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Abstract

Im sogenannten
”
Three Site Higgsless Model“ [1], das eine Er-

weiterung des Standardmodells darstellt, wird die elektroschwache
Symmetrie nicht durch ein fundamentales Skalarfeld wie das Hig-
gsfeld, sondern durch eine erweiterte elektroschwache Eichgruppe
SU(2)× SU(2)×U(1) im Sinne einer kompaktifizierten und auf drei
Sites dekonstruierten fünften Raumzeitdimension gebrochen. Das
Teilchenspektrum wird dadurch um drei schwere Eichbosonen W ′±

und Z ′0 mit Massen zwischen 380 und 600 GeV sowie schwere Fermio-
nen mit einer Massenskala von ≳ 3 TeV erweitert.

In dieser Arbeit wird durch eine analytische Rechnung gezeigt, dass
sich die Unitaritätsgrenze der elastischen Streuung longitudinal pola-
risierter Eichbosonen durch die Beiträge der neuen Eichbosonen von
∼ 1 TeV im higgslosen Standardmodell bis auf 2 TeV verschiebt.

Weiterhin wird in einer Detektorstudie die Möglichkeit der Ent-
deckung der neuen Eichbosonen am ATLAS-Detektor [2, 3, 4, 5] des
LHC durch Produktion im s-Kanal und anschließenden Zerfall in Stan-
dardmodell-Eichbosonen [6] quantitativ untersucht. Dazu wurden
100 fb−1 an Signal und Untergrund für die semileptonischen Kanäle
W ′/Z ′ 99K l�jj und W ′ 99K lljj sowie den rein leptonischen Kanal
W ′ 99K l�ll (l = e, � und j = Hadronen-Jet) mit dem Monte Carlo-
Generator WHIZARD (Version 1.92) [7] generiert und mit der Detek-
torsimulation ATLFAST-2 [8, 9, 10] der ATLAS-Software ATHENA
(Release 14.5.0) [10] simuliert, um die zu erwartenden Signifikanzen
abzuschätzen. Die niedrigsten 5�-Entdeckungsschwellen liegen bei 5–
20 fb−1 im l�jj-Kanal für das Z ′ und 70–100 fb−1 im l�ll-Kanal für
das vergleichsweise schwach koppelnde W ′. Für die Trennung des
W ′-Signals vom Z ′-Signal im l�jj-Kanal wird eine statistische Meth-
ode zur Unterscheidung der Standardmodell-Eichbosonen in den Jet-
Resonanzen untersucht [6].
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Introduction

One of the best probed and most successful theories in physics, Quantum
Electrodynamics (QED), was developed in the 1940s by Richard P. Feyn-
man and others. It describes all electromagnetic interactions among elemen-
tary particles through quantum fields which are coupled to each other by an
exact local symmetry under phase transformations U(1)em. In order to take
also weak processes like the neutron decay into account, the so-called Fermi
interaction, based on the work of Enrico Fermi in 1934 [11], was introduced
as a four-fermion operator with a dimensionful coupling constant, the Fermi
constant GF . Because of this property of the coupling constant, the operator
is non-renormalizable and violates partial wave unitarity at ∼ 600 GeV. In
the context of an effective field theory, however, this operator can be under-
stood as an effective low-energy interaction of new, yet undiscovered physics
at some higher energy scale. In this sense, generalizing the originally imposed
gauge principle, the electromagnetic and weak interactions can be unified un-
der a more complex local symmetry group. This symmetry, however, must be
broken again to the exact U(1)em in order to give masses to all gauge bosons
except for the photon, thus eliminating them from the low-energy spectrum
of the theory. This also makes their interactions appear point-like at low
energies, giving rise to the Fermi operator.

As a minimal extension, Sheldon L. Glashow proposed in 1961 a SU(2)
symmetry whose unbroken T3 generator embeds the U(1)em, whereas the two
remaining broken generators lead to heavy, charged gauge bosons W±, re-
sponsible for the charged currents of the weak interaction [12]. However, the
discoveries of the neutral-current interactions in 1973 at the Gargamelle ex-
periment at CERN [13] and eventually of the Z0 resonance itself in 1983 at
the UA1-Experiment of the SPS collider at CERN [14] obviously correspond
to the necessity of an even larger symmetry group: The SU(2)L × U(1)Y , al-
ready proposed independently by Steven Weinberg [15] in 1967 and Abdus
Salam [16] in 1968, comprises an additional heavy, neutral gauge boson,
hence providing the minimal experimentally solid extension of QED. Fur-
thermore, the unitarity bound is shifted up to 1.2 GeV due to contributions
of the heavy gauge bosons. Within the formalism of the so-called Glashow-
Weinberg-Salam (GWS) theory, this symmetry group forms the electroweak
gauge sector of the Standard Model of Particle Physics (SM), which has been
a very powerful formalism for predicting and explaining the most different
experimental results for more than three decades now.

Regardless of the success of this theory, there is so far no experimental ev-
idence for the actual mechanism of electroweak symmetry breaking. Another
problem of spontaneously broken gauge symmetries is the unitarity violation
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in elastic scattering amplitudes of the longitudinal modes of heavy gauge
bosons at high energies, becoming manifest in the Low Energy Theorem of
pion- und Goldstone boson scattering [17, 18] as soon as the Goldstone boson
equivalence theorem [18, 19, 20], relating Goldstone bosons to longitudinal
gauge bosons at high energies, is applied. All extensions of the experimen-
tally confirmed sectors of the SM should not only contain a mechanism for
symmetry breaking but also address the inherent unitarity problem.

The introduction of a fundamental scalar field as in the Higgs mechanism
[21, 22] of the GWS theory fulfills these requirements [23, 24], but comes along
with other drawbacks like e. g. the quadratic dependence of the Higgs mass
on the renormalization scale. Other approaches are, for example, the Tech-
nicolor models [25, 26] with an additional strongly interacting sector, whose
meson-like bound states play the role of the symmetry-breaking scalars, or
models with one or more additional space-time dimensions compactified on
the electroweak length scale, where symmetry breaking can be implemented
by non-trivial ground state configurations of the additional gauge field com-
ponents. Indeed, in the case of exactly five dimensions (5D) with the geome-
try of a 5D Anti-de Sitter space [27], these different types of models turn out
to be related to each other by a duality commonly addressed as AdS/CFT
correspondence [28]. Without stressing this point any further, the Three Site
Higgsless Model (3SHLM) introduced by R. S. Chivukula et al. in 2006
[1] can be counted among this class of theories as a maximally deconstructed
limit, with its extra dimension discretized on three sites only. In any case,
the Large Hadron Collider (LHC) at CERN, as a proton-proton collider with
center-of-mass energies up to 14 TeV, is designed to reach the scale of elec-
troweak symmetry breaking in hard parton scattering processes, thus probing
the underlying dynamics at the two large multi-purpose experiments ATLAS
[2, 3, 4, 5] and CMS [29].

This thesis is dedicated to several phenomenological aspects of the 3SHLM:
In a theoretical approach, after reviewing the SM scenario of the violation
of partial wave unitarity in scattering processes involving longitudinally po-
larized gauge bosons, the additional contributions of the new heavy gauge
bosons of the 3SHLM are calculated analytically, thus showing that the
unitarity-violating energy scale is shifted from ∼ 1 TeV in the higgsless SM
to ≲ 2 TeV in the 3SHLM. In an experimental context, a detector study of
the ATLAS detector is performed in order to quantify the discovery poten-
tial of the new heavy gauge bosons via s channel production. To that end,
signal and background events of the relevant final states l�jj, lljj [6] and
l�ll were generated in samples corresponding to an integrated luminosity of
100 fb−1 using the Monte Carlo event generator WHIZARD [7]. After gener-
ation on parton level, the samples were hadronised with PYTHIA [30] and
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their detector impact simulated with the detector simulation ATLFAST-2
[8, 9, 10] of the ATLAS software framework ATHENA (release 14.5.0) [10].
The simulated data give rise to estimated discovery thresholds of 5–20 fb−1

for the Z ′ and at the very least 70 fb−1 for the W ′, whose coupling to SM
fermions is suppressed relative to the Z ′, whereas the data analysis features
a new statistical method for the discrimination of the SM gauge bosons in
di-jet resonances [6].
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1 Unitarity Bounds in the Standard Model

1.1 Partial Wave Unitarity in Spontaneously Broken
Gauge Symmetries

1.1.1 Scattering Theory and Partial Wave Expansion

In quantum mechanics as well as quantum field theory the initial and final
states ∣i⟩ and ∣f⟩ of a scattering process, defined as asymptotic states cor-
responding, respectively, to the limits t → ±∞, are connected by a unitary
scattering matrix S,

∣f⟩ = S ∣i⟩ , (1.1)

which is in quantum field theory usually evaluated as a perturbation series
in the small coupling constants of interactions (cf. [31], ch. 4). Extracting
the unit part of S containing no interaction,

S ≡ 1 + iT , (1.2)

the matrix T defined that way is then expanded, element by element, in
the coupling constants of the theory. Choosing momentum eigenstates in
Fock space as asymptotic states, the matrix elements of T describing a 2→
anything scattering process may be further decomposed [31]:

⟨{pf}∣ iT ∣pi1pi2⟩ = (2�)4 �(4) (pi1 + pi2 − Σpf ) ⋅ iℳ (pi1, pi2 → {pf}) , (1.3)

where energy and momentum conservation has been extracted. The remain-
ing complex function ℳ, commonly referred to as Feynman amplitude, de-
pends on all momenta involved and summarizes the dynamics of the theory,
i. e. all possible interactions of matter and gauge fields of the theory which
contribute to the matrix element specified by the asymptotic states: This is
the object to be expanded in powers of the involved coupling constants. In
the special case of 2 → 2 scattering considered in the further course of this
chapter,ℳ is a function of the total energy

√
s in the center-of-mass system

(CMS) and the polar scattering angle � between the incoming and outgo-
ing directions in the said reference frame, or, equivalently, of the Lorentz-
invariant Mandelstam variables s, t and u (for the conventions used in this
thesis, cf. appendix A).

It is now straightforward to perform a partial wave analysis as usual,
using the spherical harmonics as a basis and expanding ℳ with respect to
its partial wave coefficients aL corresponding to specific angular momentum
values L (cf. [32], ch. 3):

ℳ (s, �) = 32�
∑
L

aL (s) (2L+ 1)PL (cos �) , (1.4)
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with PL denoting the Legendre polynomials (rotational symmetry with re-
spect to the azimuth angle assumed). The coefficients aL are found by pro-
jecting onto the PL:

aL (s) =
1

32�

ˆ 1

−1

d (cos �)ℳ (s, �)PL (cos �)

=
1

32�

ˆ 0

−s

dt
s
ℳ (s, t, u)PL

(
1 + 2 t

s

)
, (1.5)

where in the second line eqn. (A.4) has been used to transform the integration
variable. From general scattering theory (e. g. cf. [33], ch. 7 or [32], ch.
3) it is clear that, in order to conserve probability in any elastic scattering
process, the amplitudes of every partial wave have to obey the relation

∣aL (s)− i/2∣ = 1/2 , (1.6)

which particularly implies that the real part of aL can never exceed 1/2.

1.1.2 Longitudinal Polarization

When evaluating Feynman amplitudes using the Feynman rules of a theory,
the polarization 4-vectors "� of all external vector particles—such as gauge
bosons—have to be contracted with other Lorentz tensors in order to make
the overall amplitude Lorentz-invariant. However, the only Lorentz tensors
usually occurring in the Feynman rules apart from the polarizations them-
selves are external and internal 4-momenta p�i , and the Dirac matrices 
� of
the vector currents associated with the gauge symmetries. Hence the only
Lorentz contractions potentially occurring in ℳ are combinations of these
three 4-vectors specified by the Feynman rules.

Bearing this in mind, one may look at the physical degrees of freedom
of a heavy gauge boson with mass m and momentum k� =

(
E, k⃗

)
so that

k2 = m2 (cf. [31], ch. 21 for the remaining section). In contrast to the
massless photon of QED with two purely transverse degrees of freedom, for
a massive boson there always exists a rest frame with k� =

(
m, 0⃗

)
in which

the three remaining orthonormal directions "�i respecting

"i (k) ⋅ k = 0 and "i (k) ⋅ "j (k) = −�ij ∀ i, j = 1, 2, 3 (1.7)

are obvious. After boosting the boson along an arbitrary space direction n⃗,
two of the "�i may still be chosen transverse to n⃗, whereas the remaining third
degree of freedom collinear to n⃗, denoted longitudinal polarization "�L from
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now on, transforms into [19]

"�L (k) =

(
∣⃗k∣
m
,
E

m
n⃗

)
, (1.8)

which becomes increasingly collinear with the 4-momentum vector in the
limit E ≫ m,

"�L (k) =
k�

m
+O

(m
E

)
, (1.9)

while still fulfilling, to all orders, the orthonormality requirements (1.7). The
Goldstone boson equivalence theorem [19, 20] states that, if the gauge boson
mass originates from the spontaneous breaking of its corresponding gauge
symmetry generator, all scattering amplitudes involving the longitudinal de-
gree of freedom of the gauge boson are equivalent to amplitudes containing
the Goldstone boson associated with the broken symmetry at high energies,
whereas the underlying Feynman rules generally depend on the chosen gauge.
Eqn. (1.9) is but another manifestation of this statement, pointing out that
the longitudinal mode of a massive gauge boson increasingly behaves like its
associated Goldstone boson, i. e. becomes scalar polarized, when going into
the limit E ≫ m.

Bearing these considerations in mind, it is now clear what are the poten-
tially dangerous terms of the Feynman amplitude in the context of unitarity
violation: With two longitudinally polarized gauge bosons in the external
states, the worst-case scenario would be a direct contraction of their polar-
ization vectors, giving a leading term according to eqn. (1.9) which grows
as

"L (pi) ⋅ "L (pj) ≃
s

2mimj

≫ 1 for
√
s≫ mi,mj , i ∕= j (1.10)

in the s channel, so that the partial wave amplitudes will finally run into their
unitarity limit given by (1.6) at a specific energy scale. Furthermore, since
ℳ is a dimensionless object, the mass dimensions of all occurring external
momenta are cancelled by other dimensionful objects, i. e. propagators car-
rying momenta in the denominator or mass parameters, the latter potentially
leading to Lorentz contractions of the form "L (pi) ⋅ pjm (i ∕= j) with the same
dangerous high energy behaviour as in eqn. (1.10). All kinematically possi-
ble combinations of the two said types of divergent Lorentz contractions with
respect to the s, t and u channels are calculated in appendix B and expanded
up to the necessary order in powers of the dimensionless large parameter

x ≡ s

m2
≫ 1 , m ≡ mW , (1.11)
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Figure 1: Feynman diagrams for the self-coupling vertices of gauge bosons
in non-Abelian gauge theories. The arrows indicate the 4-momentum flows
chosen to derive the Feynman rules, and the numbers enumerate all rele-
vant properties of the gauge bosons (4-momentum, Lorentz index and gauge
index), as consistent with the conventions pointed out in appendix A.

so that eventually the full amplitudes can be expanded in x and their high
energy behaviour examined. In the following sections of this chapter, after
a short recapitulation of gauge boson self-couplings in non-Abelian gauge
theories, several 2 → 2 scattering processes involving longitudinal gauge
bosons which produce contributions of the form (1.10) are discussed explicitly.

1.2 Self-coupling of Non-Abelian Gauge Bosons

In any Yang-Mills theory, it is an inherent feature of the non-Abelian gauge
symmetries considered that the associated gauge fields are self-coupled due to
those terms of the gauge-invariant field strength tensor which are quadratic
in the respective gauge fields Aa� (e. g. cf. [31], ch. 15):

Aa�� = ∂�A
a
� − ∂�Aa� + gfabcA

b
�A

c
� , (1.12)

where g denotes the gauge coupling of the gauged symmetry group G and
fabc denotes the structure constants of its generator algebra: A� ≡ A⃗� ⋅ T⃗
with [Ta, Tb] = −ifabcTc and a, b, c = 1 ⋅ ⋅ ⋅ d (G). Then the self-coupling terms
emerge from the invariant contraction of the field strength in the Lagrangian
density:

ℒA = −1
2
tr[A��A

�� ]

= −1
4
A⃗�� ⋅ A⃗�� with tr [TaTb] = 1

2
�ab

= (kinetic terms) +

− gfabc (∂�A
a
�)A

b�Ac� − 1
4
g2fabcfadeA

b
�A

c
�A

d�Ae� , (1.13)

where the terms in the last line lead to couplings of three and four gauge
bosons, respectively.
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With the momentum flow and numbering conventions depicted in fig. 1,
the Feynman rules for the three-boson and four-boson vertex may now be
computed from eqn. (1.13) by summing up all possibilities to assign gauge
indices to external momenta and polarizations (e. g., cf. [31], ch. 16): Using
the total antisymmetry of the structure constants and replacing the deriva-
tives with corresponding external 4-momentum factors for the chosen mo-
mentum flow convention, ∂� → (−ip�), the interaction terms in eqn. (1.13)
lead to the following Feynman rules:

�→ gfa1a2a3 [g�1�2(p1 − p2)�3 + all cyclic permutations ] , (1.14)

�→ −ig2[fa1a2bfa3a4b(g�1�3g�2�4 − g�1�4g�2�3)+

+ (1→ 2, 2→ 3, 3→ 4, 4→ 1) + (3↔ 4) ] . (1.15)

Note here that all successive permutations occurring in the course of this
thesis, such as in eqn. (1.15), must generally be understood as cumulative,
i. e. every permutation is to be performed on top of the preceding one.
Furthermore, the imaginary unit which was originally defined outside the
Feynman amplitude, cf. eqn. (1.3), has been included here in the Feynman
rules (1.14) and (1.15). The prefactor 1

4
of the Lagrangian term for the four-

boson vertex in (1.13) cancels against a combinatorial factor coming from
four equivalent sets of index assignments within the 4! combinations which
are possible in total.

The two gauge boson self-coupling vertices, eqns. (1.14) and (1.15), form
the basic ingredients for the computation of tree-level Feynman diagrams
with external longitudinal gauge bosons in the following sections: In the SM,
with the non-Abelian factor SU (2)L in its gauge group, these vertices result
in couplings of the charged W± to the neutral Z0 containing an admixture
of the non-Abelian gauge component W 3.

1.3 Elastic Scattering of Longitudinal Gauge Bosons

With all the considerations and preparations made in the previous sections,
it is now time to compute the Feynman amplitudes of processes which are
potentially dangerous for partial wave unitarity, and to investigate their high
energy behavior. From eqn. (1.10) and the vertex rules (1.14) and (1.15) of
the previous section, it follows that the more longitudinally polarized gauge
bosons occur in the asymptotic states, the more dangerous the resulting high
energy behavior will be. Restricting oneself to 2 → 2 processes, it is clear
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that the elastic scattering of four longitudinally polarized gauge bosons will
be the process diverging most rapidly with

√
s:

ℳ (Aa1L A
a2
L → Aa3L A

a4
L ) ∝ ["L (p1) ⋅ "L (p2)] ["L (p3) ⋅ "L (p4)] = 1

4
x2 +O

(
x1
)

(1.16)
in the s channel, with gauge indices ai. Therefore this amplitude will now be
computed and analyzed in the SM both without and with Higgs.

In the SM without Higgs, all contributions to the amplitude (1.16) stem
from the gauge interactions presented in the previous section and can be
decomposed diagrammatically as follows:

�
32

1 4

=� +� +� +� , (1.17)

where the labels follow the usual conventions and the arrows denote exter-
nal and internal 4-momentum flows. It is indeed an inherent feature of the
SU (2)L gauge symmetry imposed on the SM Lagrangian that the most diver-
gent terms of this amplitude ∝ x2 cancel purely through the interplay of the
gauge interactions [23, 24]. This will also become obvious below, although
the emphasis is rather placed on the next-to-leading order terms ∝ x, which
do not cancel without additional contributions of any new physics and consti-
tute the leading high energy divergence of the partial wave amplitudes. The
following computation of all the separate diagrams in eqn. (1.17) is carried
out in the interaction basis, i. e. the gauge indices are kept until the very
end. The restriction to gauge components ai = 1, 2 further simplifies the
procedure, because the only occurring external mass is then m, whereas the
case of asymptotic Z0 will be addressed explicitly in section 1.3.5, on the
grounds of the results of sections 1.3.1 – 1.3.4. Note that in the following
calculations the moduli of the expressions t/m2 and u/m2 are considered to
grow ∝ x despite their angular dependency, cf. eqn. (A.4): The problem of
forward scattering will be addressed separately in the further course of this
section.

1.3.1 Contact Diagram

The first and easiest diagram to be evaluated is the contact term in eqn.
(1.17), since computation in the interaction basis means that starting from
the Feynman rule (1.15) the only remaining task is to contract the Lorentz
indices with the longitudinal polarization 4-vectors corresponding to the as-
signed external 4-momenta, eqn. (1.8), and to expand the resulting expres-
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sion in powers of x. The starting point is then

� = "�1L (p1)"�2L (p2)"�3L (p3)"�4L (p4)×

×
(
−ig2

) [
fa1a2bfa3a4b(g�1�3g�2�4 − g�1�4g�2�3)+

+ (1→ 2, 2→ 3, 3→ 4, 4→ 1) + (3↔ 4)
]
. (1.18)

Writing out explicitly the non-trivial permutation leading to the second term
in (1.18) and evaluating all the Lorentz contractions results in(
−ig2

) [
fa1a2bfa3a4b

(
["L (p1) ⋅ "L (p3)]2 − ["L (p1) ⋅ "L (p4)]2

)
+

+ fa2a3bfa4a1b
(
["L (p2) ⋅ "L (p4)]2 − ["L (p2) ⋅ "L (p1)]2

)
+ (3↔ 4)

]
,

(1.19)

while the permutation leading from the second to the third term merely
implies t ↔ u in the final result. In order to evaluate this expression in
terms of the Mandelstam variables, and to extract the first two orders in
x, the respective x expansions given in eqns. (B.3) – (B.5) for the different
combinations of polarization contractions in (1.19) are now plugged in up
to the necessary order O (x0). Squaring these contractions and separating
O (x2) from O (x1), one arrives at(

−ig2
) [
fa1a2bfa3a4b

(
1

4m4

[
u2 − t2

]
+ 1

m2s

[
u2 − t2

])
+

+ fa2a3bfa4a1b
(

1
4m4

[
u2 − s2

]
+ 1

m2s

[
u2 − tu+ s2

])
+ (3↔ 4)

]
.

(1.20)

In the last step the binomials in (1.20) are factorized, e. g. (u2 − t2) =
(u− t) (u+ t), so that the factor containing the sum can be replaced using
eqn. (A.3). Note that in O (x2) the identity (A.3) must be used exactly,
shifting an additional term into the subleading order, whereas in O (x1) the
approximation suffices. To leading order, the expression is then already in
its final shape, whereas to subleading order, after collecting and subsuming
all contributing terms, it turns out that these cancel exactly for the s-type
combination of structure constants, (fa1a2bfa3a4b), so that the final result,
expanded in powers of x, reads

� =
(
−ig2

) [
fa1a2bfa3a4b

(
s(t−u)
4m4 + 0

)
+

+ fa2a3bfa4a1b

(
t(s−u)
4m4 − 2 tu

m2s

)
+

+ fa2a4bfa3a1b

(
u(s−t)
4m4 − 2 tu

m2s

)]
. (1.21)

15



1.3.2 s Channel Diagram

For the computation of the gauge boson exchange diagrams remaining in eqn.
(1.15) the Feynman rule for a non-Abelian gauge boson propagator has to
be plugged in. Since the gauge must be fixed to allow for an unambiguous
definition of the Feynman path integral for the gauge field, the propagator
formally depends on the chosen gauge (cf. [31], ch. 16). However, in a
general gauge-fixing scheme some unphysical degrees of freedom—such as the
Goldstone bosons emerging from spontaneous symmetry breaking—remain
in the particle spectrum (cf. [31], ch. 21). For the purposes pursued here, it is
therefore convenient to proceed in unitarity gauge, keeping only the physical
degrees of freedom, i. e. the three transverse polarizations of massive vector
bosons, in the spectrum. In this gauge the propagator reads

−i�ab
k2 −m2

a

[
g�� − k�k�

m2
a

]
(1.22)

with 4-momentum transfer k and gauge indices a, b. This propagator generi-
cally describes the propagation of the transversely polarized gauge component
a with mass ma originating from the spontaneous breaking of its symmetry
generator.

