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1
Introduction

1.1 Cosmic rays

Already in 1785 de Coulomb found that his equipment suffered from discharging [1]. If ions
in the atmosphere were responsible, there had to be an unknown source of ionizing radiation.
After the discovery of radioactivity in 1896 by Becquerel [2] it was generally believed that
radioactive elements in the ground caused the ionization of the air. However, experiments
by Wulf in 1909 and Pacini in 1911 showed that a part of the ionization had to be due to
sources other than the Earth’s radioactivity [3, 4]. The history of cosmic rays literally took off
in 1912 when Hess discovered with his balloon experiments that an electroscope discharged
more rapidly at large altitudes [5]. He attributed it to radiation of extra-terrestrial origin [6].
After that, several experiments were conducted to study the nature of these ‘cosmic rays’ [7–9].
In 1927 Clay found evidence for cosmic rays being deflected by the geomagnetic field, which
implied the cosmic rays to be charged [10, 11]. From the difference between the intensities of
cosmic rays coming from the east and the west, the so-called east-west effect, it was found by
Rossi in 1934 that most cosmic rays have a positive charge [12]. Nowadays it is known that
99 % of the cosmic rays are nuclei (ionized atoms with positive charge) and 1 % are electrons.
A very small fraction of the cosmic rays are gamma particles. The nuclei include essentially
all of the elements of the periodic table: about 89 % hydrogen (protons), 10 % helium (alpha
particles) and 1 % heavier elements. The observed energies of cosmic particles ranges from
somewhat greater than their mass-equivalent to 3 ·1020 eV. Particles with energy smaller than
1010 eV originate mainly from the Sun. Particles with energy between 1010 eV and 1016 eV
are attributed to sources in our Milky-Way galaxy. From there the origin gradually shifts to
extragalactic origin. Beyond 1018 eV cosmic particles are thought to be of extragalactic origin.
The interaction of cosmic particles with the cosmic microwave background sets a limit to the
energy of cosmic rays, the GZK limit [13, 14]. The GZK limit implies that cosmic rays coming
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2 Chapter 1. Introduction

from a distance larger than 50 Mpc can not have an energy larger than 5 ·1019 eV. The flux of
cosmic particles decreases with energy, see Figure 1.1. The flux is proportional to E°∞, where
∞ is about 2.7 before the ‘knee’, about 3 beyond the knee, larger than 3 after the ‘2nd knee’ and
smaller than 3 beyond the ‘ankle’.
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Figure 1.1: Cosmic ray energy spectrum from several experiments, see [15–17] and references therein.

The sources of cosmic rays are a subject of ongoing debate and continuous research. For galactic
cosmic rays supernova remnants are regarded as candidates. For extragalactic cosmic rays one
thinks of active galactic nuclei and of gamma-ray bursts, extremely energetic flashes of gamma
rays released by collapsing stars, two merging stars or a star merging with a black-hole. For
the determination of cosmic ray sources one usually considers showers with energy larger than
5 ·1019 eV since the paths through the universe of cosmic rays with such a large energy are
less deflected by magnetic fields. An astronomical object is considered a ‘hotspot’ if its celestial
coordinates coincides, within measurement uncertainties, with an anisotropy in the density
of origins of ultra high energy cosmic rays. The active galaxy Centaurus A, at a distance of
3.4 Mpc, is an example [18, 19]. Another example is possibly the starburst galaxy M82 or the
blazer Mrk 180 [20, 21].
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1.2 Cosmic air showers

While conducting his experiment for the east-west effect Rossi observed that many particles
arrived simultaneously at separate detectors placed apart from each other [12]. The same
phenomenon was detected independently by Auger in 1937 [22]. He recognized that primary
cosmic ray particles interact with air nuclei in the atmosphere. The interaction leads to the
production of many particles which in turn interact also with air nuclei. The result is a ‘shower’
of particles: a cosmic air shower.

The simplest shower to describe is an electromagnetic shower as, for instance, caused by a
gamma ray. Electromagnetic showers are observed with Cherenkov Telescopes of the HESS
experiment [23, 24]. When a photon passes the Coulomb field near an atomic nucleus in the at-
mosphere an electron and a positron can be created; a pair production process. Under the same
condition the electron and the positron can radiate photons, the so-called Bremsstrahlung. The
photons resulting from Bremsstrahlung can produce an electron positron pair and so on. The
cascade of repeated collisions leads to a shower of electrons, positrons and photons.

∞

e°e+

e°

e° ∞

Figure 1.2: Pair production (left) and bremsstrahlung (right).

Showers are far more likely to be caused by a proton or a heavier nucleus. When such a cosmic
ray particle enters the atmosphere, a hadronic interaction will occur with a nucleus of an atom
in the air, mostly nitrogen and oxygen. The collision results in the production of secondary
particles, mostly pions, some neutrons, but also particles such as kaons. The neutral pions,
with a mean lifetime of 8.4 ·10−17 s, decay almost instantly into two gamma particles, giving
rise to electromagnetic sub-showers. The charged pions, with a mean lifetime of 26 ns in rest,
can collide with other nuclei, generating new pions. When the energy of a pion is not large
enough to survive to the next collision, it will decay into a muon and a neutrino. That is, the
positive pion decays into an anti-muon and a muon neutrino and the negative pion decays into
a muon and a muon antineutrino:

º+!µ++∫µ , (1.1)

º°!µ°+∫µ . (1.2)

These are primary decay modes with a probability, branching ratio, close to unity. For both the
charged and the neutral pion the other decay modes have very small branching ratios. The
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muons, with a lifetime of 2.2 µs, will either survive to the surface of the Earth or decay into an
electron and two neutrinos according to the following rules:

µ°! e°+∫e+∫µ , (1.3)

µ+! e++∫e+∫µ . (1.4)

The energy loss of a muon due to Bremsstrahlung is negligible compared to electrons, while
an electron resulting from the muon decay will contribute to the electromagnetic component of
the shower. The whole of hadronic collisions and electromagnetic sub-showers form a so-called
extended air shower (EAS). The shower size, the number of particles, is mainly determined by
the photons, electrons, muons and neutrinos. A vertical EAS is shown in Figure 1.3.
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Figure 1.3: Impression of a vertical shower initiated by a 1015 eV proton. Left panel: electron trajectories
(red). Right panel: Hadron trajectories (blue) plotted on top of the muon trajectories (green) plotted on
top of the electron trajectories (red).
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1.3 Jets in cosmic air showers

Quarks are elementary particles which carry an electric charge and a color charge. There are
six types of quarks, known as flavors: d, u, s, c, b and t. In units of electron charge, the u, c
and t quarks have electric charge 2

3 , the other quarks have electric charge °1
3 . Each quark also

has one of the three color charges red, green or blue. Quarks only appear in composite colorless
particles: mesons and baryons (and possibly exotic composites like the pentaquark). Mesons
and baryons, which are sensitive for the strong interactions, are called hadrons. Mesons consist
of a quark-antiquark pair or of a linear combination of such pairs. The pion º+, for instance,
consists of a u and a d quark, while the º0, for instance, is a (uu°dd)/

p
2 combination. Mesons

are not stable, they decay by means of the strong or weak forces into mesons and leptons with
smaller mass. The charged pion, for instance, decays into a µ and a ∫µ. Baryons consists of
three quarks. A stable baryon is the proton p. It consists of a u, u and d quark. Another well
known baryon is the neutron n which is a udd combination. On the basis of properties as spin,
isospin, charge and strangeness mesons and baryons can be arranged in octets, nonets and
decuplets [25].

Protons and the neutrons are the nucleons of which all the nuclei consist. The quarks in a
nucleon are bounded tightly together by the strong force. Although the nucleons as a whole
are colorless, there still is some exchange of gluons and pions, which supplies the nuclear force,
the force which binds the nucleons to a nucleus. The nuclear force therefore is, so to say, a
residual strong force. For radii larger than 1 fm the nuclear force is determined by the Yukawa
potential V / ° g2

r e°µr. Because of the exponential factor e°µr the Yukawa potential rapidly
decreases. The Yukawa potential prevents the protons from repelling each other by the elec-
tric Coulomb force for distances smaller than about 2 fm. For the quarks inside a nucleon the
potential is V / Æs

r °kr, where the strong coupling constant Æs depends on the virtuality Q2 of
the interaction. This leads to a the running coupling constant:

Æs =
12º

(11ng °2nf) ln
h

Q2

§2

i if Q2 >>§2 , (1.5)

where §º 0.2 GeV and where nf and ng are the number of quark flavors respectively the num-
ber of quark colors. For large energies the strong coupling constant is small, Æs << 1, leading
to asymptotic freedom. The value of the strong coupling constant is often expressed at the MZ

energy: Æ(M2
Z)º 0.12. When a large amount of energy is transferred to a nucleon in a collision,

the small coupling constant causes the quarks to behave as free quarks initially.

The linear factor kr in the quark potential causes a large attractive force between quarks.
The force does not decrease with distance. This has severe consequences when a lepton or a
quark (of a hadron) collides hard against a target quark inside a nucleon. Independent of the
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amount of energy the target quark can not be kicked out of the nucleon, quark confinement.
Instead, new quark pairs and gluons are created in between the initial position of the target
quark and its ‘kick-out’ position: fragmentation. When a proton collides against a proton, a
process which we will take as the basis for a cosmic ray proton colliding against a nucleus of a
nitrogen or oxygen atom in the atmosphere, a main QCD process occurs with the production of
quarks and, mostly soft, gluons.

If a small momentum transfer is involved with the collision of two nucleons, one speaks about
soft QCD. The processes (elastic, minimum bias, and diffraction) are described by phenomeno-
logical models whose parameters are verified from collider experiments. For large momentum
transfer one speaks about hard QCD. In the latter case the small value of strong coupling al-
lows for perturbative QCD. The multiparton interaction leads to a production of a large number
of gluons and quarks. The splittings are described by the DGLAP equations [26–28]. The gluon
radiation leads to angles between the two partons after a splitting. That is, the partons obtain
a transverse momentum pT. The quarks created during the collision rearrange to mesons and
baryons, the hadronization. These ‘final’ hadrons will have a momentum with a large compo-
nent in the transverse direction. The bunch of new hadrons created this way can move in a
direction close to the initial quark or diquark, a so-called jet. In Figure 1.4 a schematic exam-
ple is given of two jets in, for convenience, e°e+! qq scattering.

e°

e+

∞§
q

q

baryon

baryon
anti -

meson

meson

meson

jet

jet

Figure 1.4: Fragmentation and hadronization in deep inelastic electron positron scattering.

Because of the quark structure of hadrons jets occur relatively often in hard collisions. An
example of a dijet event in a proton-proton collision detected with ATLAS at CERN is shown
in Figure 1.5. Although less frequently events with three or more jets can occur as well.
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© 2014 CERN

Figure 1.5: A dijet event in a p-p collision as detected with ATLAS.

In a collider the protons collide with opposite but equally large velocities, the center of mass
(CM) frame is at rest. In a cosmic air shower the incoming cosmic ray has a velocity almost
equal to the speed of light while the target nucleon in an atom in the atmosphere can be con-
sidered at rest. The Lorentz transformation from the CM frame to the fixed target (FT) frame
causes the transversal jets to be close to the core of the shower, see Figure 1.6.

µ

Figure 1.6: Dijet event in the CM frame (left) and in the FT (right).
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The transversality of the direction of a jet is described by the angle µ, see Figure 1.6. If µ = º
2

the jet cone is completely transverse. For the collision in the FT frame the jet cone has a large
component parallel to the shower axis. At the altitude of observation the two jets cause den-
sity fluctuation with respect to the density of the main shower. An impression of the density
pattern in a shower with two jets is shown in Figure 1.7.

Figure 1.7: Impression of the lateral density, not to scale, plotted in vertical direction, with two density
fluctuations caused by a di-jet for the hypothetical situation where the lateral density is smooth.

With an array of detectors one can try to reconstruct a jet fluctuation from the detector signals.
The investigation of jets in cosmic air showers requires insight in the evolution of the shower in
the atmosphere, the distribution of particles at observation level, the reconstruction of showers
on the basis of detected signals and the relativistic kinematics of jets. Next to the simulation
of cosmic air showers it also requires the simulation of the hadronic interaction in the first
collision of the cosmic ray with the nucleus of an atom in the atmosphere. The collision is com-
parable to a proton-proton collision. The simulation of proton-proton scattering with large pT

jets will be performed with version 8.212 of PYTHIA [29–31]. PYTHIA is a Monte Carlo event
generator for e-e, e-p and p-p interactions based on leading order matrix elements. On the basis
of the splitting functions it simulates the branching of the quarks and gluons to a scale where
perturbative QCD is valid. As soon as the quarks and gluons become more separated, all at
the fm-scale, Æs becomes large and the QCD process is no longer perturbative. The interaction
process factorizes in two parts: the hard process and the fragmentation part. PYTHIA contains
a package JETSET which takes care of the fragmentation according to the Lund string model
and the hadronization to ‘final’ particles, particles with a lifetime longer than 10−8 s.



1.4. Longitudinal profile 9

1.4 Longitudinal profile

After the first collision of a cosmic ray with a nucleus in the atmosphere the shower size grows.
Initially the growth is approximately exponential. However, with each collision the energy of
the secondary particles is smaller than the energy of the incoming particle. When the energy
falls below the critical energy, which is the energy for which the ionization losses are equal to
the radiation losses, the electron will be absorbed or scattered out of the shower. This will slow
down the growth of the electromagnetic shower. After reaching a maximum the number of par-
ticles will decrease. The longitudinal profile is the evolution of the number of particles during
its passage through the earth’s atmosphere. Since the interactions in the shower depend on
the atmospheric depth met by the traveling shower particles, the number of particles is usu-
ally plotted against atmospheric depth. The atmospheric depth X at an altitude z is given by
X (z) =

R1
z Ω(r)dr. In Figure 1.8 an example is given of the longitudinal profile of electrons of a

vertical shower initiated by a 1015 eV proton. The first interaction is around 70 g cm−2, which is
at an altitude of 22 km. The example shower size reaches a maximum of about 7 ·105 electrons
around 550 g cm−2, which is at an altitude of 5 km.
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Figure 1.8: The number of electrons of a vertical shower initiated by a 1015 eV proton plotted against
atmospheric depth.

About 105 electrons survive to the surface of the Earth (z = 0), where the atmospheric depth
is about 1030 g cm−2. The evolution of the longitudinal profile differs from shower to shower.
The atmospheric depth of the first interaction as well as the atmospheric depth between the
successive interactions is a matter of probability. The average value, the interaction length
is related to the cross section and depends on the energy of the interaction. In Figure 1.9 an
impression is given of the different evolutions of showers with the same initial condition: all
vertical shower initiated by a 1015 eV proton.
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Figure 1.9: The number of electrons of 50 vertical showers initiated by a 1015 eV proton plotted against
atmospheric depth. Three of the showers developed slowly; the maximum is around 800 g cm−2. For one
shower shows the maximum shower size is constant for a large interval of atmospheric depth

.

For Figures 1.8 and 1.9 the showers were simulated, without thinning, by means of AIRES-
2-8-4a [32] with SIBYLL 2.1 [33] for the hadronic interactions. It shows how the different
evolutions causes the number of electrons at ground level to range from 3 ·104 through 5 ·105

A simple model for the longitudinal evolution of the electromagnetic cascade has been given
by Heitler [34]. It predicts well the depth of maximum shower size as a function of energy of
the primary cosmic particle. The longitudinal evolution is described far more accurately by a
system of diffusion equations [35–38]. In Chapter 2 intermediate models for the electromag-
netic shower will be considered. The Heitler model has been applied to the hadronic cascade
by Matthews [39]. The prediction for the elongation rate, the change of the depth of shower
maximum with the logarithm of the energy, is based on the first generation of ∞’s. In Chapter
2 the Heitler-Matthews model is extended to the full hadronic cascade. The longitudinal evolu-
tion of the number of gamma’s, electrons, muons and hadrons in a hadronic shower is shown in
Figure 1.10. The shower of Figure 1.10 and all Monte Carlo showers hereafter are simulated
without thinning with CORSIKA-v7.4 [40], with QGSJET-II-04 [41] + GHEISHA [42] for the
hadronic interactions. For the shower of Figure 1.10 there are at ground level about 5 ·105

gamma’s, 1 ·105 electrons, 1 ·104 muons and 8 ·102 hadrons (mainly pions). For small show-
ers most of the electrons will be absorbed in the atmosphere, only some muons will reach the
surface of the Earth. For extensive air showers the number of electrons that reach the Earth
exceeds the number of muons. Since low energy showers occur far more often than high energy
showers, the net result is that there are about four times more muons than electrons at sea
level, see Fig. 7.9 of [43]. The muon rate at sea level is 100 s−1 sr−1 m−2.
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Figure 1.10: The longitudinal development of the number of gamma’s (orange), electrons (red), muons
(green) and hadrons (blue) of a vertical shower initiated by a 1015 eV proton versus atmospheric depth.

1.5 Lateral density

While the cosmic air shower develops in the longitudinal direction it also develops in the di-
rection perpendicular to the shower axis, the lateral direction. The lateral spread in an EAS
is the result of both hadronic interactions and electromagnetic interactions. The transverse
momentum in hadronic collisions, the angles between produced particles in pair-production,
bremsstrahlung and decays, deflections due to Coulomb interactions and Compton scattering
all cause the shower front to expand in the lateral direction. Since less energetic particles will
lag behind the more energetic particles the thickness of the shower front will increase. The
shower front can be imagined as a slightly curved ‘pancake’ moving with nearly the speed of
light. An impression of the front of a vertical shower is shown in Figure 1.11. The radius of
curvature for this shower front is about 10 km.

Particles reaching the ground are distributed over a large area. The number of particles per
square meter, the lateral density, is large near the center and decreases with the distance to
the core. The lateral density depends on the energy of the primary cosmic ray, the identity of
the cosmic ray and the inclination of the shower. The larger the energy the larger the lateral
density. The larger the mass number of a cosmic nucleus the larger the probability it will col-
lide with an atom in the air. As a consequence the depth of maximum shower size is smaller
for an iron initiated shower than for a proton initiated shower of the same energy. As a fur-
ther consequence the iron initiated shower is more attenuated at the moment of arrival at the
ground, which leads to a smaller lateral density.
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Figure 1.11: An impression of the front of a 1015 eV proton initiated vertical shower, the muons (green)
plotted on top of the electrons (red) plotted on top of the gamma’s (yellow).

The inclination of the shower has a large effect on the lateral density. Inclined showers are
more attenuated because the slant depth is cos°1µ times the vertical depth, with µ the zenith
angle. The attenuation mainly concerns the electrons. The horizontal density of electrons and
the density of muons for an inclined shower therefore differ substantially from the one of a
vertical shower. The horizontal density is of interest since shower detectors are usually placed
in a, more or less, horizontal plane. For two different zenith angles the horizontal density of
electrons, muons and their sum are plotted for a 1016 eV shower in Figure 1.12.
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Figure 1.12: The horizontal density of electrons (red), muons (green) and the sum of them (black dashed)
versus distance to the shower core for a 1016 eV proton shower with 0° (left) and with 45° (right).



1.6. HiSPARC 13

For the vertical situation, left panel of Figure 1.12, the shower size of charged particles is
mainly determined by the electrons for radii smaller that 300 m. Near the core the electron
density is about 400 times larger than the muon density. For µ = 45°, right panel of Figure 1.12,
the sum density already starts to deviate from the electron density around a radius of 100 m
in the horizontal plane. Near the core the electron density of the inclined shower is far smaller
than for the vertical situation, while the muon density is less influenced by the inclination.

For a vertical shower the horizontal density depends only on the radius; the iso-density con-
tours are circles. The projection of the inclined shower front on the horizontal plane causes the
iso-density contours to be stretched to ellipses. Moreover, since the early part of the shower
is less attenuated than the late part, the centers of the iso-density contours are shifted. Both
require the horizontal density to be described as a function of the radius r and the polar angle
Æ. In Chapter 3 different aspects of the lateral density will be considered. A polar density
function, parameterized by energy and inclination will be derived.

1.6 HiSPARC

There are different ground-based methods to detect cosmic air showers. The relativistic veloc-
ity of charged shower particles in the atmosphere causes Cherenkov radiation, electromagnetic
radiation emitted when a charged particle passes through a medium at a speed larger than the
phase velocity of light in that medium. The shower particles can excite nitrogen molecules in
the air. The de-excitation of nitrogen molecules produces fluorescent light. The advantage is
that Cherenkov light and fluorescent light provide information about the longitudinal devel-
opment of a shower. The disadvantage is that both can be detected only during clear, moon-
less nights. Another type of ground-based detector is the water Cherenkov detector. When a
charged particle of the shower enters a tank filled with water it will radiate Cherenkov light
which can be detected. A common method to detect charged particles of a shower is by means
of a scintillator. Scintillation light is generated when a shower particle traverses a layer of
scintillation material. Scintillator detectors are employed by the HiSPARC experiment.

HiSPARC is a large scale cosmic ray experiment [44]. It has two goals. One is to offer an
opportunity for high school students and teachers to participate in scientific research. The
other is to conduct scientific studies on cosmic rays. It consists of a network of more than
100 detection stations. About 90 % of them are located in the Netherlands, the others in Eng-
land and Denmark. Most stations are positioned on the roofs of high schools participating in
the HiSPARC project. The positions of stations is therefore determined by the geographical lo-
cation of the participating high schools rather than by a predetermined pattern. The locations
of HiSPARC stations in the Netherlands are shown in Figure 1.13.
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Figure 1.13: Locations of the HiSPARC stations in the Netherlands.

A particular role is played by the stations at Science Park Amsterdam (SPA). Momentarily
it consists of 11 stations of which 10 are positioned on the roofs of scientific institutes. Each
station at SPA consists of 4 scintillator detectors. Since they are distributed over an area of
about 300 acres an extensive shower can cause signals in a number of stations. From the set
of signals the direction and size of the shower can be derived. The locations of the stations at
SPA are shown in Figure 1.14. The SPA station are numbered 501 through 511in the order of
their historical appearance.

When an electron or a muon traverses a scintillation detector it may result in a signal. An
isolated detector signal is not recorded; only if a signal is received from a second detector of
the same station within 1.5 µs after the first signal, then the time and size of the signals are
recorded and stored as an ‘event’ in the Event Summary Database (ESD).

In Chapter 4 a description is given of the energy loss of electrons and muons in scintillator
material and of the way the energy deposit is converted to a digital signal value. This is mainly
hardware. The software, i.e. the Python package SAPPHiRE [45, 46], a framework devel-
oped for the analysis of HiSPARC data, and the application of the shower simulation program
CORSIKA [47] are described also in Chapter 4.
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Figure 1.14: Locations of HiSPARC station detectors at Science Park Amsterdam. Station 507 has been
bleared to express its indoor location at floor level.

1.7 Reconstruction methods

Events that are within a certain window of time simultaneous, a ‘coincidence’, are regarded to
belong to the same shower. The differences between the times of arrival at different stations
increase in general with the inclination of a shower. If at least three stations participate in a
coincidence the direction of a shower, i.e. the zenith angle µ and the azimuth angle ¡, can be
reconstructed from the arrival time differences. A small complication is that the SPA stations
are not exactly in a horizontal plane. For three stations, with different altitudes, participating
in a coincidence an analytical expression is derived for the direction of the shower. For three
or more stations, all in a horizontal plane, an analytical expression is derived by means of re-
gression. For more than three stations with different altitude the latter result is applied in
an iterative procedure. A description of the direction reconstruction methods and a theoretical
derivation of the uncertainty are given in Chapter 5.

More complicated is the reconstruction of the core of the shower. The situation can be com-
pared with the intensity of a light bulb. Three photometers at different positions are sufficient
for the determination of the position of a light bulb if its intensity is known. If the intensity of
the light bulb is not known, as the energy of a shower is not known a priori, a fourth photome-
ter is required. In case of a shower one seeks the core position for which the lateral density
function fits best with the signals. To avoid a large number of trials an estimation of the core
position is desired. A method based on radical axes is described in Chapter 6. The energy of
the shower is determined from the best fitting lateral density function. Direction and energy
reconstructions and other analyses of HiSPARC data are presented in Chapter 7.
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1.8 Jet rates and jet simulation

The probability that a cosmic ray proton collides inelastically with a nucleon in the atmosphere
is determined by the cross section æinel

p-air. The larger the cross section the smaller the interaction
length, the mean free path between two successive collisions. The relation between interaction
length in units of atmospheric depth and the cross section is given by

∏ [gcm°2]= A
NA ·æ[cm2]

, (1.6)

where A is the mass number, Aair º 14.5gmol°1 , and NA is the Avogadro constant, NA =
6.022 ·1023 mol°1. For the cross section in millibarn, 1 mb = 10−27 cm−2, the relation reduces to

∏ [gcm°2]= 24100
æ[mb]

. (1.7)

The cross section for p-air collisions grows approximately linearly with the logarithm of the
proton energy from 3.3 ·102 mb for 1013.5 eV to 4.3 ·102 mb for 1016 eV.

As for p-p collisions the hard scattering of a high energy cosmic proton with the nucleus of
an atom in the atmosphere will give rise to jets. The ratio of a jet cross section and the cosmic
ray collision cross section determines the probability for the jet to occur in the first interaction.
This as well as the relativistic kinematics of jets is described in Chapter 8.

The collision of a cosmic proton with a nucleus of an atom of the atmosphere of the Earth
is simulated by a p-p collision with PYTHIA. The output of PYTHIA, particles and their mo-
mentums, is used as input for the shower simulator CORSIKA. The output of CORSIKA, the
positions of electrons and muons at the desired observation level, is used as input for a Monte
Carlo program. The latter throws the electrons and muons on a large square array of detectors
and inspects all the detector signals for the largest fluctuation. To ascribe a fluctuation to a jet
it has to be significantly larger than the Poisson variations. In another program the positions
of the largest fluctuations are compared with the expected positions of the imposed jets. The
whole simulation is described in Chapter 9. The simulation results are analyzed in Chapter
10. The important simulation results are the effective areas and the effective areas per obser-
vational jet. They are tabulated in Appendices A and B. The effective areas per observational
jet are translated to observational jet rates. The latter are tabulated in Appendix C. In Chap-
ter 11 the HiSPARC data for the SPA cluster is analyzed for large fluctuations. Conclusions
concerning the observation of jets at sea level are drawn in the final section of Chapter 11.
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Longitudinal profile

2.1 Electromagnetic cascade

According to the Heitler model each particle (electron, gamma) will split into two particles of
half the energy after traveling a fixed distance. This distance is equal to ∏r ln2, where ∏r is
the radiation length. The radiation length is the mean distance over which an electron loses
all but e°1 of its energy by bremsstrahlung and 7

9 of the mean free path for pair production
by a photon [48]. For air ∏r = 37gcm°2 [49]. After the first collision there will be 2 particles,
after the second collision there are 4 particles and so on. After n collisions, at atmospheric
depth n∏r ln2, there will be 2n particles each with energy E0 · 2°n, where E0 is the energy
of the primary cosmic ray. The cascade continues until the energy of a particle is decreased
to the critical value Ec at which the bremsstrahlung and ionization rates are equal. For air
Ec º 84MeV [49]. Beyond the critical value the energy losses will be dominated by ionization
instead of radiation and the particle is considered lost for the shower. According to the Heitler
model the shower stops when n > nc, where

nc = ln(E0/Ec) / ln2 . (2.1)

Although nc∏r ln2 is a good prediction for the depth of maximum shower size, the shape of the
shower profile is far from realistic.

The longitudinal evolution is described accurately by a system of diffusion equations [35–37].
For the so-called Approximation A, complete screening and the neglect of collision losses, it can
be written as

@ne±
@t

=°A0ne±+B0n∞ (2.2)

17
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and
@n∞
@t

= C0ne±°æ0n∞ . (2.3)

In these equations t is the atmospheric depth in units of radiation length

t = X
∏r

(2.4)

and A0, B0 and C0 are integral operators:

A0ne±(E, t)=
Z1

0

∑
ne±(E, t)° 1

1°v
ne±

µ
E

1°v
, t

∂∏
¡(v)dv , (2.5)

B0n∞(E, t)= 2
Z1

0
n∞

µ
E
u

, t
∂
√(u)

u
du , (2.6)

C0n∞(W , t)=
Z1

0
ne±

µ
W
v

, t
∂
¡(v)

v
dv , (2.7)

where
√(u)= u¡

µ
1
u

∂
= 4

3
u2 ° 4

3
u+1+2b

°
u2 °u

¢
. (2.8)

In the latter b =
°
18ln

£
183Z°1/3§¢°1 º 0.0122 is very small in comparison to the other coeffi-

cients. A0ne± consists of two integrals. The first one,

Z1

0
ne±(E, t)¡(v)dv = ne±(E, t)

Z1

0
¡(v)dv , (2.9)

represents the decrease of electrons with energy E due to bremsstrahlung. The latter integral
is logarithmically divergent at v ! 0; the infrared divergence. The other part of A0ne±, repre-
senting the increase of electrons with energy E due to bremsstrahlung of electrons with larger
energy, also is divergent. However, both divergences cancel each other, leaving a finite value
for the net change of electrons with a certain energy. B0n∞ represents the increase of electrons
due to pair production. C0n∞ represents the increase of gamma’s due to bremsstrahlung of
electrons. Finally, æ0n∞ represents the decrease of gamma’s due to pair production, where

æ0 =
Z1

0
√(u)du = 7

9
° 1

3
b º 0.77 (2.10)

in units of radiation length. That is, the interaction length of pair production is 9
7 times the

radiation length: ∏pair = 9
7∏r.

The system of equations is solved by means of a Mellin transform and a saddle point approx-
imation. For a clear exposure see for instance [50]. The solution can be described by to the
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Greisen function:
Ne =

0.37
pnc

· et(1°1.5ln s) , (2.11)

where
s = 3t

t+2tmax
(2.12)

is the age parameter with
tmax = nc ln2 . (2.13)

For a 1015 eV shower the longitudinal profile according to the Heitler model and the Greisen
function are shown in Figure 2.1.
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Figure 2.1: Longitudinal shower profile according the Heitler model and the Greisen function.

Realistic profiles for the electromagnetic shower can also be obtained from intermediate mod-
els. The analysis has been published [51]. The publication is shown hereafter.
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2.2 Hadronic cascade

The main difference between electromagnetic and hadronic interactions is the multiplicity of
secondary particles. In electromagnetic cascades bremsstrahlung and pair production are in-
teractions where two particles are produced, while a hadronic interaction of a proton or an
iron nucleus with a nucleus of the air many particles are produced. Depending on the energy
the incoming particle the hundreds of secondary particles may be produced. The multiplicity
increases with atomic number. Since this results in a less energy per secondary particle the
depth of maximum shower size is smaller for an iron primary than for a proton primary.

The Heitler model can also be applied to hadronic cascades [39]. As for electromagnetic cas-
cades the energy is regarded to be equally divided among the secondary particles. It leads to
predictions of too small a depth of maximum. On the basis of the first generation the pre-
diction for the elongation rate, dXmax/dlog10 E0, seems right. By means of a semi-analytical
approach the Heitler-Matthews model can be extended to the second and further generations
of the hadronic cascade. Then the predictions for both the depth of maximum and the elon-
gation rate are too small. A more realistic, non-equal division of the energy, which is hard to
model, will increase the prediction of both the depth of maximum and the elongation rate. The
analysis has been published [52]. The publication is shown hereafter.
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2.3 Summary

For the longitudinal evolution of the electromagnetic shower four models have been consid-
ered. The simplest one is the Heitler model: fifty-fifty energy splittings at fixed increments
of atmospheric depth. The next to simplest one is an intermediate model where the depths of
interaction are stochastically determined. With a small modification by means of a parameter
X0 the corresponding longitudinal profile is a Gaisser-Hillas function. A more accurate inter-
mediate model is obtained when the the fifty-fifty splittings are stretched to non-equal energy
divisions in splittings, while each splitting still occurs with the same probability. The corre-
sponding longitudinal profile is a Gaussian in Age function. If the model is further stretched
to physical probabilities for the splittings one arrives at the well known model of Rossi and
Greisen. A schematic overview is shown in Table 2.1.

model depths of energy splitting longitudinal

interaction division probability profile function

Heitler • • • Heitler

intermediate 1 ∞ • • Gaisser-Hillas

intermediate 2 ∞ ∞ • Gaussian in Age

Rossi-Greisen ∞ ∞ ∞ Greisen

Table 2.1: Model properties and the corresponding longitudinal profiles. • = fixed, � = stochastic.

For the longitudinal evolution of hadronic showers the Heitler-Matthews model is based on the
first interaction. With suitable descriptions of interaction length and multiplicity as functions
of energy the Heitler-Matthews model has been extended to the full hadronic cascade. The
latter under predicts both the depth of maximum shower size and the elongation rate. The un-
der prediction is a consequence of the tacitly assumed homogeneous energy distribution over
the secondary particles. An inhomogeneous energy distribution over the secondary particles
increases both the depth of maximum shower size and the elongation rate.

Recently, the extension of the Heitler-Matthews model has been utilized to calculate the muon
production depths by means of a branching model for hadronic air showers [53].



3
Lateral density

3.1 Lateral density function

To reconstruct the core and the energy of the cosmic ray the detector signals have to be fitted
along a lateral density function (LDF). The LDF is a function of the radial distance r to the core
of the shower and depends on the energy of the primary and the zenith angle. It also depends
on the individual development of the shower. However, for reconstructions it is difficult to take
individual deviations into account. We therefore restrict to average LDF’s. The basic LDF is
the Nishimura-Kamata-Greisen (NKG) function [38, 54].

Ω(r)= c(s) ·Ne

µ
r
r0

∂s°2 µ
1+ r

r0

∂s°4.5
, (3.1)

where c(s) is the normalization factor

c(s)= °(4.5° s)
2ºr2

0°(s)°(4.5°2s)
(3.2)

and where r0 is the Molière radius:
r0 =∏r

Es

Ec
. (3.3)

with Es = mec2
q

4º
Æ º 21.2 MeV. The parameter Es is known as the scale energy. The age

parameter s is given by

s = 3X
X +2Xmax

(3.4)

with X is the atmospheric depth. As we saw before, the value of Xmax is equal to ∏r ln(E0/Ec).
The number of electrons (+ and -) at ground level, which is the altitude of the detectors, is de-
noted as Ne. For positive arguments in the Gamma functions the age parameter should satisfy

39
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the condition 0 < s < 2.25. Since s = 1 at X = Xmax the value of the age parameter at ground
level is s º 1.5 for 1 PeV showers.

To derive the NKG function a system of equations, as already derived by Landau [55], had
to be solved. It reads:

@ne±
@t

+~µ ·~rrne± =°A0ne±+B0n∞+
E2

s
4E2

~r2
µne±+Ec

@ne±
@E

(3.5)

and
@n∞
@t

+~µ ·~rrn∞ = C0ne±°æ0n∞ , (3.6)

where t is the atmospheric depth in units of radiation length: t = X /∏r and where ~r and ~µ
are the two dimensional lateral and angular deviations of the particle densities respectively.
Without the spatial variations, i.e. without the second term on the left hand side of the Equa-
tions 3.5 and 3.6, and without the Coulomb scattering and collision losses, i.e. without the
third and fourth term on the right hand side of Equation 3.5, the system reduces to the Equa-
tions 2.2 and 2.3 as considered for the longitudinal development. The fourth term on the right
hand side of Equation 3.5 represents the collision losses. The third term on the right hand side
of Equation 3.5 represents the Coulomb scattering.

Most LDF’s are modifications of the NKG function [56]. The following LDF was used for the
KASCADE experiment [57]:

Ω(r)= Ne · c(s) ·
µ

r
r0

∂s°Æ µ
1+ r

r0

∂s°Ø
, (3.7)

where
c(s)= °(Ø° s)

2ºr2
0°(s°Æ+2)°(Æ+Ø°2s°2)

(3.8)

is the normalization constant. Although the parameters r0 and s play a similar role as the
Molière radius and the shower age in the original NKG function, they are rather fit parame-
ters now. Optimum agreement with the KASCADE data was obtained for Æ= 1.5, Ø= 3.6 and
r0 = 40m for the electron density and Æ = 1.5, Ø = 3.7 and r0 = 420m for the muon density.
The parameter s should satisfy the condition 0.5 < s < 1.55. Since the numerical relation with
shower age is lost the fit parameter s is called the shape or form parameter [57].

For the present analysis the following LDF will be used initially for the lateral density in
the horizontal plane of observation:

Ω(r)= N · c(s) ·
µ

r
r0

∂s1
µ
1+ r

r0

∂s2

, (3.9)
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where
c(s)= °(°s2)

2ºr2
0°(s1 +2)°(°s1 ° s2 °2)

. (3.10)

This LDF will be applied to the electron density, the muon density and the combined density of
both muons and electrons. The latter is of particular interest since electrons and muons have
a practically identical energy loss in scintillator detectors. The values of the parameters r0, s1

and s2 for electrons differs from the ones for muons and the ones for the combined density.

3.2 Polar averaged density

The values of the parameters r0, s1 and s2 also depend on the zenith angle of the shower.
The relation will be analyzed on the basis of showers simulated with CORSIKA, all without
thinning. The horizontal observation level was set to 10 m; the average altitude of the HiS-
PARC detectors at SPA. The energy cuts are 0.3 GeV for hadrons and muons and 3 MeV for
electrons and gamma’s. To obtain a radial LDF the simulated densities are polar averaged for
radii within 1000 m. The polar averaged density is binned with a bin width of 1 m (1000 bins).
To the binned density a ¬2-fit is applied with the LDF 3.9. In Figure 3.1 the polar averaged
electron density, muon density and combined density together with the fit curves are shown
for three different showers with energy 1015 , 1016 and 1017 eV, all with zenith angle 15°. In
Figure 3.2 similar plots are shown for four different showers with energy 1015 , 1016 , 1017 and
1018 eV, all with zenith angle 45°. The figures show that electron and muon densities accu-
rately follow the LDF 3.9. The combined density follows the LDF well for zenith angle 15°,
while for zenith angle 45° the LDF underestimates the combined density for radii larger than
about 300 m. The deviation is caused by the relatively large muon component. To obtain an
accurate LDF for the combined density, the LDF 3.9 has to be modified. Before we turn to the
modification we first consider the difference between the polar averaged density and the polar
density.

3.3 Polar density

When an inclined air shower strikes a horizontal plane the lateral density in the horizontal
plane is elliptic. That is, the iso-density contours are ellipses with the angle of the semi-major
axis equal to the azimuth angle. At the same time the horizontal density is decreased by a
factor cosµ because of the projection. In this section the consequences of polar averaging of
an elliptic density for the parameter values are investigated. Without loss of generality the
azimuth angle will be conveniently taken equal to zero in the following analysis. Secondly, we
will denote the density in the horizontal plane as ∫ to distinguish it from the density Ω in the
plane perpendicular to the shower direction. An elliptic density at a position in the horizontal
plane with with polar coordinates r and Æ is cosµ times the density in the front plane at a
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Figure 3.1: Polar averaged electron density (upper panel), muon density (middle panel) and combined
density (lower panel) for showers with zenith angle 15° and, in ascending order in the plots, energies 1015 ,
1016 and 1017 eV. The dashed curves are the �2-fits with the LDF as given in the text.
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Figure 3.2: Polar averaged electron density (upper panel), muon density (middle panel) and combined
density (lower panel) for showers with zenith angle 45° and, in ascending order in the plots, energies 1015 ,
1016 , 1017 and 1018 eV. The dashed curves are the �2-fits with the LDF as given in the text.
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radius k, where k is given by [58].

k = r
p

1°sin2µ cos2Æ . (3.11)

The cosµ is from the projection. In short

∫(r,Æ)= Ω(k)cosµ (3.12)

For the LDF 3.9 the corresponding elliptic horizontal density for an air shower with zenith
angle µ is given by

∫(r,Æ)= N ·cosµ · c(s) ·
µ

k
r0

∂s1
µ
1+ k

r0

∂s2

, (3.13)

where k is as given by Equation 3.12.

