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FN-578 

ERRATA 

for 

HIGHER-ORDERMOMENTUMCOMPACTIONFORA 
SIMPLIFIED FODO LATTICE AND COMPARISON WITH 

SYNCH 

King-Yuen Ng 

Fermi National Accelerator Laboratory,* P. 0. Box 500, Batavia, IL 60510 

(October, 1997) 

The article, Higher-order Momentum Compaction for a Simplified FODO Lattice and 
Comparison with Synch, published as Fermilab-FN-578 in December of 1991, contains 

the following known typos: 

1. In Eq. (3.11) on page 7, the second “sin” on the second line should be “~0s”; or 

the correct equation should read 

[ 

QO rcos2+yanT+pam1+6] 
.b?J .s?js2+ 

1 --1.sin~+ycos~-po-?j6+pcos~]2=p2. (3.10) 

‘Operated by the Universities Research Association, Inc., under contract with the U.S. Department 
of Energy 



2. In Eq. (3.12) on page 7, the second “sin” on the second line should be “co?; or 

the correct equation should read 

1 @O xcos~ 
.eo .sqs2+ 

- ysm2+psm1+6 1 
1 

e. 6 Sijb = xsin2+ycosT-po-rj6+pcos---- 
1+6 1 = p2 (3.11) 

3. In Eq (3.13) on page 7, -ps has been left out in two occasions; or the correct 

equation should read 

s+ 
psln 1+6 1 

sqs 
-- pc0s~-fj6-p0 t=psin 1 S7jG 

l+s+ PCOS 1 S7j6 
--?/6-p, t, 
1+s 1 

(3.12) 

4. In Eq. (3.24) on page 9, B. should be 8:; or the correct equation should read 

(yo ~ es - ww 
s= . 

(3.23) 

5. Table II shown on page 13 is essentially the situation for 150 FODO cells. The 

correct Table II for 15 FODO cells is shown below: 

Note: For a discussion of the next higher order momentum-compaction factor os, please 

refer to Fermilab Internal Report Conf-96/370: K.Y. Ng, Reliability of cyi and CYZ from 
Lattice Codes, published in New Directions for High-Energy Physics, Snowmass 96, APS, 

p.233. The notations are slightly different in that article. The dispersion function has 

been denoted~by D instead. The higher-order momentum compaction factors oi, i 2 1 

there correspond to LYOCY~ here. Also, in the second paragraph of Section IIC, “half 

sextupole strength” should’read “half quadrupole strength.” 
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S SYNCH Theory Xfference 

0.001 1.00001 0.000 0.000 0.000 

0.010 1.00114 -0.001 0.000 -0.001 

0.020 1.00457 0.000 0.000 0.000 

0.040 1.01814 0.001 0.002 0.000 

0.060 1.04038 0.009 0.009 0.000 

0.080 1.07076 0.024 0.024 0.000 

0.080 1.10860 0.051 0.026 0.025 

0.120 1.15321 0.092 0.092 0.000 

0.140 1.20383 0.144 0.144 0.000 

0.160 1.25977 0.204 0.205 -0.001 

0.180 1.32036 0.272 0.273 -0.002 

0.200 1.38503 0.345 0.345 0.000 

0.250 1.56128 0.523 0.525 -0.002 

0.300 1.75354 0.689 0.691 -0.002 

0.350 1.95754 0.831 0.833 -0.002 

0.400 2.17040 0.950 0.953 -0.003 

0.450 2.39025 1.049 1.052 -0.003 

0.500 2.61582 1.133 1.136 -0.003 

0.550 2.84628 1.200 1.208 -0.008 

0.600 3.08108 1.268 1.271 -0.003 

0.650 3.31988 1.321 1.326 -0.005 

0.700 3.56247 1.371 1.377 -0.006 

0.750 3.80873 1.417 1.424 -0.007 

0.800 4.05865 1.465 1.468 -0.003 

0.850 4.31226 1.512 1.511 0.002 

0.900 4.56963 1.559 1.552 0.007 

0.950 4.83088 1.592 1.593 -0.002 

0.970 4.93651 1.610 1.610 0.000 

0.980 4.98957 1.615 1.618 -0.003 
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I. INTRODUCTION 