The s-channel gauge boson exchange diagram in eqn. (1.17) can now be
assembled from the Feynman rules for the three-boson vertex (1.14) and the
gauge boson propagator just given in (1.22). As indicated by the arrow in
(1.17), the momentum flow convention is chosen as

k ≡ − (p1 + p2) = p3 + p4 , (1.23)

so that the resulting algebraic expression for the diagram is

� = "�1L (p1)"�2L (p2)"�3L (p3)"�4L (p4)× −i�bc
s−m2

b

[
g�� − k�k�

m2
b

]
×

× gfa1a2b (g�1�2 [p1 − p2]� + g�2� [p2 − k]�1 + g��1 [k − p1]�2)×

× (1→ 3, 2→ 4, k → −k, � → �, b→ c) , (1.24)

where the replacements given in the last line produce the correct factor for
the second vertex from the respective factor for the first one written out
in line two. Now the external polarization contractions can be carried out:
Replacing k with external momenta according to (1.23) and minding the
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orthogonality condition (1.7), this gives

(
−ig2

)
fa1a2bfa3a4b ×

m2

s−m2
b

[
g�� − (−p1−p2)�(p3+p4)�

m2
b

]
×

×
{

["L (p1) ⋅ "L (p2)]
[
p1
m
− p2

m

]
�
− 2

[
"L (p1) ⋅ p2

m

]
["L (p1)− "L (p2)]�

}
×

×
{

["L (p3) ⋅ "L (p4)]
[
p3
m
− p4

m

]
�
− 2

[
"L (p3) ⋅ p4

m

]
["L (p3)− "L (p4)]�

}
,

(1.25)

where the entire expression was multiplied by m2/m2 to cancel the mass
dimensions of the propagator and the external momenta. In this expression it
becomes clear that the k�k� part of the Lorentz tensor in the propagator does
not contribute: Using orthogonality and mass shell conditions of the external
polarizations and momenta, all remaining contractions in (1.25) except for
the g�� part give either zeros or pairs of identical terms with opposite signs.
Indeed, this is nothing but a manifestation of the Ward identity in momentum
space, which follows from the conservation of gauge currents (cf. [31], ch. 7).

For the next step, some care must be taken concerning the x expansion of
the expression: Note that the leading term of the propagator is of O (x−1),
whereas the Lorentz contractions still to be carried out via the metric tensor
of the propagator give terms of O (x1) at most, thus raising the propagator
order to give O (x0) altogether. For the remaining factors of expr. (1.25),
namely the Lorentz contractions which were already carried out, the same
logic applies as for the contact term: When replacing them by their x expan-
sions given in eqns. (B.3) and (B.8), it suffices to plug in the terms down to
O (x0) in order to be accurate to O (x1) after squaring. The result of all that
is then(

−ig2
)
fa1a2bfa3a4b ×

m2

s−m2
b

g��×

×
(

s
2m2 − 1

) [(
p1
m
− "L (p1)

)
−
(
p2
m
− "L (p2)

)
− "L (p1) + "L (p2)

]
�
×

×
(

s
2m2 − 1

) [(
p3
m
− "L (p3)

)
−
(
p4
m
− "L (p4)

)
− "L (p3) + "L (p4)

]
�
,

(1.26)

where the remaining Lorentz vectors have been rearranged in such a way that
the cancellation of the momenta by the leading terms of the polarization
vectors becomes obvious, cf. eqn. (1.9). Using the results in appendix
B again, eqns. (B.4) – (B.5) and (B.12) – (B.13), the remaining Lorentz
contractions may now be carried out down to the necessary order O (x0),
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giving(
−ig2

)
fa1a2bfa3a4b ×

m2

s−m2
b

×

×
(

s
2m2 − 1

)2 [
2
(

u
2m2 + u−t

s

)
− 2

(
t

2m2 + t−u
s

)
− 4

(
t
s

)
+ 4

(
u
s

)]
. (1.27)

It is now straightforward to subsume all terms and expand the entire second
line in powers of x to come to the final result for this diagram, which reads

� =
(
ig2
)
fa1a2bfa3a4b ×

s

s−m2
b

×
[
s(t−u)
4m4 + (t−u)

m2 +O
(
x0
)]

. (1.28)

Note that the overall sign has changed and that a factor x−1 has been ex-
tracted from the propagator. Approximating the resulting propagator factor
by unity to leading order and comparing this result with the the contact
term, eqn. (1.21), the exact gauge cancellation of the highest-order terms
∝ x2 is obvious.

1.3.3 t and u Channels

For the computation of the t-channel amplitude the symmetric momentum
flow and numbering convention pointed out in appendix A pays off, because
now almost the whole job is done by some simple permutations in the s
channel amplitude, cf. eqn. (1.17):

� =

(
�

)
1

$$
2

��
4

DD

3dd

, (1.29)

where the permutations refer to all numbers occurring in eqn. (1.24). One
may now jump at once to eqn. (1.25) of the s channel and translate it into
the t channel:(
−ig2

)
fa2a3bfa4a1b ×

m2

t−m2
b

g��×

×
{

["L (p2) ⋅ "L (p3)]
[
p2
m
− p3

m

]
�
− 2

[
"L (p2) ⋅ p3

m

]
["L (p2)− "L (p3)]�

}
×

×
{

["L (p4) ⋅ "L (p1)]
[
p4
m
− p1

m

]
�
− 2

[
"L (p4) ⋅ p1

m

]
["L (p4)− "L (p1)]�

}
.

(1.30)

The next step is in principle analog to the s channel but a little more complex
here, because the x expansions to be pugged into (1.30) for the contracted
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Lorentz vectors already differ in the subleading order O (x0) which must be
taken into account here, cf. eqns. (B.4) and (B.9). Therefore the x expansion
can only be factored out partially in this case, giving rise to some additional
mixing terms:

(
−ig2

)
fa2a3bfa4a1b ×

m2

t−m2
b

×

×
{(

t
2m2 + t

s

)2 [(p2
m
− "L (p2)

)
−
(
p3
m
− "L (p3)

)
− "L (p2) + "L (p3)

]
⋅

⋅
[(

p4
m
− "L (p4)

)
−
(
p1
m
− "L (p1)

)
− "L (p4) + "L (p1)

]
+

+ 2
(

t
2m2 + t

s

) (
−u
s

) [(
p2
m
− "L (p2)

)
−
(
p3
m
− "L (p3)

)
− "L (p2) + "L (p3)

]
⋅

⋅
[
p4
m
− p1

m

]
+

+
(
−u
s

)2 [p2
m
− p3

m

]
⋅
[
p4
m
− p1

m

]}
. (1.31)

Because of the x−1 factor in the propagator, the terms inside the curly brack-
ets only have to be computed down to O (x2), so that from the second term
beginning in line four only the leading order needs to be collected, whereas
the last term is of O (x1) and can be neglected entirely for the expansion car-
ried out here. However, this last term forms the leading-order contribution
to the Coulomb singularity of t-channel photon exchange in forward scatter-
ing, because it is the highest-order term where the t in the denominator of
the propagator is not cancelled by a t from the Lorentz contractions in the
numerator: A more detailed account of this will be given in section 1.3.4.

The final result for this amplitude is now found completely analog to the s
channel by evaluating the remaining Lorentz contractions of the terms inside
the curly bracket, using eqns. (B.3), (B.5) and (B.11), (B.13) for the first
term and eqns. (B.8), (B.10) for the second one. After expanding the entire
curly bracket in powers of x and making some use of relation (A.3), one finds

� =
(
ig2
)
fa2a3bfa4a1b ×

t

t−m2
b

×
[
t(s−u)
4m4 + 2t2−s(s−u)

m2s
+O

(
x0
)]

. (1.32)

It is no surprise that the leading order of this expression once more cancels
exactly the respective contribution ∝ x2 of the contact term, cf. eqn. (1.21).
The result for the u-channel diagram which remains from eqn. (1.17) can now
be given immediately from the t-channel result, since the exchange 3 ↔ 4
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necessary for this transfer merely implies an exchange t↔ u in eqn. (1.32):

� =

(
�

)
3↔4, t↔u

=
(
ig2
)
fa2a4bfa3a1b ×

u

u−m2
b

×
[
u(s−t)
4m4 + 2u2−s(s−t)

m2s
+O

(
x0
)]

.

(1.33)

1.3.4 Propagator Expansion and Leading-order Result

Now that all contributing diagrams are evaluated and the respective longi-
tudinal polarization factors expanded in x, the last step to be done before
summing everything up is to expand the propagator factors in the s, t and u
channel boson exchange diagrams. Some care has to be taken while address-
ing this task, because even in the high energy limit considered here the t and
u channel propagators do not necessarily become small due to the exchange of
real gauge bosons in extreme forward (and backward) scattering: cos � ≈ ±1
which implies t, u ≈ 0 from eqn. (A.4). Hence it is clear that extracting
single terms from the propagator is formally only valid if the amplitudes are
evaluated at a fixed angle which is well away from the forward and backward
regions, so that t and u also become large with increasing s (cf. [32], ch. 3).

However, this is in basic contradiction to a partial wave expansion to be
carried out later, since projection onto the spherical harmonics involves an
integration over the whole unit sphere, cf. eqn. (1.5). This circumstance is
being accounted for in the following way: The leading terms which become
large in the forward directions are those where the respective t or u factors in
the denominator of the propagator are not cancelled by equal factors coming
from the polarizations and momenta in the numerator. As was already de-
noted along with eqn. (1.31) above, this happens for the first time in O (x0)
so that these terms are basically suppressed by a factor of x−1 compared to
the leading high energy terms considered. On the other hand, the propaga-
tor terms with finite mass parameters—such as the W± and the Z0 in the
SM—acquire logarithm factors containing the said masses after integration
of the polar angle:ˆ 0

−s

dt

t−m2
= ln

m2

s+m2
≃ − lnx , s≫ m2 . (1.34)

It is now argued that these terms are suppressed by the factor lnx/x com-
pared to the leading terms and can be neglected for all further considerations,
at least as far as the SM gauge bosons are concerned.
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However, the limit m → 0 taken in eqn. (1.34), which describes the
exchange of massless photons, produces a physical singularity known as
Coulomb singularity (cf. [32], ch. 3). Its contribution, which becomes rele-
vant only in the extreme forward directions, can be isolated from the overall
amplitude and evaluated for finite angular ranges, e. g. the angular detec-
tor acceptance. This is done starting from eqn. (1.31) in the t channel: As
denoted before, the leading term where the divergent behavior of the propa-
gator for t→ 0 is not cancelled by the numerator comes from the last line of
eqn. (1.31) and is of order O (x0). With the non-trivial transformation law
between the interaction basis and the mass basis of the SM gauge bosons (cf.
[31], ch. 20), ⎛⎝ B

W 3

⎞⎠ =

⎛⎝ cos �! − sin �!

sin �! cos �!

⎞⎠⎛⎝ A

Z

⎞⎠ , (1.35)

with the Weinberg angle �! (cf. section 2.1.1), causing the replacement
1

t−m2
b
→ sin2 �!

1
t

due to the projection of the propagating photon onto the

W 3 at the vertices, the relevant term of eqn. (1.31) then reads

iℳC =
(
−ig2

)
fa2a3bfa4a1b × sin2 �!

(u
s

)2 s− u
t

+ (3↔ 4, t↔ u)

=
(
−ig2

)
fa2a3bfa4a1b × 2 sin2 �!

s

t
+ (3↔ 4, t↔ u) + finite , (1.36)

where the permutations given in brackets generate the symmetric u-channel
contribution as usual. Note that the leading Coulomb-singular term in the
cross section does not come from absolute-squaring eqn. (1.36), but from the
interference term between ℳC and the leading-order contribution in x, cf.
eqn. (1.39) below.

Bearing all these subtleties in mind, the propagator is now formally ex-
panded into a geometric series:

k2

k2 −m2
b

b=1,2−→ 1 + m2

k2
+
(
m2

k2

)2 k2

k2 −m2
for k2 ≡ s, t, u and ∣k2∣ > m2

≃ 1 + m2

k2
, ∣k2∣ ≫ m2 (1.37)

for the first two gauge components of the non-Abelian gauge field, i. e. W 1/2

exchange in the SM which implies external Z0 because of the gauge structure
of the vertices, cf. eqn. (1.14). However, the W 3 component propagating in
pure W 1/2 scattering is no mass eigenstate, so that the propagations of the Z0
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and the photon superpose, cf. eqn. (1.35), corresponding to the replacement

k2

k2 −m2
b

b=3−→ sin2 �!
k2

k2
+ cos2 �!

k2

k2 −m2
Z

= sin2 �! + cos2 �!

[
1 +

m2
Z

k2
+O

((
m2
Z

k2

)2
)]

≃ 1 + m2

k2
, (1.38)

which gives the same result as (1.37) up to this order. These are the two
leading terms of order O (x0) and O (x−1) which are necessary to compute all
mixing terms contributing to O (x1) in the results of the exchange diagrams,
eqns. (1.28), (1.32) and (1.33): Inserting (1.37) and expanding the remaining
products, the summation of all four diagrams contributing to longitudinal
gauge boson scattering, eqns. (1.21), (1.28), (1.32) and (1.33), can finally be
carried out, resulting in

� = � +� +� +�
=

(
ig2
)

1
4m2

[
fa1a2bfa3a4b × 5(t− u)

+ fa2a3bfa4a1b × (−5(t− u) + u)

+ fa2a4bfa3a1b × (−5(u− t) + t)
]

+O
(
x0
)
. (1.39)

This is the most general expression for the divergent O (x1) high-energy be-
havior of this kind of scattering amplitudes in the SM. The individual terms
of (1.39) already hint at the incomplete cancellation when the gauge am-
plitudes are summed up to physical processes, as pointed out in the next
paragraph.

1.3.5 Basis Transformations

Mass and Charge With the general expression for the divergent parts of
the amplitude given in eqn. (1.39), it is a straightforward step to compute the
amplitudes of physical processes among eigenstates of charge and mass. For
W 1/2 scattering this is but a rotation in isospin space: The only remaining
step is to contract the unsaturated gauge indices in the sums of structure
constants,

faiajbfakalb = �aiak�ajal − �aial�ajak in the SU (2) , (1.40)
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with the respective components of the charge eigenstates in the interaction
basis (cf. [31], ch. 20):

W±
L (pi) = 1√

2
(�ai1 ∓ i�ai2)W ai

L (pi) , i = 1, 2, 3, 4 . (1.41)

Note that with all external momenta pointing inward, cf. eqn. (1.17) and
appendix A, one consequently has to charge-conjugate the final state, thus
technically computing the amplitude for an annihilation of four particles into
vacuum, which is of course equal to the respective amplitude for 2 → 2
scattering due to crossing symmetries. The leading-order terms for some
physical processes are now given, reproducing the results in [23, 24]:

∙ W+
LW

−
L → W+

LW
−
L scattering implies

fa1a2bfa3a4b → −1 ,

fa2a3bfa4a1b → −1 ,

fa2a4bfa3a1b → 0 , (1.42)

which leads to the following leading-order divergence of the amplitude:

iℳ
(
W+
LW

−
L → W+

LW
−
L

)
=
(
ig2
)

1
4m2 [−�����5 (t− u) +�����5 (t− u)− u]

= −i
u

�2
, (1.43)

where the electroweak scale � was inserted using the symmetry-breaking
relation (2.6), cf. section 2.1.1.

∙ For W−
LW

−
L → W−

LW
−
L scattering, the kinematic contributions are

fa1a2bfa3a4b → 0 , fa2a3bfa4a1b → 1 , fa2a4bfa3a1b → 1 , (1.44)

so that the divergent term reads

iℳ
(
W−
LW

−
L → W−

LW
−
L

)
=
(
ig2
)

1
4m2 [u+ t]

= −i
s

�2
. (1.45)

Whenever external Z0 are involved (always even numbers due to charge con-
servation), some care must be taken in principle when using the longitudinal
polarization vectors for external particles, eqn. (1.8), during the computa-
tion of amplitudes, since mZ ∕= m. However, one may already expect from
the small mass difference Δm/m ≈ 14 % that the error which comes up from
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neglecting this circumstance should be small. Indeed, it turns out after some
computation in the mass and charge basis that the prefactor of the ampli-
tudes containing external Z0 is exactly equal at leading order to that of
external W± only. It is crucial at this point to note that with asymptotic Z0

the conservation of gauge currents, which lead to a vanishing contribution of
the k�k� part of the propagator in section 1.3.2, does not hold exactly any
more, because the mass splitting between Z0 and W± violates the associated
triplet symmetry. Hence one would expect a contribution from the polar-
ization tensor which should be proportional to the difference of the squared
masses, which can be readily verified in unitary gauge for asymptotic states
with two Z and two W . Starting from eqn. (1.25) in the s channel, the term
reads: (

−ig2
)
fa1a2bfa3a4b ×

m2

s−m2
×
{

["L (p1) ⋅ "L (p2)]
[
p1
m
− p2

m

]
⋅ k
m

}2
=

=
(
−ig2

)
fa1a2bfa3a4b ×

m2

s−m2
×
(

s
2mmZ

)2 (
m2
Z−m

2

m2

)2

=
(
−ig2

)
fa1a2bfa3a4b ×

s

s−m2
× s

m2

(
sin2 �!
2 cos �!

)2

, (1.46)

where the Lorentz contractions have been carried out in leading order which
suffices here. All other Lorentz contractions via the polarization tensor cancel
each other, and the other kinematic channels result trivially from permuting
the gauge indices and replacing s with t or u. Note that due to the gauge
structure of the vertices there can never be two Z0 which couple pointlike
at one vertex, so that one always has mixed polarization contractions as
displayed in eqn. (1.46), cf. also appendix B. The next step would be to
redo all the other Lorentz contractions via the metric tensor and see how
they are affected by the presence of external Z0. However, without giving
any more details of this tedious task, it turns out that all modifications factor
out at every order in x, so that the final result for the s channel reads:

� =
(
ig2
)
fa1a2bfa3a4b ×

s

s−m2
cos2 �!×

×
[
s(t−u)
4m4 cos2 �! + (t−u)

m2

(
1− 1

2
sin2 �!

)
− s

m2

(
sin2 �!
2 cos �!

)2

+O
(
x0
)]

,

(1.47)

where the global factor cos2 �! emerges because the SU (2) gauge vertices
project the two external Z onto their W 3 component, cf. eqn. (1.35). The
other kinematic channels and the contact diagram also give the same results
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as in pure W 1/2 scattering, cf. eqns. (1.21), (1.32) and (1.33), multiplied
with identical angular factors as in eqn. (1.47) at each order in x.

However, it is obvious that the various terms in eqn. (1.47) cannot com-
bine to reinstall the shape which was found in pure W 1/2 scattering, cf. eqn.
(1.28): Only after expanding the propagator, cf. eqn. (1.37), and transform-
ing into the charge basis, with a delta function �ai3 inserted for every external
Z0 (pi), do the leading-order terms of the gauge amplitudes combine to give
the same prefactor as in W 1/2 scattering, namely just 1

�2
. This circumstance

gives rise to the following notion: Elastic scattering of longitudinal gauge
bosons can be described exactly to leading order by the scattering of an
unbroken SU (2)C triplet (W+, Z0,W−) with masses m, i. e. the previous
results for W 1/2 scattering, eqns. (1.21), (1.28), (1.32) and (1.33), hold ex-
actly for all gauge components ai = 1, 2, 3 up to the order O (x1) considered
here as long as they are always summed up to eigenamplitudes of charge or
custodial isospin. For example, the scattering process

∙ W−
L Z

0
L → W−

L Z
0
L contains gauge boson exchange terms according to

fa1a2bfa3a4b → 1 , fa2a3bfa4a1b → 1 , fa2a4bfa3a1b → 0 , (1.48)

which are exactly opposite to eqn. (1.42), giving theW+
LW

−
L → W+

LW
−
L

scattering amplitude, eqn. (1.43), with opposite sign, whereas

∙ W+
LW

−
L → Z0

LZ
0
L leads to contributions

fa1a2bfa3a4b → 0 , fa2a3bfa4a1b → −1 , fa2a4bfa3a1b → −1 , (1.49)

hence giving the W−
LW

−
L → W−

LW
−
L scattering amplitude, eqn. (1.45),

with opposite sign.

∙ Finally, the process Z0
LZ

0
L → Z0

LZ
0
L is forbidden by the gauge structure

of the SU(2)L, as already denoted before:

fa1a2bfa3a4b → 0 , fa2a3bfa4a1b → 0 , fa2a4bfa3a1b → 0 . (1.50)

All other possible processes are related to one of those addressed above by
charge-conjugation and crossing symmetry.

Custodial Isospin As pointed out above, to leading order in the energy
expansion the three massive gauge bosons W± and Z0 may be treated as an
exact triplet under the unbroken global SU(2)C symmetry—completely ana-
log to the low-energy pion triplet—so that all elastic 2 → 2 scattering pro-
cesses which are possible among these triplet states conserve the associated
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isospin quantum number I. It is therefore sensible to derive the eigenampli-
tudes corresponding to different isospin eigenstates carrying I = 0, 1, 2 which
are possible with asymptotic states containing two particles with I = 1 and
I3 = 0,±1 each:

1⊗ 1 = 0⊕ 1⊕ 2 . (1.51)

From isospin conservation together with crossing and CP symmetries, it
follows that all corresponding 2 → 2 amplitudes can be written in terms
of one single master amplitude ℳ (s, t, u) symmetric under t ↔ u [20, 24]
(cf. [32], ch. 3). This is now briefly accounted for in the following way:
Note first that, due to crossing symmetry, the scattering amplitudes of all
2 → 2 processes which can be mapped into each other by swapping one
initial-state particle into the final state and vice versa are interrelated by the
simple kinematic permutation s↔ t or s↔ u, depending on the momentum
convention. Furthermore, the conservation of the total isospin T⃗ implies that
the scattering matrix S must commute with the isospin operator:[

S, T⃗
]

= 0 and hence
[
S, T±

]
= 0 (1.52)

with the ladder operators T± built up from the first two components of T⃗ as
usual.

With these two ingredients, all 2 → 2 scattering amplitudes among the
triplet states may now be related to each other: At first, the master amplitude
is identified with the process W+

LW
−
L → Z0

LZ
0
L:

ℳ (s, t, u) ≡ℳ
(
W+
LW

−
L → Z0

LZ
0
L

)
=

s

�2
+O

(
x0
)

(1.53)

from eqns. (1.45) and (1.49). All other amplitudes are now related to this
one using crossing symmetries and inserting ladder operators. For example,
the amplitude for W−

L Z
0
L → W−

L Z
0
L scattering is directly given by crossing

eqn. (1.53):
ℳ
(
W−
L Z

0
L → W−

L Z
0
L

)
=ℳ (t, s, u) , (1.54)

whereas the process W−
LW

−
L → W−

LW
−
L is obtained from eqn. (1.54) using a

lowering operator T− and the commutation relation (1.52):

ℳ
(
W−
LW

−
L → W−

LW
−
L

)
=
〈
W−W−∣∣S ∣∣W−W−〉

= 1√
2

〈
W−W−∣∣ST− ∣∣W−Z0

〉
=
〈
W−Z0 + Z0W−∣∣S ∣∣W−Z0

〉
=ℳ (t, s, u) + (t↔ u) . (1.55)
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The process W+
LW

−
L → W+

LW
−
L then simply follows from crossing eqn.

(1.55):
ℳ
(
W+
LW

−
L → W+

LW
−
L

)
=ℳ (s, t, u) +ℳ (t, s, u) , (1.56)

while the process Z0
LZ

0
L → Z0

LZ
0
L is derived from the identity

T+

∣∣W−Z0
〉

=
√

2
∣∣Z0Z0 +W−W+

〉
(1.57)

in the following way:〈
Z0Z0

∣∣S ∣∣Z0Z0
〉

= 1√
2

〈
Z0Z0

∣∣ST+

∣∣W−Z0
〉
−
〈
Z0Z0

∣∣S ∣∣W−W+
〉

=
〈
W−Z0 + Z0W−∣∣S ∣∣W−Z0

〉
+
〈
W+W−∣∣S ∣∣Z0Z0

〉
.

(1.58)

Collecting the results of eqns. (1.53) and (1.55), this leads to

ℳ
(
Z0
LZ

0
L → Z0

LZ
0
L

)
=ℳ (s, t, u) +ℳ (t, s, u) +ℳ (u, s, t) . (1.59)

Note that these relations are violated not only by SU(2)C-breaking operators
but also very strongly in forward scattering where pure W± scattering di-
verges due to W 3 and hence photon exchange while the amplitudes containing
Z0 only involve W 1/2 exchange and therefore stay finite ([32], ch. 3).

