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Right Unitarity Triangles and
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Symmetries and Unification

Martin Spinrath

Abstract

We discuss a recently proposed new class of flavour models which predicts both close to tri-bimaximal
lepton mixing (TBM) and a right-angled Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle, α ≈ 90◦. The
ingredients of the models include a supersymmetric (SUSY) unified gauge group such as SU(5), a discrete
family symmetry such as A4 or S4, a shaping symmetry including products of Z2 and Z4 groups as well as
spontaneous CP violation. The vacuum alignment in such models allows a simple explanation of α ≈ 90◦

by a combination of purely real or purely imaginary vacuum expectation values (vevs) of the flavon fields
responsible for family symmetry breaking.

30.1. Motivation

Albeit the great success of the Standard Model (SM) of particle physics, its flavour sector is still puzzling.
The SM flavour puzzle can be roughly divided into three aspects, which are first the hierarchies of the observed
fermion masses, second the pattern of the observed mixing angles, and third the origin of CP violation.

Here we are concerned mainly with two of those aspects. The first one concerns the mixing angles. The
fact that the leptonic mixing angles turned out to be close to TBM [1] has led to increasing interest in non-
Abelian discrete family symmetries for flavour model building. Nevertheless, in many realistic models another
shaping symmetry has to be invoked to forbid unwanted operators in the (super-)potential. These shaping
symmetries can shed some light on the second aspect of the flavour puzzle we are concerned with, the origin
of CP violation, as was recently shown in [2].

Experimental results point towards a right-angled CKM unitarity triangle with α = (89.0+4.4
−4.2)◦ [3]. This can

be understood in terms of a simple phase sum rule [4]. As we will revise later it becomes clear from this
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sum rule, that mass matrices with purely real and purely imaginary elements can lead to a right-angled CKM
unitarity triangle, see also [5]. These special phases in turn can be the result of a spontaneously broken
discrete symmetry [2].

In combination with a unified gauge group this proliferates an attractive framework to describe mixing angles
and CP violation in the quark and the lepton sector as a result of spontaneously broken discrete family and
shaping symmetries.

30.2. The Quark Mixing Phase Sum Rule

First we revise the phase sum rule from [4]. For the mass matrices Mu and Md in the Lagrangian we use
the convention

LY = −uiL(Mu)iju
j
R − diL(Md)ijd

j
R +H.c. . (30.1)

They are diagonalised by bi-unitary transformations

VuLMuV
†
uR = diag(mu,mc,mt) and VdLMdV

†
dR

= diag(md,ms,mb) , (30.2)

where VuL , VuR , VdL and VdR are unitary 3× 3 matrices. The CKM matrix VCKM is given by

VCKM = VuLV
†
dL

= UuL12
†UuL13

†UuL23
†UdL23 U

dL
13 U

dL
12 , (30.3)

where the Uij matrices are unitary rotation matrices in the i-j plane, for instance,

U12 =

 c12 s12e
−i δ12 0

−s12e
i δ12 c12 0

0 0 1

 . (30.4)

For hierarchical quark mass matrices with a texture zero in the 1-3 element it is straightforward to derive the
following approximate expressions for the quark mixing angles (for more details see [4])

θ23e
−i δ23 = θd23e

−i δd23 − θu23e
−i δu23 , (30.5)

θ13e
−i δ13 = −θu12e

−i δu12(θd23e
−i δd23 − θu23e

−i δu23) , (30.6)

θ12e
−i δ12 = θd12e

−i δd12 − θu12e
−i δu12 . (30.7)

From these formulas we obtain for α

90◦ ≈ α = arg

(
− VtdV

∗
tb

VudV ∗ub

)
≈ δd12 − δu12 with δ

d/u
12 = arg

(
M

d/u
12

M
d/u
22

)
. (30.8)

As a direct consequence it becomes obvious, that a relative phase difference of 90◦ in the 1-2 mixing is
enough to describe the CP violation in the quark sector, see also [5]. The simplest realisation of this would be
mass matrices with purely real and purely imaginary elements.