In a circular accelerator, particles with different momenta p have different closed- 

orbit lengths C which can be expanded around the momentum ~0 of the synchronous 

particle in the form’ 

C(p)=G[l tao~(l+%S)+‘~‘], (1.1) 

where Co is the orbit length of the synchronous particle and 

6=P-PO 
p,,’ (1.2) 

The linear coefficient cxO is called the momentum compaction, which determines the 

momentum of the synchronous particle when it crosses transition. The first nonlin- 

ear coefficient cxl determines when the off-momentum particles CIOSS transition. For 

example, when al = -3/2, all the off-momentum particles cross transition at the 

same time as the synchronous particle. 1 As a. result, there will not, be any distortion 

of the bunch in the longitudinal phase space. Beam loss c,an therefore be minimized 

if the momentum aperture is large enough and the effects due to space charge and 

other coupling impedances are under controlled. There has also been suggestion of 

storage rings running near transition, the so-called isochronous rings.’ There, most of 

the momentum compaction contribution comes from the nonlinear term. Thus, the 

knowledge of the value of LYE and its possible modification are ext,remely valuable for 

the performance of an accelerator. 

The calculation of ~1 for a, simplified lattice consisting of only FODO cells of thin 

quadrupoles and dipoles filling all spaces had been reported.3 However, when a check 

was made using the lattice code4 SYNCH, it was found that the SYNCH results were 

different5 from t,he values given by the derived analytic expression. The discrepancy 

even led some of us to believe that SYNCH might be wrong. 

Recently, careful review of the analytic derivation and detailed study of some 

CERN papers’ revealed that the derivation in Ref. 3 was not, complete because a 

wiggling term had not been included. This is a consequence of the fact that the 

off-momentum orbit is not always “parallel” to the designed orbit. In this paper, we 

derive the exact analytic formula for al in this simple FODO Lxttice and show that 

it agrees with the SYNCH results perfectly. 
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II. THE WIGGLING TERM 

In Fig. 1, a particle with momentum p at B travels an infinitesima vector of 

length de while the synchronous particle at A moves through an angle d& or a length 

ds along the designed orbit. The transverse displacement z is denoted by AB. The 

length element d& drawn “parallel” to or concentric with ds is given by 

de0 = da 1 t ; 
( 1 

where pO = ds/dl& is the radius of curvature of the designed orbit at A. Note that de 

and d&, are not the same, but are related by 

d& = decos XI + O(P) , (2.2) 

where z’ = dx/ds. The fractional difference in total closed-orbit length is obtained 

by the integration 

0 

Figure 1: Derivation of the niggling term and the differential equation for the mo- 

mentum dispersion function. 
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AC 
- = & J, [de - ds] 
CO 

Or with the aid of Eqs. (2.1) and (2.2), 

By introducing the momentum dispersion function 

1 podfl 1 

and expanding the cosine to second order in 6, we obtain 

$+q+o(b’) . 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

If we further expand the momentum dispersion function around p0 xcording to 

q = 70 t 716 t s(a’) , (2.7) 

and compare the result nit,h Eq. (l.l), we obtain finally 

(2.8) 

cxocq=&~ds(;+$) (2.9) 
The second term in Eq. (2.9) is called the wiggling term, whose presence is a result of 

t,he fact that the off-momentum orbit is not necessary “parallel” to or concentric with 

the designed orbit. Note that this derivation is also valid in the non-bending part of 

the ring where the radius of curvature p. = 0;). In that case the length elements d& 

and ds are equal and only the wiggling term contributes. The wiggling term has been 

neglected in Ref. 2 in the computation of cx1, which constitutes the main disagreement 

of the results from SYNCH. 

