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Abstract

Neutrino astrophysics is a relatively new and interesting field of science. The observation of neutrinos
in large Cherenkov neutrino telescopes like IceCube at the South Pole, which is already completed, the
planned KM3NeT detector in the Mediterranean Sea and its predecessor ANTARES opens a vast field
for potential discoveries in both astronomy and physics. The most prominent among them is the goal to
find distant point sources of cosmic neutrinos from galactic as well as extragalactic sources, but also other
associated fields of science are of interest, such as the observations of Gamma Ray Bursts, of Dark Matter
decay reactions or exotic particles like Magnetic Monopoles. For many of these targets of research, a
precise reconstruction of the energy of the muons emerging from a neutrino’s interaction with ambient
matter is necessary. There are various approaches to such a reconstruction. The one presented here is
the use of Artificial Neural Networks (ANNs) for pattern recognition in the the neutrino event signature
of the ANTARES neutrino telescope. Although ANNs are already used for energy reconstruction in
ANTARES, this technique is extended in this work to the low energy range for secondary muon energies
below 100 GeV. To this end various sets of input parameters for the ANN, which are especially adapted
to the features of low energy muons, are tested.
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Chapter 1

Neutrino Astronomy

1.1 Neutrinos as astrophysical messengers

Neutrinos are fermions with no electric charge and small, but non-zero mass. They are only subject
to weak interactions and gravitation and were initially proposed by Pauli in 1930 in his theoretical
explanation of the beta decay spectrum [2]. The first experimental discovery was performed by Clyde L.
Cowan and Frederick Reines in 1956 with neutrinos produced by a nuclear reactor [2]. There are three
types of neutrinos, the electron, muon and tau neutrino.

Due to their small cross section for interaction with atoms, compared to charged particles and photons,
neutrinos can travel through the universe nearly without scattering by matter or being influenced by
galactic magnetic fields. In contrast to that, charged cosmic ray particles except of them with the largest
energies are deflected by magnetic fields so that their incident direction gives no information about
their point of origin. ~-rays are absorbed or scattered by matter. This makes neutrinos an interesting
messenger to detect and analyse distant high energetic astrophysical objects and processes.

1.2 Generation of High-energy Neutrino

Highly energetic cosmic neutrinos (F, > 1 GeV) are produced by pion and kaon decay reactions:

5 K* — 5t +0,(v,) (1.1)
In astrophysical sources in non thermal equilibrium, charged particles like protons and electrons could
be accelerated by reflection on relativistic shock fronts, which is called the Fermi mechanism [17]. If
the particles are confined long enough by magnetic fields and pass the shock front multiple times, they
can reach extremely high energies up to the ZeV range (Ultra High Energy, UHE) [23]. If mainly
electrons are accelerated, they undergo electromagnetic processes such as inverse Compton scattering,
bremsstrahlung or synchroton radiation [23]. This leads to the emission of highly energetic v-radiation,
but no neutrinos are produced. On the other hand, highly energetic protons undergo processes such as
e.g. p+ v — m + n which produce short-lived mesons like pions or kaons which then decay further
in reactions like the decay described by equationl.l. Sources in which these hadronic processes take
place are emitting high energetic neutrinos in addition to « rays. Although of the spectra of v rays
give indications which processes take place in a source, neutrino telescopes could help to further confirm
which process really takes place. High energetic charged particles can also leave the sources, but due to
reasons mentioned above their origin cannot be determined without great uncertainties except for the
highest energies Ecr > 101 eV [23].

1.3 Possible Candidate Neutrino Sources

In the following section a brief overview of the possible sources of high energy astrophysical neutrinos is
presented.



Supernova Remnants

In the final stage of a massive (> 8My) star’s evolution, its core collapses to a neutron star or a black
hole. This causes the outer shells of the star to explode, a phenomenon that is called supernova. The
core collapse generates a very large amount of neutrinos in the MeV energy range. These neutrinos
can be measured and are so far the only type of astrophysical neutrinos originating from outside the
solar system that are experimentally confirmed [3]. After a supernova, a shell-type supernova remnant
is left behind. In these objects, particles can be accelerated by the Fermi mechanism, and the strong
variable magnetic fields of a possible neutron star can accelerate already highly energetic particles even
further [14]. The accelerated charged particles could then cause reactions such as mentioned above where
neutrinos are generated. Recent measurements by FERMI LAT, however, show that leptonic processes
are favoured [8].

Pulsar Wind Nebulae

Pulsar Wind Nebulae are like shell-type SNRs, with a pulsar inside that drives a relativistic wind that
interacts with the surrounding SNR. This interaction is a possible source for high energy neutrinos [14].

Microquasars

Microquasars are binary systems which consist of a giant star and a compact object, e.g. a black hole.
When the companion star expands over its Roche lobe, matter can flow over the Lagrange point and
accrete on the compact object. A large amount of energy is released and jets are formed. In the
jets diffuse shockwave acceleration occurs and high energy charged particles can react with photons or
ambient matter and subsequently produce high energy neutrinos [14].

Active Galactic Nuclei

An active galactic nucleus contains a supermassive (10° - 10° solar masses) black hole. Matter accretes
on that black hole forming highly energetic jets. They are one of the most likely extragalactic sources of
high energetic cosmic rays and also a highly favoured candidate neutrino source [14].

Gamma Ray Bursts

Gamma Ray Bursts are powerful events, although they typically last only for a couple or few tens of
seconds. They are characterised by a high intensity eruption of gamma rays and an X-ray and visual
afterglow. Their origin is still not clear, but it is supposed to be a merger of two neutron stars or a core
collapse supernova of a super massive star [14].

Diffuse Neutrino Flux

Even if it is not possible to identify point sources, there could be a chance to see the diffuse neutrino
background for large areas such as the galactic plane, galaxy clusters or large star-forming regions [23].

Dark Matter

Some theories suggest that Dark Matter, an unknown component of galactic halos, which is seen only
through its gravitational interaction with stellar matter, consists of Weakly Interacting Massive Particles
(WIMPs) which could annihilate into high energy neutrinos [21]. Such WIMPs could loose energy in
dense matter such as the Sun’s or the Earth’s core due to scattering, and become gravitationally bound
inside of these objects. Due to the annihilation of the WIMPs, the Sun and the Earth’s core eventually
could be detected as high energy neutrino sources. Different theories suggest that the mass of the lightest
Dark Matter particle lies in the 10 GeV to TeV scale [21], and due to that and energy conservation their
decay particles and subsequent neutrinos would have energies in the same scale. This is a motivation for
developing an accurate energy reconstruction in the low energy scale.
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Figure 1.1: Neutrino interactions in matter where N denotes a nucleon and X an hadronic particle shower

1.4 Detection Methods for Neutrinos

1.4.1 Neutrino Interactions in Matter

If a high energy neutrino interacts with matter, two basic types of interaction can occur, charged current
interaction (CC) and neutral current interaction (NC). In case of NC interaction a Z° boson is inter-
changed between the neutrino and a nucleon of the matter and the neutrino is not changed, but it looses
energy, and a hadronic shower is produced. In case of CC interaction, a W boson is interchanged and
besides a hadronic shower the lepton which belongs to the same flavour as the neutrino is produced. The
high-energy electrons cause an electromagnetic shower when they travel through matter and are stopped
within a few meters, while muons and taus are able to travel greater distances before they finally decay.
As a tau lepton decays after a very short time (2.9-10'3s) [11], only muons can travel a sufficient distance
to reconstruct their direction. Therefore usually muons are the particles used for astronomy. The average
angle between the neutrino track and the muon track is:

0.6°

0 0
E,[TeV]

(1.2)

vy X

That gives reasonably small angular deviations for neutrino energies above 100 GeV, so that the muon
track can be used to point back to the neutrino source [24][14].

1.4.2 Cherenkov Light Production

When a muon or other charged particle travels trough an insulator medium it polarizes the molecules
of the medium. If the particle has a velocity greater than the speed of light in that medium, an overall
dipole moment is created and light is emitted as a consequence. The light is coherent and is emitted in
a cone with an angle < given by
1
cosfo = —, == 1.3
¢ =5 B - (1.3)

which yields 42° for sea water with n = 1.33[18].

1.4.3 Neutrino Telescopes

The basic idea for a neutrino telescope is equipping a large volume of a transparent medium with photo
detectors, and then reconstruct the muon tracks by precise measurement of the arrival times of the
Cherenkov photons of muons at the detectors. Due to the small flux of neutrino induced muons at the
energies of interest and small interaction cross sections, large detection volumes are necessary [14]. Such
large volumes cannot be artificially generated, so natural media such as ice (AMANDA, IceCube) or
water (BAIKAL, ANTARES) will be instrumented. The geometry of the detector, the number of photo
detectors, and the overall size of the experiment is chosen with respect to the expected neutrino yields
(and budget).






