll), is equivalent to KNO scaling (11.6). Simple intuitive 
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arguments suggest that w(b) should be determined from the amount of matter 

overlap between the two hadrons (Earshay, 1973; Buras end Koba, 1973) end 

thus be a decreasing function of b. However, the interpretation of the multi- 

peripheral model es a random walk in rapidity space ten lead to an increasing 

(n(b)) (Moreno, 1973). Using (11.14) we can actually solve for w(b) using 

the experimental u(b) end the KNO scaling function. Because of the abso- 

lute value of dw/db is all that is determined we are unable to determine from 

(11.14) whether w(b) should increase or decrease with increasing impact 

parameter. Solutions for w(b) taken from Bialas end Bialas (1974) ere 

shown in Fig. 11.5. 

One thing which this simple geometrical exercise tells us is that 

to achieve KNO scaling we need & narrow multiplicity distribution at & given 

impact parameter, (11.12). There is no room for e coherent contribution, 

such es diffraction, which contributes to a given n-particle final state 

from all impact parameters. This provides one way of seeing the basic incom- 

patibility between KNO scaling and two-component models, which have (11.1). 

Before serious theoretical models based on KNO scaling can emerge, they must 

be prepared to deal with the existence of inelastic diffraction. Strong 

evidence for the importance of the diffractive component in the multiplicity 

distribution can be seen in the dip in o(nL, tot) shown in Fig. 11.6. 

The experimentally observed cutoff in the transverse momentum of 

the hadrons produced in strong interaction processes provides an important 

dynamical constraint. Dick Blankenbecler will discuss in considerable detsil 

the few tenths of a millibarn of cross section associated with the creation 

of large transverse momentum secondaries. Whatever hard mechanism turns 

out to be the explanation for these large-PI collisions it's important 

to keep in mind the fact that it usually doesn't happen. It may be important 

for the development of certain models but it's rare. Experimentally, the 

average transverse momentum of e produced pion either becomes constant 

asymptotically 

ur - 0.35(1 + 0(1/J* S)) GeV/c (11.15) 

or grows very slowly. The energy dependence of (P~)~ can be found in Fig. 

II.7. If we try to deal carefully with transverse momentum spectra we have 

to admit that the prediction of the Hegedorn thermodynamic model [Hegedorn 

(1950); Ranft (197O)l usually quoted es 

E d3u =e 
-6~~ 

d3p therm 
(11.16) 

ten work only in a very small range of pI,, 0.15 5 pI,s 1.0 GeV/c. The 

actual shape of the spectrum depends in a nontrivial way on x. Some NAL 

date are shown in Fig. 11.8. It may turn out that ability to get the details 

of the pT structure correct will prove e decision test of models for the 

production processes. As far es I em *were, there are no good candidates 

and I regret my inability to deal in more detail with this problem. 



Figure Captions, Section II 

Fig. II.1 Topological cross sections for pp scattering. compilation 

of data from the review of Whitmore. 

Fig. II.2 Topological cross sections for IT-P scattering notable for 

their similarity to those of pp. Figure from the review of 

Whitmore. 

Fig. 11.3 (a) Comparison of (nc) in pp collisions with (nc - 1) 

in pp +p + P. 

(b) Comparison of (nc) in ?rp collisions with (n, - 1) 

for ?rp +p + 2. 

(c) Prong croes sections for pp collisions (dashed lines) 

compared to Prong cross eections for pp -+p P. 

Fig. II.4 Experimental evidence for KNO scaling. 

Fig. 11.5 Behavior of n(b)/: inferred from geometrical model assuming 

KNO scaling and using data on u(b). Figure is from Bialas 

and Bialas (1974). 

Fig. II.6 Cross sections for pp collisions at 205 GeV/c as a function 

of the number of particles going in C.M. hemisphere along beam 

direction. Dip structure can be attributed to diffractive 

dissociation as discussed by Sivers and !Ihomas (1974). 

Fig. II.7 Average transverse momentum as a function of incident energy 

(Whitmore). 

pp TOPOLOGICAL CROSS SECTIONS ‘OZzi 

Plob (Gev/c) 

Fig. 11.8 Compilation of data on the pT distribution of pp +T- 

(Whitmore 

Fig. II.1 
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III. DIRECT MODELS FOR Ih'CLU5IVE PROCESSES 

Much in the same manner we connect, through unitarity, the total 

cross section with the discontinuity of the forward elastic ampl.Ptude, 

c&(S) = l L discS Aab -+ab(S,O) h1/2 2i (111.1) 

where A = h(S, 2, <) w S2, th e single-particle inclusive cross section is 

related to 8 discontinuity of an (unphysical) forward 3-3 amplitude. Ihe 

relation, indicated schematically by the sketch below 

can be written 

E &Fb-‘= 
' d3p 

(s,Q = l ' disc 
c p E m2 *eb: +ab: 

(s, SC; all A2 = 0) (111.2a) 

'IUs generalization of the optical theorem was first hypothesized by Mueller 

(1970). Strictly speaking, it remains a hypothesis and has not been rigor- 

ously been proved. There are some subtleties in the definition of the dis- 

continuity. The variables related to the various subenergies have to be 

specified carefully and there are problems related to the presence of anomoloue 

thresholds in 2. These points will not conem us much here but are discussed 

in detail by several authors (Stapp, 1971; Polkinghorne, 1972; Tan, 1971; 

Cahill and stapp, 1972). 

The practical use of (111.2) is that it enables us to model directly the 

functional dependence of the inclusive cross section by making a Regge expan- 

sion for the 3-3 amplitude. This means we can forget about the complicated 

behavior of the various exclusive components of the single-particle inclusive 
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croes section. Check beck end see how the dependence with energy of the in- 

dividual prong cross sections in Figs. II.1 and II.2 disappears when they 

are summed to form a total cross section which ten be fit by a simple Regge 

expansion. A similar cancellation can occur in the inclusive single particle 

distribution although we have no guarantee that it will. By making the appro- 

priate Regge expansion of the 6-pt-function it may be possible to achieve e 

simple expression for the behavior of the invariant cross section. Notice 

thst we can shortcircuit some of the problems with Regge expansions of multi- 

particle amplitudes by making asymptotic expansions directly for the discon- 

tinuity in (III.2) and neglecting phase problems. 

For reference, the eppropriate generalization of the optical theorem 

for the two-particle inclusive cross section is 

ab *cd 

d3pc d3pa 

11 
=p z disc 2 Aeb;z +ab-l (s, SC, Zdi al1 a2 = 0) (111.2b) 

m 

By extension, we can play sll the games with Regge expansions of the 8-pt func- 

tion that we can with the 6-point function. An important new feeture in 

(1112b)involves possible dependence on the azimuthal angle, cos 6 = $Tc*p^ra 

of the two-particle distribution. We will return to this point later. 

Approach to Asymptotic Behavior 

The most direct use of Mueller-Regge ideas lies in the study of the 

energy dependence of inclusive spectre using a Regge expansion for the 3-3 

amplitude based on singularities known from 2-2 phenomenology. We have to 

be careful we don't let conventional wisdom concerning things we don't really 

understand in 2-2 reactions mislead us but this approach ten obviously 

simplify things. 

I will not discuss in detail the central region indicated by the 

diagram 

b 

where the expansion 

(111.3) 

is valid with 

t=(p -Pc)2 a (111.3b) 

u = (pb - PJ2 (111.3~) 

(III.jd) 

since, if we require t 2 10 Ge $> u > 10 Gej! and take into consideration 

that the bulk of the data occurs for K2 j! 5 0.1 Ge we see that we need 

S > 103 GeV2 for the expansion to be useful. We just don't have the lever 

era in energy to say much of interest about the central region. 

Let's instead examine the simplest aspects of the Mueller-Regge 

hypothesis. In the limit 

b * c 

ye - y, fixed CT fixed 

ye -yb=Y-am 

yc - Yb --)m 

c 
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yc) (111.4a) 

or in terms of Feynman's variable 

Some important points have to be made concerning the application of 

(111.4b) 

(1 

1. 

2. 

3. 

1.b) or (111.4b): 

All singularities which have the quantum numbers appropriate for coupling 

to the b$ channel have to be included. This, of course, includes the 

vacuum, Pomeranchuk, singularity. In the usual case the Pomeron leads 

to Feynman scaling, or something like it. 

As written, (11.4) contains only pole contributions. !i%e contribution 

of Regge cuts is more complicated, containing logarithmic factors and a 

possible continuum of powers. It is naive to believe that the Regge cut 

contributions to this &point function need have very much to do with 

the Regge cuts in 2-2 amplitudes. Of course, it often doesn't hurtto be 

naive when you can't think of any improvements to the simple form. 

The usual trick is to keep only two terms in (111.4), a Pomeron pole and 

a term associated with the leading meson poles with intercept, 

& - - P;(O) F; --)' (P,; yc - ya) + S:(O) F; +'(;$ Y, - Y,) 
-112 

d3p 

(111.4~) 

This represents an "approximate" asymptotic expansion with unknown 

corrections. There are possible correction terms to (111.4~) asso- 

ciated with the Pomeron which are depressed by a single power of S. 

These are sometimes referred to as attributable to the kinematic 

daughters of the Pomeron. These corrections cannot be disentangled in 

general from true, low-lying J-plane singularities, and are not necessarily 

the most important but they seem crucial in comparing pp -+G with 

with pp -a~ (Sivers, 1973). 

It is important to remember that these corrections should be larger 

for 8 given reaction as we go to larger pT since they are responsible for 

most of the energy dependence of the large-pT cross sections. (See Cronin's 

presentation at the Topical Conference.) 

4. After all these warnings the most important thing about (111.4~) is 

that it can be tested quite easily. Because few experiments have been 

done the evidence for its validity is neither very strong nor very poor. 

Schindler, et al. (1974), have looked at the processes pp +T' in 

the target fragmentation region, ylab < 0. Their plots are shown in Figs. 

III.1 and 111.2. It is not too hard to fit a portion of these graphs with 

a straight line but there is some swgestion we might need corrections. It 

seems important to try to do better--to decide whether we should include 

kinematic corrections, more terms, or try logarithmic factors. It is impor- 

tant for several theories concerning the relevant patterns of exchange degen- 

eracy that the data are approaching the asymptotic limit from above. For a 

thorough discussion of these theories I suggest the review of Roberts (1973). 

One reason for doing fits of the form (111.&z) for a large number 

of different reactions and different ranges of the kinematic variables is 

that it would be useful for a systematic study of Pomeron factorization. 

If we can isolate the Pomeron term in many different reactions we can test 

B:(O) F; +c($T,Xc) D;"'(O) F; --) '(;&Xc) 
= 

$90) Pf(O) 
(111.5) 



with 

b, b' E (T+, K-, K+, K-, P, 5, Y, . ..) 

c E (r', TC-, K+, K-, p, A, C, n, . ..) . 

!lbe fact that there a-e many different tests at different values of X 

and p' T 
is important since we now have strong evidence from the rising 

gross sections and long range azimuthal correlations that the Pomeron is 

not even approximately a simple pole. Violation of factorization must show 

up at some level and it is interesting to know whether they can be small in 

single psrticle inclusives as they evidently are in total cross sections. 

Preliminary studies of factorization have been done by M.S. Chen et al. (1971), 

Miettenen (1971) as well as by Ellis, Finkelstein and Peccei (1972). 

Energy Fractions 

Using energy conservation, we have the sum rule 

&-= z/s (EC) f;b(S> p',) 
c c 

(111.6a) 

-1 3 3 where fab = uab Ec d o/d P; The individual terms in (3.6) are recognized 

as giving the average amount of c.m. energy per collision carried off by 

the constituents of type c. We therefore define the average fraction of 

c .m. energy per event as 

or using Feynm8.n'~ scaling parameter 

(111.6) 

q,(s) = + I 
+1 

dx d2pT ftb(X,+S) (111.7) 
-1 

!&es@ energy fractions seem to me to be terribly important numbers. They 

can be interpreted as giving the particle content of hadronic energy. When 

we take into account the fact that the distributions in transverse momentum 

are sharply peaked so that the integration over d2pr in (111.7) although 

nominally dependent on S, become independent of energy, we see that the 

behavior of the energy fractions is important for the approach to asymptotic 

behavior. 

Now that the evidence has come into indicate that total cross sections 

rise so that it is not so convenient to think of the Pomeron as a simple pole, 

the question arises how this might affect the Feynman-Yang scaling hypothesis. 

If the normalized distributions, fab, become independent of energy for all 

stable particles then the energy fractions all go to constants. This is a 

natural way that scaling could occur but--surprise--it doesn't have to be so 

simple. 

Putting complicated Pomeron singularities into Mueller-Regge diagrams 

indicates the strong possibility that the normalized distributions should 

change slowly with energy. One thing that can happen is that the diffractive 

processes, such as pp +p, have a singularity at x = 1 near the kinematic 

limit 

I4 =l- (5 + =J2 + g + 2P'T 
max S (111.8) 

of the integral in (111.7). The energy fraction associated with the protons 

then rises slowly to one as the fraction of energy associated with "produced" 

particles slowly falls to zero. This occurs as the normalized distributions 

for nonleading particles is a nonzero constant only in a vanishing small 

neighborhood of x = 0, 

fzb(s,X) = 0(1/h S) i x f; 0, ciC*,b (III.91 

There is some indirect evidence for this exciting possibility from triple- 

regge phenomenology but the experimental energy fractions, Fig. (III.j), are 

consistent. with approaching asymptotic constants. For comparison, particle 

multiplicities are shown in Fig. III.4. 
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Similar arguments can help us understand baryon exchange in p *i, 

lr' 'P and K- +A. Consistently, analyses of (heavy *light) processes 

(Fig. 111.5) find trajectories with Intercepts lower than the same trajectory 

in (light -+heavy) processes. Because of the different kinematics we are not 

always as close to tmin when heavy -I light and we can get contributions to 

the triple-regge region from multiperipheral graphs like 

p----T--p 

i 

77 

Azimuthal Correlations 

Freedman, Jones, Low and Young (1971) h ave discussed two particle 

azimuthal correlations in terms of the diagram 

t1 = (Pa - ql)* h CO6 Q = G1*p2 

*b 

pa 

t* = (PO - %$2 

2 - (1 _ ql 
m2 - 

2-(, -1 
m2 - 

+ "2) 

1 
-j = (1 - xl)- (1 + x2) -1 

Since there is zero four-momentum transfer between the two sides of the dia- 

gram, Lorentz invariance implies that the scattering amplitude, and presumably 

the M2 . discontinuity, has an O(3,l) expansion analogous to that of an equal 

mass forward 2-2 amplitude 

*ab: C 12 +abe E 12 

= % 1 do@? - ,*,A _ _ (M,o,r,r') eih'$ d;;,,,($ 
abc1c2 

(III.l2) 

where d”” rhr ' is an SO(3,l) rotation matrix and cash q = (m*-tl-t2)/2(tlt2)1/? 

The leading contribution of the d function is to helicity flip 

a;;:,,(,,) _ (,2)(5-l+f-h1) (111.13) 

Be contribution of a Lorentz pole with 6, M to the 8-point ampli- 

tude at large M2 is then 

A - - - - - $)"-l FM(tl>t2>y2) cos(M@) (III.14) 
abclc2 + abclc2 

A Lorentz pole with M # 0 cannot correspond to a simple Regge pole since 

it contains a mixture of parities. A Regge pole with intercept cf(0) leads 

to dependence suppressed by an extra power of P 

AR@= - (M,y(O) F0(t1,t*,X1,X2) CO6 a 1 + F g1 + . ..] (111.15) 

Data on azimuthal correlations at high has recently become available. 

If we parametrize 

E1E2 d 6 o 
-= 
dJPl d3p2 

4Yl' Y* ) + b(yl, ~~2) ~0s + (111.16) 

and the value of b is shown as a function of the rapidity gap between par- 

ticles 1 and 2 in Fig. III. . The data indicate a long-range correlation 

which is important since it is among the best evidence for a Pomeranchuk 



singularity which is not a simple pole. The dependence of the correlation 

on the magnitude of the transverse momenta is in good agreement with the 

expectations of simple momentum conservation in the uncorrelated jet model 

(longitudinal phase space). We do not have the Illocal(' conservation of 

transverse momentum expected from the multiperipheral model. 

Figure Captions, Section III 

Fig. 111.1. Invariant cross sections for *+ and 71 production, 

integrated overall transverse momenta, displayed as a 

function of s-l/2: (a) The differential cross section 

at the value of laboratory rapidity equal to zero, 

(b) the integrated cross section for negative values of 

laboratory rapidity. Taken from Schindler et aL(1974). 

Fig. 111.2. Invariant cross sections for T: and T- production, inte- 

grated overall transverse momenta, displayed as a function 

of s -li2: (a) The differential cross section at the value 

of laboratory rapidity equal to -.5, (b) the integrated 

cross section for values of laboratory rapidity less than 

-.5. Taken from Schindler et al. (1974). 

Fig. 111.3. Fraction of C.M. energy in pp collisions carried off by 

a given type of particle. 

Fig. 111.4. Particle multiplicities in pp collisions. 

Fig. 111.5. Effective N trajectory from K- n> A compared with 

trajectory from p n> v+. Taken from Falev et al. (1973). 

Fig. 111.6. Fit of azimuthal correlations by Dibon et al. (1973) to a 

form a + b CDS @ showing long range correlations. 
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Iv. MODELS FOR MCLUSIVX PROCESSES 

Instead of dealing directly with inclusive processes through the 

generalized optical theorem and Regge approximations for the appropriate 

6-pt and 8-pt functions, we have the option of constructing models for the 

various exclusive reactions which contribute to an inclusive distribution. 

In order to be able to deal with multiparticle-phase-space integrals these 

models will be crude and will involve many simplifying assumptions. HOWWl-, 

since the exclusive models can embody kinematic effects directly and can deal 

properly with conserved quantum numbers (e.g. implement the fact that anti- 

baryons are produced in BE pairs instead of alone) they can provide a use- 

ful supplement to the Mueller-Regge approach. Basically, we hope that 

averaging over the unseen particles will enable the crude model to produce 

a reasonable inclusive cross section. 

The simplest model for the exclusive production processes is probably 

also the most familiar, the Chew-Pignotti (1968) multiperipheral model. This 

model is usually dealt with in the strong-ordered approximation where the out- 

side particles on the multiperipheral chain take essentially all the energy. 

This sort of drastic truncation of multiparticle kinematics removes much of 

the advantage of dealing with an exclusive model. One important feature of 

this model is the fact that the exclusive cross sections can be calculated 

exactly (DeTar, 1971) and we can see that there is a formal analogy between 

the Chew-Pignotti model and a classical one-dimensional non-interactlng gas, 

The gas analog has proved very useful as several people have explored 

the possibility that the techniques developed to deal with realistic gases 

and fluids can give some insight into hadron dynamics. This kind of approach 

allows us to combine two disparate phenomena under a single formalism and is 

very educational. An introduction to the ideas underlying the analogy can 

be found in the review lectures of Arnold, and further discussion can be 

found in Harari's review. 

Let's reflect a bit on the properties we want to require of an exclu- 

sive model. It should certainly be required to be consistent with the prop- 

erties (l)-(4) which were listed at the beginning of Section II. Tne best 

try so far to get all these things right while still retaining enough simplicity 

SO that complicated Monte Carlo calculations are not needed for most results 

comes from work on a class of "cluster models." (See, for example Hamer and 

Peierls (1973), Bassett0 et al. (1972),)Chiu and Wang (197J), Berger and Fox 

(1973), Bialas et al. (1973).) Current usage roughly equates the terms, 

"clusters, ' "fireballs" and "generalized resonances.' Of these terms, the 

use of the word cluster probably carried the least extra connotation. In- 

stead of trying to give a complete review of these cluster models here I 

will concentrate on those calculations which can be done with cluster models 

which supplement or improve our understanding of inclusive spectra based on 

Mueller-Regge analysis. A more complete discussion can be found in the 

review of BisLas. 

Let's consider the independent emission of m neutral clusters in 

the central region with a matrix element squared 

IT(P,~Pb; PlJ'2;ql>-.~$)t2 = 9" F(P~) F(p2) G(ql,ml) *.* G(q,,mm) (1v.1) 

where F(pi) represent "leading" clusters with the quantum numbers of the 

incident particles and G(%,mi) describes the production of a neutral 

cluster with sharply limited transverse momentum. This simple form allows 

us to calculate rather directly the average cluster multiplicity under the 

assumption that the leading particles take a large fraction of the energy 

(Sivers and Thomas, 1972). 

If (J) denotes the average cluster multiplicity, we have approximately 

(J) z ?rg 1 dm f d(G) G(qT'm) Ko(2X-1/2m) 





Notice that if we form an N-particle correlation function we get a 

dh 
F 0: (cash y)-* cd2 I- dx n(x) (3x.8) 

[u sinh y/(q)1 

If we neglect the dependence of the integral on the lower limit we 

have the nomlized single cluster decay distribution 

g(y) : 0.5(cosh y)-* (nr.9a) 

which can be approximated in turn by 

with 6 2 0.8-0.9. 

The inclusive angle particle distribution is given by 

- 3 = J dy' p(y') (h) g(y - y') 
6 Q 

(IV.9b) 

(Iv.10) 

where (h) is the average number of hadrons of type h in the cluster and 

P(Y) is the density of clusters. The correlation function is given by two 

hadrons from the same cluster 

NY,> Y* ) = [ dy' p(y')(h(h - 1)) g(y' - Y,) g(Y'- Y2) (Iv.ll) 

of if p(y') is slowly varying 

C(Y,J Y,) = y ( $ g lyzo &) exp ( -cy14;~)2)(n.12) 

The effective "correlation length" is very similar to that in Mueller- 

Regge analysis, hR = 2, 

h = 26 = 1.6 - 1.8 (nr.13) 

factor 

C(Y,, *.. > Y* )=exp - c 
[ 

(Yi - Y.12 ” 1 (Iv.14) 
i>j 2nS2 

so that the correlation length increases with the number of particles to be 

correlated. Equation (1v.14) offers an opportunity to distinguish between 

cluster models and a more realistic Mueller-Regge approach than (IV.3) since 

in the latter the correlation length should not depend on the number of par- 

ticles. Until 3 and 4 particle correlations become available the two approaches 

can be considered complementary. A Gaussian may hold for small &y while 

(IV.3) is mm-e relevant at large &. The advantage of cluster models in the 

fragmentation region is obvious in the work of Ranft and Ranft (1973). 

Contour plots of two particle correlation functions from the NAL bubble 

chamber case show in Figs. IV.1 and IV.2. 

The cluster model can deal with diffractive dissociation, and, in 

essence, become a 2-component model by careful treatment of the clusters 

containing the leading particles. We usually have to give up the assumption 

of isotropic decay for this cluster. Tnis is discussed by Pokorski and van 

Hove (1970). 

By fitting the average multiplicity we can calciilste the density of 

clusters and we find, on the average, that our assumptions predict an average 

spacing of something more than one unit of rapidity between clusters. This 

is uncomfortably small since the clusters each spread particles over two units 

of rapidity and we must therefore have considerable overlap. This overlap 

makes it difficult to decide whether it makes sense experimentally to deter- 

mine the average quantum numbers of clusters and this is unfortunate. If 

clusters had turned out to be easily observable with well-defined quantum 

numbers they would be perfect candidates for the long-spurred role of funda- 

mental hadrons. 
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One of the simplest-things to calculate in a cluster model is mean 

square charge transfer. If a neutral cluster is produced at y. and decays 

into N, positive and N = N+ negative particles then assuming a binomial 

distribution of particles going left and right the mean square charge in the 

right hemisphere of the cluster is 

(u? cluster (Iv.15) 

'Ibis result can be used in the framework of neutral cluster models 

(Quigg and Thomas, 1973) to predict 

(1x.16) 

where 6 is the dispersion parameter in (IV.9b). Tne prediction that 

(ji(y)) is proportional to duch/dy is in remarkable agreement with the 

data (Chao and Quigg, 1974) and the data indicate a universal constant of 

proportionality. Comparison with (~1.16) is indicated in Fig. IV.3. Ihe 

observed size of (&Y)), h owever, predicts a value of 6 z 1.2 which is 

too large to explain rapidity correlations. Better agreement can be obtained 

using charged clusters but the approach then loses a great deal of the pre- 

dictive power. It would be interesting to compare (1v.16) with data from 

cp annihilations, e+e- +hadrons and deep inelastic electroproduction 

(Newmeyer and Sivers, 1974) to investigate to what extent clustering properties 

of hadrons are independent of the production mechanism. 

Rapidity correlations at fixed charge multiplicity have been proposed 

as a severe test of the assumptions of cluster models (Berger, 1974). As 

emphasized by Berger, if we restrict attention to n > (n)/2 the semi- 

inclusive distributions are comparatively free of diffractive events and 

we can obtain cleaner insight into the properties of the nondiffractive 

production mechanism. By studying the n-dependence of the semi-inclusive 

correlations we can obtain a new type of information (Arnold and Thomas, 1974). 

The correlation function at fixed charged multiplicity can be written 

=A o ; 2 (Y, + Y*) ) --J& exl, ( - (y14;2y*)2 

(A0 + 1) 
-~ 

n 
I( 

(Iv.17) 

where A0 is defined 

(h(h - 1)) 
AO=-7FF-n (m.18) 

in terms of the average number of hadrons per cluster at fixed multiplicity. 

If the multiplicity distribution from a cluster is narrow then (IV.18) should 

be approximately independent of n while for a broad distribution it should 

increase with n. Data from an NAL bubble chamber experiment (Singer et al. 

1974). The implication of the data is that there is some variation of A0 

with n. 

Although I mentioned the advantages of keeping exclusive models simple 

enough so that extensive Monte Carlo calculations are not required this was 

not intended to downplay the possible value of Monte Carlo techniques. One 

very important application of Monte Carlo calculations consists of making 

model-independent tests of the data. For example, Ludlam and Slansky (1973) 

have constructed a way to measure event by event fluctuations around the mean 

particle densities in various regions of phase space. They show how this 

measurement is sensitive to the existence of clustering in the production 

mechanism and demonstrate the existence of clusters in the data. A similar 

application of I( nonparametric" methods has been demonstrated by Freedman 

(1974) who, among other things, tests the hypothesis that the matrix element 

for pp +pp + 4~ is independent of azimuthal angles. 



Fig. IV.l. 

Figure Captions, Section IV 

Data on R++"(y,, y,) from pp collisions of 400 GeV/c. 

From Ferbel, topical conference. 

Fig. IV.2. Data on RCC(yl, y,) from pp collisions at 400 GeV/c. 

From Ferbel, topical conference. 

Fig. N.3. Data on (I?(y)) compared with duch/dy. From Chao and 

Q&s (1974). 

Fig. IV.&. Data on Rn(yl, y,) from Singer et al. (1974). 
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APPENDIXA 

Variables in Sin& Farticle Inclusives 

l%e inclusive ab -I cX, indicated schematically as, 

a 

b 

x 

is commonly represented in the literature in terms of one of 3 sets of kine- 

matic variables. The effective use of the literature requires a familiarity 

with all 3 sets and the relationships between them. me following brief 

summary of inclusive kinematics may prove convenient. For a more complete 

discussion of the relative advantage of plotting data in a particular way 

see, J.D. Jackson, "Scottish Universities Summer School Lectures." 

1. The variables (6, t, u, M2) 

Tne use of any 3 of the variables 

6 = (Pa + P,)* 

t = (P - PC)2 

u = (PL - PC)* 

P=( F, + Pb - Pc)2 

subject to the constraint 

s+t+u= 2 + ma + 2 <+m; 

(A.1) 

is a direct extension of familiar two-body kinematics. These variables are 

naturally most convenient when it makes sense to treat the particles carrying 

away the unseen momentum as something like a normal single hadron state. For 

example, they appear naturally in the formulation of the triple-Regge 

expansion. Figure (A.l) shows some data on pp -41, plotted as P and t. 