First the consequences of the substitution of Equation 3.11 for the number of particles will
be considered. For a polar symmetric density Ω in the plane of the shower front the number of
particles N follows from the surface integral of the density:

N =
Z2º

0

Z1

0
Ω(k)kdkdÆ= 2º

Z1

0
Ω(k)kdk . (3.14)

For the number of particles in the horizontal plane, Nh we have

Nh =
Z2º

0

Z1

0
∫(r,Æ;µ)rdrdÆ . (3.15)

By means of Equation 3.12 this is

Nh = cosµ
Z2º

0

Z1

0
Ω(k)rdrdÆ , (3.16)

where k is a function of r and Æ as given by Equation 3.11. A change of variables r ! k leads
to the following integral

Nh = cosµ
Z2º

0

Z1

0

Ω(k)k
1°cos2Æsin2µ

dkdÆ . (3.17)

The integral can be evaluated exactly. To this end the following Taylor series is considered

1
1°cos2Æsin2µ

=
1X

n=0
cos2nÆsin2n µ . (3.18)

By means of partial integration it follows

Z2º

0
cos2nÆdÆ= 2n°1

2n

Z2º

0
cos2n°2ÆdÆ= 2º

1X

n=0

(2n)!
2nn!

. (3.19)
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Hence, Z2º

0

1
1°cos2Æsin2µ

dÆ= 2º
1X

n=0

(2n)!
2nn!

sin2n µ . (3.20)

The latter is the Taylor series of 2º/
p

1°sin2µ. As a consequence the following identity is
obtained: Z2º

0

1
1°cos2Æsin2µ

dÆ= 2º
cosµ

(3.21)

By means of this identity the integration over Æ leads to

Nh = 2º
Z1

0
Ω(k)kdk . (3.22)

From the comparison with Equation 3.14 we obtain

Nh = N . (3.23)

As expected, the number of particles is conserved by the projection.

Second the consequences of the substitution Equation 3.11 for the polar averaged density will
be considered. The polar averaged density will be denoted as < ∫>Æ to distinguish it from the
true horizontal density ∫. For the polar averaged density it holds

< ∫>Æ=
1

2º

Z2º

0
∫(r,Æ;µ)dÆ= cosµ

2º

Z2º

0
Ω(k;µ)dÆ . (3.24)

With k as given by Equation 3.11 and Ω as given by Equation 3.9 this is, explicitly,

< ∫>Æ= N · c(s) · cosµ
2º

Z2º

0

√
r
p

1°sin2µ cos2Æ

r0

!s1 √

1+ r
p

1°sin2µ cos2Æ

r0

!s2

dÆ . (3.25)

This integral is evaluated numerically for different r. The result is compared to the density Ω

we started with. For r0 = 30m, s1 =°0.592+0.229µ and s2 =°3.157+0.222µ the ratio of < ∫>Æ

and Ω cosµ is plotted for zenith angles 0° through 52.5° in steps of 7.5°, see Figure 3.3. The
expressions given for r0, s1 and s2 are applied just because we will arrive at them at the end of
this section. For other values for the parameters, r0 = 40m, s1 =°0.5 and s2 =°3 for instance,
the curves in Figure 3.3 are practically identical.

The polar averaged density overestimates the projected density Ω cosµ. The corrected density
function is obtained by dividing the polar averaged density by the ratio shown in Figure 3.3.
This method is applied to a set of simulated showers. The energies of the simulated showers
are 1015, 1016, 1017 and 1018 eV. The zenith angles of the showers range from 7.5° through 60°
in steps of 7.5°. The parameters r0, s1 and s2 are determined for 10 simulated showers for each
of the energy-zenith angle entries considered. For the largest energy considered, 1018 eV, the
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Figure 3.3: The ratio of polar average density and horizontal density for zenith angles 0° through 52.5° in
steps of 7.5° for parameter values as given in the text.

library of simulated showers was at the moment of the investigation limited to 10 showers for
zenith angle 60°, 10 for zenith angle 52.2°, 8 for zenith angle 45°, 5 for zenith angle 37.5° and
none for smaller zenith angles. The set of showers was initially intended for another purpose
and the parameters were determined without the correction for the polar averaging. Since the
polar averaged densities for electrons and for muons are accurately described by the LDF 3.9
we apply the correction to the sum of them. The result is fitted with a modified LDF. For the
modification we take inspiration from the Greisen function [59]. That is, we multiply the LDF
by (1+ r

g·r0
). With this modification the LDF we will apply is

Ωe+µ = Ne+µ · c ·
µ

r
r0

∂s1
µ
1+ r

r0

∂s2
µ
1+ r

g · r0

∂
. (3.26)

For this LDF the normalization constant is given by

c = g°(°s2)
2ºr2

0°(s1 +2)°(°s1 ° s2 °3) · [2+ s1 ° g · (3+ s1 + s2)]
. (3.27)
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In the original Greisen function g = 11.4. It is found empirically that good fits with the three
parameters, r0, s1 and s2 are obtained if g is taken equal to 11.4cos2µ. The results are shown
in Figure 3.4.
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Figure 3.4: The parameters s1 and s2 (left panel) and r0 (right panel) versus zenith angle.

The variation of the parameters with zenith angle is very small. This implies that the density
perpendicular to the shower direction is practically concentrical. As far as the parameters vary
with zenith angle the relation is almost linear, except for r0 which tends to larger values and
larger variations in the neighborhood of 60°. For µ ∑ 52.5° the parameter r0 is approximately a
constant equal to 30 m. Linear approximations for the other parameters are:

s1 =°0.592+0.229µ (3.28)

and
s2 =°3.157+0.222µ , (3.29)

with µ in radians. These equations were therefore used for the plots in Figure 3.3.

3.4 The shift in elliptic densities

The lateral density of inclined showers are approximately concentrical in the plane perpendic-
ular to the shower axis. The projection on a horizontal plane of observation leads to elliptic
iso-density contours. After the early part of an inclined air shower reaches a horizontal sur-
face the late part of the shower will attenuate further because of atmospheric attenuation. As
a consequence the center of the elliptic horizontal density will be shifted with respect to the
shower core. This effect can be modeled. The analysis has been published [60]. The publication
is shown hereafter.
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3.5 Summary

The horizontal combined density of an inclined air shower is described by

∫e+µ(r,Æ)= Ne+µ ·cosµ · c ·
µ

k
r0

∂s1
µ
1+ k

r0

∂s2
µ
1+ k

g · r0

∂
, (3.30)

where the normalization constant is given by Equation 3.27, where s1 and s2 slightly depend
on µ as given by Equation 3.28 and Equation 3.29 respectively, where is taken r0 = 30m and
g = 11.4 · cos2µ and where k is related to r as given by Equation 3.11. The main conclusion of
the shift analysis is that the shift can be accounted for by modifying Equation 3.11 to

k =°Sr cosÆsin(2µ)+ r
p

1°cos2Æsin2µ , (3.31)

where S is a constant, S º 0.058.

The shift has little consequences for the total number of particles. The surface integral is
now given by

Nh = cosµ
Z2º

0

Z1

0

Ω(k)k

(°S cosÆsin(2µ)+
p

1°cos2Æsin2µ)2
dkdÆ . (3.32)

The integral

I =
Z2º

0

1

(°S cosÆsin(2µ)+
p

1°cos2Æsin2µ)2
dÆ (3.33)

is evaluated numerically. For S = 0.058 the result of the numerical evaluation is

I = 2º
cosµ

°
1+µ(µ)

¢
, (3.34)

where µ(µ) grows from 0 for µ = 0 to 0.02 for µ = 90°. In good approximation µ º 0.0205sin2µ.
For the situation with a shift we thus find that the number of particles in the horizontal plane
is slightly larger than in the front plane:

Nh º N ·
°
1+0.0205sin2µ

¢
. (3.35)

That Nh > N for the shifted density does not have to be a surprise. If the attenuation decreases
the number of particles at the late part of the shower to, say, half its value, then the reverse
process implies an increase of the number of particles at the early part of the shower to twice its
value. On average the number of particles in the horizontal plane will then be 25 % larger than
in the front plane. In reality the differences are not that large. As follows from Equation 3.35
the difference is smaller than 1 % for µ < 45°. The factor µ(µ) is therefore negligible for polar
averaging.
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HiSPARC equipment

4.1 HiSPARC hardware

The HiSPARC experiment is intended to study cosmic-rays by detecting extensive air showers,
for educational as well as scientific purposes. The HiSPARC project consists of a network of
over 100 detection stations positioned on the roofs of high schools or other buildings. Each
detector consists of a plastic scintillator of 100 cm£ 50 cm£2 cm. The detection area therefore
is 0.5 m2. The scintillator is glued to a plastic ‘fishtail’ light guide. The narrow end of the
light guide is glued to a plastic connection socket which in turn is connected, with transparent
double-sided tape, to a photo multiplier tube (PMT). In Figure 4.1 a schematic impression of a
HiSPARC detector is shown.

Figure 4.1: Schematic detector layout: scintillator (white), light guide (gray) and PMT (black).

Most stations consists of two detectors, some of four. Each station is provided with a global
positioning system (GPS) receiver. The stations at the Science Park Amsterdam (SPA) cluster
have four detectors. Some stations have three detectors arranged at the corners of an equi-
lateral triangle with 10 m sides and with the fourth detector in the barycenter, see left side of
Figure 4.2. Other stations have the detectors arranged in a 60° diamond with 10 m sides, see
right side of Figure 4.2.

75
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Figure 4.2: Schematic layout for the triangle station (left) and the diamond station (right). The black
dot is the position of the GPS receiver.

The scintillator and the light guide are wrapped in silver foil and then in plastic pond liner.

Figure 4.3: Taping silver foil around a detector. Photo courtesy of A.P.L.S. de Laat.

The complete detector is placed in a ski-box on the roof of a building. After the connection with
a power and signal cable it is ready for use.

The scintillator consists of polyvinyltoluene (the base) doped with anthracene (the fluor). When
a charged particle passes the scintillator it will lose energy to the base by ionization. The ab-
sorbed energy will be re-emitted in the form of light. For a minimum ionizing particle (MIP) on
average 123 photoelectrons are detected at the PMT.
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Figure 4.4: Ski-boxes on the roof of a building at SPA. Photo courtesy of A.P.L.S. de Laat.

4.2 Data acquisition

A HiSPARC-II or HiSPARC-III unit supplies the high voltage for the PMT and acquires the
signal from the PMT. Each HiSPARC-II or HiSPARC-III unit controls two PMT’s. So, for four-
detector stations two units are required. One unit is connected to a GPS detector for time
stamping a PMT signal. The PMT signal is converted with a 4096 channel Analog Digital Con-
verter (ADC) to a digital value. The signal range is between +0.133 V and -2.222 V. This is
about 0.57 mV per ADC count. For a single MIP the modal pulse height is 220 ADC counts or
125 mV. A HiSPARC unit houses a 200 MHz digital clock. The HiSPARC units contain four
ADC’s, two for each channel. For each PMT the conversion occurs in the one channel on the
leading and in the second channel on the trailing edge of a clock pulse. In this way the two
ADC’s alternately sample every 5 ns, with a 2.5 ns offset between the two. The PMT signal in
each channel is therefore sampled with an effective frequency of 400 MHz. From the moment
the first particles of a cosmic air shower front strike a detector it takes, depending on the size
of the shower, hundreds of nanoseconds until the last particle has passed the scintillator. Be-
cause the effective sampling period of 2.5 ns is much smaller, the time evolution of the sampled
signal, the trace, more or less represents the shape of the shower front.

Every detector of a station can register a trace. A single trace, that is a trace in one of the
four detectors of a station, may be caused by a background muon which should not be stored.
As soon as two high signals of more than 70 mV or three signals larger than 30 mV are detected
in a station, the station is ‘triggered’ and the signals are considered to be due to an air shower
and registered as an ‘event’. About 99 % of the events are triggered by the ‘two high’ threshold.
The traces of detector 0 through 3 are usually colored black, red, green and blue respectively.
In Figure 4.5 an example is shown.
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Figure 4.5: Traces of an event with a signal in all four scintillator plates of SPA station 506 at 2015-07-28
00:00:17.
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Figure 4.6: Pulse height (left) and pulse integral (right) distributions for the four detectors 0 (black), 1
(red), 2 (green) and 3 (blue) of station 501. Data taken between 2014-09-12 00:00:00 and 2014-09-19
00:00:00. In the pulse height diagram the 70 mV trigger level causes the vertical ‘jump’ at 125 ADC counts.
The part of the distribution left of the jump is caused by the small energy losses of gammas.
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Pulse height and pulse integral distributions for station 501 at SPA are shown in Figure 4.6.
The peak of the pulse height diagram is at about 240 ADC counts, which corresponds to 135 mV
PMT signal. The peak of the pulse integral distribution is in the neighborhood of 2800 ADC ns.
As will be shown further on the peak is related to the most probable energy loss of a single
particle, a so-called minimum ionizing particle (MIP). The pulse integral therefore is usually
expressed in units of MIP where 1 MIP corresponds to the pulse integral value of the peak of
the pulse integral distribution.

The whole process is controlled by a LabView program running on a personal computer dedi-
cated to a station. A Python monitor program controls the local storage as well as the transfer
of the data to the central data storage at Nikhef. There the data is adapted and made acces-
sible, for instance via the public database. The status of the HiSPARC stations is monitored
by a Nagios network control system [61]. In case of a malfunctioning detector or station, the
problems can be solved by the local user or remotely by the central HiSPARC administration.
Finally, some stations are equipped with a weather station supplying weather data like tem-
perature, air pressure and humidity. For these stations the weather data are also registered,
stored and sent to the central data storage.

4.3 HiSPARC software

For a quick look there is the HiSPARC Public Database [62]. It gives an overview of all the
stations, their names and numbers, the clusters they reside in. For each station it gives by day
an event histogram, pulse height histogram, pulse integral histogram and, if available, data
about the air pressure and temperature. It also gives, for each station, information of the actual
status and the history of PMT voltages, PMT currents, timing offsets and Global Positioning
System (GPS) positions. Also a coincidence histogram, for the full network, can be obtained
together with a histogram of the coincidence size, the number of stations participating in the
coincidence. Information on clusters, stations, plates, pulse heights, weather, etc., can also be
retrieved from the HiSPARC API [63]. Data of events can be downloaded and plotted directly
with HiSPARC data retrieval [64]. A user can choose the type of plot, the variables and a func-
tion with which to fit the data. The fits are based on linear regression. The fit equation, with
the numerical values for the coefficients and the correlation are given below the plot diagram.
As an example a histogram of the event rate for station 501 on an arbitrary day is shown in
Figure 4.7. The mean value of the event rate, 0.679 s−1, means that about 60 000 events are
registered for station 501 per day. As another example a scatter plot of pulse height versus
pulse integral is shown in Figure 4.8.
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Figure 4.7: Histogram of event rates between 2015-07-28 00:00 and 2015-07-29 00:00 for station 501 and
the fit results.

Figure 4.8: Scatter plot of pulse heights versus pulse integrals of events between 2013-08-28 00:00 and
2013-08-29 00:00 for the four detectors of station 501.
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Data of events and coincidences can be downloaded by means of a data download form re-
sulting in a CSV file [65]. Most important for data analysis is the Python package SAPPHiRE
[45]. It contains

Data download Events and coincidences from the event summary database.

Data analysis Reconstruction of directions and sizes of showers.

Simulations The response of stations to simulated showers.

For the simulations showers can be accessed which have been simulated without thinning
with CORSIKA-v7.4. The simulated particles hitting the ground can be thrown on a group
of stations. Each simulated shower is used multiple throws. To this end the configuration
of detectors is randomly translated and rotated, while the positions of the ground particles
are unaltered. For each throw detector signals are synthesized by drawing randomly from
an energy loss distribution for each charged lepton that passes a detector. The energy loss
distribution implemented in SAPPHiRE is described in the next sections.

4.4 Stopping power

When a charged particle passes through matter it will lose energy by collisions (ionization)
and by radiation (bremsstrahlung). The mean rate of energy loss is called the stopping power.
Since bremsstrahlung photons leave the scintillator without substantial interaction, we restrict
ourselves to the collisions. For electrons and muons incoming with velocity v the collision
stopping power is given by the Bethe-Bloch equation [66, 67]:

°hdE
dx

i= K
2

Z
A

1
Ø2

∑
ln

2mec2Ø2∞2Tmax

I2 +F °±°C§
∏

, (4.1)

where E is the energy in MeV and x is the depth in g cm−2. Other parameters are the velocity
of light c, the relative velocity Ø= v

c , the relativistic factor ∞= 1/
p

1°Ø2, the electron mass me,
the mean excitation energy I of the matter, the atomic number Z and the atomic mass A of the
matter. The constant K is given by

K = 4ºNAr2
emec2 , (4.2)

where NA is Avogadro’s number and re is the classical electron radius in cm. Numerically
K º0.307 MeV cm2.

The stopping power is different for muons and electrons in that the quantity F and the maxi-
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mum kinetic energy transfer in one collision Tmax are different for muons and electrons:

F(∞)=

8
>>><

>>>:

°2Ø2 , for µ±
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≥
1° (2∞°1)ln2+ (∞°1)2

8

¥
, for e°

2ln2° Ø2
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≥
23+ 14
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(∞+1)3

¥
, for e+ .

(4.3)

and

Tmax =

8
>><

>>:

2mec2Ø2∞2

1+2∞me/mµ+(me/mµ)2 º 2mec2Ø2∞2

1+0.00964∞ , for µ±

mec2(∞°1)
2 , for e± .

(4.4)

For ∞> 10 the values of F are close to their limit values:

lim
∞!1

F(∞)=

8
>><

>>:

°2 , for µ±
1
8 , for e°

2ln2° 23
12 , for e+ .

(4.5)

All the other parameters in the stopping power are identical for electrons and muons. The
density correction ± is given by

±=

8
>><

>>:

2ln(fl!p/I)+2lnØ∞°1 , if Ø∞∏ 100
2ln(fl!p/I)+2lnØ∞°1+±§ , if 1<Ø∞< 100
0 , if Ø∞∑ 1 ,

(4.6)

where fl!p is the plasma energy. The latter equation is similar to Sternheimer’s parameteriza-
tion [68]. For the factor ±§ we apply

±§ º 0.46 ·
°
2° log10(Ø∞)

¢2.8 , (4.7)

on the basis of scintillator data [69]. The plasma energy is given by

fl!p = 28.816 ·
p
Ω · hZ/Ai , (4.8)

where Ω is the density of the material. Polyvinyltoluene molecules consists of carbon, C6
12,

and hydrogen, H1
1, atoms in the ratio 9:10. The corresponding values for Z and A then are

(9·6+10·1)/19º 3.37 and (9·12+10·1)/19º 6.21 respectively. The Z/A ratio for polyvinyltoluene
then equals 0.54. The mean Z/A ratio for polyvinyltoluene based scintillator material will be
close to it. Its precise value is 0.54141 [70]. Since the density of polyvinyltoluene is 1.03 g cm−3,
the plasma energy is 21.5 electronvolt. The mean excitation energy for polyvinyltoluene is
I = 64.7 eV [71]. With the substitution of these numerical values the density correction is
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approximately given by:

±=

8
>><

>>:

2lnØ∞°3.2 , if Ø∞∏ 100
2lnØ∞°3.2+0.0443 ·

°
4.61° ln(Ø∞)

¢2.8 , if 1<Ø∞< 100
0 , if Ø∞∑ 1 ,

(4.9)

The parameter C§ is given by C§ = 2C/Z, where C is the shell correction given by [67]:

C =
µ

0.422377
(Ø∞)2 + 0.0304043

(Ø∞)4 ° 0.00038106
(Ø∞)6

∂
· I2

106

+
µ
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(Ø∞)2 + 0.1667989

(Ø∞)4 ° 0.00157955
(Ø∞)6

∂
· I3

109 . (4.10)

For polyvinyltoluene this is

C º
µ

0.0028
(Ø∞)2 + 0.000058

(Ø∞)4 ° 0.0000020
(Ø∞)6

∂
. (4.11)

For Ø∞> 0.2 the shell correction is practically equal to 0.0028 · (Ø∞)°2. For Ø∞> 1 it is already
of negligible order.

In Figure 4.9 the stopping power is plotted against Ø∞.
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Figure 4.9: Collision stopping power for electrons and muons in polyvinyltoluene according to the Bethe-
Bloch equation.

The radiation (bremsstrahlung) stopping power is not shown in Figure 4.9. The total stopping
power is practically equal to the collision stopping power for Ø∞ < 10. For Ø∞ > 10 the total
stopping power increases with respect to the collision stopping power because of the increas-
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ing radiation stopping power. Since the bremstrahlung photons leave the scintillator without
substantial interaction, the curves in Figure 4.9 represent the actual average energy deposit in
the scintillator. Values for the stopping power for polyvinyltoluene, including bremstrahlung
for highly relativistic energies, have been tabulated [72].

The curves in Figure 4.9 are mean energy losses. The energy losses are distributed and the
most probable energy losses are smaller than the mean energy losses.

4.5 Energy loss distribution

The mean energy loss is the stopping power times the travelled depth x0 in g cm−2:

¢̄=°hdE
dx

ix0 = ª

∑
ln

2mec2Ø2∞2Tmax

I2 +F °±°C§
∏

, (4.12)

where ª in MeV is given by

ª= K
2

Z
A

1
Ø2 x0 . (4.13)

For vertical electrons and muons passing a scintillator plate with thickness 2 cm and density
1.03 g cm−3 the depth is x0 = 2.06gcm°2. For Ø! 1 the parameter ª obtains its asymptotic value
0.171 MeV. Of importance is the distribution of energy losses. The description of ionization
fluctuations is characterized by the significance parameter ∑ [73]:

∑= ª

Tmax
. (4.14)

In different domains the fluctuations in the energy losses are described by different ‘straggling’
functions. Usually three domains are distinguished. For ∑> 10 there is a Gaussian distribution
of energy losses [74]. This domain does not occur in scintillators with thickness of 2 cm. For
0.01 < ∑< 10 the straggling is described by the Vavilov function [75]. For ∑< 0.01 the Landau
distribution is of application [76]. In HiSPARC scintillators the value ∑ = 0.01 corresponds to
the value Ø∞ = 68 for incoming electrons and to the value Ø∞ = 4.3 for incoming muons. This
corresponds to an energy of 35 MeV for electrons and of 0.47 GeV for muons. In Figure 4.10
the cumulative fractions of Ø∞ are shown for electrons and muons at sea level in a simulated
shower. For the 1015 eV shower the number of electrons and muons is 6.3 ·104 and 1.5 ·104

respectively. For the 1016 eV shower the number of electrons and muons is 7.5 ·105 and 7.8 ·104

respectively. Despite the differences in number the cumulative fractions are practical identical.
Since the muons among the groundparticles almost all have Ø∞> 4.3 the Landau distribution
is applicable to them. About 50 % of the electrons among the ground particles have Ø∞ > 68
for which a Landau distribution holds. For the electrons with 8<Ø∞< 68 the energy losses are
described by the Vavilov distribution [75]. From inspection by means of the Vavilov distribution
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it is found that the energy loss distribution for electrons with 8<Ø∞< 68 slightly deviates from
the Landau distribution, the deviation being smaller for larger Ø∞. For the Monte Carlo we
accept a small deviation in a small percentage of electrons and describe all energy losses with
a Landau distribution.
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Figure 4.10: Distribution of the �� values at sea level for electrons (red) and muons (green) for a vertical
1015 eV shower (left) and 1016 eV shower (right) with zenith angle 15°.

The Landau probability distribution of energy losses ¢ in MeV is given by

f (¢)= 1
ª
¡(∏) , (4.15)

where ¡ is the universal Landau function. Its argument ∏ is related to ¢ as follows [77]:

∏= ¢° ¢̄
ª

° ln
µ

ª

Tmax

∂
°Ø2 °1+CE , (4.16)

where CE is the Euler-Mascheroni constant, CE º 0.577. By means of Equation 4.1 the expres-
sion for ∏ can also be written in the form

∏= ¢
ª
° ln

2mec2Ø2∞2ª

I2 °1+CE °Ø2 °F +± . (4.17)

The Landau probability density function ¡(∏) has a maximum for ∏ º °0.223 [78]. The corre-
sponding value for the most probable energy loss, ¢p, then follows from Equation 4.17:

¢p = ª

µ
ln

2mec2Ø2∞2ª

I2 +0.200+F +Ø2 °±
∂

. (4.18)
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With the substitution of F =°2Ø2 for muons the latter expression reduces to its familiar form
[48]:

¢p = ª

µ
ln

2mec2Ø2∞2ª

I2 +0.200°Ø2 °±
∂

, (4.19)

Substituting the asymptotic values and approximating Ø by 1, we obtain the following relation
between ∏ and the energy loss ¢:

∏=

8
>><

>>:

5.85¢°20.18 , for µ±

5.85¢°22.29 , for e°

5.85¢°21.65 , for e+ .
(4.20)

For the most probable energy loss we obtain:

¢p =

8
>><

>>:

3.41 MeV , for µ±

3.77 MeV , for e°

3.66 MeV , for e+ .
(4.21)

The original expression for the Landau probability density function ¡ is the following complex
integral [76]

¡(∏)= 1
2ºi

Zæ+i1

æ°i1
eu(∏+lnu) du , æ∏ 0 . (4.22)

It can be transformed into real integral representations each of which suffers from bad con-
vergence due to oscillations in certain domains of ∏ [79]. For ∏> 0 we have used the following
integral [79]:

¡(∏)= 1
º

Z1

0
e°u(∏+lnu) sin(ºu)du . (4.23)

For ∏< 0 we have used [77]:

¡(∏)= 1
º

Z1

0
e(°ºu/2) cos(u(∏+ lnu)) du . (4.24)

By means of the latter two expressions the energy loss distribution for vertical incidence is
plotted in Figure 4.11.

As required for a probability function the area under the Landau probability density curve
is equal to unity. The corresponding Landau distribution, the cumulative probability, can be
approximated by means of asymptotic series expansions [78]. However, the Landau probability
density function has no mean and therefore also no variance. A mean value for the energy loss
is obtained if the total energy loss is limited to a maximum: ¢max [73].

For highly asymmetric distributions like the Landau distribution one usually describes them
with the most probable energy and the full width of half maximum (FWHM) of the distribution.
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Figure 4.11: Energy loss distribution for vertical electrons and muons for  < 0.01.

There are several contributions to the width of the distribution of PMT signals. Approximat-
ing the peak of a distribution by a Gauss distribution, the different contributions to the width
can be ‘added’ in the same way as is done for normal distributions: æ =

q
æ2

1 +æ
2
2 + ... . While

we keep track of contributions to the width of a distribution, we will translate it each time to
the æ of a Gaussian curve. For a Gauss curve the FWHM is about 2.35 times æ. To translate
the FWHM of a distribution to a Gauss curve with µ = 1MIP, it is convenient to consider the
relative width w, which is the ratio between the FWHM and the most probable energy loss.
Simulating signals independent of the particles identity, leads to an estimated FWHM of 0.9.
For the relative width we obtain w º 0.24. For a Gauss curve with µ= 1 this is æ¢ = 0.1.

4.6 The direction of the incident particle

So far, only vertical electrons and muons were considered. For vertical electrons and muons the
traveling distance through a scintillator plate with thickness 2 cm and density Ω =1.03 g cm−3

is x0 =2.06 g cm−2. For a non zero angle of incidence the traveling distance changes accordingly:
x = x0/cosµ. As a consequence ª, ¢̄ and ∑ will increase with µ. The energy loss distribution for
muons with Ø∞∏ 100 is shown in Figure 4.12 for three different values of µ. Similar plots hold
for the electrons. For increasing angles of incidence the peak is shifted towards larger values
and the peak is broadened. Clearly the distribution depends on µ in a way that cannot be ne-
glected. A zenith dependent energy loss is therefore applied in the simulations.
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Figure 4.12: Energy loss distributions for muons for three different angles of incidence.

For an estimate of the spread of the signal distribution we mention that a non-zero angle
of incidence broadens it for two reasons. The first is the zenith angle of the shower. Assuming
the zenith angles to be distributed as [80]

N(µ)/ sinµ cosn(µ) , (4.25)

where n º 7.5, the angles of half the maximum of this distribution are at µ º 6° and µ º 38° cor-
responding to cosµ º 0.99 and cosµ º 0.80 respectively. The corresponding values of ª ranges
between 0.17 and 0.22 MeV. The zenith distribution obtains its maximum for µ º 22°, corre-
sponding to ª= .18. Since the height of the peak goes as cosµ and the width as secµ, this leads
to an additional spread of the pulse integral diagram of about w º 0.05/0.18= 0.28 or æz º 0.12.
The second is the angle of incidence of particles within the shower. For a 1 PeV shower with
zenith angle 22.5° the distribution of zenith angles of individual electrons and muons is shown
in Figure 4.13. The width of the distribution in Figure 4.13 is about 0.1 rad; it leads to an ad-
ditional spread in secµ: w º 0.14 or æµ º .06. The final width is given by the convolution of the
energy loss distribution, the zenith angle distribution and the individual direction distribution:
æ=

q
æ2
¢+æ

2
z +æ2

µ
=
p

0.12 +0.122 +0.062 º 0.17.
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Figure 4.13: The distribution of zenith angles ✓ of individual electrons and muons for a 1PeV shower with
zenith angle 22.5°.

4.7 Efficiency

The production of one scintillation photon requires about 100 eV [81]. For an energyloss peak
around 3.6 MeV this corresponds to 36 000 photons. About 28 % of them, about 10 000 photons,
enter the fish tail shaped light guide. The area of the mutual surface of the scintillator and
the fish tail is 50 ·2 =100 cm2. The area of the opening window of the PMT is 4.4 cm2. Based
on this area the number of photons that will enter the PMT is estimated to be around 440
or 1.2 % of the photons we started with. An estimate of the average transmission efficiency
therefore is 1.2 %. In the PMT the 440 photons will give rise to about 123 photo-electrons,
because the quantum efficiency is 28 %. Poisson statistics for large numbers predict a spread
æPMT =

p
N/N º 0.09. As a consequence the spread in the pulse integral diagram increases to

æ=
q
æ2
¢+æ

2
z +æ2

µ
+æ2

PMT º 0.19. The 440 photons which enter the PMT are an estimate.

The probability for a scintillation photon to reach the PMT depends on the position of en-
trance of the incident particle [82]. For 1250 positions the efficiency has been simulated [83].
The transmission efficiency has been experimentally verified [84]. The simulation resulted in a
distribution for the number of photons arriving at the PMT, shown in Figure 4.14. A Gaussian
fit of the distribution in Figure 4.14 yields µ = 425 and æ = 93. The relative spread then is
æ¥ = 0.22 corresponding to a FWHM of 0.52 [81, 83]. This increases the spread in the pulse-
integral diagram: æ=

q
æ2
¢+æ

2
z +æ2

µ
+æ2

PMT +æ2
¥ º 0.3. This result is in agreement with actual

pulse height and pulse integral diagrams.
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Figure 4.14: Distribution of number of photons which arrive at the PMT and a fit with a Gaussian curve
(dashed orange).

4.8 Convolution

A convolution of the energy loss distribution, the quantum efficiency and the transmission ef-
ficiency is obtained as follows. The fraction of muons, electrons and positrons in a shower is
roughly 20 %, 50 % and 30 %. Therefore a list of 10 000 energy losses is made of which 2000,
5000 and 3000 correspond to the distribution of the muon, electron and positron respectively.
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Figure 4.15: Distribution of the convoluted signal and a piecewise linear approximation (dashed orange)
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The most probable value of the energy loss is estimated by taking the weighted average of
the most probable values for muons, electrons and positrons with the weights in the ratio
0.2 : 0.5 : 0.3. The result is 3.67 MeV. The most probable value for the number of photons
reaching the PMT is 425. By dividing the energy losses and photon numbers by 3.67 and 425
respectively, the distributions are normalized such that their most probable values become
equal to unity. The unit being a vertical equivalent MIP. A Monte Carlo method is used to
determine the full signal response. The result for 100 000 samples is shown in Figure 4.15.

Approximately the distribution in Figure 4.15 is piecewise linear. The linear decomposition
of the distribution can be described as

8
>>>>>>>>>><

>>>>>>>>>>:

y(x)= 0 ; if 0< x < 0.48
y(x)= c1(x°0.48)/(0.98°0.48) ; if 0.48∑ x < 0.98
y(x)= c2 ; if 0.98∑ x < 1.05
y(x)= c3(x°1.05)/(1.62°1.05) ; if 1.05∑ x < 1.62
y(x)= c4(x°1.62)/(2.28°1.62) ; if 1.62∑ x ∑ 2.28
y(x)= 0 ; if x > 2.28 ,

(4.26)

where the ci are numerical constants. The probability distribution of the signal explicitly
reads:

f (x)=

8
>>>>>>>>>><

>>>>>>>>>>:

0 ; if 0< x < 0.48
°1.30327+2.71514x ; if 0.48∑ x < 0.98
1.35757 ; if 0.98∑ x < 1.05
3.32319°1.87202x ; if 1.05∑ x < 1.62
1.00361°0.44018x ; if 1.62∑ x ∑ 2.28
0 ; if x > 2.28 .

(4.27)

The corresponding cumulative probability distribution:

F(x)=

8
>>>>>>>>>><

>>>>>>>>>>:

0 ; if 0< x < 0.48
0.312785°1.30327x+1.35757x2 ; if 0.48∑ x < 0.98
°0.991028+1.35757x ; if 0.98∑ x < 1.05
°2.02298+3.32319x°0.93601x2 ; if 1.05∑ x < 1.62
°0.144118+1.00361x°0.22009x2 ; if 1.62∑ x ∑ 2.28
1 ; if x > 2.28 .

(4.28)

is shown in Figure 4.16.

The linear decomposition is advantageous for the Monte Carlo since the cumulative proba-
bility distribution is an analytic invertible function. For each particle passing a detector the
signal is simulated by taking a random number R between 0 and 1, and convert it to a signal
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Figure 4.16: Cumulative probability of signals.

x in MIP by means of the inverse of F(x). To be specific,

x =

8
>>>>><

>>>>>:

0.48+0.8583
p

R , if 0<R ∑ 0.3394
0.73+0.7366R , if 0.3394<R ∑ 0.4344
1.7752°1.0336

p
0.9267°R , if 0.4344<R ∑ 0.9041

2.28°2.1316
p

1°R , if 0.9041<R < 1 .

(4.29)

The latter expression holds for the case of vertical incidence. The situation changes for non
zero angles of incidence. Then

ª= 0.171
cosµ

MeV . (4.30)

The angle of incidence is obtained from the momentum of the particle:

secµ = p
pz

. (4.31)

As a consequence the Equation 4.29 is transformed to

x =

8
>>>>><

>>>>>:

(0.48+0.8583
p

R )secµ , if 0<R ∑ 0.3394
(0.73+0.7366R )secµ , if 0.3394<R ∑ 0.4344
(1.7752°1.0336

p
0.9267°R )secµ , if 0.4344<R ∑ 0.9041

(2.28°2.1316
p

1°R )secµ , if 0.9041<R < 1 .

(4.32)
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To get an impression of different contributions to the pulse-integral diagram, and to check
the foregoing implementation, a small simulation is conducted: 1 PeV showers with different
zenith angles and different energies (drawn from the energy spectrum) are randomly thrown
on a station with diamond configuration of four detectors. For the events caused by the showers
the particle density at a detector is obtained from a NKG function and via Poisson statistics
translated to an integer number of particles. The latter is converted to a signal as described
above. In this way the distribution of the signal is obtained for each integer number of parti-
cles. The result of 1 million throws is shown in Figure 4.17.
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Figure 4.17: Simulated distribution of the detector signals caused by an integer number of particles. The
overall distribution (black) shows a ‘second peak’.

The main peak is caused by single particle signals. Its width is equal to the expected value
w = 0.7. The overall distribution is a little wider because of the 2-particle contribution. The
overall distribution is comparable to the observed pulse integral diagram in Figure 4.6.

For vertical incidence 1 MIP corresponds to 3.67 MeV. In the diagram the peak position is
larger since we simulated with different zenith angles. The peak is therefore larger by a factor
1.07, thus at 3.9 MeV. That is about 15 % larger than the vertical muon peak at 3.41 MeV. In
summary, the MIP peak is at about 7 % larger energy than the peak for vertical particles which
is on its turn 8 % larger than the vertical muon MIP.
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4.9 PMT non-linearity

For large signals the response of a PMT lags behind the ideal response because of saturation
[85]. The non-linear response for the type of PMT used for HiSPARC has been measured [86].
For the non-linear relation the following equation is considered:

I0 = I +aIb , (4.33)

where I0 would be the ideal pulse integral for a linear PMT and where I is the pulse integral
for a non-linear PMT. As usual the pulse integral is expressed in MIPs.The fit resulted in
a = 3.876 ·10°5 and b = 3.871. The data points and the fit equation are shown in fig. 4.18.
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Figure 4.18: The non-linear PMT response (circles) and the fit function (black). The dashed line expresses
the ideal linear PMT response.

For shower core reconstructions the detector signals are corrected for the PMT non-linearity.



5
Direction reconstruction

5.1 Detector constellations

If a cosmic air shower triggers at least three detectors of a four detector station, the direction
of the shower can be reconstructed from the arrival times of the shower front [82]. At SPA the
detectors of a station always have the same altitude. The direction of a shower can also be
reconstructed if the shower has caused a coincidence of at least three events. If all the stations
participating in such a coincidence would have the same altitude, the situation is comparable
to the reconstruction from three or four detectors. The SPA stations do differ in altitude. In
that case the algorithm for three stations differs from the algorithm for more than three sta-
tions. For every configuration the reconstruction can be achieved by minimizing a ¬2 function.
However, for a large number of showers it saves time to apply customized reconstruction meth-
ods. As another advantage, analytical methods allow for a theoretical uncertainty analysis.

For the application of fast reconstruction methods different situations will be distinguished.
If the shower front is assumed to be flat the methods are:

Flat-2D-3 Reconstruction by means of 3 stations or detectors in a horizontal plane.

Flat-3D-3 Reconstruction by means of 3 stations with different altitude.

Flat-2D-n Reconstruction by means of n > 3 stations or detectors in a horizontal plane.

Flat-3D-n Reconstruction by means of n > 3 stations with different altitude.

For a curved shower front:

Curved-2D Reconstruction by means of n > 3 stations or detectors in a horizontal plane.

Curved-3D Reconstruction by means of n > 3 stations with different altitude.

