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I. INTRODUCTION 

In connection with a tentative proposal to 
build a pair of 100-m radius storage rings for 
the C E R N Proton Synchrotron, we have looked 
at the possibility of also storing electrons in 
these rings, and adapting the C.P.S. so that it 
is capable of accelerating them. If one is 
content with an electron energy of some four 
or five Gev, the main problem is that of the 
betatron oscillation antidamping caused by 
radiation. This antidamping in strong-focusing 
accelerators has already been studied in 
several papers1,2; we consider here how it 
depends upon the choice of beam position 
across the available horizontal aperture of the 
vacuum chamber. A fuller account has been 
given in an internal report3, which considers 
the numerical values for the C E R N case in 
detail, including the stochastic quantum effects. 

II. DAMPING RATES 

If one of the modes of oscillation has its 
amplitude damped like e-kt, we call k its 
damping rate. We shall use ks for the 
synchrotron oscillations, k1 and k2 for betatron 
oscillations in general, kn and kv for horizontal 
and vertical betatron oscillations. 
One may take from Robinson1 the following 

formulae:— 
ks+k1+k2 = 2 P/E always, (1) 
kv =½ P/E if there is no coupling 

between horizontal 
and vertical 
motion, (2) 

k8 = (2 — α/2)P/E if the principal orbit 
is isomagnetic. (3) 

From these there follows:— 
k h=-(½-α/2) P/E (4) 

if no coupling and principal orbit isomagnetic. 
Here P is the radiated power of one particle 
(energy radiated per unit time), E is the particle 
energy, α the momentum compaction factor. 
In a machine with field-free sections, no radiation 
and no damping occurs in them, so the 
formulae remain valid provided we take P to 
be the mean radiated power, and 

α = ∆R / 
∆p (5) α = R0 / p0 

(5) 

with R0 the bending radius within the magnets. 
From (1) and (3) we have 

k1+k2 = (α/2) (P/E), (6) 
and, if one could introduce enough coupling 
between the horizontal and vertical motion to 
make both betatron modes polarised at exactly 
±45°, one would have 

k1 = k2 = α/4 P/E. (7) 
In practice, the initial splitting between horizontal 
and vertical Q-values makes it difficult 
to obtain polarisations sufficiently close to 
±45°, and one mode is likely to be slightly 
more horizontal than vertical and to remain 
antidamped. It is therefore of interest to look 
for means of reducing ks below the value (3), 
so that a more substantial amount of damping 
is available for the betatron modes. 
It would be very interesting to be able to 

make:— 
ks = 1.5 P/E. (8) 

Then without coupling one would have:— 
kv = 0.5 P/E 

(9) 
kh = 0. 

This only just removes the horizontal antidamping, 
but it puts one into the position that 
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any horizontal-vertical coupling will ensure 
that all modes are damped, and coupling that 
swamps the original h/ν split by a modest 
factor like three or four will give one, very 
roughly, 

k1≈k2≈0.25 P/E. (10) 
The value (8) for ks is a somewhat arbitrary 
aim, but it seems fair to regard any trick or 
device that is capable of reducing ks to this 
value, or below, as a solution to the antidamp-
ing problem; while anything that does not 
reduce ks so much as this merely eases the 
tuning tolerances involved in the use of the 
coupling method. 
The most obvious way of achieving (8) is to 

put 
α = 1. (11) 

This almost certainly means Qh < 1, so the 
machine is a weak-focusing one at least in the 
horizontal plane, and we shall not discuss it 
further. 

III. DISPLACED EQUILIBRIUM ORBITS 

Another way of reducing the synchrotron 
oscillation damping rate is to use the wiggles 
of off-centre equilibrium orbits, which typically 
produce quite substantial changes in the orbit 
curvature. They can change the factor 
(2 — α/2) is (3), which comes from a first-order 
theory, valid only for the case where the oscil­
lations take place about the central (isomagnetic 
and circular, except in the field-free 
sectors) closed orbit, and where the wiggles 
can be and are neglected. A rough theory including 
the wiggles follows. 
Ignoring the wiggles, a particle moves along, 

or makes betatron oscillations about, an orbit 
at R0+∆R, with:— 

∆R/R0 = α∆p/p0; (12) 
this is the definition of α. We suppose the 
wiggles have a radial amplitude of 

a α R0 ∆p/p0. (13) 
These wiggles have M wavelengths per machine 
revolution, where M is the number of magnet 
periods. If we assume that they are sinusoidal:— 