For a FODO cell, the dispersions at the F- and D-quadrupoles are respectively 

lie ~ eoeo(l t S/2) 

s= > 
ij, 5 b%(l - 5-P) 

s2 : 
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to lowest order in t&, the bending angle of a half-cell dipole. In the above, lo is the 

half-cell length and 

S=&, 
B’ 

~J / 
ds- , 

&PO 
(2.11) 

where the last integral is the integrated strength of a half-quadrupole. Note that S 

is also equal to the sine of the half-cell phase advance if the centrifugal focusing is 

neglected. Thus, we have roughly 

(2.12) 

showing that the contribution of the wiggling term to al is very appreciable. 

III. COMPUTATION OF MOMENTUM COMPACTION FACTOR 

1. Differential equation for momentum dispersion 

To compute t,he momentum compaction to first order in 6, we require the differ- 

ential equation for the momentum dispersion function 7 also to first order in 6. This 

equat,ion is complicated. For the FODO-cell lattice with thin quadrupoles, it reads 

where the prime is differentiation with respect to the distance along the designed 

orbit, a,nd 
B’ I 

K=- 
&PO ,d 

+ -“I 
~&PO Id 

q6+... (3.2) 

depicts the quadrupole field, sextupole field, etc., with B. representing the dipole 

bending field. Here, B’/Bo is positive (negative) f or an F-quadrupole (D-quadrupole). 

In Eq. (3.1), U(6*) has been neglected. This equation as well as the one accurate to 

all orders of 6 are derived in Appendix A. The solution of Eq. (3.1) in this simplified 

FODO cell and the eventual integrations of Eq. (2.9) f or each order of 6 are straight- 

forward but extremely tedious, if we wish to keep all orders of of the bending angle 

B. of the half-cell dipole. The latter is important when the accelerator ring is small. 

The tedious part is the solution through the dipole. In fact, the t,rajectory through 

the dipole is just the arc of a simple circle of known radius. It becomes difficult 
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in Eq. (3.1) because the coordinate system moves along the accelerator ring, or the 

coordinat,es are curvilinear.’ For this reason, we discard the differential equation and 

resort to a geometric method instead, where no solution of differential equation or in- 

tegration will be necessary. After we obtain the solution, we will check in Appendix B 

that Eq. (3.1) is indeed correct. 

2. The geometric approach 

Consider a half cell shown in Fig. 2. The half F-quadrupole is at FF’while the half 

D-quadrupole is at DD’. In between lies the dipole of bend angle 00. The designed 

orbit in the half cell is the arc FD and is of length to = po& with radius of curvature 

po, while the off-momentum closed orbit corresponding to 6 is the arc F’D’ and is of 

length I, radius of curvature p, and bend angle B = e/p. Passing through the thin 

half F-quadrupole, the off-momentum orbit acquires, according to t,he bending due 

to the Lorentz force, an angular change of 

Figure 2: Solution of momentum compaction factor in flat (non-curvilinear) coordi- 

nates. 
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B’j6 SI=/ 6 “d’=$jd~G=i,s, (3.3) 

where Eq. (2.11) has been used. The off-momentum orbit then turns through an 

angle 6’ inside the dipole and another 

Sij 6 
Ad, z -.-~ , 

e, It6 

through the half D-quadrupole to complete the half cell. In the above, the accents . 

and - have been used to represent, respectively, values at the F- and D-quadrupoles. 

The total angle turned is obviously Bo. Therefore, 

~=~,-gg. 

0 
(3.5) 

Since the two orbits are in the same dipole field, their radii of curvature are related 

by 

P = Po(l t 6) (34 

Combining Eqs. (3.4) to (3.6), we have for the two orbit lengths exactly 

e=eo[lT6(1-~~)] (3.7) 

With the expansions 

6 = 60 + +/IS t 0(6*) : 

ii = iio t rj,S + O(6’) , (34 

and comparison with Eq. (l.l), we arrive at 

(3.9) 
which are exact to all orders of Bo. We shall demonstrate in Appendix C that t,he 

differential equat,ion (3.1) for the momentum dispersion function also leads to these 

same expressions for (Y~ and CY~(Y~. 