In the following we discuss a recent idea, how this can be accomodated in the context of flavour models
with discrete family and shaping symmetries.

30.3. The Method: Discrete Vacuum Alignment

The class of models, we discuss here, is based on the method of discrete vacuum alignment [2], which has
as its ingredients a discrete family (like A4 or S4) and shaping symmetry (like a product of Zn’s), spontaneous
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CP violation and a SUSY unified gauge group. The unified gauge group is not strictly necessary, but it is very
powerful, because it relates the mixing and the CP violation in the quark and the lepton sector to each other.

The method can be described in a simple algorithm. First, use the family symmetry to align the flavon vevs,
so that only one complex parameter x is left undetermined, e.g. 〈φ〉 ∝ (0, 0, x)T or 〈φ〉 ∝ (x, x, x)T . Then
add for each flavon φ the following type of terms to the superpotential

P

(
φn

Λn−2
∓M2

)
, (30.9)

which are allowed by the discrete Zn shaping symmetries, and where M and Λ are real mass parameters.
By solving the F -term condition, FP = 0, the phase of the flavon vev is fixed to be

arg(〈φ〉) = arg(x) =

{
2π
n q , q = 1, . . . , n for “−” in Eq. (30.9) ,
2π
n q + π

n , q = 1, . . . , n for “+” in Eq. (30.9) .
(30.10)

If the shaping symmetries are only Z2 or Z4 symmetries the phases can easily be arranged to fulfill the phase
sum rule in Eq. (30.8).

30.4. One Example Model: SU(5)×A4

As an example we sketch now the A4 model from [2], where an S4 model is given as well. The A4 model
has the symmetry SU(5)×A4 × Z4

4 × Z2
2 × U(1)R and five flavons with the alignments

〈φ1〉 ∝

1
0
0

 , 〈φ2〉 ∝

 0
−i
0

 , 〈φ3〉 ∝

0
0
1

 , 〈φ23〉 ∝

 0
1
−1

 , 〈φ123〉 ∝

1
1
1

 . (30.11)

Note that only 〈φ2〉 has a purely imaginary vev, while all other vevs are real. To demonstrate the method of
discrete vacuum alignment we discuss the simple alignment superpotential for φ1,2,3 (for the others see [2]):

W = P1

(
(φ1 · φ1)2

M2
Υ1;1

−M2
1

)
+P2

(
(φ2 · φ2)2

M2
Υ2;2

−M2
2

)
+P3(φ3·φ3−M2

3 )+Ai(φi?φi)+Oij(φi·φj) , (30.12)

where MΥ labels messenger masses. We use the standard “SO(3) basis” for which “·” is the usual SO(3)
inner product and the symmetric “?” product is defined analogous to the cross product but with a relative plus
sign instead of a minus sign.

The F -term conditions FAi = FOij = 0 give the directions of the flavon vevs and their mutual orthogonality.
The vev of φ3 (charged only under a Z2) is fixed to be real while the vevs of φ2 and φ3, which are charged
under Z4’s can be chosen to be either real or imaginary and we pick the phases from Eq. (30.11).

The five-dimensional matter fields are organised in triplets under A4 and the tenplets are A4 singlets.
Therefore in our conventions the flavon vevs form rows of the down-type quark Yukawa matrix. The up-type
quark Yukawa matrix is given by the inner product of two flavon vevs apart from the 3-3 element, which is
generated on the renormalisable level to account for the large top mass. With the symmetries and the field
content (for details see [2]) we obtain in the quark sector

Yd =

 0 i ε2 0
ε123 ε23 + ε123 −ε23 + ε123

0 0 ε3

 and Yu =

a11 a12 0
a12 a22 a23

0 a23 a33

 , (30.13)

where the εi and aij are real coefficients. First note that δd12 = arg((Yd)12/(Yd)22) = 90◦, due to the purely
imaginary 1-2 element of Yd, and δu12 = 0◦, because Yu is real. The 1-3 elements in Yd and Yu vanish and
the sum rule from Eq. (30.8) can be applied successfully.
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In the lepton sector we obtain for the Yukawa matrices and the right-handed neutrino mass matrix

Y Te = −3

2

 0 i ε2 0
ε123 −3ε23 + ε123 3ε23 + ε123

0 0 ε3

 , Yν =

 0 aν2
aν1 aν2
−aν1 aν2

 , MR =

(
MR1 0

0 MR2

)
.