∆R/R0 = α(l+ α sin M θ)∆p/po. (14) 
In a FOFDOD structure all closed orbits are 
straight and parallel in the field-free sections, 
so it is convenient to regard θ as a variable that 

changes by 2π/N (N is the number of magnet 
units, equal to 2M) in each magnet unit, and 
is constant in the straight sections. 
To first order in α ∆p/p0 (which is typically 

of the order of 10-3) the curvature C of such an 
orbit is C 0+∆C with:— 

∆C/C0= - α{1-α(M2-1) sin Mθ} ∆p/p0. 
(15) 
For the C.P.S. α(M2-1) is about 350, so the 
wiggles introduce much larger curvature 
changes than does the mean orbit shift. Some 
small higher-order terms are neglected in (15). 
The power P radiated by a particle of 

momentum p in a magnet field that produces a 
curvature C is proportional to 

p4 C2. (16) 
What we are interested in, however, is the 
energy loss per machine radian (or turn); for 
this can legitimately be averaged over θ, and 
the rf system, which replaces the mean energy 
loss, produces a certain energy gain per turn, 
not per unit time. We may use U to represent 
the radiated energy per radian. 
In the relativistic region, β = 1, one has 

dθ = c/R, (17) dt = c/R, (17) 

so that U is proportional to RP, and so to 
Rp4 C2 (18) 

Now we put U = U 0 + ∆ U , and (18) gives:— 
∆U/U0 = ∆R/R0+4∆p/p0+2∆C/C0+(∆C/C0)2. 
(19) 
Although we have worked, so far, only to first 
order in ∆ quantities, we include (∆C C0)2 in 
(19) because of the large value of α(M2 — 1). 
We shall retain terms like:— 

(α∆p/p0)2 α2 (M2-1)2, (20) 
while neglecting those like:— 

(∆p/P0)2, (21) 
and 

α(∆p/p0)2 α(M2-1). (22) 
From (19), (15) and (14), and to this approximation, 
one finds 
∆U/U 0={4-α+a α(2M2-1)sin M θ}∆p/p0 + 

α2 (M 2-1) 2 sin2 θ (α∆p/p0)2 (23) 
and averaged over θ this gives:— 

< 
∆U >θ = {4 - α} ∆p /P 0 + < U0 

>θ = {4 - α} ∆p /P 0 + 

½α2 a2 (M2 - 1)2 (∆ p/p0)2. (24) 
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For synchrotron oscillations that are small, 
but are centred on some finite ∆p, the quantity 
that determines their damping rate is the 
derivative of (24) with respect to ∆p/p0:— 

4-α + α2a2 (M2-1)2 ∆p/p0. (25) 
It can be shown, in a rather general way, that 
this is the ratio of the damping rate of the 
longitudinal phase-space to the radiation damping 
rate of the energy, so 

ks.= {2-α/2+½α2a2(M2-1)2 ∆p/p0} p/E. 
(26) 
For practical purposes this is more convenient 
in the form:— 

ks={2-α/2+αa2(M2-1)2/2R0·} P/E, 
(27) 

where represent the smoothed ∆R corresponding, 
(12), to ∆p. 
For = 0, these expressions agree with (3), 

but the new term enables us to give ks whatever 
value we like within limits set by the available 
width of the vacuum chamber. With the 
parameters of the C.P.S. one finds 

αa2(M2-1)2/2R0 = 32 m-1. (28) 
The assumption that the wiggles are sinusoidal 

is only approximate, but one can evidently 
generalise (24) to 

< 
∆U > = (4-α) ∆p/p0 + (b ∆p/p0)2, (29) < U0 

> = (4-α) ∆p/p0 + (b ∆p/p0)2, (29) 

where b is the relative root mean square curvature 
change associated with the wiggles, per 
unit ∆p/p0. For a given amplitude and 
periodicity a sine curve has almost the lowest 
possible root-mean-square curvature, so one 
must expect (28) to be a low estimate. With a 
little numerical work we can obtain a better 
estimate from the usual expression for the 
closed orbits in terms of circular and hyperbolic 
functions in the F and D sectors (or 
alternatively use the known Fourier expansion 
of these orbits4). In this way we have calculated 
for the C.P.S.: 

ks = {2-α/2+39} P/E, (30) 
where is expressed in metres. W e can, 
therefore, obtain the convenient value (8), of 
ks by putting the beam at 

=-12 mm. (31) 
From (1), (2), and (30), one finds that the 

available aperture of a machine is divided into 

four distinct regions. With the C.P.S. parameters:— 

(a) Almost all the outer half, >0.5 mm, is 
"forbidden": in this region ks is so big that 
no damping remains for the betatron 
oscillations. 