It is now straightforward to rewrite the results for the isospin product
states, eqns. (1.53) – (1.56) and (1.59), in the basis of irreducible states of
total isospin, cf. eqn. (1.51), thus imposing relations between the master
amplitude ℳ (s, t, u) with its two kinematic permutations and the three re-
duced amplitudes ℳI=0,1,2 corresponding to the different isospin channels
which are possible in principle. Firstly, the case of I = 2 can be read off
directly from eqn. (1.55):

ℳ (t, s, u) +ℳ (u, s, t) =ℳ2 , (1.60)

whereas eqn. (1.53) imposes the relation

ℳ (s, t, u) = 1
3

(ℳ0 −ℳ2) , (1.61)

and finally eqn. (1.54) leads to the condition

ℳ (t, s, u) = 1
2

(ℳ1 +ℳ2) . (1.62)

Solving the equation system (1.60) – (1.62), one finds the corresponding
reduced isospin eigenamplitudes [34]:

ℳ0 = 3ℳ (s, t, u) +ℳ (t, s, u) +ℳ (u, s, t) , (1.63)

ℳ1 =ℳ (t, s, u)−ℳ (u, s, t) , (1.64)

ℳ2 =ℳ (t, s, u) +ℳ (u, s, t) , (1.65)
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which can be readily evaluated to O (x1) using the leading order of the master
amplitude given in eqn. (1.53) and the interdependence of the Mandelstam
variables, eqn. A.3:

ℳ0 = 2
s

�2
, (1.66)

ℳ1 =
t− u
�2

, (1.67)

ℳ2 = − s

�2
. (1.68)

1.3.6 Partial Wave Expansion

Now that all amplitudes have been evaluated and transformed into physically
sensible bases such as mass/charge or custodial isospin, their leading-order
partial wave coefficients aL (s) are computed using eqn. (1.5) in order to
examine their high energy behavior. Since the entire propagator structure
of the amplitudes is either suppressed in the x expansion for exchange of
massive SM bosons, cf. eqn. (1.34), or has been subtracted for divergent
photon exchange, cf. eqn. (1.36), it is a trivial step to expand the leading
amplitudes with respect to their cos � factors: The only partial waves which
contribute in this approximation are L = 0 or 1, depending on the occurring
combinations of s, t and u.

As pointed out in section 1.1, the theory considered, in this case just the
SM, is only consistent up to the CMS energy where ∣aL∣ ≳ 1/2. This critical
energy

√
sc is now evaluated for the partial wave coefficients of the various

scattering processes addressed above, beginning with the physical basis of
mass and charge:

a0/1

(
W+
LW

−
L → W+

LW
−
L

)
= − 1

64�

s

�2
⇒

√
sc = 2.4 TeV , (1.69)

a0

(
W+
LW

−
L → Z0

LZ
0
L

)
=

1

32�

s

�2
⇒

√
sc = 1.7 TeV , (1.70)

where � has been replaced by the Fermi constant GF = 1.166× 10−5 GeV−2

according to eqn. (2.6) to calculate the numerical values. Now the coefficients
of the isospin amplitudes, eqns. (1.66) – (1.68), are given together with their
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corresponding critical energy scales (cf. [32], ch. 3):

a0 (I = 0) =
1

16�

s

�2
⇒

√
sc = 1.2 TeV , (1.71)

a1 (I = 1) =
1

96�

s

�2
⇒

√
sc = 3.0 TeV , (1.72)

a0 (I = 2) = − 1

32�

s

�2
⇒

√
sc = 1.7 TeV . (1.73)

From eqns. (1.69) – (1.73) it is clear that the most divergent partial wave
coefficient is the s-wave of the custodial isospin amplitude corresponding to
I = 0, which will therefore consitute the unitarity bound for the Higgsless
SM of 1.2 TeV. Any new physics models designed to explain electroweak
symmetry breaking should at least delay this consistency limit up to a higher
energy scale if not remove it entirely.

1.3.7 Higgs Scenario

The standard example for a new electroweak symmetry-breaking physics sec-
tor is the Higgs mechanism [15, 16, 21, 22] postulating a new fundamental
scalar to do the job, cf. section 2.1.1. All other SM fields are coupled to this
new Higgs field: The gauge fields via the covariant derivative of the Higgs
field and the fermions via Yukawa terms for mass generation. Because of
the construction principle to generate these masses through a non-vanishing
vacuum expectation value (VEV) of the Higgs field, these Higgs couplings to
the SM fields must be proportional to the measured mass parameters. For
example, consider the coupling of massive gauge bosons to the Higgs in the
GWS theory (cf. [31], ch. 20):

(D�H)† (D�H) = 1
2
�ℎ
(
g2W⃗� ⋅ W⃗ � + g′2B�B

� + 2gg′W 3
�B

�
)

+

+ (mass terms) + (kinetic terms) + (quartic terms)

= 2
�
ℎ
(
m2W+

� W
−� +m2

ZZ�Z
�
)

+ . . . (1.74)

with D�H =
1√
2

(
∂� − igW⃗� ⋅ �⃗ − ig′B�

)⎛⎝ 0

� + ℎ (x)

⎞⎠ ,

where the quartic couplings have been neglected because they do not con-
tribute to tree-level scattering of gauge bosons. Neglecting the fact that the
W 3 is actually no mass eigenstate, the Feynman rule for the cubic interaction
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vertex in the basis of the SU (2)L gauge field components can be read off from
eqn. (1.74):

�
21

ℎ

→ 2im
2

�
�a1a2g�1�2 , (1.75)

where the usual numeration scheme for the gauge bosons has been used, cf.
section 1.2. Then the additional diagrams contributing to elastic gauge boson
scattering, eqn. (1.17), arise from Higgs exchange via the new vertex:

�
32

1 4

=

⎛⎝�
⎞⎠

SM

+�
ℎ

+�ℎ +�ℎ .

(1.76)
Plugging in the Higgs propagator (cf. [31], ch. 21),

i

k2 −m2
ℎ

, (1.77)

the s-channel Higgs exchange diagram can now be computed explicitly:

� = "�1L (p1)"�2L (p2)"�3L (p3)"�4L (p4)× i

s−m2
ℎ

×

×
(

2im
2

�

)2

�a1a2�a3a4g�1�2g�3�4

= (−i) �a1a2�a3a4 ×
(2m2)

2

�2s
["L(p1) ⋅ "L(p2)]2 × s

s−m2
ℎ

= (−i) �a1a2�a3a4 ×
s

�2
+O

(
x0
)
, (1.78)

where in the last line the leading terms in x have been inserted for the propa-
gator and the polarization contraction, cf. eqns. (1.37) and (B.3), to find the
leading order ∝ x of the Higgs exchange amplitude. This is of course only
valid at an energy scale s > m2

ℎ, i. e. the Higgs has to be light enough to
cancel the divergent terms presented in section 1.3 before they actually vio-
late unitarity, which implies mℎ < 1.2 TeV. The t and u channel amplitudes
are obtained by performing the permutations pointed out in eqns. (1.29)
and (1.33). From eqn. (1.78) it is also clear that neglecting the difference
between W 3 and Z produces no error at leading order, because any exter-
nal mass going into the numerator via the Higgs vertex is cancelled by the
denominator of the leading term of the respective longitudinal polarization
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contraction. Now it is also clear that the leading order of the gauge diagrams
must necessarily be independent of whether or not there are Z bosons in
the asymptotic states, if the corresponding Higgs contribution is to cancel it
exactly.

In order to compare the high energy limit of all Higgs exchange and
gauge interaction amplitudes, the gauge indices in eqn. (1.78) can again be
contracted with the components of external states in a specific basis, just as
in section 1.3.5. For example, consider the basis of physical states [24]:

∙ For W+
LW

−
L → W+

LW
−
L scattering the kinematic contributions are

�a1a2�a3a4 → 1 , �a2a3�a4a1 → 1 , �a2a4�a3a1 → 0 , (1.79)

so that the resulting leading-order Higgs amplitude reads

ℳℎ

(
W+
LW

−
L → W+

LW
−
L

)
= −s+ t

�2
=

u

�2
, (1.80)

cancelling exactly the result of the gauge interactions, eqn. (1.43).

∙ W−
LW

−
L → W−

LW
−
L scattering gets kinematic contributions from the t

and u channels, implying

ℳℎ

(
W−
LW

−
L → W−

LW
−
L

)
=

s

�2
, (1.81)

which also cancels the respective gauge interaction term, eqn. (1.45).

All other relevant amplitudes can be found completely analog to the proce-
dure of section 1.3.5, leading to the same kind of cancellations.

1.4 Top Pair Annihilation into Gauge Bosons

In the previous section it was shown that the inherent structure of gauge
boson self-interactions occurring in non-Abelian local symmetries leads to a
cancellation of the most divergent terms of O (x2) in the scattering of longi-
tudinal modes through the interplay of the various contributing diagrams, so
that the high energy divergence is delayed to O (x1) in the SM. However, ac-
cording to eqn. (1.10), even two longitudinal bosons in the asymptotic states
may be enough to contribute to this order, thus potentially causing unitarity
violation in scattering processes other than elastic gauge boson scattering.
Restricting oneself once more to tree-level 2 → 2 scattering, these danger-
ous processes are fermion pair annihilations into longitudinal gauge bosons,
ff̄ → W+

LW
−
L and ff̄ → Z0

LZ
0
L, where top is certainly the most interesting

flavor because of the large mass parameter.
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Figure 2: Potentially divergent tt̄ annihilation diagrams. The contributions
depend on the initial chiralities: s-channel gauge boson propagation works
only with mixed intial chirality (left), t-channel b exchange is possible only
for left-handed initial particles (right).

1.4.1 Chiral States

Given the chiral structure of the SM fermions, the tt̄ initial states must be dis-
tinguished with respect to their chiral handedness in order to determine the
contributing diagrams. Due to the structure of the covariant Dirac equation
in the fermion sector,

Ψ̄ (i∕D) Ψ = Ψ̄L (i∕DL) ΨL + Ψ̄R (i∕DR) ΨR (1.82)

with D�
L = ∂� − igW⃗ � ⋅ �⃗ − ig′B�Y , D�

R = ∂� − ig′B�Y ,

and heeding the fact that left-handed final-state fermions are equal to right-
handed anti-fermions in the initial state, only the initial states with mixed
chirality, tRt̄L and tLt̄R, can annihilate pointlike into a neutral s-channel
boson and hence into a W± pair, with indices denoting handedness here,
unlike the gauge boson notation for longitudinal modes. For the equal-handed
initial states, tLt̄L and tRt̄R, only t-channel fermion exchange remains to
annihilate into gauge bosons, where initial tRt̄R can only produce a Z0 pair,
since right-handed fermions are singlets under SU (2)L and therefore do not
couple directly to W±, cf. eqn. (1.82). Note that, on the other hand, b
exchange is therefore forbidden for initial tRt̄L. It may then be concluded
here that to the final state Z0

LZ
0
L only t-channel top exchange contributes.

However, the production of longitudinal Z0 modes implies, to leading order,
the coupling of a scalar boson to a conserved gauge current, cf. eqn. (1.9),
which vanishes due to the corresponding Ward identity, so that only the final
state W+

LW
−
L remains to potentially produce a high energy divergence, cf.

fig. 2 for all allowed initial chiralities and according diagrams.
The three remaining potentially dangerous initial states, tRt̄L, tLt̄R and

tLt̄L, all lead to different high energy behavior when annihilating into a longi-

32



tudinal W± pair, so that they are examined here separately, beginning with
the easiest one, tRt̄L, which carries hypercharge only (cf. [31], ch. 20 and 21
for the course of the whole section). In this case, only s-channel exchange of
the neutral bosons A and Z must be taken into account. The fermion vertex
comes from the Lagrangian term

−iūRg
′ ∕BY uR = −iūR
�uR × 2

3
g
(

sin �!A
� − sin2 �!

cos �!
Z�
)
, (1.83)

where the right-handed up-type hypercharge Y = +2
3

and the angular rela-
tion between the coupling constants, eqn. (2.1), as well as the mass-mixing
coefficients of the neutral gauge bosons, eqn. (1.35), have been plugged in.
When decaying into a W± pair via the SU (2)L self-interaction vertex, cf.
section 1.2, the neutral mass states collect exactly interchanged coefficients
due to their respective admixture of the W 3, cf. eqn. (1.35), so that, be-
cause of the relative sign, the overall product of vertex coefficients is exactly
oppositely equal for the two exchange diagrams: ±2

3
g sin2 �!. This allows for

the summation of the propagators in the form

�tR
t̄L

∝ −1

s
+

1

s−m2
Z

=
(
m2
Z

s

) 1

s−m2
Z

, s > m2
Z , (1.84)

which is of course valid for the considerations here. Due to this propagator
cancellation the overall order in x is lowered to O (x0) even with longitudi-
nally polarized final state bosons, so that the initial state tRt̄L produces no
critical high energy behavior at all. Note that the gauge-dependent term of
the propagator proportional to the Lorentz tensor k�k� , cf. eqn (1.22), does
not contribute here either, following the same arguments as given below eqn.
(1.25) in section 1.3.2.

The same structure occurs for the initial state tLt̄R, but due to its addi-
tional weak isospin charge �3 = +1

2
the vertex is a bit more complex because

of W 3 contributions, so that not the entire Z propagator cancels against the
photon propagator:

−iūL
(
g ∕W 3�3 + g′ ∕BY

)
uL =

= −iūL
�uL ×
[

1
2
g (cos �!Z

� + sin �!A
�) + 1

6
g′ (− sin �!Z

� + cos �!A
�)
]

= −iūL
�uL × g
[

2
3

(
sin �!A

� − sin2 �!
cos �!

Z�
)

+ 1
2 cos �!

Z�
]
, (1.85)

where the left-handed up-type hypercharge Y = +1
6

has been inserted in
the second line. The first term leads again to a propagator cancellation as
shown above in eqn. (1.84), whereas the second term constitutes an O (x1)
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contribution. Collecting a factor cos �! from the three-boson vertex, the
entire O (x1) s-channel amplitude then reads

�tL
t̄R

= v̄L
�uL ×
(
−1

2
ig
) −ig��

s−m2
Z

(ig)× s
2m2 (p− − p+)� , (1.86)

where the leading-order approximation for the polarization vectors, eqn.
(1.9), has already been plugged in, and the p± denote the corresponding
4-momenta of the final-state W±. However, for this initial state also the
t-channel b exchange diagram contributes, cf. fig. 2, and it turns out that,
similar to the gauge cancellations in the leading order of elastic gauge boson
scattering, it delivers exactly the correct term to cancel the leading order
∝ x: The purely left-handed Lagrangian term reads

−iq̄Lg
(
∕W 1�1 + ∕W 2�2

)
qL = − i√

2
g
(
ūL ∕W+dL + d̄L ∕W−uL

)
, (1.87)

and the fermion propagator is (from [31], ch. 4)

i (∕k +mf )��
k2 −m2

f

, (1.88)

with Dirac indices �, � and the fermion mass mf , so that the resulting
exchange amplitude can be assembled:

�tL
t̄R

=
(
− i√

2
g
)2

v̄L
∕p−
m

i (∕k +mb)

t−m2
b

∕p+

m
uL(pt) , (1.89)

with momentum transfer pt − p+ ≡ k where pt denotes the momentum of
the initial tL. Note that once more the longitudinal polarization vectors have
already been replaced by their leading order, cf. eqn. (1.9). Now the Dirac
equation can be plugged in,

∕p+uL (pt) = (mt − ∕pt + ∕p+)uL (pt) = (mt − ∕k)uL (pt) , (1.90)

producing an additional term where one momentum is traded for the large
but constant mass parameter mt in the numerator, so that it contributes to
O
(
x1/2

)
only. Inserting (1.90) into eqn. (1.89) and using ∕k2 = k2, one finds(

1
2
ig2
)
v̄L
∕p−
m2

uL (pt) +O
(
x1/2

)
with mb ≃ 0 . (1.91)

Finally, momentum conservation and the Dirac equation are used to rewrite
the remaining slashed momentum as follows:

v̄L ∕p−uL = 1
2
v̄L ( ∕p− − ∕p+ + ∕pt + ∕pt̄)uL (1.92)

= 1
2
v̄L ( ∕p− − ∕p+ + 2mt)uL , (1.93)
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which delivers the leading-order result for b exchange:

�tL
t̄R

=
(

1
2
ig2
)
v̄L


�uL × 1
2m2 (p− − p+)� +O

(
x1/2

)
. (1.94)

This term exactly cancels the leading order ∝ x of the s-channel contribu-
tions, eqn. (1.86).

The subleading order in the s channel comes from the subleading terms of
the propagator and the polarization contraction and is therefore ∝ x0, hence
showing no divergent high energy behavior any more. On the other hand, in
the b exchange amplitude, eqn. (1.89), trading slashed momenta for fermion
masses via the Dirac equation while deriving expr. (1.94) gives rise to some
potentially divergent terms of order O

(
x1/2

)
. Consider the term which arises

from inserting eqn. (1.90):

(
−1

2
ig2
)
v̄L
∕p−
m

∕k
t

mt

m
uL =

(
−1

2
ig2
)
v̄L

(
mt

m2
+
m2
t

m2

∕k
t

)
uL , (1.95)

where the same manipulation as in eqn. (1.90) has been performed for v̄L ∕p−
to find the right-hand side. The first term of expr. (1.95) exactly cancels the
O
(
x1/2

)
term which comes from inserting eqn. (1.93), and the second term

in (1.95) is of O (x0), so that no unitarity-violating behavior remains for this
initial state.

Finally, consider the equal-handed initial state tLt̄L where only b ex-
change is possible: The slashed momentum in the fermion propagator, eqn.
(1.88), does not contribute because the flipped chirality structure of the initial
state gives zero together with the additional 
 matrix. Hence the only non-
vanishing contribution from t-channel b exchange must be proportional to the
bottom mass of the propagator, and therefore basically of order O

(
x1/2

)
.

1.4.2 Helicity States

After analyzing the scattering of chiral interaction eigenstates, the issue of
physically sensible initial states must be addressed now: Rather than chiral
eigenstates, one would have to consider specific eigenstates of the helicity
operator ℎ ≡ p̂ ⋅ S⃗ which projects the spin onto the 3-momentum direction
(cf. [31], ch. 3), denoted right-handed for ℎ = +1

2
and left-handed for

ℎ = −1
2
. This is Lorentz-invariant only for massless fermions, since for

massive particles, which propagate with less than speed of light, one can
always boost into a reference frame where the helicity is flipped. Furthermore,
helicity eigenstates are no chiral interaction eigenstates any more when the
fermions have finite masses: Any given helicity contains an admixture with
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relatively flipped chirality which is suppressed by the particle mass over the
energy in the chosen frame,

√
s in the CMS of two fermions.

It follows that helicity eigenstates of initial tt̄ in the CMS can be treated
as interaction eigenstates up to a correction proportional to mt/

√
s which

lowers the respective order by x−1/2. This implies that opposite helicities in
the initial state show no divergent high energy behavior just like opposite
chiralities, because after one chirality flip s-channel production of neutral
gauge bosons is forbidden again due to the chiral vertex structure, and two
chirality flips already lower the order to O (x0). Similar arguments apply for
t-channel b exchange: After one chirality flip, collecting the slashed momen-
tum of the b propagator gives zero due to chirality, and collecting mb gives
contributions to O (x0) only.

However, the picture is very different when comparing initial states of
equal chirality with those of equal helicity: In the interaction basis, the
leading high energy divergent term is ∝ mb

√
s/m2, cf. the discussion above,

whereas for initial helicity eigenstates the largest leading-order contribution
is ∝ mt

√
s/m2 which results from flipping the chirality once and collecting

the slashed momentum in the propagator: This is the leading-order high
energy divergence of the tt̄ → W+

LW
−
L scattering amplitude in the higgsless

SM. Inserting all numerical values, it leads to unitarity violation of the partial
wave coefficient a0 at an energy of roughly 30 TeV, which thus constitutes an
upper limit of this process for the occurrence of new physics: In the presence
of a Higgs field, for example, the divergence is cancelled by s-channel Higgs
exchange, as long as mℎ < 30 TeV [35]. However, as already mentioned
in the introduction, the Higgs mechanism is but the simplest of a whole
bunch of different ideas to account for electroweak symmetry breaking and
unitarity violation in the SM. In the next chapter, one of the alternative
approaches is introduced with the 3SHLM [1], describing its mechanism of
electroweak symmetry breaking as well as the influence of its new physical
degrees of freedom on the unitarity-violating scattering processes discussed
in the course of this chapter.
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2 The Three Site Higgsless Model

2.1 Construction

2.1.1 Chiral Lagrangian

A sensible starting point for the construction of new models which break
the electroweak symmetry spontaneously is the formalism of the so-called
chiral Lagrangian (for the whole section, cf. [32], ch. 2): It contains the
full electroweak gauge group SU(2)L × U(1)Y with according gauge fields

W� = W⃗� ⋅ �⃗ (�i = �i
2

are the generators of the SU(2) with the Pauli matrices
�i, i = 1, 2, 3) and B� as well as gauge coupling constants g und g′,

g/g′ ≡ tan �! (2.1)

with the Weinberg angle �!. Symmetry breaking is parametrized formally
and model-independently, i. e. at first without any phenomenological impli-
cations, by a complex 2× 2 matrix field Σ (x), whose bilinear transformation
under local gauge transformations U (x) ∈ SU (2)L and V (x) ∈ U (1)Y ,

Σ (x)→ U (x) Σ (x)V † (x) , (2.2)

is fixed uniquely by the necessity of invariant mass terms for fermions as well
as gauge bosons: The chiral SM fermion fields ΨL and ΨR = (u/d)R receive
their masses from invariant Yukawa couplings to the Σ (neutrino masses not
taken into account):

Ψ̄LΣ

⎛⎝ �u 0

0 �d

⎞⎠⎛⎝ uR

dR

⎞⎠ (2.3)

with the non-trivial matrices �u/d in generation space of the SM fermions.
Mass terms for the gauge bosons are contained in the kinetic term of the Σ
field:

1
2
tr
[
(D�Σ) (D�Σ)†

]
+ �

4
tr
[
Σ† (D�Σ) �3

]
tr
[
Σ† (D�Σ) �3

]
(2.4)

with D�Σ ≡ ∂�Σ + igW�Σ− ig′ΣB� ,

in which the trace is taken over the SU(2) generators. The second term in
(2.4) parametrizes a mass splitting between W 1/2 and W 3. This violates
the custodial symmetry SU(2)C resulting from a global symmetry-breaking
scheme SU(2)L × SU(2)R → SU(2)diag ≡ SU(2)C which is in good approxima-
tion given in the SM: � = �T ≈ 0 (with the electromagnetic fine-structure
constant �, for T cf. section 2.3.2).
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The electroweak symmetry is broken by a non-vanishing VEV of the in-
variant operator tr

[
Σ† (x) Σ (x)

]
:〈

tr
[
Σ† (x) Σ (x)

]〉
= 2�2 , e. g. via ⟨Σ (x)⟩ =

√
2� (2.5)

with the electroweak scale �. Plugging the VEV into expressions (2.3) and
(2.4) results in bilinear terms in the fermion and gauge boson fields, which are
in general non-diagonal in the interaction basis. Diagonalizing these terms
leads to eigenvalues and eigenstates in the mass basis, so that the electroweak
scale � introduced in (2.5) relates the gauge coupling constants of the theory
to the gauge boson masses:

�2 ≡ 4m2

g2
=

1√
2GF

with m ≡ mW = mZ cos �! (2.6)

on tree level. The VEV (2.5) can, for example, be generated dynamically by
an invariant potential term in the Lagrangian:

−�
2

4
tr
[
Σ† (x) Σ (x)

]
+

�

16
tr
[
Σ† (x) Σ (x)

]2
+ ... with

�2

�
≡ � . (2.7)

If one additionally chooses the minimal linear parametrization of the Σ field
with four scalar, real degrees of freedom, the Higgs sector of the GWS theory
[15, 16] as presented in section 1.3.7 is exactly reproduced [32].

However, the choice of parametrization is not fixed in any way. Specifi-
cally, a minimal parametrization with respect to the number of real degrees
of freedom is non-linear:

Σ (x) =
√

2� exp
(
− i
�
�⃗ ⋅ !⃗ (x)

)
(2.8)

with the three real degress of freedom !⃗ (x) which are the Goldstone bosons
of the broken symmetry generators. This parametrization contains no phys-
ical Higgs boson, though: It restricts the Σ field to unitary matrices, thus
strengthening the VEV condition (2.5) to an equation,

Σ† (x) Σ (x) = 2�2 , (2.9)

so that the potential term (2.7) becomes constant and therefore physically
meaningless. It may be noted here that the non-linearly parametrized La-
grangian cannot be renormalized, since, upon expanding exp. (2.8), inter-
actions of arbitrarily high order contribute already on tree level. The con-
struction of the chiral Lagrangian is model-independent in the sense that any
mechanism of spontaneous symmetry breaking should—at least in the limit
of low energies of scale m—be equivalent to a certain parametrization of the
Σ field.
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Figure 3: Field content and gauge structure of the 3SHLM as a moose dia-
gram [6]. The dashed lines depict the invariant terms of the Yukawa sector
(cf. section 2.2), the dotted line hints at the non-trivial U(1)2 charges carried
by all fermion fields.