(30.14)

The first thing to note here, is that we do not use standard GUT relations, but instead use yτ/yµ = −3/2
and yµ/ys ≈ 9/2, which fit much better to current data for the quark and lepton masses and a CMSSM like
scenario with µ > 0 [6].

In the neutrino sector only two of the three neutrinos are massive by construction since we have introduced
only two right-handed neutrinos and the mass pattern is normal hierarchical. For the mixing we obtain exact
tri-bimaximal mixing in the neutrino sector, which is disturbed by corrections coming from the charged lepton
sector inducing, for instance, a non-vanishing θPMNS

13 ≈ 3◦. It is also interesting to note, that we predict all CP
phases in the lepton sector, which turn out to be very close to 0◦ or 180◦.

30.5. Another Example

The SU(5)×A4 model in [7] can also be read as another example of this class of models, if the flavon φ̃23

is split into two flavons

〈φ̃23〉 → 〈φ̃2〉+ 〈φ̃3〉 where 〈φ̃2〉 =

 0
−i
0

 ε̃23 and 〈φ̃3〉 =

0
0
w

 ε̃23 . (30.15)

In this model the sum rule, Eq. (30.8), is not applicable, because there are no texture zeros in the 1-3 elements,
but the agreement with the experimentally determined CKM phase is still very good, which is closely related
to the use of the GUT relation yµ/ys ≈ 9/2. In fact, the CKM phase can be predicted in this model from the
precisely known values for the electron mass, the muon mass and the Cabibbo angle and we obtain

δpred
CKM = 69.9◦ while δexp

CKM = (68.8+4.0
−2.3)◦ . (30.16)

The fit to the quark masses and mixing parameters and the charged lepton masses in this model is quite good
with a χ2 per degree of freedom of about 1.6.

In the neutrino sector we have added a fifteen dimensional representation of SU(5) giving a universal
contribution to the neutrino masses, which can result in quasi-degenerate neutrino masses. All the mixing
parameters are close to tri-bimaximal and the phases are fixed with δPMNS ≈ 90◦, α1 ≈ 9◦ and α2 ≈ 0◦. This
has interesting phenomenological consequences. For example in Fig. 30.1 we have shown the prediction for
neutrinoless double beta decay, which depends in this setup only on the neutrino mass scale and the sign of
∆m2

31.

30.6. Summary and Conclusions

Discrete symmetries are not only powerful in describing leptonic mixing angles, but they can also be used
to predict the right-angled CKM unitarity triangle by means of spontaneous CP violation. In combination with
a unified gauge group this gives close relations between the CP violation in the quark and the lepton sector.
In fact, in this new class of models all physical phases can be predicted up to a discrete choice. For example
in the A4 and S4 model from [2] apart from α ≈ 90◦ in the quark sector, the leptonic Dirac and Majorana CP
phases are all close to 0◦, 90◦, 180◦ or 270◦. These predictions, especially for the leptonic Dirac CP phase,
can be tested at ongoing and forthcoming neutrino experiments
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Figure 30.1. The effective mass mee in the setup from [7] relevant for neutrinoless double beta decay as a
function of the mass mlightest of the lightest neutrino, for an inverted neutrino mass ordering (∆m2

31 < 0,
upper line) and for a normal mass ordering (∆m2

31 > 0, lower line). The bands represent the experimental
uncertainties of the mass squared differences. The mass bounds from cosmology [8] and from the Heidelberg-
Moscow experiment [9] are displayed as grey shaded regions. The red lines show the expected sensitivities
of the GERDA experiment in phase I and II [10].
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