(b) For 0.4 m m > > - 12 m m there is 
damping available for the betatron modes, 
and they will both be damped if the 
coupling is adequate. "Adequate" coupling 
ranges from perfect coupling at 0.5 m m 
down to any coupling at all at —12 mm. 

(c) For - 12 m m > > - 51 m m all modes 
are damped, even without any coupling, 
but in the neighbourhood of —12 m m it is 
useful to have some coupling, for otherwise 
the horizontal betatron oscillations 
will be damped only very slowly. 

(d) From —51 m m to the aperture limit at 
—62 m m is "forbidden" because the 
synchrotron oscillations are antidamped. 

These results are illustrated by Fig. 1. 
It should be mentioned that these regions 

and limits apply to the synchronous orbit 

Fig. 1 Variation of damping rates with beam position 
across the aperture of the C.P.S. The line ks refers to 
the synchrotron oscillations, kh to the horizontal betatron 
oscillations without coupling, and k1 =k2 applies to 
both betatron modes if they are fully coupled. 
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position, not to instantaneous positions of the 
particles. If a damping rate varies in course 
of the oscillations, there seems to be no objection 
to working with its time-average, provided 
only that the fastest instantaneous antidamping 
rate is slow compared with the slowest 
oscillation rate. To be absolutely sure of this 
statement a higher-order theory or numerical 
computations are needed; but, if it is true, 
then one can consider holding the synchronous 
orbit at say —15±3 mm, and have 44 m m 
available for the sum of the betatron and synchrotron 
amplitudes. 
It could almost be argued that the numerical 

value, 39 m-1, appearing in (30) is just about 
ideal for accelerating electrons in the C.P.S. 
It makes the safe region (c) extend reasonably 
close to the center of the vacuum chamber, 
while still being wide enough to allow some 
space for beam manipulation. Up to say 3 Gev 
one can accelerate in the centre of the chamber, 
even with no coupling, without the radial 
antidamping being of any consequence. At 3 
Gev even with the highest likely injector 
energy, the Liouvillian damping has reduced 
the betatron and synchrotron amplitudes by 
factors exceeding two, so one can comfortably 
move the synchronous orbit inwards to ~ —15 
m m and accelerate on up to the limit set by 
available rf volts. 
The same properties seem also to be satis­

factory for the storage rings. The rather 
limited width of the safe region rules out 
stacking processes in which electrons are 
carried in buckets slowly across most of the 
aperture, but such processes are anyway not 
very interesting for particles that have substantial 
radiation loss and damping effects. 
However, it may be desirable to remove this 
restriction on the use of the horizontal aperture 
in order to have a more flexible machine. 
We consider means of doing so in the next 
section. 

IV. THE ADDITION OF SPECIAL MAGNETS 

One may add to a strong-focusing ring (for 
example in some of the field-free sectors) special 
magnets with alternations of sign, in the circumferential 
direction, sufficiently closely 
spaced that they have negligible effects on 

everything except the radiation rate. If they 
change the radial dependence of radiation rate 
in a suitable way, they will eliminate the 
horizontal betatron antidamping at the center 
of the chamber1, given in their absence by (4). 
In the light of the previous section it is convenient 
to regard such magnets as devices for 
moving or widening the existing safe region (c). 
The simplest type of special magnet is one 

that adds, to the radiation rate, a term linear 
in radial position. It is clear that this will add 
a constant term to ks and so slide the whole 
pattern of k values across the aperture without 
affecting the width of the safe region. To 
widen the safe region one would add another 
magnet or set of magnets which adds to the 
radiation rate a term proportional to — ∆R2. 
and so alters ks by a term linear in ∆R. 
As this second set of magnets is progressively 

energised, the whole pattern of k values 
expands horizontally about the centre of the 
aperture, so one gains in freedom of choice of 
beam position, but obviously loses progressively 
the possibility of altering the share-out 
of damping by moving the beam. They can be 
energised to the point where the safe region is 
infinitely wide and the k values are independent 
of ∆R, whereupon the share-out of damping 
can only be altered by changing the strength 
of the first set of magnets. 
We have estimated the amount of straight-section 

length that would be required for two 
such sets of magnets in a structure like that of 
the C.P.S., and find that a total of the order 
of four metres would be sufficient.3 

V. SUMMARY 
In a strong-focusing structure like that of the 

C E R N P.S., one could accelerate or store 
electrons without radiation antidamping by 
keeping the centre of the beam in a region a 
little inwards from the centre of the vacuum 
chamber. If it is desired to move or widen 
this safe region, this can be done by adding sets 
of special magnets in the straight-sections of 
the machine. 
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DISCUSSION 

E. D. COURANT: I would like to add a comment about the 
formula you have written there: ks(2 — α/2)P/E. I 
believe it is derived on the assumption that the radius 
of curvature is the same in the positive focusing and 
negative focusing magnets, and that both the scheme of 
moving the equilibrium orbit and the scheme of putting 
in special magnets will destroy that formula because 
the radii of curvature are different in the different 
focusing magnets. 