2. The variables (6, pt, x) 

In the c.m. frame, let's denote the components of the momentum of 

particle c longitudinal or transverse to the beam direction as pL and 

Pt respectively. For unpolarized beams and targets the azimuthal direction 

Of Pt is not important. The Feyman scaling parameter will be defined as 

x’ = pL/s1/2 

Bcperiments.1 results are often expressed in terms of 

x’ = PL/PF (pt,s 112 ) 

(A.3) 

(A.4) 

at low incident energies there can be substantial differences between x 

and x'. The variable x' has the property that its range of values is 

always (-1,+1). Some inclusive cross sections appear to scale moi-e rapidly 

in terms of x' than in x but this doesn't mean x' is "better" than x. 

It is accepted that the Feyman scaling conjecture 

c-l E &- (x,pT;slr) - fzb(x,pT) 
ab c d$ 

c 

is intended to be an asymptotic expression. The finite energy corrections 

to (A.5) have to be studied and for the purpose of this study the variable 

x will usually be just as convenient or more convenient than x'. Keep on 

your toes, always pays to be aware of whether x or x' is being used in 

a given plot. Figure A.%shows inclusive pp +IT- plotted against x' 

and Fig. A. 2b some data plotted against x. 
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3. The variables (s, K, y) 

The rapidity variable (A.11) 

where the energy and the momentum are measured, for example, in the c.m. 

frame is useful for many types of analysis of high energy production pro- 

cesses. It defines the boost from the c.m. frame to the frame in which the 

momentum of particle c has only a transverse component. If two particles 

came from a cluster or resonance with longitudinal velocity S they will 

each have rapidity near 

y cluster = tanh -1 S (A.71 

This is true irrespective of the masses of the particles. For this reason 

the rapidity variable is useful in defining the concept of short range order. 

For the present short range order simply implies that particles with quite 

different rapidities are, in some sense, produced independently. It is con- 

venient to define an effective transverse mass 

K = (m* + p*)ll* 
T 

which can be used to relate the energy and momentum separately to the 

rapidity, 

pL = K sinhy 

E = K cash y 

For two particles cl and c2 the invariant slS = (p, + p,)* is given by 

+ 2K1K2 cosh(yl - Y,) - *i$‘T1*t7n (A.10) 

Another convenience of the rapidity variable is that invariant phase space 

can be written 

Various single particle inclusive distributions from pp collisions at the 

ISR as a function of Ylab are shown in Fig. A.3. The connection between 

the lab rapidity and the c.m. rapidity is a simple translation 

ylab = ycm + cash 
-1 

= Ycm 
112 

+ log 6 
% 

(A.=) 

4. Connections between the variables 

The reader is invited to try his hand at the following simple exercises 

in order to convince himself of his dexterity with manipulations of the 

kinematic variables. 

(a) Show that for positive x, and large 6, the momentum transfer t 

in (A.l) can be written 
2 

PT t 1 m:(l - x) + mz(l - i) - 7 

What is the connection for x < 01 

(b) Verify that for x < 0 the missing mass can be written 

2 = s(l *P2 
- X) + mE(l - $) - -;;' 

when PL#O. What is the appropriate expression for pL = O? 

(c) If 4 # 4 verify that for x # 1 

_ (2 - mE)m* 

tmln= s 

(A.13) 

(A.14) 

(A.15) 
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(a) Verify the approximate relations between M2 and c.m. rapidities. 

2: s 
i 

1 l-$=dlyc - a ‘a”] Yc’,>O * 

S 
[ 

1 - ; =P( IY, - Ybl I] Y, < 0 

(e) In Figs. A.4 and A.5, single particle distributions for pp +cX are 

shown for various particle at the ISR. Assuming approximate scaling, sketch 

these distributions as x and as y at s I/* = 104. (Y = .h 6 = 2 .&I s112 

= 13.82.) 

0 I 2 3 4 5 6 7 0 I.o 
-t(G.VZl / tn. \2 

Fig. A.1 
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IARGEMOMENTUM TRANSFER PROCESSES 

R. BIANKENBECLER 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

I. INTRODUCTION 

In these lectures we shall attempt to present an overall and hopefully 

unified description of large momentum transfer processes and the way in which 

it joins smoothly onto the familiar descriptions of the Regge and resonance 

regions at small momentum transfer. I shall try to give physically motivated 

arguments rather than mathematical detail. The theoretical picture that I 

shall utilize is the constituent interchange model, or CIM, developed by 

J. Gunion, S. Brodsky and myself. 172 Since we shall be dealing with a model, 

we must enumerate its ad hoc calculational rules and give either a theoretical 

or experimental motivation for them. The Ull2mate test of all recipes is the 

final result, however. The reason for introducing such ad hoc rules at this 

stage is two fold; it should allow us to relate quite different experimental 

results, and it should give us clues as to the ultimate underlying theory. We 

shall discuss strong interaction processes at two levels: the first is at an 

internal or basic level, in which possible internal structure of hadrons, con- 

stituents, binding forces, etc., are considered, and the second is at an ex- 

ternal or hadronic level in which the emission on bremsstrahlung (both real 

and virtual) of hadrons is taken into account. In other words, the first level 

is the short range behavior and the second is the long range behavior of 

hadronic matter. 

The first level will be called hadron irreducible since there are no 

extra inessential hadrons involved, and will yield dimensional counting rules 3 

that simply state that the more constituents there are, the more "fragile" 

is the particle. We shall need to develop rules for calculating the behavior 

of genera1ized structure (or probability) functions and the fixed a&e behavior 

4 
of irreducible, basic Processes. Using these two results, we can then operate 

at the hadronic level and join things together to make predictions about 

physical processes. If one is willing to assume arbitrarily the first two 

results, or to relate them in some way to form factor behavior, etc., then 

one need not ever work with constituents, and this is a very popular approach. 

The "soft gluon" model of Fried and Gaisser' is such an example, and while 

it is indeed different in detail from the CIM, these two pictures need not 

be fundamentally at odds with each other. 

Let us consider, in transverse impact space, the collison of two com- 

posite hadrons. At large momentum transfer, the relevant impact parameters 

will be as small as possible and the finite sized hadrons will overlap in 

impact space. It is natural to expect then that an important force will be 

that between the constituents of one hadron and the containment field of the 

other hadron. This will naturally give rise to constituent interchange as a 

dominant force between hadrons in this large t region. Indeed, the CIM 

assumes that any other interaction can be neglected. 

As the momentum transfer decreases, the collison will not necessarily 

be between the incident hadrons but can occur between secondaries emitted by 

them (which must then be reabsorbed on the vay out after the collision in an 

exlcusive process). 731e.w secondaries will be predominantly hadrons since 

they are the lightest states and possess the longest compton wave lengths and 

have large coupling constants associated with their emission amplitude. Due 

to the finite size of the particles involved, these emissions and reabsorption 

processes occur at small average transverse momenta, and can become more and 

more important as the momentum transfer decreases. Furthermore, if the basic 

interchange process falls with increasing incident momenta, as most reasonable 

models suggest, then collisions between secondaries carrying only a small frac- 

tion of the incident momenta and hence small relative energy will dominate. 

This physical picture has therefore led us to a rather conventional explanation 

of the origin of Regge behavior in the subenergies--the interaction between 
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“Wee” components of the incident particles to use Feynman's term. Further- 

more, note that if more than one Pair of secondaries interact, it will give 

rise to multiple exchange contributions, absorption effects with all the 

requisite nonplanar graphs, etc. 

The advantage of this picture of the interaction is that it forces us 

to recognize that the Reae behavior in the forward direction must join smoothly 

and continuously onto the fixed angle behavior. 
6 Since the backward Regge be- 

havior must also join onto this same fixed angle behavior, there must also exist 

continuity relations between the forward Regge parameters and the backward Regge 

parameters. In practice, this leads to relations between the leading forward 

Regge trajectories and the leading backward Regge residues, and vice versa. 7 

II. MOTIVATION 

One important empirical motivation for the CIM is the fact, which at 

SLAC is called the "J. Matthews theorem," that all meson-baryon cross sections 

are equal (more or less) at 90". In Figs. 1, 2, 3, we see8 that at 90" and 

s - 10 (GeV)*, 

g (M + B +M' + B') - O.$b/(GeV/c)" 

and also, for the crossed process $p +m, one sees that 

$ (& +mr) - 0.051.1b/(GeV/c)2 . 

One simple way to interpret this remarkable fact is that if hadrons are com- 

posite objects, then once they are forced into a short enough range collision 

so that they overlap in impact space (by requiring a large angle scattering), 

then one simply has to rearrange the constituents and let the final particles 

emerge. If one rearranges the same number of constituents for all reactions, 

then the resultant cross sections should be roughly equal. Detailed calcula- 

In addition, one should note that at 90", 

g (PP +PP)@ (m +TrP) - lo2 

at 5 GeV/c. This means that nucleons must be coupled to the dominant short 

ranged force much more strongly than pions, because in this energy range, 

both theory and experiment suggest that pp scattering falls faster than rrp 

scattering (s -lo YS, s-8 , respectively). This will be important to keep in 

mind when we try to pick out the most important graphs or subprocesses con- 

tributing to a particular reaction. 

The CIM predicts that at fixed angle, 

dbwcs -Ni 
dt i 

Fi(e) , 

where No < Nl < N2 , . . . and hence as 6 +m, 

k?@i dt / 
g (90") - Fo(6)/Fo(900) , 

and it is interesting to see if the data behaves this way. This ratio is 

shown for r+p and K'p elastic scattering' at 5 and 10 GeV/c in Fig. 4. 

The energy independence of Fe(e) is consistent with this data. However, 

it would be nice to have such data on many more reactions and over a larger 

energy range. The interesting question is whether can we develop simple 

rules for computing the Ni and the Fi(B). The neatest way to do this seems 

to be to assume a constituent model of the hadrons. This is the point where 

quarks enter our discussion, since to predict the angular distributions, 

quantum numbers must be assigned to the "point' constituents. 

Our purpose here is to develop a description that works at large pT 

but that also joins smoothly onto normal and familiar Regge behavior at small 

PT' This is a non-trivial requirement for a theory, but it yields many 

tions support this argument. 
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k++kc +ks)=xP 

k- = + (k0 - 
k* + k* M2 

kz) =-J&=$, 
+ 

and the usual infinite momentum frame is the limit 

k* + i;'* 
kJ=xP-+->m 

k* + k 
42 

T k0 = kS + 2xp 
P ->kJ +q+ @(k;2) 

In what we shall do here, this limit is not taken, and P is left arbitrary. 

The four-momenta in the exclusive case can be shown to be (see all 

external masses equal for convenience) 

P= ( 
$8 P 

P+G, T' P-G 
1 

q= S&-S 
( ) 

r= s,r 
( 

. -3 
T' 

-2 
1 

where 2q.p = &*, 2r.p = F'T2, and ?&,*gT = 0 . The same basic parametrization 

will be used in the inclusive case, but, of course, since JZ 
2 is arbitrary, 

the subsidiary conditions on the vectors q and r are modified. 

IV. DIMENSIOK4L COUNTING RULFS 

One of the more important recent developments in dyanmics has been 

the formulation of the dimensional counting rules by Brodsky and Farrar. 3 

These rules allow one to quickly estimate the behavior of exclusive and in- 

clusive reactions, form factors, structure functions, etc., at large momentum 

transfers. These rules have not been derived rigorously, indeed there are 

some exceptions to them in certain theories and certain reactions, but in the 

type of model of hadrons that we need to describe the present data, they seem 

to be consistent with both theory and experiment. 

These rules will predict, in agreement with our intuition, that the 

more constituents that are involved in a coherent fashion, the faster the 

fall off of the matrix element at large values of all kinematic variables. 

This means that the simplest configuration in bound states with the minimum 

number of constituents will contribute the leading terms. Now the pion wave 

function, in the quark model for example, surely involves a sum over arbitrary 

numbers of quark paris, but at large angles, only the single (sq) configura- 

tion contributes to the leading behavior. 

A. Form Factors 

lhe two particle bound state wave function will be described by a co- 

variant wave function with particle of momenta k and p-k as shown in Fig. 

6a, with p and k written using the finite momentum variables x, i;r, k*, 

and P as described earlier. Consider first the matrix element of a single 

particle operator 
&sp 

such as the current operator, which brings a momentum 

transfer q into the system. We will ignore the algebraic complication due 

to spin and discuss only spin zero constituents. The quality of interest in 

the large q' behavior of the matrix element 

M(s*) = (P + qlQqb) 

which is illustrated in Fig. 6b. The states are wave functions and the operator 

Qq 
contains the requisite spectator particle propagators Gi, such as, for 

example, B = j,G;? Now the wave functions will satisfy a E&he-Salpeter 

type of equation with an interaction kernel K, where 

(~1 = (PI KGlG2' 
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Using this result into the matrix element M allows it to be written in terms 

of a "well-tempered" operator 6 , where 
9 

Gq = KGlG2Qq = QqGlG2K . 

is a connected operator with the same matrix elements in the bound state 

as 
$- 

It has the advantage that since it treats all the particles in the 

bound state on the ssme footing, it is straightforward to estimate its magni- 

2 
tude, especially for large q . 

Choosing the interaction between the constituents to be renormali- 

e, such as ?$, or a vector gluon theory, the lowest order term in K 

is a constant at large momentum transfer (fixed angle scattering). Using 

Fig. 7a, which illustrates the momentum flow in Qq and the two regions that 

contribute to the finallesult, the matrix element defining the form factor is 

dy,k',p+d h 
E . (2k + q) 

(2 - (k+d*) 
V(x, k, p'd . 

Using (k+q)* = q*(l-x) + O(k), and assuming that the wave functions fall 

sufficiently fast so that all components of k are finite, the form factor 

F and the matrix element become 

M = c(?p+q) F,(q*) 

where 

F,(q*) 2 $ (5) [ j Jr d4k1* 
9 

and () means average value in the bound state. This now leads us to the 

next fundamental assumption that the above averages and integers 

/ Jr d4k = $(x = 0) are finite, hence F2 - A(g )-l. If there is a di- 
IJ 

vergence, then one has to go back and carry out a more careful estimate of 

the q* behavior. Logarithmic modifications are probably to be expected and 

can arise from the (l-x) factor. 

The three particle bound state can be treated in the same fashion. 

Referring to Fig. T'b, we see immediately that the bound state equation must 

be iterated twice in order to spread the momentum transfer q among the 

final particles. The three particle form factor 
F3 

will then fall as 

F3(q2) - h2(g )-* . 

The behavior of F 
3 

has been discussed carefully and in detail by C. Alabiso 

and G. Schierholtz who used a relativistic bound state equation and included 

the effects of spin. They discuss the general case and agree with the above 

in the limit of a renormalizable interaction. 

In an N-particle bound state, an obvious extension of the previous 

discussion yields the result 

FN w h N-lG)l-N ' 

The above discussion assumed that the interaction between the con- 

stituents was of a renormalizable type. A super-renormalizable interaction 

yields a different result. For example, a (\xp*X) theory produces a kernel 

K that falls as v*/t, and the two particle form factor then behaves as 

v*(g I-*. 

The present data is not very decisive, but e'e- +T'T- data 

suggests that the pion form factor behaves as a monopole and hence that the 

appropriate model of the pion is a (99) bound state, with the q's inter- 

acting via a renormalizable interactions. 

The present data for the nucleon form factor is consistent with a 

dipole falloff and hence there are two possible models for the baryons: - 





: x L4 
f 

T 
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T 
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D. Distribution Functions 

The second fundamental result that we shall need, besides the fixed 

angle behavior, is the threshold behavior of the particle distribution func- 

tions which are simply related to what might be called generalized structure 

functions. We shall define GH,A(z) to be the probability of finding an 

(off-shell) particle H in the momenta (defined in the usual finite momentum 

frame). Now momentum conservation is expressible as 

C/ dz z GR,A(s) = 1 
H 

and the deep inelastic structure functions are expressible as 

where h 
9 

is the charge of the quark of type q. 

A quark q can arise directly from the guts of particle A (which 

will be called hadron irreducible) or from a secondary hadron R which has 

been emitted by A (this will be called hadron reducible). Therefore, one 

clearly has the formula corresponding to these words 

GdA(x) = f1 % ; G&(X/Z) QA(d a 
x 

where the superscript I means hadron irreducible, and serves to avoid 

possible double counting. The full deep inelastic structure function can 

be written using this decomposition in the transparent form 

1 
F (x) = f c F;H(x/z) G 

a xH HIA 
(z) 

These formulae require that the probability function contain a delta function, 

i.e. GAlA- 6(1-z). 

Using an extension of the arguments used previously in our discussion 

of the dlmensional counting rules, the threshold behavior (x - 1) is found 

to be (see Refs. 4 and 10 for details) 

GdB(x) - Gj;B(x) - (l-x)g(dB) 

where 
g(q/B) = 2n(;B) - 1 

and n(G) is the minimum number of quarks in the state (a), and, of course, 

1 + n(&) is the minimum number of quarks in the state B. lhis is consistent 

with the Drell-Yan-West relation, since the form factor of B behaves as 

Using the above equations, the only consistent threshold behavior of 

the probability functions for finding hadron H in hadron B is 

GH,B(~) - (l-~)'(~/~) 

where 

g(H/B) = 2n(ti) - 1 

and *(I%) is the minimum number of quarks in the hadronic state (k). 

This remarkable result depends on the assumption of an underlying scale 

invariant theory at the constituent level and on the number of constituents. 

Some typical values of g(H/B) which will be useful later are the 

familiar results for quark g(q/r) = g(qT) = 1, g(q/P) = 3, g(;i/P) = 7, 

and the new results for hadrons, g(B/B) = -1 or 3, g(li./p) = 5, g(K+/p) = 5, 

g(K-/p) = 9, and g(p/p) = 11. The value g(B/B) = -1, actually corresponds 

to the 6(1-z) term that is present in G B/B' The physical interpretation 

of the systematics of these results is clear--the rate of vanishing of G 

depends on the number of degrees of freedom of the debris left behind (near 

the threshold) in producing the leading particle H. The number n(fiB) is 

the number of constituents that must be stopped if R is to have X near 1. 
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The Regge behavior of the probability functions shows up in the power 

behavior for small z., i.e. G - z -do) . Throughout our discussion we shall 

therefore set 

CQAb) = 2 
-o*(o) 

( l-z)gw*) f 

where ol,(O) = 1 (Pomeron), but this could be multiplied by any smooth func- 

tion of z (better data will certainly require this modification) without 

affecting OUT results on the general behavior of amplitudes. 

E. Hadron Decays 

'ihe probability function GH,*(d d escribes the fractional longitudinal 

momentum distribution which is perhaps most easily interpreted in the infinite 

momentum frame of A. It is possible, however, to d&amine some interesting 

properties of G by measurements in a general frame, including the rest frame 

of A. This may be very interesting in relating the decays of system with a 

large Q value, such as annihilation processes, and the decay of coherent 

states produced by diffractive excitation reactions. 4 Consider the decay 

A +& + X in the rest frame of A and the rate 

dr - 
z = da,Ab'), 

2Ea 
m=M* A 

The decay c8.n also be described in terms of the infinite momentum frame 

variable x = (E, + kz)/M , which leads to the spectrum 

dr = D ~ - .,,(x) =[ au[ u2 - f]-lr da,&“) e [ (O-X-a z2 
A" 

Now it has been shown in a quite general model (and it is what one would 

expect) that if G,,,(x) - (l-~)~, then Da,* - (1-x)'. Therefore as (0 - 1 

me example Of (ti) annihilation into a leading pion has been 

analyzed by PelaqtierLL and the data seems to be consistent with the pre- 

diction g(rr/?iN) = 3. Many other examples need to be analyzed and their 

threshold behavior extracted, especially excitation reactions. The familiar 

parton prediction 

d 
Tr/(e+e-) 

- (1-u) 

follows after the photon spin is taken into account. 

F. Angular Distribution 

While the dimensional counting rule giving the energy falloff depends 

on the inter-constituent force and their number, the expected angular distri- 

butions depend on the quantum numbers of the constituents. For example, if 

the incident hadrons can exchange constituents and produce the final state, 

then this (ut) contribution illustrated in Fig. lla will yield an amplitude 

of the general form Ma - (-u)-~ (-t)- 
B 

, which produces an angular distribution 

characterized by a forward and backward peak. 

If antiparticles are present, such as in pion-nucleon scattering, 

the (st) contribution of Fig. lib will produce only a forward peak. The 

gluon exchange process of Fig. llc will produce a forward peak only, and 

M, - (-t)-B or s(-t)-B for a spin zero and spin one gluon respectively. 

In both cases, this term produces & high effective trajectory value and 

essential equality of particle-particle and particle-antiparticle scattering. 

Both of these behaviors are in disagreement with the present data and its 

trends. This is the reason why it was necessary to exclude these types of 

diagrams from the original CM. As we shall see, this exclusion rule allowed 

a correct prediction of the large pT behavior subsequently found in the 

ISR data. 

Since there are no antiquarks present in the lowest configuration 

in the proton's wave function, only the (ut) term can contribute to pp 
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scattering (also true for K+p) and one expects that for finite t, 

s2 g (pp) - (-u)2a(t) p2(t) , 

where a(t) is an effective trajectory and U(--) = -2 (or -3 in 

(9 + "core") model). From crossing, only the (st) term can contribute 

to pp scattering (and K-p) 

s2 g (pp) - (s)2a(t) p2(t) 
and hence 

R(e) = 2 - (2) 
-2a(t) 

- (A) 
-2a(t) 

1 f CO6 9 

Thus a characteristic difference in angular distributions is expected in 

the model, and furthermore, R(90°) - 24 or 26 , depending on the nucleon model 

assumed (ar = -2 or -3 respectively). 

Predictions for the angular distribution of the processes ~'1) +~*p, 

K*p +K'p, r-p +r"n, and KLp +KSp are in reasonable agreement with the 

data.12 

V. BASIC PROCESSES 

Tne CIM model for inclusive and exclusive reactions begins with a 

basic irreducible process and then adds on the possibility of hadronic 

bremsstrahlung to "dress'l and Reggeize the process. As the transverse mo- 

mentum in the overall process of interest increases, the bremsstrshlung is 

suppressed and the basic process will dominate the reaction. Consider the 

irreducible contribution to elastic scattering illustrated in Fig. 126, in 

which the projectile A scatters from a constituent q in the target 

particle B. The differential cross section can be written in the obvious 

foml 

g’- c (F;D(t))2 s (A + q + C + 4) 9 SIC (da 
It’& 

where the cross section for A + q +C + q is evaluated at an averaged re- 

duced energy because constituent q is carrying only a fraction x of the 

momenta of the state B. &e function F&(t) is a "form factor" whose 

asymptotic dependence can be computed using the dimensional counting rules. 

Now consider the inclusive reaction A + B + C + X at a missing 

(mass)2 ofe4z2. Again one of the basic scattering processes is A + q +C + q 

is shown in Fig. l2b, and the generalized structure functions of the target 

B obviously come in to the amplitude. One finds after an elementary calcu- 

lation 

E %& = ; J&J x GdBb) s (A + q --) C + d s,=xs , 
u’=xu 
t’=t 

where x = -t/(s + u) = -t/(&t) , (x is the familiar Bjorken scaling 

variable). If particles A and C were electrons, this reduces to the 

usual scattering answer and since a factor of the (charge)2 of the con- 

stituent factors out of each of the basic cross sections, the sum over q 

then leads to the E and M structure function: 

Ef$=y&gFpB(x) $ (e + q-e’ + s’) s,=xs . 
t’=t 

Since there is a relation between the probability functions G and 

the form factors F expressed by the Drell-Yan-West relation, 13 one might 

expect that there will be a relation connecting the inclusive and exclusive 

cross sections for small missing mass. In the resonance region for electro- 

production, a relation has been found and is called Bloom-Gilman duality. 14 A 

similar sort of relation might be expected to hold in the hadronic case, and 

it does.15 
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For small missing u~%ss, x approaches unity since x = 1 -&Z2/w2-t). 

The probability functions G vanish as a calculable power given by dimensional 

counting. Using the relation 

a20 do --EE--, 
dt d/T2 - s d3p 

the cross section into a differential mass bin at u/l 2 is proportional tc 

dq/B)+l 

$A+q-,C+d , 
S'=S 
U'=U 
t'=t 

and one recognizes that the large t dependence is the same as for elastic 

scattering since 

- (F;D:,(t))2 

These two processes therefore have the same behavior on the kinematic vari- 

ables in this limit but unfortunately a calculation of the relative normali- 

zation is difficult. One of the difficulties is the fact that at smallmiss- 

ing mass, many of the final states in inclusive scattering become coherent 

so that,.one cannot Just perform the incoherent sum over them as in the above 

formulas which hold at larger missing mass. In any case, we see that there 

is a smooth connection between inclusive and exclusive processes both at 

fixed It\ and at fixed scattering angle. 

VI. REXZE BEHAVIOR 

We have seen that the typicalbasic scattering process between hadrons 

falls with energy at fixed angle rather rapidly in the CIM. This is true even 

at fixed momentum transfer unless there is a direct vector gluon force (which 

we have argued must be negligible). The basic scattering process can be con- 

sidered as in Fig. 13~~. If it falls as s increases at fixed t, then the 

system will prefer to scatter through diagrams of the form shown in Fig. 

13b. In this virtual bremmstrahlung diagram, particle A converts to H 

with a fraction x of the incident momentum and other coherent "stuff" with 

momentum (l-x). The basic process is thereby converted to H + B +H' + D 

scattering at the reduced effective energy s' = xs. If x can be small, 

then this process is not suppressed much if H' can pick up the momentum 

fraction (l-x) and convert to C. This Latter process is suppressed as t 

increases, so that in the large t and eventual fixed angle limit, the irre- 

ducible process (Fig. lja) will dominate. This is the physical origin of 

Regge behavior in this model at small t. It is dominated by the emission and 

absorption of the less massive hadronic states. They therefore control the 

long distance or small t behavior of the amplitudes. 

The above discussion can be made more precise6 and one finds that 

such graphs produce a Regge trajectory of the form 

a(t) = a(-m) + A(t) , 

where A(t) vanishes in a calculable way as ItI increases (the power can be 

calculated by dimensional counting). A similar result holds for the residue 

function. This behavior assures that the fixed angle behavior joins smoothly 

to the Regge behavior. 

However, one should note that the earlier predictions were nw(-m) 

= -1, and Olpp(-m) = -2. Since factorization should hold, how can this be- 

havior be tolerated? Fortunately, the equations are very clever and make these 

behaviors consistent in the simplest way possible. When one treats the coupled 

channel system (which must be done in order to check factorization) of m +-+pp 

in the t-channel, one finds that there must be at least 3 important trajectories 

which are related. 

The matrix elements for TT, np, and pp scattering must have the form 

(neglect signature here) 



B+(t)(-) 
a+(t) 

+ p-(t)(-d 
a-(t) 

M = + so(t)(4 
ol,(t) + . . . 

where a+(--) = a-(-w) = -1, and aO(--) = -2 (or -3). For TIT and np scatter- 

ing, there is no particular relation between the residues. However, in the pp 

case, one finds that at large t, s+(t) = -s-(t) and the first two terms cancel, 

leaving a residue which is smaller than the third term which then produces the 

expected fixed angle behavior. 

The theoretical calculation leads one to expect that cl,(t) rises at 

small t and should be identified with the familiar Regge trajectories there. 