Chapter 2

The ANTARES Detector

2.1 Layout of ANTARES Detector

The ANTARES Neutrino Telescope is located in the Mediterranean Sea about 25 kilometres south of the
Southern coast of France. It consists of 12 strings with optical modules (OMs) , the so called "lines” and
one instrumentation string. The lines are anchored on the sea floor at a depth of 2500 m. A buoy on top
of each flexible string holds them upright. The strings are connected with an underwater junction box
which provides power and data connection to the shore station via a commercial grade telecommunication
cable. All lines have 25 storeys each, which have a vertical distance of 14.5 m. The first storey is placed
100 m above the sea ground. The distance between the strings is about 70 m. Each storey consists of
three OMs and an electronics container, the Local Control Module (LCM). The OMs are arranged in a
regular triangle around the LCM. Each OM contains a 10 inch Hamamatsu photomultiplier tube (PMT)
which looks downward at an angle of 45°. The analogue PMT signals are digitialized by Analog-Ring-
Samplers (ARSs). Each PMT has two of them to reduce dead times. The readout electronics as well as
sensors for positioning are also included in the LCM [1].

2.2 Data Acquisition

Each time a photon hits the PMT, a specific charge is produced. If this charge exceeds a value equivalent
to 0.3 photo electrons, the ARS is read out and the charge value and its exact arrival time is sent to
shore. These values describe the so called LO hits. There is no trigger algorithm running offshore except
this 0.3 pe threshold. This is called the ” All Data to Shore” concept. On shore, a computer farm runs
the various trigger algorithms to filter the data. All L0 hits in a time window of 2.2 us before and after
the triggered hits are stored as an event. That is called event building. [16].

2.3 Trigger Algorithms

Trigger algorithms are used to extract the interesting physics events out of the raw data which is sent
to the onshore computer farm to reduce the amount of data to be stored to a reasonable value, which is
about 2 GB for a data taking period of 2 hours.

L1 Hit Selection

The L1 Hit Selection is applied before all other triggers. Its criterion is met when there are two or more
L0 hits on one floor within a 20 ns window. Also, all LO hits larger than 2.5 pe are L1 hits. All L1 hits
are passed to the other triggers [16].

3N Trigger

The 3N Trigger is the standard physics trigger. It first looks for time correlated hits corresponding to a
muon from any direction and then performs a scan of directions for a muon arriving from these directions.
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Figure 2.1: Plot of median rate per OM for the last years. The spikes are caused by variation of
biolumimiescence. [15]

It has the ability to reduce random background by a large factor [16].

2T3 Trigger

The 2T3 Trigger criteria is met when there are 2 T3 clusters. A T3 cluster are 2 L1 hits on adjacent
stories or storeys next to adjacent storeys are in coincidence. The counting is exclusive, so a L1 hit
belonging to one T3 cluster can not belong to the other. Thus a minimum of 4 L1 hits is necessary [13].

2.4 Background

Like in any physics experiment, there is always background present in ANTARES. We have to distinguish
between the muon and neutrino background from the atmosphere and the optical background generated
in the detector volume.

2.4.1 Optical Background

There are two main processes contributing to the optical background, *°K decay and bioluminescence.
40K is an isotope of potassium which is present in sea water as potassium chloride. “°K is radioactive and
decays to “°Ca in an 8~ decay or ‘0 Ar by electron capture. It causes a decay rate of 13000 Bq per m?> of
sea water. The electrons produced by the 3 decay and electrons caused by secondary reactions of electron
capture are producing Cherenkov light which is detected by the PMTs. This, together with the PMT’s
dark current, causes an average rate per OM of about 40 kHz. Bioluminescence is produced by both
bacteria and larger lifeforms. The light from bacteria usually increases the rate per OM to 60 to 80 KHz,
sometimes the rate lies even at 100 kHz or more. The larger animals create ”bursts” of light, which last
for several seconds and cause rates usually up to the MHz range. With all these effects considered, the
average rate per OM is usually around 60 kHz, but sometimes rises much higher. The bioluminescence
activity seems to be correlated with the sea current and water properties like temperature and salinity.
The hits caused by HE particles have to be sorted out of the large sample of background hits by event
building and hit selection algorithms [7][20].

2.4.2 Muon Background

When a high energetic charged particle hits the Earth’s atmosphere, it reacts with nuclei of the air atoms,
generating high energetic showers of secondary particles, including muons. The livetime of these muons
is energy dependent due to time dilation and can be large enough to reach the ANTARES detector 2200
m under sea level. They are called downgoing muons. The atmospheric muons from the other side of the
Earth are shielded by rock. That means that muons coming from the ground are produced within the
material under the detector. By now, the only process known for that is neutrino interaction. Thus a



relatively simple upgoing/downgoing decision algorithm can sort out the atmospheric muons. However,
the ratio of atmospheric muons to neutrino induced muons is 10° : 1, such that the distinguishing
algorithm has to be efficient [24].

2.4.3 Atmospheric Neutrinos

The reactions of charged HE particles in the upper atmosphere are also producing neutrinos. These
neutrinos also can react with a water or rock atom and generate a muon in the ANTARES detector, and
produce an irreducible background in the end of the reconstruction chain. They can only be removed by
identifying neutrino sources through large statistics, or by the fact that in the highest energy range the
possibility of having an atmospheric neutrino decreases due to the different energy spectra of atmospheric
neutrinos ( £737) and cosmic neutrinos from Fermi acceleration ( E~2) [14]. Therefore a precise energy
reconstruction in the high energy range is necessary. But for other fields of astroparticle physics like the
search for Dark Matter also an energy reconstruction in the low energy range is necessary.






Chapter 3

Software and Reconstruction Tools

3.1 Monte-Carlo-Simulations

The physical processes in the ANTARES detector are simulated using Monte-Carlo-Simulation. The
high energy neutrino interaction events are usually simulated with the GENHENI9] software package.
Atmospheric muons and shower events which generate multiple muons are simulated with Corsika and
the subsequent muons are propagated to the detector with the MUSIC code. Atmospheric muons can
also be simulated using the MUPAGE software, a parametric simulation that consumes less CPU power
than Corsika’s full Monte-Carlo-Simulation. If a particle hits a specific volume around the detector,
a cylinder with a diameter of 476 m around the detector center and an height of 592 m, called ’'the
can’, it is passed to the KM3[10] code, which simulates the muon propagation in the can, Cherenkov
light propagation and photo-electron generation at the photo-cathodes. KM3 uses the MUSIC code to
propagate the particle, and pre-existing photon tables to calculate the number of photons arriving at
each PMT. The Cherenkov photons caused by other secondary particles than muons are calculated by
the GEASIM code.

3.2 SeaTray

SeaTray is the software framework in which nearly all of the data handling and reconstruction tools in
the ANTARES collaboration are executed. The tools it provides are called modules, most of them are
written in C++. Measurement and simulation data files are divided into so called frames, where one
frame contains one event in the most cases. The frames are passed from module to module through the
chain of modules that is defined in the python steering file. For a new reconstruction or test one has to
decide if the existing modules are sufficient, then only a steering file has to be written, or a new module
has to be created.

3.3 Cluster Hit Selection

The Cluster Hit selection is a hit selection algorithm written for low energy track reconstruction in[21].
It loops over all hits and then adds for each hit all hits within a certain time and distance window to
a set of hits. If the set exceeds a given hit number, the direction of the lines in the time-versus-height
plane connecting the hits with the origin hit of the set is calculated. If the Root-Mean-Square (RMS)
of the distribution of the directions exceeds a certain value, the hit which has largest deviation from the
mean is removed from the set. This is repeated until the RMS is satisfactory or the number of hits in the
set falls below the given minimal hit number. For the first case the original hit is selected, otherwise not.
Out of this hit selection, hits over a given amplitude threshold are stored in another selection. Three of
these selections are done, each of them with different parameters for time window, distance, hit number,
maximum RMS and big hit threshold. If a hit is at least in two of the basic selections or in one and
in a sample of the large hits, it is added to the final hit selection. According to [21], this hit selection



method has a high purity of 85 % and averagely selects 78 % of signal hits. It is especially designed for
low energy reconstruction.

3.4 Posidonia

Posidonia is a track reconstruction algorithm specially designed for the reconstruction of low energy
muons. It is based on a maximum-likelihood scan fit. There are also other track reconstruction algo-
rithms which also perform maximum-likelihood fits in most cases, but use different approaches. The
reconstruction used in this work slightly differs from the original Posidonia used in [25] as there was an
other type of prefit used.

Pre-hit-selection The pre-selection of hits is not part of the Posidonia reconstruction, but it is
necessary to have a relatively pure hit selection as input to Posidonia. In this work a hit selection
performed with the above mentioned cluster hit selection merged with the triggered hits was used, as
this is the usual hit selection for Posidonia which was used in [25].

Event classsification Posidonia distinguishes the events in single-string events, where only one line
has triggered hits, and multi-string events, where two or more lines are hit. The reconstruction chain
then differs between these event classes. In this work, the two cases were also separated in the further
reconstruction.