2.1.2 Three Site Higgsless Model

Starting from the chiral Lagrangian, it is a natural and intuitive step to
simply plug another SU(2) group factor between the two gauge group factors
of the SM and to connect these three with now two fields Σ0/1 instead of just
one. This is already the complete electroweak gauge group of the 3SHLM
[1]:

SU(2)0 × SU(2)1 × U(1)2 . (2.10)

This construction may be seen as a maximally deconstructed version of a
theory with one additional, compactified space-time dimension y, where the
new dimension is discretized on just three sites. The continuous analog is
then a gauged SU(2) symmetry on the entire 5D bulk of space-time, which
is broken by boundary conditions on a 4D brane of y to the U(1)2, to be
understood as the remaining �3 generator of the full SU(2). In this picture
it is consequent to stretch also the fermion fields Ψ over the whole extension
of y, and to implement the chiral structure of the SM, with right-handed
fermions ΨR carrying U(1) charges exclusively, also via boundary conditions.
The described gauge structure and complete field content of the 3SHLM is
displayed in a moose model in fig. 3.

Such a 5D approach automatically accounts for the higgsless, non-linear
parametrization of the Σ fields with three scalar degrees of freedom each:
The Σ fields can be viewed as a deconstructed version of Wilson line fields
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along the y direction in the adjoint representation of the SU(2), and thus as
y components of the 5D gauge field coming with the full bulk gauge group
(cf. [31], ch. 15). The transformations of the Σ fields under local gauge
transformations are, as in the chiral Lagrangian, completely fixed by the
necessity to write down invariant mass terms for both fermions and gauge
bosons [6]:

Σ0 → U0Σ0U1 , Σ1 → U1Σ1e
− i
�
��3 (2.11)

with U0 ∈ SU(2)0, U1 ∈ SU(2)1 and e−
i
�
��3 ∈ U(1)2. The breaking of the full

gauge symmetry (2.10) to the U(1)em is also instantiated analog to (2.9) by
conditions for Σ0/1:(

Σ†Σ
)

0/1
= 2�2 , e. g. via

〈
Σ0/1

〉
=
√

2� . (2.12)

With respect to the chiral Lagrangian approach, one should be able to
choose the parameters of the 3SHLM such that the effects of new physics
associated with the additional SU(2)1 gauge factor become negligibly small
in the low energy limit, i. e.

√
s → m, so that the model will morph into

the chiral Lagrangian with a non-linear parametrization of the Σ field. This
expectation may be illustrated again in the picture of the deconstructed 5D
theory: In the continuous compactified case, there is an infinite tower of
Kaluza-Klein (KK) excitations with masses proportional to the quantized
momentum component ky. In a dimension which is deconstructed on merely
three sites, only two orthogonal modes remain in the Fourier spectrum, so
that the particle spectrum comprises, apart from the SM particles associated
with the boundary sites (the 0- and 2-brane), only the first KK excitation in
each case, associated with the bulk site 1. Supposing a large enough mass
splitting between the KK modes, the heavy modes can be integrated out at
low energies, thereby collecting a suppression factor due to their own mass
scale, which makes the morphing into the chiral Lagrangian become rather
obvious.

2.2 Particle Spectrum and Mass Basis

2.2.1 Gauge Bosons

In order to find the mass eigenvalues and eigenstates of the gauge bosons,
the kinetic terms of the Σ fields have to be evaluated starting from the
interaction basis. These terms can be formulated completely analog to the
chiral Lagrangian (2.4) with a summation over the two Σ fields [36]:

1∑
i=0

1
2
tr
[
(D�Σi) (D�Σi)

†
]

(2.13)
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with D�Σi ≡ ∂�Σi + igiA
�
i Σi − ig(i+1)ΣiA

�
(i+1) ,

where the custodial symmetry-breaking term was neglected here. Plugging
in the complete expression for the covariant derivatives, the mass terms may
easily be read off in unitary gauge, !⃗i = 0:

�2

2

1∑
i=0

(
g2
i A⃗i� ⋅ A⃗

�
i + g2

(i+1)A⃗(i+1)� ⋅ A⃗�(i+1) − gig(i+1)A⃗i� ⋅ A⃗�(i+1)

)
, (2.14)

where the dot-products are to be understood in the adjoint SU(2) represen-
tation of the A�i , originating from the orthogonality of the SU(2) generators:

tr [�i�j] =
�ij
2

. So as to reach the regime denoted in the end of the preceding
section, where the new gauge boson mass states W ′and Z ′ are concentrated
at the bulk site in the interaction basis and at the same time become heavy
compared to m, expression (2.14) immediately suggests to choose the cou-
plings g0 and g2 to be small in relation to g1, in order to localize heavy masses
m′ ∼ g1� in the bulk and light masses m ∼ g0/2� on the branes. It is therefore
sensible to expand in the small parameters

g0/g1 ≡ � ≪ 1 and g2/g1 ≡ � ≪ 1 . (2.15)

Moreover, angular relations between g0 and g2 are defined analog to the GWS
formalism:

g0/g2 ≡ t� =
s�
c�
. (2.16)

In the imposed limit (2.15) one finds g0 ≈ g and g2 ≈ g′ approximately,
which enables the identification of the brane gauge factors of (2.10) with the
SM gauge group SU(2)L × U(1)Y to O (�0). This corresponds again to the
original construction principle of the model, i. e. embedding the SM on the
branes and establishing the new physics in the bulk of y.

The terms included in (2.14) can now be cast into mass matrices for
the separate gauge components of the Aai (a = 1, 2, 3 with Lorentz indices
suppressed from here on), whose entries depend on � and � or equivalently
t�. Heeding the fact that A2 only contains a �3 factor and therefore does
not contribute to the charged states W ′, these can be expressed with the
following matrix in the interaction basis (this and all following results in this
section are taken from [1]):

g2
1�

2

2

(
Aa0 Aa1

)⎛⎝ �2 −�

−� 2

⎞⎠⎛⎝ Aa0

Aa1

⎞⎠ , a = 1, 2 . (2.17)
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The diagonalization of this matrix, using an expansion in �, results in one
light eigenvalue, of O (�2), and a heavy one, of O (�0):

m2 = g2
1�

2
[

1
4
�2 − 1

16
�4 +O

(
�8
)]

and m′2 = g2
1�

2
[
1 + 1

4
�2 + 1

16
�4 +O

(
�6
)]

(2.18)

with m′ ≡ mW ′ , and corresponding eigenstates⎛⎝ W

W ′

⎞⎠ ≡
⎛⎝ �0

W �1
W

�0
W ′ �1

W ′

⎞⎠⎛⎝ A0

A1

⎞⎠

=

⎛⎝ �0
W �1

W

−�1
W �0

W

⎞⎠⎛⎝ A0

A1

⎞⎠ (2.19)

with �0
W = 1− 1

8
�2 +O

(
�4
)

and �1
W = 1

2
� + 1

16
�3 +O

(
�5
)
.

In the � expansion one can see immediately that the light eigenstate identified
with the SM W is located mostly on the 0-brane whereas the heavy eigenstate
W ′ lives mostly at the bulk site. As for the 3-components of the gauge fields,
the contributions from the 2-brane have to be taken into account, leading to
the matrix

g2
1�

2

2

(
Aa0 Aa1 Aa2

)⎛⎜⎜⎜⎝
�2 −� 0

−� 2 −t��

0 −t�� t2��
2

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Aa0

Aa1

Aa2

⎞⎟⎟⎟⎠ , a = 3 . (2.20)

After diagonalization, one eigenvalue is found which exactly equals zero: This
is the photon with an eigenstate constructed in analogy to the SM by pro-
jecting onto the U(1)em via the electromagnetic charge e:

A ≡ �0
AA0 + �1

AA1 + �2
AA2

= e
g0
A0 + e

g1
A1 + e

g2
A2 , (2.21)

with e defined properly by the original gauge couplings of the model, in
analogy to the SM:

1

e2
=

1

g2
0

+
1

g2
1

+
1

g2
2

. (2.22)
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The other two non-zero mass eigenvalues are, expanded in �:

mZ =
g2

1�
2

c2
�

[
1
4
�2 − (1−t2�)

2

16
�4 +O

(
�8
)]

and mZ′ = g2
1�

2

[
1 +

(1+t2�)
4

�2 +
(1−t2�)

2

16
�4 +O

(
�6
)]

, (2.23)

giving rise to the following set of eigenstates:⎛⎜⎜⎜⎝
Z

Z ′

A

⎞⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎝

�0
Z �1

Z �2
Z

�0
Z′ �1

Z′ �1
Z′

�0
A �1

A �2
A

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

A0

A1

A2

⎞⎟⎟⎟⎠ (2.24)

with �0
Z = c� −

c3�(1+2t2�−3t4�)
8

�2 +O
(
�4
)
,

�1
Z =

c�(1−t2�)
2

� +
c3�(1−t2�)

3

16
�3 +O

(
�5
)
,

�2
Z = −s� −

s�c
2
�(3−2t2�−t

4
�)

8
�2 +O

(
�4
)

and �0
Z′ = −1

2
� − (1−3t2�)

16
�3 +O

(
�5
)
,

�1
Z′ = 1− (1+t2�)

8
�2 +O

(
�4
)
,

�2
Z′ = − t�

2
� +

t�(3−t2�)
16

�3 +O
(
�5
)

and the �iA already given in eqn. (2.21). Note again that the light states
identified with the SM gauge bosons A and Z live on the branes while the
new heavy state Z ′ is located mostly at the bulk site. All the Clebsch-Gordan
coefficients given in eqns. (2.19), (2.21) and (2.24) will later become crucial
for the evaluation of the gauge boson scattering amplitudes in the 3SHLM
and deriving the unitarity bounds of the model, cf. section 2.3.1.

Having solved for the mass eigenvalues in dependence on the small pa-
rameter �, one can derive mutual relations beween this parameter and the
gauge boson masses m and m′ using eqns. (2.18) and (2.23):

�2 = 4
(m
m′

)2

+ 8
(m
m′

)4

+O
((m

m′

)6
)

or
(m
m′

)2

= 1
4
�2 − 1

8
�4 +O

(
�6
)
, (2.25)
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pointing out the fact that, after fixing the SM gauge boson masses and cou-
plings, only one free parameter remains in this sector, to be chosen as � or m′,
equivalently. Moreover, comparison of eqns. (2.18) and (2.23) immediately
illustrates that the masses of the heavy gauge bosons are almost degenerate:

m2
Z′ −m′2

m′2
= 1

4
t2��

2 ≲ O
(
10−2

)
, (2.26)

cf. section 2.3.2 for the numerical upper limit, so that for all further discus-
sions the heavy masses may be assumed as equal: mZ′ ≃ m′. At last, the
interrelations of the mixing angles and hence gauge couplings between the
SM and the 3SHLM can also be fixed in a � expansion from eqns. (2.18)
and (2.23):

cos2 �!
∣∣
Z

=
m2

m2
Z

= c2
� − s2

�

(
c2
� − 1

4

)
�2 +O

(
�4
)

(2.27)

and therefore sin2 �!
∣∣
Z

= s2
� + s2

�

(
c2
� − 1

4

)
�2 +O

(
�4
)
, (2.28)

where the relations are understood to be evaluated at the Z pole. Eqns.
(2.27) and (2.28) directly point out that � ≈ �! and hence g0 ≈ g and g2 ≈ g′

up to corrections of order O (�2).

2.2.2 Fermions

The mass terms of the fermions are inserted analog to the chiral Lagrangian
via Yukawa couplings to the Σ fields. To that end, the charges of the fermion
fields under the various factors of the gauge group (2.10) are first assigned as
denoted in fig. 3. The chiral structure of the SM is implemented by boundary
conditions along y, i. e. by conditions for the brane fields: On the 0-brane
there exist exclusively left-handed fermion fields Ψ0,L, on the 2-brane only
right-handed ones named Ψ2,R. These last ones are isospin singlets under all
SU(2) factors and carry U(1)2 charges according to the hypercharges of the
right-handed SM fermions. All other Fermions, including the right-handed
Ψ1,R, are isospin doublets under their respective SU(2)i factor, �i,3 = ±1

2
,

and additionally carry U(1)2 charges according to the hypercharges of the
left-handed SM fermions [1, 6].

With these assignments made, all invariant terms of the Yukawa sector
of the 3SHLM can be written down analog to (2.3):

�LΨ̄0,LΣ0Ψ1,R +MΨ̄1,LΨ1,R + Ψ̄1,LΣ1

⎛⎝ �u,R 0

0 �d,R

⎞⎠⎛⎝ u2,R

d2,R

⎞⎠ , (2.29)
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where all fermion fields must be understood as three-component vectors in
generation space, and the gauge invariant Dirac mass term MΨ̄1,LΨ1,R was
added for completeness. Except for the �u/d,R, which—like the �u/d in expr.
(2.3)—implement the non-trivial flavor structure of the SM, all parameters
arising are generation-diagonal. Plugging in the VEV (2.12) gives

M

⎧⎨⎩�LΨ̄0,LΨ1,R + Ψ̄1,LΨ1,R + Ψ̄1,L

⎛⎝ �u,R 0

0 �d,R

⎞⎠⎛⎝ u2,R

d2,R

⎞⎠⎫⎬⎭ (2.30)

with �L ≡
√

2��L
M

and �u/d,R ≡
√

2��u/d,R
M

.

The parameters defined here can be interpreted as follows: The �u/d,R matri-
ces are completely fixed by requiring the fermion mass splittings and flavor
structure of the SM as known from the the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix [37], and choosing the mass scale M of the
heavy fermions, which is a free parameter of the 3SHLM. The delocalization
parameter �L is a switch for adjusting the profile of the mass eigenstates along
the gauge factors in the interaction basis, i. e. the admixture of contributions
from the bulk site to the SM states, and vice versa. It completes the set of
free parameters in the 3SHLM, together with m′ and M . The next section
is dedicated to the derivation of constraints on the parameter space, both
from theoretical considerations and experimental results: In section 2.3.1
theoretical upper bounds on the mass scales m′ and M will be motivated by
the requirement that the new particles affect the unitarity-violating scales
discussed in section 1.3, whereas the experimental constraints presented in
section 2.3.2 will basically bound the said mass scales from below and impose
a rather strict interdependence between �L and m′.

2.3 Constraints on Parameter Space

2.3.1 Theoretical Bounds from Unitarity Violation

Scattering Amplitudes in the 3SHLM In the 3SHLM with its enlarged
gauge group, the gauge kinetic sector, which is basically constructed analog
to eqn. (1.13), comprises a sum over the two independent non-Abelian gauge
fields on sites 0 and 1:

ℒYang-Mills = −1
2

1∑
i=0

tr
[
A(i)��A

��
(i)

]
. (2.31)

The remaining gauge field A�2 gauges the U(1)2 symmetry on the 2-brane,
which is Abelian and shows no self-couplings. Because of the non-trivial
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transformation matrices connecting interaction and mass states (cf. section
2.2.1), the self-interactions on sites 0 and 1 are generally not diagonal in the
mass basis, so that the heavy modes W ′ and Z ′ couple not only among each
other but also to the light SM states W , Z and A.

The resulting three-vertex has the same gauge and Lorentz structure as
the three-boson vertex in the SM, cf. eqn. (1.14), only the coupling constant
must be replaced by an expression containing the gauge couplings of the
3SHLM and the overlap of the mass eigenstates taken into account on the
two sites 0 and 1 which carry the SU(2) factors, cf. eqns. (2.19) and (2.24):

�
21

3

∼ g0

(
�0
V1

)(
�0
V2

)(
�0
V ′3

)
+ g1

(
�1
V1

)(
�1
V2

)(
�1
V ′3

)
, (2.32)

where the labels V
(′)
i refer to the coefficients of those mass states which

contain admixtures of the respective gauge components ai, i. e. V
(′)
i = W (′)

for ai = 1, 2 and V
(′)
i = Z(′) for ai = 3. With this additional vertex, the full

tree-level matrix element for elastic scattering of longitudinal gauge bosons
gets new contributions due to an exchange of the heavy gauge bosons:

�
32

1 4

=

⎛⎝�
⎞⎠

SM

+� +� +� .

(2.33)
Note that the SM-like diagrams, eqn. (1.17), also get contributions from the
bulk site due to the delocalization of the light mass states:

�
21

3

∼ g0

[(
�0
V1

) (
�0
V2

) (
�0
V3

)
+ 1

�

(
�1
V1

) (
�1
V2

) (
�1
V3

)]
, (2.34)

�
32

1 4

∼ g2
0

[(
�0
V1

) (
�0
V2

) (
�0
V3

) (
�0
V4

)
+ 1

�2

(
�1
V1

) (
�1
V2

) (
�1
V3

) (
�1
V4

)]
, (2.35)

where � ≡ g0/g1, cf. section 2.2. However, because of the relative suppression

of the bulk fields in the light mass eigenstates, �
0/2
Vi
∼ O (�0) and �1

Vi
∼ O (�1)

from eqns. (2.19) and (2.24), the contributions from the bulk site to the
SM-like contact and propagator diagrams will in general be suppressed at
least by a factor �2 compared to the brane contributions, so that to order
O (�0) with g0 ≈ g the SM expressions discussed thoroughly in section 1.3
are reproduced. The only new O (�0) contribution from the bulk site must
therefore come from the exchange of a heavy gauge boson: Although the
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coefficients alone also produce �2 factors, cf. eqn. (2.32), the x expansion of
the propagator conveys negative powers of � due to the large mass m′ in the
denominator. This first expectation will be discussed in detail further below,
starting from the full scattering amplitude in the 3SHLM.

In order to tie in with the procedure of section 1.3 and use the results given
there, this amplitude is derived at first for W 1/2 scattering only. Starting with
the contact amplitude again, its result is just the same as in the SM, eqn.
(1.21), with the replacement g → g0 and multiplication of the respective
Clebsch-Gordan coefficients, i. e. eqn. (2.35) with Vi → W :

� =
(
−ig2

0

) [(
�0
W

)4
+ 1

�2

(
�1
W

)4
] [
fa1a2bfa3a4b

(
s(t−u)
4m4 + 0

)
+

+ fa2a3bfa4a1b

(
t(s−u)
4m4 − 2 tu

m2s

)
+

+ fa2a4bfa3a1b

(
u(s−t)
4m4 − 2 tu

m2s

)]
=
(
−ig2

0

) [
1− 7

16
�2 +O

(
�4
)]

[ . . . ] . (2.36)

Once again, this result explicitly illustrates the fact that considering only
O (�0), which implies setting g0 ≈ g again, the SM expression is exactly
reproduced.

Replacing g with g0 once more, the s, t and u exchange diagrams can also
be transferred formally from section 1.3, eqns. (1.28), (1.32) and (1.33), if all
the non-trivial site-mixing structure is absorbed into the propagator factors.
Consider the s channel at first:

�
A

+�
Z

+�
Z ′

=

=
(
ig2

0

)
fa1a2bfa3a4b ×

[
s(t−u)
4m4 + (t−u)

m2 +O
(
x0
)]
×

×
{
CA(�) + CZ(�)

s

s−m2
Z

+ CZ′(�)
s

s−m′2

}
, (2.37)

shadingwhere the functions CV (�) are just the squared �-dependent coeffi-
cients of the respective three-boson vertices corresponding to the different
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propagating mass states, cf. eqns. (2.32) and (2.34):

CA (�) ≡
[(
�0
W

)2 (
�0
A

)
+ 1

�

(
�1
W

)2 (
�1
A

)]2

= s2
� − s4

��
2 +O

(
�4
)
, (2.38)

CZ (�) ≡
[(
�0
W

)2 (
�0
Z

)
+ 1

�

(
�1
W

)2 (
�1
Z

)]2

= c2
� −

(1+4c2�−c4�)
8

�2 +O
(
�4
)
, (2.39)

CZ′ (�) ≡
[(
�0
W

)2 (
�0
Z′

)
+ 1

�

(
�1
W

)2 (
�1
Z′

)]2

= 1
16
�2 − (3+5t2�)

64
�4 +O

(
�4
)
. (2.40)

Note that due to the orthonormality of the �iV ,∑
V=A,Z,Z′

(
�iV
) (
�jV
)

= �ij , i, j = 0, 1, 2 , (2.41)

the sum of all CV (�) expectedly leaves just the external coefficients behind

CA (�) + CZ (�) + CZ′ (�) =
(
�0
W

)4
+ 1

�2

(
�1
W

)4
, (2.42)

so that, when approximating all propagators by unity and comparing with
eqn. (2.36), the exact cancellation of the most divergent terms of orderO (x2)
is obvious also in the 3SHLM, to all orders in �.

Leading-order Cancellations Now consider the � expansion of the coef-
ficient functions for each propagator, eqns. (2.38) – (2.40): Formally taking
the limit m′ →∞ and hence � → 0, the coefficients of the light propaga-
tors become CA → s2

� → sin2 �! and CZ → c2
� → cos2 �!, cf. eqns. (2.27) and

(2.28), and CZ′ → 0 which reproduces the SM amplitudes as expected. How-
ever, if the heavy bosons are to interfere with the leading-order high energy
divergence of the amplitudes, their mass m′ must be bounded from above by√
sc, cf. section 1.3.6, hence � is small but finite. Therefore, in a regime where

m′ <
√
s <
√
sc, the leading-order terms of the amplitudes can be isolated

by geometrically expanding all propagators (including the heavy one) and
sorting the leading power of the unbounded parameter x = s/m2 in powers
of �. It was already denoted that at order O (�0) the only remaining task
is to expand the heavy propagator analog to eqn. (1.37), always bearing in
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mind the respective considerations of section 1.3.4:

k2

k2 −m′2
= 1 + m′2

k2
+
(
m′2

k2

)2 k2

k2 −m′2
for k2 ≡ s, t, u and ∣k2∣ > m′2

= 1 +
(

4
�2

+ 2 +O
(
�2
))

m2

k2
+O

((
�2x
)−2
)
, (2.43)

where relation (2.25) was plugged in up to the necessary order in �. It
is stressed that, although the geometric series does converge in the regime
�2x > 1 considered here, the first two terms of eqn. (2.43) constitute a
much worse approximation compared to the case of light propagators (cf.
the discussion in section 1.3.4), because every suppression factor x is offset
by a factor of �2 due to the heavy mass m′. This situation severely aggra-
vates when integrating over the polar angle in partial wave analysis, thus
collecting another logarithmic factor, cf. eqn. (1.34), which further reduces
the suppression of the terms ∝ x0. Therefore, and to include the scale where√
s ≲ m′ in the partial-wave analysis, the full heavy propagator will be main-

tained below to derive realistic numerical values, while the expansion of the
light propagators remains a good approximation.

However, eqn. (2.43) can be used now to derive the influence of the
heavy bosons on the leading divergent terms of order O (x1). This consti-
tutes an upper limit for the capability of the W ′ and Z ′ to delay unitarity
violation, because it would become a valid approximation in a regime where
m≪ m′ ≪

√
s <
√
sc which is practically non-existent, since the overall en-

ergy range is only ∼ 1 TeV. Nonetheless, the result is obtained by plugging
the � expansions of CZ′ (�), eqn. (2.40), and of the propagator, eqn. (2.43),
into the amplitude, eqn. (2.37), and expanding the resulting product in pow-
ers of x and �. The most divergent term, proportional to �2x2, contributes to
the gauge cancellation of the entire order O (x2) as pointed out previously,
whereas to subleading order O (�0x1) only one term contributes,

s(t−u)
4m2

(
1
16
�2
) (

4
�2

)
m2

s
= (t−u)

16m2 , (2.44)

so that the result for all kinematic channels reads:

�+�+� =
(
ig2
)

1
4m2

[
fa1a2bfa3a4b × 1

4
(t− u)

+ fa2a3bfa4a1b × 1
4
(s− u)

+ fa2a4bfa3a1b × 1
4
(s− t)

]
+O

(
�2
)
.

(2.45)
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This amplitude may now be transformed into a physically sensible basis, like
it has been done several times before already, cf. sections 1.3.5 and 1.3.7:
Using eqns. (1.42), (1.44), (1.49), (1.53) and (1.63) one finds

ℳZ′
(
W+
LW

−
L → W+

LW
−
L

)
= − 1

4�2
[(t− u) + (s− u)] =

3

4

u

�2
, (2.46)

ℳZ′
(
W−
LW

−
L → W−

LW
−
L

)
=

3

4

s

�2
, (2.47)

and so on. Comparing with eqns. (1.43), (1.45) and (1.66), the incomplete
cancellation of the divergent terms is obvious: The Z ′ exchange diagram
cancels at most 3/4 of the SM divergence in the limit m ≪ m′ → 0, which
corresponds to a delay of unitarity violation by a factor ≲ 2, whereas the
amount of this cancellation lessens when effects of realistic values for m′ are
collected.