However, a- should deviate only slightly from its asymptotic value (probably 

below it). It was predicted in Ref. 6 that when a+(t) drops to - -1, the 

first two terms should cancel and the fixed angle result should hold.* Since 

a+(t) should control rrp scattering, the effective trajectory behavior shown 

in Fig. 11 leads us to expect that for It.1 > 2 or 3, the fixed angle result 

should hold. For somewhat smaller Itl, one expects the power behavior to be 

more like that found in s-p scattering. These predictions seem to be in 

rough agreement with the data but a more extensive analysis is clearly needed 

to see if this cancellation mechanism is occurring. If cuts become important, 

which may well be the case in pp scattering at ISR energies, the effective 

trajectory will drop even slower to its asymptotic value. 

VII. TRIPJX REGGE REGION 

Let us reexamine the inclusive formula given in Section V by including 

the Regge effects just discussed. Ihe contribution from a single particle q 

is of the form 

E g = + xGq,B(x) $J (A.+ q + C + q) s,=xs 

u'=xu 
t'=t 

where in light of our Regge analysis we now have 

g (A + q+C t q) = Ir(t')(-u') 
aAC(t ’ 1 

A i?t')(-4 
alp&t’) 2 

/s I2 

and y(-m) = constant. Retaining only the r-term for simplicity (one needs 

both terms to get the angular distribution correct), the inclusive cross sec- 

tion achieves the form (s(O) = 1). 

2 r*(t) 

l-2aAC(t) 

(p; + P) xGqdx) 

where x = -t/(s+u). 

In the triple Regge limit defined by s FT lul >>A2 >> ItI , x goes 

to zero, p; - -t, and one finds the familiar Mueller-Regge 16 
form 

E do9 = S (t) (XG 
d3p ' 9/B 

(X)) x=0 

In this limit, the inclusive cross section is independent of the threshold 

(x - 1) behavior of the probability functions. However, we have already seen 

that it is this threshold behavior which allows a smooth connection to the 

exclusive (A* w 0) limit for both fixed t and fixed angle. 'Ihe triple 

Regge formula does not allow for this smooth connection. It is guaranteed 

by multiplying by the simple function XG 9/B(x). We have therefore identified 

an important correction to the triple Regge formula for small missing mass 

(which has the virtue of being particularly simple). 

VIII. BRIEF REVIEW AND ASIDE 

It is important to keep in mind the division we have made between in- 

ternal or short distance properties (which predicts the irreducible processes 

discussed before) and the long distance or hadronic sector of strong inter- 

actions. Any theory that gives results for the irreducible processes that 

can be written in the following forms 
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1. Exclusive 

2. Inclusive 

g = (F&(t))2 g (A + q -+c + q) 
s'= (4s 
u'= (xh 
t'=t 

lJdo 
d3P 

(L &c sq,B(~) g (A + q +C + q) 
9 s'=xs 

ll'=Xa 
t'=t 

5. Probability function GB,A (Z) rn z-a(o) (l&H/A) , 

(where the quantity do/dt (A + q +C + q) is power behaved) will produce all 

the predictions for elastic single particle inclusive to be discussed shortly. 

If one is willing to assume the above forms, or to assume a model that relates 

them to simple quantities such as form factors, then the concept of constituent 

need never be used. However, the constituent interchange model has the virtue 

of Predicting very simple relations between the limiting forms of all the func- 

tions involved which are quite specific since they depend only on the number of 

constituents involved. 

One of the most puzzling aspects of the CIM (aside from the fact that 

no constituents have been seen) is the fact that even though there is strong 

binding involved, the constituents of one hadron do not seem to interact strongly 

with those in another hadron. This was first suggested in our original paper 

on the subject to explain the large ratio of pp to ip and K+p to K-p 

scattering at large angles, and then used to predict a leading pi8 behavior 

-4 17 
in pp +rX rather than the naturally expected scaling behavior of pT . 

There is no fundamental understanding of how this happens. One Possibility 

is that the basic theory has quarks and enjoys asymptotic freedom or is only 

asymptotically scale-free but it is not yet clear how this would work in detail. 

Another possibility is a class of quark containment theories (that might be 

termed container theories) in which the quarks interact strongly with the box 

that they are in but not with each other. Constituent interchange is then the 

natural force in such theories. There seems to be many analogies between such 

theories and independent particle models of the nucleus. 

It is hoped that by examining models and their calculational rules, 

one can get clues as to the required behavior of a fundamental and complete 

theory of hadrons and their interactions. From this point of view, the llodder' 

the calculational rule , perhaps the better the clue. 

IX. CENTRAL REGION 

In order to get particles into the central region, it is advantageous 

to let both incident particles A and B bremsstrahlung, lose momentum and 

collide at a low relative effective energy. This type of inclusive process is 

conveniently decomposed into peripheral interactions, hadronic bremsstrshlung 

and the basic irreducible process as illustrated in Fig. 14. A very large class 

of theories can be decomposed in this fashion; for example, many of the statis- 

tical models can be so written. The resulting cross section is obviously 

of the fora 

E=(A+B+C+x) 
d3P 

= c / dx dy GaJA(x) G,,,(y) E $ (a + b -,C + d*) 
a,b dp 

/ 
s'=xys 
t'st 
Ll'=yU 

and 

The irreducible process a + b -t C + d* (no extra hadrons are allowed 

to be emitted) can be conveniently separated into contributing graphs as depicted 

in Fig. 15. The first term on the right is the pure fixed power behaved ampli- 

tudes previously discussed while the second term gives rise to Regge behavior 
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A more careful analysis of the integral yields the behavior for the 

a, b contribution 

- eF(*Jb)(p; + P) -N* 1 2 (c XT + ;,)1-g(b/B)-2s f(pT,e) 

where 0 < y < 1 (using the mean Value theorem)and & a a((z)t). Note that if 

it >> E, which is true in the deep scattering regions, then the E dependence 

is given by the first factor; however, if f << E, which is true as one 

approaches the triple Regge region, then one finds a different power of E. 

'Ihis can be interpreted as B triple Regge formula with an effective trajectory 

given by 

se,,(t) = aAC((dt) - $ [1 + &/A)] 

which cm be described 8.8 a nonleading Regge (disconnected cut) contribution. 

We have now identified a second important correction to the triple 

Regge fomula. which should become important at large missing mass and provides 

the correct extrapolation into the central region. An analysis of reactions 
i: - 

of the form pp +CX, where c = p, 7r?, K , p, has been carried out by Chen, 

Wang, and Wang. 19 As discussed in more detail in Ref. 4, their results for the 

effective trajectory provide evidence for the type of correction we are discuss- 

ing and for the quantum number dependence predicted by the above formula for 

0 eff' 

X. CBARACTERIZATION OF CRC6S SECTIONS 

It is convenient to have 8 simple ray to characterize the possible 

behaviors of the inclusive cross section arising from different basic processes. 

If one includes the case in which the final particle C is a decay product 

of particle c, then one finds at large pT that 

Eda 
d3p 

= c 
*,b,c 

I*,b(% 5) 

where 

F = 2(n(&) t n(gB) + n(?)) - 1 

N=na+y,+nc+n.+-2 
d 

and Ia b is a slowly varying function. It will be set equslto a constant 
, 

from now on in our discussion but is needed in any detailed numerical fit,20 

especially for values of 5 not near zero. 

Some sample values of F and N 3se given in Tables I and II. The 

two nmbers F and N have a simple physical interpretation. The power N 

measures the number of fundamental fields in the basic interaction that must 

act coherently in order to produce the observed Large PT. The power F 

mee.swes the forbiddeness, or the nmber of fields that must be radiated by 

the incident systems A and B to arrive at the given subprocess plus the 

number that must be radiated in the final state produce the observed particle C. 

In order to clarify these tabies, consider some basic processes and 

the types of reactions that they can contribute to (M = any nonexotic meson 

state): 

N = 4 (6 quarks involved): N = 6 (8 quarks involved)8 

M+q-a?r+q MtM+K+M* 
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The dominant terms in the reactions of the type pp +CX, where 

f,O 
c=7J 

+ ',O 
JKJP , etc. are expected to be of the form shown in Fig. 16, 

with N = 4, 6, and 4 respectively. It is a simple matter to count the mini- 

mum possible bremsstrahlung states and one finds 

E = = (p; + i&-4 [hlE9 + h2& t (p; + M2)-6 h3e5 + '*- 
d3p 

The constants hl, hgt and h 
3 

vary from process to process. For the reaction 

pp +K-X on the other hand, the initial state has no quarks in common with 

those in K- and more bremsstrablung is necessary, hence 

E && (K-) = cp'T + I-$!)-~ [hlc13 + h2e1'l + (P; + &-6 h3"' . 

Note that if the h2 term dominated both the K- and K+ reactions, their 

ratio (K-/K') would be independent of XL. In general, however, one expects 

that this ratio will fall es E +O (or increasing xI) by B factor of e2 

or E 4 (if one had to guess). This latter behavior agrees with the qualitative 

behavior of the Chicago-Princeton data. 
21 

'phis characterization of the data emphasizes that there are two 

distinct limits involved here. They are: 

(1) PT large (c fixed), where the minimum value of N dominates 

(2) E + 0 (p, fixed), where the minimum value of F dominates. 

It is often stated that the parton model (whatever that is) predicts - 

a factorization of the form (5 = 0, pT large and N = constant) 

E do m (p' t P)-N f(e) . 
d3p - T 

We see that this statement has a grain of truth but is not correct. It is 

oversimplified both physically and mathematically. However, a single term 

may happen to dominate in a certain regime. In any case, it is convenient 

to analyze data by assuming the above form and determining the effective value 

of N as a function of 6, pT, or E. Defining Neff by varying p: (or 6) 

at fixed e, 

N e- 
eff 

one finds by using a single term form that 

N eff 

This simple curve has the qualitative features of the Neff extracted by the 

Chicago-Princeton group (see also the talk by Cronin in these proceedings) if 

2 is a few (GeV)2. One also sees that more than one term is probably needed 

to accurately fit the data. 

Let me now show you some row& fits to the data that I have carried 

out. These are not optimum fits in any sense, the parameters were simply varied 

until the theoretical curves looked something like the data for pp *T-X. The 

procedure used was as follows. I arbitrarily set h2 = 0 even though by 

retaining it, a better fit could be achieved et intermediate values of pT, 

The constants hl and h 
3 were fit to the Chicago-Princeton-FNL data21 at 

large PT (- 5-6 GeV/c) and then the mass parameters associated with the p2 
T 

denominators were chosen to agree with the data for pT - 1 GeV/c. The resul- 

tant curves for the 200, 300, and 400 GeV/c data is shown in Fig. 17 along with 

the experimental points. Roughly speaking, the pi8 -12 and the pT terms are 

I2 comparable throughout this regime but the pT term always wins at large pT 

due to its slower falloff in E. If one uses only the pi8 term, the fit is 

as shown in Fig. 18. One should take note of the fact that there are important 

nuclear effects in the data which effect the lower pT range and primarily 

the magnitude of h . 
3 

Bke all details of these "fits" with a grain of salt. 



-12 In the upper ISR range of energies, the pT term is negligible 

(E > 0.6 for this data), and the agreement with the data ** is excellent for 

4s $ 30.6 GeV as is shown in Fig. 19. An important question is whether low 

energy accelerator data is exploring the same physics as the ultra high energy 

data discussed above. The answer seems to be in the affimative but low 

energy data does not exist for the most part, and much more is needed. In 

Figs. 20 and 21, the predictions of the theory using the same parameters as 

determined above are shown as dotted lines and compared with the data of Allaby, 

et .l.*j at 24 GeV/c. These curves check two aspects of the theory, the overall 

normalization (and its (scaling) energy dependence) and the behavior away from 

"L = 0. The agreement is much better than could be expected.. For increasing 

"L 
>" 0.5, triple Regge and leading particle effects come in as expected and 

the agreement rapidly worsens. In fitting this data, the function I(x,y) 

is quite important in determining the \ # 0 behavior. Finally, the pre- 

dictions at 69 &V/c are in quite good agreement with the recent results of 

the Saclay-Serpuhkov collaboration 
24 

for pT < 1.25 GeV/c and 5 = 0 as is 

shown in Fig. 22. When the effects of nuclear absorption on the Chicago- 

Princeton data are accurately understood., it will be necessary to go back and 

perform a careful fit of all of this data. It should be stressed that the 

low energy &ta is a Powerful constraint on the theory and should not be 

ignored (as most theorists in this game seem to do). 

B. 

The reaction pp * pX is an interesting one because it involves a 

more coherent final state particle and has quite a few subprocesses that can 

contribute significantly to it (see Table I). Tne basic process q + q *B + 4 

-a 
will ultimately produce a pT behavior if it is present at all. However, since 

the original process may be in some sense close to its exclusive limit, one would 

expect that the diagrams that were shown to dominate the exclusive process 

should be important in the inclusive case, particularly for small B. The 

dominant exclusive diagrams are shown in Fig. 23 and their immediate inclusive 

analogues in Fig. 2jb. Notice that the two final states are different and 

incoherent for fixed E since one involves a recoil q while the other in- 

volves a recoil 'core.II -l2 These will contribute terms of the order of pT and 

-16 
PT respectively. Retaining these three basic contributions only (which 

may be too drastic), the cross section in the central region should be charac- 

terized by the form 

E J&L (P) 
d3P 

= (p; + I"?,-4 h1E7 + (p; + p)-6 [h2s3 + h,+E5] + (p; + $)-'[hjsl+ h6s3]+..., 

where h4 and h6 are additional (Feynman) scaling contributions arising from 

bremsstrahlung of the initial beam protons. The Neff analysis of the data 

by Cronin at this conference indicates that the hj~ h6 terms seems to dominate 

the amplitude fol' E < l/2. This process has not been carefully analyzed, and 

one should be able to learn a lot from it. Perhaps large pT data from the 

ISR will tell us whether the very interesting hl term is present, for example. 

Note also that in the exclusive limit, the h2 and h 
3 

terms contribute to 

order 5 -10 while the h 1' h4' and h6 -I2 terms are nonleading at s . A 

detailed discussion of the particle ratios will shortly be published. 25 

C. 

Cme of the most interesting features of the CIM is the strong depen- 

dence of the predicted powers on the quantum numbers of the particles involved. 

In the previous sections, we have seen how the powers vary as a function of the 

detected particle. Similar effects should occur if various beam particles are 

utilized, and. this should provide a severe test of the entire approach. For 

example, the reaction m -,rXx, the presence of antiparticles in the initial 
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state means that less bremsstrahlung is required and the process is less Por- 

bidden than pp -,17x but it involves the same basic processes. The cross scc- 

tion is expected to be of the form 

= (p; + $)-4 [h$ + h2c5 + h3E3] f (P; + M2,-6 [hqE3 + h5s] + **a . 

The h 
3 

and h 
5 

terms do not Feynman scale and contribute to the exclusive 

limit s 
-8 

behavior. They involve the subprocesses (a + q -+ T t q) and 

(s + p -+v + core) respectively, and an extra factor of f = (l-q* should 

be included for all such nonscaling terms but has been dropped for simplicity. 

Another interesting c.sse is the reaction pp +TX, which involves 

some new possibilities for the subprocesses. The cross section taketj the form 

= (p; + g)-4 [hlsg + h2e7] + (P; + M2+ [h3c3 thqe5 + h ~11 + *.* . 
5 

Theterm h 
3 

arises from the interesting and unusual process core + ZG 

+B + T, and h4 from i + core +B + q. The h 
5 

term (which does not 

Feynman scale) is the only one that contributes to an 6 -a 
behavior in the 

exclusive limit and involves the processes (5 + core +TT + s) and 

(p + core +B + q). 

D. 

Processes involving photons are particularly important since they 

should most clearly probe the point-like nature of the constituents. The 

parton concept was invented in the first place to explain B&ken scaling of 

the deep inelastic structure functions! A glance at Table II should convince 

you that there are a large number of experimental and theoretical possibilities 

here also. Let me confine my remarks to&brief discussion of two inclusive 

processes, photo-pion production and compton scattering although exclusive Pro- 

cesses are extremely interesting. In Fig. 24 the conventional and expected 

contributions to these processes arising from (a) y + q +T + q and 

(b) y + q -ST + p .are illustrated with the additional, nonleading terms arising 

from the subprocesses IL+ B +K + core and i + B -+y + core. Just as in the 

hadronic case, these types of diagrams are expected to be important, especially 

at small E. lhey &re perhaps easiest thought of as a&sing from the baryon 

scattering off of the ({q) components of a target photon. Actually all of 

these contributions arise from the same basic type of diagrams, but evaluated 

in different regions of phase space with different particles being far off 

mass shell, etc. 

The expected cross sections are 

Epdo (yp *TX) = (P; + 
d3P 

P,-3 Jlc3 + (P'T t M2)-6 J2co + . . . 

and 

EZ (T-P +rx) = (p; + b?)-2 J;E3 + (p; + ?v?)-~ J;,' + . . . 

!l!he so terms would be e1 if the photon were pure vector meson dominated 

(so that it would act like .s {q state rather than a fundamental field). 

The photoproduction process has been analyzed by Eisner et al. 27 at 

21 GeV/c for 7r" and they find Neff - 6-7 and Feff - 0.5 tith P - 0.5-1.2. 

Boyarski et al. 
28 

have analyzed 6, K', and p+ data at 18 GeV/c and for the 

charged pion case find a reasonable fit with Neff - 6 and. Feff w 1. The 

best fit varies slightly with the particular process under consideration. 

me compton process is very interesting and a basic one for any pa-ton 

model. The Ji term is the Bjorken-Paschos process 29 which they showed can 

be used to measure the ratio (Q!$/(Q:) where (Qi) is average quark charge 

in the proton. However, one expects that sizable and even dominant (at present 
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energies) corrections will arise from terms of the form of the J; 
contribution. 

The J; term could still be extracted by a careful fitting of good data and 

this would be a very worthwhile project. 

E. 

In this section I would like to briefly review the general structure 

expected in inclusive final states that is expected on the basis of our previous 

discussion. A more extensive discussion will be given by Stan Brodsky in these 

proceedings and a numerical discussion will be published soon by J. Gunion. I 

will restrict myself to some qualitative remarks. 30 The general decomposition 

of the inclusive process is illustrated in Fig. 14 and Fig. 15. The basic 

interaction where the large pT is generated involves the collision of two 

components of the incident hadrons. For example, the dominant term in the 

ISR range was shown to arise from the collision of a quark and s meson. In 

the overall center of mass, since the quark distribution Function vanishes as 

(1 - z)3 while the meson's vanishes as (l-~)~, the quark will tend to have a 

higher average momentum than the meson. ICherefore one does not expect back-to- 

back angular distributions in this frame--the quark will retain its excess 

longitudinal momentum if the pion is detected at 90". The details of the dis- 

tribution will depend on the angular behavior of the basic q + IT processes. 

When the recoiling quark connects to hadrons, they will smear out this already 

smeared out distribution. The events tend to be planer except that at each 

stage of extracting one particle from another (which must occur at least three 

times in a correlation experiment) there is a small transverse momentum intro- 

duced at each stage (this small transverse momentum was neglected in our dis- 

cussion of the single particle inCluSive CaSe). We therefore see from the 

above arguments how particles correlated with a large pT particle on the 

opposite side are expected to have a wide xL (or rapidity) distribution and 

to be nonplaner. Only detailed fits to the data can find out if the physical 

picture works. 

Notice that since one expects (Matthew's Theorem) that resonances (or 

perhaps even "clusters") are produced with roughly the same cross section as 

pious, there will be correlations on the same side with the large pT particle 

as well. This is a very interesting point to check since it is a rather severe 

test of the theory. More detailed tests have been proposed by Sivers and 

Newmeyer for this region.31 

We have found that the Chicago-Princeton data seems to be dominated 

by the subprocess with a meson-B* final state. merefore one expects to find 

large pT pions correlated with baryons on the opposite and the same side 

(arising from the B* decay). 

XI. CONCLUSIONS 

What has been achieved by the picture of strong interactions that we 

have been describing? Perhaps the most impressive point is a simple analytical 

description of inclusive and exclusive reactions valid at fixed angle and fixed 

momentum transfer. There are few parameters since dimensional counting (applied 

to one's favorite nucleon model) determines all limiting behaviors in a simple 

way. This, together with the fact that the CIM joins smoothly onto normal 

Regge theory at fixed t, puts many constraints on the forms the model can 

predict. The new dynamics has been isolated in the irreducible processes, 

and it was shown that if one gives the form of 

(A) the exclusive basic process at fixed angle 

(B) the probability functions GE/A(z), 

the inclusive can be built up from the above and then the full amplitude con- 

structed by using only the long range hadroh states. 

What are some of the important questions raised? 

1. No fundamental deviation of the calculational rules, and reasons for: 

(*I weak q-q force, especially between hadrons,? 

(b) dimensional counting rules, especially in light of (a). 



(c) What is the rule for "allowed" basic processes? For example, 

is q + q +B + i and/or q + (qq) -+ q + (99) allowed? 

(a) How should hadron cores or the (qq) system be handled? 

2. Can one calculate absolute normalizations of various subprocesses and then 

related different reactions absolutely? One needs to understand absorption 

processes and their effects for these calculations. 

3. Who, what, where, and why are the constituents, if any? 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

10. 

11. 
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Figure Captions 

Fig. 1. Elastic scattering cross section at 5 C&V/c. Note size of 

pp relative to meson-proton scattering and the qualitatively 

different angular distribution of pp and K-p scattering. 

Fig. 2. Inelastic scattering cross sections at 5 GeV/c. Note that they 

become roughly equal at large It\ but differ by orders of 

magnitude in the forward direction. 

Fig. 3. Annihilation process at 5 GeV/c. The cross section for I;p +K-K+ 

is roughly equal to the above in the forward hemisphere but has 

a small backward peak as expected. 

Fig. 4. Test of factorizability of s and angle dependence and of the 

predicted angular distribution in the CIM. 

Fig. 5. ?he Peyrou plot illustrating the main kinematic regions of 

interest. 

Fig. 6. Wave function and form factor diagrams. 

Fig. 7. Even-tempered operator for the form factor for (a) a two-particle 

state and (b) a three-particle state. 

Fig. 8. Typical scattering diagrams for the even tempered scattering 

operator. Meson-meson scattering is illustrated in (a) and 

(b), with the latter showing a direct quark-quark interaction. 

Meson-baryon is illustrated in (c). 

Fig. 9. Effective trajectory for pp scattering for s between 20 and 

40 (GeV)2 assuming M - (-u)~(~) B(t). 

Fig. 10. Effective trajectory for T-p scattering for s between 

10 and 20 (CeV)2 assuming a linear combination of (-u)" ana 

(-s)O1 terns. 

Fig. 11. Magrams given rise to characteristic angulm distributions. 

The (ut) terms arise as in (a), the (st) terms as in (b), and 

the (t) (or s(t)) terns as in (c). 

Fig. 12. Illustrating the close relation between (a) exclusive and 

(b) inclusive scattering. 

Fig. 13. !I& irreducible interaction (a) and its iteration in the t- 

channel (b) which gives rise to Regge behavior. 

Fig. 14. The general separation of an inclusive process into beam frag- 

mentation X(AL), target fragmentation X(Bg) and the irre- 

ducible process. 

Fig. 15. Simplest diagrams contributing to the irreducible process. 

Fig. 16. Main diagrams expected to contribute to the reaction pp --rrX. 

Note the different final states arising from these contributions. 

Fig. 17. Rough fit to the Chicago-Princeton-FNAL data using pi8 and 

-12 
PT terms. 

Fig. 18. Same as Fig. 17 but using only a pG8 term. 

Fig. 19. The fit used in Fig. 17 and compared with the ISR results of 

the CCR collaboration. 

Fig. 20. Some parameters as in Fig. 17 commred with the data of Allaby, 

et al. The solid curves are data at constant pT and the 

dashed lines are the theory for negative pious. 



Fig. 21. Same as above but for the positive pion final states. 

Fig. 22. Same parameters as in Fig. 17 compared with the negative pion 

data of the France-Soviet Union collaboration. 

Fig. 23. Expected dominant diagram for (a) pp elastic scattering and 

(b) their corresponding form for inelastic scattering. 

Fig. 24. F,xpected dominant diagrams for inclusive (a) photo-meson pro- 

duction and (b) compton scattering. The last diagram in each 

row is a type of important but nonleading process that seems to 

dominate the present data. 
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HADRON DYNAMICS* 

Henry D.I. Abarbanel 

National Accelerator Iaboratory 
Batavia, Illinois 60510 

ABSTRACT 

Developments in the dynamics of hadrons and their interactions are 

presented using the thread of the renormalization group to hold the fabric 

together. After an introduction to the ideas and equations of the renormali- 

zation group we discuss the solution to and usefulness of these equations. 

Armed with this tool we consider in some depth two seemingly disparate aspects 

of hadron physics: (1) gauge theories of the strong interactions--in particu- 

lar, ultraviolet freedom and deep inelastic scattering, models of hadron struc- 

ture, the use and necessity of charm and color, and so.011 will be discussed. 

(2) Diffraction scattering and the Pomeranchuk singularity--in particular, the 

Reggeon calculus, branch points in the J-plane, decoupling theorems, t-channel 

discontinuity formula for Reggeons, and so on will be addressed. Some comments 

will be presented on the relation of these two important subjects. 

Throughout the lectures there is an emphasis on pedagogy rather than 

subtlety. Ideas and elementary examples are stressed and the results of de- 

tailed calculations, when presented, are lifted out of the references like 

magic. This course of lectures should serve as an introduction, then, both 

to the mainstream of present ideas about hadrons and to the more advanced 

lectures to be given in the Topical Conference to follow this school. 

'ke also notice in our audience a bus load of small 
elderly women from Schnectady, New York. You may stay 

with us, if you like, but please don't speak out or rustle 

papers." 
A Child's Garden of Grass 
J.S. Margolis and R. Clorfene 

INTRODUCTION, PHILOSOPHY AND APOLOGY 

The subject of these lectures is the most delightful in particle 

physics: the dynamics and structure of the strong interactions. It is also 

a field very much in an "open Pandora's box" state: 
1 often all one has to go 

on is hope. On these bare bones there has been a great deal of clever, thought 

ful work which attempts to answer some or all of' the questions: 

1. What is the origin and nature of the J-plane structure, the Pomer- 

anchti or vacuum singularity, which is responsible for almost constant total 

cross sections? 

2. How can local quantum field theory be consistent with the approxi- 

mate scaling of deep inelastic structure functions? 

3. Are hadrons composites made out of constituents, generically called 

quarks? How many and what quantum numbers carry these quarks? How is it pos- 

sible that these presumed constituents have never been seen in the laboratory? 

Can we make a virtue out of this shyness of quarks? 

4. Can we have a Pomeron which gives rise to almost constant cross 

sections and limiting inclusive cross sections,shows factorization, results in 

a triple Pomeron coupling, and yet does not decouple from particles? 

5. How can one implement unitarity at high energies (direct channel 

and crossed channel unitarity)? Does this provide the constraints to secure 

us a solution to the hadron scattering problems? 

These are among the major issues of the day. None of them has com- 

pletely yielded to solution; each of them has been vigorously and imaginatively 

attacked. The ideas behind this attack are the subject Of these lectures. It 
* 

Lectures for the SLAC Summer Institute on Particle Physics, 29 July-lo August, 
1974. 
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possible that on finishing a reading of the lectures one may not feel a signifi- 

cant understanding of the deep questions has been achieved. However, I hope 

that the sense of excitement, which I have, in the feeling that meaningful 

progress has been accomplished will be transmitted. In many of the concepts 

We will examine here one can sense a coming to real grips with problems which 

have remained elusive for years, including most of the questions listed above. 

If we haven't exactly treed the fox, one cannot help feel that we are hot On 

the trail. 