3. Solution of dispersions at F- and D-quadrupoles 

The off-momentum closed orbit F’D’ is an arc of a circle with radius p = pO(l + 6). 

The equation of the arc contains only two constants plus 6 a.nd q. However, this arc 

is constrained by its positions and slopes at the dipole’s entrance and exit. Therefore 

the two constants together with rj and vj can be determined. 

Consider OF’ of Fig. 2 as the y-axis a,nd 0 the origin. The z-axis is on the dipole 

side of OF’. The point F’ is (0,~,,+$6) and the arc F’D’ is at an angle S<6/(1+6). 

The equation of the arc F’D’ is therefore given by 

[ 2 $ p sin _ 1t6 sljs 1 2 t 1 Y-po-ij6tPCos-~~ 1 2 = p2 (3.10) 

In the above, !, has been removed since we have simplified the notations by measuring 

all lengths in terms of it. Now rotate the z- and y-axes by an angle 00/Z so that the 

new y-axis passes through the center of the dipole. In terms of the new axes, the 

equation of the circular arc becomes 

&I e. S-776 a 
zcosT tysin-- lpsin-- 

2 1-S 1 
t 

e. do 
-z sin -5 + y sin Y - p0 - +S + p cos F:$ 1 

2 
= p2. (3.11) 

We can also start with OD’ as the y-axis. The angle at D’ is now SijS/(l + 6). The 

axes are then rotated in the opposite direction by &,/2 so that the equation of the 

arc F’D’ becomes 

Srj6 ’ 
asin~tysin~-pa-ijE+pCo~- It6 1 = p2 (3.12) 

Equations (3.10) and (3.11) are exactly the same because they describe the same arc 

F’D’. By equat,ing coefficients, we obtain 

S176 
pcOs 1+s 

_ - 66 1 t = psin z + [pcos 2 ~ “61 t , (3.13) 
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96 
tp sin __ 

SjS Srj6 SijS 

I+6 
+ pcos- - 

lt6 
+ 1 = -tpsin - 

1+6 pcoss-i16 1 , (3.14) 

PO - ii6 1 Z=p2sin2Si16 1-cg+ pcosp- 1 SrjS 
2 

I+6 
PO - ii6 1 , 

(3.15) 

where the notation t = tan 8,/Z has been used. Any two of the above equations will 

give us the exact solution of + and rj to all orders of 8, and 6. Since we are interested 

in solution up to the first order in 6 only, Eqs. (3.13) and (3.14) can be expanded and 

simplified to obtain for the zeroth order in 6, 

(: -l)(l::,)=(-: :)(1:tJ (3.16) 

and for the first order in 6, 

1 -t 

( )( se’ t 1 -coil - ; sy; ) = (-: 1) (-e,q,~~szJ (3.17) 

Solutions can now be obt.ained easily. For the zeroth order, one readily gets 

I 

$0 ~ lie = 2st 
sz t e: 

fjo + q. = 280 
s2te; : 

OI 

(3.18) 

(3.19) 

For the first order, we have 

1 

iI - il = -%;$F 

sV~e&;;~ t e:) 
(3.20) 

61 t il = 

Substituting Eqs. (3.18) and (3.20) into Eq. (3.9), we arrive at 

2.59 

8 
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and 
s4t(s2t2 t 38;) 

a' = (9 t ep[e,(s2 + e;) - 2.q 
(3.22) 

In the situation of a very large ring where 6’0 < S, the above expressions reduce to 

a0 -+ 
eo(l - sz/12) 

sz ’ 

%-;(;:;:;g . 
(3.23) 

(3.24) 

The value of al is plotted as a function of S in Fig. 3 for simplified FODO rings 

consisting of N = x/e, cells. We see that higher orders in f$ are indeed important 

for rings with a small number of cells. 