Before performing a partial wave analysis, the structure of 3SHLM am-
plitudes with external Z0 is briefly addressed now: For the polarization con-
tractions the same arguments are valid here as in the SM of course, cf. sec-
tion 1.3.5, and in the propagator diagrams only charged gauge bosons are
exchanged because of the gauge structure of the vertices. Transferring the
results for the Lorentz contractions from section 1.3.5, eqn. (1.47), the s
channel amplitude then reads

�
W

+�
W ′

=

=
(
ig2

0

)
fa1a2bfa3a4b ×

{[
s(t−u)
4m4 cos2 �! + (t−u)

m2

(
1− 1

2
sin2 �!

)
+O

(
x0
)]
×

×
[
CW (�)

s

s−m2
+ CW ′(�)

s

s−m′2

]
+

−
(

sin2 �!
2 cos �!

)2
[

s
m2CW (�)

s

s−m2
+ s

m′2
CW ′(�)

s

s−m′2

]}
, (2.48)

where all mass-mixing coefficients have been pulled into the coefficient func-
tions CV (�) again. Note that the contributions of the polarization tensors
in the propagators cannot be factored out because of the different masses in
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the denominator. The coefficient functions in this case read:

CW (�) ≡
[(
�0
W

)2 (
�0
Z

)
+ 1

�

(
�1
W

)2 (
�1
Z

)]2

= c2
� −

(1+4c2�−c4�)
8

�2 +O
(
�4
)
, (2.49)

CW ′ (�) ≡
[(
�0
W

) (
�0
Z

) (
�0
W ′

)
+ 1

�

(
�1
W

) (
�1
Z

) (
�1
W ′

)]2

= 1
16c2�

�2 +
(

1
64c4�
− 1

16

)
�4 +O

(
�4
)
. (2.50)

It is clear that the coefficients involved here are also orthonormal, so that
the coefficient functions sum up again to leave just the external coefficients
behind, completely analog to eqns. (2.41) and (2.42). Note that the leading-
order term c2

� of CW (�), eqn. (2.49), is identified with the global cos2 �!
factor of eqn. (1.47) at order O (�0), which is necessary to cancel all depen-
dencies on the Weinberg angle when summing all SM-like contributions to a
given charge eigenamplitude, just like the procedure in section 1.3.5. On the
other hand, the c2

� in the denominator of the leading order of CW ′ (�), eqn.
(2.50), also cancels the dependency on the Weinberg angle when collecting
all factors for the leading-order contribution ∝ �0 of the W ′ propagator, cf.
eqns. (2.43) and (2.48), so that the resulting leading-order terms are exactly
the same as those for W 1/2 scattering given in eqn. (2.45). One may now con-
clude that the cancellation of the high energy divergent leading-order terms
due to heavy gauge boson exchange is always ≲ 3/4 for all possible charge
eigenamplitudes and hence, from eqns. (1.53) and (1.63) – (1.65), also for all
isospin eigenamplitudes.

Partial Wave Expansion In order to systematize the computation of
scattering amplitudes in SU (2)C isospin space and to perform a partial wave
analysis, the master amplitude ℳ (s, t, u) introduced in section 1.3.5, eqn.
(1.53), is now assembled for the 3SHLM. Looking at the definition in eqn.
(1.53) and at the corresponding kinematic contributions in eqn. (1.49), it is
clear that the t and u channels of gauge boson exchange superpose to make up
ℳ (s, t, u). While the SM-like light propagators are expanded and subsumed
to give rise to leading-order contributions as discussed in section 1.3.5, the
heavy propagators are now inserted in full shape to collect the effects of large
m′ values in the allowed range 380 GeV < m′ <

√
sc (cf. section 2.3.2 for the

lower bound). Note that all propagators are plugged in together with the
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leading order of the coefficient functions CV (�):

ℳ (s, t, u) ≡ℳ
(
W+
LW

−
L → Z0

LZ
0
L

)
=

1

�2

{
s− 1

4m′2

[
t (s− u)

(
t

t−m′2
− 1

)
+ u (s− t)

(
u

u−m′2
− 1

)]}
. (2.51)

This amplitude is valid in a regime where m ≪
√
s and m ≪ m′ but not

necessarily m′2 < ∣k2∣. Note that in this regime the most divergent order ∝ x2

cannot formally be cancelled yet, because to that end the first expansion term
of the heavy propagators in the regime ∣k2∣ > m′2 is necessary.

Now, in order to compute the partial wave coefficients, the isospin eige-
namplitudes can be assembled from the master amplitude, eqn. (2.51), using
eqns. (1.63) – (1.65). The resulting expressions are then integrated according
to eqn. (1.5) to obtain the partial wave amplitudes aL (s): The corresponding
functions ∣aL∣ (

√
s) are plotted in fig. 4 for the leading angular momenta in

the three possible isospin channels up to the unitarity-violating scale where
∣aL∣ ≳ 1/2. Moreover, setting ∣aL∣ = 1/2 allows to solve for

√
sc depending

on the choice of m′. This function
√
sc (m′) is also plotted in fig. 4 for the

lowest contributing angular momenta of all isospin channels, and illustrates
the lessening cancellation of the divergence with increasing mass parameter
m′. In the limit m′ → ∞ the critical energy

√
sc converges against the SM

value as expected, whereas at the lower bound m′ ∼ 380 GeV it is close to
its upper limit in the 3SHLM which is twice the SM value.

From fig. 4 it is clear that the s wave of the I = 0 isospin channel
diverges most rapidly, as could be expected from the SM results (1.71) –
(1.73). Hence this channel will now basically fix a theoretical upper limit
on m′ from the requirement that the heavy gauge bosons be light enough to
affect the unitarity bound at all. An abolute upper bound on m′ is therefore
given by demanding that it do not exceed its own unitarity-violating energy
scale, which is exactly the case for m′ =

√
sc ∼ 1.4 TeV (cf. fig. 4). However,

this would correspond to a delay of unitarity violation of merely 200 GeV
compared to the SM value. In fact, the effect of the heavy gauge bosons on the
critical energy scale only becomes large for light boson masses m′ < 600 GeV,
which is already in the vicinity of the experimental lower bound of 380 GeV.
In this region of m′, the critical energy

√
sc is situated between 1.8 TeV for

m′ = 600 GeV and its absolute upper limit that is possible in the 3SHLM
with all experimental constraints taken into account, namely 2.1 TeV for
m′ = 380 GeV. In summary, two distinct scenarios of bounding the heavy
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Figure 4: Divergent high energy behavior of the partial wave coefficients
corresponding to the lowest contributing angular momenta in the 3SHLM,
for the three isospin channels I = 0, 1, 2 (from top to bottom). The functions
∣aL∣ (

√
s) are plotted on the left for different values of m′, where the limit

m′ → 0 illustrates an upper limit for the possible cancellation in the 3SHLM
and the limit m′ →∞ corresponds to the SM result. The right side displays
the corresponding functions

√
sc (m′), with the red dashed lines illustrating

the constraints m′, i. e. that it be heavier than 380 GeV (cf. section 2.3.2)
but also lighter than its own unitarity-violating energy scale

√
sc. The black

dotted lines show the limits described above, i. e. the SM threshold as well as
twice that value. Note that in the I = 1 channel the gauge boson resonance
contributing to the lowest angular momentum L = 1 (center left) runs into
the critical energy range above m′ ≳ 1.5 TeV (center right).
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gauge boson mass from above result from these considerations: The loose one
is to basically demand any effect, however small, on the unitarity-violating
scale at all, which corresponds to m′ ≲ 1.4 TeV, whereas the tighter one is
given by requiring a quantitatively significant delay of unitarity violation,
which further restricts the value of m′ to the vicinity of its lower bound,
m′ ≲ 600 GeV.

Just like the heavy gauge boson mass m′, the heavy fermion mass scale
M introduced in section 2.2 is in principle also bounded from above by uni-
tarity arguments: As pointed out in section 1.4, top pair annihilation into
longitudinal gauge bosons also diverges with the CMS energy, although half
an order slower in x than elastic gauge boson scattering, thus violating uni-
tarity at ∼ 30 TeV. It is argued in [35] that in Higgsless 5D models such
as the 3SHLM the higher KK modes of the fermions eventually contribute
to t-channel bottom exchange, thereby reinstalling unitarity, at least in a
continuous extra dimension. With a deconstructed dimension such as in the
3SHLM, this cancellation cannot be expected to be complete, similar to the
results for elastic gauge boson scattering. Nonetheless, if such a cancellation
is to take place at all, the unitarity-violating scale just given formally imposes
an upper bound on the heavy fermion mass scale: M < 30 TeV.

2.3.2 Experimental Bounds

Having fixed the 3SHLM to respect all the basic SM parameters such as
masses, couplings and flavor phases, one remains with the parameters �L,
m′ and M , as described in section 2.2. Apart from the theoretical bounds
presented in the previous section, the parameter space turns out to be ad-
ditionally constrained by electroweak precision tests (EWPT) at LEP1 and
LEP2 [38] which experimentally determine a set of variables known as the
Peskin-Takeuchi precision observables S, T and U [39] (or redefined recently
in [40]) with high accuracy. The original definitions of these parameters are
based on loop corrections to the SM gauge boson propagators in fermionic
2→ 2 scattering processes, so that it is clear that any new physics contribut-
ing potentially to these amplitudes, such as new gauge couplings between SM
fermions and gauge bosons as in the 3SHLM, will obtain constraints from the
experimentally well-known values of S, T and U .

In a tree level analysis, it was shown [41, 42] that, in a general class
of deconstructed 5D models, the contributions of new gauge factors to the
precision observables can be minimized by aligning the wave functions of
the SM fermions to the wave function of the charged W which is of course
orthogonal to all of its KK excitations—in this case just the W ′—so that the
heavy modes decouple from the SM fermions: They become fermiophobic,
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making it impossible to produce them in the s channel at the LHC. This
condition reinstalls the SM-like shape of the coupling gW of light fermions to
the light W boson in very good approximation, relating m′ or � uniquely to
the delocalization parameter �L, which is why it is usually addressed as ideal
delocalization. Looking at the fermion mass terms read from (2.30),

M
(

Ψ̄0,L Ψ̄1,L

)⎛⎝ �L 0

1 �u/d,R

⎞⎠⎛⎝ Ψ1,R

Ψ2,R

⎞⎠ , (2.52)

one can, without explicitly solving the eigenvalue problem, check the consis-
tency of the model by relating �L to � for the left-handed fermions: Given
their light mass eigenstates fL in the interaction basis,

fL = �0
fL

Ψ0,L + �1
fL

Ψ1,L , (2.53)

the ideal delocalization condition can be formulated as

gi
(
�ifL
)2 !

= gW�
i
W , i = 0, 1 , (2.54)

or, taking the ratio of sites 0 and 1,

g0

(
�0
fL

)2

g1

(
�1
fL

)2

!
=
�0
W

�1
W

. (2.55)

The definition of � (2.15) and the W coefficients (2.19) may now be plugged
into this expression. Neglecting all fermion masses and hence the �u/d,R,
which is a good approximation for all flavors except for top and implies
∣�1
fL
/�0

fL
∣ = �L to leading order, (2.55) results in

�2L = 1
2
�2 +O

(
�4
)
. (2.56)

This is the leading-order relation fixing �L from m′ which follows from ideal
delocalization [1]. Moreover, it shows that choosing � small also concentrates
the light left-handed fermion mass eigenstates on the 0-brane.

The heavy gauge boson mass m′ itself is also constrained by EWPT: The
triple gauge boson coupling gZWW may easily be calculated in the 3SHLM
from the overlap of the light eigenstates of the gauge bosons on sites 0 and 1:

gZWW = g0

(
�0
W

)2
�0
Z + g1

(
�1
W

)2
�1
Z , (2.57)

whereas its deviation ΔgZWW from the SM value is bounded experimentally
by LEP2 [38]. After plugging in the coefficients (2.19) and (2.24) and sim-
plifying the resulting expression, one arrives at [1]

ΔgZWW = 1
8c2�
�2 +O

(
�4
) !
< 0.028 on 95 % C.L. (2.58)

55



Figure 5: New contribution to �T in the 3SHLM due to the heavy isospin-
violating fermion doublet (T,B) coupling to the charged SM gauge bosons
W±. Double fermion lines and capital letters indicate heavy mass eigenstates.

Setting c� ≈ cos �! ≈ 0.77 to leading order, this corresponds to a lower bound
of m′ ≥ 380 GeV [1].

The remaining parameter to be dealt with is the mass scale M of the
heavy fermions: In this case the argument (following [1]) is a little more
intricate, collecting several phenomenological constraints to cast them into a
lower bound on M . For a starting point, consider the electroweak precision
observable �T which is defined as the difference of the vacuum polarizations
Πaa (p) with respect to the gauge components W a of the SU(2)L gauge field
in the SM [39]:

�T ≡ e2

sin2 �! cos2 �!m2
Z

[Π11 (0)− Π33 (0)]

= 1− � with � ≡
(

m

cos �!mZ

)2

≃ 1 . (2.59)

It parametrizes the violation of the custodial symmetry mentioned in section
2.1, therefore depending on isospin-violating contributions to the vacuum po-
larizations such as fermion isodoublets with large mass splittings coupling to
the W±. In the 3SHLM, the largest new contribution of that kind clearly is
the heavy Top-Bottom loop (with capital letters indicating the heavy mass
eigenstates, cf. fig. 5), since the isospin-violating mass-splitting parameter
�t,R is chosen universally in the model and is therefore fixed by the require-
ment to generate the large mass mt of the SM-top. This is precisely the
connection relating the two phenomenologically known quantities �T and
mt which will be used to derive a bound on M : Evaluating the (T,B)-loop
diagram (fig. 5) in the limit �L → 0 (since �L respects custodial symmetry)
gives [1]

�T ≈ 1

16�2

�2
t,R�

2
t,R

�2
=

1

16�2

M2�4t,R
�2

(2.60)

with the expected quadratic dependence [39] of �T on the isospin-violating
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mass scale �t,R, cf. expr. (2.29), and the mass-splitting parameter �t,R. On
the other hand, mt is obtained by the diagonalization of expr. (2.30), which
gives [1]:

mt ≈
�L�t,RM√

1 + �2t,R

(2.61)

to leading order in �. Taking into account that �t,R < 0.67 from phenomeno-
logical constraints on the decay b→ s
 [1], and that �L has a small but finite
value which is fixed in the ideal delocalization scheme, the combination of
(2.60) and (2.61) leads to a lower bound on M between 1.8 and 2.3 TeV, de-
pending on the Higgs mass chosen for the calculation of the phenomenological
bound on �T [1].

Bearing in mind that all constraints on the model parameters pointed out
so far were—except partially for the fermion mass scale M—essentially based
on tree level considerations, the most remarkable result of the full one-loop
analysis of the 3SHLM that was carried out recently [43] is that ideal delocal-
ization does indeed violate EWPT. On the contrary, the precision observables
exclude on 95 % C. L. an exact fermiophobicity of the heavy modes of the
charged gauge bosons, thus trading the exact relation (2.56) for intervals of
allowed delocalizations �L which essentially depend on the choice of the other
parameters m′ and M . The range of allowed delocalizations can be translated
into small but non-vanishing couplings gW ′ff of the heavy charged gauge bo-
son W ′ to SM fermions as depicted in fig. 6, a circumstance which would
enable its s channel production via fermionic parton-parton annihilation at
the LHC: The remaining two chapters of this thesis are dedicated to a thor-
ough study of the ATLAS detector, addressing the discovery prospects of the
rather solid Z ′ signal as well as the discrimination of the ideally delocalized
scenario from the one-loop scenario via an explicit W ′ search.
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Figure 6: Allowed range of values for the W ′ coupling to SM fermions accord-
ing to the one-loop analysis in [43]. The values were normalized to the SM
coupling of W to fermions and plotted in dependence on the heavy fermion
mass scale M for different gauge boson masses m′ (≡MW ′) of 380, 500 and
600 GeV. Λ denotes the momentum cutoff taken for the loop calculations.
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Figure 7: Three-dimensional view of the ATLAS detector [4].

3 Experiment and Simulation

3.1 The ATLAS Detector

The ATLAS detector (cf. [4, 5] for the entire section) is the largest of the
four LHC experiments. In its center, single proton bunches of two oppositely
directed beams collide every 25 ns at design luminosity, thereby causing hard
scattering processes whose final states can be detected inside the individual
detector elements. Although originally designed for CMS energies up to
14 TeV, the LHC is planned to start its first run with half the energy in
November 2009, increasing the energy step by step in the succeeding runs if
everything works flawless. The high collision frequency implies a tremendous
amount of data output which can only be handled with a highly efficient
three-stepped trigger system: In order to enable data storing, the task is to
reduce the event rate from 40 MHz to ∼ 200 Hz without losing interesting
events.

3.1.1 Coordinate System

The ATLAS detector possesses an unambiguous coordinate system: The ori-
gin is located at the beam-crossing point. The z axis runs parallel to the
proton beam, where its direction is defined in such a way that it constitutes
a right-handed system with the x axis pointing to the center of the collider
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ring and the y axis pointing vertically upward (cf. coordinate axes in fig. 7).
Based on this cartesian coordinate system, solid angles are specified in spher-
ical coordinates (', �), where ' denotes the azimuth angle in the x–y plane
with respect to the x axis. The polar angle � with respect to the z axis is
usually converted into the so-called pseudorapidity

� ≡ − ln
(
tan �

2

)
, (3.1)

which is at relativistic energies, i. e. negligible masses, in good approximation
equal to the rapidity

1

2
ln

(
E + pz
E − pz

)
, (3.2)

where E is the energy of the particle and pz is the z component of its 3-
momentum. This quantity is invariant under Lorentz boosts along the z
axis, so that any direction given by (', �) is also approximately invariant
with respect to the choice of one of these inertial frames [44]. Moreover,
using these direction variables, an invariant measure can be defined for the
solid angle ΔR enclosed by two particle trajectories:

ΔR ≡
√

(Δ�)2 + (Δ')2 . (3.3)

This solid angle definition is used in the analysis of ATLAS data, e. g. to
evaluate the angular separation of single particles inside a boosted bunch, or
to retrieve the energy deposition in the calorimeters (section 3.1.3) along a
specific particle trajectory.

3.1.2 Inner Detector

The inner detector (ID), fig. 8, directly surrounds the beam-pipe (36 mm
in diameter) and consists of three shells which are traversed by the high-
energetic particles almost without any energy deposition. However, combin-
ing the single interaction points allows for the determination of the particle
trajectory and, in combination with a magnetic field, also of the transverse
momentum pT , defined as the 3-momentum projection onto the x–y plane,
and the charge sign of electromagnetically charged particles.

The innermost shell is formed by the three-layered silicon pixel detector
with a resolution of 60�m along the z axis and 12�m in the x–y plane. This
shell is enclosed by eight layers of silicon microstrip trackers with a resolu-
tion of 600�m along the z axis and 20�m in the x–y plane, and eventually
by the transition radiation tracker, which enables a distinction between elec-
trons and pions and possesses a resolution of 170�m in the x–y plane. The
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Figure 8: 3D view of the inner detector [5].

entire inner detector is coated by a superconducting magnetic field coil (the
solenoid magnet in fig. 7), which generates a magnetic fiel with ∼ 2 T in
the z direction, so that the transverse momentum pT and the charge sign of
a particle can be determined from the curvature of its measured trajectory.
The overall dimensions of the inner detector are 2 m in diameter and 7 m in
length, where the overall angular coverage is ∣�∣ < 2.5, with ∣�∣ < 2.0 covered
by the barrel and the rest covered by the end-caps which consist of a similar
sequence of detector layers as the barrel itself.

3.1.3 Calorimeters

The solenoid magnet is surrounded, from inside to outside, by the electro-
magnetic calorimeter (ECal) and the hadronic calorimeter (HCal), cf. figs. 7
and 9, where most of the particles emerging from high-energy collisions lose
their entire energy. Both ECal and HCal are so-called sampling calorimeters,
i. e. they are composed of alternating layers of absorbing and active material.
The incoming particles interact with the absorber, thus forming showers of
new particles, so that the energy which is thereby deposited in the absorbing
medium is determined by measuring the electromagnetic charge occurring
in each subsequent layer of active medium. To enable a three-dimensionally
resolved measurement, all calorimeters are divided up into separate cells of
different sizes and shapes, depending on the region of the calorimeter. Note
that the two-medium systems of the barrel calorimeters are arranged in a
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Figure 9: 3D view of the calorimeter system, including ECal (electromagnetic
barrel and end-cap) and HCal (tile barrels and HEC) [5].

radial accordion geometry instead of alternating tube shells which facilitates
the cabling of every single layer from outside the calorimeters.

The barrel and end-caps of the ECal consist of absorbing lead layers
with an overall thickness of 24 interaction lengths, where mostly electrons
and photons interact electromagnetically, and of active layers made of liquid
argon (LAr). The expected fractional accuracy of energy measurement is
roughly ΔE/E = 10 %/

√
E/GeV. For the barrel of the HCal steel layers

with an overall thickness of 11 interaction lengths are used as absorber and
plastic scintillators form the active layers, whereas the end-caps comprise a
copper/LAr system. The HCal is where the jets of hadronic particles, which
emerge from hard partons via hadronization and mostly traverse the ECal
because of the large masses (bremsstrahlung is ∝ 1/m2), deposit their energy
via strong interactions with the absorber medium. The energy resolution
of the HCal is estimatedly ΔE/E = 50 − 100 %/

√
E/GeV. The overall

dimensions of the calorimeters are 4 m in diameter and 12 m in length, with
an overall angular coverage, including end-caps, of ∣�∣ < 3.2 for the ECal and
∣�∣ < 4.9 for the HCal.

3.1.4 Muon Spectrometer

In the SM there are basically only two kinds of particles which can traverse
all detector layers including the HCal: neutrinos and muons. The neutrinos
exclusively interact weakly and therefore only appear in collision events as
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Figure 10: The ATLAS muon spectrometer [5].

missing transverse momentum, whereas the muons, which traverse all inner
detectors because of their long lifetime and large mass while interacting only
electroweakly, are detected by another separate stand-alone detector system
surrounding the calorimeter, the muon spectrometer (cf. figs. 7 and 10).
It is majorly built up of monitored drift tube chambers (MDT) for tracking
and different types of trigger chambers, namely resisitive plate chambers
(RPC) in the barrel and thin gap chambers (TGC) in the end-cap regions,
cf. fig. 10). Moreover, both the barrel and the end-cap region contain eight
superconducting magnetic field coils each, which generate a toroidal magnetic
field with roughly 0.4 T, so that the transverse momentum can be measured
from the curvature of the muon trajectory in the �–z plane.

Every MDT chamber contains from 96 to 432 drift tubes with a diameter
of 3 cm each, whereas the entire spectrometer is composed of three MDT
layers in the barrel as well as the end-cap region. The drift tubes work in
principle like a Geiger-Müller tube: They are filled with an Ar/CO2 com-
pound gas which is ionized by traversing muons, so that the anode wire in
the center of the tube can detect the avalanche resulting from the high elec-
trostatic potential between wire and tube shell. The time interval between
the collision moment (known from the LHC frequence) and the drift tube
signal is then converted into a closest radial distance between the muon tra-
jectory and the anode wire via an empirically known x–t relation, so that
the combination of different drift tube signals allows for the reconstruction
of the trajectory in the �–z plane with a resolution of 50�m (cf. fig. 11).
In order to attain this accuracy, the distortions and relative positions of the
MDT are measured with a laser-based optical system and included real-time
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Figure 11: Cross section of a single MDT drift tube (left, [4]) and of an en-
tire MDT consisting of two multilayers enclosing a central support structure
(right, [45]). Furthermore, the principle of track reconstruction based on the
determination of minimal radii in several drift tubes is illustrated.

into track reconstruction (so-called alignment). Only in the extreme foward
regions are the MDT replaced by cathode strip chambers (CSC), because the
event rate is too large there for the dimensions of the MDT drift tubes.

Since the MDT principle is based on the precise measurement of time
delays which are in general larger than the time gaps between collisions, an
additional trigger system is needed to assign MDT data to specific collision
events: The RPC are composed of two parallel Bakelite plates with a gas-
filled spacing of 2 mm, where a traversing muon causes ionization which is
again amplified by a potential between the plates. Both plates are lined
with metal strips, one in � direction and the other in ' direction, so that
the capacity change between single strips due to the avalanches allows for
position-resolved triggering and conveys ' information on which the MDT
are not sensitive.