Prefit A prefit is first applied to the multi-string events. A maximum-likelihood-fit is performed.
A maximum-likelihood-fit varies the parameters of the track until the maximal value of the likelihood,
which is a function of track parameters and arrival times of the photons at the PMTs, is reached. For the
maximum-likelihood-fit a probability-density-function (PDF) specialised for multi-string events is used.
The PDF is the function for the probability that a photon comes from a certain track and is used to
calculate the likelihood. For the prefit, a scan over a set of different starting tracks is performed, due to
the need for a starting track close enough to the real track to avoid the fit running into a local maximum.
The fit with the largest maximum is then considered as the prefit track. For the prefit, the triggered hits
are used as input.

Hit selection A hit selection is then used to find the hits that are compatible with the prefit from
the preselected hits. All hits that have a length of the calculated Cherenkov photon path lower than 100
m and a time residual fcperenkor — tmeasured i1 an interval of -10 and 40 ns are selected.

Final fit A fit with the same technique as the prefit is made, but instead of scanning over different
tracks the prefit track is used and the input hits are the hits from the optimized hit selection.

Single-string string selector For the events classified as single-string events, a string selector is
applied which selects the most hit string. A collection of causally connected hits is then made for this
string.

Single-string Final Fit A fit is made in the same way like the multi-string prefit with scanning
over a set of starting tracks. Here a specialised PDF for single-string events is used [25].

10



Chapter 4

Muon Energy Loss Phenomenology
in the ANTARES Detector

For various types of physics analyses it is crucial to know the energy of the neutrino. However, there is
a systematic difficulty, as for most events the distance from the muon interaction vertex to the detector
is unknown, so one can only know a minimal energy of the neutrino even if the muon’s energy in the
detector is precisely measured. Nevertheless, the muon energy reconstruction is important. Therefore,
from now on the energy reconstruction always refers to the energy of the muon.

4.1 Muon Energy losses in matter

When a muon travels through matter, it can loose energy through various processes. The two main
components are ionization losses and radiative processes.

4.1.1 Ionisation

The ionisation losses are described by the Bethe-Bloch equation which denotes the average energy loss
of a heavy (mypqre >> me) particle .

—d—E[MeVg_lch] k22 Z 1 I 272322 meTnaz

X = Eahkh T AR (41)
where k = 4dwe*m, / 2Ny, Tas the maximum kinetic energy transferable to an electron (= E for the
relativistic case [11]), I the ionisation energy, Z and A the order and mass number of the absorber
material, z the charge of the projectile, and 6(8) an energy dependent density correction. This formula
is valid in the energy range 0.02 < v < 1000. At larger energies, radiative corrections are important.
From figure 4.2 it can be seen that for Sy < 3 the energy loss decreases with energy, and there is a broad
minimum for 8y = 3.5. Particles in that minimum are called ”minimally ionizing particles”. After that
minimum the energy loss increases slowly, until radiative effects become important [11].

4.1.2 Radiative Processes

In the high energy range, larger than about 500 GeV for muons in water, radiative losses gain importance.
At the so called "muon critical energy”, E,., ionization losses and radiative losses are equal. The value
of E,. is about 780 GeV in water. [24] The total energy loss is described by

dE
dxX
where a(F) denotes the ionization losses and b(E)E the radiative losses. There are three radiative
processes that contribute to that. Their Feynman diagrams are shown in figure 4.1.
Bremsstrahlung The muon interacts with the electromagnetic field of a nucleus or an electron and
emits a photon.

a(E) +b(E)E (4.2)
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(a) Bremsstrahlung (b) Pair production (c) Photonuclear interaction

Figure 4.1: Possible ways for high energy muons to loose energy

Pair Production The muon interacts with the electromagnetic field of a nucleus and produces an
electron-positron pair.

Photonuclear Interaction The muon interacts with a nucleus through deep inelastic scattering
and a hadronic shower is produced. The high energetic secondary electrons and photons also undergo
radiative processes, which leads to the emission of more particles, so that electromagnetic cascades are
formed. The hadronic particles from photonuclear interactions cause hadronic showers and subsequent
electromagnetic subshowers on the same length scale. All particles, as long as their velocity is greater
than that of light in water, will cause Cherenkov radiation. All of these processes have a stochastic

nature, so that a reconstruction of the particle energy from the Cherenkov light cannot be done in a pure
analytical way with maximum accuracy. [11][24]
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Figure 4.2: Energy losses of muon in a thin layer of Cu dependent on muon energy [5]

4.2 Detector Response in the Low Energy Range

As can be seen from the sections above, we can classify the particle energy loss into two different
ranges, one where ionization is dominant and one where radiative processes are dominating. In the latter
case the amount of light the particle emits per unit distance is dependent on particle energy. In the
ionisation regime, however, this is not the case, which means that two tracks with different energies are
not distinguishable when only a section of track is detectable. Only the length of the whole track shows
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energy dependence. That means that it is only possible to reconstruct a muon’s energy with reasonably
small uncertainties if the detector is large enough to cover the whole length of the track. As a muon
in ionisation regime looses about 210 MeV per meter of track length[19], and the instrumented volume
of the ANTARES detector covers a surface of roughly 290000 m? and a height of 348 m, muons with
energies up to about 100 GeV can be contained in the ANTARES instrumented volume. If the neutrino’s
interaction vertex is outside of the detector, only the energy of the muon as it enters the instrumented
volume can be reconstructed as the distance between vertex and detector is not known. This is also true
for particles in the radiative energy regime.

To examine the detector response to muons of different energies, a special Monte Carlo simulation was
performed with discrete muon energies and starting positions. The muon start positions were located on
a horizontal plane at approximately the z-coordinate of the first detector floor and in a grid of 8x8 starting
points with distances of 20 m between two neighbouring points. The center of the grid was at the detector
center. In figure 4.3a the start positions are marked with red squares, while black squares denote the OM
positions. The muons were propagated upwards with zenith angle of 180°. The simulation was repeated
500 times for each muon energy F; € {10, 20, 30, 50, 100, 200, 300, 500, 1000, 5000, 10000, 20000} GeV and
starting position. There was no optical background added and standard ANTARES PMT simulation *
was performed and standard 3N and 2T3 Triggers were applied. Figure 4.3b shows the response of the
trigger in relation to different track positions. The four graphs show how many of the 500 simulated events
meet one of the trigger criteria. It immediately becomes clear that the trigger efficiency is dependent on
the distance of the track position to the neighbouring lines.
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Figure 4.3: Monte Carlo track positions and trigger

The first approach to an energy reconstruction is to use the total amount of emitted light which
characterises the energy loss. Plots 4.4a and 4.4b show the energy dependence of two parameters (Number
of OMs with triggered hits and total number of hits), which give an indication for the total amount of
light emitted in the detector. The plots show the expected behaviour, at low energies up to 100 GeV
the amount of light rises with energy, in the intermediate energy range it is nearly constant, and above
1 TeV it increases rapidly. The second rise corresponds to radiative effects taking place. The low energy
behaviour is corresponding to a varying track length in the detector. Plot 4.5 shows the Monte Carlo
track lengths inside the ”can” (cylinder with height 592 m, diameter 476 m around detector center) from
the simulation. Above an energy of about 100 GeV the track is long enough to pass through the whole

1PMT simulation parameters: integration time 40 ns, deadtime 250 ns, ARS threshold 0.3 photoelectrons
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detector, and due to that the detectors response is similar for all tracks with this or higher energies until
radiative processes take place.
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Figure 4.5: Monte Carlo track lenghts for different energies

To find a possible solution for reconstruction of energies below 100 GeV, one can try to use parameters
that are dependent of the track length inside the detector. Figures 4.6a to 4.7b show four possible
parameters. In Figure 4.6a it can be seen that the number of hits is increasing up to 100 GeV where the
muon travels through the whole instrumented volume. In figure 4.6b, which shows the average charge
per hit, a tendency to 1 photoelectron per hit is seen for higher energies. This is probably due to the
fact that for low energies the events with tracks with greater distance to the next line meet the trigger
criterion less likely and so tracks with small distance to the next line are overrepresented. Also hits >
2.5 photoelectrons are contributing more to meet trigger criterion. In figure 4.7a the number of floors
with triggered hits (hits in coincidence to a trigger criterion) is shown. A clear dependency on the track
length can be seen, which is no surprise as the tracks are entering the instrumented volume perpendicular
to the floors so the number of floors is strongly dependent on track length. It can also be seen that for
100 GeV and 200 GeV the distribution is nearly the same, as it is expected due to the muon crossing the
whole instrumented volume at about 100 GeV. Figure 4.7b shows the number of strings with triggered
hits. There is much less dependency on the track length here, due to the fact that most of the events are
single string events as the tracks are vertical. Again here the trigger filters out events that have shorter
tracks if they are far away from the next string. This explains the lack of two and three string events for
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lowest energies.
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Figure 4.6: Black dots denote the mean value for a Gaussian fit over the energy range up to 200 GeV.
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for a specific energy. Light green stands for 10 GeV, blue for 20 GeV, magenta for 30 GeV, cyan for
50 GeV, dark green for 100 GeV and violet for 200 GeV. Some tracks also have lengths between the
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Figure 4.7: Black dots denote the mean value for a Gaussian fit over the energy range up to 200 GeV.
The red error bars denote the sigma of the fit. The coloured contour plots show the value distribution
for a specific energy. Light green stands for 10 GeV, blue for 20 GeV, magenta for 30 GeV, cyan for 50
GeV, dark green for 100 GeV and violet for 200 GeV. The second Plot has no Gaussian fit due to the
small number of possible values makes the fit strange and possibly misleading