95
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For Flat-2D-3 an analytic expression is obtained in an elementary manner. For Flat-3D-3 a
compact analytical expression is derived by means of vector calculus. For Flat-2D-n an ana-
lytical expression is derived by means of regression. The regression will be applied repeatedly
in an iterative procedure for Flat-3D-n reconstruction. For a curved shower front the methods
are based on an iterative application of a regression equation. The described reconstruction
methods for curved shower fronts still have to be implemented in SAPPHiRE in due time.

The methods described hold for the situation where the timing uncertainty is assumed to
be equal in every detector. In reality, the variation in the thickness of the shower front and
therefore the uncertainty grows with the distance to the shower core [82, 87, 88]. In many situ-
ations the gain in the accuracy by taking non-constant timing uncertainties is negligible. Even
for weighted uncertainties one can still save time by applying the described methods to the
first step or first few steps of an iteration and switching to a numerical optimization method
for the later steps.

For each direction reconstruction the system of equations have a twofold mathematical am-
biguity. In case the detectors are in a horizontal plane one solution corresponds to a shower
coming from above and the other to a shower coming from below the horizon. The first one is
regarded as the physical solution, while the second one is ignored. For Flat-3D reconstruction
the mirror plane may not be (precisely) horizontal. As a consequence there is a small probabil-
ity that both solutions correspond either to two showers coming from above or to two showers
coming from below the horizon. In both cases the solutions are discarded.

Finally, there is also the possibility that no solution for the direction is obtained if the ar-
rival times imply a velocity of the shower front exceeding the speed of light. A reconstruction
attempt will then result in complex values for the parameters [89].

5.2 Flat-2D-3

We consider three detecting points (detectors or stations) 0, 1 and 2 in a horizontal (z = 0) plane
with positions (x0, y0,0), (x1, y1,0) and (x2, y2,0). The unit vector normal to the shower front in
the direction of the origin of the shower is denoted by n = (nx,ny,nz). Furthermore we will
assume for the analysis a plane shower front propagating at the velocity of light c. If t0, t1 and
t2 are the respective arrival times at the three detection points, the plane of the shower front
at t = 0 is determined by the points P0, P1 en P2 with coordinates:

P0(x0 + ct0nx, y0 + ct0ny, ct0nz) , (5.1)

P1(x1 + ct1nx, y1 + ct1ny, ct1nz) (5.2)
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and
P2(x2 + ct2nx, y2 + ct2ny, ct2nz) . (5.3)

A plane with normal vector n= (nx,ny,nz) is given by the equation

xnx + yny + znz +a = 0 (5.4)

for some constant a. For point P0 in this plane

(x0 + ct0nx)nx + (y0 + ct0ny)ny + (ct0nz)nz +a = 0 . (5.5)

Hence,
x0nx + y0ny + ct0 +a = 0 . (5.6)

For the points P1 en P2 in the plane we similarly have

x1nx + y1ny + ct1 +a = 0 (5.7)

and
x2nx + y2ny + ct2 +a = 0 . (5.8)

The difference between Equation 5.7 and Equation 5.6 and between Equation 5.8 and Equa-
tion 5.6 respectively read

(x1 ° x0)nx + (y1 ° y0)ny + c(t1 ° t0)= 0 (5.9)

and
(x2 ° x0)nx + (y2 ° y0)ny + c(t2 ° t0)= 0 . (5.10)

This system of two equations for nx en ny can be solved with the result

nx =
c¢t2¢y1 ° c¢t1¢y2

¢y2¢x1 °¢y1¢x2
(5.11)

and
ny =

c¢t1¢x2 ° c¢t2¢x1

¢x1¢y2 °¢x2¢y1
, (5.12)

where ¢xi ¥ xi ° x0, ¢yi ¥ yi ° y0 and ¢ti ¥ ti ° t0. The zenith and azimuth angle follow from

tan¡=
ny

nx
(5.13)

and
cosµ =

q
1°n2

x °n2
y . (5.14)
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5.3 Flat-3D-3

Here we consider a plane shower front arriving at three detecting points with different alti-
tudes. For gravitational waves an analytic expression for the direction has been derived and
applied for a particular choice of local coordinates [90, 91]. A general analytic expression can
be derived in an elementary way, although the result is rather lengthy [92, 93]. We will present
a derivation which results in a compact form of the general analytic expression. To this end we
consider three detecting points 0, 1 and 2 at the positions (x0, y0, z0), (x1, y1, z1) and (x2, y2, z2).
Again, the unit vector normal to the shower front in the direction opposite to the shower di-
rection is n = (nx,ny,nz) and the shower front is assumed to move with the speed of light c. If
t0, t1 and t2 are the times at which the shower front arrives at the detecting points 0, 1 and 2
respectively, the plane of the shower front at t = 0 is determined by the following three points:

pi =

0

BB@

xi + ctinx

yi + ctiny

zi + ctinz

1

CCA , i = 0,1,2 . (5.15)

Two vectors in this plane are

si =pi °p0 =

0

BB@

¢xi + c¢tinx

¢yi + c¢tiny

¢zi + c¢tinz

1

CCA , i = 1,2 . (5.16)

Also here ¢xi ¥ xi ° x0, ¢yi ¥ yi ° y0 and ¢ti ¥ ti ° t0.

By means of the vectors

di =

0

BB@

¢xi

¢yi

¢zi

1

CCA , i = 1,2 (5.17)

the vectors si can be written as

si =di + c¢tin , i = 1,2 . (5.18)

Since the normal vector n is orthogonal to the plane of the shower front the dot product of n
with vectors in this plane should vanish:

si ·n= 0 . (5.19)
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This requirement leads to the following two equations:

d1 ·n=°c¢t1 ,
d2 ·n=°c¢t2 .

(5.20)

Together with the condition
n2 =n ·n= 1 (5.21)

we have three equations for the three component vector n. To solve the system for n we consider
the following two vectors:

u := c¢t2d1 ° c¢t1d2 (5.22)

and
v :=d1 £d2 . (5.23)

The vectors have the following properties:

u ·v= 0 , (5.24)

u ·n= 0 , (5.25)

|u£v| = uv , (5.26)

v£n=u ! (v ·n)2 = v2 °u2 , (5.27)

and
n · (u£v)= u2 . (5.28)

The projection of the vector n onto the orthogonal set (u, v, u£v) yields

n= u ·n
u2 u+ v ·n

v2 v+ (u£v) ·n
(u£v)2 (u£v) . (5.29)

With the substitution of the foregoing identities it is reduced to its final form

n= u£v±v
p

v2 °u2

v2 . (5.30)

It can be verified that this expression satisfies the system of Equations 5.20 and 5.21, as it
should.

The two solutions for n, one for each sign of the square root, correspond to two shower di-
rections mirrored in the plane of the three detecting points [90]. If both solutions correspond
to a shower coming from above (or from below) the horizon, one can not know which is the
correct one and both solutions are discarded. Writing the normal vector of the shower front in
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spherical coordinates

n=

0

BB@

nx

ny

nz

1

CCA=

0

BB@

sinµ cos¡
sinµsin¡
cosµ

1

CCA , (5.31)

we obtain for the azimuth angle

tan¡=
ny

nx
=

(u£v)y ±vy
p

v2 °u2

(u£v)x ±vx
p

v2 °u2
. (5.32)

Where the sign of the numerator and the sign of the denominator determine the quadrant of
the azimuth angle. The zenith angle follows directly from the third component of n:

cosµ = (u£v)z ±vz
p

v2 °u2

v2 . (5.33)

In case the three detecting points are in a horizontal plane the corresponding analytical ex-
pression is obtained by substituting ¢z1 =¢z2 = 0 and uz = vx = vy = 0. The solutions for ¡ and
µ then reduce to

tan¡= °uxvz

uyvz
(5.34)

and

sinµ =

vuutu2
x +u2

y

v2
z

(5.35)

respectively. These coincide with Equations 5.13 and 5.14. In Equation 5.35 a positive sign is
taken for the square root to ensure a positive µ. In Equation 5.34 the sign of the numerator,
°uxvz, and the sign of the denominator, uyvz determine the quadrant of the azimuth angle.

5.4 Flat-2D-n

Here we consider a plane shower hitting more than three detecting points. For a reconstructed
shower front plane with normal vector n, the points pi as given by Equation 5.1 will not lie
exactly in the plane xnx + yny + znz +m = 0. The deviations will be denoted as ±i :

±i =pi ·n+m = xinx + yiny + zinz + cti +m . (5.36)

The optimal solution corresponds to the minimum of the corresponding ¬2 function:

¬2 =
k°1X

i=0

µ xinx + yiny + zinz + cti +m
æ(ti)

∂2
, (5.37)

where k is the number of detecting points hit and where æ(ti) is the timing uncertainty for
detector i. In general, the uncertainty æt in ti will depend on the distance ri of detector i to
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the shower core, æ(ti) = æt(ri) [87]. To minimize the general ¬2 function one has to resort to
a numerical optimization method. As mentioned before, however, we restrict ourselves to the
situation where the uncertainty is regarded as a constant: æ(ti) = æ. Then the optimal plane
corresponds to the minimum of the sum of squares of the residuals

R2 =
k°1X

i=0

°
xinx + yiny + zinz + cti +m

¢2 , (5.38)

If all the detecting points are in a horizontal plane a regression formula can be derived. For
this we make use of the fact that for the solution which minimizes

R2 =
k°1X

i=0

°
xinx + yiny + cti +m

¢2 (5.39)

the derivatives with respect to the components of the normal vector are zero:

dR2

dnx
= 0 ,

dR2

dny
= 0 ,

dR2

dm
= 0 . (5.40)

For the direction components the solution reads

nx = c
tx

≥
y2 ° y2

¥
+ xy

°
t y° ty

¢
+ x y ty° t x y2

xy2 + x2 y2 + y2 x2 ° x2 y2 °2x y xy
(5.41)

and

ny = c
ty

≥
x2 ° x2

¥
+ xy

°
t x° tx

¢
+ x y tx° t y x2

xy2 + x2 y2 + y2 x2 ° x2 y2 °2x y xy
, (5.42)

where we have used the following abbreviations for the means:

a := 1
k

k°1X

i=0
ai , a2 := 1

k

k°1X

i=0
aiai , ab := 1

k

k°1X

i=0
aibi . (5.43)

One can transform to relative coordinates with respect to detector 0 and to relative times with
respect to the time of arrival at detector 0. Then the xi, yi and ti should be read as ¢xi, ¢yi

respectively ¢ti, while the summation runs from 1 through k°1. Either way, the direction
follows from

tan¡=
ny

nx
(5.44)

and
cosµ =

q
1°n2

x °n2
y . (5.45)
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5.5 Flat-3D-n

For the situation where the stations are not in a horizontal plane, but at different altitudes
the normal vector as found from the Flat-2D reconstruction is used as the initial vector for an
iterative procedure. That is, we first regard the stations as being positioned in a horizontal
plane. This results in a first approximation for the direction. By means of the approximate
direction the relative detector coordinates and arrival times are determined as they would
have at virtual positions (x0, y0,0) in a horizontal plane through station 0:

¢x0i =¢xi °
¢zi

nz
nx , (5.46)

¢y0i =¢yi °
¢zi

nz
ny (5.47)

and
c¢t0i = c¢ti +

¢zi

nz
. (5.48)

For each station i the line through (xi, yi, zi) and normal to the plane of the shower front also
goes through the virtual position (x0i, y0i,0). The intersection of this line with the plane of the
shower front is identical for the original and primed coordinates. The situation is illustrated
in Figure 5.1.

(x0,y0,0) (xi,yi,zi)

(x j,y j,z j)
(xi',yi',0)

(x j',y j',0)

Figure 5.1: The plane of the shower front (dashed), the stations (black) with different altitudes and the
virtual station positions (gray) with equal altitude.

New approximations for the direction are found by repeatedly applying the Flat-2D-n recon-
structions to the primed quantities. The values for n quickly converge. The iterations are
repeated until the difference between two successive directions is smaller than 0.001 rad. The
iterative regression procedure returns just a single value for the direction. It can therefore only
be applied if the mean plane of the stations is close to horizontal, which is actually the case for
the SPA stations. Flat-3D-n reconstructions are about three times faster than minimization by
means of the SLSQP method of the SCIPY.OPTIMIZE package.
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5.6 Reconstruction of curved shower fronts

The accuracy of the reconstructed direction can be improved by taking the curvature of the
shower front into account. Although not implemented in SAPPHiRE yet, we already describe
a method based on the Flat-2D reconstruction. The method requires the knowledge of the
location of the shower core. A method for the reconstruction of the shower core is given in the
Chapter 6. The position of the shower core at the horizontal z = 0 plane of the stations will be
denoted by pc = (xc, yc,0). The shower core axis is given by pc+∏n, with ∏ a parameter. Curved
showers are assumed to be axially symmetric around the shower core axis. The deviation f
between the curved front and a flat front, measured in the direction of the shower, is a function
of the radial distance r from the core axis: f = f (r), shown schematically in Figure 5.2.

f (ri)ri

(xi,yi)(xc,yc)
z = 0

Figure 5.2: Impression of a curved shower front reaching a plane through station i and perpendicular to
the shower core. The distance from the core to station i is ri .

A plane perpendicular to n that passes through station i with coordinates (xi, yi,0) is given by

(x° xi)nx + (y° yi)ny + znz = 0 . (5.49)

The shower core reaches this plane if ∏= (xi ° xc)nx + (yi ° yc)ny. This corresponds to the point

0

BB@

xc + (xi ° xc)n2
x + (yi ° yc)nxny

yc + (xi ° xc)nxny + (yi ° yc)n2
y

(xi ° xc)nxnz + (yi ° yc)nynz

1

CCA . (5.50)

For the radial vector ri between the core and station i we obtain

ri =

0

BB@

yi,cnxny ° xi,c
°
1°n2

x
¢

xi,cnxny ° yi,c

≥
1°n2

y

¥

xi,cnxnz + yi,cnynz

1

CCA , (5.51)
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where xi,c and yi,c are abbreviations for xc ° xi and yc ° yi respectively. For the radial distance
ri between the core and station i we obtain

ri =
q

x2
i,c

°
1°n2

x
¢
+ y2

i,c
°
1°n2

y
¢
°2xi,c yi,cnxny . (5.52)

The arrival time t§i at detector i as it would be in case of a plane shower front is t§i = ti° f (ri)/c.
For the corresponding time difference ¢t§i = t§i ° t§0 we find

¢t§i = ti °
f (ri)

c
° t0 +

f (r0)
c

=¢ti °
f (ri)

c
+ f (r0)

c
. (5.53)

The evaluation ¢t§i requires the values of ri and thus of the shower direction n. We start with
the Flat-2D reconstruction to obtain a first approximation for n. The Curved-2D reconstruction
now just consists in a repetitive use of Flat-2D reconstruction where each time ¢ti replaced by
¢t§i and where the ri are obtained from the previous iteration. That is, we correct for the devi-
ation in the timing of a flat and a curved shower front.

Curved-3D reconstruction, finally, is a combination of Curved-2D and Flat-3D reconstruction
in that the time differences should be adjusted for both the curvature of the shower front and
the altitude differences of the stations. To be specific,

¢t0i =¢ti °
f (ri)

c
+ f (r0)

c
+ ¢zi

nz
. (5.54)

5.7 Uncertainty analysis

Timing uncertainties have both instrumental and physical causes. The latter are due to the
statistics of individual shower particles hitting a detector. A timing uncertainty æt results in
a zenith angle uncertainty æµ and in an azimuth angle uncertainty æ¡. The relation will be
analyzed for a horizontal diamond shaped detector station as shown in Figure 4.2. We will first
consider the reconstruction for the situation where the detectors 0, 1 and 2 are hit. These three
detectors are at the corners of an equilateral triangle. To obtain a general result, the length
a of the side of the triangle will be left unspecified during the analysis. Taking detector 0 as
the origin, the coordinates of the detectors 1 and 2 are (a,0) and (1

2 a, 1
2 a

p
3) respectively. The

substitution of these sizes into Equations 5.34 and 5.35 leads to the following expressions for
the azimuth angle ¡ and zenith angle µ:

¡= arctan
µ

2¢t2 °¢t1

¢t1
p

3

∂
, (5.55)

µ = arcsin
µ

2c
a
p

3

q
T2
°

∂
, (5.56)
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where
T2
° :=¢t2

1 +¢t2
2 °¢t1¢t2 . (5.57)

For the uncertainties æ¡ and æµ we obtain

æ2
¡ =

2X

i=0

µ
@¡

@ti
æt

∂2
=

3æ2
t

2T2
°

, (5.58)

æ2
µ =

2X

i=0

µ
@µ

@ti
æt

∂2
=

6c2æ2
t

3a2 °4c2T2
°

, (5.59)

where æt is the timing uncertainty. In terms of µ and ¡:

æ¡ = cæt
p

2
asinµ

, (5.60)

æµ =
cæt

p
2

acosµ
. (5.61)

For small zenith angles the uncertainty of the zenith angle is approximately given by

æµ =
cæt

p
2

a
. (5.62)

The uncertainty æ¢t in the time difference ¢t between two detectors is æt
p

2. So, for the equi-
lateral triangle the expression for the zenith uncertainty is equal to the ‘crude’ rule [80]:

æµ =
cæ¢t

a
. (5.63)

The uncertainty in azimuth becomes very large for small zenith angles, eventually growing
to infinity in the limit µ ! 0±. Large azimuth uncertainties do not necessarily mean that
the reconstructed direction is inaccurate. For the reconstructed direction the solid azimuth
angle æ¡ sinµ is what matters. The latter remains finite, even independent of the zenith angle:
æ¡ sinµ = cæt

p
2/a. The uncertainty of the zenith angle grows to infinity in the limit µ !

90±. This behavior of the zenith uncertainty can be suppressed with a volumetric detector
arrangement [89]. For the uncertainty of the solid angle we obtain

æ=
q
æ2
¡ sin2µ+æ2

µ
= cæt

p
2

acosµ

p
1+cos2µ . (5.64)

A sampling frequency of 400 MHz corresponds to a time uncertainty æt = 2.5p
12

º 0.722ns. We
substitute this minimum time uncertainty and the size a = 10 for the model station of Fig-
ure 4.2. In degrees the corresponding uncertainties of the zenith angle and the solid angle
become

æµ =
1.75°
cosµ

, æ= 1.75°
cosµ

p
1+cos2µ . (5.65)



106 Chapter 5. Direction reconstruction

For the uncertainty of the solid azimuth we obtain æ¡ sinµ = 1.75°. In Figure 5.3 the uncertain-
ties are plotted against the zenith angle.
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Figure 5.3: Uncertainty of the solid angle (solid), uncertainty �✓ of the zenith angle (dashed) and �� sin✓
(dotted) in degrees as a function of zenith angle for an equilateral triangle of detectors.

We also consider the situation where detectors 0, 1 and 3 of the diamond station in Figure 4.2
are hit. Compared to the previous situation detector 0 is now closer to the line connecting
detectors 1 and 3. A larger uncertainty can therefore be expected if the azimuth angle of the
shower is perpendicular to the line connecting detectors 1 and 3, thus if ¡= 60± or ¡=°120±.
For the same reason a smaller uncertainty can be expected if the azimuth of the shower is along
the line connecting detectors 1 and 3, thus if ¡ = °30± or ¡ = 150±. To derive the uncertainty
analytically we have to replace the coordinates of detector 2 by the coordinates (°1

2 a, 1
2 a

p
3) of

detector 3. The substitution of the new sizes into Equations 5.34 and 5.35 lead to the following
expressions for the azimuth angle ¡ and zenith angle µ:

¡= arctan
µ

2¢t2 +¢t1

¢t1
p

3

∂
, (5.66)

µ = arcsin
µ

2c
a
p

3

q
T2
+

∂
, (5.67)

where
T2
+ :=¢t2

1 +¢t2
2 +¢t1¢t2 . (5.68)

For the uncertainties æ¡ and æµ we obtain

æ2
¡ =

3æ2
t T2

°
2T4

+
, (5.69)
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æ2
µ =

2c2æ2
t
°
10T2

+°3T2
°
¢

3a2T2
+°4c2T4

+
. (5.70)

Expressed as functions of the azimuth and zenith angle the uncertainties are:

æ¡ =
p

2cætp
3asinµ

q
5°2

p
3sin(2¡)+2cos(2¡) , (5.71)

æµ =
p

2cætp
3acosµ

q
5+2

p
3sin(2¡)°2cos(2¡) . (5.72)

As expected the uncertainties depend on the azimuth for non-equilateral triangles of detectors.
For the corresponding uncertainty of the solid angle we obtain

æ=
p

2cætp
3acosµ

r
10°

≥
5+2cos(2¡)°2

p
3sin(2¡)

¥
sin2µ . (5.73)

Obviously the uncertainties depend on both the zenith and the azimuth. This is the case in
general, except for the equilateral triangle where the uncertainty solely depends on the zenith.
For æt = 0.722 ns and a = 10 the uncertainty of the solid angle in degrees is

æ= 1.01°
cosµ

r
10°

≥
5+2cos(2¡)°2

p
3sin(2¡)

¥
sin2µ . (5.74)

The uncertainties in azimuth and zenith in degrees are obtained by replacing
p

2cæt/
p

3a by
1.01±. In Figure 5.4 the solid uncertainties corresponding to the oblate triangle are plotted
against the zenith angle.
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Figure 5.4: Uncertainty range (gray filled) of the solid angle as a function of zenith angle for the oblate
triangle of detectors as given in the text. The dashed and dotted curves represent the range of �✓ respectively
�� sin✓.
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The lower curve corresponds to ¡ = °30± or ¡ = 150± and the upper curve to ¡ = 60± or ¡ =
°120±. For other azimuthal angles the curve is in the gray band between these curves. Also
shown in Figure 5.4 are the boundaries of æµ and æ¡ sinµ.

For µ = 30± the uncertainties æµ and æ¡ sinµ and the corresponding uncertainty of the solid
angle are shown in Figure 5.5. As we see, the uncertainty æµ obtains a maximum when æ¡ sinµ
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Figure 5.5: Uncertainty of the solid angle (solid), the zenith angle (dashed) and the solid azimuth angle
(dotted) for ✓ = 30°.

obtains a minimum and vice versa. This explains why the gray band is more narrow than the
range of the dashed curves and the range of the dotted curves.



6
Core reconstruction

6.1 Introduction

When a cosmic air shower reaches the detectors at the surface of the earth it can leave a signal
in one or more detectors. The core of the shower has to be determined out of the pattern of
signals. If one takes a guess for the core position, the expected signal Ω i in detector i will differ
from the actual signal wi. The best core position is obtained by minimizing the function

¬2 =
nX

i=1

µ
wi °Ω i

æi

∂2
, (6.1)

where n is the number of detectors. If density variations follow Poisson statistics æi =
p
Ω i.

Even in the ideal situation where signals are as expected ¬2 will have several local minima.
The presence of several local minima complicates the determination of the core position. A
core finding algorithm can benefit if an initial guess for the core position is obtained in an
analytical manner. In this chapter a method is described for an estimation of the core position
on the basis of the ratio of observed densities. For this the shower size is redundant. Once the
core position is estimated further fits with the shower size complete the task. The fits require
a lateral density function. Most lateral density functions are modifications of the Nishimura-
Kamata-Greisen (NKG) function [38, 56, 94]. The dependence of the density on the distance r
to the core is typically governed by

Ω(r)/
µ

r
r0

∂a µ
1+ r

r0

∂b
, (6.2)

where r0 is the Molière radius. The values for a and b depend on the age of the shower. At sea
level a º°0.5 respectively b º°3.0. As a consequence Ω(r) / r°0.5 for r << r0 and Ω(r) / r°3.5

for r >> r0. For the core estimation method the density will be approximated by Ω(r)/ r°m.

109
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6.2 Radical axes

The core estimation method is based on radical axes. To explain the radical axes method we
consider five detectors A, B, C, D and E in a horizontal plane. These points have been given
the following (x, y) coordinates: A(0,0), B(70,0), C(100,40), D(70,90) and E(30,80). The shower
core is taken at (30,40). The coordinates are expressed in m.

First we look at the detectors A, B and C. The detected signals in the detectors are ΩA, ΩB

and ΩC respectively. For Ω(r) / r°m we obtain for the ratios of the densities at these three
detectors:

ΩA

ΩB
=

µ
32
25

∂ m
2

,
ΩA

ΩC
=

µ
49
25

∂ m
2

,
ΩB

ΩC
=

µ
49
32

∂ m
2

. (6.3)

From the ratios of the densities we derive equations for the coordinates (x, y) of the core posi-
tion. To this end we substitute

ΩA /
°
(x° xA)2 + (y° yA)2¢°m/2 (6.4)

and similar expressions for ΩB and ΩC. With the given coordinates of the detectors we obtain
for the ratio between ΩA and ΩB the following:

25
°
(x°70)2 + y2¢

= 32
°
x2 + y2¢

. (6.5)

From the other two ratios we obtain

25
°
(x°100)2 + (y°40)2¢

= 49
°
x2 + y2¢

(6.6)

and
32

°
(x°100)2 + (y°40)2¢

= 49
°
(x°70)2 + y2¢

. (6.7)

Since the expected density ratios have been calculated from the distances the power m has
dropped out of the equations. The system of equations (6.5) through (6.7) can be reduced to

(x+250)2 + y2 =
≥
200

p
2
¥2

, (6.8)

µ
x+ 625

6

∂2
+

µ
y+ 125

3

∂2
=

µ
175

6
p

29
∂2

(6.9)

and µ
x° 230

17

∂2
+

µ
y+ 1280

17

∂2
=

µ
1400
17

p
2
∂2

(6.10)

respectively. They describe three different circles, see Figure 6.1.
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Figure 6.1: Three circles of possible core positions for expected densities in detectors A, B and C , and
the radical axis.

Since each circle is determined by a density ratio it will be denoted as density-ratio-circle
(DRC). The three DRC’s intersect in two points. One of the intersections is at the imposed
core position, (30,40). The other intersection is equally possible if one only has access to the
signals in A, B and C. The straight line between the two intersections is the radical axis. The
DRC’s bear properties known from hyperbolic geometry. The DRC’s are mapped on themselves
when inverted with respect to the circle circumscribing triangle ABC. Also the radical axis is
mapped on itself and therefore crosses the center of the circumscribed circle of triangle ABC.
To determine the radical axis, which is the essential ingredient of the algorithm, it is sufficient
to consider just two of the three DRC’s.

Next we consider detectors A, B and D. For the ratios of the densities at these three detectors
we obtain:

ΩA

ΩB
=

µ
32
25

∂ m
2

,
ΩA

ΩD
=

µ
41
25

∂ m
2

,
ΩB

ΩD
=

µ
41
32

∂ m
2

. (6.11)

From the ratio between ΩA and ΩB Equation 6.5 is obtained. New equations are obtained for
the other two ratios:

25
°
(x°70)2 + (y°90)2¢

= 41
°
x2 + y2¢

(6.12)

and
32

°
(x°70)2 + (y°90)2¢

= 41
°
(x°70)2 + y2¢

, (6.13)
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which can be reduced to
µ
x+ 875

8

∂2
+

µ
y+ 1125

8

∂2
=

µ
25
8
p

5330
∂2

(6.14)

and
(x°70)2 + (y+320)2 =

≥
40

p
82

¥2
(6.15)

respectively. The three DRC’s are shown in Figure 6.2.
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Figure 6.2: Three circles of possible core positions for detectors A, B and D, and the radical axis.

Also here the three DRC’s intersect at the imposed core position and at another point. In
all case a triple of detectors delivers two intersections of the DRC’s. To determine which of the
two intersections is the core position a fourth detector is needed, which is not on the circum-
scribed circle of the other three detectors.

For the other triples of detectors similar figures with three DRC’s are obtained. For the quadru-
ple ABCD it results in four radical axes intersecting at the position of the imposed core, see
Figure 6.3.

If detector E is also hit there will be
°5
3
¢
= 10 triples of detector and thus 10 radical axes. If

the signals in the detectors would be as expected, all radical axes would intersect in a single
point: the position of the imposed core.
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Figure 6.3: Four radical axes for the four triples of detectors which can be chosen out of A, B , C and D.

6.3 Sensitivity for the lateral density function

In the foregoing example the power m has fallen out the equations for the circles because the
expected density ratios were derived from the distances. In reality we just have an observed
density w in each detector. For instance, the equation for the ratio between signal wA and wC

becomes
w2/m

A
°
x2 + y2¢

= w2/m
C

°
(x°100)2 + (y°40)2¢

. (6.16)
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Figure 6.4: Possible core positions (black dots) and radical axes for three values of m, on the basis of
signals in detectors A, C and E . The solid circle is the circumscribed circle of the triangle ACE .
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The solution of Equation 6.16 depends on m. For each triple of detectors the position of the
intersections of the DRC’s depends on m. As a consequence the radical axis for each triple of
detectors also depends on m. For the triple ACE the intersections and radical axis are shown
for three values of m in Figure 6.4. On each radical axis shown in Figure 6.4 there are two
possible core positions. The smaller m the closer the possible core positions are to the circle
circumscribing triangle ACE. For a core outside the circumscribed circle of triangle ACE the
distances between the detectors and the core are relatively large.

The insensitivity of radical axes for the value of m does not imply insensitivity of radical axes
for variations of m as a function of distance to the core. For a realistic lateral density, such as
the NKG function, m varies from values below 1 for small distances through values around 3
for large distances. The application of a NKG type of lateral density function leads to small
differences with respect to the power law density. To illustrate it we consider the detectors A,
C and E of the foregoing example. For the lateral density function the Equation 6.2 is used
with a = °0.5, b = °3.0 and r0 = 30m. The equations for the ratios of the densities are more
complicated. For the ratio between the expected densities at station A and C the equation
reads

ΩC
°
r°0.5

A (30+ rA)°3.0¢
= ΩA

°
r°0.5

C (30+ rC)°3.0¢
, (6.17)

where
p

(x° xA)2 + (y° yA)2 and
p

(x° xC)2 + (y° yC)2 should be read for rA and rC respec-
tively. For the two other ratios the equations are similar. The equations are solved numerically.
The result is shown in Figure 6.5.
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Figure 6.5: The three DRC’s and the radical axis reconstructed from the densities in A, C and E assuming
a power law density (solid) and assuming a NKG density (dashed).
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In Figure 6.5 the analytical solution for the power law density is shown as well for compar-
ison. For the NKG density the numerical solutions for the DRC’s are not perfect circles. Of
importance for the method is that the radical axis for the NKG density and the radical axis
for the power law density practically coincide. For the imposed core at (30,40) the distances to
the detectors A, C and E are all larger than the 30 m we took for r0. For these distances the
NKG density is approximately a power law. However, if one detector is close to the core while
another detector is more distant from the core the ratio of their densities will deviate from the
power law. To see the consequences we move the imposed core to (30,65). The result is shown
in Figure 6.6.
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Figure 6.6: The two smallest DRC’s and radical axis reconstructed from the densities in A, C and E
assuming a power law density (solid) and assuming a NKG density (dashed).

Also here the radical axis for the NKG density is almost identical to the radical axis for the
power law density. Figure 6.4 shows that the radical axis is not very sensitive for the value of
m, while Figure 6.5 shows that the radical axis is rather immune for the applied density func-
tion. This allows us to use the power law with a single value for m. For the core estimations
m = 2.3 is found to work best.

6.4 Core estimation from real signals

In general the observed signals will suffer from statistical fluctuations of physical nature (Lan-
dau distribution of energy losses and Poisson distribution of number of particles striking at a
detector) and instrumental nature (measurement uncertainties). As a consequence the radical
axis will no longer intersect in a single point. For many stations, and thus many radical axis,
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there will be a cloud of intersection points. The idea behind the radical axis method is that the
mean of the cloud can serve as an estimator for the core position. In Figure 6.7 a four station
example is given of the radical axes for densities different from the expected ones.
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Figure 6.7: Four radical axes for realistic densities in detectors A, B , C and D.

The four radical axis of the quadruple ABCD intersect in a single point. The situation changes
with more than four detectors.
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Figure 6.8: The radical axes for real signals in detectors A, B , C , D and E .
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For 5 detectors we have 10 radical axes. Therefore
°10

2
¢
= 45 intersections are to be expected.

For 5 detectors we also have
°5
4
¢
= 5 quadruples of detectors and thus 5 points of concurrency.

So, 30 of the 45 intersections are grouped in 5 points of concurrency. For real signals in the 5
detectors A through E the 10 radical axes are shown in Figure 6.8. The pattern of intersec-
tions is shown in Figure 6.9. For the determination of the mean position of the intersections
a sixfold intersection is counted as 6 single intersections. Alternatively, we just determine the
45 intersections of the 10 radical axes. The mean of it, shown as an open circle in Figure 6.9, is
close to the imposed core.
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Figure 6.9: Intersections of 10 radical axes. The five points of concurrency are shown as an asterix, the
other intersections as a dot. The mean of the intersections (green) is close to the imposed core (red).

6.5 Analysis for vertical showers

In this section the equations for the radical axes will be derived for vertical showers. That is,
for the situation where the lateral density is concentrical around the core. For the analysis
we consider three detectors 0, 1 and 2 at horizontal positions (x0, y0), (x1, y1) and (x2, y2). The
detected signals in the three detectors are w0, w1 and w2 respectively. For a core at position
(x, y) the density at detector i is given by

w° 2
m

i /
°
(x° xi)2 + (y° yi)2¢

, (6.18)
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where i = 0,1,2. From this we obtain the following two independent equations

p
°
(x° x0)2 + (y° y0)2¢

= (x° x1)2 + (y° y1)2 (6.19)

and
q

°
(x° x0)2 + (y° y0)2¢

= (x° x2)2 + (y° y2)2 , (6.20)

where

p =
µ

w0

w1

∂ 2
m

(6.21)

and

q =
µ

w0

w2

∂ 2
m

. (6.22)

The system of equations (6.19) and (6.20) can be reduced to

(x°a)2 + (y°b)2 = r2 (6.23)

and
(x° c)2 + (y°d)2 = s2 , (6.24)

where
a = x1 ° px0

1° p
, b = y1 ° py0

1° p
, (6.25)

c = x2 ° qx0

1° q
, d = y2 ° qy0

1° q
, (6.26)

r =
pp

1° p

q
(x1 ° x0)2 + (y1 ° y0)2 (6.27)

and
s =

pq
1° q

q
(x2 ° x0)2 + (y2 ° y0)2 (6.28)

Equations 6.23 and 6.24 represent two DRC’s with centers (a,b) and (c,d) and radii r and s. The
situation is illustrated in Figure 6.10. The line segment connecting the centers of the DRC’s has
length g and the projection of it onto the x°axis and y°axis are e and f respectively. The line
through the intersections of the DRC’s is the radical axis. The distance of both intersections
with respect to the line through the centers of the DRC’s is h. The radical axis divides the
distance between the DRC centers in two parts with length k and g°k. From the identities

h2 = r2 °k2 (6.29)

and
h2 = s2 ° (g°k)2 (6.30)
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we obtain

k = g2 + r2 ° s2

2g
. (6.31)
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Figure 6.10: The intersection of two circles

An equation for the radical axis is obtained either from the geometry of Figure 6.10 or alge-
braicaly from the substraction of Equation 6.23 from Equation 6.24:

y= b° e
f

(x°a)+ g2 + r2 ° s2

2 f
, (6.32)

where
e = c°a , (6.33)

f = d°b , (6.34)

and
g =

q
e2 + f 2 . (6.35)

The coordinates of the intersections of the two circles (the possible cores) is obtained from the
substitution of Equation 6.32 into Equation 6.23 or Equation 6.24:

x = a+ ek± f
p

r2 °k2

g
(6.36)
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and

y= b+ f k® e
p

r2 °k2

g
. (6.37)

A plus sign in Equation 6.36 corresponds to a minus sign in Equation 6.37 and vice versa.
Although the intersection of two circles is a standard mathematical exercise there are several
ways to express the solutions. The present formulation is identical to a clear formulation found
on the web [95]. The equation for the radical axis can also be written in the present formulation
as

y=° e
f

x+ ae+bf + gk
f

. (6.38)

The DRC’s do not intersect if r2°k2 < 0. For this situation we have no predictions for the cores
[96]. However, Equation 6.38 for the radical axis is independent of h. The radical axis therefore
always exists. We therefore can still obtain information about the line on which a possible core
is positioned.

For n detectors hit there are m =
°n
3
¢

different triangles each delivering a radical axis. This
results in

°m
2
¢

intersections. For n detectors hit there are
°n
4
¢

different quadruples. As a conse-
quence 6 ·

°n
4
¢

of the m intersections are grouped in
°n
4
¢

points of concurrency. When two radical
axes are almost collinear the intersection may be far away. Such outliers are removed by dis-
carding the distant ones. From the reduced set of intersections the mean is regarded as an
estimator for the core position.

6.6 Inclined showers

In this section the analyses will be performed for inclined showers. The azimuthal angle ¡

and zenith angle µ are assumed to be determined from the arrival times. As before we start
considering three detectors 0, 1 and 2 at horizontal positions (x0, y0), (x1, y1) and (x2, y2). The
detected signals in the three detectors are w0, w1 and w2 respectively. Also here the power law
approximation will be taken for the lateral density. The projection of the inclined shower on a
horizontal plane of observation reduces the density with a factor cosµ. On the other hand the
energy loss of a particle in a scintillator is increased with a factor secµ. Both effects compensate
each other. What remains is the stretching of iso-density contours to ellipses. For the power
law approximation we then have

w(r,Æ;µ;¡)/ u°m , (6.39)

where u is given by [60]

u = r
q

1°cos2(Æ°¡)sin2µ . (6.40)
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The expected signal at a given position (r,Æ) with respect to the core is

w° 2
m / u2 = r2 °

1°cos2(Æ°¡)sin2µ
¢

. (6.41)

The situation is conveniently analyzed in a frame (x̂, ŷ) rotated by ¡ around the core with
respect to the original frame (x, y). In the rotated frame ¡̂= 0, Æ̂=Æ°¡ and r̂ = r. The rotated
frame is related to the original frame by

√
x̂
ŷ

!

=
√

cos¡ sin¡
°sin¡ cos¡

! √
x
y

!