3.2 The Data Simulation Chain

3.2.1 Production of Monte Carlo Events

Since a collider detector like ATLAS is an extremely complex technical de-
vice, it is indispensable to get a theoretical grip on the physics input in order
to simulate and understand the according detector response. For a given
high-energy process, the essential tasks are [46] to find the complete Feyn-
man amplitude, eqn. (1.3), up to a specific order, absolute-square it and
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perform the phase-space integration in order to get differential cross-sections
and finally generate event samples with correctly distributed final-state kine-
matics. The actual challenge is to systematically find all contributing di-
agrams (which grow exponentially with the number of final-state particles)
while avoiding double-counting, and to numerically integrate the squared ma-
trix element within a realistic time interval. Whereas different approaches
are made by various matrix-element generators to determine the Feynman
amplitude, a very powerful and therefore commonly used tool exists for the
subsequent phase space integration, the Monte Carlo (MC) method: In prin-
ciple the idea is to generate random sets of phase-space points and according
amplitude values and see if they are below or above the actual integrand at
the given point. This is repeated several times while counting the number
of hits below the integrand, so that finally the hit count can be compared
with the overall number of attempts to get the integral value. A huge time-
saver in this procedure is to adapt the probability distribution of the random
points according to the resonant regions of the amplitude rather than taking
uniformly distributed points. In summary, there exists a large variety of MC
generators with different implementations of matrix-element generators and
phase-space integrators, and various included physics models such as the SM
of course, and some of its extensions.

In section 2.3.2 it was argued that in the 3SHLM ideal delocalization is
necessary at tree level to account for the EWPT, which implies vanishing
couplings of the W ′ and small couplings of the Z ′ (O (10−2)) to SM fermions
[1], whereas at one-loop order ideal delocalization is excluded so that also
the W ′ ought to have small but finite couplings to the SM fermions in order
to respect EWPT [43]. The implied possibility to produce both heavy gauge
bosons in the s channel at the LHC via quark-antiquark annihilation (cf.
fig. 12) leads to a rather unique phenomenology of solely one charged and
one neutral heavy vector resonance in the LHC-relevant energy range below
1 TeV. This gave rise to the implementation [6] of the 3SHLM into the
parton level MC generator WHIZARD [7] with the matrix element generator
O’Mega [47] in order to get a first, parton-level based clue of the discovery
potential of the heavy resonances at the LHC [6]. One of the goals of this
thesis is to perform a full ATLAS detector simulation of W ′ and Z ′ signal and
background samples in order to verify the results of [6] with more realistic
data. A cursory outline for an analysis addressing ATLAS detector signatures
of heavy gauge bosons decaying into SM bosons can be found in [3], although
with the phenomenologically critical assumption of SM-like couplings of the
heavy gauge bosons. Nonetheless, the final states discussed in [3] correspond
to some of those to be introduced in the further course of this section.
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Figure 12: Dominating class of diagrams for the production and subsequent
decay of the Z ′ (left) and the W ′ (right) at the LHC. For the resulting
four-fermion state, the various possible detector signatures are listed, to be
read in columns with each column denoting a separate final-state signature.
The label j stands for quarks on parton level, which will hadronize to form
physical hadron jets in the detector, and the label l denotes the light charged
leptons e and �, where the explicit distinction of anti-particles is suppressed
in the notation.

Final State Signatures Since the W ′ is almost fermiophobic, its decay
into SM fermions is strongly suppressed so that it dominantly decays into SM
gauge bosons, W ′ → WZ. Although the Z ′ has a much more robust coupling
to SM fermions than the W ′, its decay into SM gauge bosons, Z ′ → WW ,
strongly dominates nevertheless because of the decay of the longitudinal mode
[6]. Finally, the SM gauge bosons decay into SM fermions as usual, thus
giving rise to four-fermion final states with very similar shapes for W ′ and
Z ′ (cf. fig. 12 for a summary of all possible final-state signatures for each
boson).

When determining the final states to be analyzed, the total cross sections
of the signal have to be weighed up against the corresponding background
cross sections in order to maximize the signal significance. From this point
of view, the purely hadronic final state jjjj is not included in the analysis
despite its very large cross section due to the huge QCD background and
poor discriminative power [6]. On the other hand, the purely leptonic final
states have very clean signatures but comparably small cross sections due
to the lack of color multiplicity. Moreover, the neutrinos escape detection
and hence only appear as missing transverse momentum in the event, so
that their 4-momentum cannot be uniquely determined, cf. section 4.1.4.
This gives rise to the exclusion of the leptonic final state l�l� of the Z ′

because of the two neutrinos, whereas the W ′ decay channel l�ll lacks only
one scalar information while constituting a very clean signature of the W ′, so
that it is included in the analysis. Finally, the semi-leptonic final states can
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be distinguished between lljj with two charged leptons, which unanimously
reflects the decay of a W ′, and l�jj with one charged lepton and missing
transverse momentum, which contains an inherent ambivalence with respect
to the original heavy gauge boson: Bearing in mind the fact that the heavy
gauge boson masses are almost degenerate, cf. eqn. (2.26), the only way
to disentangle the two heavy resonances in this channel is to distinguish the
resonances of the SM gauge bosons in the two final-state jets (cf. fig. 12).
A statistical approach to achieve this task is presented in section 4.2. To
sum up, the final states of the heavy gauge bosons with the highest discovery
potential, which are therefore considered in the following data analysis, are
l�jj for the Z ′ and lljj, l�ll as well as l�jj for the W ′.

Signal In order to simulate proton-proton collisions with WHIZARD, one
first has to define a proton as a set of colored elementary particles, commonly
subsumed as partons, and to convey the internal kinematics in the form of
empirically known parton distribution functions (PDF) for the proton. For
all samples produced for this thesis, the proton is defined as the set of all
first-generation quarks and anti-quarks plus the gluon,

p ≡
{
u, ū, d, d̄, g

}
, (3.4)

with the CMS energy of the colliding protons set to the original LHC design
value of 14 TeV as in the parton level study [6]. The final states are defined
as the sum of all allowed combinations for

j =
{
u, ū, d, d̄, s, s̄, c, c̄, b, b̄

}
,

l = {e, ē, �, �̄} (3.5)

and the corresponding neutrino flavors, with the CKM matrix set to unity.
Note that j = b

(
b̄
)

contributes to the signal in the l�jj channel but only
to the background in the lljj channel, because top-bottom decay of a W is
basically excluded on kinematic grounds. For parton kinematics WHIZARD
was linked against the CTEQ6 PDF library [48] in the MS scheme, whereas
the resulting cross sections were checked with other PDF sets, namely the
MRST2004 NLO [49] and the CTEQ6 LO, which are all in agreement up to
relative variations ≲ 10 % (cf. table 1).

In order to reduce background and restrict the number of events to be
generated, following [6] the kinematic cuts were set at generator level for
both signal and background as follows:

pT ≥ 50 GeV ,

∣�∣ ≤ 3.0 (3.6)
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final state cross sections

CTEQ6 MS [fb] MRST2004 NLO CTEQ6 LO

e�j1j1 332.5 (7) +2.73 (1) % −7.58 (2) %

��j2j2 218.3 (4) +2.75 (1) % −6.60 (2) %

��j1g 2591 (6) +0.888 (3) % −5.02 (2) %

��gg 529 (1) +4.16 (1) % −3.78 (1) %

Table 1: Total cross sections for several parton-level final states (jet indices
denoting the quark generation) in the phase space region specified by eqns.
(3.6) – (3.8), which were computed with WHIZARD using different parton
distribution functions for initial kinematics.

for all final-state particles. To avoid infrared singularities, a cut on minimal
x was applied for the incoming partons,

x ≥ 1.4× 10−3 , (3.7)

where x is the usual PDF notation for the momentum fraction carried by a
single parton with respect to the overall momentum of the proton. Moreover,
in order to further restrict phase space to the signal-relevant regions, a cut
was applied on the invariant mass of the two partons in the semi-leptonic
final states:

50 GeV ≤ mjj ≤ 120 GeV for l�jj ,

50 GeV ≤ mjj ≤ 110 GeV for lljj . (3.8)

In this basic setup, signal samples were generated with a number of events
corresponding to an integrated luminosity ℒ = 100 fb−1, according to the
total cross sections determined by WHIZARD during phase space integra-
tion. In order to account for the fact that the heavy gauge boson mass is a
free parameter of the 3SHLM, the complete signal was generated in all final
states for m′ = 380 GeV and 500 GeV with a bulk mass M = 3.5 TeV, and
for m′ = 600 GeV with M = 4.3 TeV, in each case with corresponding max-
imal couplings gW ′ff of the W ′ to SM fermions according to the one-loop
results of [43]. Moreover, the signal was additionally generated in the ideally
delocalized scenario of [1] for m′ = 500 GeV, in order to cross-check the W ′

searches in the one-loop scenario against the case of vanishing gW ′ff .
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Backgrounds As a first step, the background is classified into reducible
and irreducible backgrounds: The irreducible background is the sum of all
diagrams producing identical parton-level final states as the signal and there-
fore interfering with it. Hence this background has to be generated by re-
running the signal final states within the SM to truly separate it from sig-
nal contributions. On the other hand, the reducible background is made
up of all contributions producing the same final-state signature on detector
level. Due to the ambiguity of hadron jets in the detector, this background
is greatly dominated by QCD processes producing hard partons on matrix-
element level. The straightforward approach to account for this background
is to replace one or two of the quark jets in the signal final states by a gluon
[6]. Note that when putting just one gluon into a semi-leptonic final state,
the remaining quark jet is restricted to the first generation due to the def-
inition of the proton, eqn. (3.4), and flavor conservation. Both reducible
and irreducible backgrounds were generated with the same generator cuts
as the signal, cf. eqns. (3.6) – (3.8), with sample sizes corresponding to
ℒ = 100 fb−1 for l�jj, 500 fb−1 for lljj, and 103 fb−1 for l�ll, where the lumi-
nosity was increased and the background scaled down to 100 fb−1 afterwards
for the channels with small cross sections in order to reduce background
fluctuations.

However, since jet reconstruction from detector data is a rather complex
procedure depending on some algorithms and free parameters, cf. section
4.1.3, it is certainly not a matter of course that two hard partons on matrix-
element level are recognized as exactly two hard jets in the detector. For
example, due to parton showering, cf. section 3.2.2, it is possible that one
hard parton produces two or more hard jets within a very restricted angular
cone in the detector, i. e. three-particle final states with one parton may
readily produce detector signatures which fulfill the cutting restrictions for
the signal search. This is accounted for by generating three-particle final state
samples with one gluon or first-generation quark. Their impact on the heavy
gauge boson search will only become obvious at the end of the simulation
chain, when it is clear how many events are reconstructed with two hard jets
in the detector instead of just one. For parton-level generation, the usual
kinematic cuts, eqn. (3.6), were applied for all final-state particles, as well
as a rather loose back-to-back cut between the directions of the parton and
the boosted leptons coming from the decay of an SM gauge boson,

ΔR (j,W (Z)) ≥ 1.8 , (3.9)

thus restricting the phase space to the region which produces dangerous four-
particle final states on detector level, since in the signal the parton pair and
the lepton pair each emerge from SM gauge bosons which are boosted in

69



Figure 13: tt̄ production via gluon-gluon scattering, which is dominant
(∼ 90 %) at the LHC [5], and subsequent semi-leptonic decay via W bosons.

opposite directions from the decay of the heavy gauge boson. The final
states were generated in samples corresponding to ℒ = 20 fb−1 for l�j and
100 fb−1 for llj and scaled up for l�j afterwards because of the huge cross
sections to be coped with for this kind of three-particle final states. Note
that the fraction of events which contribute to the signal search potentially
depends on the definition of the splitting parameter PYTHIA [30] uses for
the parton shower (cf. section 3.2.2), whereas the PYTHIA default definition
used here is most likely to produce QCD final state radiation [30], so that
the samples produced here may be seen as an upper limit for the background
contribution of these final states. Nonetheless, in order to estimate the size
of this dependence, a small part of the entire sample was showered with the
most restrictive definition of the splitting parameter with respect to final
state radiation before performing the detector simulation. It turns out that
the fraction of events which are reconstructed with two jets on detector level
lies between 12.9 (2) % with the most restrictive definition and 20.17 (7) %
with the default definition of the splitting parameter in PYTHIA. Hence
the mean background contribution to the di-jet signature of the signal is
16.5 (2) % of the entire cross section of the parton-level final states l�j and
llj, with a systematic uncertainty of 22 (1) %.

On the other hand, just like splitting a hard parton into two boosted
detector jets, it is also possible that two strongly boosted hard partons are
merged into one jet at detector level. Although this circumstance is not
fully accounted for in this analysis, its potential influence is estimated in the
following way: Five-particle final states with three partons have very poor
cross sections for the kinematic topology considered in the signal, and are thus
neglected for the background, whereas the most dangerous six-particle final
state with four partons and two leptons emerges from top pair production,
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because it has a large cross section at LHC energies and the semi-leptonic
decay via two W bosons is kinematically very similar to the l�jj signal
channel if two or more boosted jets are merged together in the detector (cf.
fig. 13). Therefore tt̄ production with semileptonic final states on parton
level is generated in samples of ℒ = 100 fb−1 and included into the analysis.

3.2.2 Parton Shower and Fragmentation

It was already mentioned several times now that, due to the confinement
property of the strong interaction at low energies or large distances, colored
particles which are produced on matrix element level in hard scattering pro-
cesses undergo a highly non-trivial evolution until they finally end up in jets
consisting of hundreds of boosted color-neutral hadrons.

The first step to get a theoretical handle on this behavior is the factoriza-
tion theorem of QCD saying that QCD final state processes at energies below
the scale of the hard process can be factored out of the hard matrix element in
good approximation. Thus QCD final state radiation can be separated from
the hard matrix element and evaluated perturbatively in the QCD coupling
constant, where it turns out that the emission of collinear and soft gluons
are the most likely processes. Hence the energy regime can be lowered in
parton-showering cascades from ∼ 1 TeV for the hard matrix element down
to the confinement scale ∼ 1 GeV, which is where the QCD coupling con-
stant becomes of O (1) so that the perturbation expansion breaks down. The
final step of theoretical jet-building is therefore the so-called fragmentation
or hadronization, i. e. the formation of color-neutral hadronic bound states
from the parton shower at the confinement scale. There are several models
describing this procedure which are implemented in different MC genera-
tors, such as the Lund string model included in PYTHIA [30] or the cluster
fragmentation model of HERWIG [50] (cf. [46] for this paragraph).

Since version 1 of WHIZARD, which was used for data production in this
thesis, is a pure parton level MC generator, it is mandatory to reprocess its
output with another MC generator that is capable of parton showering and
hadronization. The standard procedure for the ATLAS detector simulation
of WHIZARD events as described in [10] is to convert the WHIZARD data
into the highly compatible Les Houches Accord (LHA) event format [51] and
to reprocess them with PYTHIA. This generator is a fully integrated part
of the ATLAS data production chain and hence produces hadronized truth
level events in the pool format which is commonly used within the ATLAS
software framework ATHENA [10].
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3.2.3 Detector Simulation

Once fully hadronized truth level samples are available, the remaining task
is to simulate the detector response of each collision event. To that end
ATHENA contains a detector simulation chain comprising several steps to
transform the event samples from truth level to reconstruction (reco) level
[8, 10]: The first one is the actual detector simulation, i. e. the physical
interactions of all particles in the event with the different kinds of matter
inside the various detector parts. This is done by the GEANT4 software
toolkit [52], which produces so-called GEANT4 hits of the particles inside
the detector parts. In the following digitization step these hits are converted
into raw detector data like currents and voltages which exactly correspond
to the future ATLAS output in real LHC runs. The last step of the chain,
which is common to simulated and real detector data, is the reconstruction of
actual particle tracks from the raw detector data and finally the creation of
ESD and AOD files which are the standard ATHENA bookkeeping formats
for reconstructed detector events, where the AOD format is just a compact
summary of ESD. The actual analysis programs for truth and reco data make
extensive use of the C++ data analysis framework ROOT [53], running on the
data samples in its internal n-tuple file format which can be obtained within
ATHENA from the PYTHIA output on truth level and from the AOD files
on reco level.

The full simulation chain as described above takes roughly six minutes
per event for the transformation from truth to reco level, which would add
up to tremendous amounts of simulation time for the samples considered
here, especially in the l�jj channel: For example, the 100 fb−1 of signal and
irreducible background in this channel correspond to nearly 6 ⋅ 104 events for
each lepton flavor, and the the sum of all reducible backgrounds is even larger
by one order of magnitude, so that, apart from making use of the possibility
of highly parallel processing on the CERN Computing Grid [10], the fast de-
tector simulation ATLFAST-2 [9, 10] of ATHENA release 14.5.0 was utilized.
It takes less than one minute per event, thus reducing the computing time
on each Grid node by a factor 6 at least, which is achieved majorly by using
full simulation results to speed up the very complex calorimeter simulation.

Nonetheless, in order to validate the ATLFAST-2 samples against the full
simulation, 2 ⋅ 104 events were fully simulated for each lepton flavor of the l�jj
signal. Since ATLFAST-2 saves time first and foremost during calorimeter
simulation, it suggests itself to compare observables which are closely related
to calorimeter measurements such as the kinematic quantities pT , � and '
of jets and electrons as well as missing transverse momentum and muon
isolation, cf. fig. 14 as well as figs. 36 and 37 in appendix C for respective
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Figure 14: Comparison of observables which depend on calorimeter data in
fully simulated and ATLFAST-2 samples. The left side shows the deposition
of transverse energy inside an angular cone of size ΔR = 0.2 around the
muons, while the missing transverse momentum is displayed on the right.
The upper histogram shows absolute distributions (with ATLFAST-2 data
normalized to full sim. data with fewer statistics) and the lower one shows
the bin ratios. Generally, the results are in good agreement.
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plots. As expected, the ATLFAST-2 and full simulation samples are in solid
agreement, so that the utilization of ATLFAST-2 results for all other samples
in this analysis is justified. Note here that for the entire analysis of simulated
detector data the loosest kinematic cuts are set to

pT ≥ 50 GeV ,

∣�∣ ≤ 2.5 , (3.10)

i. e. the same pT cut and a tighter � cut compared to the generation cuts, eqn.
(3.6), to account for potential particle scattering into regions with smaller �
inside the detector.

3.2.4 Comparison with Validated Data

Although the official ATLAS policy is to use centrally validated background
samples for all analyses, that was impossible in this case, because the statis-
tics of all existing validated background samples with the relevant final states
is by far not enough to account for the required luminosity in the high-
energetic cut region of this analysis, so that it was necessary to produce all
backgrounds privately as described above. However, the existing samples are
used to cross-check the basic approach of this analysis to encompass the fully
inclusive background for the semi-leptonic final state signatures considered.
This is done on truth level in order to focus on the MC generation, parton
showering and fragmentation steps of the data production chain, which is jus-
tified because only centrally available default job transformation scripts have
been used to simulate and reconstruct the privately produced hadronized
truth data.

The basic claim of the background production procedure described in the
course of this chapter is to fully account for the inclusive SM background
for two hard jets plus a gauge boson decaying into two leptons. However,
since gauge couplings and lepton flavors are universal at generator level,
the validation procedure carried out here is restricted to the case of a Z
boson decaying into two muons for simplicity, assuming that the results will
also hold for other flavors as well as charged bosons. The approach is to
use WHIZARD and PYTHIA, following the procedure described in sections
3.2.1 and 3.2.2, to generate sufficient statistics of truth level data within the
loose kinematic cut region of the validated sample. After that, the fraction
of events which contain exactly two jets passing the kinematic cuts

pT ≥ 15 GeV and ∣�∣ ≤ 2.5 (3.11)

and two muons passing the same kinematic cuts and an invariant mass cut

82 GeV < m�� < 100 GeV (3.12)
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WHIZARD + PYTHIA SHERPA

��jj ��j1g ��gg ��j1 ��g

19.94 74.93 18.83 104.3 64.41

�prod × Φcut [pb] 282.4 1591

efficiency [%] 24.89 4.351

�eff [pb] 70.29 69.19

Table 2: Production cross sections times generator cut efficiencies (for
SHERPA also times multi-lepton filter efficiency of 78.94 %), event selection
efficiencies for the reqirement of exactly two muons and two jets passing the
cuts (3.11) and (3.12), and resulting effective cross sections for the relevant
final state.

is computed both in the privately produced and in the official sample. The
event selection efficiencies thus determined are then multiplied with the total
cross sections of the original samples in order to compare the effective cross
sections which contribute to the relevant final state signature.

The official sample used for this procedure is the fully inclusive SM back-
ground for Z → �� plus zero to three hadron jets with 14 TeV CMS en-
ergy, which is available at [54]. The sample contains 2 ⋅ 106 events and was
generated, showered and hadronized with the MC generator SHERPA [55],
applying merely an invariant mass cut

m�� > 60 GeV (3.13)

on the leptons at generator level. The corresponding total production cross
section (QCD up to NNLO) times branching ratio is given as

�prod × ℬ (Z → ��) = 2015 pb , (3.14)

whereas an additional multi-lepton filter requiring at least one muon within
the kinematic cuts

pT ≥ 15 GeV and ∣�∣ ≤ 2.7 , (3.15)

with an efficiency of 78.94 %, has been applied after generation.
In order to compare this sample with private production, all processes

contributing to the irreducible and reducible backgrounds of the ��jj fi-
nal state have been generated with an identical invariant mass cut (3.13)
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on the muons and the kinematic cuts (3.15) on both leptons and one or
two partons at generator level, which merely increases the event selection
efficiency compared to the SHERPA sample. All relevant numbers such as
cross sections and event selection efficiencies as well as the final comparison
of the effective cross sections obtained from the SHERPA sample and the
WHIZARD/PYTHIA sample are summarized in table 2, illustrating a very
good quantitative agreement between the two production methods. Bearing
in mind that the cross section given for the SHERPA sample already includes
NNLO corrections, whereas the WHIZARD values are all LO, the result in
table 2 implies that the privately produced background rather tends to be
too large than too small.

Furthermore, the distributions of the kinematic observables pT and � of
the jets and muons as well as the Z resonance in the invariant masses of the
two muons are compared in fig. 15, also showing basic agreement between
the two generators. Note that these kinematic distributions have been eval-
uated exclusively in events passing the selection criteria pointed out above,
in order to exclude false disagreements between the samples originating from
final states which are irrelevant for the analysis of this thesis and therefore
not fully accounted for in the WHIZARD/SHERPA sample (especially events
with zero jets). The discrepancies left in fig. 15 could be effects of the de-
tailed jet simulation procedure or electromagnetic final state radiation. The
remaining plot in fig. 15 presents the normalized event selection efficiencies
in the different samples when tightening the pT cut on all final state objects,
pointing out that the quantitatively good agreement of the effective cross
sections is more or less stable against a tightening pT cut.
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Figure 15: Comparison of kinematic distributions from SHERPA (black)
and WHIZARD/PYTHIA (red): pT of muons (top left) and jets (top right),
� of muons (center left) and jets (center right), and the Z resonance in
the di-muon mass (bottom left). The plot on the bottom right shows the
event selection efficiencies for a varying pT cut, normalized to the loosest cut
pT > 15 GeV.
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4 Search for Heavy Gauge Bosons

4.1 Final State Reconstruction

4.1.1 Muons

Due to their relatively large mass, long lifetime and absence of color charge,
muons majorly traverse all inner detector parts including the calorimeters
without losing too much energy. With the muon spectrometer, cf. section
3.1.4, the ATLAS detector possesses a dedicated subdetector system to ac-
count for this particle type. As soon as a muon causes hits in all three MDT
layers within ∣�∣ < 2.7, its track and pT can be uniquely determined from
muon spectrometer data exclusively. This is achieved by interpolating the
three separate tracks through the individual MDT layers with regard to the
toroidal magnetic field, where pT is then obtained from the sagitta of the
track curvature. The tracks and 4-momenta thus reconstructed exclusively
from muon spectrometer data make up the contents of the standalone muon
container. In addition, for ∣�∣ < 2.5 these standalone tracks may be matched
with ID tracks, if available, to give rise to so-called combined-track muons
which are filled into the staco muon container (cf. [4, 10] for the paragraph).
Using only this container may lead to higher precision at the cost of decreas-
ing efficiency, see below.

An intuitive quality check for the muon performance of the detector is the
matching of kinematic observables on truth and reco level, where in this case
the reducible background sample in the ��jj channel is analyzed because
it conveys the best statistics by far. Technically, the truth and reco muons
are matched by computing the distribution of the enclosed angle between
the truth particles and their respectively closest reco partners. The width
of this distribution then defines an angular cone of fixed size ΔR = 5 ⋅ 10−3

which is used to find the matching reco particle of each truth particle (cf.
fig. 16), so that the differences of the kinematic variables �, ' and pT can be
evaluated. The resulting distributions and Gaussian resolutions are shown
in fig. 16, where it must be noted that the pT resolution scales with the
absolute value of pT due to the underlying measurement procedure which is
based on the curvature in a magnetic field [2]. This scaling is accounted for
by normalizing with the true norm of pT . Note further that in general all
resolutions of kinematic variables basically depend on the complete direction
of the particle. However, due to the approximate rotational symmetry of
the ATLAS detector around the beam axis the ' dependence is generally
small and therefore averaged here for simplicity, whereas the � dependence
is accounted for by averaging over defined � intervals which show approxi-
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Figure 16: Comparison of muon data on truth and reco level: Angular match-
ing (top left, with the cone size for truth/reco matching indicated with a
dashed blue line), normalized pT difference of matching pairs (top right), �
difference (center left), ' difference (center right), and �-resolved efficiency
(bottom left), as well as the Z resonance in the ��jj channel (bottom right).