1.5 

1.0 

0.5 

0.0 

c f--/--7 2 
I q ” I I ” “I’ a c I”24 

No. of csus = - /- 

1, I I I I I I I 

0 0.2 0.4 0.6 0.8 1 

s = ~a,f quad Strength l Half Cell Length 

Figure 3: Plot of a, vs quadrupole strength for the simplified FODO lattice with 

different number of cells. 

IV. COMPARISON WITH RESULTS FROM SYNCH 

A lattice was setup as input to SYNCH containing N = 150 equal FODO cells. 

The half cell starts with a half F-quadrupole of length 5 x lo-’ m which is considered 
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negligible, a sector dipole of arc length & = 27r m, and a half D-quadrupole of the 

same length but opposite strength as the F-quadrupole. A value of S was read and 

the quadrupole strength was computed as S/&. The nominal momentum used was 

120 GeV/c. 

At an offset momentum p, the transition gamma y, is defined as 

P dC y;' = c dp 

With the aid of Eq. (l.l), it is easy to get 

Y,(P) = -r,o [l - (01 + ; -$) 6+ W] , 

where ytO is the transition gamma at nominal momentum po. Thus, 

1 4 Q, = --,.-’ -‘,F!. 
Y,, d6 2 2 

(4.1) 

The closed orbits for momentum offsets from 6 = -0.0001 to tO.0001 in steps 

of 0.0001 were computed by SYNCH and the transition gamma y, in each case was 

recorded. Momentum offsets of such small values were carefully chosen in order to 

ensure the st,ability of the lattice, especially when S or the focussing power of t,he 

quadrupoles is small. The derivative dy,/dS was obtained by using a 3.point centered 

formula. The quadrupole strength S was varied from 0.01 to 0.99. The o1 obtained 

is plotted in Fig. 4 together with the theoretical curve given by Eq. (3.22). From 

the plot, no deviations can be observed visually. If we look into the actual numerical 

values listed in Table I, we see that the agreement has been good up to 3 significant 

figures, except in the region where S is small. The typical value of -y, is 24 when 

S - 0.5 and the SYNCH results provide 5 figures aft,er the decimal point. However, 

the biggest varia,tion for 6 = fO.OOO1 is the last 3 figures after the decimal and much 

less when s is small. 

A similar test, was performed with a lattice consisting of only N = 15 FODO cells 

and all other parameter unchanged. Here, the lattice is less stable at big momentum 

offset. We again offset the momentum by 6 = fO.OOO1 and employed a 3.point 

centered formula to evaluate the derivative of y,. The results are plotted in Fig. 5 

and listed in Table II. The differences between the SYNCH values and theory are 

10 



0.0 
0 0.2 0.4 0.8 0.8 L 

s = Half Quad Strength . Half Cell length 

Figure 4: Comparison of SYNCH computation of aI with theory for the simplified 

FODO lattice consisting of N = 150 identical cells. 

0.0 

No. Of tens = 15 
Dotted: Theory 
Solid: SYNCH 

0 0.2 0.4 0.8 0.8 L 
S = Hall Quad Strength . Half Cell Length 

Figure 5: Comparison of SYNCH computation of ti1 with theory for the simplified 

FODO lattice consisting of only N = 15 identical cells. 
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1 