Of course in reality the track vertices are distributed over the whole medium and track zenith and
azimuth angle is not restricted. In addition there is the probability that the detector gets light from the
vertex shower of the neutrino interaction if the vertex is inside or at the edge of the instrumented volume.
Also there is an optical background. Due to that the extraction of the energy or the track length out
of the accessible parameters is a multidimensional and relatively complex problem. In such a case the
application of a neural network may help to extract the energy dependent features out of the raw data.
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Chapter 5

Artificial Neural Networks

5.1 Biological Neural Networks

The understanding of the brain as a whole seems to be relatively weak, but scientists have determined the
basic concepts of it. It is clear that a brain consists of a network of interconnected cells, called neurons.
Although there are some complex circumstances considering the neuron, its basic functionality is to sum
up the information from other neurons and act as a decision element. As it can be seen in figure 5.1, a
neuron consists of its cell body, some dendrites and an axon. The neuron receives the information from
the axons of other neurons which end on its cell body or dendrites, via electrochemical interactions. The
gaps between the axons and the dendrites or cell surface in which the interaction takes place are called
synapses. Synapses can have varying strengths. The excitation of all synapses is summed up and if it
exceeds a threshold at a certain time and and place an action potential is created and travels through
the axon to the synapses of the connected neurons.
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5.2 Neural Networks in Computing

The basic principle of an artificial neuron is the same as in biology. An artificial neuron is an object,
in most cases implemented by software, that has multiple inputs and one output. In the most simple
case, the output is the result of a step function which is evaluated for the sum of the neuron inputs. To
model the strength of the synapses of the biological neurons, a ”connection weight” is multiplied with
each input of the neuron. So for the most simple case the output y; of neuron j is

Yj = Q(Z w;;T;) (5.1)

where g is the step function, x; the input values of the node and w;; are the connection weights for each
input.

If a continuous output instead of a yes/no decision is necessary, like for energy reconstruction, a
continuous function is used instead of a step function. An artificial neuron that uses such a function is
called perceptron. The activation function used here is the sigmoid symmetric function gsigsym ().

2
sigsym(a) = tanh(a - s) = T eap(—2s-a) 1 (5.2)

Here a is the input of the function and s is a parameter called ”activation steepness” that controls the
steepness of the function. With growing s, the function nears a step function, while smaller s are used
for continuous problems. In this work, s was fixed at 0.3.

For this work, feed-forward networks were used. A feed-forward network is a network where the
information travels only from input to output. The basic topology is shown in figure 5.2. The decision
making neurons are in the hidden and output layers. The connection weights are the parameters which
were adapted to the specific problem for which the neural net should be used. This is done by the
training process.
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5.3 Network Training

In the training process the w;; are adjusted. To minimize the error of the neural network, a standard
algorithm called error backpropagation is used. This process is described here briefly in adoption from
[24]. If £V (y) is an error function for an output vector y of a neural net where N is the number of data
points in data set, its dependence on an weight w;; can be written as

oEN  9EN da,

awij o 3aj awij (53)

with a; = )", w;;2;. Due to definition, gwi’] can be replaced by z; and % is defined to d; so that

oEN
8wij = 5]'22' (54)
Then for the output layer
oEN , oEN

For the hidden layers the chain rule has to be applied with ay = Zj wy;g(aj) giving

oEN 9N day
0j = da, Z dar 90, 9 (aj)zk:wkj5k- (5.6)

With that formula, called back-propagation formula, all § can be calculated starting from the output

layer. From the § the derivatives %Z can be obtained. Based on the summed up error for the whole

data set, the w;; are adjusted by minimizing it with a standard minimizer [12]. For the implementation
of ANNs and training algorithms the FANN library was used [22].

In this work the training process is done in cycles, called epochs. After each epoch, the mean-square-

error &£ ]]\\/} gp is calculated.
N

Enisp = Y _(y(x" W) — E})? (5.7)
n=1
N denotes the number of data points in the data sample.

Two independent data samples are used for the training process, one of them is called ”training”
sample what is used to train the neural net in each epoch. The second one, called ”validation” sample,
is used to evaluate the training process. Both training and validation mean-square-errors are calculated
after each training epoch and the validation MSE is used to end the training process if it does not
decrease over 5 subsequent epochs. Due to training and validation set being independent specialisation
of the neural net to the training set is avoided [24].

The number of nodes used in each net is set to two times the number of input parameters with a
minimum of 112 nodes for the first hidden layer and one quarter of the first hidden layer for the second
hidden layer. These numbers were considered as best in [24] and should be sufficient. An increase of
node numbers does not show any effect on the results.
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Chapter 6

Testing of Muon Energy
Reconstruction with ANN

6.1 Used Data sample

For this work pre-existing Monte-Carlo simulations were used. They were selected from a set of muon
neutrino MC files. The files contain low energy neutrino and anti neutrino as well as up- and downgoing
events. The KM3 simulation was already performed. The dataset was then converted to a suitable file
format for the use in SeaTray, and all events with muon energy greater than 300 GeV were cut away due
to the results from chapter 4. Also events where the particle with highest energy in the can was not a
muon were discarded. In this work, all steps that handle raw data are done in SeaTray. 60 kHz white noise
was then added and a standard PMT simulation was performed. After .1 hit selection and 3N and 2T3
trigger were used on the sample, the triggered events were written to files for the following reconstruction
steps. The files contain the hit-maps as well as information from the Monte-Carlo simulation process for
all events. A hit map is a map that contains a for each OM a list of hit times and charges of all hits
on that OM. For this work only information that would be also available also from real data is used in
further steps. This is at first the hit map that contains all hits that are causally connected with the hits
that meet the trigger condition. They are called triggered hits. A second hit map contains all hits of
the event (2.2 us before and after trigger). Another map contains the status of each OM e.g. working
or not, and also the detector geometry is used. For this work a standard detector geometry was used as
well as 885 functional OMs. In order to test the reconstruction ability of the trained nets, a second data
sample was created the same way using different Monte-Carlo files, called test sample.
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Figure 6.1: Energy and zenith angle distribution and MC track length of MC simulated muons in the
test sample
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6.2 The Energy Reconstruction Chain

To reconstruct the muon energy, a basic reconstruction chain was used in this work. It follows the recon-
struction chain as used in [24]. An overview over the complete work-flow starting with the Monte-Carlo
sample is shown in figure 6.2. In the first step, pre-existing reconstruction algorithms were performed to
generate more advanced selections of hits or other datasets that describe the event to use in the energy
reconstruction from raw data. After that the parameters that will be used are extracted from that data.
A subset of the events is selected as the training set and another subset as the validation set. The
parameters of the training set are then scaled to [—1,...,1] to give all parameters the same range what
is necessary for the next steps. The function

4 xynscaled
ziealed — — arctan(—t—-w—) — 1, (6.1)
T @
where z; denotes the input parameters, is used to scale the parameters. The scaling parameter is
evaluated by repeatedly scaling the set and checking the distribution of the scaled values. In the next
step a principal component analysis (PCA) is performed. The PCA calculates the covariance matrix

with entries

N
1
cov(zi, x;) =~ Z (@in— < i >)(Tjn— <7 >) (6.2)

and its eigenvalues and eigenvectors. The training set is transformed to feature space using these eigen-
vectors in order to extract the independent features of the data which are then rescaled for input of the
NN. Scaling and transformation parameters are stored. The validation set parameters are preprocessed
in the same way using the same scaling and transformation. The neural net is then trained using training
and validation sets. After that training, the NN and again the scaling and PCA parameters are used to
reconstruct the test data sample, and the result is written to a file for analysis.
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Figure 6.2: Scheme of Energy reconstruction testing chain. Orange: algorithms, Green: training and
test data, Yellow: scaling and PCA parameters and NN

23



6.3 Test of the Simple Estimator

The Simple Estimator uses 20 input parameters for the Neural Net. A slightly different version was
introduced in [24]. They work with the basic event hit distributions mentioned above. No hit selections
or track reconstructions except the trigger are used before extracting them. The parameters that are
extracted from the raw data are:

e Number of OMs with triggered hits. Triggered hits means all hits coincident with the hits that
meet trigger conditions.

e Number of triggered hits

e Number of all hits: the number of all hits in a time window from 20 ns before first triggered hit to
300 ns after last triggered hit

e Number of hits in background window: This is the number of hits in time windows with a duration
of 1000 ns, 700 ns before and 700 ns after first and last triggered hit. The parameter is necessary
to pass information about the background conditions to the net.

e Number of working OMs: Some OMs could be out of order.

e Number of hit repetitions: the average number of hits per OM in an time window of 500 ns after
the first hit on the OM

e Average charge per triggered hit

e RMS of the charge distribution of triggered hits

e Average charge per hit

e RMS of the charge distribution of all hits

e Number of triggered hits on first hit string

e Number of storeys with triggered hits

e Number of strings with triggered hits

e Distance between first and last triggered hit

e Distance between center of gravity (CoG) of the event and CoG of the detector

e Approximate zenith angle: The zenith angle is approximated by the zenith angle of the line between
the first and last triggered hit

e Time difference between first and last triggered hit
e Average time of triggered hits after first triggered hit
e RMS of the time distribution of hits after first triggered hit

e Sum of inverse hit velocity: The inverse hit velocity is defined as the time of a hit over the distance
of a hit to the first triggered hit. It is summed over all triggered hits

The distribution of all input parameters with respect to the muon energy distribution is given in the
appendix.