. (6.42)

For a detector at position (r̂ i, Æ̂i) this is

w° 2
m

i / û2 = r̂2
i
°
1°cos2 Æ̂i sin2µ

¢
. (6.43)

For a core at position (x̂, ŷ) the expected signal at detector i then is given by

w° 2
m

i /
°
(x̂° x̂i)2 + ( ŷ° ŷi)2¢

° (x̂° x̂i)2 sin2µ , (6.44)

or
w° 2

m
i /

°
(x̂° x̂i)2 cos2µ+ ( ŷ° ŷi)2¢

, (6.45)

where i = 0,1,2. From this we obtain the following two independent equations

p
°
(x̂° x̂0)2 cos2µ+ ( ŷ° ŷ0)2¢

= (x̂° x̂1)2 cos2µ+ ( ŷ° ŷ1)2 (6.46)

and
q

°
(x̂° x̂0)2 cos2µ+ ( ŷ° ŷ0)2¢

= (x̂° x̂2)2 cos2µ+ ( ŷ° ŷ2)2 , (6.47)

where

p =
µ

w0

w1

∂ 2
m

(6.48)

and

q =
µ

w0

w2

∂ 2
m

. (6.49)

The system of equations (6.46) and (6.47) differs from the system of equations (6.19) and (6.20)
in that x ! x̂cosµ and y! ŷ. That is, a rotation over ¡ and a stretching of circles to ellipses by
a factor secµ in the direction of the azimuthal angle. We can therefore proceed in a similar way
as for vertical showers. The system of equations (6.46) and (6.47) can be reduced to

(x̂° â)2 cos2µ+ ( ŷ° b̂)2 = r̂2 (6.50)
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and
(x̂° ĉ)2 cos2µ+ ( ŷ° d̂)2 = ŝ2 , (6.51)

where
â = x̂1 ° px̂0

1° p
, b̂ = ŷ1 ° pŷ0

1° p
, (6.52)

ĉ = x̂2 ° qx̂0

1° q
, d̂ = ŷ2 ° qŷ0

1° q
, (6.53)

r̂ =
pp

1° p

q
(x̂1 ° x̂0)2 cos2µ+ ( ŷ1 ° ŷ0)2 (6.54)

and
ŝ =

pq
1° q

q
(x̂2 ° x̂0)2 cos2µ+ ( ŷ2 ° ŷ0)2 . (6.55)

Equations 6.50 and 6.51 represent two ellipses with centers (a,b) and (c,d). An equation for
the radical axis is obtained algebraically from the substraction of Equation 6.50 from Equa-
tion 6.51:

ŷ= b̂° ê
f̂

(x̂° â)cos2µ+ ĝ2 + r̂2 ° ŝ2

2 f̂
, (6.56)

where
ê = ĉ° â , (6.57)

f̂ = d̂° b̂ , (6.58)

and
ĝ =

q
ê2 cos2µ+ f̂ 2 . (6.59)

The coordinates of the intersections of the two ellipses (the possible cores) is obtained alge-
braically from the substitution of Equation 6.56 into Equation 6.50 or Equation 6.51:

x̂ = â+ êcosµk̂± f̂
p

r̂2 ° k̂2

ĝcosµ
(6.60)

and

ŷ= b̂+ f̂ k̂® êcosµ
p

r̂2 ° k̂2

ĝ
, (6.61)

where

k̂ = ĝ2 + r̂2 ° ŝ2

2 ĝ
. (6.62)

A plus sign in Equation 6.60 corresponds to a minus sign in Equation 6.61 and vice versa. The
equation for the line through the intersections of the two ellipses can be written in the present
formulation as

ŷ=° êcos2µ

f̂
x̂+ âêcos2µ+ b̂ f̂ + ĝk̂

f̂
. (6.63)



6.7. Implementation in SAPPHiRE 123

In the (x, y) frame this is
y= Ax+B , (6.64)

where

A = f̂ sin¡° êcos2µ cos¡
f̂ cos¡° êcos2µsin¡

(6.65)

and

B = âêcos2µ+ b̂ f̂ + ĝk̂
f̂ cos¡° êcos2µsin¡

. (6.66)

6.7 Implementation in SAPPHiRE

The present implementation in SAPPHiRE is specifically intended for the SPA site. The core
is reconstructed on the basis of stations signals. A station signal is the mean of the detector
signals. When a shower hits a number of stations of the SPA site there is a probability that the
core is somewhere ‘inside’ the configuration of stations hit. For this situation a prediction for
the core position is the barycenter: the mean of the station positions weighted with the station
signals. The radical axis method deliver a prediction for the core position, either ‘inside’ or
‘outside’ the configuration of stations. In SAPPHIRE initially the core is estimated with both
the barycenter method and the radical axes method. In case of the radical axes method an
intersection can be extremely far away if two radical axes happen to be almost collinear. The
disturbing effect of such outliers are avoided by discarding the intersections outside a 1200 m
£ 1200 m square around the center of the SPA site. Both the barycenter and the radical axes
prediction are used as the initial value for further optimization. Afterwards one of the two
survives on the basis of the ¬2 values.

An estimated core position is in general not the optimal position. A better core position is
obtained by calculating ¬2 values for positions on a grid around a predicted core position. For
each grid point the shower size is obtained by regression since the lateral density function
scales linearly with shower size. The expected signal can then be written as

Ω(r)= N∫(r) , (6.67)

where N is the shower size. Equation 6.1 then reads

¬2 =
nX

i=1

(wi °Nvi)2

Nvi
(6.68)

This can be elaborated to

¬2 =
nX

i=1

√

Nvi °2wi +
w2

i
Nvi

!

(6.69)
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The value of ¬2 is optimal if @¬2/@N = 0. The latter condition implies

N =

sP
(w2

i /vi)
P

vi
, (6.70)

where the summations runs over the n detectors. Substitution of the expression for N in the
expression for ¬2 gives

¬2 = 2

sP
(w2

i /vi)
P

vi

X
vi °2

X
wi . (6.71)

Again, i runs from 1 through n. In conclusion, one can obtain a better value for the shower size
N and a value for ¬2 by a few summations.

For the implementation in SAPPHiRE a 9 £ 9 grid with grid spacing 20 m is taken around
the barycenter prediction. By inspection the grid position with the smallest value for ¬2 is
determined. Then a 9 £ 9 grid with grid spacing 5 m is taken around the position found in
the previous grid. Again, the position on the fine grid with the smallest value for ¬2 is deter-
mined by inspection. Also for the radical axes prediction a 9 £ 9 grid is taken, with a large
grid spacing 50 m because of the larger area ‘outside’ the configuration of stations. The grid
position with the smallest value for ¬2 is determined by inspection. Also here an additional 9 £
9 grid, now with grid spacing 10 m, is taken around the position found in the previous grid and
also here the position on the fine grid with the smallest value for ¬2 is determined by inspec-
tion. From the two resulting candidates, one originating from the barycenter and one from the
radical axes prediction, the position with the smallest ¬2 value is taken. Finally, a 9 £ 9 grid
with grid spacing 4 m is taken around the ‘best out of two choice’ and the grid position with the
smallest value for ¬2 is determined by inspection. The latter is considered as the ‘best’ result.
The corresponding prediction for Ne+µ is regarded as the ‘best’ estimation for the shower size.
The above procedure consumes about 40 ms computer time (on a 1.8 GHz Intel Core i7 proces-
sor ) for the reconstruction of the core position and the shower size for a single shower.

In summary, the reconstruction of the core and size of a shower consists in a prediction by
means of the barycenter and the radical axes method and the subsequent inspection of ¬2

values on a grid of limited size. The grid sizes and grid spacings are a result of trying out
several combinations. Larger grids or smaller grid spacings do not lead a better performance
for the SPA configuration of stations. Other configurations may require other grid sizes and
grid spacings.
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6.8 Performance

The performance of the reconstruction is investigated by means of a set of simulated showers
with different energies and with different zenith angles: 0°, 15°, 30° and 45°. Each shower
was randomly thrown 10 000 times on an area of 4 km2 around the stations 501 through
506, 508 and 509 of the SPA site. For instance, the simulated 1017 eV vertical shower has
Ne+µ = 2.03 ·107. Only on 154 occasions the vertical shower hit all the eight stations 501
through 506, 508 and 509; an eightfold coincidence. For these cases the mean distance between
the reconstructed and generated core, is 15.7 m. The distribution of reconstructed shower sizes
is shown in Figure 6.11.
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Figure 6.11: The distribution of reconstructed shower sizes for a simulated 1017 eV vertical shower which
caused eightfold (left) and sevenfold (right) coincidences in the eight stations considered. The vertical
dashed line represents the simulated shower size.

The mean and spread of the distribution is µ= 3.2 ·107 and æ= 1.3 ·107. For the same shower
sevenfold coincidences occurred on 312 occasions. The distribution of reconstructed shower
sizes is also shown in Figure 6.11. Now the mean and spread of the distribution is µ= 3.2 ·107

and æ = 1.7 ·107, and the mean distance between the reconstructed and the generated core is
31.1 m. The average reconstructed shower size is comparable to the situation for eightfold coin-
cidences. In both cases the shower size is on average overestimated by 60 %. For the sevenfold
coincidences the spread is larger since the reconstructed cores are at larger distances from the
center of the configuration of stations.

Another simulated shower is a 1017 eV shower with zenith angle 15° and Ne+µ = 1.63 ·107.
For each coincidence size, 4 through 8, the distribution of reconstructed shower sizes and the
mean core deviations are determined. The errors below and above the mean values are sep-
arately determined to express the asymmetry of the distributions. The results are shown in
Figure 6.12.
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Figure 6.12: Left panel: Reconstructed shower sizes for fourfold through eightfold coincidences caused by
a 1017 eV shower with zenith angle 15°. The black dots, connected by a horizontal dashed line, represent
the simulated shower size. The number of entries are shown above the error bars. Right panel: For the
same entries the distance between the reconstructed and simulated core positions.

As expected, the spread in the reconstructed shower sizes and the mean core deviation decrease
for increasing coincidence size. For eightfold coincidences the core position can be accurately
reconstructed because 1017 eV showers causing eightfold coincidences are close to the center of
the configuration of stations. For 1018 eV showers n-fold coincidences can be caused by more
distant cores. Fourfold and fivefold coincidences caused by a distant 1018 eV shower can be
mistaken for a nearby shower with less energy. For this reason the reconstructed shower size
tends to smaller values for smaller coincidence sizes, see left panel of Figure 6.13. As a conse-
quence the core reconstructions becomes less accurate, see right panel of Figure 6.13.
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Figure 6.13: Left panel: Reconstructed shower sizes for fourfold through eightfold coincidences caused by
a 1018 eV shower with zenith angle 45°. The black dots, connected by a horizontal dashed line, represent
the simulated shower size. The number of entries are shown above the error bars. Right panel: For the
same entries the distance between the reconstructed and simulated core positions.
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Next the distribution of reconstructed shower sizes is investigated for different zenith angles.
For 1015 eV showers the reconstructions are almost absent since they are in general not large
enough to cause fourfold coincidences. We therefore start with the reconstructions for 1016 eV
showers with zenith angles 0°, 15°, 30° and 45°. The results are shown in Figure 6.14 for four-
fold and fivefold coincidences.
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Figure 6.14: Reconstructed shower sizes for 1016 eV showers with zenith angles 0°, 15°, 30° and 45° which
caused fourfold (left) and fivefold (right) coincidences in the eight stations considered. In the right panel
the result for 45° is not shown because of absence of entries. The number of entries are shown above the
error bars. The black dots, connected by a dashed curve, represent the simulated shower sizes.

For the few sixfold coincidences caused by 1016 eV showers with zenith angle 0° and 15° the
results are comparable with the ones for fivefold coincidences. Large coincidence sizes can oc-
cur for 1017 eV showers if the zenith angle is not too large. For this energy the reconstruction
results are shown in Figure 6.15 for fivefold through eightfold coincidences. The reconstructed
shower sizes follow the zenith angle dependence. Nevertheless, a structural overestimation is
present. The causes are not clear. The difference between the real and simulated energy losses
for low energy electrons might be one of the causes.

The accuracy of the reconstruction might depend on the number of stations that are on duty.
To this end station 510 is included in the simulations. Showers which cause eightfold coinci-
dences in the situation without station 510 will almost certainly cause ninefold coincidences in
the situation with station 510 since station 510 is very close to station 501. The reconstructions
for both situations are conducted with a 1017 eV shower with zenith angle 15° thrown 10 000
times. The simulated shower size is 1.63 ·107 ground particles. For the situation without sta-
tion 510 there are 158 eightfold coincidences. For the situation with station 510 there are 162
ninefold coincidences. For both cases the distribution of reconstructed shower sizes is shown in
Figure 6.16.
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Figure 6.15: Reconstructed shower sizes for 1017 eV showers with zenith angles 0°, 15°, 30° and 45° which
caused fourfold (upper left) through eightfold (lower right) coincidences in the eight stations considered.
The black dots, connected by a dashed curve, represent the simulated shower sizes.
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Figure 6.16: The distribution of reconstructed shower sizes for simulated 1017 eV shower with zenith angle
15° which caused eightfold coincidences in the eight stations considered (left) and which caused ninefold
coincidences in nine stations considered, thus with station 510 included. The vertical line represents the
simulated shower size.
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For the situation without station 510 the reconstructed shower size has a mean of 2.34 ·107

and a standard deviation of 8.5 ·106. For the situation with station 510 the reconstructed
shower size has a mean of 2.47 ·107 and a standard deviation of 8.7 ·106. In both situations
a structural overestimation is present. The distributions are comparable. This implies that a
‘double’ station has not a large effect on the reconstruction in comparison with a single station.
For shower reconstructions it is best to take a different location for each additional station.

In the shower size distributions shown there are a few outliers. One might consider to in-
spect the ¬2 values of the reconstructions. If there turns out to be a clear relation between ‘bad’
reconstructions and large ¬2 values, one might consider to use the ¬2 value as a criterium for
rejection. The consequences for the acceptance should then be investigated. The overall con-
clusion is that further research is required for possible improvement of the algorithm and for
the determination of the accuracy of the reconstructions for different energies, different zenith
angles, different constellations of station and different coincidence sizes.

6.9 Energy reconstruction

With the shower size is meant the total number of electrons and muons: Ne+µ. Once the shower
size is estimated, the energy of the shower can also be estimated. This requires the relation
between the energy and shower size for each zenith angle. The relation is derived from the
inspection of simulated showers, 27 688 at the time of investigation.
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Figure 6.17: The shower size against energy for zenith angles 0° through 60° in steps of 7.5° (left). The
same plot with error bars restricted to 0°, 45° and 60° to avoid overlap.
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For each energy there is a distribution of shower sizes because of variations in the altitude of
first interaction and in the further evolution. The energy is reconstructed on the basis of the
mean shower size. In the left panel of Figure 6.17 the mean shower size is plotted against
energy. In the right panel the error bars are plotted as well for a few zenith angles to given an
impression of the uncertainty. The curves are fitted with a linear function:

log10 Ne+µ = a · log10 E+b , (6.72)

where E is in eV.
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Figure 6.18: The coefficients a (left) and b (right) versus zenith angle and the fit curves (dashed)

For each zenith angle the coefficients a and b are determined. The coefficients, plotted against
zenith angle in Figure 6.18, are fitted with w+vcosµ. For coefficient a: w = 0.681 and v = 0.524,
and for coefficient b: w = °7.844 and v = °5.300. The values of a are highly correlated to the
values of b, the correlation coefficient being 0.997. The shower size versus energy can therefore
be parameterized as

log10 Ne+µ = (0.681+0.524cosµ) · log10 E° (7.844+5.300cosµ) , (6.73)

By means of this relation the diagrams in the left panel of Figure 6.12 and the lower left panel
of Figure 6.15 are transformed to the diagrams shown in the left panel and the right panel of
Figure 6.19.

The left panel of Figure 6.20 shows the reconstructed energy distribution for simulated show-
ers with energy 1017 eV and zenith angle 0°, 15°, 30° and 45° that have caused coincidence
sizes 6 through 8. For the energy distribution: µ= 1.40 ·1017 and æ= 7.4 ·1016. The right panel
of Figure 6.20 shows the reconstructed energy distribution for simulated showers with energy
1018 eV and zenith angle 45° that have caused coincidence sizes 6 through 8. For the energy
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Figure 6.19: Left panel: Reconstructed shower energies for fourfold through eightfold coincidences caused
by a 1017 eV shower with zenith angle 15°. The number of entries are shown above the error bars. Right
panel: Reconstructed shower energies for 1017 eV showers with zenith angles 0°, 15°, 30° and 45° which
caused sevenfold coincidences in the eight stations considered. In both panels the black dots, connected
by a horizontal dashed line, represent the simulated shower energies.

distribution: µ= 1.02 ·1018 and æ= 8.5 ·1017. The tail to the left in the distribution of the right
panel in Figure 6.20 is, as mentioned before, due to far away cores ascribed to nearby cores.
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Figure 6.20: Left panel: Distribution of 2184 reconstructed energies for simulated showers with energy
1017 eV and zenith angle 0°, 15°, 30° and 45° that have caused coincidence sizes 6 through 8. Right panel:
Distribution of 2318 reconstructed energies for simulated showers with energy 1018 eV and zenith angle 45°
that have caused coincidence sizes 6 through 8. In both panels the vertical dashed line is the imposed
energy.
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6.10 Summary

For the reconstruction of the shower core a method has been developed on the basis of radi-
cal axes. To my best knowledge such a method is not present in the literature. The method
delivers in a reasonable amount of time an estimation for the core position. The core predic-
tion is further improved by inspecting an array of possible core positions around the estimated
position. The present implementation of the radical axis method is based on vertical showers.
Differences caused by the inclination of a shower are assumed to be abolished because of the
subsequent inspection of an array of possible core positions. Nevertheless, it seems worthwhile
to investigate if better accuracies may be achieved by generalizing the radicals axis method to
inclined showers as described in the text.

Although the radical axis method works satisfactorily, the reconstructions on the basis of a
small number of stations are unavoidably inaccurate. Firstly because the reconstruction is
more sensitive for deviations between observed and expected densities if the number of sta-
tions is small. Secondly because a shower with the core at a large distance from the stations
can be mistaken for a shower with less energy with the core close to the stations. This is not
a shortcoming of the radical axis method. For any method the inaccuracies will increase for
decreasing coincidence size. For the reconstruction of individual showers it therefore is recom-
mended to restrict to at least sixfold coincidences.



7
Shower data analysis

7.1 Event characteristics

When almost simultaneous signals in two detectors of a station are large enough, the station
is triggered and the traces of this event are recorded. From the traces the pulse heights and
pulse integrals are determined. From the pulse integrals and the MIP (Minimum Ionizing Par-
ticle) peak, the signals are expressed as a number of MIPs. This can roughly be interpreted
as the number of particles that have passed the scintillator plate of a detector. In Figure 7.1 a
pulse height diagram and a pulse integral diagram for detector 0 of station 501 are shown. The
peaks do follow Gaussian distributions, appearing as a parabolas because of the logarithmic
scale, with æ= 0.3µ as derived in Chapter 4.
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Figure 7.1: Pulse height (left) and pulse integral (right) distributions for detector 0 of station 501. Data
taken between 2015-08-28, 00:00:00 and 2015-08-30, 00:00:00. The orange curves are Gaussian functions
with � = 0.3µ.
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The ‘peak’ at the most left part of the pulse height diagram is caused by the gamma’s. The
peak to the right of the ‘two high’ trigger level is caused by the charged particles, by far mostly
electrons and muons. Once the events of a station are registered one can afterwards determine
the number of events where 0, 1, 2, 3 or 4 detectors have a pulse height exceeding a chosen
threshold value. In Figure 7.2 these five numbers are plotted against the threshold value in
ADC.
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Figure 7.2: Numbers of events where the pulse height in 0, 1, 2, 3 or 4 detectors of station 501 has
exceeded a given value in ADC. Data taken from 2013-08-28, 00:00:00 through 2013-08,-30 0:00:00.

We see the curve for 2 detector having a pulse height larger than a given value drops down-
wards, in favor of the curve for 1 detector, around 125 ADC. A similar diagram can be made for
the pulse integrals in MIP, see Figure 7.3.
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Figure 7.3: Numbers of events where the pulse integral in 0, 1, 2, 3 or 4 detectors of station 501 has
exceeded a given value in MIP. Data taken from 2013-08-28, 00:00:00 through 2013-08-30, 00:00:00.
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Both diagrams show a great similarity. For increasing threshold the red curves drop down-
wards, in favor of the blue curves, around 125 ADC and 0.3 MIP respectively. In both diagrams
the blue curve intersects the red curve at a threshold value close to the peak value of the pulse
height distribution and pulse integral distribution respectively. For larger thresholds also the
blue curve drops down in favor of the black curve. In both diagrams the threshold value for
which the blue curve reaches its maximum is about 15 % larger than the peak value of the
pulse height and pulse integral distributions. The threshold value where the blue curves ob-
tain their maximum being in the neighborhood of the threshold value where the red and black
curves intersect, implies that the slopes of red and black curves at the point of intersection are
almost equal (except for the opposite sign).

If 0.3 MIP is taken as the offline threshold, most events have 2 plates passing the threshold,
while the numbers for 3 plates and 4 plates passing the threshold are small. Increasing the
threshold changes the counts. If the threshold in MIP is taken as an offline trigger condition,
we can determine the counts with two, three and four plates ‘hit’, where ‘hit’ means ‘passed the
threshold’. In Figure 7.4 the fractions of two, three and fourfold hits are plotted against the
threshold value. At 3.5 MIP threshold there are as many threefold hits as fourfold hits.
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Figure 7.4: Fractions of 2, 3 and 4 plates of station 501 having passed a threshold value in MIP. Data
taken from 2013-08-28, 00:00:00 through 2013-08-30, 0:00:00.

Since the three fractions add up to unity, one can also plot them in a ternary diagram, see
Figure 7.5. As can be expected for low thresholds (and thus in general for low densities) the
fractions start in the neighborhood of the lower right corner. It can also be expected that for
very high thresholds (and thus very high densities) the fractions end in the lower left corner.
In between the fractions follow approximately the dashed curve in Figure 7.5.
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Figure 7.5: Fractions of 2, 3 and 4 plates of station 501 having passed a threshold value of 1, 2, 3, 4, 5,
6, 7, 8, 9 and 10MIP. Data taken from 2013-08-28 00:00:00 through 2013-08-30 00:00:00. The fractions
are close to an ellipse (dashed).

7.2 Coincidence characteristics

Here we will consider ternary diagrams for SPA stations that have participated in coinci-
dences. Coincidences of k events (thus k triggered stations) will be denoted as n = k coinci-
dences. Events will be denoted as n = 1 coincidences. As an example, for the period 2013-08-15,
00:00:00 and 2013-09-12, 00:00:00 the fraction of two plates of station 501 passing a threshold
of 0.3 MIP for n = 2 coincidences is 0.577. For three and four plates these fractions are 0.251
and 0.172 respectively. It turns out that larger thresholds, 0.4 or 0.5 MIP say, do not change
the fractions significantly. Passing a threshold of 0.3 MIP is therefore denoted as being ‘hit’.
For different coincidence sizes the fractions are plotted in a ternary diagram, see Figure 7.6.

The dashed curve in Figure 7.6 can be partly understood by means of a simplistic model where
the lateral density is considered identical for all four detectors of a station. The number of
particles in a small area is Poisson distributed. The Poisson distribution is present in the lat-
eral distribution of simulated showers. Dividing the area at distance r from the core between
r°0.5 and r+0.5 m in tiles of surface 0.5 m2 and inspecting the number of particles in these
tiles approximately results in a Poisson distribution, see Figure 7.7. The Poisson distribution
is also verified experimentally, see figure 5.8 of [82].
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Figure 7.6: Ternary plot of the fractions of 2, 3 and 4 plates hit in station 501 events who participated in
n = 1 through n = 8 coincidences. Data taken from 2013-08-15 00:00:00 through 2013-09-12 00:00:00.
The fractions are close to an ellipse (dashed); the solid curve is a crude prediction, see text.
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Figure 7.7: For a 1 PeV vertical proton shower the distribution of the number of charged particles at sea
level in tiles with surface 0.5m2 at several distances to the core (dashed) and the corresponding Poisson
distribution (solid).
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If the lateral density at detector level is Ω particles per m2, then 0.5Ω is the average number of
particles on a detector plate of 0.5 m2. For this density the probability that k particles will hit
a detector is Poisson distributed:

P(k)= 1
k!

(0.5Ω)ke°0.5Ω . (7.1)

The probability p for a plate to be hit, the detection probability, is

p = 1°P(0)= 1° e°0.5Ω . (7.2)

All four plates in a station are assumed to have equal probability p to be hit when a shower
strikes a station. Then the probability for precisely m plates out of 4 to be hit is given by a
binomial distribution:

P(m)=
√

4
m

!

pm(1° p)4°m , (7.3)

where p = 1°e°0.5Ω. For the probability for a station to be triggered we restrict ourselves to the
‘two-high’ threshold criterion and neglect the Landau distribution of the energy loss as well as
further normal distributions in the process that leads to a signal. The trigger probability then
is

Ptrigger = 6p2(1° p)2 +4p3(1° p)+ p4 , (7.4)

with p = 1° e°0.5Ω. In Figure 7.8 the detection probability and the trigger probability according
to the simplistic model are plotted against the density.
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Figure 7.8: The detection probability, which is the probability a detector to be hit (solid), and the trigger
probability (dashed) versus the density of electrons and muons.

For densities above 1 m°2 the probability for a station to be triggered is larger than 0.5. For
smaller densities the trigger probability rapidly decreases. The expected fraction f (2) of pre-
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cisely two plates hit is

f (2)= 6p2(1° p)2

Ptrigger
= 6(1° p)2

6°8p+3p2 . (7.5)

The equations for the expected fractions f (3) and f (4) for three and four plates hit are:

f (3)= 4p(1° p)
6°8p+3p2 f (4)= p2

6°8p+3p2 . (7.6)

Taking the lower left corner as the origin (0,0) a point corresponding to the fractions f (2), f (3)
and f (4) has the coordinates

x = f (2)+ 1
2

f (3)= 6°10p+4p2

6°8p+3p2 (7.7)

and

y= 1
2
p

3 f (3)= 2
p

3 p(1° p)
6°8p+3p2 . (7.8)

After elimination of p the equation for an ellipse is obtained:

√
x° 1

2
1
2
p

3

!2

+
√

y+
p

3
3
2
p

2

!2

= 1 . (7.9)

The part of the ellipse inside the ternary diagram is drawn as a solid curve in Figure 7.6. The
positions on the solid curve are marked for p = 0.3, 0.5, 0.7, 0.9 and labelled for p = 0.5, 0.7, 0.9.
The values 0.3, 0.5, 0.7 and 0.9 for p correspond to the values .7, 1.4, 2.4 and 4.6 m−2 respec-
tively for the density Ω.

The dashed curve can not be given a full quantitative explanation on the basis of a single
‘hit’ probability. For a twofold coincidence it will in general be the case that the two stations
involved are in regions with different density and thus with different p. The average fraction
will be at the barycenter of these two points, causing the curve to be shrunk downwards. Even
for a single event the density and thus the probability is in general larger in the two detectors
that caused the trigger and smaller in the other detectors. This also causes the curve to shrink
downwards. As a result the actual fractions are positioned close to a circle with equation

µ
x° 1

2

∂2
+ (y+ q)2 = q2 + 1

4
, (7.10)

where q º 0.37. This is also the case for other stations and other station configurations. For
the 501 station the fractions are plotted for a period of time when only station 501 through 506
were present, see Figure 7.9. In Figure 7.10 the ternary plot is shown for station 503. Although
the fractions depend on the coincidence size, the positions of the fraction all are for each station
close to the same dashed curve. The dashed curves are therefore characteristic.
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Figure 7.9: Ternary plot of the fractions of participating events with 2, 3 and 4 plates hit in station 501
for coincidence size n = 1 through n = 6. Data taken from 2012-02-01, 00:00:00 through 2012-03-01,
00:00:00. The fractions are close to an ellipse (dashed); the solid curve is a crude prediction.
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Figure 7.10: Ternary plot of the fractions of participating events with 2, 3 and 4 plates hit in station 503
for coincidence size n = 1 through n = 8. Data taken from 2013-08-15, 00:00:00 through 2013-09-12,
00:00:00. The fractions are close to an ellipse (dashed); the solid curve is a crude prediction.
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7.3 Zenith and azimuth distributions

For the distribution of the reconstructed azimuthal angles data is taken for two time intervals.
In the first time interval only stations 501 through 506 were present at SPA. In the second time
interval also stations 508 and 509 were present. The reconstructed azimuth distributions for
both time intervals are shown in Figure 7.11. Obviously, the azimuthal distribution is sensitive
to the layout of the detector stations.
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Figure 7.11: Azimuth distribution for showers on SPA cluster for the time interval 2009-02-01 through
2011-05-01 when only stations 501 through 506 were present (left) and for the time interval 2013-07-01
through 2015-02-01 were also stations 508 and 509 were present (right).

For a reconstructed zenith distribution data is taken from 2013-08-15, 00:00:00 through 2013-
09-12, 00:00:00. The zenith distribution and the fractions of n = 3 through n = 8 coincidences
that contributed to the zenith distribution are shown in Figure 7.12.
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Figure 7.12: Left panel: zenith distribution. The dashed curve is a fit with a function given in the text.
Right panel: fraction of n = 3 through n = 8 coincidences. Data taken from 2013-08-15, 00:00:00 through
2013-09-12, 00:00:00.
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The zenith distribution is fitted with

dNe(µ)= Ne(0)e°C(secµ°1) sinµdµ , (7.11)

where the constant C is given by

C = X0(∞°1)
2.3∏

(7.12)

with X0 the atmospheric depth at the altitude of the detector, X0 º1030 g cm−2, with ∞ the
cosmic ray energy spectrum index and with ∏ the attenuation length of the electromagnetic
component of a shower [93, 97]. The fit resulted in the value 5.7 for C. For ∞ = 2.75 this
corresponds to ∏ º 138gcm°2, while in the literature values between 175 and 196 g cm−2 are
reported [97, 98]. The size of the electromagnetic part of a shower decreases approximately
exponentially with atmospheric depth. A consequence of the attenuation is that the number
of showers reaching the surface of the earth decreases exponentially with atmospheric depth.
The corresponding characteristic lengths, the attenuation length ∏ (the length over which the
shower size decreases to e°1 of its value) and the absorption length § (the length over which
the number of showers extinct to e°1 of its value) are related to each other by §=∏/(∞°1) [98].
The zenith distribution can also be fitted to the equation:

dNe(µ)= Ne(0)cosk µsinµdµ . (7.13)

The fit results in the value 7.3 for k. This value is comparable to values reported in the litera-
ture [99].

7.4 Arrival time statistics

In this section the distribution of the time lapses between the arrival times of successive show-
ers is analyzed for the time interval 2013-08-15, 00:00:00 through 2013-09-12, 00:00:00. Also
here showers are considered which have hit three or more stations. The distribution of the
number of arrivals in a time interval ¢t is expected to follow a Poisson distribution:

P(N¢t = k)= 1
k!

(a¢t)ke°a¢t , (7.14)

where a is the average rate. The probability that k successive arrivals take at least a time
¢t is equal to the probability that there are less than k arrivals in time ¢t. Alternatively,
P(Tk > ¢t) = P(N¢t < k). From this equality it can be derived that the intervals ¢t between
two arrivals with k arrivals in between follow the Erlang distribution

Pk(¢t)= 1
k!

ak+1¢tke°a¢t . (7.15)
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A fit of the distribution of time differences between a shower and the next shower with P0(¢t)=
a · e°a¢t results in a rate of a =0.0233 s−1. A fit of the distribution of time differences between a
shower and the next to next shower with P1(¢t) = a2¢te°a¢t results in a rate of a =0.0233 s−1.
These two distributions are shown in Figure 7.13
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Figure 7.13: Arrival time difference distributions between a shower and the next shower (left) and between
a shower and the next to next shower (right) for period 4. The orange curves are the fits with the Erlang
distributions.

A fit of the distribution of time differences between a shower and the next to next to next
shower with P2(¢t) = 1

2 a3¢t2e°a¢t also resulted in a rate of a =0.0233 s−1. This means that on
average 84 showers an hour trigger at least three stations. The fact that the three fits deliver
the same arrival rate confirm the Poisson nature of the arrival times.

7.5 Cosmic ray fluxes

For a dense array of detectors cosmic ray fluxes can be determined from observations of indi-
vidual showers. For the sparse array at the SPA site showers which cause less than threefold
coincidences can not be reconstructed. For fourfold and fivefold coincidences the reconstruction
is inaccurate. Showers which cause fivefold or lower coincidences have an energy less than
about 1016 eV. From these showers the cosmic ray fluxes can still be determined from the ob-
served coincidence rates. This will be described below. At the end of this chapter the cosmic
ray flux will be determined from individual showers with an energy larger than 1016 eV. For
both methods the data is taken from the 28 days between 2013-08-15, 00:00:00 and 2013-09-12,
00:00:00. In this time interval, which is between the HiSPARC timestamps 1376524800 and
1378943995 seconds in the Unix era, the eight stations 501, 502, 503, 504, 505, 506, 508 and
509 were fully operational and well functioning without interruption.
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When a simulated shower is at random thrown on the eight stations 501 through 506, 508
and 509, it will cause n = k coincidences with k ∑ 8. If no coincidences occur for a throw, we
speak about a n = 0 coincidence. From the number of core positions which cause a k-fold co-
incidence the effective area for such a coincidence can be determined. In combination with
frequencies of observed coincidences a cosmic ray spectrum can, to a certain extent, be synthe-
sized. Theoretically

∫n = 2º
Z1

0

Zº/2

0
f (E)An(E,µ)sinµdµdE , (7.16)

where ∫n is the observed frequency of n stations hit, An is the effective area of core positions
of showers with energy E and zenith angle µ hitting n stations and f (E) is the cosmic ray
flux of particles with energy E. Of course, the cosmic ray energy will not range from zero
through infinity. The lower limit is where the showers will practically not reach sea level:
º 1013 eV. A theoretical upper limit is derived by Greisen, Zatsepin and Kuzmin (GKZ) [13, 14].
The GKZ limit, º 1020 eV, is set by the interactions of cosmic ray protons with the microwave
background radiation. The observed frequencies ∫n observed are tabulated in Table 7.1. The
error in the observed frequencies, which is just the Poisson error, ranges from 3 ·10−4 % for
n = 1 coincidences through 7 % for n = 8 coincidences and is in practice negligible.

n observed in 28 days frequency [yr°1] frequency [s°1]
1 1.15 ·107 1.50 ·108 4.75
2 188860 2.46 ·106 7.81 ·10°2

3 39355 5.13 ·105 1.63 ·10°2

4 11248 1.47 ·105 4.65 ·10°3

5 4029 5.25 ·104 1.67 ·10°3

6 1528 1.99 ·104 6.32 ·10°4

7 667 8.70 ·103 2.76 ·10°4

8 199 2.59 ·103 8.23 ·10°5

Table 7.1: Observed rate (column 2), frequency per year (column 3),frequency per second (column 4)
for coincidence sizes 1 through 8 (column 1). Data taken from 2013-08-15 00:00:00 through 2013-09-12
00:00:00.

With the ∫n known from the observed data and the An known from the simulations the f (E)
can, in principle, be reconstructed. In the simulations the generated shower energies and
zenith angles are discrete. The discrete equivalent of Equation 7.16 is

∫n =
X

j

X

k
¢F(log10 E j)An(E j,µk)g(µk) , (7.17)

where j and k are the indices of the discrete energies and the discrete zenith angles respec-
tively. Here g(µk) represents the discrete distribution of zenith angles in steradians. The values



7.5. Cosmic ray fluxes 145

of g(µk will be derived further on. F(E) is the integral flux of cosmic rays with energy larger
than E: F(E) =

R1
E f (x)dx. It is proportional to E1°∞. The integral flux for the energy bin

10m°0.5 < E[eV] < 10m+0.5 is denoted as ¢F(m) , where m = log10 E. Thus ¢F(14), to give an
example, is F(1013.5)°F(1014.5). For the effective area we consider the four energies 1014, 1015,
1016 and 1017 eV and the four zenith angles 15°, 30°, 45° and 60°. For each energy and each
zenith angle the mean and FWHM of the distribution of the shower sizes is shown in Table 7.2.

1014 eV 1015 eV 1016 eV 1017 eV

15° 6.0 ·103 (3 ·103) 9.1 ·104 (6 ·104) 1.3 ·106 (9 ·105) 1.8 ·107 (1 ·107)

30° 3.5 ·103 (2 ·103) 4.6 ·104 (2 ·104) 6.8 ·105 (3 ·105) 9.0 ·106 (5 ·106)

45° 1.3 ·103 (6 ·102) 1.6 ·104 (7 ·103) 1.7 ·105 (7 ·104) 2.1 ·106 (1 ·106)

60° 6.7 ·102 (3 ·102) 5.3 ·103 (3 ·103) 4.4 ·104 (2 ·104) 4.0 ·105 (1 ·105)

Table 7.2: Average Ne+µ for various energies and zenith angles at sea level for proton initiated showers.
The FWHM is in brackets; the upper FWHM boundary is in the neighborhood of the mean.
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Figure 7.14: A 100 PeV proton shower with ✓ = 15° randomly thrown 10 000 times within a circle with
area 4 ·106 m2. The 10 000 core positions are colored depending on the number of stations hit, see legend.
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For each of the four energies and each of the four zenith angles one shower is selected out
of the simulated showers with the shower size within 5 % from the mean value. Each of the
16 selected showers is artificially thrown on 10 000 random positions at the SPA stations 501
through 506, 508 and 509. For 1014 and 1015 eV the throws are within a circle with area
1 ·106 m2, corresponding to an effective area of 100 m2 per throw. For 1016 and 1017 eV the
throws are within a circle with area 4 ·106 m, corresponding to an effective area of 400 m2 per
throw. For 1016 eV additional throws are made in a circle with area 106 m2 in order to reduce
the Poisson error. The result for a 1017 eV proton shower with µ = 15° is shown in Figure 7.14.
From Figure 7.14 it can be read off that 438 out of 10 000 throws have caused a threefold co-
incidence: A3(1017,15°) = 175200m2. The complete simulation result is shown in Table 7.3.

p n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

17,15 5432 (147) 2364 (97) 1752 (120) 1232 (84) 1084 (66) 1172 (68) 1272 (71) 632 (50)
17,30 5096 (143) 2176 (93) 1408 (75) 1072 (65) 956 (62) 972 (62) 968 (62) 252 (32)
17,45 3976 (126) 1564 (79) 988 (63) 656 (51) 580 (48) 420 (41) 132 (23) 16 (8)
17,60 2584 (102) 484 (44) 140 (24) 24 (10) 0 0 0 0
16,15 2420 (98) 948 (62) 608 (49) 432 (42) 272 (33) 80 (18) 4 (4) 0
16,30 2072 (91) 696 (26) 424 (21) 204 (14) 56 (8) 8 (3) 0 0
16,45 1360 (37) 320 (18) 76 (9) 12 (3) 0 0 0 0
16,60 87 (9) 1 (1) 0 0 0 0 0 0
15,15 954 (31) 139 (12) 12 (3) 0 0 0 0 0
15,30 624 (25) 54 (7) 2 (1) 0 0 0 0 0
15,45 144 (12) 3 (2) 0 0 0 0 0 0
15,60 1 (1) 0 0 0 0 0 0 0
14,15 69 (8) 0 0 0 0 0 0 0
14,30 18 (4) 0 0 0 0 0 0 0
14,45 1 (1) 0 0 0 0 0 0 0
14,60 0 0 0 0 0 0 0 0

Table 7.3: Effective area in units of 100 m2 for proton initiated showers of different energies and different
zenith angles. The Poisson error is in brackets. The first and second number of the row entries are
log10E0[eV] respectively ✓ in degrees. The column entries are the coincidence sizes.

7.6 Distribution correction

For each energy and zenith there is a distribution of shower sizes. The distributions of Ne+µ for
p and Fe initiated showers with 1016 eV energy and zenith angle 15° are shown in Figure 7.15.
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Figure 7.15: Distribution of the number of electrons and muons at observation level for a 10

16 eV shower
with zenith angle 15° initiated by a proton (left) and by an iron nucleus (right).