Enough unsupported, but useful, optimism. Now to a brief outline of 

the subjects we will cover, how we will do it, and a word or two why. The key- 

stone of these lectures and the work on the questions above is renormalizable 

local quantum field theory. The use of field theory in electroqnetic inter- 

actions needs no defense. In the weak interactions developments over the past 

several years has raised field theory to the center of the stage again. 2 By 

establishing that many gauge field theories remain renormalizable when one has 

a mechanism for giving mass to the gauge bosons, 3 one has renewed the viability 

of these theories as a framework for building models of weak and electromagnetic 

processes. The well-known key to the practical use of these field theories is 

the smallness of the dimensionless coupling constants that appear. Having 

chosen the fundamental fields (electron, photon, . ..) one then perturbs around 

these excitations. Because of divergences encountered in any non-trivial field 

theory, the perturbation expansion must be augmented by a set of rules for con- 

sistently replacing the divergent quantities by the finite parameters (charges, 

messes, . ..) measured in experiment. 
4 

Now all this is quite jolly when one has a small coupling constant in 

which to expand. Hadronic physics is characterized by the absence of such small 

couplings. This doesn't mean one cannot write down field theories to describe 

protons, pions, etc. It Only means that having written them down one cannot 

use perturbation theory to solve them. This impasse led long ago to attempts 

to study the strong interactions in a more general S-matrix framework* which 

turns away from fundamental fields and focuses on properties one expects the 

full solution to any field theory to possess: analyticity, unitarity, . . . . 

Such an approach has been remarkably successful in underpinning Our understand- 

ing of many low energy hadronic phenomena. It has provided the tools for a 

variety Of important sum rules when coupled with current algebra. It has 

significantly enhanced our general outlook on hadron dynamics. It has, I 

believe, been less valuable in attacking the problems listed above. The 

reasons are two: (1) the problem of constituents is closely linked with the 

bound state problem. 'he bound state problem by its nature requires infinite 

order perturbation theory in a field theory or equivalently infinite particle 

intermediate states in S-matrix theory. Because of the plethora of variables 

in n-particle amplitudes and their extremely complicated analytic properties, 

these problems are just intractable in an S-matrix framework. (2) High energy 

scattering involves particle prodtiction in an important way (86 of the pp 

total cross section is inelastic at high energies). Again we have a many body 

problem. 

!tbe achievement of the past couple years in hadmnic physics has been 

the discovery that although the coupling constants of hadrons are not small, 

there may be regimes of momentum space where the eff'ective coupling is small. -- -- 

After all, the expansion parameter in a field theory is not just the c-number 

coupling but the product of that and some operator expression of the fields. 

If the matrix elements of the operator become small, perturbation theory can 

be called upon Once again. The foundation On which these observations rest is 

the renormalization group. 6 
This itself is an expression of the fact that the 

physical consequences of a renormalizable field theory cannot depend on where 

in momentum space one chooses to define a set of renormalized parameters. The 

set of transformations which takes the theory from its realization in terms of 

parameters defined at one point to its realization in terms of parameters 
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defined at another point gives the so-called renormalization group. (All this 

Will take on a very elementary cast in the next section.) With this in hand 

the study of field theories for strong interactions has taken an upturn, if 

not yet a renaissance. 

Ihis is the time for apology hard on the heels of the false pride. We 

are restricted in our studies to renormalizable field theories because we 

don't know how to compute in any others. Field theories which are non-renor- 

malizable in perturbation theory may, in fact, yield finite Green's functions, 

but in the absence of a prescription4 for curing the infinities which arise in 

the perturbative expansion around a free theory, we join our betters in reject- 

ing their consideration here. The end of the apology is an announcement that 

none of the problems listed above have been solved in a convincing and Lasting 

Sense by the appearance of the renormalization group on the hadronic scene. 

Ihe framework which it provides is so rich and so tantalizing and so attractive 

that we may temporarily embrace it with fervor. 

The plan of these lectures is to first introduce the renormalization 

group and study it. We will examine how it is possible that a small effective 

coupling constant can enter a strong interaction Situation. After this we turn 

to the Study of gauge field theories and relate the story of asymptotic freedom.' 

This is the magnificent situation where,the effective coupling is not only small, 

it is zero! 

Next we turn to field theories for Reggeons' and formulate the renormali- 

zation group properties of such theories. 9 These theories are what, in the 

language of the angular momentum plane, determine the interaction of poles and 

branch points relevant near J = 1 and t = 0 which is the regime that governs 

diffraction phenomena. 

The subject of dual models 10 does not naturally fit into the scheme of 

these lectures. It is too important to be overlooked, however, so I have arti- 

fically extended the period of lectures allowed by our excellent organizers and 

have asked J. Willemsen to lead some of our afternoon discussion sessions on 

this topic. His written report will appear as an appendix to these lectures. 

Before we start on this adventure let us have a look at the hierarchy 

of hadron physics indicated in Figure 0. One begins at the most 'Ifundamental" 

level with the construction of hadrons themselves; preslnasbly out of basic 

constituents like quarks which may be described by local quantum fermi fields 

held together by Some kind of "glue.11 Having made hadrons, one may study their 

interaction at low energies and the processes in which they are produced. This 

takes us to the second level in our ladder where Reggeons--hadrons whose spin 

varies with their mass--are made. The bound state problem comes to the fore 

here. Finally, as far as we know, we reach the last level where Reggeons, in 

particular the Pomeron (with a(O) = l), begin to interact among themselves. 

The Reggeon field is to be though of as a "mean" field in the statistical physics 

sense. Ibe interaction of Pomerons is thus akin to the Study of the order 

parameters in many body physics and the analysis of phase transition phenomena. 

This analogy will be drawn at some length by A. R. White in his report at the 

Topical Conference. 

'Therefore, conclusions based on the renormalization 
group arguments concerning the behavior of the theory summed 
to all orders are dangerous and must be viewed with due caution. 

So is it with all conclusions from local relativistic 
field theories." 

Relativistic Quantum Fields 

J.D. Bjorken and S.D. Drell 

TRE RENORMALIZATION GROUP 

In this lecture we will develop the formalism of the renormalization 

group and see how it provides a structure in which to search for small 

parameters in hadronic physics. We will carry out our study by examining the 

Simplest example of a renormalizable relativistic field theory: a Self-coupled 

spinless boson with a $4 interaction. 7 Clearly this field theory is not 
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relevant to hadron physics; we'll get to some which may be. The plan of 

attack will be to review the renormalization procedure (purists will have to 

seek proofs elsewhere) and introduce some friendly notation. Then we'll dis- 

cuss the equations of the renormalization group and how to use them. 

The field theory we want to study is given by a Lagrangian density 

2 

~(~1 = i cap +,(x))* - $ ~ob42 - ho 
2 +,w4 (1) 

for a field with bare mass m. interacting with a bare coupling strength Ao. 

It is useful to keep thinking of m. and ho as just some parameters which 

characterize the potential energy 

2 
mO hO 

v = F oo(xY + z eo(xP . (1’) 

To acquire some feeling for this let's digress to consider the Lagrangian (1) 

in one space and one time dimension. !Fhen we may think of Oo(x,t) as the 

displacement of a string lying along the x-axis where the potential energy is 

Cl.'): a simple harmonic Hooke's law force, (mi ECU)/*, plus an anharmonic 

term. If ho = 0, we have good old simple harmonic motion or equivalently, 

free field theory. If rni > 0, then the minimum of V is at B. = 0 and 

the classical string at rest lies with zero displacement. Quantum mechanically 

this is called the vacuum state. In both cases we solve for oscillations 

around this ground state. 

2 Since m o IS just a parameter, we may ask what happens when rni < 0. 

Tnen V has two minima at e. e + a and the classical string (or 

quantum vacuum) lies "to the side." For historical reasons this is called 

spontaneous symmetry breaking. Of course, one still solves for oscillations 

around these ground states. 

Now the object of the game is to solve the equations of motion to 

find the fully interacting field b(x), known as the renormalized field, and 

all the Green's functions or correlation functions 

GIN)(x 1' *.. , "N) = bb(+,), . . . , %y,J)Io) . (2) 

These correlation functions contain all the information about the spectrum of 

the interacting theory and about the scattering of the 4 quanta. The deter- 

mination of the G (N) is usually impossible outside of perturbation theory in 

h0' The formalism for carrying out this evaluation of the G (N) is presented 

in detail and with clarity in the textbooks of Bjorken and Drell' and of 

Gasiorwicz 11 among others. I do not propose to give here a detailed resume of 

those expositions but only to recall some of the salient points. 

In doing perturbation theory in ho one encounters divergent integrals 

all over the place. The renormalization program is a prescription to replace 

these divergences by a set of finite numbers which then parametrize the fully 

interacting, or renormalized theory. This procedure relinquishes the actual 

calculation of the renormalized charges and masses. Instead it introduces them 

as finite parameters on which all Green's functions must depend. Thus in quantum 

electrodynamics we depart from the calculation of the electron mass'and charge. 

Instead these are determined from low energy Compton scattering and Coulomb 

scattering and subsequently appear in all other processes as known parameters. 

The renormalization program works when the number of parameters one must specify 

is the same as the number appearing in the unrenormalized Lagrangian and, of 

course, is finite. To carry out this one proceeds by cutting off or regular- 

izing the Feynman integrals in some manner and then giving a set of rules which 

yield a finite set of G (N) as the regulator is removed. The usual regular- 

ization procedure consists of replacing the good old propagator 

402 



i; 

1 
p2 - nl; t ic 

for a boson of momentum p and mass m0 by 

(3) 

1 1 
p* - m; 2 +ie p -m* 

(4) 
0 - A* + is 

where A is some object with the dimensions of a mass. All work is done with 

A finite, and at the end of time one sends A to infinity. 

As far as I know there's nothing wrong with this way of going about 

things. However, there is a much more compact trick around.. 12 Alter instead 

the number of dimensions of space time from 4 to a non-integer number D. 

Sounds peculiar, doesn't it? To see that it is a clever trick (I emphasize 

trick since there's no physics in it), let's look at the contribution to J4) 

coming from the graph in Fig. 1. This is proportional to 

2 D ho dk s 1 1 
(k* - III: + is) ((P - k)2 - m: + ia) 

(5) 

I 

4'0 dx 
ss 

dDq 

0 rq* - f(X, p*, $I2 
, (6) 

by using the usual techniqws. f is some easily determined function. Changing 

variables to 

e = q(f(x, P2, m;)) -l/2 
f 

the integral in (6) becomes 

1 
2 

X0 s 
dx [f(X, p2, o m*j1(D/2)-* dD8 

W' 

(7) 

(8) 

Now how does one do an integral over D dimensions? Just pretend D is an 

integer and instead of writing things like D! write I'(D + 1) (the standard 

gamma function). Then (8) becomes 

ih* 9/* 
0 r(2 - i, I1 dx [f(x, P2, m;)1(D/2)-2 . 

0 
(9) 

If D is not an integer, the P flvnction is perfectly well defined. However, 

when 2 - D/2 = 0, -1, -2, . . . or D = 4, 6, 8, . . . , the F function has 

simple poles! !l?hat's where all the divergences of field theory are hiding ---- ---- 

now. So what one does is to leave D free and then provide a way to eat up 

the various poles in D at D = 4. The real wonders of regularizing the 

theory in this way are two: (1) D is dimensionless, that is it is just a 

number, so it introduces no new scales in the problem as does the A regular- 

ization in Eq. (4). So this trick is sure to respect all the symmetries of 

the Iagrangian including subtle ones like scale invariance. (2) There are 

important places in physics where one wants to know the expansion of a theory 

at D = 2 or D = 3 around the theory at D = 4.13 This is clearly the way 

to formulate the answer to such questions. 

So now we know how to regularize the theory. How do we renormalize 

it? It turns out that one need only do this:7 add to the 9' of Eq. (1) 

the counter Lagrangian 

gc = Cl(hO,rnO,D) Q0(x)2 + C2(ho,mo,D)(av ",(X))* + C3(~O~~OJD)(~o(~))4~ 

(10) 

and determine the Ci to cancel theinfinities (poles in D) order by order 

in perturbation theory in ho. That's all! The theory is called renormalizablc 

because one only needs to add to 4 terms which have the same content in the 

number of powers of O. and not others. The physical meaning of the Ci is 

straightforward to state: Cl changes the bare mass m. into a new quantity 

m which will qualify to be called the renormalized mass. C2 changes the 

field $. into a new field 4--the renonnalized field. c3 
changes the bare 
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coupling A0 into a new coupling h--the renormalized coupling. 'i%e renormali- 

zation prescription, which we'll soon launch into, tells us how to replace 

ao, mot and ho by 6, m, and A. The latter are finite quantities. Further 

it gives us detailed instructions how we may express all Green's functions 

G(N) computed to some order in h0 by functions of these finite p&meters. 

The parameter m need not have any direct relation to the physical mass Mg 

of the renormalized + quanta. One discovers Mg by studying the full G (2) 

and searching for its poles. Mg issome, yet to be learned, function of m 

and h. (In gauge theories G(2) is gauge variant. All its poles may not 

correspond to physical particles.) 

One'sability to render the theory finite by the remarkably simple act 

of adding 4 to cancel the singularities coming from the use of 9 may be 

given a concrete form as follows: Define the renormalized +, m, and h as6 

‘a(x) = z-1/2 o,(x) , (11) 

h = z2q1 A0 ) (l-2) 

and 
2 

m = zz;' m2 . 0 (13) 

There is a long tradition of convention going into these definitions. The 

quantities Z, S+,, and Zm are related to the Ci above. Now we give a 

set of rules which enable us to determine the Z's. They are divergent quan- 

tities at D = 4 (poles again). 

The procedure we use is to introduce the proper vertex functions -- AN)(p) 
J 

which are the Green's functions in momentum space, G (N)(Pj), (z;=l Pj = 0, see 

Figure 2) with the legs amputated: 

r(N)(P,, . . . , p,) = ; [G(2)(p;)1-1 G(N)(pl, . . ..PN . ) (14) 

j=l 

This just saves us constant reference to the singularities of the propagator 

G(2)(p2). Note that r(2)(p2) = [G(2)(p2)]-1. In lowest order of A0 we 

observe 

irr)(p2) = p2 - rn: t ie (15) 

and 

rr)(p,, . . . , P,) = -iho/(27r)D . (16) 

We will specify Z, Z,,, and Zm by announcing the value Of J2) and &4) 

at some convenient points in momentum space. This will give us definitions 

of m and A. 

Let us introduce next a parameter which we call p. It has the di- 

mensions of momentum and will play the role of setting the scale for the 

points in momentum space where we choose to normalize our theory and define 

m and h. 

First, we note that F (2) is a function of p2, m, h, )1 and, of 

course, D. Let us being by requiring that 

-$ ir(2)(p2, m, h, or, D) 
ap 

=l, (17) 

where A is just some number. This clearly is suggested by Eq. (15) for 

12) 
r. Since 

T(N)(Pj, m, A, ,J,D) = ZN'2 $?P j' *(-y 10' D) , (18) 

where r(N) U 1s the unrenormalized proper vertex computed with the bare param- 

eters--this relation comes directly from Eq. (ll), we learn 

1 a -=--- ir 
z ap2 

,!,2)(~2, mo> ho> D) (1-g) 
p2+2 
m;= Z-lZmAf 
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We now have one relation for 2 and Z,. Next we ask that ho Zbof ho+12 3(mo, A0 I*) -1 =A (24) f 

iF(2)(p2, *, h, v, D) 
p2=o 

= -Au2 , 

m2=Ap2 

irF)(p2, mo, ho, D) 
p2=o 

= -Al.r2/Z , 

m2=Zy1 
0 Zmb2 

(20) 

(21) 

which provides us with a second relation to determine Z and Z . 
m 

Now we wish to evaluate 3. Mimicking Eq. (16) we require 

r(4+Pl, . . . , p4, *, h, 11, D) -ih 

pi'pj = 6 (4Sij - 1)= GF 

(22) 

2 m = An2 

where we have chosen all momenta p to be incoming and selected an especially 

symmetric point to define h. (SeejFig. 3.) 3 now is given by 

i(2T) 
D+l$)(Pl, . . . , p4, mo, ho, D) 

A0 
= q1 . (23) 

Pi'Pj' " (4Sij - 1) 

I 2 
"0 = Z-1ZmAu2 

In Practice one learns Z,,Z,, and (2) 5 by evaluating rU 

to whatever order in perturbation theory in ho one has the fortitude or 

desire to explore. Then using these normalization conditions one determines 

z, z,, snd 3. From them in turn one evaluates mO and hO as functions 

of m and h as given by 

and 

rn: Z(mo, ho p) Zm(moT ho p)‘1 = m2 . (25) , , 

The renormalization prescription guarantees us that the &N) computed by 

inserting ho(m, A, n) and mO(m, A, u) on the right hand side of 

rcN)(pj, *, A, II, D) = Z(mo, A, ~ jNi2 rp)(p., moj ho, D) (26) 
, J 

are finite for D < 4. 

A word about the use of the quantity n. We have introduced it here 

rather much out of the blue. Its value is unspecified and one suspects it 

is an artifice that cannot possibly play any role in determining any of the 

physics in the J? (N) : N, of course, g correct. What it has done for us 

is to provide a common mass scale for p2 
2 and m at the normalization points 

which define the theory. The only reason we don't take n = m and A = 1 

straight off is that there is a lot to be learned by requiring that the 

physics of the @) be independent of p--indeed, that's precisely where all 

the action is. Furthermore, it is frequently of enormous physical interest 

to study a theory with zero renormalized mass. That will correspond to choosing 

A = 0 with AZ* fixed. A theory with m = 0 is full of interesting infrared 

divergences and normalizing such a theory at p2 = 0 is fraught with 

danger.5'14 In such a case a parameter such as !J is a necessity for defining 

the theory. 

So far we have gone through an elaborate exercise to define the theory 

we are working with. We have not only given no results, but we have also 

bombarded the reader with seemingly endless definitions and continuous pious 

statements about renormalizability not a single one of which we proved. I 

encourage the anxious to have patience since in the words of the trustworthy, 

late Lyndon B. Johnson, "mere is a light at the end of the tunnel. 8015 We 
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will indulge in & bit of good old dimensional analysis before we See it though. 

Ready? 

We will indicate the dimensions of a quantity by the powers of momentum 

it carries, and we'll write [quantity] to mean dimensions. For example, for 

ordinary space-time, 

[xl = q-l . (27) 

The Lagrangian has dimensions 

[SAX)1 = qD , (28) 

to szsure the action 

A = / dDx 9'(x) (29) 

has dimensions 

[A] = q" . (30) 

It is now straightforward to record the dimensions of the objects in our theory 

[O(x)] = p-2)/2 ) (31) 

[A] = q4-D . (32) 

The Z's *ret of course, +1 dimensionless while m and p carry dimensions q . This elementary result will prove enormously helpful. 

The Green's functions and proper vertices in momentum space have After this brief digression we are ready to return to the main stream 

of our discourse. Namely, how can we guarantee that the physical results of 

our tiieory are independent of !.I? Clearly we need a constraint equation on 

the l'(N) which tells US how variations in @ and consequently v'SriatiOnS in 

m and g via the induced variations in the Z's all compensate each other. 

Such an equation iS provided by the observation that the unrenormalized theory 

IG(N)(p,~l = q-N+ : (2-N) , 
J 

and 
lr!N)(p,~l _ ,“+ : (2-N) . 

J 

(33) 

(34) 

We are going to want to do a bit of reasoning on the basis of the dimensions 

of r(N) so we will make this easier by trading in our coupling constant h 

for the dimensionless coupling, 

g = hpD-4 . (35) 

Since the Z's are dimensionless and are defined with all momenta and i?aSSeS 

proportionalto p, they can depend only on g and things like D. The FtN) 

are now to be considered functions of pj, m, g, IL, and D. Using (34) we learn 

rJN)(P. 
N+ ; (2-N) 

> m, .a P, D) = P J 
(36) 

where qN is a dimensionless function of its dimensionless arguments. We may 

employ this to write 

r(N+r~j, m, g, p, D) 

N+ 8 (2-N) 
=!J 

N+ $! (2-N) N+ ; (2-N) 

e 'N ( 2 ' 3 ' g' ') 

= I N+ g (2-N) r(N)(p, ; g 2 D) 
J’5”5’ . 

(37) 

(38) 

(39) 
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never heard of p. It only knows about mO, ho And D and has no possible 

information about where we choose to define the renormalized parameters. This 

lW-?*ZX 

k'a4; rp'N)(pj, "09 hO> D) m h fixed = 0 . 
0' 0 

me pj and D are also fixed during the differentiation, but we'll not keep 

repeating that. 

Remembering that 

rcN)(Pj, % g, P, D) = ho, Ao, P, D) N'2 I$@(Pj, mo, ho, D), (41) 

the chain rule informs us 

r(g) 1 i.(N)(PJ, m, @;, P', D) = 0 , (42) 

with the definitions 

and 

7 
mO,hO fixed 

m?(g) = P & m , 
mo,ho fixed 

I-(g) = li &lot3 z 
I mo,ho fixed 

(43) 

(44) 

This equation is known as the renormalization m equation. (Yes, I am aware 

that there hasn't been any group activity until this. This little bit of history 

will be filled In later.6) It holds for any value of the momenta p. 
J' 

In par- 

titular it holds for r (N)( kPj' m, & w, D). We may now use our dimensional 

analysis above to change from differentiation with respect to the norrmAization 

point p to differentiation with respect to 5, the scale of the momenta. 

Namely, noting that 

a r(N)(*P. EF J' m, g, CI, D) 

(2 - N) - m & - p $ } r(N+!~j, m, g, % D) > (46) 

using Eq. (39), we write 

{ 5 $ - p(g) & + (1 - q(g)) m $ + E r(g) - [N + i (2 - N)l ) rcN)( Spj,m,g,p: 

=O (47) 

This equation tells us how variations in the momenta of a vertex function must 

be correlated with variations in the dimensionless renormalized Coupling g 

and the renormalized mass parameter m so that the physical content of the 

theory is independent of where we choose to define it. 

We solve such an equation in the following manner. 7,9 Define 8. vari- 

able t = log 5 and a two vector q(g) = (-p(g), 1 - q(g)). Our equation is 

(& + ?g)*% r(N)(et~j, m, g, p, D) = DN(g) r(N)(etp., % g, K, D) , (48) 
J 

where 

and 
(49) 

DN(d = N + ; (2 - N) - $ r(g) . (50) 

If we introduce some auxiliary quantities z(t) and z(t) which satisfy 

&Ll-- 
dt - e&t)) , (51) 

and 
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g1 = 0 and p'(O) < 0 is called W free, and a theory with gl = 0 and 

p'(O) > 0 is called IR free. No name has been given, yet, to theories with 

g1 small but not zero. To fill this gap I will refer to such theories as 

possessing W or IR liberty to contrast it with the W or IR freedom of gl = 0. 

It is worthwhile to study one more simple example in which p(g) has 

a double zero at gl 

s(g) = Bl(E3 - @;,j2 . (66) 

Now ;(-t) is 
g - is1 

a-t) = g1 + ‘tl _ fjl(g _ gl)tr (67) 

If Bl(g - gl) > 0, then for t +-m, the IR limit, i(-t) +gl, but this time 

only as a power of t. when ol(g - g,) < 0, then in the W limit t +-, 

2-t) +q. It is necessary in this case to give both the sign of the coeffi- 

cient p, and the sign of g - gl in order to determine the IR or W behavior 

of the field theory. 

We will conclude this already long lecture by showing how the renormali- 

zation group equations allow one to go beyond perturbation theory even though 

we are only able to learn 8, ?, and y in perturbation theory. We make a 

little departure here from the logical development carried out for so long in 

a $4 theory and lean on the results from theories with a cubic coupling (0' 

or Ytiawa) . In such theories each of the Z's has the form, 

Z-l = 1 + o(g) 

/ so the renormalization group functions are in this order 

(68) 

q(x) = ax* , (69) 

and 

y(x) = ox* ) (70) 

B(X) = bx@ - x2, , (71) 

where the linear term in p(x) arises from the p needed to take A to g. 

If the A, g relation is 

g = cl% > (72) 

then 

d = bg; , (73) 

as one can see immediately from Eq. (43). Now look at the equations for f3 

and Y 

mO,AO fixed 
(74) 

and 

I m ,A fixed 
0 0 

(75) 

These together give us an expression for Z(g) 

using the expressions for j? and y determined in perturbation theory. This 

statement for Z is definitely an improvement over the lowest order perturba- 

tion theory result (68). Similarly one can improve Zm and zh 

z^(d = z(g)* I: ) 1 - { 
-l/2 

g1 

and 

410 

(78) 



. (79) 

For the T'(N) we don't find such neat closed results, but instead we 

find constraints on the functional forms. To see this let's take the very 

special case where B = @;I' (g, need not be small.) That is the renormalized 

coupling is exactly at the zero of S(g). In that instance 

2-t) = g1 (80) 
for all t, and 

m(-t) = m e 
t(dgl)-l) 

= me 
dgl)-l 

(81) 

The solution to the renormalization group equation becomes 

&Pj, ‘% gl’ P, D) 

=5 
N+ ; (2-N)- ; ‘r(q) r(N)(p, 

J’ ID 
!q(gl)-l 

, gl> pi, D) . (82) 

The power of 5 on the right-hand side here is the ordinary dimension of r (N) ; 

namely, N + g (2-N) plus an amount proportionalto y(gl). This 'lextra" 

amount is called the anomalous dimension. -___ Since y(0) = 0, it arises because 

of the interaction. Now we use ordinary dimensional analysis as given in 

Eq. (36) to express our result in terms of $N 

&3l)-1 
mg 

, - , q' D 
)1 

(83) 

How can a function of Epj, on the left be compatible with the 5 dependence 

on the right-hand side of this equation? 

Well, let's look at it this way. Suppose we have a function f(Zl,Z2) 

which behaves as 

f( EZ,> z2) = EH f(Zl’ Z2EB) , 

for any 5. In particular suppose 5 = Zil, then 

f(1, z*) = z;H f(Zl' z2z;B) . 

Now call 

or 

then (85) is telling us 

Yl = z1 , 

y* = z2zyB 

B 
z* = Y2Yl > 

f(Yl' Y2 ) = Y': f(l, Y2Y3 

= y;h(y2y;) , 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

that is; the form of a function of two variables is restricted by the scaling 

law in (84). - 

For our function JI, we may read off 

f, 

where p is some conveniently chosen momentum. For example, choose half of 

the total umber of momenta and let 
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P2 = ( 
N2 2 
k 

jd 
Pj) . 

These scaling laws are not true order by order in perturbation theory. 

Instead all sorts of logarithms are found lurking around. l'hose logarithms 

come from the expansion of (91) for small gl. What the renormalization group 

equation has done for us is to reorganize all those logarithms in a masterful 

way to provide the lovely functional forms in (91). Just how grateful we 

ought to be for this will depend on what use we can make of this splendor. 

This completes the discussion of the renormalization group equations 

and their solution. There are several small items which I would like to 

address before we leave this subject. Mostly they are technical, historical 

or some linear combination. The reader anxious to see why we have done all 

this stuff ought to pass on to the next section. 

1. There is the question of the m. We have normalized our vertex 

functions at a point )1 and thereby defined two quantities m(p) and h(p). 

Suppose we had chosen to normalize at another point Y and parametrized the 

rcN) by m(v) and h(v). What is the relation between these two sets of r(N)? 

Well, they must be related by a finite resealing of the field 

Q(x,v) = z-1’2(Y,p) $(x,ld 9 (93) 

where @(x,,) is the renormalized field we used above when we normalized at 

p, and @(x,v) is the field normalized at y. With this resealing of the 

fields the rcN) are related by 

bN)(pj, dv),h(v), Y, D) = zNi2(v,p) +N)(pj, m(p), h(u), K, D) . (94) +p = - p&(t), F;(t)) . 

Similarly there is a resealing of the parameters m and h 

and 

m(d2 = (95) 

-l h(cl) 9 (96) 

where z, zm, and z,, are determined as we were able to determine 2, Zm, 

and 5. . The z's are finite. 