H. G. HEREWARD: Yes, that is right. This formula is 
valid for the case where the orbit consists of parts of 
a circle; there can be straight sections but there must 
not be regions of different nonzero curvature. The 
consequence, in my case, is that the formula is valid in 
the centre of the vacuum chamber but not for a radially 
displaced beam. Perhaps I should mention that the 
Frascati group has looked at the possibility of removing 
this antidamping. One of the things that 
they have considered is to make the defocusing magnets 
a little stronger, a little' greater in curvature, than the 
focusing magnets. Now, in my terminology, this 
corresponds to moving the beam over into the safe 
region and then moving the vacuum chamber as well. 
So, there is no real conflict of ideas here, but one should 
remember that the safe region does still remain of 
finite width unless something additional is done. 

H. D. BRUCK: Can you say a little more about the more 
fundamental fact that the sum of the three damping 
contants is something fixed? 

H. G. HEREWARD: I think one could write rather a lot 
on this subject. About all I would like to say is that 
several persons have looked at this problem, and in 
different ways, and found that this formula, 2 P/E 
for the sum of the damping rates, seems to arise, 
whatever type of structure you have and whatever 
way you calculate its properties. It does seem to 
arise from something fundamental about the damping 
process, but I don't know of a really simple proof that 
it is inevitable. 

H. D. BRUCK: I don't know the answer but it is an evolution 
of the disorder or entropy of the beam. And I 
think there is a thermodynamic reason for its value, 
but I don't know exactly the explanation. 

H. G. HEREWARD: I would be inclined to doubt that there 
are thermodynamic considerations involved here. 

This is entirely on a classical basis. We have said 
nothing about the quantum fluctuations and the associated 
stochastic antidamping. I think, rather, that 
this type of formula arises from some consideration of 
what happens to the multidimensional phase space 
involved if one takes the main motion and the three 
modes of oscillation together. As you know, if one 
has a complicated secular equation, it is easier to 
discover the sum of the roots than the roots individually 
and, in linear approximation, that is the way 
one calculates this formula. But I think it does go a 
little deeper than that—I think that one could probably 
obtain something of the sort by looking at the 
motion of the boundaries of an occupied region in the 
six-dimensional phase space. 

K. R. SYMON: I just wanted to comment, with respect to 
this formula, that it is not restricted to radiation 
damping but applies to any sort of damping process. 
If one attenuates the energy of the beam by letting it 
pass through a foil, one gets a similar formula and it 
can be obtained simply by writing down the correc­
tions to Liouville's theorem that arise from the 
damping process. 

H. G. HEREWARD: Yes, I think the calculation of what 
one has for deviation from Liouville's theorem is at 
the root of this and I imagine—I am just guessing now 
—that the only thing one needs to assume about the 
damping force, whether it is radiation or any other, 
is that it be directed in line with the orbit. 

H. O. WUSTER: I should like to ask Dr. Hereward if he 
has tried to see what the weakening of the damping 
of the synchronous oscillation means for the lifetime 
of the beam, for instance in a storage ring. There are 
quantum fluctuations in the synchronous oscillations 
which cause diffusion out of the phase stable region. 

H. G. HEREWARD: Yes, I have looked at that. The 
answer is that, for this reason, one doesn't like to give 
away too much of the synchrotron damping. This is 
partly why I said that one would like to reduce ks 
only to something like 1.5 P/E. Of course, you would 
have much more damping of the betatron oscillations 
if you were to cut this down still further. Another 
thing to be said in this connection is that one should 
choose the harmonic number of the machine not too 
high. One needs damping of the betatron oscillations 
to avoid radial loss at the chamber wall from the 
statistical fluctuations; but, in relation to the synchrotron 
oscillations, one must look at the available stable 
width rather than the vacuum-chamber width. By 
choice of a sufficiently low harmonic number one can 
obtain a reasonably wide bucket and then this sort 
of damping rate is not too bad. Perhaps I should 
mention that there is a CERN internal note (AR/ 
INT SR/61-15) which deals with these matters, including 
some consideration of the quantum effects. 
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