S -Y*o SYNCH Theory Difference 

0.020 1.38273 0.340 0.341 -0.001 

0.040 2.15596 0.930 0.924 0.005 

0.060 3.03476 1.202 1.193 0.009 

0.080 3.94950 1.317 1.315 0.002 

0.100 4.88028 1.375 1.379 PO.004 

0.120 5.81968 1.413 1.416 -0.003 

0.140 6.76442 1.440 1.440 0.000 

0.175 8.42602 1.465 1.465 0.000 

0.200 9.61756 1.476 1.478 PO.002 

0.250 12.00975 1.493 1.495 ~0.001 

0.300 14.41296 1.507 1.508 -0.001 

0.350 16.82727 1.519 1.520 -0.001 

0.400 19.25354 1.532 1.532 0.000 

0.450 21.69299 1.543 1.545 PO.002 

0.500 24.14703 1.557 1.558 .-0.001 

0.550 26.61723 1.573 1.573 0.000 

0.600 29.10524 1.588 1.589 ~0.001 

0.650 31.61283 1.607 1.606 0.001 

0.700 34.14183 1.624 1.625 ~0.001 

0.750 36.69417 1.646 1.645 0.001 

0.800 39.27188 1.667 1.667 0.001 

0.850 41.87708 1.690 1.690 0.000 

0.900 44.51200 1.715 1.715 0.000 

Table I: Comparison of SYNCH with theory for the simplified lattice consisting of 

150 FODO cells and thin qmdrupoles. 
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I 
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( 
( 

S 

0.020 

0.040 

0.060 

0.080 

0.100 

0.120 

0.140 

0.175 

0.200 

0.250 

0.300 

0.350 

0.400 

0.450 

0.500 

0.550 

0.600 

0.650 

3.700 

3.750 

1.800 

1.850 

1.900 

1.950 

1.995 

I.999 ! 

V,O 

1.38273 

2.15596 

3.03476 

3.94950 

4.88028 

5.81968 

6.76442 

8.42602 

9.61756 

‘2.00975 

14.41296 

L6.82727 

19.25354 

t1.69299 

t4.14703 

!6.61723 

!9.10524 

11.61283 

14.14183 

16.69417 

19.27188 

11.87708 

:4.51200 

:7.17899 

:9.60875 

z9.82614 

SYNCH 
-__ 

0.340 

0.933 

1.205 

1.317 

1.375 

1.412 

1.440 

1.465 

1.475 

1.493 

1.508 

1.519 

1.532 

1.543 

1.557 

1.572 

1.587 

1.608 

1.624 

1.645 

1.667 

1.690 

1.715 

1.742 

1.768 

1.771 

I’heory 

0.341 

0.924 

1.193 

1.315 

1.379 

1.416 

1.440 

1.465 

1.478 

1.495 

1.508 

1.520 

1.532 

1.545 

1.558 

1.573 

1.589 

1.606 

1.625 

1.645 

1.667 

1.690 

1.715 

1.742 

1.768 

1.771 
--, 

Difference 

-0.001 

0.009 

0.012 

0.002 

-0.004 

-0.004 

0.000 

0.000 

-0.003 

-0.002 

0.000 

-0.001 

0.000 

-0.002 

-0.002 

-0.001 

-0.002 

0.001 

-0.001 

0.000 

0.001 

0.000 

0.000 

-0.001 

0.000 

0.001 

Table II: Comparison of SYNCH with theory for the simplified lattice consisting of 

15 FODO cells and thin quadrupoles. 
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bigger here due to the lesser stability of the lattice and the lesser accuracy in the 

evaluation of the derivatives. However, the agreement is still excellent. 

In all cases, the values of the on-momentum -y* provided by SYNCH agree with 

the theoretical values given by Eq. (3.21) up to all the five figures after the decimal 

point. 

V. CHROMATICITY CORRECTIONS 

The natural chromaticities in this lattice can be corrected by placing half “thin” 

sextupoles of strength 

SF = 
J 

B& de-- 
~&PO 

on each side of the “thin” F-quadrupole and half “thin” sextupoles of strengt,h 

SD = J 
B& de-- 

2&p, 
(5.2) 

on each side of the “thin” D-quadrupole. The angle t,he off-momentum orbit turns at 

the half F-quadrupole and half F-sextupole changes from Eq. (3.3) to 

Sfj6 
A& = _ 

It6 

+ s@j=s= 

ItS’ (5.3) 

Similarly, at the half D-sextupole and half D-quadrupole the angle turned changes 

from Eq. (3.4) to 
STjS S&P 

A,$,=-- ~ 
1+6+ 1+s (5.4) 

This implies no change in all the zeroth-order (in 6) equations and expressions. To 

obtain the first-order equations and expressions, however, we have to make the sub- 

stitutions: 
5% + sli, + SF+,: I 

Sill + srj, - sL$ . 