The spread in a shower size distribution will lead to a spread in the effective area. The spread
in the effective area is obtained by application of a relation between shower size and the effec-
tive area. It is found that the square root of the effective area is approximately linear with the
logarithm of the shower size. In Figure 7.16 the square root of the effective area for showers
with zenith angle 15° and 30° is plotted against log10 Ne+µ for n = 1 through n = 4 coincidences.
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Figure 7.16: The square root of the effective area versus shower size for events, twofold, threefold and
fourfold coincidences, for zenith angle 15° (left) and 30° (right).

The diagrams in Figure 7.16 suggest a linear relation:

p
A = v · log10(Ne+µ)+w . (7.18)
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For instance, for n = 1 and µ = 15° the fit yields v = 185 and w = °616. For other coincidence
sizes and other zenith angles the slopes are comparable. To each distribution of Ne+µ the
corresponding linear relation is applied. It results in corrected values for the mean effective
area, see Table 7.4. The spread in each distribution of Ne+µ contributes to the uncertainty.
Together with the Poisson error it determines the total uncertainty, which is between brackets
in Table 7.4.

p n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

17,15 5185 (460) 2337 (270) 1768 (260) 1207 (160) 1058 (170) 1135 (260) 1226 (350) 610 (170)
17,30 4767 (510) 2090 (300) 1386 (230) 1038 (210) 919 (240) 930 (290) 925 (320) 242 (100)
17,45 3852 (600) 1452 (280) 940 (260) 620 (210) 546 (220) 395 (160) 125 (110) 20 (30)
17,60 2540 (500) 475 (110) 140 (65) 25 (25) 0 0 0 0
16,15 2565 (380) 893 (200) 522 (160) 415 (110) 260 (95) 81 (80) 22 (50) 0
16,30 2198 (420) 690 (200) 377 (140) 189 (100) 58 (80) 17 (35) 0 0
16,45 1281 (360) 350 (140) 89 (65) 20 (50) 8 (35) 2 (20) 0 0
16,60 100 (30) 4 (10) 0 0 0 0 0 0
15,15 842 (270) 131 (95) 23 (40) 1 (5) 0 0 0 0
15,30 581 (240) 50 (60) 10 (25) 0 0 0 0 0
15,45 134 (150) 9 (30) 0 0 0 0 0 0
15,60 1 (2) 0 0 0 0 0 0 0
14,15 66 (95) 1 (4) 0 0 0 0 0 0
14,30 25 (55) 0 0 0 0 0 0 0
14,45 2 (2) 0 0 0 0 0 0 0
14,60 0 0 0 0 0 0 0 0

Table 7.4: Effective area in 100 m2 for proton initiated showers of different energies and different zenith
angles. The uncertainty is in brackets. The first and second number of the row entries are log10E0 [eV]
respectively ✓ in degrees. The column entries are the coincidence sizes.

For the calculation of the discrete zenith angle distribution the discrete zenith angles µ1 = 15°,
µ2 = 30°, µ3 = 45° and µ4 = 60° represent the zenith angle intervals 0° < µ < 22.5°, 22.5° < µ <
37.5°, 37.5°< µ < 52.5° and 52.5°< µ < 67.5° respectively. For instance, for g(µ1) it follows

g(µ1)= 2º
Zº/8

0
sinµdµ º 0.48 . (7.19)

In a similar way it follows for the other angles g(µ2) = 0.82, g(µ3) = 1.16 and g(µ4) = 1.42. For
the remaining 2.4 sr for µ > 67.5° it is assumed the inclined showers will not lead to events or
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coincidences. For the events, n = 1, the following equation is obtained:

∫1 =¢F(14)(0.48 ·6600+0.82 ·2500+1.16 ·200+1.42 ·0)+

¢F(15)(0.48 ·84200+0.82 ·58100+1.16 ·13400+1.42 ·100)+

¢F(16)(0.48 ·256500+0.82 ·219800+1.16 ·128100+1.42 ·10000)+

¢F(17)(0.48 ·518500+0.82 ·476700+1.16 ·385200+1.42 ·254000) . (7.20)

With the substitution of the observed value ∫1 =4.75 s−1, see the fourth column of Table 7.1,
the latter reads

4.75= 5.45 ·103¢F(14)+1.04 ·105¢F(15)+4.67 ·105¢F(16)+1.45 ·106¢F(17) . (7.21)

In a similar way we obtain for n = 2 through n = 8

7.81 ·10°2 = 48¢F(14)+1.14 ·104¢F(15)+1.41 ·105¢F(16)+5.19 ·105¢F(17) . (7.22)

1.63 ·10°2 = 1.92 ·103¢F(15)+6.63 ·104¢F(16)+3.27 ·105¢F(17) . (7.23)

4.65 ·10°3 = 48¢F(15)+3.77 ·104¢F(16)+2.19 ·105¢F(17) . (7.24)

1.67 ·10°3 = 1.82 ·104¢F(16)+1.89 ·105¢F(17) . (7.25)

6.32 ·10°4 = 5.51 ·103¢F(16)+1.77 ·105¢F(17) . (7.26)

2.76 ·10°4 = 1.06 ·103¢F(16)+1.49 ·105¢F(17) . (7.27)

8.23 ·10°5 = 5.14 ·104¢F(17) . (7.28)

This is an overdetermined system of 8 equations for the four unknowns ¢F(14) through ¢F(17),
where ¢F is in m−2 sr−1 s−1. Minimization of

8X

n=1

√

∫n °
X

j

X

k
¢F(log10 E j)An(E j,µk)g(µk)

!2

(7.29)

results in the following solution: ¢F(14) = 7.1 ·10°4, ¢F(15) = 3.9 ·10°6, ¢F(16) = 8.4 ·10°8

and ¢F(17) = 1.4 ·10°9. The relative errors are 70 %, 50 %, 35 % and 20 % respectively. The
final thing to do is to relate the discrete quantities ¢F(14), ¢F(15), ¢F(16) and ¢F(17) to the
energy dependent cosmic ray flux. For instance, ¢F(14) is the integral flux in the energy range
104.5 through 105.5 GeV. The flux therefore is given by

f (1014)= ¢F(14)
105.5 °104.5 . (7.30)
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Substitution of the value for ¢F(14) gives f (1014) = 2.5 ·10°9 m°2 sr°1 s°1 GeV°1. The other
fluxes are: f (1015)= 1.4 ·10°12, f (101616)= 3.0 ·10°15 and f (1017)= 4.9 ·10°18 m°2 sr°1 s°1 GeV°1.
Because of the non-linear relation between the flux and the energy a bin center correction is
applied:

fcorr(E)= fbin
f (E)

< f (E)> , (7.31)

where f (E)= E°∞ and where the bin average is given by

< f (E)>= 1
Emax °Emin

ZEmax

Emin

f (E)dE =
E1°∞

min °E1°∞
max

(∞°1)(Emax °Emin)
, (7.32)

with Emin and Emax the bin edges. After the bin center correction the fluxes are f (1014) =
1.7 ·10°9, f (1015) = 9.4 ·10°13, f (1016) = 1.7 ·10°15 and f (1017) = 2.8 ·10°18 m°2 sr°1 s°1 GeV°1.
The relative errors are the same as for the integral fluxes. They fall within the marker size
when plotted in a cosmic ray energy flux diagram. The value of ∞ between two energy decades
follows from

∞= log10 f (E)° log10 f (10 ·E) . (7.33)

From the fluxes at the energies 1015 eV and 1016 eV the value ∞= 2.7±0.4 is obtained. For the
fluxes at the energies 1016 eV and 1017 eV this is ∞= 2.8±0.2. It slightly indicates an agreement
with the actual cosmic ray spectrum where the ‘knee’ is at about 1015.6 eV.

7.7 Iron spectrum

The previous analysis was entirely based on proton initiated showers. In reality cosmic rays
consist also of heavier elements. The first interaction will on average occur at a larger altitude.
As a consequence less particles will survive to the Earth’s surface. In the right panel of Fig-
ure 7.15 the shower size distribution for an iron initiated shower with the same energy and
zenith angle as taken for the proton initiated shower in the left panel. Less particles lead to
a smaller effective area and therefore to larger estimations for the cosmic ray fluxes. Ignoring
heavier elements causes underestimated cosmic ray fluxes. In order to get an idea of the in-
fluence of heavier primary nuclei we conduct the same analysis for iron primaries as we did in
the previous section for proton primaries. To this end we throw with 13 iron initiated showers,
one for each energy and zenith angle as shown in the Table 7.5.

The selection of showers and the throwing procedure is similar as for the proton. The results
are shown in Table 7.6. The estimated uncertainties are comparable to the ones for proton
initiated showers. The asymmetric distribution of shower sizes of proton initiated showers, see
Figure 7.15, was the reason for the transition of Table 7.3 to Table 7.4. However, the fluxes
from the effective areas as given in Table 7.3 are practically the same fluxes as for Table 7.4.
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1014 eV 1015 eV 1016 eV 1017 eV

15° 3.1 ·103 (9 ·102) 4.1 ·104 (2 ·104) 6.7 ·105 (3 ·105) 9.9 ·106 (3 ·106)

30° 2.3 ·103 (6 ·102) 2.6 ·104 (9 ·103) 3.7 ·105 (2 ·105) 5.3 ·106 (1 ·106)

45° 1.6 ·103 (3 ·102) 1.3 ·104 (3 ·103) 1.4 ·105 (4 ·104) 1.6 ·106 (4 ·105)

60° - - - 5.1 ·105 (5 ·104)

Table 7.5: Average Ne+µ for various energies and zenith angles at sea level for iron initiated showers; the
FWHM is in brackets. The mean is close to the center of the FWHM range.

Even the errors caused by the width of the shower size distribution are small, smaller than the
marker size. This is even more so for iron initiated showers since the shower size distribution
is smaller and more symmetrical than for proton initiated showers, see Figure 7.15. Uncer-
tainties are therefore left out of Table 7.6.

Fe n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8
17,15 5720 2588 1752 1220 1060 1092 1008 496
17,30 5628 2476 1572 1268 1164 828 712 340
17,45 4668 1984 1072 828 540 312 88 4
17,60 3228 841 230 67 8 2 0 0
16,15 2240 804 508 260 124 12 0 0
16,30 1960 624 308 116 44 0 0 0
16,45 1204 184 28 0 0 0 0 0
16,60 87 1 0 0 0 0 0 0
15,15 550 42 1 0 0 0 0 0
15,30 249 2 0 0 0 0 0 0
15,45 45 0 0 0 0 0 0 0
15,60 1 0 0 0 0 0 0 0
14,15 3 0 0 0 0 0 0 0
14,30 1 0 0 0 0 0 0 0
14,45 0 0 0 0 0 0 0 0
14,60 0 0 0 0 0 0 0 0

Table 7.6: Effective area in 100 m2 for iron initiated showers of different energies and different zenith
angles. The first and second number of the row entries are log10E0 [eV] respectively ✓ in degrees. For the
row entries (14,60), (15,60) and (16,60) estimated values are used).

Proceeding directly from Table 7.6 in a similar manner as for the proton initiated showers we
obtain the following system of equations:

4.75= 2.26 ·102¢F(14)+5.22 ·104¢F(15)+4.20 ·105¢F(16)+1.74 ·106¢F(17) . (7.34)
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7.81 ·10°2 = 2.18 ·103¢F(15)+1.11 ·105¢F(16)+6.77 ·105¢F(17) . (7.35)

1.63 ·10°2 = 48¢F(15)+5.29 ·104¢F(16)+3.70 ·105¢F(17) . (7.36)

4.65 ·10°3 = 2.20 ·104¢F(16)+2.68 ·105¢F(17) . (7.37)

1.67 ·10°3 = 9.56 ·103¢F(16)+2.10 ·105¢F(17) . (7.38)

6.32 ·10°4 = 5.76 ·102¢F(16)+1.57 ·105¢F(17) . (7.39)

2.76 ·10°4 = 1.17 ·105¢F(17) . (7.40)

8.23 ·10°5 = 5.22 ·104¢F(17) . (7.41)

The optimal solution is: ¢F(14)= 1.4 ·10°2, ¢F(15)= 2.7 ·10°5, ¢F(16)= 1.8 ·10°7 and¢F(17)=
1.9 ·10°9. It gives the following fluxes: f (1014) = 4.9 ·10°8, f (1015) = 9.5 ·10°12, f (1016) =
6.3 ·10°15 and f (1017) = 6.7 ·10°18 m°2 sr°1 s°1 GeV°1. After the bin center correction the cor-
rected fluxes are f (1014) = 3.3 ·10°8, f (1015) = 6.4 ·10°12, f (1016) = 3.6 ·10°15 and f (1017) =
3.8 ·10°18 m°2 sr°1 s°1 GeV°1.
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Figure 7.17: Cosmic ray energy spectrum. Gray are the fluxes as shown in Figure 1.1. Colored are the
fluxes, blue for proton assumed and red for iron assumed cosmic rays, derived from rates of coincidence
sizes observed at the Science Park Amsterdam site of HiSPARC.

In fig. 7.17 the fluxes are plotted for both the situation where all cosmic rays are assumed
to be protons and the situation where all cosmic rays are assumed to be iron nuclei. Taking



7.8. Individual showers 153

Figure 7.17 literally, it implies the 1014 eV showers to be mainly proton initiated showers. For
1015 eV showers it indicates an increasing contribution of showers initiated by heavier ele-
ments, in agreement with existing galactic models for the explanation of the the cosmic ray
spectrum. For larger energies we can not draw any conclusions because of the vanishing dif-
ference between the fluxes for proton initiated showers and iron initiated showers.

7.8 Individual showers

In the foregoing sections the cosmic ray fluxes were estimated solely on the basis of observed
frequencies of coincidence sizes and Monte Carlo values for the effective areas. Instead one can
also reconstruct the energy of individual showers and collect the result in energy bins. Since
reconstructions of showers is inaccurate for small coincidence sizes, we will confine ourselves
to n > 5 coincidences. It can be readily assumed that they are caused by showers with en-
ergy larger than 1015.75 eV. For the reconstruction of individual showers we consider again the
period of 28 days between 2013-08-15, 00:00:00 through 2013-09-12, 00:00:00. From the 2394
showers (see Table 7.1) the reconstruction was successful in 2332 cases. The reconstructed core
positions are shown in Figure 7.18.
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Figure 7.18: The reconstructed core positions (red) for the 2332 showers as described in the text. The
yellow dots are the stations.
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n reconstr <1015.75 eV 1016 eV 1016.5 eV 1017 eV 1017.5 eV 1018 eV >1018.25 eV

6 1491 0 134 770 467 105 13 2

7 647 0 13 216 295 99 22 2

8 194 0 0 11 84 67 22 10

>5 2332 0 147 997 846 271 57 14

Table 7.7: Number of reconstructed energies for six-, seven- and eightfold coincidences. Data taken
between 2013-08-15, 00:00:00 and 2013-09-12, 00:00:00. The entry 1017 eV, for instance, stands for the
energy bin between 1016.75 and 1017.25 eV.

The reconstructed showers energies are tabulated in Table 7.7. The distributions of the recon-
structed energies for different coincidence sizes are shown in Figure 7.19.

10

15
10

16
10

17
10

18
10

19
0

50

100

150

200

p

E [eV]

co
un

ts

Figure 7.19: The distribution of the reconstructed energies broken down to coincidence sizes 6 (red), 7
(green) and 8 (blue), and the total distribution (black) for the 2332 showers as described in the text.

Without the summation over the energies Equation 7.17 reads

∫n j =
X

k
¢F(log10 E j)An(E j,µk)g(µk) , (7.42)

where ∫n j is the frequency of showers with energy E j and coincidence size n. For reconstructed
energies the summation over the coincidence sizes is considered:

∫ j =
X

n

X

k
¢F(log10 E j)An(E j,µk)g(µk) . (7.43)
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Here ∫ j is the frequency of showers with energy E j. The frequencies per second are the num-
bers in the last row of Table 7.7 divided by the number of seconds contained in 28 days. The
discrete integral fluxes now follow directly from

¢F(log10 E j)=
∫ jP

k
P

n An(E j,µk)g(µk)
. (7.44)

The denominator of the latter equation are the Monte Carlo values obtained from randomly
thrown simulated showers. For this we will confine to the situation where the cosmic rays
are assumed to be protons. For the energies 1016 and 1017 eV the values are used as already
obtained, see Table 7.3. For the energies 1016.5 and 1017.5 eV additional throws are conducted.
The results for the four discrete energies are shown in Table 7.8.

p n = 6 n = 7 n = 8
P

n An(E j,µk) g(µk)
P

n An(E j,µk)g(µk)

17.5,15 1608 2088 2452 6148 0.48 2951

17.5,30 1584 1904 1876 5364 0.82 4398

17.5,45 1266 1216 632 3114 1.16 3612

17.5,60 98 14 2 114 1.42 162

17.0,15 1172 1272 632 3076 0.48 1476

17.0,30 972 968 252 2192 0.82 1797

17.0,45 420 132 16 568 1.16 659

17.0,60 0 0 0 0 1.42 0

16.5,15 584 232 24 840 0.48 403

16.5,30 333 84 9 426 0.82 349

16.5,45 9 0 0 9 1.16 10

16.5,60 0 0 0 0 1.42

16.0,15 80 4 0 84 0.48 40

16.0,30 8 0 0 8 0.82 7

16.0,45 0 0 0 0 1.16 0

16.0,60 0 0 0 0 1.42 0

Table 7.8: Effective area in 100 m2 for showers of different energies and different zenith angles. The first
and second number of the row entries are log10E0 [eV] respectively ✓ in degrees.

As before we apply the distribution correction. The corrected effective areas are shown in
Table 7.9.
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p n = 6 n = 7 n = 8
P

n An(E j,µk) g(µk)
P

n An(E j,µk)g(µk)

17.5,15 1610 2080 2400 6090 0.48 2923

17.5,30 1560 1890 1890 5340 0.82 4379

17.5,45 1230 1170 622 3022 1.16 3505

17.5,60 100 22 6 128 1.42 182

17.0,15 1135 1226 610 2971 0.48 1426

17.0,30 930 925 242 2097 0.82 1720

17.0,45 395 125 20 540 1.16 626

17.0,60 0 0 0 0 1.42 0

16.5,15 568 213 22 803 0.48 385

16.5,30 264 77 9 350 0.82 287

16.5,45 24 4 0 28 1.16 32

16.5,60 0 0 0 0 1.42 0

16.0,15 81 22 0 103 0.48 49

16.0,30 17 0 0 17 0.82 14

16.0,45 2 0 0 2 1.16 2

16.0,60 0 0 0 0 1.42 0

Table 7.9: Effective area in 100 m2 for showers of different energies and different zenith angles. The first
and second number of the row entries are log10E0(eV) respectively ✓ in degrees. The column entries are
the coincidence sizes.

Summing over the discrete zenith angles we obtain, for instance, for the energy bin 1016.5 eV:

¢F(16.5)= 4.12 ·10°4

38500+28700+3200+0
= 5.85 ·10°9 . (7.45)

In a similar way we obtain for the other energy bins ¢F(16) = 9.35 ·10°9, ¢F(17) = 9.27 ·10°10

and ¢F(17.5) = 1.02 ·10°10 m°2 s°1 sr°1. The corresponding fluxes are f (1016) = 7.69 ·10°16,
f (1016.5) = 1.52 ·10°16, f (1017) = 7.62 ·10°18 and f (1017.5) = 2.65 ·10°19 m°2 s°1 sr°1 GeV°1 re-
spectively. After the bin center correction these values are f (1016) = 6.6 ·10°16, f (1016.5) =
1.3 ·10°16, f (1017) = 6.5 ·10°18 and f (1017.5) = 2.3 ·10°19 m°2 s°1 sr°1 GeV°1 respectively. The
relative errors are 50 %, 25 % 15 % and 10 % respectively. If a structural overestimation (or
underestimation) of 40 % is also taken into account the errors are 65 %, 50 % 45 % and 40 %
respectively. Also here the errors are smaller than the marker size. The flux for 1016 eV is too
small. This is probably due to the spread of the distribution of the reconstructed energies. If
a shower in a certain energy bin is reconstructed, there is a probability for the reconstructed
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energy to arrive in a bin with larger or smaller energy. Since the flux in an energy bin is larger
than the flux in the next bin, the effect is a relatively large underestimation of the flux in the
lowest energy bin and a relatively small overestimation in the following bins. For this reason
the flux of the lowest energy is discarded. In Figure 7.20 the remaining three fluxes are added
to the fluxes shown in Figure 7.17.

10

10
10

12
10

14
10

16
10

18
10

20

10

�27

10

�24

10

�21

10

�18

10

�15

10

�12

10

�9

10

�6

10

�3

10

0

10

3 HiSPARC-SPA-SAPPHiRE
CORSIKA-QGSJETII-GHEISHA

p assumed

Fe assumed
p assumed

energy [eV]

flu
x

[m
°2

s°
1

sr
°1

G
eV

°1
]

Figure 7.20: Cosmic ray energy spectrum. Gray are the fluxes as shown in Figure 1.1. Colored are the
fluxes derived from coincidence rates (blue, red, see Figure 7.17) and derived from the reconstruction of
individual showers (green) as observed at the Science Park Amsterdam site of HiSPARC.

Cosmic ray fluxes have been reconstructed from the HiSPARC data in two ways: by means of
observed coincidence rates and by means of binning reconstructed energies of individual show-
ers. Since the results of both methods are in agreement with the known energy spectrum, it
can be concluded that the cosmic ray fluxes as reconstructed from the HiSPARC data are close
to the ones obtained at other observatories.
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8
Jet kinematics

8.1 Introduction

8.2 Jet momenta

Since cosmic rays are mainly protons we are interested in p-p collisions and consider jet kine-
matics in the CM and FT frame. We start considering two colliding protons in the center
of mass (CM) frame. Before the collision each proton has energy ECM = ∞mc2, where m
is the proton mass and where ∞ = (1° v2/c2)°1/2 with v the proton speed in the CM frame.
In the FT frame the energy of the proton at rest is E = mc2. The energy of the moving
proton is EFT = ∞0mc2 º 2∞2mc2. In four vector notation and with the c = 1 convention:
pCM = (ECM,0,0, pz) respectively pCM = (ECM,0,0,°pz), where p2

CM = E2
CM ° p2

z = m2. For the
Mandelstam variable s there holds:

s =

0

BBBBB@

ECM +ECM

0
0
pz +°pz

1

CCCCCA

2

=

0

BBBBB@

2ECM

0
0
0

1

CCCCCA

2

= 4E2
CM = 4∞2m2 . (8.1)

As is obvious, the total center of mass energy is
p

s = 2ECM. In the FT frame we have for the
two momenta: pFT = (EFT,0,0, p0

z) respectively p0 = (E0,0,0,0), where p2
FT = E2

FT ° p02
z = m2

159
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and p2
0 = E2

0 = m2. For s:

s =

0

BBBBB@

EFT +E0

0
0
p0

z +0

1

CCCCCA

2

=

0

BBBBB@

EFT +m
0
0
p0

z

1

CCCCCA

2

= E2
FT +2mEFT +m2 ° p02

z = 2mEFT +2m2 º 2mEFT . (8.2)

The comparison of Equations 8.1 and 8.2 also leads to EFT = 2∞2m. Since the proton mass is
about 0.938 GeV it follows from Equation 8.2 that cosmic protons with energy 1014 and 1015 eV
correspond to

p
s = 440GeV and

p
s = 1400GeV respectively.

Now we focus our attention on the situation for the jets after the collision in both frames.
In the CM frame the two jets move off in almost opposite directions and opposite momenta, see
left side of Figure 8.1.

pT p

µ

pL

p0
T p0

µ0

p0
L

Figure 8.1: Jet momenta in the CM frame (left) and the FT frame (right).

In the CM frame p, pT and pL respectively are the jet momentum, the transverse jet mo-
mentum and the jet momentum along the beam axis. For relativistic jet energy E the mass can
be ignored and E = |p| =

q
p2

T + p2
L . The pseudorapidity is defined as

¥=° ln
µ
tan

µ

2

∂
. (8.3)

from the latter it follows

e2¥ = 1
tan2(µ/2)

= cos2(µ/2)
sin2(µ/2)

= 1+cosµ
1°cosµ

. (8.4)

Since pL = |p|cosµ for the jet in the CM frame, the latter can also be written as

e2¥ =

q
p2

T + p2
L + pL

q
p2

T + p2
L ° pL

. (8.5)
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which is equivalent to

¥= 1
2

ln

0

B@

q
p2

T + p2
L + pL

q
p2

T + p2
L ° pL

1

CA . (8.6)

From Equation 8.5 it follows that E = pT cosh¥ and pL = pT sinh¥. The jet four momentum in
the CM frame therefore can be written as

~pjet = pT
°
cosh¥,cos¡,sin¡,sinh¥

¢
, (8.7)

where ¡ is the azimuthal angle. Multiplying both the numerator and denominator of Equa-
tion 8.5 with

q
p2

T + p2
L + pL and taking the square root we obtain

e¥ =
pL +

q
p2

T + p2
L

pT
. (8.8)

The rapidity is defined as

y= 1
2

ln
µ

E+ pL

E° pL

∂
. (8.9)

For relativistic energies, where the mass can be ignored, the rapidity is practically equal to the
pseudorapidity.

For a cosmic ray, a proton in our case, the incoming particle collides with a fixed target, a
proton or neutron of an nitrogen or oxygen nucleus. We will restrict ourselves to the proton
of an air nucleus. Since nucleons in nuclei are almost free in high energy collisions, it will be
considered as a p-p collision with one proton as the fixed target. The transverse part of the jet
momentum is the same as in the CM frame, while the total jet momentum is more close to the
beam axis, see left side of Figure 8.1. The quantities in the FT frame will be denoted with a
prime. The kinematic relations in the FT frame are obtained from the foregoing CM relations
by replacing the quantities by their primed equivalents. For instance

e¥
0 =

p0
L +

q
p02

T + p02
L

p0
T

. (8.10)

In the FT frame p0, p0
T and p0

L respectively are the jet momentum, the transverse jet momen-
tum and the jet momentum along the beam axis. Their values are related to their values in the
CM frame by means of a Lorentz transformation. In the relativistic regime the relations are:

E0 º p0
L º ∞E+∞pL º ∞

≥
pL +

q
p2

T + p2
L

¥
(8.11)

and
p0

T = pT . (8.12)
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From Equations 8.8 and 8.11 it follows for the jet energy in the FT frame:

E0 = p0
L = ∞pTe¥ . (8.13)

Substitution of the latter into Equation 8.10 gives

e¥
0 = ∞e¥+

q
1+∞2e2¥ . (8.14)

Since ∞2e2¥ >> 1 in the relativistic regime, the latter is reduced to

e¥
0 = 2∞e¥ . (8.15)

Hence
¥0 = ¥+ ln(2∞) . (8.16)

This leads to the exact relation that pseudorapidity differences are invariant under collinear
Lorentz boosts:

¢¥0 =¢¥ . (8.17)

8.3 Jet properties

In this section several jet properties of p-p collisions will be investigated by means of PYTHIA.
The amount of transverse momentum, bpT, is steered in PYTHIA with the phase space cuts
bpmin

T and bpmax
T . After the collision a jet finder, SLOWJET in our case, clusters the particle

momentums in a cone with radius R. The jet clustering is conducted with the anti-kt algorithm
[100]. The cone radius is defined as

R =
q
¢¡2 +¢¥2 , (8.18)

where ¡ is the azimuthal angle and where ¥ is the pseudorapidity. The desired jet radius is
given as a parameter to the jet finder. Jet properties as the multiplicity (number of particles
in a jet) and the transverse jet momentum depend on the jet radius. Also the number of jets
obtained by the jet finder depends on the radius. For decreasing radii the number of jets tends
to the number of particles. For increasing jet radii the number of jets decreases to about 6 for
a radius of 1. For our purpose only the jets with the largest and next to largest transverse
momentum are of interest. They are called the leading jet (L) and the next to leading jet (NL).

To investigate some jet properties the jet radius was taken from 0.01 through 1 in steps of
0.01. For each step the average of a quantity is taken over 1000 events. In Figure 8.2 the aver-
age multiplicity and the average transverse momentum of the leading jet and next to leading
jet for p° p collisions with

p
s = 440 GeV are shown for two different bpmin

T .
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Figure 8.2: Average multiplicity (left) and average pjet
T (right) versus jet radius for the leading jet (solid)

and next to leading jet (dashed). Both for
p
s=440 GeV and bpmin

T =50 GeV/c (black) and bpmin
T =25 GeV/c

(red).

We see the leading jet and next to leading jet have a comparable multiplicity and a comparable
transverse momentum. The agreement is better for larger bpmin

T . A similar picture is obtained
for a Pythia simulation with

p
s = 1400 GeV, see Figure 8.3.
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Figure 8.3: Average multiplicity (left) and average pjet
T (right) versus jet radius for the leading jet (solid)

and next to leading jet (dashed). Both for
p
s=1400 GeV and bpmin

T =100 GeV/c (black) and bpmin
T =50 GeV/c

(red).

We also see that the transverse jet momentum is quite insensitive to the jet radius for jet radii
larger than 0.2 if bpmin

T = 50GeV/c or larger. Alternatively, most of the transverse momentum
inside a jet is carried by the particles inside a radius 0.2. For smaller bpmin

T this is the case for
larger jet radius. The value R = 0.7 seems to be a convention since it is applied in many jet
analyses. Everywhere hereafter this convention will be applied.
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In Figure 8.4 the rapidity distributions of the leading jet and the next to leading jet in a
p

s =
440 GeV p-p collision are shown for pmin

T = 50GeV/c and pmin
T = 25GeV/c respectively.
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Figure 8.4: The rapidity distribution of the leading jet (left) and the next to leading jet (right). Both for
p-p collisions with

p
s = 440 GeV and bpmin

T = 50 GeV/c (black) and bpmin
T = 25 GeV/c (red); jet radius 0.7.

In Figure 8.5 the rapidity distributions of the leading jet and the next to leading jet in a
p

s =
1400 GeV p-p collision are shown for pmin

T = 100GeV/c and pmin
T = 50GeV/c respectively.
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Figure 8.5: The rapidity distribution of the leading jet (left) and the next to leading jet (right). Both for
p-p collisions with

p
s = 1400 GeV and bpmin

T = 100 GeV/c (black) and bpmin
T = 50 GeV/c (red); jet radius 0.7.

From the comparison of the rapidity distributions for the two different
p

s values and iden-
tical bpmin

T we see that the rapidity distribution widens for increasing
p

s. The diagrams in
Figures 8.6 and 8.7 illustrate that the leading jet and next to leading jet are mostly back to
back. That is, they are mostly back to back as far as the azimuthal angle is concerned and less
back to back when the angle µ is considered. The sum of the µ’s of the leading jet and next
to leading jet should be º for complete back to back. Although the sum is on average equal
to º there is a large spread. The spread in the sum of the µ’s is larger than the spread in the
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azimuthal difference. For both the distributions the width increases for decreasing bpmin
T . For

the distribution of the sum of the µ’s the width increases for increasing
p

s.
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Figure 8.6: The distribution of the sum of the ✓ of the leading jet and the next to leading jet (left) and
of the difference between the � of the leading jet and the next to leading jet (left). For p-p collisions withp
s = 440 GeV and bpmin

T = 50 GeV/c (black) and bpmin
T = 25 GeV/c (red); jet radius 0.7.
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Figure 8.7: The distribution of the sum of the ✓ of the leading jet and the next to leading jet (left) and
of the difference between the � of the leading jet and the next to leading jet (left). For p-p collisions withp
s = 1400 GeV and bpmin

T = 100 GeV/c (black) and bpmin
T = 50 GeV/c (red); jet radius 0.7.

8.4 Jet footprints

In p°p and p°air scattering the bulk of particles will be in the forward direction. The jet will
give rise to a sub shower. The core of the sub shower will be called the ‘jet core’. The distance
d of the jet core with respect to the core of the main shower will be called the ‘jet distance’ or
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‘sub core distance’. The extremely small angle µ0 in the FT frame determines the jet distance:

d =¢htanµ0 , (8.19)

where ¢h is the difference between the altitude of the first collision and the altitude of the
observation level. Since

tanµ0 = p0
T

p0
L
= 1
∞e¥

(8.20)

the distance d is given by

d = ¢h
∞e¥

(8.21)

or, equivalently,

d = ¢hpT

E0 = ¢htan(µ/2)
∞

. (8.22)

For a di-jet there are two angles µ1 and µ2 and two angles ¡1 and ¡2. For completely opposite
momenta ¡2 =¡1 ±º, µ2 =º°µ1, tan(µ/2)= tan°1(µ1/2), ¥2 =°¥1 and d1d2 = (¢h)2∞°2.

For instance
p

s = 1400GeV corresponds to a proton energy of 1 PeV in the FT frame and the
values of ∞ is about 745. In case ¥ = 0 and h = 20 km the jet distance is about 27 m. If in
addition pT is taken equal to 60 GeV/c the corresponding jet energy is 45 TeV, thus 4.5 % of
the shower energy. For non zero ¥ the distances are e¥ times smaller and the energies are
e¥ times larger. For energies before and after the knee the flux of cosmic rays approximately
goes as f º 7 ·1019 ·E°2.7 and f º 2.6 ·1024 ·E°3.0 respectively, where E is in eV and f is in
m−2 sr−1 s−1 eV−1. For relevant cosmic proton energies a small overview is given of the relation
between the energy in the FT frame, the

p
s value, the value for the relativistic factor ∞ and,

approximately, the cosmic ray flux in Table 8.1

E [eV] 1013.5 1014 1014.5 1015 1015.5 1016

p
s [GeV] 250 440 770 1400 2500 4400

∞ 135 235 410 745 1330 2350

flux [m−2 sr−1 s−1] 1.0 ·10−3 1.5 ·10−4 2.1 ·10−5 3.0 ·10−6 3.7 ·10−7 3.7 ·10−8

Table 8.1: Energies in the FT frame and the corresponding values for
p
s and �.

At observation level a sub core is a more or less circular spot. The density is large at the center
of the spot and decreases with distance from this center. For an estimate of the size of the spot
caused by a jet we consider a jet cone with radius R. The larger R the larger the variation of
the azimuth angle ¢¡ and the variation of the pseudorapidity ¢¥, see Equation 8.18. For a
circular spot ¢¡=¢¥= R/

p
2. A spread of the azimuthal angle then implies an axial spread of
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the subcore over a range d¢¡ given by

d ·¢¡= d ·R
p

2
. (8.23)

From ¥0 º ° ln(µ0/2) it follows |¢µ0|º µ0¢¥0 º¢¥0/(∞e¥)=¢¥/(∞e¥). A spread of the pseudorapidity
therefore leads to a radial spread of the subcore over a range ¢d given by

¢d =¢h|¢µ0| = ¢h ·¢¥
∞e¥

= d ·R
p

2
. (8.24)

For the radius r of the spot at observation level we therefore have

r = d ·R
p

2
. (8.25)

Assuming that most of the density of a jet is inside R = 0.1, we approximately obtain r º 0.07d.
In Chapter 10 it will be used as a guide for the size of a cluster of detectors for the detection of
wide spread sub cores.

8.5 Cross sections

The interaction of a primary particle with a nucleus in an atom of the air has much in common
with p-p interactions. The latter can be investigated by means of a Monte Carlo (MC) model
as PYTHIA. The interactions can be divided in elastic and inelastic interactions. The inelastic
processes in the soft QCD domain are divided in non-diffractive (ND)and diffractive processes.
The ND processes are sometimes also called minimum bias (MB) processes. Three diffractive
processes are distinguished: central diffractive (CD), double diffractive (DD) and single diffrac-
tive (SD). If desired the latter process can be divided in the two sides of the single diffraction:
left (SDL) or right (SDR), both with the same cross section. For instance, for p-p collisions with
p

s = 1400 GeV the inelastic cross section is about 55 mb of which 68 % is ND, 18 % is SD, 13 %
is DD and 1 % is CD. The diffractive processes are in the forward direction. In hard interactions
with a large virtuality the inelastic processes are described by perturbative QCD. In these pro-
cesses multiples of particles are produced with a large component in the transverse direction,
sometimes almost collinear: jets. The cross section for hard QCD processes is a small fraction
of the total inelastic cross section. For brevity, if 6 GeV/c and 18 GeV/c is taken for bpmin

T and
bpmax

T respectively, the phase space will be referred to by its center bpT = 12GeV/c. The larger
p

s the larger the hard QCD cross section, æQCD, whereas the larger bpT the smaller æQCD, see
Figure 8.8. To obtain jet rates we have to consider the probability for a jet to occur in a shower.
That is, we have to consider the cross sections for hadronic collisions with large jet transverse
momentum. Since we will frequently use them the cross section values are tabulated in Ta-
ble 8.2 with different

p
s and bpT as the entries.
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Figure 8.8: Inelastic cross section versus
p
s for six values of bpT (left) and versus bpT for six values of

p
s

(right). The markers are connected with solid line segments to guide the eye.

p
s

bpT
12 GeV/c 24 GeV/c 36 GeV/c 48 GeV/c 60 GeV/c 72 GeV/c 84 GeV/c

250 GeV 1.33 ·105 3.67 ·102 1.02 ·101 5.03 ·10−1 3.49 ·10−2 1.81 ·10−3 7.82 ·10−5

440 GeV 4.02 ·105 1.96 ·103 1.03 ·102 1.08 ·101 1.55 2.76 ·10−1 4.88 ·10−2

770 GeV 9.48 ·105 8.01 ·103 5.68 ·102 7.29 ·101 1.55 ·101 4.28 1.26

1400 GeV 2.51 ·106 2.60 ·104 2.27 ·103 3.88 ·102 1.02 ·102 2.97 ·101 1.05 ·101

2500 GeV 5.51 ·106 7.98 ·104 7.09 ·103 1.37 ·103 3.84 ·102 1.33 ·102 5.19 ·101

4400 GeV 1.12 ·107 1.80 ·105 2.01 ·104 4.66 ·103 1.28 ·103 4.75 ·102 1.84 ·102

7700 GeV 2.14 ·107 4.29 ·105 5.39 ·104 1.22 ·104 3.72 ·103 1.51 ·103 6.97 ·102

Table 8.2: Cross sections in nb for inelastic p-p collisions with large bpT. The
p
s values correspond to

energies 1013.5, 1014, ..., 1016.5 eV in the FT frame.