After performing of the preprocessing, the neural network was trained, and then the test data sample
was reconstructed by the trained net. The training and validation samples are not included in the
test sample, so that an eventual specialisation of the NN to the training sample, although it should be
excluded by the training process, causes no effect in the evaluation of reconstruction error.

The results of the reconstruction are then compared with the Monte-Carlo-energies. Figure 6.3a
shows the 2D-plot of the reconstructed energy over the MC energy. Figure 6.3b shows the difference
between the reconstructed energy and the MC energy over MC energy. For each bin in x-axis of this
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plot a Gaussian fit was performed and the mean and sigma values were plotted in figures 6.4a and 6.4b.
It has to be mentioned that the sigma value of the Gaussian fit can show a low value in the case there is
a huge and thin spike anywhere in the distribution. In this case, the sigma value does not necessary tell
much about reconstruction quality. The number of events in each bin in MC energy was limited to 1000
to ensure comparability between the bins. The plots for the difference of MC and reconstructed energy
over the reconstructed energy can be found in the appendix.

As it can be seen from figures 6.3a to 6.4b, the reconstruction is relatively accurate for energies
lower than 100 GeV. In that range the maximum mean of the difference to MC energy is +0.2, and the
maximum sigma is 0.25, in logarithmic units, which would be 50% and 80% in non logarithmic units.
Above 100 GeV it is obvious from figure 6.3a that energies cannot be distinguished any further. This is
exactly as it is expected from chapter 4. From plot 6.1c it can also be seen that at an energy of 100 GeV
the track length of muons are about 350 m, which is in the same range as the size of the detector. So it
should be in fact an upper limit for energy reconstruction. Any effort to improve reconstruction in that
range will probably be unsuccessful. Nevertheless, one can try to improve energy reconstruction in the
range below 100 GeV.

6.4 Test of Cluster Hit Selection

One approach to improve the energy reconstruction is to find a input hit selection which is more specific
for the muon related hits than the original triggered hit sample. As the Cluster Hit selection Algorithm
was designed for low energy track reconstruction, it was considered. An inspection of some example
events with GLshovel, a SeaTray module for displaying hit distributions in the detector, shows that the
hit distribution from Cluster Hit selection is indeed closer to the original Monte-Carlo hit sample than
the triggered hits. One example event is shown in figure 6.5.
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(a) Monte-Carlo hits (b) Triggered hits (c) Hits from Cluster Hit selection

Figure 6.5: Exemplary comparison of triggered hits and hits from Cluster Hit selection

The hit distribution, which is the output of the Cluster Hit selection, was used as an input for the
Simple Estimator. The cluster hits replace the triggered hits which were used before. The resulting plots
are shown in Figures 6.6a to 6.7. More plots are shown in the appendix.

Although it seems from the example events that the Cluster Hit selection selects more hits from
the original muon than the trigger, using it before the energy reconstruction does not improve it. It
was expected that it would not help at energies over 100 GeV, but also for lower energies there is no
improvement. In the range lower than 25 GeV the mean and sigma values of the error even increase
(max 0.06 in log units resp. max 0.05 in log units), while in the range 50 to 80 GeV the mean decreases
(max 0.08 in log units).

As aresult it can be concluded that a better hit selection has little effect on the energy reconstruction
with the Simple Estimator. This can possibly be explained with the fact that the Simple Estimator uses
parameters retrieved from all hits in the time window in addition to the triggered hits, so that a hit not
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included in the triggered hits is nevertheless recognised by the net. Also some parameters like strings
with triggered hits do not differ much between Cluster Hit selection’s selected hits and triggered hits.
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6.5 Test of Cherenkov Estimator with Posidonta Track Fitter

Another approach to improve energy reconstruction is to pass information about the muon track to the
neural net. For this task a track reconstruction algorithm is used before the energy reconstruction, in
which a specialised version of the energy estimator is used, which can process the additional information.
This is the so called Cherenkov estimator, which was introduced in [24] and extended in this work by
implementing additional parameters, which were partly used in [26]. The Cherenkov estimator needs a
reconstructed muon track in addition to the hit maps the simple estimator uses. Using the Cherenkov
estimator has already achieved good results for reconstructing energy in the high energy range (Fig. 6.8).

e Number of OMs with triggered hits (Triggered hits means all hits coincident with hits which meet
the trigger condition.)

e Number of triggered hits

e Number of hits in the time window between 20 ns before the first and 300 ns after the last triggered
hit (From now on called ”timewindow”

e Average Charge of triggered hits

e Average Charge of hits in time window

e RMS of charge distribution of triggered hits
e Number of stories with triggered hits

e Number of strings with triggered hits

e Effective track length

The effective track length is calculated as the distance between the first and last point on the muon track
where the photons that are detected would have left the track if they are emitted under the Cherenkov
angle of 42° and not scattered. All triggered hits with time residuals from -10 to +250 are considered.
The time residual is the difference of the measured photon arrival time at the OM and the time it should
arrive if it would start at the muon track under the Cherenkov angle and no scattering takes place.

Zenith angle of muon

Distance of closest approach of the muon track to detector COG

Average Cherenkov distance of hits in time window

RMS of Cherenkov distance distribution for hits in time window

The Cherenkov distance describes the distance a photon would travel if it is emitted at the muon track
under Cherenkov angle.

e Average time residual of hits in time window

e RMS of distribution of time residuals of hits in time window

e Event duration (time difference between first and last triggered hit)

e Average time residual per Cherenkov distance for hits in time window

e RMS of distribution of time residuals per Cherenkov distances for hits in time window
e Fraction of hits in time window with time residuals < 40 ns

e Fraction of hits in time window with time residuals < 250 ns

e Fraction of hits in time window with time residuals > 600 ns

e Average Amplitude of hits in time window with time residuals < 40 ns
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o Average Amplitude of hits in time window with time residuals < 250 ns
e Track length in an cylinder around the detectors COG with height and radius of the detector

e Number of hits in background window (duration 2x 1000 ns, ending 700 ns before first and starting
700 ns after last triggered hit)

The six following parameters were used separately for each = € {20, 40, 60, 80,100}. Angular acceptance
is a value that parametrizes the amount of light the OMs could receive from a certain muon track.

e Number of working OMs in a radial distance between x — 20 m and x m around the muon track
e Sum of angular acceptance in a radial distance between x — 20 m and x m around the muon track

o Number of OMs with hits in a radial distance between z — 20 m and  m around the muon track
and hit time residual < 40 ns

o Number of OMs with hits in a radial distance between x — 20 m and & m around the muon track
and hit time residual > 40 ns, < 250 ns

e Charge of hits in a radial distance between x — 20 m and z m around the muon track and hit time
residual < 40 ns

e Charge of hits in a radial distance between z — 20 m and x m around the muon track and hit time
residual > 40 ns, < 250 ns

e Number of working OMs

| Rekenstruierte Energie gegen Monte Carlo Energie

log10 E(rec) [GeV]

log10 E(MC) [GeV]

Figure 6.8: Behaviour of the Cherenkov estimator in high energy reconstruction

As the usual ANTARES track reconstruction is designed for high energies, for reconstructing the
muon track for low energies a special track reconstruction, Posidonia, was used for this work. It is
described in chapter 3. Figures 6.9a and 6.9b show the accuracy of the Posidonia reconstruction for
the example of the zenith angle. It can be seen that most of the muons that are reconstructed have
a relatively accurate zenith angle, especially for the multi-line events. For single-line events there is a
mirror solution for some tracks that causes some down-going muons to be reconstructed as up-going. For
some events posidonia is not able to reconstruct them, they are displayed here with zenith angle 0. For
single-string events, 20690 out of 112268 events are not reconstructed, for multi-line events 35429 out of
203912.