We therefore have, instead of Eq. (3.9), 

aDal = -& [v/l - ijl) + (SF# + S&)] (5.6) 
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Instead of Eq. (3.17), we have 

1 -t ( I( t 1 e:o;l+;::J = (-: I) ( -:;lI;:f$J (5.7) 

Solving Eq. (5.7) for 6, -ii1 and substituting in Eq. (5.6), we arrive at 

ao(y1 = S4t(S2t2+30~) 
- ~ (SF<: t SLY& . 

Bo(SZ+qJ3 (5.8) 

The last term is the contribution due to the sextupoles. 

If one desires to cancel a fraction f of the horizontal and vertical natural chro- 

maticities, the sextupole strengths need to be chosen as 

2sJ& = fS and - 25-&o = fS , (5.9) 

which turns Eq. (5.8) into 

S4t(S~t2+3B;) 
(yocyl = -&(sz+p)3 

2fSv&d 
(sztegz 

In the limit of 00 < S, a1 in Eq. (3.24) becomes 

(5.11) 

We see that a 1 5 3/2 without chromaticity correction (f = 0), and reduces to 2 l/2 

with complete correction (j = 1). 

VI. CONCLUSION 

We have derived the differential equation for the momentum dispersion function 

accurate for all orders of momentum offset and all orders of dipole bending angle. 

However, to avoid solving the differential equation and doing subsequent integrations, 

a geometric method was used to compute ag and (~1 up to all orders of dipole bending 

angle. The lattice used consisted of only FODO cells with thin quadrupoles. 

The lattice code SYNCH was used to check the theoretical derivations. We found 

that a0 and aI for such a lattice with N = 150 cells and one with N = 15 cells agree 

with theory extremely well. This leads us to conclude that the SYNCH computation 

of momentum compaction at off-momentum is very accurate. 
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APPENDIX A 

In this appendix, the differential equation satisfied by the momentum dispersion 

function 11 up to all orders of 6 and all orders of dipole bend angle 00 is derived. 

Consider an infinitesimal increment along the designed orbit and the same along 

off-momentum closed orbit in Fig. 1. Let $0 be the angle between the designed orbit 

at A and some reference, and 4 be the angle between the off-momentum closed orbit 

at I? and the same reference. The transverse offset z is denoted by AB. The r&e of 

change in I along the designed orbit, defined by 

da: z’ G - 
ds ’ (A.11 

should be computed with care. Here, ds is the infinitesimal advance along the designed 

orbit and should not be confused with the S denoting the quadrupole strength in 

E,q. (2.11). With the help of Eq. (2.1), we have 

de0 dz 

“‘=dsz= (A.21 

where po is the mdius of curvature of the designed orbit at A. Note that Eq. (A.2) 

reduces to Eq. (2.2) after higher orders of 6 are removed. Another order of the 

derivative gives 

z” = 8 
a(lt z/po) + (A.31 

The change in angle of the designed orbit at A is given by 

The negative sign comes about because I& decreases as we advance along the designed 

orbit. The change in the angle of the off-momentum orbit at B for the length element 

de is 
&+,-eBde, 

P (A.51 

Here, the magnetic field B can be expanded as 

B” 
B=Bo+ B’l,zt T z’+... =Bopo ’ 1 1 +Ka: , 0 PO 

(A.‘2 
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where the first term in the squared brackets is the dipole term and K in the second 

term, given by Eq. (3.2), includes all higher-multipoles. Combining Eqs. (A.5) and 

(A.6), we get 

d’=-+bo)$(lt;) (;+Kz) , (A.7) 

which cert,ainly reduces to Eq. (A.4) when E + 0. 