If we did rescale again, this time at a point K, then the product of 

the resealing transformations p + y +K must equal the full p + K bans- 

formation. We thus have a very non-linear realization of the multiplicative 

group of real numbers. me differential group equation gotten by considering 

infinitesimal transformations is none other than our good old renormalization 

group equation (42). 
16 

2. What is special about .D = 41 True, it Is the real number of di- 

mensions of space-time as we know it. But in our considerations above it is 

the first point where our Feynman integrals for F (4) become divergent and 

where the linear term in p(g) vanishes. It's significance in the present 

context is that at D = 4 the coupling constant h becomes dimensionless and 

the $4 theory satisfies a naive scaling law. 17 If we had considered a AJQ3 

theory instead of the O4 theory, we would have found D = 6 singled out in- 

stead. This observation will creep into several later remarks. 

3. What happens when we have two (or more) coupling constants,6 call 

their dimensionless counterparts g and h? Tnen we have characteristic 

equations for i(t) and g(t) which are coupled 

ig= - B,GW, E(t)) , (97) 

(98) 

The analysis of these coupled equations is somewhat more complicated than our 

simpler case for the b4 theory. Not only can one have fixed points gl and 
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hl’ like gl above, to which g and E retreat for t ++ m, but also there - 

is the possibility of periodic limiting solutions where 2 and g go to 

some closed curve in the g, m F; plane. These limit cycles and other kinds of 

Solution have not been much discussed or studied in the physics literature but 

I refer you to the mathematical texts for the catagories of solutions. 18 

"Freedom's just another word for nothin' left to lose. 

Nothin', it don't mean nothin', honey, if it ain't free ' 

Janis Joplin, "Me and Bobby McGee" 

GAUGE THEORIES AND STRONG INTERACTIONS 

In this lecture we will begin with a review of the ideas of local 

gauge fields, mention how spontaneous symmetry breaking can provide maSSes to 

the gauge vector bosons and proceed on through ultraviolet freedom to a little 

hadronic model building. Experts in this subject will surely be disappointed 

at almost every stage with the cavalier treatment most deep ideas receive. I 

recommend, both to them and the reader, Reference 7 where most of these harder 

issues are squarely faced. 

The impmtance of gauge theories for the strong interactions is three- 

fold (at least): (1) if the fields fundamental to hadronic physics are to 

couple into a renormalizable theory of weak and electromagnetic interactions, 

then the whole set of interactions will remain renomnalizable only if the 

hadronic physics respects the gauge principle too. It can do that in a trivial 

or an interesting fashion. (2) If weak and electromagnetic processes are 

described by gauge theories, then it is certainly unnatural not to expect 

hadronic physics to do the same. (3) The ph enomenon of Bjorken scaling (exact 

or approximate) means that at small distances hadronic physics behaves nearly 

as a free field theory. This, in a word, is ultraviolet freedom in operation. 

only gauge theories with non-Abelian gauge groups appear to possess this 

marvelous feature. 

The idea of a gauge theory is familiar to us all from childhood: 19 

quantum electrodynamics is such a theory. Let's recall that by thinking about 

matter fields a,(x), where a is some convenient label, coupled to the electro- 

magnetic field Au(x). If the matter carries charge Qa, then the Iagrangian 

density 

F(x) = - ; Fo,,(d2 + ~M($,(d, (au + iQaHb(x)) 'ha(d) , 

is invariant under the space-time dependent gauge transformation 

and 

H&d --> A&x) - a0 A(X) , 

(99) 

(100) 

(101) 

if it is invariant under (100) with A a constant. 

The field strength 

F&) = ahA, - a,,%(x) , (102) 

is the standard gauge invariant curl of AD(x). The important point about this 

Iagrangian, beyond its well established relevance to physics, is that in the 

absence of the vector field AD(x) the matter alone could not sustain an in- -- 

variance under local gauge transformations. 

TWO decades ago Yang and Mills 20 asked and answered the question how 

one might generalize the idea of local gauge invariance for a field interacting 

via charge to theories with isospin; Several years later the generalization of 

this to more elaborate internal Symmetries was discussed by Gell-Mann and 

Glashow. 21 

Let's being with isospin and consider just an isovector field lra(X) 

(* = 1, 2, 3). Under isospin transformations gecerated by the operators I, 

we have 
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[I*, ~bwl = i ERbCTrCW . (103) 
which behaves as 

GR,,(x) --> G,,,(X) + g ‘*bc %(X1 Q,,@ J 

We want to construct * Lagrangian involving r*(x) which is invariant under 

the local infinitesimal gauge transformation 

That is, we make an independent isospin rotation at every point In space. As 

in the case of electromagnetism there is a change suffered by a0 v*(x) 

which, because of the second term on the right, would forbid us to construct a 

gauge invariant theory unless it is canceled. To cure this we introduce three 

gauge vector bosons, one to cancel each of the a, h(x) terms. Under the 

transformation characterized by 'b(x), this field, Baa(x), behaves as 

B,,(“) --> B*,(x) - a0 Aa + g cabc A&X) B,,(x) . (196) 

When we replace au T*(X) in any Iagrangian by the gauge covariant derivative 

Do T*(X) = a0 T*(X) + g Eabc B&4 Tc(X) , (107) 

then the resulting theory is invariant under the local gauge transformation. 

We need a generalization of Fah(x) for the isospin carrying field 

Baa(x), and here is where the fun begins. ?he appropriate quantity is 

GR,,(x) = ah B*,(X) - a0 B,,(X) + g sabC Bb,(") Bc,(") , (108) 

under the gauge transformation. The most elementary gauge invariant boson 

field Lagrangian is 

LZB(x) = - ; G,,,b) G,,,(“) . 

Now this is a non-linear relation among the fields Bag(x) which is not un- 

expected: we required that B,,(x) cancel the gauging effects on every object 

that carries isospin. Indeed it must interact with every such field, including, 

naturally enough, itself. The non-linear terms in G,,,(X) are just the ex- 

pression of that. 

If we add a mass term for the gauge bosons 

- $ B,,(x) B,,(x) > 

then the local gauge invariance is broken. Transformations under a constant 

gauge parameter h, still leave 

a= zB + JZ’~(T~, Do raTa( - $ B,,(“, B,,(“) 

invariant; that is, isospin is globally, but not locally an invariance. This 

is the reason gauge fields lay dormant for so long. If the gauge bosons have 

no mass, then the theory is physic.ally unattractive because there is only one 

known massless vector bosonr the photon. (I feel compelled to reveal that 

it is possible--an attractive possibility--that through interactions the gauge 

bosons could develop a mass. This is known as dynamical synrmetry breaking 

and does transpose in the soluble case of two dimensional quantum electro- 

dynsmics.22) If one goes ahead and adds the bare mass term anYw*Y two disasters 
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occur, one logical, one computational: (1) th e w 0 h 1 e rationale for local 

gauge invariance goes by the wayside. Having struggled so elegantly to 

achieve it, should we now toss it aside? (2) With the mass term and the loss 

of local gauge invariance, we also lose the conservation of a local isospin 

current. When the current is not conserved, the theory becomes non-renormali- 

zable. Faced with the inability to compute except in a theory which had no 

apparent connection with physics, the hearty turned to other matters. 

That turned out to be a tactical error. Tne ideas that again opened 

up the hearts of man to gauge theories were these: (a) in the presence of 

spontaneous symmetry breaking (soon to be made explicit) the bosons could 

acquire a mass while (b) the theory retained its renormalizability and full 

invariance under local gauge transformations. 327 

The covarisnt derivative which involves the product of B,,(x) and 

ra(x) leads to terms in 9' more or less like 

- ; (B&d Baa(d) (rb(x) rbb(x)) (112) 

If there were some reason why ?rb(x) could take a value 

lib(X) = Yb (113) 

constant over space, then it would appear as though Baa(x) had developed a 

bare mass 

“B = d : VbVb * (114) 

Such a pleasant situation might arise if the TT field were self-coupled in 

a way which preserved the local gauge invariance (h(7rbb(4 7ib(X)) 
2 is fine), 

and in this self-potential oscillations occurred around ?rb(x) = vb, instead 

as we most often imagine around ?r,(x) = 0. Indeed, suppose the s part of 

the Lagrangian is 

= 9r(kinetic) - V(~a(x) pa) . (116) 

l%e potential V(y) (Fig. 8) for $ > 0 has its minimum at y = 0, and our 

usual notions of describing the theory in a perturbation series in A0 with 

the ground state r*(x) = 0 are quite acceptable. If ~'0 < O--when 10 # 0 

that does not imply space-like particles--then V(y) has its minima at 

-64 
y=+ --q-' 

II- 

(117) 

The point y = 0 is an unstable position for the field. 'Inns ground state is 

then achieved by ra(x) choosing the value 

2 6~; 
(T*(X)) =-A>O, (118) 

0 

which is precisely the desired happening. Translating the field to the non- 

symmetric ground state value of 7ra(x) is commonly referred to as spontaneous 

symmetry breaking. This is terrible nomenclature since the Iagrangian is still 

symmetric; the syrmnetry is hidden. The solutions to the field need not exhibit 

the symmetry of the Lagwngian--think of B # 0 levels of the hydrogen atom: 

the hamiltonian is rotationally invariant; the wave function is not. More 

to the point would be to label the situation we encounter here: w syrmnetry. 

When pz < 0, the local gauge invariance of the whole Lagrangian is not 

broken and, this is the remarkable observation, the theory remains renormali- 

zable. We are invited to further considerations of gauge theories. 

A couple of technical points here: the fields which become shy should 

carry no space-time quantum numbers or the solutions to the field theory will 

exhibit non-invariance under parity, G-parity, or whatever. It is interesting 



to consider that the apparent breakdown of parity or CP may be due to such 

shyness, 23 but for hadron physics we must avoid this. Also, when the gauge 

bosons acquire mass they pick up an extra degree of polarization (massless 

vector particles have two degrees of freedom; massive vectors, three). This 

is purchased at the expense of one of the scalar fields disappearing from the 

problem; something has to depart since field translation doesn't increase the 

degrees of freedom of the theory. All this cleverness is exposed in Reference 7. 

!Ex generalization of gauge fields to other symmetries than isospin is 

now straightforward to state. We imagine that there are F matter fields 

q,(x) which are chosen so the Lagrangian is invariant under a group of G 

gauge transformations with constant hj 

F 
*a(x) -5 C (exp i ! T. A.) J, (~1 , 

b=l j=l "J J ab b (119) 

where the CJj are a set of G hermitean matrices in the F-dimensional spaace 

spamed by the JI,. They are taken to satisfy the commutation relations of 

some group 

[Tj, Tkl = ifjkB Tj , (120) 

where f jk.E are the structure constants of the group. For convenience the 

gauge group with G generators will be taken to be simple for the moment and 

the I),(X), a = 1, . . . , F will be considered to transform under at most a 

finite direct product of irreducible representations of the gauge group. Our 

example above with isovectors has a = 1, 2, 3 and the isospin gauge group 

has j = 1, 2, 3.. Now having gO(Ji,(x), 3, @a(x)) invariant under the 

transformation (119) we wish to enlarge this to an invariance under local 

transformations with Aj(x) in (119). 

To achieve this we add vector gauge fields BjO(x) which undergo the 

gauge transformation 

Bju(X) -> Bjo(X) - ; a0 hj(x) T : f. A,$") Boa(") > 
k,,&l Jke 

and we change au q,(x) in .pC into the gauge covariant derivative 

G F 
DO q,(X) = a0 4',(X) + ig z c (Tjjab Bjob) l',(x) . 

j=l b=l 

(121) 

(3-22) 

To the matter Lagrangian pO($,(x), Do q,(x)) we add the B terms 

where 

y&x) = - i j=l JhO ; G. (x) GjA&d > (125) 

GjAo(X) = ah Bjo(X) - ag Bjh(x) + g E f. Bk,(") Q,(x) . 
k+l Jka 

(124) 

This field tensor transforms as 

Gjho(x) --> Gj,,(x) + g f. \(x, G&X) , 
k,.&l Jka 

under the local gauge transformation. 

The total Lagrange density 

(125) 

L?(x) = Y&(d, Do S,(d) + gB(x) (Q5) 

describes F matter fields in interaction with G gauge vector bosons. 

These bosons are massless as the theory stands. If there is a shy symmetry 

hiding in gO, the bosom may acquire a bare mass by eating some of the fields 

in 2 0 with appropriate quantum numbers. If there are several pieces of the 

gauge group which form via a direct product the full gauge group, there is a 

separate coupling g for each element of the direct product. 
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The quantizationof locally gauge invariant Lagrangians is not an easy 

task. The reader will recall (or hurry to the second volume of Bjorken and 

Dell4 to remind him or her self), the care which one must employ to quantize 

even the simplest gauge theory: quantum electodynamics. I happily refer you 

once again to the lectures of Coleman 7 or for even more detail and care the 

review paper of Abers and B.W. Lee. 7 

We will turn to a specific example with which we will discuss much 

physics. Let the matter fields carry two internal indices: one will be an 

ordinary SU(N) index a which runs from one to three for SU(3) quarks, and also 

we will endow the field with an index a: which describes the transformation 

under the gauge group which we take to be SU(M). Call the field q&x). We 

will take a to run from one to four and N = 4; four quarks will be needed 
. 

and explained later. we will take M = 3 and have an octet of vector gauge 

bosom. The index cf will run from one to three. So the strong symmetry 

group is to be (see %ble 1) 

B Strong = su(4) Isospin 0 x SU(3)Gawe * (127) 

Hypercharge Of Color 
ChE.?XU 

I will motivate all of this indexing and name calling (charm, color and all 

that) later. Right now I ask your patience with this bad pedagogical device. 

The gau@;e invariant Lagrangian describing the situation we have set up is 

P(x) = i 

where the last term is a mass matrix for the quark fields and the A. are 
"J 

the usual SU(3) matrices. 
24 

What we want to do first is discuss the renormalization group structure 

of this theory. Our dimensional analysis of the first lecture reveals that in 

4 space-time dimensions the coupling g is dimensionless. This means that 

our crucial function j3(g) has the power series expansion 

B(s) = B1g3 + p2g5 + . *. . (129) 

Suppose only the Bl term is important, then we must solve the differential 

equation 

&i(t) 
dt - - B, ii(tJ3 . (130) 

Subject to the boundary condition g(O) = g, one finds 

;;(-t) = g( 1 - 28 g2+1/2 1 f (131) 

and for an infrared limit we are interested in t-t -co, while for an ultraviolet 

limit we are concerned with t + +oo. Everything rests on the sign of S,. And 

here's the good news, for the gauge theory defined in (128)~~ 

B, = - 2 . (132) 

Well, I hardly expect you to be turned on by the 25 and the &r2, but I cer- 

tainly trust the minus sign catches your notice. Because B, < 0, the effective 

coupling in (131) makes sense for the W limit and 

2-t) - 1 
t -4m (-28,)1/2 t1/2 ' 

that is, it goes to zero. In the ultraviolet limit this theory is effectively 

a free field theory. 
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This result is not limited to this particular gauge theory. 7726 It 

occurs in a wide class of such non-Abelian gauge theories. It is important 

to remark, however, that it does not occur in electrodynamics or ha4 theory 

or any known renormalizable local field theory which does not involve non- 

Abelian (fabc # 0) gauge fields. For all those theories at D = 4, pl > 0.7 

If we recall the solution to our renormalization group equation for 

the renormalized proper vertex functions PR, we note it reads 

Q@pjt m, g, i-l> D = 4) 

= I‘$pj> z(- log 5), ;;(- log 5), p, D = 4) exp 1' %- D(;;(lw t')), 
-log 6 6 

(134) 

dropping the N dependence and noting t = log 5. me result above for IN 

free theories 

a- 1% c) - 
1 

6 +m (-2Sl)l/" (log &2 ' 
(135) 

tells us we may evaluate all proper vertices as a power series in &- log e) 

as all momenta go to infinity: Also it says that the corrections to free 

field behavior are likely to be inverse powers of log pi.pj/p2 only. 

This is first of all a very uninteresting regime from a physical point 

of view since in no physical process do all momenta go off to infinity--external 

momenta stay on the mass shell p: = m2. Second of all it is a trifle dis- 

appointing that the correction terms are only down by powers of logarithms, 

Corrections are, therefore, likely to be large at any present accelerator. 

Indeed, if the observed Bjorken scaling has any connection with underlying 

free fields, then its onset at such meagre,energies as SLAC provides means 

the very slow approach to W freedom possessed by non-Abelian gauge theories 

is really irrelevant to present day phenomena. By implication unfortunately 

we have no experimental grounds for conjecturing whether non-Abeli** gauge 

theories having W freedom are in fact being employed in physics. There is 

no satisfactory answer to this second matter which is known to me. However, 

theorists have been clever enough to skirt around the first. Here's how 

they do it. 

In inelastic electron scattering 

e(k) + P(p) -> e(k') + anything (136) 

one measures two hadronic structure functions Wl and W2 in the double 

differential cross section 

d 2 o(e + P de'.+ X 
dR' dE' 

a2 = e 4E2 mp sin4 5 I ~06~ s W2(q2,y) + 2 sin2 g W,(92, v 
)I7 

(137) 

where E and E' are the initial and final laboratory electron energies, 0 

is the lab scattering angle of the electrons, and 

q' = (k' - k)2 (138) 

v = 
q.p'mP = E - E' . 

The structure functions are defined by 

k Prston 
/ 

d4x eiq’x (P/[J~(x), J~WIIP) 

Spin 

;;(-gAo+~)wl($,‘) +(pA-~)(pu-y) y. 

(140) 
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(-q*)l/* 1s the mass of the virtual photon. As q2 +-m with 

and 
2 

,=A- 
2mpv 

held fixed (this is the Bjorken limit), then the distance x on the left-hand 

side of Eq. (140) becomes light like x2 + 0. 27 In this case one may make an 

expansion of the time ordered product of the electromagnetic current operators 28 

T(J (x) J (0)) = i! +)(x2) A h 0 n=O h"~"'Cxn a1 n (0) x ..* xa 

+ terms which contribute to Wl , (142) 

where the ~(")(x2, are c-number functions and the A...(O) are local operators. 

This device puts all the dependence on the proton variables into the matrix 

element of the bperator A. The proton momenta stay on the mass shell while 

the limit q* --t--m, 5 fixed is taken. The importance of all this is that 

the $+x2, satisfy renormalization group equations7'25 with the same B(g) 

and no q(g) and a different r(g) as the proper vertices of any theory 

describing the photon-proton interaction. 

How can the ~(")(x*, satisfy renormalization group equations? Consider 

the matrix element of Eq. (142) between proton states (dropping tensor indices) 

(PIT(J(x) J(o))lp) = CE(“)(x2) (pInIp) xcn) 
n 

If we apply the renormalization group differential operator 

(D - 7) (plT(J(x) J(O))\p) = 0 

(D - ?,, (PIA = 0 , 

with some anomalous dimensions ? and yn since each matrix element is re- 

lated to a ween's function of the underlying field theory, then 

(D - j: + ; ) ;(")(X*) = 0 . 

Furthermore, the Fourier transforms of the En are related to inte- 

grals over w2. More precisely, call 

&4(q2) = (q2)n+1 & J d4x eiq'x $"'(~*) , (143) 
acs 1 

then 1 dt 6= I 
VW2(V’ q*, 

2 
I 

= c(")(q2) . (143) 

"P 

In a free field theory each of the c(")(q2) can be computed and each 

is a constant, c n' for large -9'. What is the implication of this; namely, 

1 

dt En 
?Jw,( k,Q") 

I I 

----p-- =c ? n 
mP 

Inverting the Laplace transform we find 

(144) 

vW2(b12) 
&+im 

lim 
-q* -3 m 

2= 
d” p+l) cn (145) 

mP 
i g1 2Tri 'cc 

= F2(d , (146) 
to both sides and note 







' (1-Y ) 
~veYov"e - JkYo -+- oe + 2g I2 1 

g2 + g'2 
?er,te , 

1 
(162) 

with 

*lJ = I 

the ordinary vector potential, and 

and 

(163) 

(164) 

(165) 

a triplet of vector bosom. This tempts us to identify as the electric charge 

the combination of g and g' 

e = gg'(g2 + g' 1 
2 -l/2 

, (16.68) 

and to define the angle 'J by 

tan e = 5 

TIE currents in the model are then 

J 
-v = * Lra 

(l-r51 
2 *e ' 

(166) 

J3v = e sin 28 I (1-r5) 
$veravve - Jier, 2 Ji, - 2 sin2 B Jy . 

I (168) 

The phemmenology of this model is not appropriate for this set of lectures; 

it is lucidly treated in the references. 34 

What we wish to do here is imitate this construction and incorporate 

the hadrons, called quarks, into this SU(2) @ U(1) gauge model. If the 

weak gauge group is this, then the organization of quarks must be such that 

its L? is invariant under this group. Otherwise the gauge symetry of the 

full 9 = P strong +.Tz em and weak is broken and the theory is not renormali- 

zable. We now guarantee this by asking that all the generators of %S, Eq. 

(E7), commute with those of Y3 w, Eq. (156). We must still announce the 

transformation properties of the quarks under the weak gauge group. 

If we have only three quarks, called n, p, and h with the traditional 

quantum numbers, thenthe direct imita'tion of the lepton exercise would be to 

form a left handed doublet 35 

\ = g (1 - r,) 
*P 

(169) 
c + VA sin ac 

and the associated SU(2) currents 

t,(x) = %(x) r, 2 i+(x) . (170) 

8, is the Cabbibo angle. There is also 8 U(1) current, K:(x), which commutes 

with the t,(x) at equal times. The neutral SU(2) current J&(X) has a 

term 
1. 

-FT sin 9 c cos tYc 
1 ?lra 

(l-r51 _ 
2 VA + %ra 

(l-r71 
-2- jr n I (171) 
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which is a Cs = 1 neutral current. If this remains in the theory then the 

rates for decays like KE + bp and Kf + - - --17r v v would be comparable to the 

A? = L, charged transition K -+ PY. The experimental facts are that these 

B = 1, AQ = 0 decays are fantastically suppressed with respect to the OS = 1, 

AQ = 1 decays.32 Indeed, r(K : 1;) - lO-9 r(K -+ w). 

The easiest solution to this problem 36 1s to invent a nen quark called 

P' which has electric charge 2/j and just a tad of a new quantum number called 

charm. A second left-handed hadron doublet is constructed 

x(x) = i (1 - rg) 
$1 

(172) 

just so the AT = 1, AQ = 0 neutral currents are eaten up. At first 

sight this seems not only ad hoc, but silly. One learns to live with ad hoc -- -- 

things, but the initial silliness fades away as model after model dies under 

the very severe constraints established by the tiny allowed rates for AY = 1, 

AQ = 0 transitions. Four quarks would seem to be a real minimum, then. 

After carrying out the exercise done for the lepton SU(2) @ U(1) 

model one arrives at the hadronic weak currents 

which couples to electromagnetism, 

J-,(x) 

[ 
(1-r5) = r* $L 2 1 cm 9, ** + sin 6, Jrh 

+ G tr 
(l-us) 

p 02 CO6 4, *A - sin 8, ** II , 

(173) 

(174) 

which COUpkS to the Charged gauge bOSon, and 

J30 

=_e 
s1n 28 [ 

(1-r5) 
qpr, 2 

(l-r5) 
qp - qnr, --y qn + lfpIro 

(1-r5) 
2 +p1 

_ (1-Y5) 
- %ra 2 - q,, - 2 sin* 8 37 1 , (175) 

which couples to the neutral gauge boson. All AS = 1, AQ = 0 neutral 

currents are charmingly absent. 

Finally we want to discuss the gauge group SU(3)color chosen for the 

strong interactions. The history of an extra degree of freedom for quarks is 

very colorful. Long ago many of our friends tried to construct quark models 

for the baryons by building each of them out of three of the classical p, n, 

and h. Things worked out pretty well except that the total wave function 

for the baryon had to be symmetric. This didn't sit well with the F-auli 

principle, so a new quantum number, with a very colorless name like parastatis- 

tics or such, was announced. 37 '&is allowed the overall wave function to 

respect Fermi statistics. Only later when it was learned that more than three 

quarks were necessary to understand how the the TO +22y decay rate could 

be attributed to the famous triangle anomaly of electrodynamics did the 

idea receive better publicity. 38 The precise number of quarks suggested by 

the TO decay rate was Jp quarks, 3n quarks, and 3h quarks. The group 

structure of such a set of 9 quarks could be as large as SU(g), but if the 

gauge bosons are taken to commute with the SU(3) of hypercharge and isospin 

yet couple to the SU(3) that mixes the 3p quarks among themselves, the 3n 

quarks among themselves, and the 3h quarks among themselves, then the 

symmetry would be 

SU(3) Isospin 0 SU(3)Gawe . 
Hypercharge of color 

(176) 



The name color now is given to the labels on the 2p's, 311’s, and 3h’s. If 

the colors are red, white, and blue, then there is a red p quark, a blue 

p quark, a white p quark, etc. 

There is another cute consequence of the color scheme where the inter- 

action among quarks is via an octet of gauge bosons which are neutral with 

respect to I and Y, but couple to the color index. In such a scheme, 

only color singlet states have an attractive potential (Fourier transform of 

the Born appmxiastion) for the interacting quarks, while colorful collections 

of quarks havea repulsive force acting on them. This argument has been elabo- 

rated on in a very vivid and clear fashion by Lipkin at the Topical Conference 

following last year's SLAC Summer School. 39 If, by the way, one has four plain 

old quarks--the p, n, h, and p' of above, then each of them is tripled in 

number--becomes in red, white, and blue--when the SU(3) color gauge is imposed 

on strong interactions. This finishes our reasoning behind the choice of 

Lagrangian way back at Eq. (128). 

This completes the topics to be covered by me in this part of the 

lectures on non-Abelian gauge groups in hadronic physics. Let me assure you 

that there is no shortage of more complicated models of hadronic physics. 

E8ch of them incorporates the ideas I have presented here< each of them faces 

with more or less equanimity the severe constraints of A!? = 1, AQ = 0 non- 

leptonic decays. Some are very ambitious and try to unify strong, electro- 

magnetic, and weak interactions. 40 Various of these will be discussed by 

the practitioners at the Topical Conference after thi's school. 

I would like to add a word of outlook before departing from gauge 

theories. Once one had established that non-Abelian gauge theories with a 

shy symmetry were renormaliaable, it became clear that an overabundance of 

models could be built which shared only these properties. 41 Bringing to 

the problem the desire to have ultraviolet freedom, so approximate Bjorken 

scaling occurs, is the kind of attractive constraint that is needed to re- 

strict the enormous liberty one otherwise enjoys. Hints from rare K decays, 

baryon spectroscopy, and any other source is important to further restrict 

model building. Something like the four colored quark model we wrote down is 

one of the simplest that still passes all these obstacles. It also has 

sufficient simplicity tp suggest a variety of experiments to further probe 

its viability. If it turns out to be wrong in detail, I would not be at all 

surprised if something quite similar to it does survive. (This unabashed 

subjective opinion is brought to you by the Friends of Charm and. Color, NAL 

"I'm no good at being noble, but it doesn't take much 
to see that the problems of three little Pomerons don't amount 
to a hill of beans in this crazy world. Some day you'll 
understand that. Now now. Here's looking at you, kid." 

With apologies to 

Humphrey Bogart, Casablanca 

RFGGEON CALCULUS AND TAE POMERON 

This is the most far reaching lecture of the series. First of all 

I want to briefly review some of the phenomenological features of diffraction 

scattering and the Pomeron (_p). Next I wish to describe the motivation for 

two dimensional field theories 0 to describe the interaction and propagation 

of 2's and discuss how the behavior of partial wave amplitudes near J = 1, 

t = 0 can be studied via the renormalization group9 applied to these field 

theories. Finally, I will discuss the consequences of a simple application 

of these ideas. 