The Cherenkov Estimator used the reconstructed muon track in addition to the raw hit samples. As
Posidonia distinguishes events that have hits on multiple lines and single-string events, different NNs
were trained for both cases. The results are shown here, in different plots for multi-string and single-
string events. Figures 6.10a to 6.12a show multi-string, figures 6.10b to 6.12b single-string events. Events
which could not be reconstructed with Posidonia were cut away before plotting.
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Figure 6.9: Zenith angle of track reconstructed with Posidonia over MC zenith angle. Muons not
reconstructed by Posidonia are displayed with zenith angle = 0
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Figure 6.10: Energy reconstructed with Cherenkov Estimator used with Posidonia track reconstruction
shown over Monte-Carlo energy

Despite of the high accuracy of the Cherenkov Estimator for the reconstruction of high energies,
namely energies in an range where radiative energy losses are important, and the high accuracy of the
track fitted with Posidonia for most of the events, the performance of the Cherenkov Estimator used with
Posidonia tracks in the low energy range is significantly lower than the Simple Estimator’s performance.
This is easily seen from figures 6.10a and 6.10b in comparison to 6.3a. The sigma values of the Gaussian
fit are sometimes lower than for the Simple Estimator version, but this is obviously a statistical effect.
For the case of multi-string events figure 6.10a clearly shows that the vast majority of that events have
energies above 100 GeV where, as seen from chapter 4, the detector’s response is not dependent on
energy any more, which explains the failure of the NN to accurately reconstruct the energy. For the case
of single-string events there are also many events below 100 GeV, but the quality of the reconstruction
is nevertheless poor. An explanation is that many parameters in the parameter set are designed to be
dependent on the Cherenkov light intensity per unit of track, and not to the track length.
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Figure 6.11: Mean values from Gaussian fit of reconstruction error along MC energy for energy recon-

structed with Cherenkov Estimator used with Posidonia track reconstruction (red). Blue

the result from Simple estimator without hit selection as reference.
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Figure 6.12: Sigma values from Gaussian fit of reconstruction error along MC energy for energy recon-
structed with Cherenkov Estimator used with Posidonia track reconstruction (red). Blue markers show
the result from Simple estimator without hit selection as reference.
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Chapter 7

Test of Advanced Parameters

It can be tried to improve the quality of energy reconstruction by enlarging the set of parameters that
are passed to the neural net. In this work, some pre-existing algorithms, that extract features out of the
hit maps, are tested whether they are providing useful information for energy reconstruction with neural
networks.

7.1 CalcCluster

CalcCluster is an algorithm which first sorts all the input hits by their charge and then adds them
to clusters, by checking if they are causally connected to the other hits of the cluster. Therefore, the
equation

At <=n/c- Az +t, (7.1)

with At the time difference between two hits and Az the distance between them must be fulfilled for
all the hits in cluster. If it is not, a new cluster is generated. As input hits the L1 hit selection is used.
Then, four parameters are calculated.

e Number of Clusters
e Maximum Size of Cluster
e Average Size of Clusters

e Overlap between Clusters: This is the number of all hits in all clusters over the total number of
hits

This is performed for each t; = 0 ns, 10 ns, 20 ns and 50 ns, so that 16 parameters are generated. t
stands for the travel time of photons which is assumed for scattering [6]. The 16 parameters are then
used in addition to the 20 parameters as input for the NN. The preprocessing and net training is done
in the same way as above.

The results are shown in figures 7.1a and 7.1b. The blue indicators show the values of the simple
estimator reconstruction as a reference. As it can easily be seen, the use of the CalcCluster does not
improve the energy reconstruction. That means that either the new parameters do not provide extra
information to the neural net, or the net cannot adapt to the information due to the increase of the
number of parameters.
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Figure 7.1: Use of CalcCluster: Mean and sigma values of Gaussian fit of difference between MC and
reconstructed energy over MC energy. Blue indicators are for Simple Estimator as a reference.

7.2 CalcDensity

The CalcDeunsity classifier divides the detector in 20 subvolumes, 5 divisions in the vertical (similar to
the sectors) and 4 in the horizontal plane. The event is then divided into timeslices of 50 ns each. A
dataset which contains the data of one subvolume and one timeslice is called a subunit. For each subunit
the charge density, meaning the total charge in the subunit over the number of active OMs in the subunit
is calculated. Also the pulse size, meaningy?2 the total charge per subvolume over the number of hits in
the subvolume, is calculated. Then some statistical values about the set of subunits are calculated and
returned [6].

e Difference of the mean charge density of the subvolume with the largest mean charge density and
the subvolume with the second largest

e Difference of the mean charge density of the subvolume with the largest mean charge density and
the subvolume with the third largest

e Relation between the mean charge density of the subvolume with the second largest mean charge
density and the subvolume with the largest

e Relation between the mean charge density of the subvolume with the third largest mean charge
density and the subvolume with the largest

e Difference of the largest pulse size per subvolume and the second largest

e Difference of the largest pulse size per subvolume and the third largest

e Relation between the second largest pulse size per subvolume and the largest
e Relation between the third largest pulse size per subvolume and the largest
e Number of subunits that contain 75% of the total charge

e Number of subunits that contain 90% of the total charge

e Number of subunits that contain 100% of the total charge

e Fraction of subunits that contain 75% of the total charge

e Fraction of subunits that contain 90% of the total charge

e Fraction of subunits that contain 100% of the total charge
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e Number of subunits that contain a charge density larger than the charge density of noise
e Number of subunits that contain a charge density larger than the double of charge density of noise
e Fraction of subunits that contain a charge density larger than the charge density of noise
e Fraction of subunits that contain a charge density larger than the double of charge density of noise

Fraction of subunits means here the number of subunits in the condition over the total number of
subunits. The charge density of noise is a constant value and is predefined as 0.02. In addition to that,
some other statistical parameters about the event are returned.

e Number of storeys with hits

e Number of storeys with hits in the timeslice with the largest number of hit storeys(the timeslice is
now 100 ns)

e Fraction of storeys with hits in the timeslice with the largest number of hit storeys

e Difference between the number of storeys with hits in the timeslice with the largest number of hit
storeys and the number of storeys with hits in the timeslice with the second largest number of hit
storeys

e Relation between the number of storeys with hits in the timeslice with the second largest number
of hit storeys and the number of storeys with hits in the timeslice with the largest number of hit
storeys

e Total charge of all hits

e Average charge per hit

e Time from first to last hit

e Time from first to last triggered hit
e The constant charge density of noise

The noise density parameter is not passed to the neural net because it is constant for all events. The
time from last to first triggered hit and the average charge per hit are also not passed as they already
are input parameters from the Simple Estimator parameter set that is passed to the net in addition to
the new parameters.

The results are shown in figures 7.2a and 7.2b. Although the set of parameters from CalcDensity
is significantly larger than the set of the Simple Estimator there is no improvement of the energy re-
construction’s accuracy seen from the comparison. The mean error of the reconstruction even increases
slightly (about 0.02 in logarithmic units) in the range of very low energies up to 15 GeV. There are three
possible explanations for that fact. First it could be possible that the the new parameters do not provide
energy dependent information or information that cannot be used to improve energy reconstruction,
due to their not being dependent on any intrinsic parameter of the energy loss mechanism. The second
possibility is that the parameters provide such information, but due to their high number the NN also
has more difficulties to extract the relevant information, and the third possibility is that the energy loss
mechanism and the detector’s response to that do not have more intrinsic energy dependent information
at all.
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Figure 7.2: Use of CalcDensity: Mean and sigma values of Gaussian fit of difference between MC and
reconstructed energy over MC energy. Blue indicators are for Simple Estimator as a reference.

7.3 CalcTensor

The CalcTensor algorithm first calculates the centre of gravity of the hits, both weighted with charge
and time, and the unweighted one. Then the event’s tensor of inertia and its quadrupole tensor are
calculated for the charge weighted and the unweighted version. For the tensors of inertia the eigenvalues
are stored. The central principal axis is calculated using the weighted inertia matrix, and the orientation
of the particle and the zenith is estimated from that. At last, the quadrupole moment along the central
principal axis is calculated and the following parameters are returned [6]:

e Number of hits the classifier used

e Sum of charge if used hits

e Number of OMs

e Coordinates of center of gravity (COG)

Three sets of coordinates are written out, for the unweighted, weighted by charge and weighted by time
COG. Each X,Y,Z coordinate is a single parameter.

e Sum of non-diagonal elements of the quadrupole tensor weighted by charge
e Normalized sum of non-diagonal elements of the quadrupole tensor weighted by charge
e Sum of non-diagonal elements of the unweighted quadrupole tensor

e Normalized sum of non-diagonal elements of the unweighted quadrupole tensor

Normalized sum of X*Y*Z weighted by charge
e Eigenvalues of tensor of inertia

The three eigenvalues of the tensor are ordered by their values. This is done for both the unweighted
tensor and the tensor weighted with charge. In addition, the normalized values are given. The eigenvalues
of the unweighted tensor are normalized with the hit number, those of the weighted tensor with the total
charge.

e Decision parameter for track orientation calculated by the unweighted values
e Decision parameter for track orientation calculated by the weighted values

e Calculated zenith angle
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Figure 7.3: Use of CalcTensor: Mean and sigma values of Gaussian fit of difference between MC and
reconstructed energy over MC energy. Blue indicators are for Simple Estimator as a reference.

e Quadrupole moment along track,
e Quadrupole moment along track,
e Quadrupole moment along track,
e Quadrupole moment along track,

The preprocessing, net training and
7.3a and 7.3b show their results.

unweighted

unweighted, normalized
weighted by charge

weighted by charge, normalized

reconstruction was executed as in the cases above and the figures

The result is nearly similar to the result of the use of CalcDensity. The increase of the mean error is
even a bit larger for the lowest energies (about 0.06, log units), while the sigma shows a small decrease

for the same range.