The inelastic p-p cross section is up to
p

s = 7TeV and even
p

s = 13TeV obtained from collider
experiments [101–104]. For

p
s > 10GeV it is approximately given by

æinel
p-p [mb]º 39.3°25.95ln

p
s+18.11

°
ln

p
s
¢1.22 , (8.26)

where
p

s is in GeV. The probability for a jet to occur in a p-p collision is the ratio of æQCD and
æinel

p°p. For instance, for
p

s = 1400GeV and bpT = 36GeV/c the QCD cross section is 2.27 ·103 nb
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for p-p collisions, see Table 8.2. Since the inelastic cross section for p-p collisions at this en-
ergy is about 55 mb, the probability for a jet for the p-p collision under the given conditions is
4.1 ·10−5. Since 1400 GeV corresponds to 1 ·1015 eV in the FT frame, this implies the probability
for a jet generated in the first interaction of a 1015 eV shower to be 4.1 ·10−5 per shower. That
is, if the first interaction would be a p-p collision. In reality it will be a p-air collision. For p-air
collisions the cross section is larger since there are more nucleons available for interaction in
an air nucleus. The cross section is almost linear with the logarithm of the energy [105, 106].
It is approximately given by

æinel.
p°air[mb]º°210+40log10(E[eV]) , (8.27)

The relation between the ratio of inelastic p-air and p-p cross sections and the mass number of
air is often expressed as [107]

æinel.
p°air = AÆæinel.

p°p , (8.28)

where A is the mass number of air, A º 14.5 and where Æ = 2/3. It can be obtained from ge-
ometrical considerations by taking the mass number of a nucleus proportional to a spherical
volume, A / r3, and the cross section proportional to area of the circle, æ/ r2. In reality Æ is
a little larger. That is, it decreases from about 0.78 at

p
s = 0.14TeV to 0.67 at

p
s = 14TeV. A

plot of the inelastic p-air cross section against primary energy and a plot of inelastic p-p cross
section against center of mass energy are shown in Figure 8.9.
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Figure 8.9: Inelastic p-air cross section against primary energy and inelastic p-p cross section against
center of mass energy.
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The relation between the jet cross section for p-air collisions and for p-p collisions also is ex-
pressed via a power of the mass number:

(dæ/dpT)jet
p°air º AÆ(dæ/dpT)jet

p°p . (8.29)

If a proton collides with the first nucleon it meets in a nucleus a jet can occur. If not, there is a
probability that the leading particle after the former collision will cause a jet. The probability
for a jet to occur is, roughly speaking, proportional with the size of the nucleus, thus with A1/3.
The jet cross section is therefore enhanced with respect to the usual inelastic cross section in
that Æº 1. In reality Æ deviates from 1 dependent on the transverse momentum, the Cronin ef-
fect [108–110]. For energy

p
s = 500GeV and transverse momentum, pT º 20GeV/c, it is found

from jet observations in cosmic showers that Æ is 1.56 [111]. The Æ found for p-air is close to
the Æ values found for p-Al and p-Pb in collision experiments [112–114]. For larger transverse
momenta Æ seems to flatten or even decrease for increasing transverse momenta. For smaller
transverse momenta Æ decreases to 2/3 for pjet

T ! 0. After correction for the underlying event
Æ still takes on values between 1 and 1.26 for pjet

T in the neighborhood of 10 GeV/c [115]. For
larger transverse momenta Æ diminishes to 1. For the calculation of jet probabilities in the
present analysis Æ will be taken equal to 1. Since 14.50.26 º 2 we have to keep in mind that the
resulting rates for jet observations may be 50 % too small.

The value 1 for Æ implies a 14.5 times larger jet cross section for p-air than for p-p. For in-
stance, for a 1015 eV shower and bpT = 24GeV/c we obtain ¢æjet

p-air º 0.38 mb while the total
inelastic cross section is 390 mb. The corresponding probability for such a jet is 1.0 ·10−3 per
shower. For different cosmic ray energies and different bpT the jet probabilities are calculated
in the same way. The results are shown in Table 8.3.

p
s

bpT 12 GeV/c 24 GeV/c 36 GeV/c 48 GeV/c 60 GeV/c 72 GeV/c 84 GeV/c

250 GeV 5.8 ·10°3 1.6 ·10°5 4.5 ·10°7 2.2 ·10°8 1.5 ·10°9 8.0 ·10°11 3.4 ·10−12

440 GeV 1.7 ·10°2 8.1 ·10°5 4.3 ·10°6 4.5 ·10°7 6.4 ·10°8 1.1 ·10°8 2.0 ·10−9

770 GeV 3.7 ·10°2 3.1 ·10°4 2.2 ·10°5 2.9 ·10°6 6.1 ·10°7 1.7 ·10°7 4.9 ·10−8

1400 GeV 9.3 ·10°2 1.0 ·10°3 8.4 ·10°5 1.3 ·10°5 3.8 ·10°6 1.1 ·10°6 3.9 ·10−7

2500 GeV 1.9 ·10°1 2.8 ·10°3 2.5 ·10°4 4.8 ·10°5 1.4 ·10°5 4.7 ·10°6 1.8 ·10−6

4400 GeV 3.8 ·10°1 6.1 ·10°3 6.8 ·10°4 1.6 ·10°4 4.3 ·10°5 1.6 ·10°5 6.2 ·10−6

7700 GeV 6.9 ·10°1 1.4 ·10°2 1.7 ·10°3 3.9 ·10°4 1.2 ·10°4 4.9 ·10°5 2.2 ·10−5

Table 8.3: Jet probability in first interaction.
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Simulating jets in cosmic air showers

9.1 Simulation

This chapter concerns the simulation of jets in showers and the inspection of the fluctuations in
the simulated signals of a large array of detectors. The way to distinguish the jet fluctuations
from background fluctuations in the density is described. The simulation of jets is conducted
for observation level at 4, 2 and 0 km altitude. Jets are actually observed with a large array
at 4 km altitude by the ARGO-YBJ experiment at a rate of 102 per month [116, 117]. These
observed jet rates are compared with the simulated jet rate at 4 km altitude. For the Nether-
lands the simulation for 0 km altitude gives an estimate of the expected rate.

For the simulation of jets in cosmic air showers we will use the output of large pT events gener-
ated with PYTHIA as input for CORSIKA. This can be done by means of the STACKIN option
which requires a list of secondary particles for the first collision. The conversion of the final
state particles of the PYTHIA events to the secondary particles for the CORSIKA/STACKIN
input is summarized in Table 9.1.

particle C-id. P-id. particle C-id. P-id. particle C-id. P-id.

∞ 1 22 º0 7 111 K° 12 -321

e+ 2 -11 º+ 8 211 n 13 2112

e° 3 11 º° 9 -211 p 14 2212

µ+ 5 -13 K0
L 10 130 p 15 -2212

µ° 6 13 K+ 11 321 n 16 -2112

Table 9.1: CORSIKA and PYTHIA identifiers for shower particles.
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With PYTHIA the p-p collisions are simulated for a given energy and a given cut by means
of bpmin

T and bpmax
T . The simulations are performed in the CM frame to obtain the transverse

momentum, ¥ and ¡ of the leading jet and the next to leading jet with the jet finder. The sec-
ondary particles are given a Lorentz boost to obtain the FT values of the energy and momenta
of the particles as required for the CORSIKA/STACKIN input. A C++ code steers PYTHIA and
generates the files to steer CORSIKA, the input files for CORSIKA and a separate text file with
the information obtained by the jet finder. The CORSIKA runs deliver ‘DATnnnnnn’ files with
information about the lateral distribution. These files are converted to files in HDF5 format
by means of the store-corsika-data module of the Python package SAPPHiRE. A Python script
reads the lateral positions of the electrons and muons from the HDF5 files, throws them on an
array of detectors and inspects the resulting detector signals for jet cores. The results of the
inspection are stored in a text file. Both the text file with the jet finder results and the text file
with the results of the Monte Carlo form the input for a Mathematica code which compares the
simulated sub cores with the simulated jets.

For the analysis of the simulated data we follow to a certain extent a similar approach as
performed for data by the ARGO-YBJ experiment [116, 117]. The size of their ‘BigPads’ is 1.4£
1.25 m in an area of 1.5£ 1.3 m. For the present investigation the particles are thrown on two
kinds of regular arrays of joint detector plates. One kind of array consists of 53£53 detector
plates with size

p
2£

p
2 m, while the other kind of array consists of 75£75 detector plates

with size 1£1 m. In both cases the total observational area is 5.6 ·103 m2, comparable with the
observational area of the ARGO-YBJ experiment. The number of detector plates is 2809 and
5625 respectively. In addition we will consider for each kind of array the situation where the
neighbors of a plate are alternately removed, see Figure 9.1. The latter chessboard constella-
tion requires half the number of square plates.

Figure 9.1: Detector plates in a filled array constellation (left) and an alternate array constellation (right).
The black squares represent the absence of a detector plate.

For the simulations we use 1013.5, 1014, 1014.5, 1015, 1015.5 and, for as far necessary, 1016 eV
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vertical showers. For the jets we take the distributions as generated by different slices of bpT

with edges 6, 18, 30, 42, 54, 66 and 78 GeV/c. The slices are briefly denoted by their bin centers:
12, 24, 36, 48, 60 and 72 GeV/c. For each bpT bin the transverse momentum and pseudorapid-
ity of the leading and next to leading jet is obtained from the jet finder. For 100 showers per
bin this gives 200 transverse jet momenta and 200 jet pseudorapidities. As an illustration the
generated distributions of pjet

T and ¥jet in 1015 eV showers are shown in Figure 9.2. For a con-
stant energy the distribution of the pseudorapidity of jets narrows for increasing transverse
momentum, see Figure 9.2.
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Figure 9.2: Left panel: distribution of transverse jet momentum for
p
s= 1400GeV and for bpT bin centers

12, 24, 36, 48, 60 and 72 GeV/c (red, pink, orange, brown, blue and green). Right panel: distribution of
jet pseudorapidity for

p
s= 1400 GeV and for bpT bin centers 12 and 72 GeV/c (red and green).

9.2 Altitude of first interaction

The STACKIN option for CORSIKA requires a specified altitude of first interaction in the input
file of a shower. Different altitudes in the sample of showers are achieved by specifying a dif-
ferent altitude for each shower. The distribution of altitudes is determined by the cross section
for p-air collisions. The distribution of altitudes and of atmospheric depths of first interaction
are shown in Figure 9.3. The shape of the distributions can be understood as follows. The
distribution of atmospheric depth of first interaction is given by the zero order Erlang distribu-
tion: f (X )= 1

∏ e°X /∏, where ∏ is the interaction length. For a p-air cross section of 390 mb, valid
for a 1015 PeV shower, the interaction length is about 61 g cm−2. The theoretical distribution
f (X )º 1

61 e°X /61 is shown as a red curve in the right panel of Figure 9.3.
The distribution of the altitude of first interaction follows from f (h)= | dX

dh | f (X ). The U.S. 1976
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Figure 9.3: Normalized distribution of altitude (left) and atmospheric depth (right) of first interaction for
showers with energy 1014 (black), 1015 (brown), 1016 (blue) and 1017 eV (green). In each panel the red
curve is a fit for the 1015 eV distribution, see the text.

Standard Atmosphere, which is the default in CORSIKA, is for altitudes between 11 and 25 km
approximately given by [118]:

X = 1308 · e°h/6.34 , (9.1)

with h in km. If this relation is taken for the altitudes of first interaction the distribution of
height of first interaction reads

f (h)= 1308
6.34∏

e
°
° h

6.34°
1308
∏ e°h/6.34¢

. (9.2)

The latter is shown as a red curve in the left panel of Figure 9.3 for ∏= 61 g cm−2. The distri-
bution Equation 9.2 can be written in the form of a Gumbel distribution:

f (x)= 1
Ø

e°(x°µ)/Ø°e°(x°µ)/Ø
. (9.3)

Fits of the distributions shown in Figure 9.3 deliver ∏º 67, 61, 58, 54 g cm−2 for shower ener-
gies 1014, 1015, 1016 and 1017 eV. The corresponding cross sections 3.6 ·102, 3.9 ·102, 4.2 ·102

and 4.5 ·102 mb are in agreement with p-air cross sections in the literature [106].

To simulate variable heights of first interaction we take the cumulative h distribution by inte-
grating Equation 9.2

F(h)= e(° 1308
∏ e°h/6.34) (9.4)
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and invert it to
h =°6.34ln

µ
° ∏

1308
lnF

∂
. (9.5)

Now one can either draw a random number between 0 and 1 for F or one can divide the interval
(0,1) in a number of equidistant values for F. For samples of 100 different showers per energy
the latter approach is preferred. That is, the values 0.005 through 0.995 in steps of 0.01 for
F then deliver values for h according to Equation 9.2. The values for h obtained this way are
used in the STACKIN input files.

9.3 Lateral density from array signals

On the basis of the simulated signals of the array detectors the combined lateral density of
electrons and muons is foreach shower fitted with a fit function. A NKG type of fit function
is less suited since the densities observed with the array detectors are limited in number and
in distance to the core. For this reason the following close-to-core approximation of the lateral
density is applied by the ARGO-YBJ experiment [116]

Ω(r)º p1 · rp2 , (9.6)

where p1 and p2 are the fit parameters. The density approximately follows a power law for
distances smaller than 10 m. In Figure 9.4 a fit with this function shows that it is not accurate
when larger distances are considered.
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Figure 9.4: Fit curve (dashed) of lateral density (solid) by means of Equation 9.6 (left) and Equation 9.7
(right).

We therefore will apply a different fit function:

Ωfit(r)º a · e(r/r0)0.28
, (9.7)
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with a and r0 as fit parameters. In the right panel of Figure 9.4 a fit with this function illus-
trates its improved accuracy.

It is instructive to see how things look when all the signals of the array detectors are scat-
tered against distance to the main core, see Figure 9.5.
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Figure 9.5: Detector densities for a
p
2⇥

p
2 filled array as caused by two different 1 PeV showers with

pjetT =100 GeV/c. For one shower the observation level is at 4 km (left) and for the other shower the
observation the observation level is at 2 km (right). The dashed curve is the fit by means of Equation 9.7.
The arrows indicate the jet fluctuations.

We see in the left panel clearly the footprint of a jet at a distance of about 40 m. In the right
panel a footprint of a jet for another shower can be seen at a distance of about 15 m.

9.4 Fluctuations in a shower

The ground particles resulting from the CORSIKA simulations are inspected for density fluctu-
ations. To distinguish strong jet fluctuations from statistical fluctuations we need a measure.
For this the ratio Nobs /Nfit is considered, where Nobs is the observed number of particles on
a plate and where Nfit is the number of particles on a plate as expected on the basis of Ωfit.
Since Nobs can not take on values below zero, the distribution of the ratio is rather log nor-
mal distributed. This means that the logarithm of the ratio approximately follows a Gaussian
distribution. Therefore the distribution of

f = log10 (Nobs(r))° log10 (Nfit(r)) . (9.8)

is usually considered. The distribution of f is approximately Gaussian, with µ close to zero.
Figure 9.6 shows the distributions of f and the Gaussian fit curves for two different 1 PeV
showers thrown on an array of

p
2£

p
2 m detectors.
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Figure 9.6: Distribution of f and the Gaussian fit curves for two different 1 PeV showers. For the left
panel � is 0.078 and for the right panel it is 0.060.

The æ for each shower in Figure 9.6 is based on all the array signals. However, æ depends on
the distance to the main core. From uncertainty analysis, with the Poisson variance for the
uncertainty, it follows that

æ=

vuut
∑

@ f
@Nobs

æ(Nobs)
∏2

Nobs=Nfit

= 1
ln(10) ·

p
Nfit

. (9.9)

The substitution of Nfit(r), based on the density function Ωfit, gives a semi-theoretical prediction
for æ as a function of distance. Of course, not completely theoretical since the observed density
is substituted. Since Nfit = aΩfit, with a the detector area, the semi-theoretical prediction is

æ(r)º 1
ln(10) ·

p
aΩfit(r)

. (9.10)

To investigate the dependence of æ on the distance to the main core the æ is determined for
distributions of f binned for different radii. In Figure 9.7 the æ’s as obtained by binned distri-
butions are shown for a 1 PeV shower thrown at 25 arbitrary positions within an array at 4 km
altitude. For comparison the æ(r) according to the semi-theoretical equation are also shown.

We see the binning result for æ(r) follows the semi-theoretical prediction. For the alternate
arrays the plots are comparable. It therefore is inaccurate to consider a single value for æ

on the basis of the whole array, or of a part of it. For the determination of æ(r) the detectors
with zero particles are discarded since the f values become °1. As a consequence the binning
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Figure 9.7: The � of the distribution of f against distance from the main core for a 1015 eV shower
thrown 25 times at a filled array of 1 ⇥ 1 detectors (left) and

p
2⇥

p
2 detectors (right). In both cases the

observation level is 4 km. In orange are shown the 25 curves according to the semi-theoretical prediction.

result for æ tends to too small values in the region where the number of particles per detector
is smaller than 3. It flattens the æ(r) curve as can be seen at the binning result for r = 80m in
the left panel of Figure 9.7. The binning results are therefore not plotted for densities below
3 particles per detector. As another example we consider the æ for a 1014.5 eV shower at 4 km
altitude, see Figure 9.8.
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Figure 9.8: The � of the distribution of f against distance from the main core for a 1014.5 eV shower
thrown 25 times at a filled array of 1 ⇥ 1 detectors (left) and

p
2⇥

p
2 detectors (right). In both cases the

observation level is 4 km. In orange are shown the 25 curves according to the semi-theoretical prediction.



9.4. Fluctuations in a shower 179

As a final example we consider the æ for a 1015 eV shower at 2 km altitude and a 1015.5 eV
shower at 0 km altitude, see Figure 9.9.
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Figure 9.9: The � of the distribution of f against distance from the main core for a 1015 eV shower thrown
25 times at a filled array of 1 ⇥ 1 detectors at 2 km altitude (left) and for a 1015.5 eV shower thrown
25 times at a filled array of 1 ⇥ 1 detectors at 0 km altitude (right). In orange are shown the 25 curves
according to the semi-theoretical prediction.

Also for other energies the binning result follows the semi-theoretical prediction. The semi-
theoretical prediction will therefore be applied. However, near the main core the binning re-
sult for æ is larger than the semi-theoretical prediction. This means that near the main core
the fluctuations are larger than as expected from a Poisson distribution. The large fluctua-
tions are sub cores caused by hadronic interactions at different stages of the development of
the shower. The rate and geometric structure of hadronic sub cores near the main core have
been measured [119, 121]. If we solely apply the semi-theoretical prediction to the near core
distances, the small æ will act as a sink. That is, the algorithm will be attracted to find the
best sub cores close to the main core. Since jet observations at altitude 4 km is dominated
by 1014 and 1014.5 eV showers we do not expect many sub cores due to simulated jets close to
the main core. Near the main core a minimum level for æ will be applied to avoid the sink effect.

The minimum level depends on the size of the shower. In Figure 9.10 the minimum level is
plotted against the main core density for 500 different showers taken from different energies
and different observation levels.

A fit with the function æmin = c1 · Mc2 , where M stands for the main core density, delivered
for the parameters c1 and c2 the values 0.41 and °0.28 respectively for 1£1 array, and 0.50
and °0.38 for

p
2£

p
2 array. For 1£1 arrays the minimum level given by æmin = 0.41 ·M°0.28
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Figure 9.10: The minimum level for � against main core density for 500 different showers taken from
different energies and different observation levels for 1⇥ 1 filled array (left) and for

p
2⇥

p
2 filled array

(right). The dotted line is a fit with a power law function.

works satisfactorily. This is not the case for a minimum level æmin = 0.50 ·M°0.38 for
p

2£
p

2
arrays. The minimum level seems to be too low in that the

p
2£

p
2 arrays become too sensitive

for fluctuations. From the right panels in Figure 9.7 and Figure 9.8 we see æ(r) has a negative
slope for

p
2£

p
2 arrays and that the spread is larger in comparison to the situation for 1£1

arrays. This may cause an underestimation of the minimum level for
p

2£
p

2 arrays. For all
types of arrays a single minimum level is applied:

æ(r)=max

√

0.41 ·M°0.28 ,
1

ln(10) ·
p

aΩfit(r)

!

(9.11)

Afterwards we determine the threshold f value in units of æ(r) for a fluctuation to be ascribed
to a simulated jet. If the minimum level 0.41·M°.28 is slightly too large for

p
2£

p
2 arrays it will

lead to a lower threshold for f . In this way a too large minimum level will be compensated. The
notation æ(r) is to express its essential difference with a constant value. It turns out that the
application of the latter expression for æ(r) leads to comparable f /æ(r) values in the different
types of arrays. For showers without simulated jets the best f /æ(r) values run to approximately
5.5. Larger values occur for low densities and in detectors close to the core, probably caused
by hadronic fluctuations at a late stage of the shower. To avoid them some quality cuts are
applied. Firstly, a minimum density of 100 m−2 is required for the main core density. Secondly,
the inspection region for f is restricted to distances to the core larger than 3, 4 and 5 m for
altitudes of 4, 2 and 0 km respectively. The minimum density requirement for the main core is
identical to the experimental quality cut applied in the ARGO-YBJ experiment [116].
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9.5 Method

For each throw the density for all the detectors will be inspected. The position of the detector
with the largest signal is considered as the main core. Then the value of f is evaluated for each
detector plate for which Nobs > 0. The ratio f /æ(r) is used as a selection criterium for the best
fluctuation. The best cores selected on the basis of f /æ will in general correspond to a large
density surplus. The algorithm will always find a best sub core.

To investigate to which extent jet cores can be observed each generated shower is thrown at 100
random positions within an array of detectors. Rotations of the distribution of particles will not
be considered since consequences of rotations for the effective area are small. For each throw
the signals of the array of detectors are inspected for the determination of the main core and
the best sub core. The number of particles in a detector, as obtained by CORSIKA/STACKIN
without thinning, is taken as the signal. We will not apply a conversion to a ‘real’ signal since
we are looking here at the best sub cores with densities, of the order of 102 m−2 and larger. The
variance of the number of particles for a pure Poisson distribution is

p
N. The variance caused

by the measurement uncertainty is 0.3
p

N, see Chapter 4. The combined variance, 1.044
p

N,
is practically equal to the Poisson variance for large numbers. The measurement uncertainty
therefore is not taken into account in the simulation. In addition, the real signal also depends
on the directions of individual particles. For the main core these will for a vertical shower be
close to the vertical. The best sub cores are close to the main core, the distance is mostly of
the order of 15 m. In Figure 9.11 the secµ distribution is shown for the angles of individual
electrons and muons for the main core and for a detector at a distance of 15 m.
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Figure 9.11: The sec✓ distribution of the zenith angle of individual electrons and muons in a
p
2⇥

p
2

detector at the main core (left) and at a distance 15m from the main core (right) for a vertical 1 PeV
shower at sea level.

As the variation is small, less than 1 %, it can be left out of the simulation. Besides, a precise
simulation of the real signal would require the inspection of the direction of all the particles
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in all the detectors. For 4 different shower energies, 7 different transverse jet momenta and 3
different observation levels and 4 kinds of arrays we have 336 situations. With 100 showers
for each situation and 100 throws for each shower we have 3.4 million throws. The number
of particles in a detector ranges from 0, far away from the main core, to several thousands
near the main core. All in all one arrives at something of the order of 1013 conversions to ‘real’
signals. This is very time consuming. Besides, it turns out that the main contribution to jet
observations is at the edge where a few best sub cores are caused by relatively small transverse
jet momenta in relatively low energy showers. The corresponding effective area is consequently
uncertain. This uncertainty is far larger than the inaccuracy involved by the aforementioned
simplifications. The present analysis is intended to obtain an estimate of the flux of jet obser-
vations at different observation levels and for different kinds of arrays. For this it suffices to
take the particle number as the detector signal.

For each throw the simulated detector signals will be inspected for the best sub core on the
basis of the f /æ(r). The position and other properties of the sub core with the best f /æ ratio will
be stored and afterwards compared with the position of the two largest simulated jets. A sub
core is ascribed to a simulated jet if both the difference ¢x and ¢y between the sub core posi-
tion and a jet position are smaller than 1.0+0.04d. If the sub core position and the jet position
can not be matched the sub core is ascribed to a non-matching fluctuation. A non-matching
fluctuation may be accidental or induced by the jet. In general we will not make a distinction
since in real data analysis one can not make the distinction either. Nevertheless, matching sub
cores give information of the simulated jets which caused it. For this reason we will separately
keep track of matching sub cores.

The method will be illustrated with an example of a 1 PeV shower with simulated jets gener-
ated with bpmin

T > 100 GeV/c. The observational array is with the
p

2£
p

2 plates at an altitude of
4 km. The lateral distribution and the detector densities are shown in Figure 9.12. For the ex-
ample the altitude of first interaction is 21.8 km. The jet finder returned pT =121.6 GeV/c, ¥=
°1.13 and ¡= 0.94 radian for the leading jet and pT =94.1 GeV/c, ¥= 0.55 and ¡= −1.94 radian
for the next to leading jet. The expected distances of the sub cores with respect to the main
core are 74 m respectively 13.8 m. The inspection of the plate densities delivered a best sub core
around 14 m and ¡= −2.0 radian. The predicted distance and angle for the next to leading jet is
in good agreement with the ‘observed’ distance and angle for the best sub core. The algorithm
therefore delivers an ‘observed’ jet. The density of the best sub core is 270 m−2 while 92 m−2

is expected. The f value of the sub core is 0.47. The semi-theoretical value of æ at a distance
of 14 m is 0.047. That is, f is 10æ(r). This example also shows that the rapidity of a jet is as
important as the transverse momentum of a jet.
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Figure 9.12: Lateral distribution of particles at observation level (left) and detector densities (right) for a
shower with an obvious sub core.

9.6 Significance

Each throw delivers a distribution of f /æ of which the best value will be denoted a f §. A sample
of 10 000 throws then will deliver a distribution of f § values. The showers without a simulated
jet deliver a distribution of f § values which acts as a background signal. In Figure 9.13 the
background distribution of f § is shown for 1014 eV showers.
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Figure 9.13: The background distribution of f ⇤ for 1014.5 eV showers for a 1⇥ 1 array at 4 km altitude,
plotted on a linear scale (left) and on a logarithmic scale (right). Both for a 1⇥1 array at 4 km altitude.

The distribution of f § is asymmetric, it has a high end tail. As becomes clear from the plot on a
logarithmic scale, the tail falls off exponentially. To determine the slope a domain is considered
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in the region where the tail of the distribution is half the maximum and where it is 1 % of the
maximum. The extension of the exponentially decreasing function is used as the background
for the comparison with large f § values caused by jets. To ascribe large f § values to jets we re-
quire a 5æ significance. For a normal distribution 5æ corresponds to a probability of 2.87 ·10−7.
Similar to the situation for a normal distribution the f § value is determined for which the area
is a fraction 2.87 ·10−7 of the total area of the background distribution. For 1014.5 eV showers
for a 1£1 array at 4 km altitude the background distribution of f § is shown in Figure 9.14. The
determination of the 5æ threshold at f § = 7.0 is illustrated in Figure 9.14.
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Figure 9.14: For 1014.5 eV showers thrown at a 1⇥1 array at 4 km altitude the background distribution
of f ⇤ (black) and the extension of the exponential tail (blue) (left), and the 5� threshold for which the
area (orange) is 2.87 ·10−7 of the total area (blue + orange) (right). The two vertical blue lines depict the
domain used for the fit to the exponential function.

For the same energy and altitude the resulting diagrams for the 1£1 alternate and the
p

2£
p

2
filled arrays are shown in Figure 9.15. For these two cases the 5æ thresholds are at f § = 6.6
and f § = 6.3 respectively.

For 1015 eV showers at 2 km altitude the diagrams for the 1£1 filled and the
p

2£
p

2 filled
arrays are shown in Figure 9.16. For the latter two examples the 5æ thresholds are at f § = 6.9
and f § = 6.5 respectively.

For other energies and observation levels the 5æ thresholds are comparable. It therefore is
decided to take f § = 7.0 and f § = 6.5 as the 5æ significance thresholds for the 1£1 array types
and the

p
2£

p
2 array types respectively.
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Figure 9.15: For 1014.5 eV showers thrown at a 1⇥ 1 alternate array (left) and at
p
2⇥

p
2 filled array

(right) at 4 km altitude the background distribution of f ⇤ (black) and the extension of the exponential tail
(blue), and the 5� threshold (orange). The two vertical blue lines depict the domain of the exponential fit.

2 3 4 5 6 7 8

10

�4

10

�3

10

�2

10

�1

10

0

10

1

10

2

10

3

>5æ

f §

co
un

ts

2 3 4 5 6 7 8

10

�4

10

�3

10

�2

10

�1

10

0

10

1

10

2

10

3

>5æ

f §

co
un

ts

Figure 9.16: For 1015 eV showers thrown at a 1⇥1 filled array (left) and at
p
2⇥

p
2 filled array (right)

at 2 km altitude the background distribution of f ⇤ (black) and the extension of the exponential tail (blue),
and the 5� threshold (orange). The two vertical blue lines depict the domain of the exponential fit.
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10
Simulation results

10.1 Preliminary analysis

For each best sub core we have kept track of its distance r to the main core. For 1014 and
1014.5 eV showers without simulated jets and thrown on a 1£1 filled array at observation level
of 4 km the distributions of best sub core distances are shown Figure 10.1.
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Figure 10.1: The distribution of the distances of best sub cores for 1014 eV showers (left) and 1014.5 eV
showers (right) for a 1⇥1 array at 4 km altitude.

The distribution of distances of best sub cores extend to 30 and 40 m for 1014 eV showers and
1014.5 eV showers respectively. This increases to 50 m for 1015 eV showers. The signature of
jets is expected around 10 m and decreases with shower energy. To verify this we now consider
events with jets. The distribution of f § and of the best core distances for a 1014.5 eV shower
with bpT = 36GeV/c at a 1£1 filled array at observation level of 4 km are shown in Figure 10.2.
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Figure 10.2: Left panel: the distribution of f ⇤ (black) and the part of it matchable to simulated jets
(blue). Right panel: the distribution of distances of best sub cores (black) and the part of it matchable
to simulated jets (blue). Both panels for 1014.5 eV showers with bpT = 36 GeV/c at a 1⇥ 1 filled array at
observation level of 4 km.

About 20 % of the distribution is matchable to simulated jets. The distribution of f § extends
past the significance threshold up to 13. The part of it which has a best f value larger than
7.0æ(r) contributes to the effective area with 4.7 ·102 m2. On the basis of the number of show-
ers involved and the number of throws per shower the statistical uncertainty is estimated
as 1.3 ·102 m2. Above the threshold about 70 % of the distribution is caused by fluctuations
matchable to simulated jets. That above a significance of 7.3æ(r) the distribution is dominated
by matchable fluctuations is better visualized on a logarithmic scale, see Figure 10.3.
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Figure 10.3: Left panel: the distribution of f ⇤ (black) and the part of it matchable to simulated jets (blue).
Right panel: the distribution of �⇤ (black), the part of it matchable to simulated jets (blue) and the part of
it matchable to simulated jets above the significance threshold (orange). Both panels for 1014.5 eV showers
with bpT = 36 GeV/c at a 1⇥1 filled array at observation level of 4 km.
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Extremely large fluctuations cause a density larger than the core density. The algorithm than
regards the fluctuation as the main core and the core as a fluctuation. This causes a bad match-
ability to jets if f § > 12, see the left panel of Figure 10.3.

The physical observable ¬§ is claimed to be proportional to the jet transverse momentum [116].
It is defined as

¬§ = d
p
Ω1Ω2 , (10.1)

where d is the distance to the main core in m, where Ω1 is the density of the main core in m−2

and where Ω2 is the density surplus of the sub core in m−2. That is, Ω2 = Ωobs °Ωfit. The distri-
bution of ¬§ is shown in the right panel of Figure 10.3. The distribution of ¬§ tends to smaller
values for smaller shower energy and to larger values for larger shower energy. For the part
which could be matched with simulated jets, we can investigate the relation between ¬§ and
the jet transverse momentum. The distribution of ¬§ versus jet pT is shown in Figure 10.4.
The density surplus, Ωobs °Ωfit, versus d is shown in the right panel of Figure 10.4.
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Figure 10.4: Left panel: �⇤ versus jet transverse momentum for best sub cores (blue) and on top of it the
part which meets the significance threshold (orange). Right panel: density surplus versus the jet transverse
momentum for matching best sub cores (blue) and on top of it the part which meets the significance
threshold (orange). Both panels for fluctuations matchable to simulated jets in 1014.5 eV showers with bpT
= 36 GeV/c at a 1⇥1 filled array at observation level of 4 km.

The blue dots in the left panel suggest a slight relation between ¬§ and pjet
T , while the orange

dots suggests no relation at all for the significant best sub cores. This implies that ¬§ is not a
particularly good predictor for the transverse jet momentum. This is probably due to the influ-
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ence of the pseudorapidity. The right panel suggests the density surplus to be a better predictor
for the transverse jet momentum. However, the relation vanishes when other bpT intervals are
taken into consideration, see Figure 10.5.
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Figure 10.5: Left panel: �⇤ versus jet transverse momentum for sub cores which meet the significance
threshold. Right panel: density surplus versus the jet transverse momentum for sub cores which meets the
significance threshold. Both panels for 1014.5 eV showers with bpT = 12 through bpT = 60GeV/c at a 1⇥1

filled array at observation level of 4 km.

Now both the correlation between ¬§ and transverse jet momentum and between the density
surplus and transverse jet momentum is poor. Next we consider the three energies 1014, 1014.5

and 1015 eV. For each energy the ¬§ of jet cores are plotted against the jet transverse momen-
tum in Figure 10.6.
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Figure 10.6: �⇤ versus jet transverse momentum for 1014 eV (left), 1014.5 eV (middle) and 1015 eV (right)
showers. All for the 1⇥1 filled array (black), 1⇥1 alternate array (red),

p
2⇥

p
2 filled array (blue) andp

2⇥
p
2 alternate array (green) and for the observation level at 4 km altitude.
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We see the relation between ¬§ and transverse jet momentum is poor. The relation between
¬§ and shower energy is already stronger. The overall conclusion is that ¬§ is in general not a
good measure for the jet transverse momentum. Attempts to find a better predictor for the jet
transverse momentum in terms of observable quantities as d, Ω1 and Ω2 were not successful.
For the remainder of the analysis we will focus on the effective area for jet observation at the
three altitudes.

10.2 Results for 4 km altitude

For observation level at 4 km altitude we first show the results for 1015 eV showers thrown at
the four kinds of arrays. In Figure 10.7 the effective area per shower is plotted against bpT.
Although a large bpT leads to a large effective area, its contribution to the flux of jet observa-
tions might still be small because of its small cross section. For the contribution to the flux of
jet observations we have to consider the product of the effective area and the probability per
shower to occur. The latter is the effective area per observational jet. It is plotted against bpT

in the right panel of Figure 10.7.

0 12 24 36 48 60

0

250

500

750

1,000

1,250

bpT [GeV/c]

A
ef

f
[m

2 ]

0 12 24 36 48 60

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

bpT [GeV/c]

A
ef

f·
P

[m
2 ]

Figure 10.7: For 1015 eV showers the effective area per shower versus bpT (left) and the effective area per
observational jet versus bpT (right) for the 1⇥ 1 filled array (black), 1⇥ 1 alternate array (red),

p
2⇥

p
2

filled array (blue) and
p
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p
2 alternate array (green) at 4 km altitude.

The effective area for observing a jet in a shower is reduced to less than 0.1 m2. Similar results
hold for 1014.5 and 1014 eV showers. At the latter energy an additional loss is observed due to
the minimum density condition, see Figure 10.8.
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Figure 10.8: Percentages of showers which meet the minimum density conditions against bpT for 1014 eV
showers for the 1⇥1 filled array (black), 1⇥1 alternate array (red),
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alternate array (green) at 4 km altitude.

10.3 Results for 2 km altitude

For observation level at 2 km altitude 1015 eV showers show similar behavior as that observed
at 4 km altitude, but with a factor 2 loss in effective area per shower, see Figure 10.9 for 1015 eV
showers.
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Figure 10.9: For 1015 eV showers the effective area per shower versus bpT (left) and the effective area per
observational jet versus bpT (right) for the 1⇥ 1 filled array (black), 1⇥ 1 alternate array (red),
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filled array (blue) and
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p
2 alternate array (green) at 2 km altitude.

At lower energies the behavior becomes erratic due to the increased shower fluctuations, see
Figure 10.10.
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Figure 10.10: For 1014.5 eV showers the effective area per shower versus bpT (left) and the effective area
per observational jet versus bpT (right) for the 1⇥1 filled array (black), 1⇥1 alternate array (red),
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2 alternate array (green) at 2 km altitude.

At 2 km altitude the minimum density requirement also reduces the statistics significantly at
E < 1015 eV, see Figure 10.11.

0 12 24 36 48 60

0

20

40

60

80

100

bpT [GeV/c]

pe
rc

en
ta

ge

0 12 24 36 48 60

0

20

40

60

80

100

bpT [GeV/c]

pe
rc

en
ta

ge

Figure 10.11: The percentages of showers which meet the minimum density conditions against bpT for
1014 eV showers (left) and 1014.5 eV showers (right). Both for the 1⇥1 filled array (black), 1⇥1 alternate
array (red),

p
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p
2 filled array (blue) and

p
2⇥

p
2 alternate array (green) at 2 km altitude.

10.4 Results for sea level

At sea level all 1014 eV showers fail the density criterium. Due to the further 2 km of atmo-
sphere the showers have developed even further and the density of both core and sub cores
decreases. Only around 10 % (70 %) of the showers pass the density criterium at 1014.5 eV
(1015 eV). As a result the best effective areas per jet drop to below 100 cm2.
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For different altitudes and different energies the effective area per shower and per observa-
tional jet are tabulated in Appendix A. For each altitude and energy the total effective area per
observational jet is shown in the last row of each table in Appendix A. To obtain the observa-
tional jet rate it has to be multiplied by the cosmic ray energy flux and by the solid angle in
steradian. An estimation of the latter is derived in the next section.

10.5 Slant depth

The simulated showers are vertical showers. For non vertical showers there are four main
differences. The first is a decrease of the lateral density with a factor cosµ because of the
projection on a horizontal observation level. The second is the increase of the signal with a
factor secµ. Both effects compensate each other. The third is a reduction of the effective area
with a factor cosµ because the probability for the main core to fall on the array is decreased.
Alternatively, for inclined showers the plane of the array is not perpendicular to the direction.
The fourth difference is a longer path to the observation level. The larger atmospheric depth is
called the slant depth X 0:

X 0 = X
cosµ

(10.2)

for µ < 60°. A slant depth decreases the fraction of showers which meets the density require-
ment at the observation level. To estimate it we consider the fraction of showers which meet
the density condition of 100 particles per square meter for the main core. For 1014 eV showers
at 4 km altitude the fractions are about 0.58 for the two types of filled arrays. The fraction is
scattered against the atmospheric depth. For the few other occasions the scatter points are
obtained in a similar way. The results are shown as colored dots in Figure 10.12.
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Figure 10.12: The fraction of showers meeting the density condition. The dashed curves are predic-
tions as described in the text. Different colors correspond to different energies: 1014 eV (blue), 1014.5 eV
(green),1015 eV (orange) and 1015.5 eV (red).



10.5. Slant depth 195

The line piece connecting the blue dots and the line piece connecting the green dots have ap-
proximately the same slope: 0.0025 g−1 cm2. For this slope the equation for the descending
part of the blue dashed curve is fraction= 2.16°0.0025X 0. For the descending part of the green
dashed curve this is fraction= 2.76°0.0025X 0. This suggest for 1015 eV showers the equation:
fraction = 3.38°0.0025X 0. It turns out that this prediction is not far from the single dot for
1015 eV showers, see the orange dot and orange curve in Figure 10.12. For larger energies we
assume the continuation also holds approximately. To be specific

f (X ;E)º 1.22log10 E°14.64°0.0025X 0 , (10.3)

where E is the shower energy in eV. At this point we recall Equation 6.73. For µ = 0 it reads

log10 Ne+µ = 1.205log10 E°13.14 . (10.4)

Comparison of the latter two equations suggest the fraction to be dependent on the logarithm
of the number of particles Ne+µ.