A serious experimental review of diffraction phenomena will be given 

as part of this school by Leith. 43 Tne salient facts are 44 
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It is clear that one must either make a choice among these theories 

in order to proceed or give a dab of each. 54 I leave the latter course to 

the reviews mentioned. Here I will discuss the view from the angular momentum 

plane which is, to be sure, general enough to encompass any of those alterna- 

tives. Yet I will adopt a more restricted outlook. First of all, I will 

only tolerate cross sections which do notfall in s, even as a small power. 

Secondly, I will concentrate on a t-channel rather an s-channel description of 

the diffraction mechanism called p. 55 This will lead to a preference for 

a,(s) which slowly rises to either a constant or to an asymptote which grows 

as a very small power of log s. My prejudice exposed, let me proceed. 

It is sensible to establish some conventions at the outset. When 

discussing elastic scattering A(pA) + B(pg) +A(pd) + B(pi), I will designate 

the invariant amplitude as TAB(s,t) which is a function of the standard 

scalars. 

s = (PA + p,)2 , (182) 
and 

t = (Pi - PA)2 . (183) 

We will deal with spinless objects of equal mass m. The elastic cross sec- 

tion is 

daAB(%t) 
dt = 16a s(slT 4m2j ITAB(S't)12 ' (184) 

and the total cross section is given via the optical theorem as 

q(s) = 1 
S(8 - 4m2) 

rm TAB(",O) . (185) 

We will not need to delve into the vagaries of thresholds, signature and 

such56'57 (th e references are riddled with such complications), but will define 

the t-channel partial wave amplitude F(J,t) for even signature (physical 

particles at J = 0, 2, 4, . ..) as 

F(J,t) = I- ds s-'-l 
1 

Im TAB(G) , 

whose Mellin inversion is 

c+im dJ 
Im TAB(“,t) = f 5zs J F(J,t) > 

c-im 

(186) 

where Re c lies to the right of all singularities in F(J,t). This is the 

partial wave amplitude analytically continued in J and t (from 'c 1 4m2 

to t 5 0) which contains the vacuum singularity: Ij. 

Now what is all this stuff? Well, what we have done via the integral 

transform (186) is go over from a description of the scattering smplitude 

in s and t to a description in t and the conjugate variable to log 6, 

called J. Let's rewrite (1%) calling Y = log 6 (yes, Virginia, it's 

the rapidity) 

F(J,t) = I- dY .-Jy Im TAB(Y,t) . (188) 
0 

It will turn out to be more graphic and eventually simpler to discuss F(J,t) 

than Im TAR(s,t). We can always recover the latter by doing the integral 

in (187). 

To acquire a feeling where we're at, and where we might go, let's 

consider an Im TAB(s,t) of the form 

Im TAB(s,t) = sa(t)(log s@) (189) 

= ,Wt) yP(t) , (190) 

which is very much like the experimental situation outlined above if a(O) = 1. 

Indeed the Froissart bound tells us 
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a(o) 5 1, (191) 
TAB(S,t) = irA(t) rB(t) s a(t)(log SP) , (198) 

B(O) <- 2, when 01(O) = 1. (192) 

a(0) = 1 , (199) 

The F(J,t) from this ansatz is 

(193) 

This is a branch point in the J plane at Ol(t) unless B(t) = 0, 1, or 2 

(or any integer, but never mind). When B(t) = 0, the singularity in J is 

a simple pole at a(t), and the cross section 

oy(s) - s40b1 
(194) s -am 

So we want 40) = 1 to have a more or less constant cross section. When 

B(O) # 0, a(o) =.I, 

UTAB( s ) - (log s)B(O). (195) 
s +m 

With no further information on the scale of s in the logarithm one would 

conjecture it was a typ.icalhsdron mass or threshold = 1 GeV/c2. so we 

will do. 

To incorporate feature (a) of the "salient facts" then, we choose 

CL(O) = 1 and after that p(t) and the form of Cl(t) away from t = 0 

become the subject of theoretical discussion. Enter here the "blunt instrument" 

of experiment. To incorporate feature (b) we ought to treat signature 

properly. We won't. However, we don't do a terrible injustice when we write 

to be our improved ansatz. 

Some things are known or suspected about the vertex functions rw44 

They seem to conserve s-channelhelicity (sometimes) and in diffraction dissoci- 

ation A + B +A* + B they seem to relate the parity and spin of A and A* by 

PA = PA*(-l)JA-JA* . (200) 

We will have nothing to say about these amusing features. 

Our first task is to recall what the p (characterized by a(t) and -- 

B(t)) ___ cannot be. A simple guess for a: and B would be 

cf(t) = 1 , (201) 

B(t) = 0; (202) 

namely, a simple fixed (not moving with t) pole in J. This is kind of an 

"optical model" (whatever that is) result: 

TAB(s, t) = iS f(t) . (203) 

Over a decade ago 58 Gribov showed that this is in conflict with unitarity 

in the t-channel. So our elders turned to the next simplest guess 

cY(t) = I. + a't ) (203) 
Re TAB(s,t) = 0 (196) 

s(t) = 0 ; (204) 

or 
Tm(s,t) = i Im TAB(s,t) . 

Finally we can incoprorate feature (c), factorization, by writing 

(197) namely, a simple moving pole in J. There were hints over a long period of 
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time that this also was in conflict with unitarity. 59 It took some time to 

show that with the conjecture (203) and (204) one was forced to conclude that 

r(0) = o! 60 so ,p, invented to account for VT pi constant, decoupled from 

OT. Clearly, p cannot be a simple moving pole with a(0) = 1 and CZ' finite. - 

Enough said about what p cannot be. The rest of this lecture is 

devoted to a study of a frsmework, called Reggeon field theories, to discover 

what the E can be and some discussion, within this framework, of models 

which give us hints as to what p is. 

The first derivation or motivation for Reggeon field theories comes 

from the work of Gribov.8 His procedure was to study sets of "hybrid" Feynman 

graphs for TAB(s,t) when s --)rn and t was fixed. He used the language of 

perturbation theory for a h3m3 quantum field theory but didn't really sum 

order by order in A 
3 

. Instead he made partial surmnations to acquire four 

point amplitudes which were presumed to have Regge or power behavior in 

subenergies. These modified four leg amplitudes were then substituted into 

further Feynman graphs of the theory and the interaction of the Regge singu- 

larities was studied. He abstracted from his study of very large sets of 

graphs a set of rules (the Reggeon calculus) for writing down directly the 

Reggeon interactions he discovered. He then conjectured (1) any field theory, 

not just 43 , would give rise to essentially the same set of rules. (SIE311 

and inessentialmodifications would be expected, and we'll come to them later.) 

(2) If one were able to sum all the graphs of the Reggeon field theory, then 

the resulting partial wave amplitude would correctly represent diffraction 

phenomena near t = 0 and up to order (l/s). I have no intention here of 

going through any or all of the steps followed by Gribov. 'Ihe dedicated 

are referred to Reference 8 for the classical point of view and Reference 55 

for a pedagogical treatment. Our procedure here will be to study the t-channel 

discontinuity formulae 61 for Reggeons as an heuristic way to motivate the 

Reggeon field theories. 

Let's consider the two Reggeon exchange contribution to the elastic 

amplitude T*R(s,t) as shown in Pig. 10. The partial wave projection 

(ignoring signature momentarily) leads to a two dimensional integral over the 

'masses" of the Reggeons, both with trajectory a(t): 

F 2 Reggeon(J't) 

dtl dt 
2 

e(-a(t,t,,t,)) 
+,t,tl,t2) i#J,t,tld2) 

-a(t,t,,t,) J - a(t,) - CX(t2) + 1 ' 

where 

o(x,y,z) = (x + y - z)2 - 4xy . 

(205) 

(2@5) 

'he functions N2 are to be interpreted as the amplitude for transition of 

two particles into a Reggeon of (mass)* = 'cl, spin CX(tl) and a Reggeon Of 

(mas~)~ = tg, spin Cr(t2). The factor (-a(t,t,,t,))-'I2 is a kinematic con- 

vention which will be useful in a moment. 

Why is the integration two-dimensional? Well, we have a loop integral 

in four dimensional space-time to begin with--a loop of Reggeons, but that's 

a11 right. Now we make a partial wave projection via a ~(~,~) function 

and integrate over 0, a polar angle, and 0, an azimuthal angle. That leaves 

a two-dimensional integral. In the hybrid Feynman graph procedure one writes 

down some diagram then takes the infinite momentum limit, say p 3 +m. Since 

the particles are on the mass shell, if z = (p,,p,) is held fixed, then 

pG +m also. Tne remaining two degrees of freedom in the transverse direction 

are precisely the ones integrated over in (205). This isolation of a two- 

dimensional space for the discussion of dynamics is familiar from the eikonal 

approximation, relativistic or non-relativistic. There the elastic amplitude 

for large 6, fixed t is 62 

TAB(s,t) = is I d*b ei'*?[e i&r;3 _ 11 (207) 
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t = -1q2 > 

and 2 is the two dimensional impact parameter conjugate to the two momentum 

2. The dynamics resides in the eikonal phase factor X(s,??). In any case, 

the two dimensional integral is not coming from an approximation. 63 

The integral in (205) is the explicit representation of a branch point 

in the J-plane arising from the exchange of two Reggeons a(t). It was first 

found by Amati, Stanghellini, and Fubini 64 and Handelstsm.65 Its properties 

were further studied by Gribov, Pomeranchuk, and Ter-Matiirosyan. Cl The 

branch point due to two Reggeon exchange occurs at a! (2)(t) given by 

d2)(t) - 1 = 2 a 
I (3 -l I 

If two Reggeons can be exchanged, then, consistent with t-channel 

quantum numbers, any number may be exchanged. (In a sentence, that is 

unitarity.) From n Reggeons a branch Point at 

cP(t) - l=n 
la(>) -4 

(210) 

arises. Beyond the positions of these branch points, some information is 

known about the discontinuities across the branch lines. 
61,66 

Now here comes the action. Suppose a(O) = 1 for the Reggeon; that 

is, suppose it is the 13 of song and saga. Tnen we are informed for every n 

a(")(o) = 1 if a(O)=l. (211) 

So all 2 branch points lie at J = 1 e t = 0, when a(0) = 1. 'Ihat is 

what has made the p so remarkably difficult to get a theoretical handle on. 

Right here, however, we see why the ,P decoupling result for an a(t) = 1 + fl't 

trajectory is not much to worry about. The collision of all those branch points 

at t = 0 most likely gives rise to a complicated singularity and no rule 

known to man requires a(t) to remain analytic at t = 0. 

Before I launch into the marvels of Reggeon calculus arithmetic, 

I want to develop an analogy which will give us some useful hints how we 

are to go about resolving the cut-pole collision problem. Let's think about 

the radiative corrections in quantum electrodynamics to a charged boson 

propagator of momentum P. With no Photon corrections the propagator is 

2 
(m 0 

- d,-' 

where m 0 is the bare mass. To order e2 (Fig. ll), the propagator develops 

a branch point at p* = m2 (m is the new, renormalized mass at this order of 

2). If the photon had a mass m 
Y' 

then this branch point would occur at 

p2 = (m + np2. !lBe massless photon, then, is responsible for the coincidence 

of the pole and branch point. To order e4 there arises a second branch 

Point at p' = (m + 2mr)* = m2, since "r = 
0. Get the picture? There are 

an infinite number of branch points at p2 = m2 , because the photon is mass- 

less. This is known as the infrared problem. In electricity thepry one has 

learned by one technique or another to sum up all the photon corrections. 67 
2 -1 l%e aspects of the result relevant here are that (III: - p ) changes into 

2 2 -l-r(e2) 
(m -P) (213) 

where r(e2) is known as a power series in e2 beginning with e2. (Now 

it turns out that in electrodynamics, y is gauge dependent and actually 

vanishes in one gauge. For the purposes of motivation being pursued here, 

that is an irrelevancy.) One can see directly from (213) the series of 

branch points of p2 = m2 arising from expansion in e 2 

2 
(m -P) 2 -1-r(e2) = lm2 - p2)-zo [10g(m2n~ p2)3" (-r(e2))" . (214) 
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describe the propagation and interaction of these quasi-particles and employ 

the renormalization group‘to solve this field theory in the infrared limit: 

E 40, z-0 (J-,1, t-,0). 

The next logical step is to note that just as one can define the two 

particle--n-Reggeon amplitudes Nn, one can, by considering the Reggeon discon- 

tinuity formulae for the Nn, find pure Reggeon amplitudes Mn. these satisfy 

discontinuity formulae among themselves. This point allows us to continue the 

discussion with consideration of Reggeons alone. Particles will enter later 

(see Fig. 13). 

So we wish to describe a field theory In two space dimensions 2, con- 

jugate to ;, and one time T, conjugate to E. Of course, 2 is just the 

impact parameter b" that enters the eikonal formula, Eq. (207). T is i 

times the rapidity. We'll denote the field which gives the excitations of 

the theory as b(?,~). As usual the objects of interest will be the Green's 

functions for n Reggeons incoming and m Reggeons outgoing: 

,(*,d(;: 1, Txl’ -.. , *’ TX*; Tl, Tyl’ 2 *.. > Fm, ‘lp 1 

= (OIT(~+(?l, Tyl) -*- @+(yt,, Tym) dl, TX,) *.. @($, T~))IO) . (224) 

Whatever field theory we construct will consist of a free theory 

9 Free and an interaction characterized by a bare coupling hg. To whatever 

order in b we solve for G(n'm), we are guaranteed, if we take all graphs 

to a given order, to satisfy the Reggeon witarity relations. If we are able 

to solve to all orders, so much the better. Even a solution which is an 

asymptotic formula in some regime of momentum space satisfies the unitarity 

relations. A Reggeon field theory then may be viewed as a trick for satisfy- 

ing t-channel unitarity. This is clearly independent of a(O) = 1. 

To proceed we need a field theory. I will describe one at great length 

although I trust you will see that most of my remarks apply to a vast set of 

'Innis is the energy-momentum relation of a non-relativistic quasi-particle 

with 

a;, = 1/2m (227) 

and ';oass gap" 

s = 1 - cxo, (228) 

(225) 

Reggeon field theories. 55 Most of the sophisticated developments will be 

described by White at the Topical Conference. 

We'll start with a bare linear trajectory 

CL&t) = a0 + a;" 

which gives the E, 2 relation 

E(a = CY;;r' + (1 - CXo) . (226) 

to steal a little language from our many-body friends. The free Lagrangian 

which describes this is 

Varying the action 

AF ree = i d2x d? gFree(&) 

gives the Schrb'dinger equation 

(229) 

(230) 

(231) 
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which is, of course, just the configuration space version of the original energy 

momentum relation. 

Now for an interaction. In hybrid Feynman graphology or the multi- 

peripheral model or whatever there appear k couplings. a In two space 

dimensions only 2 and 0 4 are renomlizable. So following our continuing 

prejudice, we will ignore any couplings in 2' higher than @ 4 60 . To begin with 

actually we are going to ignore the *4 coupling as well. The heuristic argu- 

ment for this is that these couplings always involve the emission of more 

Reggeons at a vertex than do 03 coupling. In the infrared regime (E w 0, 

z- 0) plain old phase space will make e4 less important than QJ . !&is 

is born out by detailed calculations. 69 Furthermore, a cubic coupling holds 

to a triple g vertex which is of prime physical interest. 

so we choose 

ir 
P$T) = - -g [Q+($T)2 Q(j;‘,,) + Q+G,T) @(r;‘,T)*l > (232) 

for our bare triple ,p coupling. The i is dictated by signature, r0 is 

real. The theory defined by 2' = ZFree + 4 has three constants in it 

a& A0=1- a. 0' and '0' !tbese will be renormalized to a', A = 1 - 01(O) 

= 0, and r respectively. Different underlying theories: multiperipheral 

model, dual models, gauge field theories with four quarks, charm, and N(3) 

color--all these differ here in the value of 0" 0' *Of and r 0. They will 

give, when solved to all orders, different Cz' and r, but if they have any- 

thing to do with total cross sections as we know them, each will yield 

a(0) = 1, A = 0. What the renormalization program does is to leave to the 

future the determination of a' and r from some remarkably majestic solu- 

tion of a non-linear quantum field theory. _ Now it simply uses them as parameters, 

eventually phenomenological, for the Green's functions or proper vertex functions. 

This is an intellectual retreat from the more grandiose ambitions one may harbor 

to really compute the parameters of the theory. It is very much akin to pro- 

cedure followed in many-body physics of expressing the physics in appropriate 

temperature or frequency domains in terms of %mp" parameters describing some 

quasi-particle-plasmon, magnon, Cooper pair, or whatever. 70 Then the effective 

or mean field theory of those quasi-particles yields up the physics. This 

classifying of lump parameters for the Reggeons is a new departure in hadronic 

physics. For those wishing to predict all parameters it must be regarded as 

a convenient intermediate level theory. 71 If our experience with electrodynamics 

is at all applicable, a certain pessimism is in order about going further 

than the lumpen program. (I don't share this pessimism, but I thought I'd 

throw it in for the cynical among US.) 

Now in the spirit of renormalization we seek a solution to the theory we 

have established with parameters a', I, and A = 0. Since this is a theory 

with zero renozvalized m&66, the Infrared problems are serious. 14 We will choose 

a renormalization point in the E, 2 phase space which is just like the 

parameter p of the first lecture. To do this we first remark that E and 
-4 q play very separate roles in Reggeon field theories. So we may choose sepa- 

rate E, and 2 normalizations. 'Ihe only sure symmetry of P is a rotational 

symmetry in two dimensions. We will normalize away from the branch points of 

perturbation theory at 

Ecn) z %? + n(l _ ao) 
n (233) 

by choosing the Ei of the appropriate vertex functions 

and -4 qi = 0. 

To guarantee that the renormalized mass gap be zero we require the 

proper vertex function for one p in--one p out to vanish at E = 0, z2= 0 
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; 

This analytic structure is enough to avoid decoupling results, so the p can 

again be held accountable for the structure of UT(S). 

Finally one couples particles back into the theory by the following 

device. We announce there is a coupling constant which takes two particles 

into n Reggeons. Then a hierarchy of contributions to TAR(s,t) for large 

5 near t = 0 emerges (Fig. 34) 

TAB(s>t) 

43 1 
S(lw3 5) 1 I$t(log s) 

d%,) 
1 + s(log 51-l F$(t(log 5) 

453,) = ) 

+ s(log s) -2+r(g1) $,B(t(log s)z(gl)) + . . . , (262) $7~) = rnrB - fAB/bz s)(lw 1% 8) 112 + . . . (266) 

where the are undetermined. We can be sure, however, that 

so the leading term factorizes. In perturbation theory y(g1) is a small 

negative number and z(g,) = 1. We have for 

u?(s) _ (log s) 
-r(gl) 

5 -im 
rnrB - fA,B/(b 6) .*. , 

where the a arises from the signature argument given long ago. 

Now we will stop and assess our accomplishments to this juncture; 

after that I'll toss out a few conjectures and speculations and then stop and 

toss the ball to the Topical Conference and the audience, 

First of all within the context of a specific model we found that the 

renormalization group coupled with Reg.&n field theories is a good tool for 

investigating the nature of the J-plane near J = 1 when t is small. Un- 

fortunately there is some ambiguity in the formulation of the input or free 

,P theory and less, but residual, ambiguity in choosing the interaction. The 

natural course of action in such an instance is to seek a principle outside 

of the narrow framework of the Reggeon field theories alone. One such principle 

called the renormalization group bootstrap, 73 essentially selects out theories 

which are IR free. This avoids most of the computational uncertainties 

associated with IR liberty. For example, among the set of theories suggested 

by s-channel unitarity with 

TAR(s,t) = is(log s)' 
Jy(a fi log s) 

(a fi)' 

as the input, only v = 0 is permitted by this hypothesis, leading to 74 

(265) 

essentially the second "casual" fit of Jacob given earlier. There may be 

other principles whichhelprestrict these Reggeon theories, but they haven't 

been promulgated yet. 

There are a host of other applications for Reggeon field theories 

besides the elastic amplitudes which we have concentrated on here. 'Ihe fox-mu- 

lation and administration of rules for production amplitudes and inclusive 

processes is somewhat complicated by signature but can be treated." The 

heuristic treatment by the Soviet authors in Reference 9 is probably accept- 

able. 

A more demanding question is 'khen are these theories applicable? What 

range of s do we need?" Ihe answer to that is quite likely "Right now." 

First, one has explicit correction terms to the leading behavior u,(s) 

- (log s)-r, -y small, as given in (264). With these correction terms one 

can well imagine describing data through the ISR range. Rut why should that 

be meaningful, since to get any of these results one sums an infinite number 

of g insertions and that would seem to require an infinite number of large 



subenergies. If the p insertions were only in absorptive parts, where there 

are thresholds then this might be correct. Even then our experience with 

multiperipheral models tells us that the asymptotic formula (6 CY for that 

model) may be a smooth envelope of various rising and falling n particle 

cross sections. So it may also be here where only a finite number of ,p 

links is being smoothly represented by the full sum. 76 Actually the _P's 

enter in Feynman integrals whose variables are integrated over all of phase 

space (no threshold step functions as In absorptive parts). Near overall 

J=l, t= 0, the leading behavior comes from a small region of the multiple 

integration phase space. The renormalization group sums up those leading 

behaviors. (See the quote from Bjorken and Drell before the renormalization 

group lecture.) 

Perhaps a closing note on the g decoupling theorems is in order. 57,60 

These theorems were predicated on the simple E]: a(t) = 1 + w.'t, which we know 

to be unreliable. Almost kinematic arguments led to the vanishing of the 

triple p in inclusive reactions and from there down the primrose path to the 

decoupling of ,P from elastic amplitudes at t = 0. In the absence of just 

a simple ansatz for ,P, the vanishing or not of the triple ,P vertex becomes 

a dynamical issue, since, for sure, the bare triple ,P vertex does not vanish. 

It turns out that in each of the models examined so far, the triple ,P vertex 

vanishes slowly and non-analytically near t = 0. Whether this has any 

immediate bearing on inclusive measurements in diffraction dissociation in 

the triple Regge region at small t, I leave to the lectures of my colleagues, 

the discussion sessions, and the famed Topical Conference. 
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TABLE 1. The quantum number assignments for the four quarks in a model 

with "charm." To these numbers may be added a gauge label. 

When the gauge group is N(3), each of the quarks comes in three 

varieties or colors. 
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Figure Captions 

Figure 1. A contribution to G (4) in a. h m4 . 0 o fveld theory. The integral 

for this contribution contains a factor I'(2 - D/2) in II space- 

time dimensions. Ihe pole at D = 4 of this gamm function are 

where the infinitiesofthe local quantum field theory are hiding 

in the dimensional regularization technique. 

Figure 2. The N field Green's function or correlation function. 

Figure 3. !I& definition of the renormalized coupling parameter in terms of 

the four point proper vertex function at a synrmetric momentum point. 

Figure 4. The determination of the effective coupling constant 'i(t) from 

from integrating d&t)/dt = - B&(t)). The value of i(t) at 

t2 
must be the same whether we begin integrating at t = 0 or 

beginat t=tl>O. 

Figure 5. A possible behavior of the effective coupling constant g(t) 8s 

the scale 5 Of momenta, 5 = et, varies. Whenever g(t) is 

small, Z(t) << 1, one my determine the proper vertex functions 

of a field theory by a perturbation expansion in this small parameter. 

Figure 6. The shape of B(g) near e. simple zero determining the infrared 

behavior of a field theory. 

Figure a. The shape of the potential V(y) for $ > 0 and for pi < 0. 

In the latter case the minimum of the potential and thus the ground 

state (or vacuum) shifts to y = + (-6$)ho)1/2. The vacuum no 

longer explicitly exhibits the full symmetry of the Iagrangian. 

Figure 9. The behavior of W2(k,q2) in W free field theories. AS -9' 

increases, it looks more and more concentrated near 5 = 0. 

Figure 10. The two Reggeon contribution to the t-channel partial wave amplitude. 

Figure 11. Radiative corrections to a propagator due to massless photons. The 

first term has a pole at p* = m2; every other term has a branch 

point at p' = m2. 

Figure 12. !Be n-Reggeon contribution to the discontinuity of the t-channel 

partial wave amplitude. The crosses on the Reggeon lines indicate 

that the Reggeons are 'on shell:" Ji = a(ti) or Ei(<) = 

1 - a$.). This is like a unitarity formula in ordinary field 

theories. 

Figure 13. The two Reggeon cut discontinuity in the four Reggeon amplitude. 

Reggeon unitarity relations like these allow us to discuss Reggeon 

interactions separate from particles; they are tacked on later. 

Figure 14. The hierarchyof Reggeon contributions to oAB(,) arising in the T 

renormalization group treatment of Reggeon field theories. 

Figure 7. The shape of B(g) near a simple zero determining the ultraviolet 

behavior of a field theory. 
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HIEPARCRY OF HADRON PHYSICS 

Building Hadrons 

Quarks in Bags 
Charm and Color 
Static Properties: 
Masses, Magnetic, 
Moments, . . . 

f ------z I 
Giant Grand 
Synthesis 
(Not available 
in time for this 
school) 

Building Reggeons 
Hadron Bound States 
s-channel unitarity 
htcduction processes 
Correlations in in- 

Figure1 

p2 CYPj 1 : Pj=O 
j=l 

p1 

8 

PN 

Figure 2 

441 



Pl p3 

=??!!A. 
Pi'Pj =$(SS. 1) lj - 

(2ny+l ' 2 m = Ap2 

P 2 p4 

Figure3 

at) 

g(t=o)=g ’ 
&,t2) = mt,), t2-t1) 

at,! = &z,tl) 

I I 
I >t 

5 't2 

Figure4 

442 



. 

W limit 

B(g) = Bl(g-gl), &< 0. W stable point. i(-t) -1 q' 
t-b+- 

g1 small; 

UV liberty. gl = 0; W freedom. 

Figure 7 

Y 

Figure 8 

LJ--c$ >> -6 vw2(m2, 
*lI!3L+- mP 

J-6 

e 
0 1 

Figure 9 

Figure 10 

44: 



R
 



The Beginner’ s String* 

SLAC-PUB-1460 
03 
July 1974 

Jorge F. Willemsen 

Stanford Linear Accelerator Center 
Stanford University, Stanford, Ca., 94305 

Preface 

Professor Abarbanel has asked me to prepare a set of notes on the 

etrlng model to supplement the material being presented in his lectures. As 

a working hypothesis it was assumed that the participants know a modicum 

about this field. Combining this premise, the extensiveness of the work 

done on the model, and the constraint of space limitation, it seems to me 

a “survey” format is appropriate for these notes: no pretenses to completeness 

are malntalned, and the notes are in no way a review. Rather, they are designed 

to introduce the vocabulary of the field, to provide a source of references 

to genuine reviews, and to the original literature only where reviews are not 

available. 

(To be presented at the Summer Institute on Particle Physics, Stanford 
Linear Accelerator Center, Stanford, Ca., July 29 - August 10, 1974) 

A. What is the String Model? 

The string model is basically an attempt to understand what physical 

structures can underlie scattering amplitudes of the type originally written 

by Veneziano? The hope is that by understandidg the physics of these amp- 

litudes, one may learn something about the structure of hadrons. This, in 

turn, should lead to a variety of new predictions. 