79



mately constant resolutions. For example, in fig. 16 the evaluation of the
pT resolution is split up into the barrel region with ∣�∣ < 1.0, the transition
region with 1.1 < ∣�∣ < 1.8 and the end-cap region with 1.9 < ∣�∣ < 2.5. The
corresponding resolutions for staco muons of 5.6 %, 10 % and 2.9 % in the
respective regions majorly reflect the local strength of the toroidal magnetic
field, which drops severly in the transition region and adopts its largest value
in the end-cap region [5]. The said values are comparable to those given in [5]
for standalone muons (4 %, 9 % and 3 % in the respective regions), although
they cannot fully compare with the staco muon performance estimated in the
said reference as 2.5 %, 4 % and 3 %, respectively. However, it is pointed out
in [5] that the pT scale invariance of the fractional resolution only holds ap-
proximately, especially for staco muons, so that perfect agreement cannot be
expected when comparing different samples with undefined pT scales. The
resolutions of the angular variables are roughly constant over the whole �
range considered, with an � resolution getting slightly better from barrel to
end-cap, and a ' resolution which is constant except for the transition region.
Finally, the Z resonance in the invariant mass of two muons is computed on
truth and reco level in the reducible background sample of the ��jj channel,
illustrating the increasing width on reco level due to the convolution of the
intrinsic shape with the detector response (cf. fig. 16). Fitting the reso-
nance with a numeric convolution of an intrinsic Breit-Wigner distribution
of known width [37] and a Gaussian resolution function, the Z mass is found
as mZ = 91.51 (2) GeV with an experimental resolution �Z = 5.18 (2) GeV,
which is right between the values given in [4] of 2.5 GeV for perfect alignment
of the muon spectrometer and 8 GeV without alignment.

Apart from plainly comparing kinematic observables on truth and reco
level, there are two standard benchmark quantities to quantify the muon
reconstruction quality from truth data, namely fake rate and efficiency [5].
The fake rate is defined as the percentage of reconstructed muons which have
no truth muon inside the angular matching cone mentioned above, whereas,
on the other hand, the muon efficiency is the percentage of truth muons
within a given cut region which have a matching reconstructed muon inside
the said cone. In the high-energetic regime considered here, the fake rate and
efficiency are practically independent of the applied pT cut, while especially
the efficiency reflects the ATLAS detector geometry and therefore depends on
� (cf. fig. 16 for staco muons): It is symmetric to � = 0 as expected, showing
a constant value over the entire cut region with three narrow drops at � = 0
and ∣�∣ ≈ 1.3, where the central drop stems from the cabling of the inner
detector parts and the two other drops are in the transition region between
barrel and end-caps of the muon spectrometer [5]. Note that the fake rate and
mean efficiency adopt slightly different values in the various reconstruction
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modes: In the ��jj channel, including all reconstructed muons the fake rate
is 1.38 (2) % and the efficiency amounts to 95.8 (3) %, while restriction to
staco muons delivers a roughly halved fake rate of 0.68 (2) % which is merely
traded for a slightly worse efficiency of 93.1 (3) %, so that from here on
data analysis is restricted to staco muons. All the numbers just given are
practically the same in the other final states, and agree very well with the
respective official numbers given in [5].

4.1.2 Electrons

The detector signature of electrons strongly differs from that of muons due
to the much smaller mass, which leads to greatly increased multiple brems-
strahlung and consequent energy deposition especially inside the ECal. These
energy clusters are generally reconstructed via jet algorithms, cf. section
4.1.3, while additional algorithms exist to explicitly identify low-pT and high-
pT electrons [4, 10]: Low-pT electrons are reconstructed by a track-based algo-
rithm which is seeded by a charged track inside the ID, and high-pT electrons
are reconstructed by a cluster algorithm seeded by energy clusters inside the
ECal, where the track-based algorithm matches the ID track to ECal jets,
and vice versa for the cluster algorithm. The results of both electron finder
algorithms are stored separately in ESDs and merged afterwards to make up
the contents of the electron container of AODs.

In order to evaluate the quality of electron reconstruction at the AT-
LAS detector, the simulated data are compared to truth data analog to the
procedure for muons in section 4.1.1, again based on the reducible back-
ground samples of the e�jj channel for kinematics and the lljj channel for
the Z resonance (cf. fig. 17 for plots and Gaussian resolutions). Note
that in general the resolutions of all kinematic variables of electrons scale
with

√
E [2], which is taken into account by normalizing all differences of

kinematic variables with the square root of the true energy. The energy res-
olution is �E = 14 %×

√
E/GeV for ∣�∣ < 0.5 and �E = 20 %×

√
E/GeV

for 0.9 < ∣�∣ < 1.2, which is slightly worse than the corresponding values
given in [5] for electrons with defined energies of 100 GeV, namely 1.1 %
at ∣�∣ = 0.325 and 1.7 % at ∣�∣ = 1.075. The � resolution is evaluated as
�� = 75 ⋅ 10−6/

√
E/GeV in the central barrel region with ∣�∣ < 0.5 and as

�� = 26 ⋅ 10−6/
√
E/GeV in the end-cap region with ∣�∣ > 1.7, in approximate

agreement with the values 0.7 ⋅ 10−3 and 0.4 ⋅ 10−3 given in [5] for 100 GeV
electrons in the respective detector regions. However, the ' resolution has a
nearly constant value of �' = 23 ⋅ 10−6rad/

√
E/GeV over the whole � region

considered, a result which is not fully covered in [5], where the corresponding
values are given as 0.4 ⋅10−3 in the barrel region and 1.5 ⋅10−3 in the end-cap
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Figure 17: Comparison of electron data on truth and reco level: Angular
matching (top left, fake/efficiency cone in blue), normalized difference of pT
(top right), � (center left), ' (center right), as well as the � dependence of
the efficiency (bottom left) and the Z resonance in the eejj channel (bottom
right).
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region for electrons with an energy of 100 GeV. It is stressed again that per-
fect agreement would rely on an exact scale invariance with respect to

√
E,

which cannot be assumed here either. Finally, the Z mass is determined to
mZ = 91.12 (1) GeV with a Gaussian resolution of �Z = 2.08 (1) GeV, while
it must be noted that the Z line shape itself is used to calibrate ECal signals
[5] when comparing this result to the muon performance.

With a cone of size ΔR = 5 ⋅ 10−3 fixed from angular matching (cf. fig.
17), the efficiencies and fake rates of electrons can be evaluated in the re-
ducible background sample of the e�jj channel. The � dependency of the
efficiency (fig. 17) is again symmetric to � = 0, showing a pattern which is
qualitatively the same as for muons (cf. fig. 16), namely a constant value
in the barrel region within ∣�∣ < 1.3, while the two sharp drops at ∣�∣ ≈ 1.5
correspond to the transition from barrel to end-cap of the ECal and those
at ∣�∣ ≈ 2.5 indicate the end of the ID. The mean efficiency of the electrons
is 86.7 (2) % in agreement with [5], and the fake rate amounts to 46.6 (1) %,
whereas the eejj channel shows an equal efficiency of 86.8 (2) % and a some-
what smaller fake rate of 29.7 (1) %. Note that although both lepton flavors
show roughly equal efficiencies, the electrons have much bigger fake rates
than muons, cf. section 4.1.1, because fake electrons are produced in large
numbers by all kinds of objects including the original electrons, e. g. via
bremsstrahlung and pair production inside the calorimeters. This is also
illustrated by the rate of truth electrons having more than one hard recon-
structed electron inside their matching cone, which amounts to 0.60 (1) %
in the e�jj channel, whereas for muons this number is only 0.023 (3) % (all
muons) respectively 0.0000 (4) % (staco muons).

4.1.3 Hadron Jets

Jet-Finding Procedure Before pointing out the actual jet-finding algo-
rithms in more detail, the attention is first directed onto the different types of
preprocessed detector data [4, 5] which seed these jet algorithms and convey
their input. The starting point are always energy depositions inside single
cells of the calorimeters (cf. section 3.1.3), which are first clustered by a
clustering algorithm: The tower algorithm produces so-called towers defined
as the summed energy deposition in all calorimeter cells within a solid angle
segment of the defined size Δ� ×Δ' = 0.1× 0.1. The other available cluster-
ing algorithm produces topological clusters, which contain three-dimensional
information about the energy deposition. This algorithm is seeded by a sin-
gle calorimeter cell with an energy deposition of at least four times the cell
noise, thus implying inherent noise suppression to some extent. The signal
of this seed cell is then added up with those of all cells in the direct neigh-
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borhood above a minimal signal threshold to build an energy topocluster.
Since jet-finding algorithms need complete 4-momenta as input, each tower
and topocluster is treated like a massless pseudo-particle in order to convert
the measured energy E and direction (�, ') into 4-momentum components
by simple projection of the 3-momentum p⃗, with p⃗ 2 = E2:

px = E
cos'

cosh �
, py = E

sin'

cosh �
, pz = E tanh � . (4.1)

Given these sets of 4-momenta corresponding to the pseudo-particles of calo-
rimeter data, there are two jet-finder algorithms which are used by default
at ATLAS [5] to compose jets with defined 4-momenta: the ATLAS seeded
cone algorithm [4, 5] and the kT algorithm [56, 57].

The cone algorithm is seeded by every tower or cluster which passes a cut
on pT > 1 GeV, where an angular cone of fixed size R (the only parameter of
the algorithm) is put around the 4-momentum direction (�, ') of the seed,
and all 4-momenta inside this cone are then added. This is repeated several
times, with new cone directions defined by the directions of the resulting
4-momentum sums of the old ones, until the direction eventually becomes
stable, thus defining the final jet. This algorithm is collinear-safe, meaning
that the splitting of an initial 4-momentum into two collinear ones does not
change the resulting jets, but not infrared-safe, which means that adding a
small 4-momentum to the initial set of 4-momenta may change the resulting
jets.

In the general class of kT -like algorithms [56, 57], an order parameter dij
is defined on the set of initial 4-momenta pi as

dij ≡

⎧⎨⎩ min
(
p2a
T,i, p

2a
T,j

) ΔR2
ij

R2 , i ∕= j

p2a
T,i , i = j

(4.2)

with parameters R and a, where a = 1 (a > 0 in general) is referred to as kT
algorithm and a = −1 (a < 0) is called anti-kT algorithm. Among a given set
of initial pi, all possible dij are computed and sorted according to their value.
If the smallest one corresponds to i = j, the associated momentum is removed
from the set as a stable jet, otherwise the two momenta pi and pj are merged
to form a new momentum k = pi + pj in the set. This procedure is then
repeated, always with updated sets of momenta, until no input momentum
is left. Note that this class of algorithms is generally collinear-safe and also
infrared-safe [57].

Finally, the jets emerging from these jet-finder algorithms must be cal-
ibrated [5]. To that end, it is first distinguished between electromagnetic
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jets, which tend to show comparably high signal densities in the calorimeter
cells and need no further calibration, and hadronic jets incorporating smaller
signal densities, which must be calibrated due to the ambivalence between
electrons and pions in the detector. This is done by separately reweighting
each cell signal contributing to an individual jet with a weight factor that
depends on the position and signal density of the cell and ranges from 1 for
high density up to the e/� signal ratio of ∼ 1.5 at ATLAS for low density.
For the topoclusters, this cell weighting can also be done before the actual
jet-finding, thus giving rise to so-called locally calibrated (LC) topoclusters
as input to the jet algorithms, which are the default input for the reprocessing
of jet algorithms on AOD.

Performance of Jet Algorithms and Inputs In order to quantify the
reconstruction performance of the various jet alogithms and inputs available
at ATLAS, 2 ⋅104 events of each SM gauge boson decaying hadronically were
generated with WHIZARD and PYTHIA, simulated with ATLFAST-2 (cf.
section 3.2), and finally reconstructed with different jet algorithms, inputs
and parameters. The reconstruction quality of the respective resonances in
the invariant mass of the two best-fitting final-state jets is used as a bench-
mark to cross-check the performances of the different reconstruction setups
(cf. fig. 18 for respective plots).

Firstly, the R parameter is varied from 0.3 to 0.5 (the ATLAS default is
0.4 for narrow jets) for the seeded cone algorithm on LC topoclusters, illus-
trating the fact that the reconstruction is very sensitive on the value of this
parameter, and indeed works best with the default value 0.4. Now the jet
algorithm itself is varied for R = 0.4 on LC topoclusters, which shows that
the choice of the actual algorithm has no significant impact on the width
or shape of the resonance, only the kT algorithm leads to a slightly shifted
absolute position compared to the other algorithms. Finally, the input data
are varied for the seeded cone algorithm with R = 0.4, displaying a remark-
able result: The AOD standard jet input formed by LC topoclusters actually
shows the worst result, namely the largest resonance width, compared to or-
dinary topoclusters and towers, which have roughly the same performance.
From fig. 18 it is now verified that the performance of the default setup for
narrow jets at ATLAS, consisting of the seeded cone algorithm with R = 0.4
on topocluster input, is not exceeded significantly by any other setup for the
analysis carried out here, so that is is generally adopted from here on for jet
reconstruction.
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Figure 18: Normalized W resonance in the invariant mass of two recon-
structed jets, with different reconstruction setups: Seeded cone algorithm
on LC topoclusters with varied parameter R (upper left), different jet al-
gorithms with R = 0.4 on LC topoclusters (upper right) and seeded cone
algorithm with R = 0.4 on different input data (below). The correct W mass
is indicated with a dashed line in each case.

Rejection of Electron Jets An important notion concerning the jet con-
tainers of reconstructed detector data is that they contain any object which
has caused energy clusters inside one of the calorimeters and is hence re-
constructed by a jet algorithm, i. e. no distinction is made whatsoever
concerning the particle type producing a jet. This implies that although
dedicated algorithms exist to explicitly identify low-pT and high-pT electrons
from inner detector and calorimeter data, cf. section 4.1.2, the correspond-
ing calorimeter jets will still be kept within the jet container. Therefore, it
remains as a task to be carried out by hand during every analysis to apply an
electron-veto on the contents of the jet container. This is done by default via
ΔR matching combined with a cut on some minimal energy ratio of electrons
from the electron container and jets from the jet container to exclude false
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Figure 19: Essential quantities for the rejection of electrons in the hard jets:
Enclosed angle of every hard jet and respective closest electron within one
event (left) and the energy ratio of these pairs (right). The rejection cuts,
eqn. (4.3), are marked with blue dashed lines.

matching of real hadron jets with collinear fake electrons (cf. fig. 19):

ΔR (e, j) < 0.1

and Ee/Ej > 0.7 , (4.3)

where all jets passing these cuts for any electron in the electron container
are discarded. Note that for correct matching the energy fraction peaks
at ≲ 90 % rather than 100 % due to the hadronic energy calibration of the
container jets, which leads to larger energy values.

4.1.4 Neutrinos

Basic Idea As already mentioned several times, neutrinos generally escape
detection because they exclusively interact weakly. Since all transverse mo-
menta of an event must necessarily add up to zero due to momentum conser-
vation, this circumstance gives rise to the occurrence of missing transverse
momentum, commonly referred to as missing transverse energy ∕ET , which
can be associated with the transverse projection of the original neutrino mo-
mentum p� . However, the information obtained from ∕ET in the form of two
scalar quantities, such as ' and the absolute of ∕ET , is exactly one scalar too
short to reconstruct the full 4-momentum when the mass shell condition is
included.

A standard approach to cope with this drawback is to set the W boson
which originally decayed leptonically into the neutrino and the respective
charged lepton on the mass shell and use the fully known 4-momentum pl of
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Figure 20: The mass shell conditions of the neutrino and a W boson decaying
leptonically, plotted in the plane of the two remaining unknowns, namely the
energy and the longitudinal or z component of the neutrino 4-momentum [6].
The intersections of the two curves give rise to possible solutions for these
quantities.

the charged lepton to compute the missing information [6]. The two mass
shell conditions read, with p� ≡ p and pl ≡ q:

p2 = 0 , (4.4)

(p+ q)2 ≃ 2p ⋅ q = m2 , (4.5)

where the lepton mass was set to zero in the mass shell condition of the
W in the second line. While the neutrino mass shell condition, eqn. (4.4),
describes a hyperbola in the plane of the two remaining unknowns, namely
the neutrino energy p0 and the z component pz of its 3-momentum, the W
mass shell condition, eqn. (4.5), imposes a linear dependency between the
two unknowns. In general, these two curves will intersect twice (cf. fig. 20),
leading to two independent solutions for p� none of which is preferred by
kinematic arguments [6]:

p0 =
q2

0 (m2 + 2p⃗T ⋅ q⃗T )± qLA
2q0 (q2

0 − q2
z)

, (4.6)

pz =
qz (m2 + 2p⃗T ⋅ q⃗T )± A

2 (q2
0 − q2

z)
(4.7)

with A ≡ q0

√
(m2 + 2p⃗T ⋅ q⃗T )2 + 4p2

T (q2
z − q2

0) ,
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where pT is identified with ∕ET in the analysis of detector data. There are two
ways now to proceed with this result: One could either put in the mass of
the heavy gauge boson m′ and choose the “better” solution in the sense that
it gives an invariant mass of the whole final state which is closer to m′, or
one could simply incorporate both solutions into the analysis, thus effectively
doubling the background [6], where the second approach is completely unbi-
ased with respect to the observable m′ and therefore pursued in the analysis
of the l�jj channel.

Note that the electron samples may contain more than one hard electron
per event due to the ECal showers, cf. section 4.1.2 and fig. 38 in appendix
C, so that some choice must be met about the electron momentum to be used
for neutrino reconstruction. The easiest way to account for this is an angular
isolation cut against the direction of the SM gauge boson reconstructed from
two jets, i. e. demanding exactly one electron with ΔR (e,W/Z) > 2.0,
which is then assumed to be the right one (cf. fig. 21).

Reconstructed 4-Momenta When performing this momentum recon-
struction with simulated data, it turns out that a certain amount of events
in the samples give complex solutions for p0 and pz, i. e. the quantity A in
eqns. (4.6) and (4.7) becomes imaginary due to a negative radicand, which
happens in ∼ 10 % of all events on truth level and in ∼ 25 % of the reco
level events. Noting that these percentages are very sensitive on the actual
value of m inserted into eqns. (4.6) and (4.7), this can be interpreted as an
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artifact of the wrong assumption that the original W boson be on-shell, eqn.
(4.5): From this point of view it is also clear that the number of events with
complex solutions must increase from truth to reco level, since the width of
the underlying W resonance grows due to the convolution with the detector
response.

In order to increase the statistics in the data analysis, one can now at-
tempt to reconstruct meaningful solutions for p0 and pz also in the said events
with complex solutions of eqns. (4.6) and (4.7). To that end, one could solve
for the distance between the two mass shells in the p0–pz plane, take the
endpoint on the neutrino mass shell to compose p� , and use the actual value
of the distance as a cut variable. On the other hand, being serious about
the notion above relating to finite widths of the W resonance, one could also
impose the extra condition of one degenerate solution,

A
!

= 0 , (4.8)

in all events with complex momentum solutions and solve for m in addition
to p0 and pz, which delivers a physically more natural cut variable together
with the full p� . The physically sensible solutions of this equation system
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are:

p0 = q0
pT√
q2

0 − q2
z

, (4.9)

pz = qz
pT√
q2

0 − q2
z

, (4.10)

m2 = 2

(
pT

√
q2

0 − q2
z − p⃗T ⋅ q⃗T

)
. (4.11)

These equations are applied during the following analysis of the l�jj channel
to compute the missing components of p� in all events where eqns. (4.6) and
(4.7) fail to give real results. The solutions for m are plotted in fig. 22 for
the reducible background sample of the said channel on truth and reco level
as well as on truth level with p� computed from the true pT of the neutrino
for a cross-check, illustrating the fact that just those events with a positively
off-shell W tend to produce complex solutions in the ordinary reconstruction
procedure described before.

Finally, in order to check the quality of the momentum reconstruction,
the kinematic observables of the reconstructed momenta are compared with
the true values corresponding to the neutrino momenta on truth level, analog
to the procedure for charged leptons, cf. sections 4.1.1 and 4.1.2. It must be
distinguished between those variables which emerge directly from measure-
ment, i. e. the norm of ∕ET and its direction ' in the transverse plane, and
the pseudorapidity � which essentially results from the equations for p0 and
pz introduced above. It is further distinguished between the lepton flavors
of the samples, because due to the reconstruction principle the neutrino re-
sults depend on the reconstructed momenta of the charged leptons. With all
the involved problems and shortcomings, neutrino reconstruction can by no
means be called a precision measurement, so that it is dispensed here with an
explicit examination of energy scale and � dependences; the ∕ET distribution
is just normalized to the true pT of the neutrino for convenience (cf. fig. 23
for results). Note that the said ∕ET matching does not only have a comparably
large width but also shows a systematic shift to smaller values: The relative
loss amounts to 8.74 (4) % in the electron samples and 9.73 (4) % in the muon
samples. However, this is no surprise given the fact that ∕ET is defined as the
missing piece of transverse momentum which complements all measured con-
tributions to give zero overall, so that every loss of transverse energy during
the measurement of the visible transverse momenta automatically leads to
an underestimation of ∕ET .

The determination of � depends on the computation scheme and is there-
fore examined separately for neutrinos which were reconstructed using eqns.
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Figure 23: Matching of true and reconstructed neutrino momenta: Compar-
ison of the norm (top left) and direction (top right) of ∕ET with the true pT ,
as well as the � matching of ± neutrinos (bottom left, both solutions added)
and c neutrinos (bottom right), where in each case the results are shown for
both lepton flavors on reco level, and for � additionally on truth level using
the true pT of the neutrino and the true charged lepton as a cross-check.

(4.6) and (4.7) (“±” neutrinos, both solutions added), and for those from
eqns. (4.9) and (4.10) (complex or “c” neutrinos). As shown in fig. 23, even
the reconstruction using the true charged lepton and pT of the neutrino has
a small but finite width, which is but another consequence of forcing the W
onto its mass shell. Naturally this width further grows on reco level because
of the rather inaccurate pT measurement via ∕ET , whereas the constant offset
both on truth and reco level in the ± neutrino data stems from matching the
true neutrino with the wrong of the two available reconstructed solutions.
Nonetheless, the matching of the correct ± neutrinos with true data is much
better in general than for the c neutrinos. Yet the final decision whether to
include them in the analysis or not will be met upon the examination of their
actual contribution to the heavy gauge bosons signal, which is addressed in
the following section.
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4.2 l�jj Channel

4.2.1 Basic Analysis

In order to isolate potential decay events of the heavy gauge bosons at the
ATLAS detector, their respective final state signatures in terms of recon-
structed detector objects must first be determined. For the l�jj channel
the loosest event selection criteria would be to demand exactly one isolated
charged lepton and at least two hadron jets, all passing the kinematic cuts in
eqn. (3.10), as well as missing transverse energy which also passes the pT cut
of eqn. (3.10). In order to further reduce QCD background, additional kine-
matic cuts are applied to the hadron jets, which restrict the allowed phase
space to the topology associated with the decay of a strongly boosted SM
gauge boson. The corresponding requirements are to find at least one jet pair
with an invariant mass within a cut window around the SM gauge bosons
and a relatively small enclosed angle (cf. fig. 24),

70 GeV < mjj < 101 GeV and ΔR (j, j) < 1.3 , (4.12)

where the mass interval corresponds roughly to the di-jet mass resolution
of the bosons (cf. section 4.2.3). However, the separation of W and Z in
these di-jet resonances cannot be achieved by a simple mass cut because the
resonance widths are of the same size as the mass difference of W and Z: The
problem of disentangling the SM gauge bosons will be addressed in section
4.2.3.

Fig. 24 also illustrates that the size of the angular jet separation in
the W ′/Z ′ signal depends inversely on the actual value of m′, because an
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increased mass of the heavy gauge bosons naturally induces a stronger boost
of the resulting SM bosons and their decay products, i. e. the parton pair
and the lepton pair. This leads to a severe reduction of the signal for m′ >
500 GeV (cf. fig. 26 and numerical results below), because the lessening
angular parton separation eventually runs into the di-jet resolution of the
detector which is bounded by the parameter R = 0.4 of the jet algorithms
(cf. section 4.1.3). On the other hand, the collinearity cut in eqn. (4.12) is
chosen loose enough to account for the whole range allowed by experimental
data, down to m′ = 380 GeV.