Since the fraction is limited by 0 and 1 the full footed curves in Figure 10.12 are given by

f (X ;E)=max
°
0, min

°
1, 1.22log10 E°14.64°0.0025X 0¢¢ . (10.5)

The latter is a piecewise linear approximation of what in reality will look like a logistic curve.
Substituting X /cosµ for the slant depth we obtain for the fraction that reaches the observation
level

f (µ)=max
µ
0, min

µ
1, 1.22log10 E°14.64° 0.0025X

cosµ

∂∂
. (10.6)

For an observation plane perpendicular to the shower direction the average solid angle for
showers to reach the observation level is obtained by integration:

≠= 2º
Zº/2

0
f (µ)sinµdµ . (10.7)

To account for the reduction of the probability for a core of an inclined shower to fall on a
horizontal array the effective solid angle is

≠= 2º
Zº/2

0
f (µ)cosµsinµdµ . (10.8)

For a cone limited by angle Æ the area of the surface of the segment of the sphere is given by

2º
ZÆ

0
sinµdµ = 2º(1°cosÆ) , (10.9)
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where Æ is half the cone angle; on average the limiting angle of the zenith angles. By means of
the latter expression the average limiting angle can be expressed in terms of solid angle

Æ= arccos
µ
1° ≠

2º

∂
. (10.10)

For different energies and observation levels the results are tabulated in Table 10.1. The esti-
mates in Table 10.1 will be used to convert the energy flux of cosmic rays per steradian to the
total energy flux from the hemisphere.

4 km 2 km 0 km

1014 eV (1.0±0.4) sr , 33° (0.2±0.2) sr , 16° 0.00 sr 0.00°

1014.5 eV (1.9±0.3) sr , 46° (1.1±0.5) sr , 35° (0.2±0.2) sr , 16°

1015 eV (2.4±0.2) sr , 51° (1.9±0.3) sr , 45° (1.0±0.4) sr , 33°

1015.5 eV (2.6±0.1) sr , 54° (2.2±0.2) sr , 50° (1.6±0.2) sr , 42°

1016 eV (2.7±0.1) sr , 56° (2.5±0.1) sr , 53° (2.0±0.1) sr , 46°

1016.5 eV (2.8±0.1) sr , 57° (2.6±0.1) sr , 55° (2.3±0.1) sr , 51°

Table 10.1: Effective average solid angle and average limiting angle for varius energies and varius altitudes.
In brackets are the estimated systematic uncertainties due to the fitting procedure.

10.6 Alternative method

The previous method was based on a practical approach of finding in a fast way the center of the
lateral density and the most significant fluctuation. The method is not optimal for two reasons.
Firstly, it can occur that the density of a fluctuation exceeds the density of the main core. With
the previous algorithm the sub core will act as the main core. An algorithm for finding the
center of the lateral distribution, is complicated and time consuming. We do not need such an
algorithm since the position of the shower core is known in simulations. We will mimic to a
certain extent the realistic situation by inspecting around the known shower core position for
the detector with the largest signal within a small range of 5£5 and 3£3 detectors for the
1£1 and

p
2£

p
2 arrays respectively. For the alternate arrays this has to be done anyway.

Secondly, a sub core may be spread out over more than one detector. It seems worthwhile to
consider a small cluster of adjacent detectors. The relation r º 0.07d, as derived in Section 8.4,
for the radius of the sub core gives an indication of the number of detectors in such a cluster as
a function of distance to the main core. It suggests to consider as well a cluster of 3£3 detectors
if d ∏ 14m for the 1£1 array and d ∏ 20m for the

p
2£

p
2 array and a cluster of 5£5 detectors

if d ∏ 25m for the 1£1 array and d ∏ 35m for the
p

2£
p

2 array. The clusters are not applied
to smaller jet distances than given above in order to avoid disturbing effects from the gradient
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in the lateral density. Except for these two modifications, the alternative method is identical
to the original method. Also the conditions are unaltered. To show an essential difference we
consider the f § and ¬§ distributions for a 1014.5 eV shower at a 1£1 array at 4 km altitude, see
Figure 10.13.
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Figure 10.13: Left: the distribution of f ⇤ (black) and the part of it matchable to simulated jets (blue).
Right: the distribution of �⇤ (black), the part of it which is matchable to simulated jets (blue) and the part
which is matchable to simulated jets above the significance threshold (orange). Both panels for 1014.5 eV
showers with bpT = 36 GeV/c at a 1⇥1 filled array at observation level of 4 km.

Now the part of the distribution of f § that is matchable to simulated jets completely fills the
total distribution of f §. The same holds for the ¬§ distribution; compare with Figure 10.3. The
latter has only marginal effects on the diagrams as shown in Figure 10.6.
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Figure 10.14: For 1014.5 eV showers the effective area per shower against bpT by means of the previous
method (left) and by means of the alternative method (right). Both for the 1⇥1 filled array (black), 1⇥1

alternate array (red),
p
2⇥

p
2 filled array (blue) and

p
2⇥

p
2 alternate array (green) at 4 km altitude.
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To illustrate another difference we compare the diagrams of the effective area per shower for
1014.5 eV showers with bpT= 36 GeV/c at a 1£1 filled array at observation level of 4 km. For
the previous method and the alternative method the diagrams are shown in the left panel and
right panel respectively of Figure 10.14. The diagram is more regular and the effective areas
are larger for the alternative method. The dip at bpT = 48GeV/c in the left diagram is caused by
jets for which the sub core is more spread out. They are recognized by the alternative method
only. The given example is however an exception. Usually the effective area diagrams look
close to one another. The effective areas per shower and per jet obtained with the alternative
method are tabulated in Appendix B.

10.7 Jet rates

To obtain the jet rates for each energy the effective areas are multiplied with the solid angle
in steradian and with the energy flux. For the observation level at 4 km altitude the result is
shown in Figure 10.15. The observational jet rates are tabulated in Appendix C.
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Figure 10.15: Observational jet rates at 4 km altitude versus shower energy for the original method (left)
and the alternative method (right) for the 1⇥ 1 filled array (black), 1⇥ 1 alternate array (red),

p
2⇥

p
2

filled array (blue) and
p
2⇥

p
2 alternate array (green).

The observational jet rate at 4 km altitude is dominated by the showers with the smallest en-
ergy. The energy sum of the observational jet rate is, for both methods, of the order of 102 per
month. This is comparable to the almost hundred jets a month observed with the ARGO-YBJ
experiment [116]. The agreement should be considered as rather accidental because of the
difference in the way a significance is ascribed to a best sub core and because the large uncer-
tainty. Besides, if the factor Æ in the conversion from p-p to p-air jet rates is, say, 1.25 instead
of 1 the obtained jet rates would have been 14.50.25 º 2 times larger.
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For the observation level at 2 km altitude the jet rates are plotted versus shower energy for
both methods in Figure 10.16.
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Figure 10.16: Observational jet rates at 2 km altitude versus shower energy for the original method (left)
and the alternative method (right) for the 1⇥ 1 filled array (black), 1⇥ 1 alternate array (red),

p
2⇥

p
2

filled array (blue) and
p
2⇥

p
2 alternate array (green).

At 2 km altitude the observational jet rate is to a large extent determined by the type of array.
The energy sum of the observational jet rate is, for both methods, of the order of 101 per year
for the 1£1 type of arrays and of the order of 101 through 102 per year for the

p
2£

p
2 type of

arrays. In particular for the latter type of arrays the error bars are large.

For sea level the observational jet rates per energy are shown in Figure 10.17. The energy
sum of the observational jet rates at sea level is, for both methods, about half a year. The en-
ergy sum of the observational jet rates are in the final row of each table in Appendix C.

Due to the quality cuts and the application of a minimum level for æ(r) near the core the
fluctuations in the background signal due to secondary hadronic interactions did not pass the
significance threshold. However, an exception occurred in one of the 1015.5 eV showers at sea
level generated with bpT < 6GeV/c. A high density sub core was induced at a distance of 10 m
from the main core and with f § values up to 9.5. From inspection it is found that a proton came
out the first collision with 35 % of the primary energy; the leading particle effect. At a later
stage of the shower the leading proton made a hard scatter with a jet as a result. The cone
radius of the jet happens to be such small that significant sub cores are detected solely with
the 1£1 array types. The effective areas were 43 and 20 m2 for the 1£1 filled array and the
1£1 alternate array respectively. The alternative method delivered 42 and 23 m2 respectively.
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Figure 10.17: Observational jet rates at sea level versus shower energy for the original method (left) and
the alternative method (right) for the 1⇥1 filled array (black), 1⇥1 alternate array (red),

p
2⇥

p
2 filled

array (blue) and
p
2⇥

p
2 alternate array (green).

These effective areas per shower correspond with effective areas of about 30 and 15 m2 per
observational jet and to a jet rate of about 600 and 300 a year respectively. This is thousand
times larger than the first collision jet rate at sea level. Of course one should keep in mind that
the uncertainty is large. With the secondary jet included the latter two diagrams are as shown
in Figure 10.18.
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Figure 10.18: Observational jet rates at sea level versus shower energy for the original method (left) and
the alternative method (right) for the 1⇥1 filled array (black), 1⇥1 alternate array (red),

p
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2 filled

array (blue) and
p
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p
2 alternate array (green).



11
Jet directed data analysis

11.1 Introduction

The jet rates obtained with the simulation were for a large array of 5.6 ·103 m2. For a thousand
times smaller array the expected jet rate at sea level is less than once a year. Although the
detection of jets at sea level is very unlikely, we have investigated the data from the SPA array
for possible indications of jet activity. On 2014-09-29 station 510 was added to the Science Park
Amsterdam cluster. The detectors of station 510 are positioned close to the detectors of station
501, see Figure 11.1.
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Figure 11.1: The layout of the detectors 0, 1, 2, 3 of stations 501 (red) and station 510 (black).

For both stations the detector positions are at the corners of a diamond shape. The shortest
diagonal of the diamond is equal in length to the side of the diamond, 10 m. Detectors of station

201
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501 and 510 with the same identifier will hereafter be denoted as a ‘pair of detectors’. The
distance, from center to center, of these pairs is 2.9 m. Since the detectors are close together,
we expect a similar signal. In Figure 11.2 the signals of a pair of detectors are plotted versus
one another. Clearly the signals from the two detectors are proportional.
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Figure 11.2: Density contour plot of the pulse integrals of detector 0 of station 510 versus the pulse
integrals of detector 0 of station 501 for four-fold coincidences with stations 501, 502, 508, 510 participating
(left); the Pearson-r value is 0.87. The pulse integral difference between detector 0 of station 510 and
detector 0 of station 501 (right); the orange curve is a fit with the Cauchy function. Data taken between
2015-05-22, 00:00:00 and 2016-05-22, 00:00:00.

One can also look at differences between signals of detectors of the double station [122]. These
differences can be fitted by the Cauchy function (or Lorentz function)

f (x; x0,∞)= 1
º∞

∞2

(x° x0)2 +∞2 , (11.1)

where x0 is the location of the peak of the distribution and where 2∞ is the FWHM of the peak.
In Figure 11.2 the distributions of the differences between signals of detector 0 of station 501
and station 510 for the coincidences are considered. A fit with the Cauchy function delivers
x0 =°0.181MIP and ∞= 1.722MIP. The distribution of differences is not completely symmet-
ric since the electronics in the PMT’s in station 510 was updated with respect to those of station
501.

A ‘double’ station with 4 pairs of detectors increases the accuracy of the determination of the
local density at observation level of electrons and muons. Being a sort of mini-array the double
station is used for inspection for jets.
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11.2 Preliminary analysis

To develop a method for inspection for jets we first consider fourfold coincidences with stations
501, 502, 508 and 510 participating for the 1 year period between 2015-05-22 through 2016-05-
22. Monte Carlo studies show that fourfold coincidences with stations 501, 502, 508 and 510
participating are mainly caused by showers with energies around 1015 eV. Because of their
proximity we assume that the density will be equal for each of the 8 detectors of station 501
and 510 if the main core is some distance away. Furthermore we regard the largest signal
(pulse integral) of the 8 detectors separate from the 7 lower signals. The mean of the 7 lower
signals is regarded as the density at station 501 and 510, while the largest signal is regarded as
a fluctuation being due to Poisson statistics for the number of particles, energy loss statistics,
or a jet. That is, the largest signal is regarded as Nobs and the mean of the other 7 signals as
Nfit. Also here, the logarithm of the ratio of Nobs and Nfit is used for the inspection for jets:

f = log10 (Nobs)° log10 (Nfit) . (11.2)

As for the simulation part, we assume the expectation value of f to be zero. Since we do not
have a large array we can not derive experimentally the variation in f . Because of the gradient
in the density, the distribution of f is complicated. To obtain an estimation for æ we assume
Nobs and Nfit to be independent. According to the rules of error propagation the æ of f then is
given by [123]

æ=

vuut
∑

@ f
@Nobs

æ(Nobs)
∏2

Nobs=E(Nobs)
+

∑
@ f
@Nfit

æ(Nfit)
∏2

Nfit=E(Nfit)
, (11.3)

where E(Nobs)= Nfit and E(Nfit)= Nfit are the expectation values of Nobs and Nfit respectively.
Since Nobs and Nfit are based on 1 detector and 7 detectors respectively, we have for a pure Pois-
son distribution: æ(Nobs) =

p
Nfit and æ(Nfit) =

p
Nfit/7. In combination with the instrumental

uncertainty, æº 0.3
p

Nfit, this is æ(Nobs)=
p

1.09Nfit and æ(Nfit)=
p

1.09Nfit/7. Hence

æ=
p

1.09
p

8/7
ln(10)

s
1

Nfit
º 0.4847

p
Nfit

. (11.4)

As Nfit depends on r also æ depends on r. As before the value f § = f /æ(r) is used as a measure
for fluctuations.

Fourfold coincidences with the double station participating are, from the reconstruction point
of view, actually threefold coincidences. Core reconstruction is therefore not possible. If a large
f § value occurs there might be uncertainty about whether it is caused by a nearby core or by a
fluctuation. We therefore distinguish between coincidences where the largest mean signal is in
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double station 501/510 and where the largest mean signal was not in double station 501/510.
For the first situation the core is in general closer to the double station than for the other sit-
uation. In a MC simulation a 1015 eV proton initiated shower with zenith angle 15± is thrown
100 000 times in an area of 62 500 m2. For the fraction of it which caused fourfold coincidences
with stations 502, 508, 501 and 510 participating, the core positions are shown in Figure 11.3.
The core positions are differently colored for the situation where the largest mean signal was
in the double station and where the largest mean signal was in either station 502 or station
508.
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Figure 11.3: The core positions of 1015 eV showers with zenith 15° causing four-fold coincidences in station
501, 502, 508 and 510 (left) and the part of it for which the largest mean signal occurred not in the double
station (right).

The core positions for which the largest mean signal was not in the double station are sepa-
rately shown in the right panel of Figure 11.3. These core positions are mostly between 25 m
and 50 m away from the double station. At these distances sub cores can be expected due to jets
in showers with energies around 1015 eV. To analyse the data for it we consider fourfold coin-
cidences for the SPA stations 501 through 506 and 508 through 510 in the period 2015-05-22,
00:00:00 through 2016-05-22, 00:00:00. Among the 286 636 fourfold coincidences there were
119 792 coincidences where station 501, 502, 508 and 510 participated and for which all four
detectors of the participating stations were operational. In 68 793 of them the largest mean
signal occurred in double station 501/510. In the other 50 999 cases the largest mean signal
(7 detectors) occurred in either station 502 or in station 508. For both situations the largest
detector signal is plotted against the mean signal in Figure 11.4. For both situations the dis-
tributions of f § are shown in Figure 11.5.
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Figure 11.4: Density contour plot of the largest detector signal versus the mean of the other 7 detector
signals in station 501/510 for the situation where the largest mean signal occurred in station 501/510 (left)
and for the situation where the largest mean signal occurred in either station 502 or station 508 (right).
Data taken between 2015-05-22, 00:00:00 and 2016-05-22, 00:00:00.
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Figure 11.5: The distribution of f ⇤ for the situation where the largest mean signal occurred in the double
station (left) and for the situation where the largest mean signal occurred in either station 502 or station
508 (right). Data taken between 2015-05-22, 00:00:00 and 2016-05-22, 00:00:00.
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They show a large similarity with the distributions obtained with simulations. To make visible
the sparse large f § values the distributions of f § are plotted on a logarithmic scale in Fig-
ure 11.6.
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Figure 11.6: The distribution of f ⇤ for the situation where the largest mean signal occurred in station
501/510 (orange) and for the situation where the largest mean signal occurred in either station 502 or
station 508 (black). Data taken between 2015-05-22, 00:00:00 and 2016-05-22, 00:00:00.

As for the simulated distributions of f § the tail is almost exponential.

For the situation where the largest mean signal occurred in the double station we see large
f § values. The largest one has f § = 10.1. It occurred at 2015-05-24, 21:32:02 (timestamp
1432503122-394885806). The largest signal in the double station was 237.4 MIP in detector
0 of station 501, while the mean of the other seven detectors was 42.3 MIP. In detector 0 of
station 510 the signal was 90.8 MIP. The mean of station 502 and 508 was 2.8 and 6.8 MIP re-
spectively. What we have here is a shower with its core at or very close to, detector 0 of station
501. The other large f § coincidences show a similar pattern. In conclusion, the large f § values
are caused by shower cores nearby the double station and not by a fluctuation.

For the situation where the largest mean signal occurred not in the double station we do not see
large f § values. The largest f § value is 3.81. It occurred at 2015-12-13, 18:13:48 (timestamp
1450030428-447610312). The largest signal in the double station was 34.1 MIP in detector 1 of
station 510, while the mean of the other seven detectors was 3.44 MIP. In detector 1 of station
501 the signal was 5.65 MIP. The mean of station 502 and 508 was 0.94 and 33.1 MIP respec-
tively. Here we have a fluctuation in the double station while the shower core was near station
508. To ascribe it to a jet a 5æ threshold will be required. The 5æ threshold is determined
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by extending the exponential fit of the tail of the distribution of f §. The fit follows the tail
when the fit domain is taken between the f § value where the distribution is about 10 % of the
maximum and 1 % of the maximum. For smaller data sizes larger percentages are taken for
the domain.

11.3 Data analysis

With the results of the preliminary analysis in mind we turn to the analysis of the data of the
SPA stations 501 through 506 and 508 through 511 taken from 2014-09-29 through 2016-05-
22. Station 511 was operational at the SPA site since 2015-10-02. The maximum coincidence
size therefore is 10. There were 7.4 ·106 coincidences with at least three participating stations.
In 1.2 ·106 of them both station 501 and 510 participated. The f values are inspected for n = 3
through n = 10 coincidences where at least the stations 501 and 510 participated. For n = 3
we have a coincidence of the double station with just one of the other stations. For n = 4 we
have a coincidence of the double station with two of the other stations, and so on. For these
n = 3 and n = 4 coincidences for which the mean signal did not occur in the double station the
energy of showers are about 1014.5 – 1015 eV. For these energies the jet distances to the main
core are about 20 – 50 m. These distances are comparable with the distances between the dou-
ble station and the main core. Although extremely small the probability for finding a jet core
is largest for these coincidences. For n > 4 coincidences the probability rapidly drops because
the shower rate decreases with energy and because the fraction of showers for which the jet
distance is comparable with the distance of the double station to the main core decreases with
energy. Nevertheless, the data will be analyzed for n = 3 through n = 10 coincidences. From
each set of n = k coincidences a reduced set of coincidences is obtained for which the mean
signal of the double station (7 detectors) is smaller than the mean signal of at least one of the
other k°2 stations. For each reduced set the distribution of f § values is plotted. In the plots
the exponential fits and some significance levels are depicted.

In the period considered the number of threefold through tenfold coincidences with the double
station participating was 832 950, 241 804, 86 878, 36 271, 15 873, 6015, 2058 and 603 respec-
tively. The number of threefold through tenfold coincidences with the double station participat-
ing and where the largest mean signal did not occur in the double station was 423 290, 114 064,
43 079, 18 082, 7445, 2435, 706 and 169 respectively. The distributions of f § are shown for n = 3
and n = 4 coincidences in Figure 11.7, for n = 5 and n = 6 coincidences in Figure 11.8, for n = 7
and n = 8 coincidences in Figure 11.9 and for n = 9 and n = 10 coincidences in Figure 11.10.

For n = 3 coincidences the distribution of f § falls off exponentially beyond its maximum as
e°4.7 f §

. The largest f § value is 4.18, corresponding with a 5æ deviation from the mean. It
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Figure 11.7: The distribution of f ⇤ for threefold coincidences (left) and for fourfold coincidences (right)
for which the mean signal in station 501/510 is not the largest one. The blue lines depict the exponential
fit and the fit domain. Data taken between 2014-09-29 and 2016-05-22.
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Figure 11.8: The distribution of f ⇤ for fivefold coincidences (left) and for sixfold coincidences (right) for
which the mean signal in station 501/510 is not the largest one. The blue lines depict the exponential fit
and the fit domain. Data taken between 2014-09-29 and 2016-05-22.
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Figure 11.9: The distribution of f ⇤ for sevenfold coincidences (left) and for eightfold coincidences (right)
for which the mean signal in station 501/510 is not the largest one. The blue lines depict the exponential
fit and the fit domain. Data taken between 2014-09-29 and 2016-05-22.
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Figure 11.10: The distribution of f ⇤ for ninefold coincidences (left) and for tenfold coincidences (right)
for which the mean signal in station 501/510 is not the largest one. The blue lines depict the exponential
fit and the fit domain. Data taken between 2014-09-29 and 2016-05-22.

occurred at 2015-10-21, 02:52:46 (timestamp 1445395966-341581832) with station 508 partic-
ipating. The maximum signal in the double station is 40.2 MIP in detector 0 of station 510,
while the signal in detector 0 of station 501 is 27.9 MIP. The mean of the six other detectors
of the double station is 1.4 MIP. The mean signal of the double station (7 detectors) is 5.2 MIP,
while the mean signal in station 508 is 7.6 MIP. The signals suggest a core closer to station
508 than to the double station and a sub core close to the detector 0 pair of the double station.

For n = 4 coincidences the distribution of f § falls off exponentially beyond its maximum as
e°4.2 f §

. The largest f § value is 3.82, corresponding with a 4.3æ deviation. The next to largest
f § value is 3.81 and is the same coincidence we already met in the previous section.
For n = 5 coincidences the tail of the distribution of f § falls off exponentially as e°3.8 f §

. The
largest f § value is 3.86, corresponding with a 4.2æ deviation.
For n = 6 coincidences the tail of the distribution of f § falls off exponentially beyond its maxi-
mum as e°3.8 f §

. The largest f § value is 3.47, corresponding with a 3.8æ deviation.
For n = 7 coincidences the tail of the distribution of f § falls off exponentially beyond its maxi-
mum as e°3.4 f §

. The largest f § value is 4.12, corresponding with a 4.1æ deviation.
For n = 8 coincidences the tail of the distribution of f § falls off exponentially beyond its maxi-
mum as e°3.2 f §

. The largest f § value is 3.26, corresponding with a 3.1æ deviation.
For n = 9 coincidences the tail of the distribution of f § falls off exponentially beyond its maxi-
mum as e°3.3 f §

. The largest f § value is 4.00, corresponding with a 3.8æ deviation.
For the n = 10 coincidences the exponential fit is inaccurate because of the small data size. The
diagram shows no deviations larger than 3æ.

For all the deviations the probability to occur in the data of the given size is relatively large.
Too large to ascribe it to a jet with a sufficient significance. For example, for the f § = 4.18 event
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in the n = 3 coincidences the expected number of f § values larger than 4.18 is about 0.12. For
this expectation value the Poisson probability to find an event is about 0.11. Translated to
a Gaussian distribution this is a significance of about 1.2æ. By far not significant enough to
ascribe it to a jet. Even worse significances are found for the other deviations.

11.4 Conclusion

With the double station as a mini-array it is possible to detect fluctuations. As expected the
number of fluctuations with a f § value above a given threshold decreases with coincidence
size and thus with energy. The largest fluctuation observed in the 1.7 yr of data of the SPA
stations occurred for a n = 3 coincidence. Although a 5æ deviation, the significance is very low.
The coincidence size indicates a shower energy of approximately 1014.5 eV. The signal pattern
indicates a main core roughly at a distance of 30 m to the double station. A jet core distance
of 30 m is not unusual for a shower energy of 1014.5 eV. Even if the largest fluctuation would
have been highly significant, one could still have doubts about this fluctuation since the main
core position is not precisely detected. Besides, without a precise main core position there is
no way to relate the physical observables to the transverse momentum of the jet. To detect the
main core and a sub core simultaneously requires a large array of detectors; an array of the
order of 5.6 ·103 m2. Even for such a large array the observational rate of first interaction jets
is extremely low, less than once a year at sea level. The observational rate of second interaction
jets is about 10 per week at sea level. The latter is based on the leading particle effect in p-p
collisions. For second interaction jets there is no way to relate the physical observables to the
jet momentum and to the energy of the collision. Even for first interaction jets the prediction for
the transverse jet momentum on the basis of the physical observables is highly uncertain. The
investigation of jets becomes of more value if an accurate predictor is derived. For relatively
large jet rates an observation level at an altitude of 4 km is preferable, although the observed
jets are mainly in 1014 eV showers. For jets in showers with larger energy one has to decrease
the altitude of the observation level at cost of the jet rate. At sea level the observed jets are
mainly in 1015.5 eV showers. In the latter case the extremely low first interaction jet rate is
overwhelmed by secondary interaction jet rates. As it stands now it is rather unlikely that one
can observe first interaction hadronic jets by means of a large array at sea level.



12
Summary

Cosmic rays enter the atmosphere of the Earth in enormous quantities. When, for instance, a
gamma ray enters the atmosphere it initiates an electromagnetic shower: a photon turns into
an electron-positron pair (pair creation) and electrons and positrons radiate photons (Brems-
strahlung). The cascade of repeated electromagnetic interactions leads to a shower with a large
number of electrons, positrons and photons. The shower size can be billions of particles for very
high energy cosmic rays. Initially the shower size grows exponentially. The further the cas-
cades develops the smaller the energy of the individual particles of the shower. As soon as the
energy of an individual electron of the shower falls below the critical energy it stops generating
new particles. This slows down the growth of the shower size. After reaching a maximum the
shower size will decrease. The evolution of the shower size along atmospheric depth is called
the longitudinal profile. There are several functions to model the longitudinal profile such as
Heitler model, the Gaisser-Hillas function, the Gaussian in Age function and the Greisen func-
tion. They can be related to the level of accuracy of the underlying model [51].

Almost all primary cosmic rays are nuclei, among which the proton is the most likely. When
such a cosmic ray collides (strong interaction) with the nucleus of an atom (most likely nitrogen
or oxygen) in the air a multiplicity of secondary particles is created. The secondary particles
are mostly pions. The neutral pions almost immediately decay into a pair of photons thereby
initiating an electromagnetic sub shower. If their energy is large enough the charged pions also
collide with nuclei in the air, else they will decay into a muon. The colliding pions generate a
next multiplicity of particles. Showers dominated by hadronic interactions are called hadronic
showers. Because of the large multiplicity hadronic showers reach their maximum shower size
at smaller atmospheric depths than electromagnetic showers with the same energy. A discrete
approximation of the cascade of hadronic interactions has been used to predict the depth of
maximum for hadronic showers [52].
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Extended air showers reach the surface of the Earth. The lateral density of the particles that
reach the ground is a footprint of the shower. The larger the energy of the shower the larger
the density. The density is largest at the core of the shower. The density decreases with the
distance to the core. For vertical showers the lateral density is well described by the NKG
function or suitable modifications of it. The NKG type of function for the SPA site of HiSPARC
detectors is determined on the basis of simulations by means of CORSIKA without thinning.
For inclined showers with a zenith angle smaller than 60° the density is approximately concen-
trical in the plane perpendicular to the shower direction. In a horizontal plane of observation
the iso-density contours become elliptic. Moreover, the additional attenuation of the late part
of the shower with respect to the early part of the shower leads to a shift of the center of the
iso-density contours [60]. The NKG type of lateral density function including the modifications
for the ellipticity and the shift are implemented in the analyses package SAPPHiRE for recon-
structions of the size and energy of observed showers. The latter requires the direction of the
shower which is determined from the arrival time differences between observation stations.
For the direction reconstruction some fast methods have been implemented in SAPPHiRE.

The HiSPARC detectors observe the footprints of showers by means of the energy losses of
the electrons and muons in their passage through the detector plate. The energy losses are
transformed to PMT signals. The energy losses and their transformation to PMT signals is
described and, to good approximation, implemented in SAPPHiRE for simulation purposes. By
means of a Monte Carlo it is numerically investigated to which extend showers with a given
energy and zenith will hit one or more stations. More specifically: for each situation the effec-
tive area is determined. The latter is, for instance, needed for the determination of the energy
spectrum of cosmic rays.

In high-energy hadronic collisions jets can occur as a result of the hard scattering. Therefore
this also occurs in the collision of a cosmic ray with a nucleus in an atom of the Earth’s atmo-
sphere. Jets in cosmic air showers cause density fluctuations which can be detected. However,
the density of particles in a shower is full of ‘background’ fluctuations. Background fluctuations
can be of statistical nature such as the Poisson statistics of the number of particles falling on a
detector. They can also be of physical nature such as hadronic interactions in secondary colli-
sions. An impression of the difficulty of finding a jet between all kinds of fluctuations is given
in Figure 12.1. To distinguish a jet fluctuation from background fluctuations it should be very
strong. Strong enough that the probability of being a background fluctuation is very small. As
common in particle physics a 5æ level is applied. A jet is regarded as observable if its density
fluctuation is at least 5æ.
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Figure 12.1: Impression of the lateral density, not to scale, plotted in vertical direction, with two jet
fluctuations among many statistical fluctuations.

A large Monte Carlo is performed for the numerical investigation of jets in cosmic air showers.
The jets are simulated for different energies and different transverse jet momentum. The p-air
collisions in the first interaction are simulated as p-p collisions with PYTHIA. The output of
PYTHIA is used as the input for CORSIKA to simulate the evolution of the shower. The latter
results in lateral densities of particles at the desired observation level. These densities are ran-
domly thrown on different types of large arrays. For each throw all the thousands of detectors
are inspected for large fluctuations. As a result observational jet rates are obtained for observa-
tion levels at different altitudes. For 4 km altitude the jet rate obtained is comparable with the
rate observed with the ARGO-YBJ experiment [116, 117]. For sea level the observational rate
obtained for first collision jets is less than one per year. However, in very high energy showers
jets are generated at secondary hadronic collisions at probably a thousand times larger rate.
Another result from the investigation is that the transverse jet momentum can not be predicted
well from physical observables as the main core density, the jet core density and the distance
of the jet core to the main core.

The HiSPARC data for the stations at Science Park Amsterdam is analyzed for jet fluctuations.
For this the double station is used as a mini-array. In one occasion the fluctuation reached
the 5æ significance level. Still it is doubtful to ascribe it to a jet since we have no accurate
information about the main core position of the shower. The core reconstruction method can
not be applied because of the low number of station activated by the shower. Besides, even for
a larger number of activated stations the uncertainty in the position of the main core is larger
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than the distance of the jet core to the main core. A solution requires is a substantial increase
of the number of stations.

In summary, at sea level observational jets are most probably generated in secondary collisions.
The altitude of the interaction therefore is even more uncertain than for the first interaction.
Since a predictor for the jet transverse momentum is based on the distance of the jet core to
the main core and thus on the altitude of the interaction this further reduces the (already bad)
accuracy of the prediction of the transverse jet momentum. That is, except from an experimen-
tal jet rate, jet observations do not provide information about the jet transverse momentum
and thus not about the strong coupling constant. It therefore is not recommended to invest in
detection capacity at sea level just for the purpose of jet observations.



A
Simulated effective areas

The effective areas per shower and per jet are tabulated per shower energy and per altitude.
The tables are divided in three sections, one for each altitude. In the upper left corner of a table
the energy and altitude are shown. In the upper row are the array types. In the first column
are the bpT. For each array type and bpT the upper and lower number are the effective areas
per shower and per jet respectively. The statistical uncertainties are in brackets. The final row
contains the sum of the effective area per jet.

A.1 Effective areas for 4 km altitude

1014 eV, 4 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
1.4(1.4) ·101 1.2(1.2) ·101 6.2(4.8) ·100 5.6(5.6) ·10°1

2.4(2.4) ·10°1 2.0(2.1) ·10°1 1.1(0.8) ·10°1 1.0(1.3) ·10°2

24 GeV/c
2.9(2.9) ·101 1.1(1.2) ·101 2.0(1.5) ·101 9.6(7.1) ·100

2.3(2.3) ·10°3 9.1(9.3) ·10°4 1.6(1.2) ·10°3 7.7(5.8) ·10°4

36 GeV/c
2.1(2.2) ·101 7.9(8.2) ·101 4.1(2.9) ·101 2.1(2.2) ·101

9.2(9.3) ·10°5 3.4(3.5) ·10°5 1.8(1.3) ·10°4 9.2(9.3) ·10°5

48 GeV/c
1.3(0.6) ·102 8.3(4.2) ·101 1.9(0.7) ·102 1.6(0.6) ·102

5.8(2.7) ·10°5 3.7(1.9) ·10°5 8.5(3.2) ·10°5 7.1(2.7) ·10°5

60 GeV/c
7.3(4.2) ·101 3.3(2.4) ·101 2.0(0.9) ·102 1.7(0.8) ·102

4.6(2.7) ·10°6 2.1(1.5) ·10°6 1.3(0.6) ·10°5 1.1(0.5) ·10°5

P
Aeff / jet 2.4(2.4) ·10°1 2.0(2.1) ·10°1 1.1(0.8) ·10°1 1.0(1.3) ·10°2

Table A.1: Effective area in m2 per shower and per jet for 1014 eV showers at 4 km altitude.
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1014.5 eV, 4 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
9.8(5.7) ·101 7.3(4.2) ·101 1.2(0.7) ·102 8.3(4.8) ·101

3.1(1.8) ·10°2 2.2(1.3) ·10°2 3.9(2.2) ·10°2 2.6(1.5) ·10°2

36 GeV/c
4.7(1.3) ·102 4.0(1.1) ·102 5.7(1.2) ·102 3.7(0.9) ·102

1.0(0.3) ·10°2 8.8(2.5) ·10°3 1.3(0.3) ·10°2 8.1(1.9) ·10°3

48 GeV/c
4.4(1.2) ·102 3.6(1.0) ·102 6.0(1.2) ·102 4.3(0.9) ·102

1.3(0.3) ·10°3 1.0(0.3) ·10°3 1.7(0.4) ·10°3 1.2(0.3) ·10°3

60 GeV/c
6.3(1.4) ·102 4.8(1.2) ·102 9.8(1.7) ·102 7.1(1.2) ·102

3.8(0.8) ·10°4 2.9(0.7) ·10°4 6.0(1.1) ·10°4 4.3(0.8) ·10°4

P
Aeff / jet 4.3(1.8) ·10°2 3.2(1.3) ·10°2 5.4(2.2) ·10°2 3.6(1.5) ·10°2

Table A.2: Effective area in m2 per shower and per jet for 1014.5 eV showers at 4 km altitude.

1015 eV, 4 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
9.3(4.7) ·101 4.0(1.7) ·101 6.6(2.8) ·101 4.3(2.2) ·101

9.3(4.7) ·10°2 4.0(1.7) ·10°2 6.6(2.8) ·10°2 4.3(2.2) ·10°2

36 GeV/c
3.7(1.2) ·102 2.4(0.8) ·102 2.7(0.8) ·101 1.5(0.5) ·101

3.1(1.0) ·10°2 2.1(0.7) ·10°2 2.3(0.7) ·10°2 1.3(0.4) ·10°2

48 GeV/c
3.0(0.8) ·102 1.9(0.5) ·102 2.3(0.6) ·102 1.4(0.5) ·102

3.8(1.0) ·10°3 2.5(0.7) ·10°3 3.0(0.8) ·10°3 1.8(0.6) ·10°3

60 GeV/c
1.1(0.2) ·103 8.2(1.4) ·102 8.8(1.5) ·102 6.7(1.2) ·102

4.3(0.8) ·10°3 3.1(0.5) ·10°3 3.3(0.6) ·10°3 2.5(0.4) ·10°3

P
Aeff / jet 1.3(0.5) ·10°1 6.7(1.8) ·10°2 9.5(2.9) ·10°2 6.0(2.2) ·10°2

Table A.3: Effective area in m2 per shower and per jet for 1015 eV showers at 4 km altitude.
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A.2 Effective areas for 2 km altitude

1014 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 1.7(1.7) ·101 1.7(1.9) ·100

0 0 2.9(2.9) ·10°1 2.9(3.3) ·10°2

24 GeV/c
0 0 3.4(3.6) ·100 0

0 0 2.7(3.0) ·10°4 0

36 GeV/c
0 0 0 0

0 0 0 0

48 GeV/c
0 0 3.5(3.5) ·101 2.1(2.2) ·102

0 0 1.6(1.6) ·10°5 1.0(1.0) ·10°5

60 GeV/c
0 0 3.9(3.9) ·101 3.9(3.9) ·102

0 0 2.5(2.5) ·10°6 2.5(2.5) ·10°6

P
Aeff / jet 0 0 2.9(2.9) ·10°1 2.9(3.3) ·10°2

Table A.4: Effective area in m2 per shower and per jet for 1014 eV showers at 2 km altitude.

1014.5 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
0 0 5.1(5.3) ·100 0

0 0 1.6(1.7) ·10°3 0

36 GeV/c
1.1(0.4) ·102 8.2(4.8) ·101 1.2(0.5) ·102 1.0(0.5) ·102

2.3(0.9) ·10°3 1.8(1.0) ·10°3 2.7(1.1) ·10°3 2.3(1.0) ·10°3

48 GeV/c
1.4(1.4) ·101 4.5(4.7) ·100 3.1(1.8) ·101 1.2(0.7) ·101

3.9(4.0) ·10°5 1.3(1.4) ·10°5 9.0(5.3) ·10°5 3.4(2.1) ·10°5

60 GeV/c
5.1(3.6) ·101 4.4(4.5) ·101 1.4(0.6) ·102 7.5(3.4) ·101

3.1(2.2) ·10°5 2.7(2.7) ·10°5 8.2(3.8) ·10°5 4.6(2.1) ·10°5

P
Aeff / jet 2.3(0.9) ·10°3 1.8(1.0) ·10°3 4.4(2.0) ·10°3 2.4(1.0) ·10°3

Table A.5: Effective area in m2 per shower and per jet for 1014.5 eV showers at 2 km altitude.
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1015 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
4.1(2.4) ·101 2.4(1.7) ·101 3.6(3.6) ·101 3.1(3.1) ·101

4.1(2.4) ·10°2 2.4(1.7) ·10°2 3.6(3.6) ·10°2 3.1(3.1) ·10°2

36 GeV/c
1.2(0.7) ·102 7.5(4.4) ·101 7.9(4.0) ·101 5.7(2.9) ·101

1.0(0.6) ·10°2 6.3(3.7) ·10°3 6.6(3.4) ·10°3 4.8(2.5) ·10°3

48 GeV/c
1.6(0.5) ·102 9.1(3.1) ·101 1.8(0.5) ·102 1.3(0.4) ·102

2.1(0.7) ·10°3 1.2(0.4) ·10°3 2.3(0.7) ·10°3 1.6(0.5) ·10°3

60 GeV/c
2.0(0.7) ·102 1.3(0.5) ·102 2.4(0.7) ·102 1.4(0.4) ·102

7.7(2.4) ·10°4 4.8(1.7) ·10°4 9.2(2.6) ·10°4 5.3(1.6) ·10°4

P
Aeff / jet 5.4(2.5) ·10°2 3.2(1.7) ·10°2 4.6(3.6) ·10°2 3.8(3.1) ·10°2

Table A.6: Effective area in m2 per shower and per jet for 1015 eV showers at 2 km altitude.