7.4 CalcShape

The CalcShape classifier tests if modules with hits are adjacent, i.e. no line or storey lies between them.
All groups with adjacent hits are considered to be one cluster. For the largest cluster its total charge
and the size of its envelope, i.e. the number of storeys lying on its border is now calculated. A set of six

parameters is then returned [6]:

e Number of clusters

Charge of largest cluster [1]

Number of modules in largest cluster [2]

Number of modules on boarder of largest cluster [3]
Compactness parameter 1: /[3]3/[2]?
Compactness parameter 2: /[3]3/[1]?

In figures 7.4a and 7.4b the results of the reconstruction with the CalcShape parameters are displayed
in comparison to the Simple Estimator reconstruction. They do not differ from each other, which indicates
that the output parameters of CalcShape also do not provide additional information about the energy

loss mechanism to the NN.
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Figure 7.4: Use of CalcShape: Mean and sigma values of Gaussian fit of difference between MC and
reconstructed energy over MC energy. Blue indicators are for Simple Estimator as a reference.

All four tested feature extraction algorithms could not provide parameter sets that improve the energy
reconstructions with NNs. As they all use different approaches to extract features from raw data, it has
to be considered that the seen uncertainty is caused by the transformation of the energy dependent track
length, which is, as seen in chapter 4, the only energy dependent value available to the experimentalist, to
the response of the detector. Nevertheless, some circumstances have to be checked which could decrease
the accuracy of the NN energy reconstruction, such as the existence of parameters which are strongly
correlated to each other or unimportant at all.

7.5 Methods for parameter discarding

To take a decision which parameter to discard, several possibilities exist to test the parameter. None of
them can give a definite answer, and usually several of them are tried before the decision is made. The
simplest way to test a parameter is to look directly on its dependence on the muon energy. This can be
done by looking at the parameter-versus-energy plot by eye, or, in a more formal way, by calculating the
covariance between the parameter and energy. The limit of this method is that even a parameter which is
energy independent, e. g. the zenith angle, can nevertheless be important for the energy reconstruction.

Another value which can help to decide if a parameter should be discarded is its importance for the
trained NN. The importance is defined as the product of the connection weights along one path from the
output of the NN to the considered input parameter, summed up for all possible ways through the net
that lead to this parameter. Again this method is limited, as it does not consider the influence of the
activation function. The importance values for the NNs in this work had to be transformed back from
feature space to the parameter space which was done using the inverse transformation of that used in
the preprocessing.

The dependence of the NN to a specific parameter can also be a hint on how important this parameter
is. After a NN was trained, a test data sample is reconstructed several times, for which the parameter to
test is fixed for each reconstruction run and varied in steps between its maximum and minimum between
the runs. The dependence is then calculated from the variation of the mean error of the reconstruction
for the sample in respect to the parameters variation. This method is also called Holdback InPut
Randomization method (HIPR). The limit of this method is that by varying one fixed parameter it
can give parameter sets to the NN that are not possible in reality. The dependences also had to be
transformed from feature space to parameter space.

It is also possible that two or more parameters which are given to a NN are highly correlated or
anti-correlated to each other, so that passing only one of them to the net would nevertheless pass the
same information to it. As the ability of the NN training process to adept to the data worsens with
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Figure 7.5: Covariance matrix for parameters with use of CalcCluster. Black denotes highly correlated
parameters, white large anti-correlations

more parameters, such redundancies have to be avoided. To check the parameter set for correlations,
the covariance matrix, which is already calculated by the PCA, can be used. An example of this matrix
is given in figure 7.5.

All four parameter sets from the different data extraction algorithms have been tested with these
methods. As both Dependence and Importance methods have their limitations, it was decided only to
discard a parameter when it would have a low value for both methods and is not considered as energy
dependent from the value-energy plot. The examination of the Importance and Dependence values
showed some correlations of low values, but many of them were considered to be energy dependent
from the plots. This could be a hint for the existence of correlations between parameters. On that
fact the decision was made to base the discarding of parameters on eliminating redundancies. Only one
parameter was discarded at this step, the number of functional OMs from the simple estimator dataset.
This parameter has a constant value of 885 in this work, since no defective OMs were considered the in
detector simulation. In the case of a test of the reconstruction’s response to different detector conditions,
this parameter should of course be included again.

7.6 Discarded parameters

Analysis of the covariance matrix for the CalcCluster parameters shows that there is no strong correlation
between CalcCluster’s output and the original Simple Estimator parameters. Inside these two parameter
sets, however, there were strong correlations. To reduce redundancy between the different ¢, steps, it
was decided only to use the steps t; = 0 and 5 = 50 ns. Also the parameter ” Average Size of Clusters”
was discarded as it was strongly anti-correlated to the number of clusters. For the parameter set from
Simple Estimator, the following parameters were excluded:

o Number of triggered hits: correlated to Number of OMs with triggered hits

e Number of working OMs: always 885 for this tests

e Number of hit repetitions: correlated to Number of all hits

e RMS of the charge distribution of triggered hits: correlated to Average charge per triggered hit
e Average charge per hit: correlated to Average charge per triggered hit

e RMS of the charge distribution of all hits: correlated to Average charge per triggered hit

e Distance between first and last triggered hit: correlated to Number of all hits
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Time difference between first and last triggered hit: correlated to Number of all hits
Average time of triggered hits after first triggered hit: correlated to Number of all hits

RMS of the time distribution of hits after first triggered hit: correlated to Number of all hits

The same analysis was performed for the parameters extracted by CalcDensity. In this set, there
were correlations between them and Simple Estimator parameters, in addition to correlations inside the
CalcDensity set. The Simple Estimator parameters that were discarded above are also discarded here.
Further discarded parameters were:

Difference of the mean charge density of the subvolume with the largest mean charge density and
the subvolume with the second largest: correlated to Fraction of subunits that contain a charge
density larger than the double of charge density of noise: correlated to Number of subunits that
contain a charge density larger than the double of charge density of noise

Difference of the mean charge density of the subvolume with the largest mean charge density and
the subvolume with the third largest: correlated to Fraction of subunits that contain a charge
density larger than the double of charge density of noise: correlated to Number of subunits that
contain a charge density larger than the double of charge density of noise

Relation between the mean charge density of the subvolume with the second largest mean charge
density and the subvolume with the largest: anti-correlated to Number of subunits that contain a
charge density larger than the double of charge density of noise

Relation between the mean charge density of the subvolume with the third largest mean charge
density and the subvolume with the largest: anti-correlated to Number of subunits that contain a
charge density larger than the double of charge density of noise

Difference of the largest pulse size per subvolume and the third largest: correlated to Difference of
the largest pulse size per subvolume and the second largest

Relation between the second largest pulse size per subvolume and the largest: correlated to Differ-
ence of the largest pulse size per subvolume and the second largest

Relation between the third largest pulse size per subvolume and the largest: correlated to Difference
of the largest pulse size per subvolume and the second largest

Fraction of subunits that contain 90% of the total charge: correlated to Fraction of subunits that
contain 75% of the total charge

Difference between the number of storeys with hits in the timeslice with the largest number of hit
storeys and the number of storeys with hits in the timeslice with the second largest number of hit
storeys: correlated to Fraction of storeys with hits in the timeslice with the largest number of hit
storeys

Time from first to last hit: correlated to Number of all hits

For the output of the CalcShape algorithm the two compactness parameters were discarded as they
were anti-correlated to the number of modules in the largest cluster and the charge in the largest cluster.
The Simple Estimator parameter set was also reduced in the testing.

The output parameters of the CalcTensor algorithm were not correlated to Simple Estimator param-
eters but had some correlations between themselves. To reduce them, the following parameters were
discarded:

Number of OMs: correlated to Number of hits the classifier used

Normalized sum of non-diagonal elements of quadrupole tensor weighted by charge: correlated to
Sum of non-diagonal elements of quadrupole tensor weighted by charge
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Normalized sum of non-diagonal elements of the unweighted quadrupole tensor:

correlated to Sum

of non-diagonal elements of the unweighted quadrupole tensor

Eigenvalues (EV) of tensor of inertia:

vweigh igh
EVQunwezg Lted: correlated to E.Vlunwe7g vted

EVgmeeishted, correlated to Number of hits the classifier used
EVqunwezghted,nownalzzed: correlated to E

litud litud
EVy P correlated to BV,

Evvzamplztude,normalzzed: correlated to E

Vvlunweighted,nmvnalized

Vamplitude,normalized
1

Calculated zenith angle: anti-correlated to the y position of the unweighted COG

Quadrupole moment along track, unweighted: correlated to F
Quadrupole moment along track, unweighted, normalized: correlated to EV]

Quadrupole moment along track, weighted by charge: correlated to EV,

Vamplitude
1

amplitude,normalized

unweighted

7.7 Results of test with reduced number of parameters

The results of the tests with discarded parameters are displayed in figures 7.6a to 7.9a.
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Figure 7.6: Comparison of mean and sigma values from Gaussian fit through difference of reconstructed
energy and Monte-Carlo energy over Monte-Carlo energy for the parameter sets extracted with Calc-
Cluster. The values for the set with all parameters included are displayed in blue, the values for the test

after parameter discarding are displayed in red.