Substituting Eqs. (A.4) and (A.7) in Eq. (A.6) an d 1’ e lminat,ing 4-&, by Eq. (A.Z), 
we obtain the differential equation satisfied by z; namely, 

21' = - d2 
P&++lPo)+ 

x 1t~$&+;) (;tKz)} . (A.81 

The equation for the momentum dispersion is therefore 

Although Eqs. (A.8) and (A.9) are exact, their solutions are impossibly difficult. In 

this paper, we wish to solve 7 only up to first order in 6. Equation (A.9) can be 

easily expanded to give Eq. (3.1). Th ere, the term involving K/p, has been deleted, 

because it vanishes for a lattice containing ‘(thin” multipoles. Also the appearance of 

the 7” term reminds us of the niggling contribution. 

When 17 is expanded according to Eq. (2.6), Eq. (3.1) leads to the following equa- 

tions for 70 and ql: 

7: t Ilo (A.lO) 

and 

-&K) =-; [(lt?!)‘-g] fl)oK, (AS]) 

which can be solved straightforwardly. 
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APPENDIX B 

The momentum dispersion function 11 at any point inside the dipole can also be 

solved easily using the geometric approach. Consider Eq. (3.10) and rotate the axes 

clockwise by any angle 8. The new equation is exactly Eq. (3.11) with &/2 replaced 

by 8. Now let 
a:=0 

Y = PO t ?(V 3 
('3.1) 

and expand the equat,ion up to second order in 6. The dispersion function can then 

be solved: 

(‘3.2) 

where again we measure every length in units of the half-cell length & so that l/p0 

is replaced by &. In the above, 76 is the derivative with respect to advance along 

the designed orbit; or $, = Bod~a/db’. We h ave verified that these expressions satisfy 

the differential equations (A.lO) and (A.ll). Also they give the correct values at 

the dipole’s exit, as the previously computed results of Eqs. (3.19) and (3.20). Their 

slopes at both t,he dipole’s entrance and exit also give the correct values as predicted. 

Integration of 71~ in Eq. (B.2) gives (Ye as expressed by Eq. (3.21). We can rearrange 

Eq. (B.3) and integrate to get 

JDeO de (91 + $) = s;$y+y)y 3 (B.4) 

which is just soul given by Eqs. (3.21) and (3.22). 

APPENDIX C 

In this section, we try to make use of the differential equat,ions (A.lO) and (A.ll) 

to derive the expression for (~0 and a1 as given by Eq. (3.9). 

From Eqs. (A.2), (3.3), and (3.4), we can write down the expressions for I’ at t,he 

entrance and exit of the dipole: 

2’ = -S+$[l ~ S(l ~ +o) + 0(S2); 

2’ zz -S7j6[1 - 6(1 - 7j&) + U(P)] ) 
(C.1) 
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For the derivative of the dispersion function, we have 

i 

6; $ 6;s = -S[lio + 4% ~ 60 + liml 

f/b t ii:6 = -S[+, t S(7j1 - f/o + q$%)] 
cc.21 

We now integrate Eq. (A.lO) from the dipole’s entrance to the dipole’s exit. We 

get 

J 
(a ds &I(1 - 9dh) = -S(lio - ilo) , (C.3) 

which gives the expression of a0 as given by Eq. (3.9) immediately when expression 

(2.8) is employed. 

We next integrate Eq. (A.ll) and rewrite it in the form 

LYOal = J ( (0 ds 9~e~+~9;12)=~~ds[(9ae~-i)t(9neo-9~e~t9;12)]+e0A~;, 

(C.4) 
where as given by Eq. (C.2), 

AT: = -s [(G - ill) - (6, - io) t qli," -$)I (C.5) 

The first term in the squared brackets of Eq. (C.4) J IS ‘us (Ye which cancels the 60 - $0 t 

term in Eq. (C.5). For the last term in the squared brackets of Eq. (C.4), we integrate 

qh* by parts and make use of Eq. (A.10) t o eliminate q”. The whole integral for this 

last term then vanishes leaving behind the integrated part 

AT& = ?j&j; - ?jo?j; = S($) - ?ji) , 

which cancels the last term in Aq:. It is then easy to conclude that Eq. (C.4) indeed 

reproduces Eq. (3.9). 
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