1015.5 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
5.6(8.0) ·10°1 0 1.2(1.3) ·101 6.8(7.0) ·100

1.6(2.2) ·10°3 0 3.5(3.5) ·10°2 1.9(2.0) ·10°2

36 GeV/c
2.5(1.8) ·101 6.8(5.2) ·100 2.1(1.5) ·101 1.2(1.3) ·101

6.2(4.5) ·10°3 1.7(1.3) ·10°3 5.2(3.8) ·10°3 3.1(3.2) ·10°3

48 GeV/c
6.8(7.0) ·100 3.9(4.2) ·100 9.6(7.1) ·100 4.5(3.0) ·100

3.2(3.4) ·10°4 1.9(2.0) ·10°4 4.6(3.4) ·10°4 2.2(1.5) ·10°4

60 GeV/c
7.8(4.6) ·101 3.2(2.3) ·101 7.3(3.7) ·101 2.9(1.5) ·101

1.1(0.6) ·10°3 4.5(3.2) ·10°4 1.0(0.5) ·10°3 4.1(2.1) ·10°4

72 GeV/c
1.4(0.5) ·102 5.3(2.0) ·101 9.4(3.6) ·101 3.8(1.5) ·101

6.4(2.2) ·10°4 2.5(0.9) ·10°4 4.4(1.7) ·10°4 1.8(0.7) ·10°4

P
Aeff / jet 9.2(5.0) ·10°3 2.3(1.4) ·10°3 4.2(3.5) ·10°2 2.3(2.0) ·10°2

Table A.7: Effective area in m2 per shower and per jet for 1015.5 eV showers at 2 km altitude.
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A.3 Effective areas for sea level

1014.5 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 & 24 GeV/c
0 0 0 0

0 0 0 0

36 GeV/c
1.1(0.8) ·101 5.6(5.9) ·100 4.8(4.8) ·101 4.4(4.5) ·101

2.4(1.7) ·10°4 1.2(1.3) ·10°4 1.1(1.1) ·10°3 1.0(1.0) ·10°3

∏ 48 GeV/c
0 0 0 0

0 0 0 0
P

Aeff / jet 2.4(1.7) ·10°4 1.2(1.3) ·10°4 1.1(1.1) ·10°3 1.0(1.0) ·10°3

Table A.8: Effective area in m2 per shower and per jet for 1014.5 eV showers at sea level.

1015 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 °° 36 GeV/c
0 0 0 0

0 0 0 0

48 GeV/c
4.6(4.6) ·101 4.3(4.4) ·101 7.7(5.5) ·101 6.2(4.4) ·101

6.0(6.0) ·10°4 5.6(5.7) ·10°4 1.0(0.7) ·10°3 8.1(5.8) ·10°4

60 GeV/c
8.9(5.2) ·101 3.8(2.2) ·101 1.3(0.6) ·102 7.5(3.4) ·101

3.4(2.0) ·10°4 1.4(0.8) ·10°4 5.0(2.3) ·10°4 2.9(1.3) ·10°4

72 GeV/c
5.8(3.4) ·101 4.8(2.8) ·101 4.6(2.7) ·101 4.3(3.1) ·101

6.4(3.7) ·10°5 5.3(3.1) ·10°5 5.1(3.0) ·10°5 4.8(3.4) ·10°5

P
Aeff / jet 1.0(0.6) ·10°3 7.5(5.8) ·10°4 1.6(0.7) ·10°3 1.1(0.6) ·10°3

Table A.9: Effective area in m2 per shower and per jet for 1015 eV showers at sea level.
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1015.5 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 & 24 GeV/c
0 0 0 0

0 0 0 0

36 GeV/c
3.0(3.0) ·101 2.5(2.5) ·101 3.2(3.2) ·101 3.2(3.2) ·101

7.5(7.5) ·10°3 6.2(6.3) ·10°3 7.9(7.9) ·10°3 7.9(7.9) ·10°3

48 GeV/c
5.6(8.0) ·10°1 0 2.4(2.5) ·101 6.2(6.5) ·100

2.7(3.8) ·10°5 0 1.2(1.2) ·10°3 3.0(3.1) ·10°4

60 GeV/c
1.2(0.6) ·102 9.6(5.6) ·101 9.8(7.0) ·101 7.6(5.4) ·101

1.7(0.9) ·10°3 1.3(0.8) ·10°3 1.4(1.0) ·10°3 1.1(0.8) ·10°3

72 GeV/c
3.2(1.9) ·101 1.4(0.8) ·101 1.2(0.7) ·102 9.8(5.7) ·101

1.5(0.9) ·10°4 6.3(3.9) ·10°5 5.5(3.2) ·10°4 4.6(2.7) ·10°4

84 GeV/c
4.8(2.5) ·101 2.0(1.2) ·101 2.1(1.1) ·101 6.2(6.5) ·100

8.7(4.5) ·10°5 3.6(2.2) ·10°5 3.7(2.0) ·10°5 1.1(1.2) ·10°5

P
Aeff / jet 9.5(7.8) ·10°3 7.6(6.4) ·10°3 1.1(0.8) ·10°2 9.7(8.0) ·10°3

Table A.10: Effective area in m2 per shower and per jet for 1015.5 eV showers at sea level.

1016 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 °° 36 GeV/c
0 0 0 0

0 0 0 0

48 GeV/c
0 7.3(7.6) ·100 2.3(2.5) ·100 1.7(1.9) ·100

0 1.2(1.2) ·10°3 3.6(4.0) ·10°4 2.7(3.1) ·10°4

60 GeV/c
0 0 0 5.6(8.0) ·10°1

0 0 0 2.4(3.4) ·10°5

72 GeV/c
0 0 0 0

0 0 0 0

84 GeV/c
1.7(1.9) ·100 1.1(1.4) ·100 5.6(8.0) ·10°1 5.6(8.0) ·10°1

1.0(1.2) ·10°5 7.0(8.5) ·10°6 3.5(5.0) ·10°6 3.5(5.0) ·10°6

P
Aeff / jet 1.0(1.2) ·10°5 1.2(1.2) ·10°3 3.6(4.0) ·10°4 3.0(3.1) ·10°4

Table A.11: Effective area in m2 per shower and per jet for 1016 eV showers at sea level.



B
Effective areas with the alternative method

See Appendix A for the description of the contents of the tables.

B.1 Effective areas for 4 km altitude

1014 eV, 4 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
1.5(1.5) ·101 1.2(1.2) ·101 5.6(5.6) ·100 1.7(1.8) ·100

2.6(2.6) ·10°1 2.0(2.0) ·10°1 9.5(9.5) ·10°2 2.9(2.9) ·10°2

24 GeV/c
1.1(0.5) ·102 8.7(4.4) ·101 1.3(0.5) ·102 7.8(3.5) ·101

9.0(4.1) ·10°3 7.1(3.6) ·10°3 1.0(0.4) ·10°2 6.3(2.9) ·10°3

36 GeV/c
6.2(3.6) ·101 5.0(2.9) ·101 1.0(0.4) ·102 6.5(3.0) ·101

2.7(1.6) ·10°4 2.1(1.2) ·10°4 4.4(1.7) ·10°3 2.8(1.3) ·10°4

48 GeV/c
3.1(0.8) ·102 2.3(0.6) ·102 4.0(0.9) ·102 3.0(0.7) ·102

1.4(0.4) ·10°4 1.0(0.3) ·10°4 1.8(0.4) ·10°4 1.3(0.3) ·10°4

60 GeV/c
4.2(1.2) ·102 3.4(2.4) ·102 4.2(1.2) ·102 3.3(0.9) ·102

2.7(0.8) ·10°5 2.2(0.6) ·10°5 2.7(0.8) ·10°5 2.1(0.6) ·10°5

P
Aeff / jet 2.7(2.6) ·10°1 2.1(2.1) ·10°1 1.1(1.0) ·10°1 3.6(2.9) ·10°2

Table B.1: Effective area in m2 per shower and per jet for 1014 eV showers at 4 km altitude.
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1014.5 eV, 4 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
2.3(0.7) ·102 1.8(0.6) ·102 1.5(0.6) ·102 1.1(0.4) ·102

7.0(2.2) ·10°2 5.6(1.8) ·10°2 4.5(1.7) ·10°2 3.3(1.3) ·10°2

36 GeV/c
5.9(1.2) ·102 4.8(1.0) ·102 6.0(1.2) ·102 4.3(0.9) ·102

1.3(0.3) ·10°2 1.1(0.2) ·10°2 1.3(0.3) ·10°2 9.5(2.0) ·10°3

48 GeV/c
8.8(1.6) ·102 7.3(1.3) ·102 8.5(1.4) ·102 6.3(1.1) ·102

2.6(0.4) ·10°3 2.1(0.4) ·10°3 2.5(0.4) ·10°3 1.8(0.3) ·10°3

60 GeV/c
1.3(0.2) ·103 1.1(0.2) ·103 1.3(0.2) ·103 9.6(1.4) ·102

7.9(1.1) ·10°4 6.7(1.0) ·10°4 7.7(1.1) ·10°4 5.9(0.8) ·10°4

P
Aeff / jet 8.6(2.2) ·10°2 7.0(1.8) ·10°2 6.1(1.7) ·10°2 4.5(1.3) ·10°2

Table B.2: Effective area in m2 per shower and per jet for 1014.5 eV showers at 4 km altitude.

1015 eV, 4 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
1.2(0.6) ·102 6.6(2.6) ·101 6.6(3.0) ·101 5.0(2.3) ·101

1.2(0.6) ·10°1 6.6(2.6) ·10°2 6.6(3.0) ·10°2 5.0(2.3) ·10°2

36 GeV/c
4.1(1.1) ·102 2.8(0.8) ·102 2.8(0.8) ·102 1.8(0.5) ·102

3.4(0.9) ·10°2 2.4(0.7) ·10°2 2.3(0.7) ·10°2 1.5(0.4) ·10°2

48 GeV/c
3.3(0.8) ·102 2.4(0.6) ·102 2.5(0.6) ·102 1.6(0.4) ·102

4.3(1.0) ·10°3 3.1(0.7) ·10°3 3.3(0.8) ·10°3 2.1(0.6) ·10°3

60 GeV/c
1.2(0.2) ·103 9.1(1.4) ·102 9.2(1.5) ·102 6.5(1.2) ·102

4.6(0.7) ·10°3 3.4(0.5) ·10°3 3.5(0.6) ·10°3 2.5(0.4) ·10°3

P
Aeff / jet 1.6(0.6) ·10°1 9.7(2.7) ·10°2 9.6(3.1) ·10°2 7.0(2.3) ·10°2

Table B.3: Effective area in m2 per shower and per jet for 1015 eV showers at 4 km altitude.
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B.2 Effective areas for 2 km altitude

1014 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 1.6(1.6) ·101 5.1(5.3) ·100

0 0 2.8(2.8) ·10°1 8.6(9.1) ·10°2

24 GeV/c
2.9(2.1) ·101 1.4(1.0) ·101 2.3(2.5) ·100 0
2.3(1.7) ·10°3 1.1(0.8) ·10°3 1.8(2.0) ·10°4 0

36 GeV/c
5.6(8.0) ·10°1 5.6(8.0) ·10°1 0 0
2.4(3.4) ·10°6 2.4(3.4) ·10°6 0 0

48 GeV/c
7.9(4.6) ·101 5.7(3.4) ·101 9.3(4.7) ·101 6.9(3.5) ·102

3.5(2.1) ·10°5 2.6(1.5) ·10°5 4.2(2.1) ·10°5 3.1(1.6) ·10°5

60 GeV/c
4.5(3.2) ·101 4.2(3.0) ·101 5.3(3.1) ·101 4.3(2.5) ·102

2.9(2.1) ·10°6 2.7(1.9) ·10°6 3.4(2.0) ·10°6 2.8(1.6) ·10°6

P
Aeff / jet 2.3(1.7) ·10°3 1.1(0.8) ·10°3 2.8(2.8) ·10°1 8.6(9.1) ·10°2

Table B.4: Effective area in m2 per shower and per jet for 1014 eV showers at 2 km altitude.

1014.5 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0
0 0 0 0

24 GeV/c
5,6(5.9) ·100 5.6(5.9) ·100 1.4(1.0) ·101 9.6(7.1) ·100

1.7(1.8) ·10°3 1.7(1.8) ·10°3 4.2(3.1) ·10°3 3.0(2.2) ·10°3

36 GeV/c
1.2(0.5) ·102 1.1(0.5) ·102 1.4(0.6) ·102 1.2(0.5) ·102

2.7(1.1) ·10°3 2.4(1.2) ·10°3 3.0(1.2) ·10°3 2.7(1.1) ·10°3

48 GeV/c
7.1(3.2) ·101 5.2(2.4) ·101 7.4(3.4) ·101 5.6(2.6) ·101

2.1(0.9) ·10°4 1.5(0.7) ·10°4 2.2(1.0) ·10°4 1.6(0.7) ·10°4

60 GeV/c
2.5(0.8) ·102 1.9(0.6) ·102 3.0(0.9) ·102 1.9(0.5) ·101

1.5(0.5) ·10°4 1.2(0.4) ·10°4 1.8(0.5) ·10°4 1.2(0.3) ·10°4

72 GeV/c
1.3(0.5) ·102 8.2(3.2) ·101 1.9(0.6) ·102 1.1(0.4) ·101

2.2(0.9) ·10°5 1.4(0.5) ·10°5 3.2(1.0) ·10°5 1.9(0.6) ·10°5

P
Aeff / jet 4.8(2.1) ·10°3 4.4(2.2) ·10°3 7.6(3.3) ·10°3 6.0(2.5) ·10°3

Table B.5: Effective area in m2 per shower and per jet for 1014.5 eV showers at 2 km altitude.
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1015 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
4.6(2.7) ·101 3.7(2.2) ·101 3.6(3.6) ·101 3.4(3.4) ·101

4.6(2.7) ·10°2 3.7(2.2) ·10°2 3.6(3.6) ·10°2 3.4(3.4) ·10°2

36 GeV/c
1.3(0.7) ·102 8.3(4.2) ·101 9.0(4.1) ·101 6.3(2.9) ·101

1.1(0.6) ·10°2 7.0(3.5) ·10°3 7.6(3.4) ·10°3 5.3(2.4) ·10°3

48 GeV/c
2.5(0.8) ·102 1,7(0.6) ·102 2.0(0.6) ·102 1.6(0.5) ·102

3.3(1.0) ·10°3 2.3(0.7) ·10°3 2.6(0.8) ·10°3 2.0(0.6) ·10°3

60 GeV/c
2.4(0.7) ·102 1.6(0.5) ·102 2.1(0.6) ·102 1.2(0.3) ·102

9.0(2.6) ·10°4 6.1(1.8) ·10°4 8.1(2.2) ·10°4 4.4(1.3) ·10°4

72 GeV/c
3.9(0.9) ·102 2.9(0.7) ·102 3.6(0.8) ·102 2.5(0.7) ·102

4.3(1.0) ·10°4 3.2(0.8) ·10°4 3.9(0.9) ·10°4 2.7(0.7) ·10°4

P
Aeff / jet 6.1(2.8) ·10°2 4.7(2.2) ·10°2 4.7(3.6) ·10°2 4.2(3.4) ·10°2

Table B.6: Effective area in m2 per shower and per jet for 1015 eV showers at 2 km altitude.

1015.5 eV, 2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0

0 0 0 0

24 GeV/c
1.5(1.5) ·101 1.5(1.5) ·101 1.0(1.0) ·101 7.9(8.2) ·100

4.2(4.3) ·10°2 4.1(4.2) ·10°2 2.8(2.9) ·10°2 2.2(2.3) ·10°2

36 GeV/c
3.8(2.7) ·101 1.9(1.4) ·101 2.0(1.4) ·101 1.6(1.7) ·101

9.4(6.8) ·10°3 4.8(3.5) ·10°3 4.9(3.6) ·10°3 4.1(4.1) ·10°3

48 GeV/c
7.9(8.2) ·100 3.4(3.6) ·100 1.1(0.8) ·101 4.5(3.0) ·100

3.8(3.9) ·10°4 1.6(1.7) ·10°4 5.4(4.0) ·10°4 2.2(1.5) ·10°4

60 GeV/c
8.1(4.7) ·101 3.7(2.6) ·101 6.5(3.3) ·101 2.3(1.2) ·101

1.1(0.7) ·10°3 5.1(3.7) ·10°4 9.1(4.6) ·10°4 3.2(1.7) ·10°4

72 GeV/c
1.4(0.5) ·102 5.6(2.1) ·101 1.1(0.4) ·102 4.6(1.8) ·101

6.7(2.6) ·10°4 2.6(1.0) ·10°4 5.0(1.9) ·10°4 2.1(0.8) ·10°4

P
Aeff / jet 5.4(4.4) ·10°2 4.7(4.2) ·10°2 3.5(2.9) ·10°2 2.7(2.3) ·10°2

Table B.7: Effective area in m2 per shower and per jet for 1015.5 eV showers at 2 km altitude.
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B.3 Effective areas for sea level

1014.5 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 & 24 GeV/c
0 0 0 0
0 0 0 0

36 GeV/c
3.2(2.3) ·101 1.7(1.2) ·101 4.5(4.5) ·101 2.6(2.6) ·101

6.9(5.0) ·10°4 3.7(2.7) ·10°4 1.0(1.0) ·10°3 5.7(5.8) ·10°4

48 GeV/c
1.1(1.2) ·101 1.1(1.2) ·101 1.3(1.3) ·101 1.2(1.2) ·101

3.3(3.3) ·10°5 3.3(3.3) ·10°5 3.8(3.8) ·10°5 3.4(3.5) ·10°5

60 GeV/c
1.5(1.5) ·101 1.5(1.5) ·101 1.9(1.4) ·101 1.6(1.6) ·101

8.9(9.0) ·10°6 8.9(9.0) ·10°6 1.1(0.8) ·10°5 9.6(9.7) ·10°6

72 GeV/c
0 0 0 0
0 0 0 0

P
Aeff / jet 7.3(5.0) ·10°4 4.1(2.7) ·10°4 1.0(1.0) ·10°3 6.1(5.8) ·10°4

Table B.8: Effective area in m2 per shower and per jet for 1014.5 eV showers at sea level.

1015 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 GeV/c
0 0 0 0
0 0 0 0

24 GeV/c
5.6(8.0) ·10°1 0 0 0
5.6(8.0) ·10°4 0 0 0

36 GeV/c
0 0 0 0
0 0 0 0

48 GeV/c
7.3(5.2) ·101 7.3(4.2) ·101 9.0(5.2) ·101 7.3(4.3) ·101

9.4(6.7) ·10°4 9.4(5.5) ·10°4 1.2(0.7) ·10°3 9.5(5.6) ·10°4

60 GeV/c
1.7(0.8) ·102 1.2(0.5) ·102 1.3(0.5) ·102 7.7(3.2) ·101

6.5(2.9) ·10°4 4.5(2.0) ·10°4 5.0(2.0) ·10°4 2.9(1.2) ·10°4

72 GeV/c
7.5(3.1) ·101 7.1(3.0) ·101 7.2(3.7) ·101 7.1(3.6) ·101

8.3(3.5) ·10°5 7.9(3.3) ·10°5 7.9(4.0) ·10°5 7.8(4.0) ·10°5

P
Aeff / jet 2.2(1.1) ·10°3 1.5(0.6) ·10°3 1.8(0.7) ·10°3 1.3(0.6) ·10°3

Table B.9: Effective area in m2 per shower and per jet for 1015 eV showers at sea level.
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1015.5 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 & 24 GeV/c
0 0 0 0

0 0 0 0

36 GeV/c
3.2(3.2) ·101 3.1(3.1) ·101 3.1(3.1) ·101 3.1(3.1) ·101

7.9(7.9) ·10°3 7.7(7.8) ·10°3 7.7(7.8) ·10°3 7.7(7.8) ·10°3

48 GeV/c
5.6(8.0) ·10°1 0 2.0(2.0) ·101 1.0(1.0) ·100

2.7(3.8) ·10°5 0 9.5(9.6) ·10°4 4.9(5.0) ·10°4

60 GeV/c
1.1(0.7) ·102 9.5(5.5) ·101 9.7(7.0) ·101 8.1(5.8) ·101

1.6(0.9) ·10°3 1.3(0.8) ·10°3 1.4(1.0) ·10°3 1.1(0.8) ·10°3

72 GeV/c
1.0(0.5) ·102 8.2(4.2) ·101 1.1(0.6) ·102 9.4(5.4) ·101

4.8(2.2) ·10°4 3.9(2.0) ·10°4 5.2(3.0) ·10°4 4.4(2.5) ·10°4

84 GeV/c
6.8(3.1) ·101 3.7(1.9) ·101 2.1(1.2) ·101 1.7(1.0) ·101

1.2(0.6) ·10°4 6.7(3.4) ·10°5 3.7(2.2) ·10°5 3.0(1.8) ·10°5

P
Aeff / jet 1.0(0.8) ·10°2 9.5(7.8) ·10°3 1.1(0.8) ·10°2 9.8(7.9) ·10°3

Table B.10: Effective area in m2 per shower and per jet for 1015.5 eV showers at sea level.

1016 eV, 0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

12 °° 36 GeV/c
0 0 0 0

0 0 0 0

48 GeV/c
0 1.1(0.8) ·101 5.6(8.0) ·10°1 2.8(3.1) ·100

0 1.8(1.3) ·10°3 1.0(1.3) ·10°4 4.5(4.9) ·10°4

60 GeV/c
0 0 0 5.6(8.0) ·10°1

0 0 0 2.4(3.4) ·10°5

72 GeV/c
0 0 0 0

0 0 0 0

84 GeV/c
1.1(1.4) ·100 5.6(8.0) ·10°1 1.1(1.4) ·100 0

7.0(8.5) ·10°6 3.5(4.9) ·10°6 7.0(8.5) ·10°6 0
P

Aeff / jet 7.0(8.5) ·10°6 1.8(1.3) ·10°3 1.1(1.3) ·10°4 4.7(4.9) ·10°4

Table B.11: Effective area in m2 per shower and per jet for 1016 eV showers at sea level.



C
Simulated jet rates

The simulated observational jet rates are tabulated per altitude. The altitude is depicted in
the upper left corner of each table. In the upper row are the array types. In the first column are
the shower energies. For each array type and energy the upper and lower number are the jet
rates obtained with the original method and the alternative method respectively. The final row
shows the energy sum of the jet rates, also with the upper and lower number for the original
method and the alternative method respectively. The statistical uncertainties are in brackets.

4 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

1013.5 eV
0 0 0 0

0 0 0 0

1014.0 eV
1.1(1.1) ·103 9.5(9.9) ·102 5.2(3.8) ·102 4.7(6.1) ·101

1.3(1.2) ·103 9.9(9.9) ·102 5.2(4.7) ·102 1.7(1.4) ·102

1014.5 eV
5.4(2.3) ·101 4.0(1.6) ·101 6.8(2.8) ·101 4.5(1.9) ·101

1.1(0.3) ·102 8.8(2.3) ·101 7.7(2.1) ·101 5.7(1.6) ·101

1015.0 eV
3.0(1.1) ·101 1.5(0.4) ·101 2.2(0.7) ·101 1.4(0.5) ·101

3.6(1.4) ·101 2.2(0.6) ·101 2.2(0.7) ·101 1.6(0.5) ·101

P
jet rates

1.2(1.1) ·103 1.0(1.0) ·103 6.1(3.8) ·102 1.1(0.6) ·102

1.4(1.2) ·103 1.1(1.0) ·103 6.2(4.7) ·102 2.4(1.4) ·102

Table C.1: Observational jet rates per year at 4 km altitude.
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2 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

1014.0 eV
0 0 2.7(2.7) ·102 2.7(3.1) ·101

2.2(1.6) ·100 1.0(0.8) ·100 2.6(2.6) ·102 8.1(8.6) ·101

1014.5 eV
1.7(0.7) ·100 1.3(0.7) ·100 3.2(1.5) ·100 1.7(0.7) ·100

3.5(1.5) ·100 3.2(1.6) ·100 5.5(2.4) ·100 4.4(1.8) ·100

1015.0 eV
9.7(4.5) ·100 5.8(3.1) ·100 8.3(6.5) ·100 6.8(5.6) ·100

1.1(0.5) ·101 8.4(4.0) ·100 8.4(6.5) ·100 7.5(6.1) ·100

1015.5 eV
2.3(1.3) ·10°1 5.9(3.6) ·10°2 1.1(0.9) ·100 5.9(5.1) ·10°1

1.4(1.1) ·100 1.2(1.1) ·100 9.0(7.4) ·10°1 6.9(5.9) ·10°1

P
jet rates

1.2(0.5) ·101 7.2(3.2) ·100 2.8(2.7) ·102 3.6(3.2) ·101

1.8(0.6) ·101 1.4(0.5) ·101 2.7(2.6) ·102 9.4(8.6) ·101

Table C.2: Observational jet rates per year at 2 km altitude.

0 km 1£1 1£1 alt.
p

2£
p

2
p

2£
p

2 alt.

1014.5 eV
3.2(2.3) ·10°2 1.6(1.7) ·10°2 1.5(1.5) ·10°1 1.3(1.3) ·10°1

9.7(6.6) ·10°2 5.4(3.6) ·10°2 1.3(1.3) ·10°1 8.1(7.7) ·10°2

1015.0 eV
9.5(5.7) ·10°2 7.1(5.5) ·10°2 1.5(0.7) ·10°1 1.0(0.6) ·10°1

2.1(1.0) ·10°1 1.4(0.6) ·10°1 1.7(0.7) ·10°1 1.2(0.6) ·10°1

1015.5 eV
1.8(1.5) ·10°1 1.4(1.2) ·10°1 2.1(1.5) ·10°1 1.8(1.5) ·10°1

1.9(1.5) ·10°1 1.8(1.5) ·10°1 2.1(1.5) ·10°1 1.8(1.5) ·10°1

1016.0 eV
2.3(2.8) ·10°5 2.8(2.8) ·10°3 8.4(9.3) ·10°4 7.0(7.2) ·10°4

1.6(2.0) ·10°5 4.2(3.0) ·10°3 2.6(3.0) ·10°4 1.1(1.1) ·10°3

P
jet rates

3.1(1.6) ·10°1 2.3(1.3) ·10°1 5.1(2.2) ·10°1 4.1(2.1) ·10°1

5.0(1.9) ·10°1 3.7(1.7) ·10°1 5.1(2.1) ·10°1 3.8(1.8) ·10°1

Table C.3: Observational jet rates per year at sea level.



Samenvatting

Kosmische straling bestaat uit deeltjes, voornamelijk atoomkernen, die uit de ruimte komen.
In de dampkring botsen ze met de atomen in de lucht. Daarbij ontstaan vele, soms zelfs hon-
derden, secondaire deeltjes die op hun beurt ook weer kunnen botsen. Het gevolg is een lawine
van deeltjes in de atmosfeer: de cosmic air shower. Bij elke botsing wordt de energie per deeltje
steeds kleiner. Als de energie van een deeltje onder een bepaalde grenswaarde komt, verliest
het deeltje zijn energie voornamelijk aan de ionisatie van luchtatomen en raakt het verloren
voor de lawine. Dit heeft tot gevolg dat het aantal deeltjes van de lawine op een bepaalde
hoogte een maximum bereikt om daarna weer af te nemen. Deze ontwikkeling kan worden
beschreven met modellen van uiteenlopende complexiteit. Als de energie van het primaire kos-
mische deeltje voldoende groot is, kunnen lawinedeeltjes het aardoppervlak bereiken. Uit de
voetafdruk daarvan kan de energie van het kosmische deeltje worden gereconstrueerd.

Kosmische lawines kunnen worden onderzocht met het HiSPARC (High School Project on
Astrophysics Research with Cosmics). Het HiSPARC experiment heeft twee doelen. Enerzijds
is het bedoeld om promovendi, leraren in onderzoek en studenten kosmische straling te laten
onderzoeken. Anderzijds is het bedoeld om leerlingen in het voortgezet onderwijs deel te laten
nemen aan wetenschappelijk onderzoek. De detectoren van HiSPARC zijn scintillatorplaten.
Als er lawinedeeltjes doorheen gaan wordt een signaal afgegeven. Niet alleen de grootte, maar
ook het tijdstip van het signaal wordt geregistreerd. Aan de hand van de aankomsttijden in
verschillende detectoren kan de richting van het kosmische deeltje worden gereconstrueerd.
Daarvoor zijn verschillende methoden ontwikkeld voor de verschillende situaties. Tevens is
een methode ontwikkeld voor de reconstructie van het centrum van de lawine, in het bijzonder
voor de situatie dat het centrum zich niet tussen de stations bevindt.

Kosmische deeltjes komen minder vaak voor naarmate ze een hogere energie hebben. De flux
als functie van de energie is voor een aantal energieën op twee manieren bepaald. De ene
manier is op basis van frequenties van showers van een bepaalde grootte. Deze werkt het best
voor relatief kleine energieën waarvoor de frequenties groot zijn. De andere manier is door van
elke shower de energie te reconstrueren. Voor beide manieren komt de door HiSPARC gemeten
flux redelijk overeen met die van andere observatoria.

In deeltjesversnellers is waargenomen dat bij energierijke botsingen er botsingsproducten (deel-
tjes) zijwaarts bewegen ten opzichte van de richting waarin de oorspronkelijke deeltjes tegen
elkaar aanbotsten. Soms hebben de zijwaarts bewegende deeltjes min of meer dezelfde richting.
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230 Samenvatting

Er is dan sprake van een bundel van deeltjes: de jet. Jets treden ook op als een kosmisch deel-
tje een sterke wisselwerking aangaat met een kern van een luchtatoom. Bij zeer energetische
kosmisch deeltjes kan de botsingsenergie vele malen hoger zijn dan die in deeltjesversnellers.
Als de energie van de jet in een kosmische lawine groot genoeg is, kan het leiden tot een lokale
fluctuatie van de dichtheid van lawinedeeltjes op het observatieniveau. De vraag is in hoeverre
die fluctuaties onderscheiden kunnen worden van toevallige fluctuaties. Dat is onderzocht met
computersimulaties.

De computersimulaties zijn uitgevoerd voor de situatie waarbij duizenden detectoren naast
elkaar staan opgesteld op bijvoorbeeld een voetbalveld. Het resultaat van die simulaties is dat
men zo’n duizend jets per jaar zou kunnen observeren als de detectoren op 4 km hoogte staan.
Deze waarde komt overeen met wat op die hoogte ook wordt waargenomen. Op 2 km hoogte
wordt dat aantal tien tot honderd keer zo klein afhankelijk van de detector afmetingen. Op
zeeniveau kan men waarschijnlijk minder dan één jet per jaar observeren die het gevolg is van
de botsing van het kosmische deeltje in de atmosfeer. Echter, de deeltjes die bij de eerste bot-
sing ontstaan kunnen op hun beurt ook weer botsen en daar kunnen dus ook jets bij ontstaan.
De kans hierop is groter voor showers met veel energie en dat zijn juist de showers waarvan
voldoende deeltjes het zeeniveau bereiken. Als we deze ‘secondaire’ jets meetellen, dan kan
men mogelijk enkele honderden jets per jaar observeren op zeeniveau. Let wel, als er slechts
een stuk of tien detectoren staan opgesteld op een klein veldje, dan daalt dit aantal tot nog
maar enkele per jaar.

Tenslotte zijn de HiSPARC-meetgegevens van de stations in Science Park Amsterdam gea-
nalyseerd. Daarbij zijn twee stations die tegen elkaar aan liggen beschouwd als het gedeelte
waarin naar jet-fluctuaties wordt gekeken. Vanwege het geringe oppervlak van dit gedeelte
is de kans op een jet-fluctuatie extreem klein. Ze zijn dan ook niet gevonden. Zelfs voor een
grote fluctuatie is het twijfelachtig om die aan een jet toe te schrijven omdat er met zo weinig
stations geen zekerheid is omtrent de positie van het centrum van de lawine. Bovendien is het
verband tussen de waarnemingsgegevens van een fluctuatie en de kinematische eigenschappen
van de jet die de fluctuatie heeft veroorzaakt vrij onzeker. Eenvoudig gesteld: jets kun je wel
detecteren, maar je kan er weinig van leren. Gezien dit slechte verband en gezien het geringe
aantal verwachte jet-observaties is een investering in een groot aantal detectoren op zeeniveau
uitsluitend ten behoeve van jet onderzoek niet erg zinvol.
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Dankwoord

De aanloop naar dit proefschrift begon eigenlijk al op 1 augustus 2009. Op het Nikhef bij de
afdeling HiSPARC begon ik als leraar in onderzoek (LIO), op basis van één dag per week, mij in
te lezen in een onderwerp waar ik op dat moment nagenoeg niets van wist: kosmische straling
en de lawines van deeltjes die daardoor in de dampkring worden veroorzaakt. Geboeid door
het onderwerp ging ik er al snel meer tijd in stoppen dan die ene dag per week. Bovendien
kreeg ik de vrijheid om me te richten op de meer wiskundige aspecten; ik was immers bijna
twintig jaar eerder overgestapt van leraar Natuurkunde naar leraar Wiskunde. Het beviel mij
uitstekend en ik was dan ook verheugd dat ik het schooljaar daarop weer LIO mocht zijn. Er
werd een onderzoeksvoorstel ‘Jets in cosmic air showers’ gedaan voor een promotiebeurs voor
leraren. Eind 2011 werd de beurs toegekend waarmee ik gedurende de schooljaren 2012 tot
en met 2016 twee dagen per week van lesgeven zou worden vrijgehouden om onderzoek kon
verrichten. Bob wil ik bedanken voor het feit dat hij mij op een promotietraject heeft gezet.

Ondanks dat ik in de drie aanloopjaren als LIO al behoorlijk wat onderzoek had gedaan,
had ik toch enigszins mijn twijfels over de toereikendheid van die twee dagen. Door mijn aan-
stellingsomvang op school wat te verlagen heb ik er effectief drie dagen van gemaakt. Dat
betekent niet dat het onderzoek tot drie werkdagen per week beperkt bleef. Vrijwel alle school-
vakanties zijn besteed aan onderzoek. Voorzover tijd en energie het toelieten werkte ik ook ’s
avonds en in het weekend, zoals een reguliere promovendus dat ook doet. Dat het uiteindelijk
heeft het geresulteerd in dit proefschrift is niet het resultaat van alleen mijn inspanningen.
Het is zeker ook te danken aan de hulp die mij daarbij is geboden.

Vlak voor het promotieonderzoek aanving werd mij geadviseerd om over te stappen op een
Apple. Dat was een goed advies, maar het was ook wel ‘even wennen’. Met name bij instal-
leren van wetenschappelijke software deden zich soms lastige problemen voor. De toenmalige
promovendi David en Arne waren dan zeer behulpzaam. Het softwarepakket SAPPHiRE, voor-
namelijk het werk van David en Arne, was onmisbaar voor het onderzoek. David en Arne wil
ik bedanken voor al hun hulp. En Bon wil ik bedanken voor zijn hulp bij ROOT.

In de afgelopen jaren hebben veel LIO’s een bijdrage geleverd aan HiSPARC en daarmee
indirect ook aan mijn onderzoek. Met een aantal van hen heb ik een werkkamer gedeeld. De
LIO’s Niek, Wim, Machiel, Dorrith, Niels, Henk, Remon, Daniel, Sjoerd, Wytse, Paul, Rickie,
Matthijs, Norbert, Gilbert, Sabine, Tom en Gideon wil ik bedanken voor de samenwerking.

Tijdens mijn onderzoek was het mijn gewoonte om telkens schriftelijk rapportages aan het
HiSPARC team te sturen over een deelonderwerp wat ik had bestudeerd. Die rapportages
noemde Jos ‘pamfletten’. Het was de gewoonte van Jos om die pamfletten, en later het proef-
schrift, zo ongeveer per omgaande van uitgebreid commentaar te voorzien. Correcties konden
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zo snel worden aangebracht. Jos wil ik bedanken voor deze efficiënte begeleiding.
Sommige van mijn pamfletten zijn uitgegroeid tot manuscripten. Goede herinneringen heb

ik aan de sessies met Jan-Willem over de inhoud van die manuscripten. Met een scherp oog
voor detail en de helderheid van formuleringen zijn de manuscripten en dit proefschrift onder
de loep genomen. Zijn commentaar was altijd heel waardevol. Jan-Willem wil ik bedanken
voor al zijn inspanningen als promotor.

De eerste ruwe versie van mijn thesis was grotendeels een bundeling van pamfletten en
manuscripten. Aanwijzingen van Paul om de tekst te snoeien, te herschikken en waar nodig te
herschrijven zijn de presentatie in de thesis zeer ten goede gekomen. Dankzij de begeleiding
van Paul kwam er ook meer convergentie in het onderzoek. Paul wil ik bedanken voor zijn
bereidheid om promotor te zijn van een deeltijd-promovendus.

Zoals alles komt ook een thesis makkelijker tot stand naarmate de randvoorwaarden beter
zijn. Een goede randvoorwaarde is een eigen bureau in een werkkamer. Alle jaren heeft Nik-
hef mij daarvan voorzien. Een goede randvoorwaarde is de medewerking van de middelbare
school. Het Oostvaarders College heeft altijd medewerking verleend aan mijn ‘buitenschoolse
activiteiten’. Een goede randvoorwaarde is ook de financiering van het onderzoek door NWO
middels de promotiebeurs voor leraren. Alle personen en instanties die hebben bijgedragen
aan goede randvoorwaarden wil ik daarvoor bedanken.

De afgelopen jaren heb ik gemerkt dat het goed is om af en toe van gedachten te wisselen
over het onderzoek met iemand die geen ‘insider’ is. Met name gold dit voor de gesprekken
met mijn vriend en oud-studiegenoot Ron en mijn vriend en collega Rins. Ron en Rins wil ik
bedanken voor hun belangstelling voor het onderzoek en voor hun bereidheid om paranimf te
zijn.

Het is mijn echtgenote Daniële (†16-09-2016) en mijn dochters Jenny en Romy niet ontgaan
dat promotieonderzoek intensief en tijdrovend is. Regelmatig heb ik ‘social events’ aan mij
voorbij laten gaan. En bij de gelegenheden waar ik wel aanwezig was, was ik er soms geestelijk
niet bij. De gedachten dwaalden dan af naar bijvoorbeeld een wiskundig probleem dat ik nog
op wilde lossen. Zij zijn hiermee omgegaan als ware het een vanzelfsprekendheid.

Hans Montanus,
Augustus 2016
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