Despite of some small changes (< 0.02 for sigma and mean values in regions where the Gaussian

fit seems to be accurate) , there is no real difference in the reconstruction accuracy between tests with
reduced number of parameters and tests with the full parameter sets. This strongly suggests that the
inaccuracy seen in the tests before does not arise from redundancies in the parameter sets.
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Figure 7.8: Comparison of mean and sigma values from Gaussian fit through difference of reconstructed
energy and Monte-Carlo energy over Monte-Carlo energy for the parameter sets extracted with CalcTen-
sor. The values for the set with all parameters included are displayed in blue, the values for the test
after parameter discarding are displayed in red.
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7.8 Combination of parameter extraction algorithms

To get the advantage of all parameter extraction algorithms, it was tried to create a ”best of” net.
To do so, the parameters of CalcShape, CalcTensor, CalcCluster and CalcDensity were put together.
The parameters which were already discarded above were not included to have a reasonable size of the
parameter set. As the covariance matrix showed almost no strong correlations, it was decided not to
exclude any more parameters.
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Figure 7.10: Comparison of mean and sigma values from Gaussian fit through difference of reconstructed
energy and Monte-Carlo energy over Monte-Carlo energy for the combined parameter sets of all four
extraction algorithms (red). For comparison, the same values are plotted with blue markers for the
Simple Estimator.

Unfortunately even the combined parameters show no improvement against the initial simple estima-
tor parameters. It should be again mentioned here that for energies above 100 GeV this was expected due
to the reasons highlighted in chapter 4. For energies below 100 GeV, the result again seems to indicate
that the parameters of the Simple Estimator are representing the low-energy energy loss functionality in
the detector with sufficient accuracy.

7.9 Tests with reduced energy range of training set

All previous tests show an overestimation of the muon energy in the range of a Monte-Carlo energy below
100 GeV while energies above this energy are underestimated. As the tests confirm the assumption which
was made in chapter 4, that it is not possible to reconstruct energies if their corresponding track length
is larger than the dimensions of the instrumented volume, and due to the fact that the training process
for an ANN tries to minimize the overall error £y for the whole training set, it seems to be a good
choice to reduce the maximal energy in the training sample to 100 GeV. This was done for the Simple
Estimator and the results are shown in figures 7.11a to 7.11c. The test of the reconstruction was done
with the usual testing sample.
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Figure 7.11: Evaluation of reconstruction quality for the Simple Estimator with a reduced energy range
for the training set. Gaussian fit through the error of the reconstruction along the Monte-Carlo energy.
Values for the Simple Estimator with original training set are displayed in blue for reference

From figures 7.11a to 7.11c it can be seen that the overestimation of the energy in the range from 25
to 100 GeV indeed vanishes, but this is not the case for energies below 25 GeV. All energies above 100
GeV are reconstructed at about 100 GeV, which was expected as the net was not trained for energies
above 100 GeV. For the range below 25 GeV there are probably too few hits in the detector for the track

length to be estimated.
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Chapter 8

Summary and Outlook

In this work an energy reconstruction for muons with energies in the low energy range (below E,c ~
780GeV) was developed using Artificial Neural Networks. As it had been shown in chapter 4 a, successful
energy reconstruction in the energy regime of nearly constant ionisation losses can only be based on
parameters which are dependent on the total length of the muon track. The most important restriction
for the reconstruction of muon energy in the low energy regime is given by the fact that the instrumented
volume of the detector has to be large enough for the track to end within it. This restricts the maximum
energy of this method to about 100 GeV for the ANTARES detector.

The development of the reconstruction was based on the work already done in [24]. The pre-existing
Simple Estimator proved already to deliver a sufficient energy reconstruction with errors comparable to
those of the high energy regime in [24]. Various tests were performed to further improve the quality of
the energy reconstruction in the low energy regime.

The application of a hit selection with higher purity than the afore used to the input hits of the
energy reconstruction however failed to improve the results of the reconstruction. The conclusion was
made that the hit selection performed with the application of the trigger criterion is already suitable
for the use within the Simple estimator. Therefore it was aimed for an enhancement of the quality of
the simple estimator by enlarging its parameter set. Parameters that were extracted from raw data
by four separate feature extraction algorithms, and which had been developed for oscillation analysis,
were tested for their capability to add new features to the ANN data set. The result of these tests was
such that they in fact do not improve the quality of the energy reconstruction significantly. As the four
extraction algorithms are based on different approaches where one uses causally connected hits, another
calculates parameters from the density of hits and charge in detector sub-volumes and time-slices, yet
another calculates the event’s tensor of inertia and the last one writes out parameters describing the
shape of the illuminated volume in the detector, the conclusion was made that the parameters which the
Simple Estimator provides are already describing the energy loss mechanism and the detector’s response
for low energies very well. To address possible issues which could cause poorer reconstruction quality if
the parameter set gets too large, the input parameter set was analysed for redundancies and parameters
which were weakly used in ANN training. These parameters were then discarded. Unfortunately even
the discarding of redundant parameters did not provide a reconstruction of better quality than that for
the Simple Estimator alone. The test of the usual track-related energy reconstruction for high energies
together with a low-energy track fitter was also performed, but with little success as reconstruction
quality significantly worsens in comparison to the previous tests.

A way to address the mean offset of the reconstruction in future work would be to reduce the maximal
energy in the training sample to 100 GeV, as this is roughly the maximum energy for which the track is
contained in the instrumented volume of ANTARES. As the training process evaluates the error for the
whole training sample, exclusion of all energies above that value, can serve to enhance reconstruction
quality for the whole range of the net.

The maximum accuracy of the energy reconstruction achieved in the low-energy range was calculated
by a Gaussian fitt in the distribution of the logarithmic reconstruction error, which yielded a mean offset
of maximally 0.2 and a sigma of maximally 0.25 for the range 10 GeV to 100 GeV. This corresponds to
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factors of 1.5 resp. 1.8 in non logarithmic values. This is quite good compared to factors of 3 usually
achieved with ANNs for energy reconstruction in the high energy range.

The next step that should be followed after this work is to test the low-energy estimator against
mis-reconstruction of events with higher energies. Also the response to different detector conditions such
as higher background rates or defective OMs has to be evaluated. It is still possible that these tests
would yields a different relevance for reconstruction quality of one or more of the tested parameters,
which were behaving similarly in ANNs trained with low background rates.
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Figure 2: Simple Estimator
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Figure 6: Cherenkov Estimator with Posidonia (3D)
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Figure 18: CalcCluster
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Figure 24: CalcTensor
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Figure 26: CalcTensor
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Figure 32: CalcCluster (Reduced number of parameters)
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Figure 34: CalcDensity (Reduced number of parameters)
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Figure 35: CalcDensity (Reduced number of parameters)
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Figure 37: CalcTensor (Reduced number of parameters)

81



p23:elog10
10

p26ielog10
o [
g 8
g 2
100
7500)
16000
50| L]
15000 T000-
0]
14000 §500)
50 13000
6000
12000
~100
5500
11000}, I I I I I
a5 1 15 25
slogi0
p29:elogl0 p3d:elog10

I S N S T SN I O qoppl L Lo L Luaa |
a5 1 5 z X a5 1 5 z X
elogl0 elogi0
p3telogi0
s
2
1 — . nn .
0.5] osl
o ol
051 05k
A — = mmo m AL o — n n 10000)- . al
L I L | L L I L L L L I L L L L I L L L
0.5 1 15 2z 25 0.5 1 15 2 25 0.5 1 15 2 25 0.5 1 15 2 25
elogid elogid elogit elogi

Figure 38: CalcTensor (Reduced number of parameters)
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Figure 40: CalcShape (Reduced number of parameters)
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Figure 42: Combination of parameters
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Figure 44: Combination of parameters
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Figure 45: Combination of parameters
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Figure 46: Combination of parameters
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Figure 47: Simple
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Figure 48: Simple Estimator with reduced range training
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Additional Plots
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Figure 49: Covariance matrix of CalcCluster parameters

Figure 50: Covariance matrix of CalcDensity parameters
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Figure 51: Covariance matrix of CalcTensor parameters
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Figure 52: Covariance matrix of CalcShape parameters
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Figure 53: Covariance matrix of combined parameters
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Figure 54: Energy distribution of testing set
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