An example of a Veneziano amplitude, for 2 to 2 scattering, is 

(1) A+,+)=@tr- d,,I-‘l*l+ (sea f b--q; 

wx,q.>s -P(wt~~/P~%+~~ f Jpdt *Xx-’ (I~~W~ 

Veneziano prcposed this simple expression for the amplitude because it 

Incorporates many desirable features such an an amplitude should have: Regge 

asymptotic behaviour, crossing symmetry in the case of linearly rising tra- 

jectories, daughters with residues in fixed ratios, saturation of super- 

convergence relations, and duality between Regge poles and resonances. We 

wiil discuss other properties of Veneziano amplitudes later. 

For now we want to focus on a different feature of Eq. (I), namely, 

that it is easily generalized to have an arbitrary number of external particles. 

and that the generalized amplitudes share the good features of the original 

amplitude. A very concise way to write a term in such an amplitude is the 

following:2 

*Work supported by the U. S. Atomic Energy Commission. 

445 



where the ‘propagators” are 

and the “vertices” are 

‘. 

lo these equations, ai and ap’ 
_ . 

n are simple harmonic oscillator creation and 

annihilation operators, . 

J&y&, &1 5 -4-a~ &a). 
The “ground state” 1 02 is annihilated by the ai : a! J O> = 0. Using 

simple pronerties of these operators, and the integral representation for the 

prc$)agators. one can easily calculate an integral representation for An ana- 

logous to the integral representation for A4 given in Eq. (1). The properties 

of the amplitude can then be studies from the integral representation. Hist- 

orically, the integral representation for the amplitude was proposed first, 3 

and then it was discovered that the factorized “operator” form Eq. (2) was 

possible. This factorization property was a major step forward in arriving 

at an Interpretation of the physics of the model. 

To see why, examine what the vertex creates from the ground state 

(which is interpreted as the initial, unexcited external particle): 

+ - ..-.. 
A general term In this power series expansion of the exponential looks like: 

Ar.y state In the bracket is an eigenstate of the “mass operator” R, with a 

definite eigenvalue. and we see that for a given tensor structure of n indices 

as above, there are an infinite number of such eigenstates. Furthermore, 

the fndex “n” also runs to infinity, and so V creates states of all possible spin 

from the ground state, i.e., excites the initial hadron into all possible Regge 

recurrences and daughters. 

However, the propagators A only have& for a single value of R, 

namely R = s+ n (0), for fixed 8. Let us suppose, for example, that 

( 8+0(O) ) = 2. Eigenstates of R can be 

The first, doubly occupied, state has two tensor indices, and so maximum 

spin 2. The singly occupied state has spin 1. However, there is a second 

spin one state which is obtained by appropriately anti-symmetrizing the tensor 

indices pI and p2. And so on. 
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Generalizing, we can readily see that at a pole, there will be a single 

state with maximum spin M = (Y(0) + a and a large number of states of lower 

spin, making up the daughters. The degeneracy of the daughter levels is very 

large. In fact, asymptotically one finds that the total number of states at a 

given pole grows exponentially (Ragedorn degeneracy. ) 

This Is the famous requirement that dual amplitudes will be dual only if 

the direct channel spectrum is very rich. Most of the degeneracy of the model 

could be removed if we used only a single harmonic oscillator operator a 
P’ 

Instead of an infinite number of oscillators apt,. In fact, one early attempt was 

made to construct dual amplitudes using only a single harmonic oscillator. 

The resulting amplttude was not dual. 

But what physical system has just the spectrum of R? It Is clearly the 

,,yiolln string, that Is, the continuum limit of an infinite number of mass points 

experiencing harmonic forces between them. Eq. (2) can now be pictured as 

PO unexcited string coming In, having momentum dumped in by a series of 

external potentials, aod finally re-emerging as an unexcited string (see Fig. 2) 

J!z&!p 
2.3 

This is clearly a very unsymmetrical way to view a reaction whose amplitude 

Is supposed to be crossing symmetric and dual. In the process of trying to check 

the crossing and duality properties of dual models directly in the operator 

formalism, a very interesting discovery was made.’ It was that when the 

amplitude wss written in one way, less intermediate states appeared than 

when the amplitude was written in another way. In other words, some of the 

states created by the vertices were spurious. (See Fig. 3) 

Now, this was very interesting indeed, because many of the states of the 

type exhibited in (6) are unphysical. If a timelike oscillator creates a state, 

that state has negative norm. This will show up in certain scattering amplitudes 

by having negative residues where only positive residues are allowed. Probability 

will not be conserved. 5 

A lot of work has gone into showing that the spurious states that were discov- 

ered are “ghosts” of this type, or else states of zero norm, and can be eliminated 

consistently from the theory. All of this “ghost elimination” occurs for a price, 

however, and we will come to that. 6 

Once one gets accustomed to the idea that the Veneziano amplitude is 

telling us a hadron is behaving like a string, it is natural to ask whether a form- 

alism to deal with this physical picture exists, so that the rules for writing amp- 

litudes can be derived -. Elimination of unphysical states of excitation should also 

follow naturally from the formalism, as in quantum electrodynamics. In a striking 

generalization from the action principle describing the motion of a classical free 

point particle, Nambu proposed that the motion of a classical string be described 
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by an action principle based on7 

As indicated in Fig. 2, a string propagating in space-time sweeps out a world 

sheet. In Eq. (7). ‘s are the coordinates of the sheet, and g is the deter- 

minant of the metric tensor on this two-dimensional manifold. The string is 

actually propagating in the full four-dimensional Minkowski space, however, 

so the invariant interval on the sheet is 

(‘3) 
where 

4 
+L 

These exuressions are only compatible if 

Given this expression for the action, one must try to proceed canonically 

to obtain the equations of motion of the system, any constraints that may have 

to be satisfied, and attempt quantization. After all the dust has. settled, it turns 

out that the spectrum of excitations implied by (7) is indeed that of the string; 

to show this explicitly, it is necessary to impose certain conditions of constraint 

on the states of the system. a These conditions turn out to be just the “ghost 

elimination” conditions that we mentioned before. 

However, WC should recall that in electrodynamics the “ghost eliminating” 

condition ra,AFIc+‘tV&= 0 is necessary only if we work in the . \ 
Lorentz gauge, which is expressed classically by (aft) = 0. If we work in 

the radiation gauge, we can solve for one spurious photon degree of freedom 

explicitly, and not have to impose conditions on states. An$logous choices of 

gauge can be made in the string model, and the results we just mentioned 

are applicable in the analogue of the Lorentz gauge. 

A different choice of gauge 1s possible.’ We can motivate it by observing 

that one of the sheet coordinates, y&Y is like a ‘proper-time” variable; 

clearly one of the Minkowski variables, X0, is a time variable in some frame, and 

so we expect things can be simplified if we identify these two to be the same. Working 

IO a gauge of this type, it was found that the theory is not Lorentz invariant if the 

Minkowski space has only four dimensions. For the Lorentz algebra to close, It 

Is necessary to have a 26 dimensional space-time. What is more, the ground state 

haa to be a tachyon, (m2 = -l)! (ActualLy, these catastrophes can be dug oqt of the 

manifestly covariant gauge as well, but we won’ t go into that here.)6 

We have, then, a well-defined action and a perfectly well-behaved classical 

theyy. Somewhere in the canonical quantization of the theory, something goes 

wrong, and no one quite hnows what it is. I will mention some recent attempts to 

deal with this question as we go along. 

B. How Can A Hadron Look Like a String, Anyway? 

Hadrons, as opposed to leptons, are not point objects. We think they are 

composed of point objects, maybe quarks and gluons, which, dancing to some unknown 

ryhthm, give the hadron a spatial extent that can be measured experimentally. In 

ehort, we are used to visualizing a hadron as a little cIump of matter - but a string? 

To gain some insight into how a hadron can look like a string, 10 
just remem- 

ber the Feynman-Wilson interpretation of the inclusive distribution in a plot of 

rapidity vs. pA. For moderate values of pA , say pL s 400 MeV, the “central 

region” is supposed to look like this: 
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This figure 1s supposed to represent a “snapshot” of the typical, universal, 

interior hadronic matter distribution in terms of partons. 

Imagine that at energies 80 large that we can see very many partons, it 

turns out that we can better and better interpolate between the parton-points on 

this plot by a smooth curve. In this case, our “snapshot“ of the hadron would 

look like a string! If we keep the longitudinal momentum fractions as the “length” 

axis, and Fourier transform from p 
J. 

-space to x 
.I4 - space, we get just the 

Interpretation that follows from the GGRT formulation of the string model. It 

1s because of this precise matching of the string formalism with the parton 

language that we will develop the parton language to gain physical insight. 

Now, what can it mean to have this kind of smooth distribution of partons? 

Again, recall that the Feynman-Wilson picture of scattering in the Regge region 

has the domin?.nt contribution to the amplitude arising from the following steps: 

1) The hadrons convert virtually into large numbers of partons. including a 

%ee sea” of partons with infinitesimally small fraction of the parent’s long- 

ItudInal momentum; 2) the wee partons forget which hadron they belong to 

because all the hadrons’ wee seas look pretty much alike; 3) recombinatiou into 

hadrons occurs. 

The probability for these things to happen can be estimated, 1 ’ and depends 
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011 the distribution function for wee partons in the hadron. If this goes like 

C&d% > CY is the Regge intercept for the Regge behaved amplitude that 

results. Well, this is just multiperipheralism. and by looking at graphs in 

simple theories, one can see these dominant contributions occur when the cascade 

from the parents into the wee sea proceeds sequentially in the longitudinal moment- 

um fraction x. 

Multiperipheral ladder graphs, however, do not look very dua1, so we must 

make some changes in this scheme: 

The first attempt to derivz dual models from conventional field theory proceeded 

by calculating graphs of the type Fig. (6) in varying degrees of sophistication. l1 

This is the “fishnet diagram” approach you may have heard of. 

Another very pretty way to motivate in terms of graphs the verbal descrip- 

tion we have been giving is due to Bjorken. 12 If we actually calculate the .ga!,h 



in the infinite momentum frame using old-fashioned perturbation theory, with 

the assumption that in the cascade the q - transfers are ordered ( B n* c++f+ 
7 P 

&I, 

we p n+l& 7 vner 3 Just as in the dominant multiperipheral scattering graphs, 

a very interesting qualitative picture emerges - near neighbor partons in rapidity 

are also close together in transverse configuration soace. (It is an open question 

how much of this result survives in theortes with vertices less trivial than I#I~. 

See Section F.) 

If we want to examine rescattering corrections to this basic parton model 

picture of the hadron’s wavefunction, it is plausible to consider that these cor- 

rections involve repeated soft interactions between near neighbors in rapldity, 

with the basic dynamical variables involved being the distances in transverse 

configuration space between the interacting par-tons. (This is why the string 

Picture starts off as a first quantized theory. ) 

One then attempts to describe the behavtour of the wee parton sea by means 

of an effective Hamiltonian, which 1s a function of the partons’ relative transverse 

momenta, labeled by an ordered parameter corresponding to the parton’s longitud- 

inal momentum fraction. The simplest dynamical hypothesis is that the near 

neighbor forces are harmonic. If, in addition, the density of partons along the 

longitudinal fraction axis is chosen to be constant, the string Hamiltonian is 

obtained in the continuum limit: 

Ls the transverse coordinate of the parton labelled by 0. 

(Actually, instead of working in the @ 
P 

2 frame, we can do our quantum 

theory off planes tangent to the light cone. Then 
?I 

is replaced by P+ = 

P” + Pn, but P” is not necessarily approaching infinity. ) The choices of relevant 

dynamical variables, and the interpretationof the 8 label in terms of longitudinal 

fraction, match exactly with what emerges mathematically from the string model 

in the GGRT gauge. 

To reiterate, physical insight into how a hadron can look like a string is 

gained by looking at the planar graphs in a $3 theory; observing that in a sequential 

prdering approximation the longitudinal and transverse dynamics decouple (see 

Bj’ s paper for details), with the iongitudinal fraction serving only as a label; 

assuming a soft, near-neighbor residual parton-parton interaction; and finally, 

assuming the parts of the wavefunction with the number of partons +& are the 

most important, in some sense, so there is no Zx?(M. in Eq. (9). 

Al1 of these assumptions are subject to questioning. We will see later that dual 

models fail to predict certain qualitative behaviours that we expect from hadrons. 

In most such instances of failure, we will be able to point to some suspicious 

assumption from among the above as the one that is likely at fault. 

A reasonable way to proceed would be to always keep in mind that the string 

ptcture of hadrons can make sense as an approximation to some complex dynamical 

situation occurring within each hadron. One of the things the string model con- 

tributes to our requirements on a theory of hadrons is that it should correlate 

properties of the spectrum with the “soft’V physics of the Regge region. However, 

this requirement of duality does not seem to force any of our assumptions to be 

strictly valid. 13 

Finally, I should mention that it is not at all clear from Heff (p+; x , ) that 



the theory can be relativistically covariant. With the string action principle, 

the covariance can be shown using canonical methods, albeit with the troubles 

that have been mentioned. However, with the strict factorization of longitudinal 

and transverse dynamics that occur tn H eff, alternate methods of analysis exist. 

The expressions for the Lorentz generators could have been “guessed” in advance 

of the &tag action principle if cne had been clever enough. This is tmportant for 

future model-building, and we will say more about it In the next section. 

C. What if the Partons Have Spin? 

So far we have argued the amplitudes of oscillation of the string are the 

transverse coordinates cf the partons, and we are working in first-quantization. 

Experiments suggest that the valence partons have spin l/2, ond it is reasonable 

I. to assume the wee parton sea will have many spin l/ 2 partons as well. We now wish 

to expand on Bjorken’ 8 $12 theory arguments, and suppose that, in addition to X 
L 

(e), 

It 1s legitimate to i-elude the spin vartables among the possible dynamical variables 

upon which near-neighbor parton scatterings can depend. 

Working in complete analogy with the XL (a) arguments, we can suppose 

the first quantized Pauli spin matrices cA (a) are the relevant dynamical spin 

variables. (Actually. Bjorken, Kogut, and Soper have shown that in the light- 

cone quantization of the free Dirac theory, 15 these 2 x 2 Pauli matrices are 

really the spin variables of the second quantized theory, even taking anti-particles 

into account.) As good fortune would have it, a reasonable, simple guess for the 

H eff depending on near-neighbor spin-spin couplings, 16 

is exactly solvable in the continuum limit! It becomes just the Hamiltonian of 

the free, massless Dirac theory in two dimensions. 10 

Now, depending on the boundary conditions me chooses, which amounts 

In this case to selecting whether the string has an even or odd number of spin l/2 

partons, one obtains either the Neveu-Schwarz (NS) model 
17 or the Ramond model, 18 

respectively. The N-S model was originally proposed as a model for the (f fl) 

trajectory system, as we will see. The Ramond model, because of its odd 

number of fermion constituents, is a candidate for a fermi particle and its 

recurrences and their daughters. This could be a nucleon, or perhaps even a 

quark itself. The qy amplitude in this model has poles at bosons with the same 

structure as the bosons of the N-S model, and in fact the emission vertices are 

just those of the N-S model. lg However, let me just concentrate on the features 

of the N-S model, so as to get the general ideas across. 

In momentum space, if bt creates a fermion and ct creates an anti-fermion, 

tie Heff of the N-S model is 

Here R is just the “orbital” contribution to the energy discussed earlier. The new 

piece is due to the spin-spin interaction, and has a spectrum of etgenvalues of 

l/2. 3/2, 5/2 I.... 

In the quark mode1 we expect the 
P 

and w to be qi bound states in s 

waves, in triplet and singlet spin states respectively. Since the spin in the only 

difference between the 
f * 

and I states, the only thing that can account for the 

mass difference between them is the spin-spin interaction. Just as we needed more 

than one oscillator for duality, however, we oow are forced to have an infinite 

number of spins. We get higher and higher energy states depending upon how 

many of these spins are deviated from the ground state configuration (which is 

like the ground state of an anti-ferromagnet). Co top of any one of these “spin- 

deviate”stateswe can pile on orbital excitations, with the energy spectrum given by R. 
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The resulting trajectory structure is satisfy Bose statistics exactly, 2o Lf*, $1: &,ese are, of course, 

‘bomposite” operators built out of the b+ and c+, and one can show that 21b 

( HeSs)ToT = a + $ +&z ry( p,tp, ’ 

We could as well write c~~,&&+#@as z$t, a, 8 +*o hi 3 

where a *ss 5 
s 

~ . If this system is to have any hope of being Lore& 

invariant in four-dimensions, we might expect a transformation from a trans- 

verse direction to a longitudinal direction to take NIL into 
P-* 

The generator that 

“S Plru Exe I -ttlt/artl It does this would have the form 

b’Q8fT~L SEm.iElvcC g&cctrrrs 

HE&f, b,+ &+ I 0 7, ETC. 

VWWIJ 
lo7 

firure 6 
The reader should not be misled into believing that bf or c+ are creating 

quarks or anti-quarks. They are creating spin deviation excitations as described 

above. When a spin is flipped at one point, Heff moves that spin flip down the 

chain. A spin flip means helicity I/ 2 (say) is going to helicity (-l/2) for a net 

helicity flip magnitude 1. That is why this system describes bosons. But at any 

given point there can be at most one fermion to be flipped - that, in a nutshell, is 

why we need operators satisfying Fermi-Dirac statistics. The helicity of an ex- 

citation is just the “charge” Q = zn (bi bn - cz cn). 

where f(n) can be fixed by dimensional arguments. 21a In fact, fwasaki and Kikkawa 

,,(fK) havediscovered that the Lorentz generators indeed have terms of just this form. 22 

Unfortunately, however, there Is more to the Lorentz generators than this. 

Remember that for the orbital part of the model, we had origtnallyXP(e) with 

/.I = 0, 1,2,3. We argued X0&r, and the dynamical variables. What- 

ever happened to X3? Remember ON is not it. Actually, X2 (or XI 

which in momentum spze lo&s like 

These Vlrasoro operators4 are also composite operators as indicated, but they 

Actually, the fact the interesting excitations of the system are bosons can do not satisfy the algebra of simple harmonic oscillators. These satisfy instead 

be brought out more clearly using the Fourier decomposition of the current 

(Remember p = 0, 1 in 2 dimension, and Y are Z-component 

spinors. ) It is a peculiarty of two dimensions that the Fourier coefficients 
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Technically it is because of the algebraic properties of these L, that we need tachyons 

and 26 dimcns ions in the orbilal model. 23 

Now, there are a priori two ways to combine these two kinds of contributtons 



to the Lorentz generators. The string formalism, properly generalized by I 

and K ln Ref. 22.to handle the spin, seems to give naturally the result , 

where e,; - I ) E,, - -I. 

This turns out to be much worse for Lorentz invariance than it was before, with 

Rret the orbital part. Basically what happens is that a transverse excitation 

doesn’t make up its mind prcperly whether it wants to go to an Ln or a 
P 

n. To 

patch things up, we have to abandon our nice Interpretation of the pm as 

“longitudinal” bosons, and replace the ( A, ) generators with other objects 

contalning 2 lermions and one boson: I 

VI’he G, are the famous “super-gauge” operators which have come into their own 

recently, independent from the string or dual models. 24 

The advantage, fm our purposes, of these supergauges is that for dl 7 2 

the Lorentz algebra can be made to close once again. The fermions and the orbital 

operators sl are assigned the *transverse dimensionality, aud for d = 10 

the‘theory is Lorentz invariant. The supergauge const ru%ion allows this general- 

lzatlon for the fermions, while the 
P n construction is wedded to dL = 2. 25 

(Gf course, we also need a tachyon at m2 = -l/2, as indicated in Fig, 7) 

Alternately, we might have tried to put by hand 

Thts type of expression has been suggested by Fairlie, and discussed by Ch,,dos 

and Thorn. 26 The net result is that you still have a tachyou but you do not need - 

extra spatial dimeusions. This :sounds wonderful at the outset, but unfortunately, 

ln the,contcxt of the NS mode!, it turns out that “Q” does not measure 111s hclicity 

properly anymore. If we give up the fermions altogether and stick to n as 

bosons, we lose the two-trajectory structure that was so attractive. 

Let me try to summarize. Partons with spin allow us to get fermionic 

physical particles, and a quark-model-like structure for the vector and 

pseudoscalar meson families. There exist reasonable physical motivations for 

Including the effects of spin by choosing Heft to be of Heisenberg type. Unfort- 

unately, when we check Lorentz invariance, the pretty physical picture evap- 

orates completely. I have tried to give a bit of the flavor of how the Lorentz 

buslness works so this point can be properly appreciated. 

What could be some flaws in the argument? 

- Why only6A(1).5(i+f)? Why not put in ee as well? Since 

2 i% * rb,, 63 3 , if c~+ q (fermi field, by a Klein 

transformation), we might try a Thirring model as a generalization 27. What 

happens in the end is that the “charge = helicity” Q gets renormalized, and 

,ad much else, Nothing is gained except the useless information that in 

( 0 ( 6 ( w ) the coupling constant is quantized. 

- If we have a Nambu-Goldstme pion, how do we reconcile it with the quark 

picture ? In principle the string-with-spin model should be capable of shedding 

new light 011 this old question, The reason is that each individual hadron has 

all the complications of many-body theory. The net quantum numbers have to be 

given by the quark model, but we have a fermion sea to play with. The pion 

occupies a special position because it is the ground state meson. Bardacki 

has been working on this kind of approach.28 

- How about spin-orbit couplings? This has also been studied by Bardacki, and 

Ralpern. 2g Not much has been done to study the relativistic properties of these 

models. Also, they suffer from a much larger degeneracy than the uncoupled 

theories. A more modern approach would be to Melosh transform the N-S model. J” 

- Perhaps the whole picture of how spin is to be incorporated is totally wrong. 
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See Section F for a concrete way this could be so. 

D. What good is the String Model? 

The string model is only as good as the amplitudes it predicts. These are, 

unfortunately, not well-suited for phenomenological analysis at all. In recent 

years. dual phenomenologista seeking to fit data have turned increasingly to non- 

Veueziaao, non-factorizable dual amplitudes that have nothing to do with strings. 31 

Nevertheless, generalized Veneziano amplitudes & maintain the qualitative 

features we mentloned at the outset that motivated Veneziano in the first place. 

This makes ihem valuable toda, satisfying many desirable prerequisites on had- 

ronic amplitudes, for studying questions of consistency among the assumptions. 

They are, in other words, a valuable theoretical laboratory. Extensive references 

‘-to studies into high energy limits of dual amplitudes and their discontinuities. 

relating to multiparticle production, inclusive reactions, and the role of the 

Pomeron. can be found in Veneziano’s review paper, Ref. 5. 

We mustn’t try to get off the hook that easily, though. The string model, 

and the possible ‘%ariationa on a string” models, do consistently come up with 

features that must be dealt with as predictions, even if they are unpleasant. It 

is, for the time being, excusable If the spectrum is not fully correct; it is a 

serious defect that we have a persistent tachyon. It is satisfying to have a math- 

I ematical realization of Muellerism; but immensely disturbing that “deep scattering” 32 

cannot be dealt with even qualitatively. 
1 It is stated one needs aBagedorn spec- 

trum to accomodate duality; but I know of only one unpublished paper (by Koba) 

where the decay patterns of high mass, high spin resonances of dual models 

are analyzed, to give experimentalists an idea of what to look for. 

I..& me say a bit more about the “deep scattering” qualitative failure of the 

Veneziano model. For both s and t large, where the CM scattering angle is held 

fixed, the elastic (2 - 2) amplitude Eq. (1) behaves’ like exp ( -8 fn 2) at 90°, 

as opposed to the power-law behaviour observed experimentally. This is inter- 

esting, because (apart from an overall ag ?) a straight forward calculation of 

the elastic form factor33 of the ground state hadron also behaves as exp (-q2 Pn 2). 

The origin of the factor (In 2) in the latter case is that the mean-square distance 

In transverse configuration space between the partons at opposite ends of the string 

& In 2. We aec the obscene constant (In 2) is something like the size of the hadron, 

and even in deep-scattering the hadron behaves according to this characteristic size. 34 

This is important, because current theoretical explanations for power-law 

fall-offs in these kinds of experiments invariably start from the assumption it is 

&e behaviour of the pointlike constituents that is responsible. In the string 

picture, lhe extreme view is taken that the important part of 

the hadron wavefunction is the one that is maximally occupied by partons. We 

tend to lose touch of the “valence” partons, of the part of the wavefunction 

measured by extremely short wavelength probes. 

Another interesting physical point should be noted. Dual models tend to 

give form factors” (forgetting the 2 -q2 for now) that look like _ 

Ideally, one would like to get form factors like 
/ 

which fit data well, 35 but this does not emerge naturally from any model. (Remember 

that 9 is the longitudinal momentum fraction of the parton with coordiuate XL (9) ). 

Now, BBC also get formulae for how form factors behave asymptotically, 

from a more direct parton nppronzh. ‘I’he~ find F(cJ*).-.J (q ) 2 -n I. where I is a 

definite integral over the longitudinal fraction. 32 The significant point to note is 

that lhc string male1 result cannot be written in this fo1.m ------2 The asymptotic 



behavlours in the two models are coming from different regions of phase space. 

These brief discussions are intended to illustrate significant ways in which 

the assumptions that go into the string model can be inadequate. A straight 

forward look at how deep-inelastic e p scattering works for strings supports 

these views as to how the string model fails: the partons never behave point- 

Iike;36 and probably It would be helpful to relax the strict adherence to a one- 

dimensionally extended object. 37 

It Is possible that more recent developments in the string model can over- 

come the second of these problems. Let’ s see what these developments are. 

E. Are Strings Alive and Well? 

There are several directions in which recent progress has been made. One 

of these directions is in addressing the nagging problems of dimensions, and of 

tachyons. Recent approaches to these problems share a belief that there is no 

strict requirement that “canonical quantisatioo” has to give a consistent quantum 

theory. In one view, the string picture is not required to make sense except in 

the large occupation number limit. The low lying levels of the spectrum can be 

totally different, and in fact the ground state particle is not anymore a simple 

mechanical object. ’ 4 

This is important because suppose (classically) the ‘ground state” is simply 

a collection of particles moving together at the speed of light in the s-direction. 

Going over to a quantum picture, the “springs ” between these particles cannot 

simply be at equilibrium, but rather there must be ground state random oscil!ations. 

Tbe string cannot be well-localized, but must have a spread. But if a portion of 

the string is spending time moving in a transverse direction while neighboring 

portions are proceeding in the s-direction, the string will not hold together and 

move at V = C - unless the trapsverse moving portion exceeds the speed of light. 

While this argument is incomplete, it suggests we really do not want the grouud 
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state to be a mechanical object. Anyway, a simple model has been constructed 

which illustrates a non-mechanical ground state. 
14 

Other interesting ways to deal with the problem of dimension which have 

been proposed rely on giving the operators in the theory a “color” index. In one 

method, new colorful gluons are required, 
39 and the interesting result is obtained 

that (d = dim. of space-time) d = 10 -2N, where SU(N) is the color symmetry 

group. In another approach, basic ambiguities inherent in the canonical quanti- 

tation prescription are exploited to introduce a “color” - like index in a very 

natural fashion, without requiring extra fields. 3g (There are still tachyons in 

these models.) These developments are technical because the questions they are 

trying to answer arise from technical points, and I will not be able to supply any 

details. It should be realized, however, that the modifications in Refs. 38, 39 

?re g merely relabellings of the redundant transverse degrees of freedom. 

By and large, the most interesting recent progress achieved has been in 

completing the formal theory of the interacting string. So far, after all, we have 

been talking aboutfree strings, while the great virtue of the whole approach was 

that scattering amplitudes exist. How do we derive the rules for obtaining Eq. (2)? 

To eliminate the asymmetry already noted in Fig. 2, it w@uld be nice to say 

that two strings come together, fuse into a single string, and then other strings 

split off. 

(The rt are the ‘times” at which string fusions and fissions occur. ) Mandelstam 

succeeded in inventing the clever tricks needed to make this plausible picture 
” 

into a mathematical reality. .A”& Todo it, he first re-drew the Rosner-Harari 

structure in the figure as indicated. Recognizing that in terms of these drawings 



-. 

the length of the string should represent its longitudinal momentum, rather than 

its spatial “size” (which, recall, had nothing to do with 04 q <In ), is a very 

important point. The constant width of the strip is simply an expression of Tl 

momentum conservation. 

The mathematical problem of calculating the amplitude is complicated, but 

only once. As in the Feynman-Dyson theory, once the rules for calculation are 

justified, we can forget the derivation if we like, and use the rules with ease. 

Also as in Feynman-Dyson theory, the underlying physical picture is as elegant 

as the rules are simple. The Feynman particle path integral is the relevant 

formal tool, and one has 

0ne must ask for the probability that n strings can come in, merge, and become 

m strings, over all possible things they were and could be. Here the 2i are the 

%imes” associated with points on the graph where splittings or recombinations 

occur, indicated by X’s on the graph. Tbe integrand H contains a normalization 

V; the products of the wavefunctions associated with the N interacting strings 

(r labels the string), $[ &A\; and a weight factor W. The (pi, r) are the 

momenta in the i th transverse direction carried in the normal mode of excitation 

n of the r th string. W is a complicated factor containing three pieces of intor- 

mation: a) A Fourier transform to relate this path integral to the standard one 

in configuration space; b) the statistical weight exp i fl do& &E-e rZ e53 

is the string Lagrangian, (x2 + x’ 2 ); and c) (Neumann) functions that assert, 

essentially, that one is interested in an ampli 
t 
ude with a given topology, such as 

that of the figure. This picture has been exteuded to include fermions, and allows 

calculation of fermion-fermion and meson-fermion couplings, 
40b as discussed earlier. 

Now among the things that could happen, if we are really to count them all, 

is the following possibility: 

w- 
:- 

The string decides it isn’ t time to split yet, so it recombines for awhile. You 

can see in the drawing how that would look as a Harari-Rosner diagram. If we 

had point particles instead of strings, this diagram would be a radiative cor- 

rection to a Feynman graph: 

We can have, then, virtual string states, strings off-shell. 

The desire to describe these processes using conventional second quantization 
‘. 

techniques rather than particle path integrals has recently led Kaku and Kikkawa 

to develop a field theory of strings. 41 The bookkeeping for the various possibilities 

is generally simpler this way, and these authors have enumerated the basic 

vertices of the theory, the possible ways strings interact. They have found that 

the triple coupling used in the above drawings must be supplemented by a direct 

four-string irteraction. 

The new interaction that must be included from the outset in the theory has 

the 

I want to stress that this observation is not merely a curiosity, but is intimate- 

ly connected with the possibility of resslving soea oi the basic qualitative problems 

the model has had up to now. For example, I have not harped on the point that 



the resonances of the Veneziano model have zero width. This is alright in 

Born approximation. provided “Born approximation” has meaning within a 

complete theory. The field theory of strings accomodates this approximation, 

and justifies formally the hope perturbative unitarity may be implemented. Note 

that this field theory is a field theory of a totally new kind, involving multilocal 

rather than local dynamical variables. Many questions regarding whether such 

a theory satisfies general requirements that locality insures in ordinary field 

theories are discussed in Ref. 41, but many problems remaln that require 

Investigation. There are other potentialities in the field theory, and this brings 

us to our final topic. 

F. What do Strings Have to do with Anything Else? 

So far we have tried to motivate why the string model is interesting, and 

to explain in what ways it might succeed, in what ways it might fail. We now want 

to try to view this model in a broader context, asking its relation to other recent 

developments in strong interaction physics, and, in aswering this question, attempt 

to assess tts remaining potentialities. 

The string model is actually one of a class of models which try to recognize at 

the outset that hadrons are composite objects, although perhaps of a very different 

kind than other bound states such as atoms cr nuclei. It has long been suspected that 

string models are “infinite canponent wave equation” (ICWE) models, for example, 

although only with the recent formulation of the field theory of strings could thts 

connection be firmly established. I mention this because, even though I have 

stressed the “parton” school’s views about the meaning of the string, there is no 

logical necessity for this point of view. Any approach which succeeds by whatever 

means to incorporate relativity, quantum mechanics, and reality as revealed by 

experiment into a consistent synthesis is surely Icgically acceptable. String models 

in light-cone quantization and in noncovariant gauges bring to ICWE a fresh 

approach, unencumbered by manifest covariance or manifest locality. This can 

perhaps help in evading the premises of no-go theorems that plague the ICWE 

approach, and its cousin, saturation of the current algebra. 

Even tn the conventional field theory, however, there has been a recent re- 

surgence of interest in obtaining non-conventional solutions. One possible way to 

view a composite hadron is as a three-dimensioually extended volume in which 

fields are contained. To actually do this, however, the boundary of the domain 

aquires the status of an independent entity - the bag. 42 But other possibilities 

exist. Approximate solutions to the classical Yang-Mills isospin theory in the 

static approximation exist. e.g., that tend to be localized in a finite region of 
43 space. The fields just sit there and feed on each other. In addition, field 

theories of fermions coupled to scalar mesons have been discussed using various 

methods to display at least approximate “confinement” of the fermions. 44 And 

what is of interest to us, solutions exist to the electrodynamics of scalar mesons 

that In the strong coupling limit, tend to look like strings. 45 

This last result is exceedingly important if we want to know whether some 

of the features mentioned in the parton interpretation of the string model are due 

only to the simplicity of the e3 theory used to discuss them, or whether they can 

be present in a large class of field theories. The derivation of stringlike solutions 

from a gauge invariant theory (which are like vortex circulations about trapped 

magnetic fields in Type II superconductors) encourages the belief that the relevant 

features may be quite general. 46 

Additional support for this point of view comes from calculations in Yang-hlills 

gauge theories utilizmg a new kind of approximation scheme. Assume, for example, 

that there are not just three colcrs for the quarks, but N, where N is very large. 

In the limit where N is infinte, all the possible Feynman graphs of the theory 
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collapse into a small subset of graphs. 47 In the case that an external color- 

less source current creates a q{ pair and subsequently another current annihilates 

it, e.g., the surviving graphs are those with a single quark loop on the periphery, 

and with vector gluons filling in,the loop, but only in planar configurations. If N 

1s not infinite, say N = 3. other graphs survive, but are suppressed by powers of l/N: 

In this application, therefore, the l/N expans’ion is a topology-selecting expan- 

e\on. 
48 There are three points I want to discuss regarding this: 

1) Perturbation expansion of string model is similar. 

Kaku and Kikkawa have gone on to study higher order effects in their field 

theory of strings. “Hole” and “wormhole” graphs of the kind drawn in the figure have 

long been proposed as candidates for radiative corrections to the basic string 

amplitudes! and this come out systematically in the string field theory approach. 

There are other, more exotic, topdogies possible in both the string and the Yang- 

Mills gauge theories which I have not written down. I am not trying to argue that 

there is an exact matching, graph for graph, between these theories. (Indeed, so 

far we have said nothing about isospin, W(3), color, etc., in the K and K theory.) 

What I am trying to suggest is that since the Yang-Mills theory has dynamics 

In all three spatial directions, but can be made to look like a planar theory in a 

well-defined approximation, the inverse process may he possible for string models. 

There, the “two-dimensional” structure was constructed first, but by calculating 

highor order corrections, latent higher-dimensional dynamical structure may 

emerge (Le., the longitudinal and transverse variables may no longer decouple 

as they did in Bj’ s illustrative model. ) Some support for this point of view already 

exists: more’ sensible results for amplitudes involving currents are found if the 

currents are “tubelike” probes. 
33b 

The idea,then, is to perturb away from the planar approximation. A natural 

question is whether this perturbation expansion converges rapidly enough to be 

useful. It is Important to do calculations in higher orders to see whether any 

of the gross qualitative failures of the string picture get rectified by this procedure, 

in manageable orders .of the perturbation. 49 

2) But there &e big differences ! 

The analogy between the second quantized string perturbation theory and the 

l/N expansion for gauge fields should not be taken too literaily. One simple 

difference, e.g., is that in the latter case, the q{ loop is filled with gluons, and 

there is no fermi sea. If the physical arguments we gave really have anything to 

do with the Neveu-Schwarz and Ramond models, the fermi sea should be present 

In the hadron wavefunction to “leading order. ‘I Cn the other hand, the Yang-Mills 

approach readily picks out valence particles for us. 

Another important point has been discussed in detail by’ t Hooft. 
41 It is that 

while the IjNperturbation procedure selects out planar graphs as the leading order, 

there is no reason to conclude from this fact that the “effective” theory obtained in 

this approximation looks anything at all like the string theory. 
50 Recall that to say 

that the planar q3 theory could look like a string, it was necessary to assume more 

than just that the relevant graphs were planar. Assumptions had to be made as to 

how momentum flows through the graphs. It is important to study what sensible 

approximations to the momentum flow problem will lead to in gauge theories. There 

is no rugson to es;?cct they \vill b,: ;dcn;;,a 1 to whar happens in $13 (but see point 

3 below. ) 
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One should not get the Impression, however, that it is necessary to “dertve” 

the string theory in full from conventional field theortes. The string theory may 

well prove to be a new and fully consistent approach to hadron physics which is not 

equivalent to conventional field theory. StiH, it is necessary to understand the 

general features the string theory may share with other theories, since the 

string theory Is incomplete. 

3) Other Surprising Similarities. 

I will conclude by mentioning two further points of similarity between the 

string theory and Yang-Mills gauge theories that are surprising and tantalizing. 

The first has to do with a remarkable property of Neveu-Schwarz amplitudes 

In the llmtt that the slope of the Regge trajectories goes to zero. 

Each amplitude Is assigned an isosptn factor in such a manner that correct 

SU(2) values are assigned to graphs, and such that amplitudes with poles in exotic 

channels (such as ar + 3 +) receive coefficient zero. 51 It is then found that the 

tree graphs of the theory have the coupling structure of the analogous SU(2) Yang- 

Ml116 theory with vectors and pseudoscalars. 52 However, in the usual NS model, 

there are only trilinear couplings of strings, and care is required in taking the 

a’- 0 limit to pick up all the required terms. (Recall that in YM theory, there 

are also quadrilinear couplings of the gauge fields. ) 

In the K and K field theory, a number of simplification occur. 41 Oue does 

cot have to put the Isospin factors by hand, but can assign quantum numbers 

directly to the string field variables. Also, the new four-string interaction leads 

to just the isospin and helicity structure of the four field interaction in the Yang- 

Mills theory in an appropriate gauge. One may conjecture from this that the 

connection between strings and Yang-Mills theory is deep-seated. 

.mna!ly, I want to mention a different kind of calculation that has been done 

recently. In the study of phase transitions in bulk matter, it seems to be the case 

that detailed knowledge of the microscopic interaction in the particular species 

of matter is totally irrelevant to understanding certain features of the phase 

transitton. An atomistic point of view is not relevant for a study of these systems- 

rather than seeking what differences arise in systems as we probe deeper into 

them, the relevant question is something like “what is it the deeper ’ layers’ share 

in common in their response to certatn kinds of probes?t153 K. Wilson has developed 

a theoretical formalism to deal with this kind of question. 54 One of the features of 

this formalism is the sensible point that if the microscopic details are really tr- 

relevant, we are better off if we “integrate” these details out at the outset. 

This kind of procedure may be reasonable for the study of the planar graphs 

of the YM theory. If we want to study those graphs in which momentum flows more 

or less uniformly throughout, we might do It by first lumping subgraphs in which 

‘%ot” Hnes occur into new effective vertices among soft lines. 

‘. In any case, K. Wilson himself has recently studied spinor electrodynamics 

In a spatial lattice, and in the strong coupling limit. 55 The first device cuts off 

the magnitudes of the momenta that can flow. The strong coupling requirement 

intuitively suggests dominance of graphs rich in vertices. The result of his cal- 

culation is that, unlike weak coupled electrodynamics, the current-current cor- 

relation function in this theory can be described using an effective action which is 

proportional tb the area of a fermion loop. It is difficult to pin down precisely 

what the connection of this result with the Nambu action principle, Eq. (7) actually is. 

So, again: Are strings a separate contribution, or are they an extrapolation 

from existing theories? It is clear that the physical picture itself points to inade- 

quacies, and the string theorist has much to gain by studying how conventional theories 

deal with these problems. On the other hand, the manner in which string theory act- 

ually realizes the underlying physical assumptions can still be viewed as a promising 

and stimulating approach. 5G 

459 



I 

‘References and Footnotes 

(As noted in the preface, this article is not a comprehensive review. 

References are representative rather than exhaustive, and I apologize for 

Mary omlssione. The interested reader should, however, be able to trace 

the relevant literature from this sample. PRT means “plus references therein” 

that are essential. ) 

1. 

a. 

s. 

‘4. 

5. 

6. 

7. 

0. Veneziano. N.C. g, 190 (1968) 
C. Lovelace, Phys. Lett. 288, 265 (1968) 
J. A. Shapiro, Phys. Rev. 119, 1345 (1969) 

8. Fub’inl, P. Gordon, G. Veneiiano, Phys. L&t. s, 679 (196S)b 
S. Mandelstam, Phys. Rev. Dl. 1734 (1969), (PRT) 
Y. Nambu, Proc. Intern. Conf. on Symmetries and Quark Models, Wayne 

University (1969), p. 269 (Gordon and Breach, 1970). 
L. Susskind, Phys. Rev. Lett. 23. 545 (1969) 

Z. Koba, H. B. Nielsen, Nucl. Phys.E, 517 (1969). (PRT). 

M. A. Virasoro. Phys. Rev. D&2933 (1970), (PRT) 

We have little space for calculations. Almost all needed details, as well 
as different points of view, can be found ia one or more of the recent ex- 
tensive reviews by: 
G. Veneziano, Physics Reports v. 9C, No. 4 0974); 
J. Schwarz, Physics Reports v.8C. No. 4 (1973); 
C. Rebbl CERN-TH-1785, to be published in Physics Reports; 
P. H. Frampton, Syracuse Lectures; 
J. Scherk, NYU-TH3-74. 
S. Mandelstam, Berkeley preprint to be published in Physics Reports, has 
just appeared. 

R. C. Brower, Phys. Rev. E, 1655 (1972) 
P. Goddard and C. B. Thorn, Phys. Lett. s, 235 (1972) 
My prejudice is that if unphysical features are required to show ghost elim- 
ination at the free theory level, the theory is already sick. An alternate 
view is that only some gauges are consistent for quantization of the free 
theory, and these gauges turn out to be disease-free. See, 8. g., 
A. Patrascioiu, Coo-2220-23 (1974). The unphysical features may then 
show up only in scattering amplitudes, so that 26 dim. is no problem at 
all, since the amplitudes are alright in the physical subspace. The tachyon 
would be the only real trouble. Those who like puzzles, however, may find 
relevant comments on quantization in Schwinger functional and Feynman path 
integral iormalis~~~.< :;:. r+). , 
R. Arnowirr acd b. i+l~~.itii, drlj<. I&%. &, 1621 (1962); 
K. 6. Cheng, J. Math. Phys. z, 1723 (1972). 

Y. Nambu, Copenhagen Summer Symposium (I 970). 

8. 

9. 

10. 

11. 

12. 

13. 

I$. 

1.5. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

L. N. Chang and F. Mansouri, Phys. Rev. E, 2535 (1972) 
T. Goto, Prog. Theor. Phys. 46, 1560 (1971) 
0. Hara, Prog. Theor. Phys. 46, 1549 (1971) 
F. Mansouri and Y. Nambu, Phys. Lett. @, 375 (1972) 

P. Goddard, J. Goldstone, C. Rebbl, C. B. Thorn, Nucl. Phys. E, 
1 OS (1973), hereafter referred to as GGRT. 

Complete discussions al&g these lines are in J. Kogut. L. Susskind, 
Physics Reports v. EC, No. 2 (1973), (PRT). 

A. B. Kraemmer, I-I. B. Nielsen, L.. Sussklnd, Nucl. Phys. B28. 34 (1971). (PRT). 

J. D. Bjorken, Proc. of Intern. Conf. on Duality and Symmetry tn Hadron 
Physics, Tel-Aviv, (1971), ed. by E. Gotsman (Weizmann Science Press, 
Jerusalem, 1971). 

H. B. vielsen, Nucl. Phys. B54, 477 (1973) argued the ‘%oft119ss” of the 
lnterparton force led to one-dimensionally extended hadrons. 
J. Dethlefsen, H. B. Nielsen. and H. C. Tze, Ptiys. Lett. E. 48 (1974). (PRT) 
maintain that the Hagedorn spectrum is independent’ of the dlmensionality In a 
“jelly” of n-dimensions. 
A. Kraemnier. H. B. Nielsen, and H. C. *Tze, NBI-HE-74-10 more recently 
advocate the notion of a “dynamical dimensionality” for hadronic matter, i.e., 
what we see depends on how we look. This is our point of view as well. 

A reasonabljr complete set of Refs. may be found in C. E. Carlson. L. N. Chang. 
F. Mansouri, and J. F. Willemsen, SLAC-PUB 1418 (to be publ. in Phys. Rev. D.) 

J. D. Bjorken, J. Kogut. and D. Soper, Phys. Rev. g, 1382 (1971). (PRT). 

Y. Aharonov, A. Casher. L. Susskind, Phys. Rev. D5, 988 (1972). (PRT). 

A. Neveu, J. Schwarz, Nucl. Phys.E,86 (1971). 
A. Neveu, J. Schwarz, C. B. Thorn. Phys. L&t. E, 629 (1971). 

P. Ramond, PhyB. Rev. g, 2415 (1972). 

6. Mandelstam. Nucl. Phys. E. 77 (1974) 

D. Mattls , E. Lieb, J. Math. Phys. 5, 304 (1965) See also Ref. 14. 

a. J. F. Willemsen, Phys. Rev. D9, 507 (1974) 
b. J. F. Willemsen, Phys. Rev. D, to be published (SLAC-PUB-1397), (PRT). 

Y. Iwasaki, K. Kikkawa. Phys. Rev. DE, 440 (1973). (PRT); 

If the ” &+n ” operators have (dL) transverse dimensions, one finds that the 
(null-plane quanttzation) “boosts” M. + (see Ref. 14, 15) do not commute as 
they should, but rather give in the oibital model 

460 



24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

The operators on the right-hand side have coefficient zero term by term 
If d& = 24, and if the Regge intercept is cro = 1, tmplying the presence of 

Y. Nambu, Phys. Rev. E. 1 I93 (1971) 

a tachyon. Notice this is a purely quantum effect. 
I. T. Drummond, Nucl. Phys. m, 269 (1971) 
Kraemmer et al, Ref. 1 1 

A recent contribution with earlier reference is S. Ferrara, J. Wess. 
B. Zumino, CERN-TX 1863 (1974). 

Historically, supergauges were invented in the first paper of Ref. 17, and 
were incorporated into the Loreutz algebra in Ref. 22, However, the part- 
icular combination of fermions and supergauge operators that appears in 
the Lore&z generators collapse to the orbital operator and ‘plasmon” ( 
form when dL = 2. P 

A. Hacinliyan, Nuovo Cim. E, 541 (1972) 
K. Kikkawa, B. Sakita, Phys. Rev. E, 1734 (1972) 
R. C. Brower, L. Susskind, Phys. Rev. x,1032 (1973) 
C. Rebbi, Lett. Nuovo Cim. 1, 967 (1971) 
II. C. Tze, Phys. Rev. z, 1675 (1973) 
L. Susskind, A. Casher, J. Kogut, Phys. Rev. z, 4449 (1974) 
J. F. Willemsen, ibid., p. 4457. 

b. Non-planar Approaches: 

A. Chodos, C. B. Thorn, MIT-CTP-389, (1973), submitted to Nucl. Phys. B. 
These authors also discuss a modification of the basic action, so the string 
I massive. 

34. 
I. ‘And~lc. 3. L. Gervais, Nucl. Phys. m, 240 (1972) 
K. Kikl&wa, Prog. Theor. Phys. 48, 625 (1972) 
@. Pettorino and I studied whether fermi fields of the forms given in these 
papers (PRT) can actually be solutions of the equations of motion. With 
some minor modifications, this turns out to be so provided the coupling 
constant is quantized. ) One reason the Thirring model was appealing was 
the belief the Regge intercept depended upon the field theoretic dimension 
of the dynamical variables. In Thirring model this dimension depends upon 
the strength of the coupling. However, the dimensions of the currents do 
not change, and it is these that ultimately affect the value of the intercept. 
A very different use of the Thirring model has been proposed by H. Tye, 
MIT-CTP-383, to be published in Phys. Rev. 

A. Neveu, J. Scherk, Nucl. Phys. E&,365 (1972) 
E. Cremmer, J. Scherk, Nucl. Phys. E, 29 (1972) 
J. Schwarz, Nucl. Phys. x, 131 (1973). and CALT-68-419, 424. 

Actually, 4 1%~ t*) - XI te) )a ) * e l ’ 
This m$ay be viewed as a statement that the hadron fills all 3. space. 
As an exercise, the reader may wish to calculate at what harmonic the 
etring should be cut off to give a size of 1 fermi. The result is physically 
indistinguishable from a , even considering ultraviolet scales such as 
those associated with gravitation. 

P. H. Frampton, Phys. Rev. g, 3141 (1970) 

This may not be bad after all: M. Chanowitz, S. D. Drell, Phys. Rev. D9, 
2078 (1974). 

K. Bardakci, Nucl. Phys. E, 331 (1974). 

lo addition to Ref. 13, See F. Mr. wri, Phys. Rev. D8, 1159 (1973) 

J. Schwarz, Nucl. Phys. E, 221 (1974) 

K. Bardakci, M. Halpern, Phys. Rev.=, 2493 (1971). 
L. N. Chang and F. Mansouri, Proc. of Johns Hopkins Workshop on Current 
Problems in High Energy Particle Theory (1974). 

H. J. Melosh, Phys. Rev. D. 9. 1095 (1974) 
Comments relevant in the present context may be found in R. Dashen, 
M. Gell-Mann, Coral Gables Cont. on Symm. Principles at High Energy, (1966); 
E. Eichten. F. Feinberg, J. F. Willemsen, Phys. Rev. E, 1204 (1973); 
A. Casher. L. Susskind, Phys. Rev, 2, 436 (1974) ; (PRT). 

35. 

36. 

1. 
37. 

is. 

39. 

40. 

41. 

42. 

F. Ardalan, F. Mansouri, Yale 3075-72 (1974), (PRT). 

S. Mandelstam, a) Nucl. Phys. *, 205 (1973). b) Ref. 19. 

M. Kaku, K. Kikkawa, CC of the CUNY preprints (1973, 1974) 

A. Chodos, R. Jaffe, K. Johnson, C. Thorn, V. Weisskopf, to be publ. 
in Phys. Rev. D. (See also M. Creuz, BNL 18789 (1974) ). 

43. 

Examples: G. Schierholz, M. Schmidt, Phys. L&t. -341 (1974); 
L.. Gonzales Xestres, R. Hong-Tuan, Orsay preprints (1973. 1974); 
G. Cohen-Tannoudji, F. Henyey, G. L. Kane, W. J. Zakrzewski, Phys. 
Rev. Lett. 26, 1 li (1971); 
P. Olesen, Nucl. Phys. B32,609 (1971). See also Veneziano’s review, Ref. 5. 

C. N. Yang, T. T. Wu, “Properties d Matter under unusual Conditions”, 
ed. Fernbach and Mark, p. 349. 

44. E. P. Solodovnikova, A. N. Tavkhelidze, 0. A. Khrustalev, Theo. and Math. 
Phys. 2, 162 (1972) ( a lot of physics is already, in this non-relativistic 
model. ) 
T. D. Lee and G. C. Wick, Phys. Ref. D9, 2291 (1974) 
W. Bardeen, M. Chanowitz, S. Drell, M. Weinstein, T. M. Yan, to be publ. J. Gunion, S. J. Brodsky, R. Blankenbecler, Phys. Rev. s287 (1973), 

(PRT). (hereafter referred to as BBG. ) 

Elastic and lnelasric form iac~ws XI iuul moiels hare an extensive literature 
of their own. There are no real reviews on this subject. Samples: 

45. 8. B. Nielsen, P. Olesen, Nucl. Phys. x, 45 (1973) 

46. Strings appear elsewhere in mathematical ph;-sits, associated wit’n the theory 
magnetic pdes. P. A. M. Dirac, Phys. Rev. 74, 817 (1948); J. Schwinger, 

a. Strings 
Y. Nambu and A. Hacin-iiyan, EFI-70-67 (1970) unpublished 



47. 

40. 

60. 

'. 
51. 

62: 

SS. 

54. 

55. 

56. 

Phys. Rev. 144, 1087 (1966). Since a trapped magnetic field is required 
in Ref. 45, an open string should have magnetic poles at the ends. The 
possible relevance of magnetic poles to the string model has been dis- 
cussed previously in Ref. 7, and Mansouri and Nambu, Ref. 8, e.g. 
More recent physical discussions, with Ref. 45 in mind, have been given 
by Y. Nambu, Proc. of the Johns Hopkins Workshop on Current Problems 
in High Energy Particle Theory (1974); 
P. Olesen, H. C. Tze, Niels Bohr Inst. preprint (1974);(PRT); 
G. Partsi, CO-2271-29 (1974). 

Case of O(N): G. ‘t Hooft, CERN-TH-1786; SU(N): G. Canning, Niels 
Bohr Inst. preprint (1974). 

References to (N-l ) expansion in other applications are given in S. Ma, 
Rev. Mod. Phys. s, 589 (1973). Recent in particle physics: 
Ii. Schnitzer, Brandeis preprint; S. Coleman, R. Jackiw, II. Politzer, 
MIT-CTP-413, (PRT). 

D. Amhi, V. A. Alessandrint, Nuovo Cim. &, 793 (1971). With one 
loop, these authors obtain a negative result for deep scattering. An 
interesting physical discussion is in P. G. 0. Freund, S. Nandi, EFf- 
74 /33 (1974). 

G. ’ t Hooft constructs an “effective Hamiltonian” for e3 that generates 
the planar graphs, and discusses the problem of having the eigenvalues 

Of Heff “crystallize” from a continuous to a discrete spectrum. This may 
occur as a function of the coupling constant - see Ref. 44. 

H. M. Ghan, J. E. Paton, Nucl. Phys. B10,516 (1969). 

J. Scherk, Nucl. Phys. %,222 (1971) 
A. Neveu, J, Scherk, Nucl. Phys. E, 155 (1972): 

KadanofT s hypothesis, Physics.2, 263 (1966), is that in a spin system, as 
T + T,, small clusters of spms start to act as though they were a single 
big spin; next, these clusters form larger ones which behave as a unit, etc., 
until finally the entire sample is correlated. See also J. Kogut, L. Susskind, 
Phys. Rev. D9, 697 (1974). 

J. Kogxt, K. Wilson, Physics Reports (to be published). 

K. Wilson, preprint CLNS-262 (1974). A special feature of Wilson s 
methods is that gauge fnvariance (though not Lorentz invariance ) is 
maintained. The values of planar graphs in the ~-1 method, Ref. 47, 
on the other hand, depend on the choice of gauge. 

In the field theory of strtngs, Ref. 41, the master field is a functional of 
the configuration space coordinates X (9, r),%p = 2(X(9, T) ). These Xp 
in turn may be viewed as tields on th#manifolcf(Q, T). A generalization 
could be 9 = 9 (m(X) ), where +(x) are quantum fields in the four- 
dimensional Minkowski manifold. 

462 


	slac-r-179-FrontmatterV1
	ssi74-001
	ssi74-002
	ssi74-003
	ssi74-004
	ssi74-005
	ssi74-006
	ssi74-007
	ssi74-008
	ssi74-009