The last requirement for event selection is to reconstruct at least one
neutrino momentum from the charged lepton and ∕ET which also passes all
kinematic cuts (together with a cut on the W mass for c neutrinos, as pointed
out in the previous section). If both± neutrinos pass all cuts, the correspond-
ing event is evaluated with each of them, thus being factually doubled in the
analysis. With the two lepton momenta and the momenta of the di-jet reso-
nance, a rather loose back-to-back cut is applied on the reconstructed gauge
boson momenta associated with the lepton pair and the jet pair,

2.0 < ΔR (W,W/Z) < 4.0 , (4.13)

whereas the signal observable to be analyzed is defined as the invariant mass
ml�jj of these four final state momenta, which should have a resonance around
the mass m′ of the heavy gauge bosons W ′ and Z ′. Since electrons and muons
convey nearly identical signal reconstruction performances, they are summed
in the whole analysis in order to increase statistics.

Before proceeding, it is sensible to compare the signal contributions of
the ± neutrinos and the c neutrinos (cf. section 4.1.4) in order to ultimately
decide whether to include the c neutrinos in the analysis. Fig. 25 shows the
signal observable ml�jj computed with either of the two different types of re-
constructed neutrino momenta in samples containing the heavy gauge boson
signal and irreducible background. It turns out that the c neutrinos produce
some more low-energy background than the ± neutrinos but otherwise have
roughly the same signal-to-background ratio around m′ despite their poor
matching performance with the true neutrinos, and are therefore included in
the further analysis.

In order to quantify the signal resonance, it has to be compared with
the total amount of background in the signal observable. To that end, all
kinds of reducible backgrounds are added to both the signal sample and the
irreducible background sample (cf. fig. 26). As it turns out it is feasible to
further adapt the event selection such as to demand not at least but exactly
two hadron jets per event, which represents a very effective suppression of the
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Figure 25: Invariant mass of the di-jet resonance, the charged lepton and
one reconstructed neutrino momentum in the 100 fb−1 signal samples of the
l�jj channel with m′ = 380 GeV (left) and 500 GeV (right). The two differ-
ent neutrino reconstruction methods (± neutrinos summed up) are plotted
separately in order to compare their signal performance.

multi-jet backgrounds emerging from more than two hard partons on matrix
element level, like the tt̄ background considered here. With this additional
cut, the heavy gauge boson resonance is now isolated by subtracting the
irreducible background sample from the signal sample, so that the resulting
shape can be fitted in order to get a hold of the resonance position and width
for different mass parameters m′ (cf. fig. 27). Note that the intrinsic Breit-
Wigner width of the heavy gauge bosons is around 1 % of m′ [6] and thus
roughly an order of magnitude smaller than the detector resolution in the
theoretically allowed region, so that it is neglected for the fits in fig. 27.

With a given mass interval around m′ (roughly ±30 GeV from fig. 27),
the number of W ′/Z ′ signal events N is obtained by subtracting the number
of background events Nb from the total number of events Nt inside the said
mass interval [6],

N = Nt −Nb . (4.14)

It is crucial to note that a large fraction of original background events N ′b,
namely all with two ± neutrinos within the kinematic cuts, is double-counted
in Nb due to the adopted neutrino reconstruction method, so that the stan-
dard deviation of Nb is not simply given by Poisson statistics but must be
scaled accordingly. In a conservative approach, assuming an exact factor 2
despite the fact that not all ± neutrinos enter the analysis and the events
with c neutrinos are not double-counted at all, this leads to [6]

�Nb = 2�N ′b = 2
√
N ′b =

√
2Nb , (4.15)

which gives the significance s of the signal, defined as the number of signal
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Figure 26: Signal and all backgrounds covering 100 fb−1 in the l�jj final
state. The top row displays the signal sample for m′ = 500 GeV with the
requirement of at least (left) and exactly (right) two hadron jets per event on
detector level. The bottom row shows m′ = 380 (left) and 600 GeV (right)
with exactly two jets per event. Note that gW ′ff was generally set to its
maximal value allowed in [43], but the pure Z ′ signal in ideal delocalization
is also shown for m′ = 500 GeV (top right). The significances s given in
the plots are computed according to eqn. (4.16) inside mass intervals which
were obtained from the optimization method explained in the text (given
in numbers and indicated with the dashed lines). The dramatic significance
drop for m′ = 600 GeV stems from the finite angular resolution of jet pairs
on detector level due to the splitting parameter of the jet algorithms (see
text, cf. fig. 24 and section 4.1.3).
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Figure 27: Gaussian fits on the W ′/Z ′ resonance for different mass values
m′ = 380, 500 and 600 GeV in the l�jj final state, with maximal W ′ coupling
to SM fermions allowed by [43].

events over the standard deviation of the background, in the form

s ≡ N

�Nb
=
Nt −Nb√

2Nb

(4.16)

with the statistical uncertainty

�s =

√(
∂s

∂Nt

)2

�2
Nt

+

(
∂s

∂Nb

)2

�2
Nb

=

√
Nt +Nb

2Nb

+

(
Nt +Nb

2Nb

)2

, (4.17)

where the standard deviation of the total number of events �Nt has also been
scaled according to the doubled background [6]:

�Nt =
√
N + 2Nb =

√
Nt +Nb . (4.18)
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The optimal mass interval in which to compute the significance is deter-
mined in the following way: The whole mass range 100 GeV < ml�jj < 1 TeV
is scanned with mass windows of all possible positions and sizes, whereas
the window size is formally restricted to a minimal value of 60 GeV in rough
correspondence to the resonance widths of the heavy gauge bosons (cf. fig.
27). For each allowed mass window, the significance is then computed ac-
cording to eqn. (4.16) so that eventually the optimal mass window is defined
as the one which conveys the largest value for significance minus statistical
error. In the data covering an integrated luminosity of 100 fb−1 one finds the
numerical results

s (m′ = 380 GeV) = 25.5 (1.5)stat � within {348 GeV, 410 GeV} , (4.19)

s (m′ = 500 GeV) = 19.7 (1.5)stat � within {468 GeV, 547 GeV} , (4.20)

s (m′ = 600 GeV) = 9.3 (1.5)stat � within {573 GeV, 648 GeV} (4.21)

for the combined W ′/Z ′ signal with maximal allowed gW ′ff , which is way
beyound the 5� discovery threshold at least for the Z ′ dominating the super-
posed resonance because of its relatively high production rate, whereas the
disproportional significance drop for m′ = 600 GeV is a direct consequence
of the finite angular di-jet resolution at detector level, as explained above in
ths section. In the ideally delocalized scenario, the significance of the pure
Z ′ signal is

s (m′ = 500 GeV) = 13.4 (1.5)stat � within {465 GeV, 557 GeV} . (4.22)

In general, the mass windows which are found with the described optimiza-
tion method have sizes between 2� and 4� of the resonance widths as ex-
pected, whereas the asymmetry of the position with respect to m′ is specific
to the region m′ ≳ 500 GeV, where the slope of the background is steepest. A
detailed summary of the estimated discovery thresholds of both heavy gauge
bosons with different mass values and integrated luminosities in the various
final states is postponed to section 4.5.

4.2.2 Systematic Uncertainties

Apart from statistical fluctuations, the significances computed in the previous
section are in general also afflicted with systematic uncertainties. There are
different sources for systematics, which come from the data analysis itself
and in case of simulated data also from the data production chain, beginning
with the dependency of the production cross sections on the chosen PDF set.
With the simplified assumption of a universal scaling ∣"∣ ≲ 10 % for signal
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Figure 28: Dependence of the signal significance on the ΔR cut on jet pairs
(left) and on the pT cut (right) for different heavy gauge boson masses. The
error bars refer to statistical uncertainties.

and background (cf. table 1 in section 3.2.1), and from the definition of the
significance, eqn. (4.16), this uncertainty leads to a scaling of s with the
square root of the scale factor,

s→ s
√

1 + " ≈ s
(
1 + "

2

)
, (4.23)

corresponding to an effect ≲ 5 % on the significance. Although this is formally
only valid in a fixed mass interval for the computation of s, which is not
generally given with the method described above of optimizing the mass
interval with respect to s, it turns out that the optimal mass window found
by this procedure is perfectly stable against rescaling, so that the scaling
behaviour of s given in eqn. (4.23) also applies here. However, it is not
at all clear that the signal will scale to the same extent as the background
when going to higher orders in the perturbation expansion of the matrix
elements. Furthermore, it was already pointed out in section 3.2.1 that the
estimation of QCD background contributions may depend strongly on details
of the jet simulation procedure such as the specific parton showering scheme
applied. Hence, in order to get solid lower bounds of the significances, the
background is assumed to scale up with a factor ≲ 1.2 at most while the
signal is left constant, which corresponds to a scaling of s with 1/

√
1 + ",

leading to a relative downsizing of the significance by maximally 10 % from
data production and simulation uncertainties.

Apart from the generation of simulated data, large systematic variations
of the significance may also arise from the data analysis itself, e. g. when iso-
lating very small phase space regions with cuts. However, since no critical or
extremely restrictive cuts have been applied in this analysis, systematic de-
pendencies of this kind should be generally small, i. e. the signal is assumed
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not to vary disproportionately with specific cuts of the analysis. Nonetheless,
the robustness of the significance is checked against the two most restrictive
cuts, namely the pT cut and the ΔR cut on jet pairs, cf. eqn. (4.12), to ver-
ify this assumption. To this end, the pT threshold is varied between 50 GeV
and 70 GeV with a loose jet separation cut ΔR (j, j) < 2.0, followed by a
comparison of the resulting significances. As shown in fig. 28, the signifi-
cance varies only slightly with the applied pT cut up to a scale depending on
m′ where the phase space region of the heavy resonance itself is affected, so
that the signal starts to drain and its significance drops. In the cut range
considered here this is exactly the case for m′ = 380 GeV , whereas the signif-
icances remain stable for larger masses. Hence the loosest cut pT > 50 GeV
is applied in the data analysis to cover the entire range of m′ with optimal
signal contributions. Finally, the ΔR cut on jets is varied between 1.3 and
2.0 with pT > 50 GeV (fig. 28). As could be expected from fig. 24, this cut
is also rather sensitive on the heavy mass m′: The tightening cut first runs
into the signal peak for m′ = 380 GeV, whereas the impact on the signal for
m′ = 600 GeV is only visible with ΔR < 1.0, where the light signal is already
lost almost completely.

4.2.3 Disentanglement of Jet Resonances

An important feature of the l�jj final state is that it encompasses the decay
of both heavy gauge bosons with the same signature, so that the only means
of signal discrimination is the disentanglement of the two SM gauge bosons
in the di-jet resonance (cf. section 3.2.1). On reco level these resonances
have widths which are of the order of the mass splitting itself (cf. fig. 29),
which makes it almost impossible to separate them merely by invariant mass
cuts. This problem was addressed on parton level in [6], proposing a sta-
tistical method to numerically separate the two SM resonances and hence
the two heavy resonances: The true gauge boson counts NW and NZ within
a given sample are smeared over a certain invariant mass range according
to the underlying probability functions pi (m), which can be approximated
by a convolution of the intrinsic Lorentz distribution with an experimental
detector response function described by a Gaussian distribution. If these
pi (m) are known on reco level, the signal entanglement in the invariant mass
range can be thought of as multiplication of the true counts with a statistical
transfer matrix T :⎛⎝ ÑW

ÑZ

⎞⎠ =

⎛⎝ TWW TWZ

TZW TZZ

⎞⎠⎛⎝ NW

NZ

⎞⎠ (4.24)

100



 [MeV]jjm
50 60 70 80 90 100 110 120

310×

en
tr

ie
s 

/ 2
 G

eV

0

200

400

600

800

1000

1200
di−jet mass

 Gauss⊗Lorentz 

 [MeV]jjm
50 60 70 80 90 100 110 120

310×

en
tr

ie
s 

/ 2
 G

eV

0

200

400

600

800

1000

1200

 [MeV]jjm
50 60 70 80 90 100 110 120

310×

en
tr

ie
s 

/ 2
 G

eV

0

200

400

600

800

1000

di−jet mass

 Gauss⊗Lorentz 

 [MeV]jjm
50 60 70 80 90 100 110 120

310×

en
tr

ie
s 

/ 2
 G

eV

0

200

400

600

800

1000

Figure 29: Invariant mass distribution of two jets emerging from the decay of
SM gauge bosons (W left, Z right). The jets were reconstructed on reco level
with the seeded cone algorithm (R = 0.4) on topoclusters, cf. section 4.1.3.
The fit function is a convolution of the intrinsic Lorentzian with a Gaussian
for experimental resolution.

with Tij ≡
ˆ Ui

Li

dm pj (m) , i, j = W,Z ,

where the entangled signal counts Ñi are to be understood as measured hit
counts within an invariant mass cut ranging from Li to Ui, with contributions
from both true signals due to the mass spreading. With the knowledge of
the Tij from the pi (m) and fixed mass windows, the entanglement matrix
can be inverted numerically and used to compute the true resonance counts
from the measured ones:

Ni =
∑
j

(
T−1

)
ij
Ñj . (4.25)

While in [6] the experimental smearing was roughly accounted for on
parton level by a Gaussian distribution with a width of 10 GeV, the approach
pursued here on reco level is to use the samples with reconstructed hadronic
decays of SM gauge bosons from section 4.1.3 in order to fit the resonances
with a convolution of the intrinsic Lorentzian with known width (e. g. from
[37]) and the experimental Gaussian with unknown width �i. This is done
separately for each SM boson to get to know the factual smearings as exactly
as possible (cf. fig. 29). From the fit results,

mW = 81.26 (8) GeV , mZ = 91.2 (1) GeV ,

�W = 6.76 (8) GeV , �Z = 7.3 (1) GeV , (4.26)
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and the cut windows chosen as

LW = 60 GeV , UW = LZ =
mW +mZ

2
, UZ = 111 GeV , (4.27)

the T matrix and its inversion can be computed numerically:

T ≈

⎛⎝ 0.72 0.27

0.24 0.69

⎞⎠ giving T−1 ≈

⎛⎝ 1.6 −0.62

−0.55 1.7

⎞⎠ . (4.28)

The uncertainty of T−1 is estimated by inserting the extremal values allowed
from the uncertainties of the fit parameters, i. e. smallest mass separation
with largest widths for maximal entanglement and largest mass separation
with smallest widths for minimal entanglement, which results in absolute
uncertainties for all matrix elements of roughly �T−1 ≈ 0.04.

In order to evaluate the significance of each disentangled signal, the stan-
dard deviation of the Ni is now computed from eqn. 4.25, giving

�Ni =

√∑
j

(
T−1
ij

)2
�2
Ñj

+ �2
T−1

∑
j

Ñ2
j

=

√∑
j

(
T−1
ij

)2
(Nt,j + 3Nb,j) + �2

T−1

∑
j

(Nt,j −Nb,j)
2

≃
√∑

j

(
T−1
ij

)2
(Nt,j + 3Nb,j) , (4.29)

where the definition Ñi = Nt,i −Nb,i has been plugged in analog to eqn.
(4.14) together with the doubled background counting for the errors on Nt,i

and Nb,i as described in section 4.2.1. The uncertainty of the T−1 matrix
elements gives a numerically small contribution compared to the statistical
uncertainty of Ñi and has therefore been neglected in the last line of eqn.
(4.29).

The relevant signal events are now isolated by cutting on the invariant
mass ml�jj within a region of ±30 GeV around the heavy resonance, where
m′ = 500 GeV was chosen here for an upper benchmark of the method, be-
cause a medium value of m′ allows for the largest absolute values of gW ′ff
(cf. fig. 6 and [43]) and hence possesses the highest discovery potential [6].
After this cut, the SM gauge boson resonances are examined in the invariant
mass distributions mjj of the corresponding jet pairs (cf. fig. 30). From
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eqns. (4.25) and (4.29), the significances of the W and Z signals are in this
case defined as

s̃i ≡
Ñi

�Ñi
and si ≡

Ni

�Ni
, (4.30)

to be evaluated from the total hits Nt,i and the background hits Nb,i inside
the respective mass windows given in eqn. (4.27). The whole procedure is
carried out with maximal gW ′ff as well as in ideal delocalization for a cross-
check. As detailed in table 3, the Z significance, implying the decay of a W ′,
does indeed drop to nearly zero in ideal delocalization, while a significance

sZ (m′ = 500 GeV) = 1.4 (1.0)stat � (4.31)

remains with maximal gW ′ff . In the parton level analysis of [6] a significance
of ∼ 2� was found for the disentangled Z signal, whereas the basic differ-
ences between their analysis and this one are that the detector width of SM
bosons in jet pairs was somewhat overestimated with 10 GeV, while, on the
other hand, the considerably large background contributions of inclusive jet
production at the detector could not be incorporated on parton level. In
any case, this result is still far away from a liable discovery threshold for an
integrated luminosity of 100 fb−1 considered here, so that at least a factor
2 or 3 in the statistics and hence ATLAS run time would be necessary to
get the disentangled W ′ signal significant in the l�jj channel. It therefore
suggests itself to analyze other channels with a clean W ′ signal in order to
improve its overall discovery chances.
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ideal delocalization

i Ñi s̃i Ni si

W 1992 6.8 2771 5.6

Z 693 2.4 1 0.001

maximal gW ′ff

i Ñi s̃i Ni si

W 2585 8.8 3334 6.7

Z 1336 4.6 717 1.4

Table 3: Signal events and significances as computed from eqn. (4.30) before
and after the signal disentanglement described in the text, in ideal delocal-
ization (left) and with maximal W ′ coupling to SM fermions (right). The
significance also drops for the W signals because the error generally becomes
larger in the disentanglement procedure [6].

4.3 lljj Channel

The lljj channel is somewhat easier to handle than the l�jj channel of the
previous section, because all final state objects are visible in the detector, so
that their momenta can in principle be uniquely determined from detector
data. Moreover, this channel contains a pure W ′ signal, thus conveying an
additional possibility to discriminate the one-loop results of [43] from the
ideal delocalization scenario of [1], where the W ′ resonance should vanish
completely.

The event selection criteria are similar to those of the l�jj final state:
Basically two oppositely charged boosted leptons passing all kinematic cuts
of eqn. (3.10) are demanded in this case instead of just one, together with
a cut on the invariant di-lepton mass within ∼ 2� around the Z mass (cf.
sections 4.1.1 and 4.1.2),

81 GeV < m��< 101 GeV ,

86 GeV < mee < 96 GeV . (4.32)

Moreover, since two measured lepton momenta are available in this case,
the effect of a tight collinearity cut on the lepton pairs similar to the one
on jet pairs is probed, in order to further suppress irreducible background.
However, fig. 31 illustrates that the situation is by far not as unambiguous
for the leptons as for the jet pairs in the l�jj channel, majorly because of
the bad statistics combined with a relatively small signal in the lljj channel,
so that the corresponding cut is left loose in this case,

ΔR (l, l) < 2.0 . (4.33)
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Figure 31: Distribution of the enclosed angle of two muons for different values
of m′ with maximal gW ′ff in the lljj channel (left) and dependence of the
signal significance on the applied ΔR cut for m′ = 500 GeV (right, statistical
uncertainty marked with error bars). For the other two values of m′ the
signal is not significant in this channel.

The requirements on hadron jets are left the same except for the cut window
on the di-jet mass, which is adapted to

70 GeV < mjj < 90 GeV , (4.34)

because the di-jet resonance in the lljj signal stems exclusively from W
bosons (cf. fig. 12). Finally, the sum of the lepton momenta and the sum of
the jet momenta should also pass the back-to-back cut of eqn. (4.13).

When analyzing the distribution of the invariant mass mlljj of the four fi-
nal state momenta in order to isolate the W ′ signal, two serious drawbacks of
this channel become obvious: The cross sections of this final state are in gen-
eral roughly five times smaller than for l�jj, which leads to a significant lack
of statistics in the 100 fb−1 samples, so that the suppression of background
fluctuations is far worse than in the l�jj channel. Secondly, the signal itself
is also very small, if existent at all, because of the strong experimental con-
straints on gW ′ff . In summary, it must be coped with a tiny signal superposed
with a comparably large but still strongly fluctuating background. In order
to somewhat improve the results without giving up on the basic condition to
perform this analysis with an integrated luminosity of 100 fb−1, the following
approach is pursued: The signal and irreducible background sample, covering
100 fb−1, is summed with reducible background samples which also strictly
cover 100 fb−1 only. On the other hand, when summing the reducible back-
grounds with the irreducible background from generated SM data to account
for the SM expectation of the analysis, the corresponding mlljj distributions
are smoothed by generating higher luminosities and scaling them down to
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Figure 32: W ′ signal and background samples corresponding to 100 fb−1

in the lljj channel with maximal gW ′ff , for heavy gauge boson masses
m′ = 380 GeV (top left), 500 GeV (top right) and 600 GeV (bottom). For
m′ = 500 GeV, which is the only sample to convey a significant signal, the
vanishing of the W ′ signal in the ideally delocalized scenario is also shown.

100 fb−1 whenever necessary, i. e. the irreducible and reducible two-parton
backgrounds are produced in samples covering 500 fb−1 while the reducible
one-parton background is already more or less smooth for 100 fb−1. Now the
strongly fluctuating signal/background distribution of mlljj is compared with
a rather smooth SM expectation to isolate the W ′ resonance, if existent, and
compute corresponding significances (cf. fig. 32).

Since no neutrino reconstruction and hence no double-counting of the
background occurs in this final state, the standard deviation of the number
of total and background events simply follows from Poisson statistics, so that
the significance of the W ′ signal is in this case just given by [6]

s =
N

�Nb
=
Nt −Nb√

Nb

(4.35)
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with a statistical uncertainty analog to eqn. (4.17),

�s =

√
Nt

Nb

+

(
Nt +Nb

2Nb

)2

, (4.36)

whereas the mass window in which to collect the hit numbers Nt and Nb and
evaluate s is again optimized with the method described in section 4.2.1. As
shown in fig. 32, the W ′ signal with m′ = 500 GeV acquires a significance

s (m′ = 500 GeV) = 5.2 (1.5)stat � within {478 GeV, 544 GeV} . (4.37)

in the one-loop scenario of [43] with maximal allowed gW ′ff , which just about
corresponds to a 3� discovery with the systematic uncertainty taken into ac-
count, while in the ideally delocalized scenario the signal expectedly vanishes.
For the other two values of m′ examined here gW ′ff is even more restricted,
which results in the perishing of the according signals among the large back-
ground fluctuations in the 100 fb−1 samples. It can be concluded that even
in this channel, which conveys a clean W ′ signal, it is rather critical even
to make a 3� discovery of the W ′ within the first 100 fb−1 of ATLAS data
due to the poor signal-to-background ratio in combination with small overall
cross sections, and may depend on the actual mass of the W ′.

4.4 l�ll Channel

Another chance for a discriminative search for the heavy W ′ is the purely
leptonic final state l�ll, which possesses by far the smallest cross section
but at the same time a very clean detector signature compared to the semi-
leptonic channels considered above. The event selection requirements are in
this case exactly three isolated charged leptons passing the kinematic cuts
in eqn. (3.10) as well as missing transverse momentum passing the pT cut.
The further procedure simply is to combine the treatments of one or two
charged leptons discussed in the previous sections: With mixed flavors, the
lepton pair of equal flavor is required to have opposite charge signs and the
kinematic topology corresponding to the decay of a boosted gauge boson,
i. e. pass the invariant mass and collinearity cuts pointed out in eqns.
(4.32) and (4.33), while the third lepton of different flavor is demanded to
reconstruct at least one neutrino momentum together with ∕ET (cf. section
4.1.4) which also passes the kinematic cuts (and the W mass cut in case of a
c neutrino). With three leptons of equal flavor, the procedure is to demand
mixed charges and pick from the two possible pairs of oppositely charged
leptons the one which passes the said Z mass and collinearity cuts, whereas

107



 [MeV]llνlm
200 300 400 500 600 700 800

310×

en
tr

ie
s 

/ 4
0 

G
eV

0

20

40

60

80

100

3SHLM (max. W’)

 0.1)× −1 fb3irred. backgr. (10

σs = 6.5(2.1) 

{365 GeV, 425 GeV}

 [MeV]llνlm
200 300 400 500 600 700 800

310×

en
tr

ie
s 

/ 4
0 

G
eV

0

20

40

60

80

100

3SHLM (max. W’)
3SHLM (ideal deloc.)

 0.1)× −1 fb3irred. backgr. (10

σs = 10.4(2.6) 

{490 GeV, 550 GeV}

 [MeV]llνlm
200 300 400 500 600 700 800

310×

en
tr

ie
s 

/ 4
0 

G
eV

0

20

40

60

80

100

3SHLM (max. W’)

 0.1)× −1 fb3irred. backgr. (10

σs = 7.7(2.4) 
{579 GeV, 650 GeV}

Figure 33: W ′ signal and SM expectation in the l�ll final state, for
m′ = 380 GeV (top left), 500 GeV (top right) and 600 GeV (bottom), in each
case with maximal gW ′ff . The vanishing of the signal in ideal delocalization
is also shown for m′ = 500 GeV (top right).

the remaining lepton is then required to produce at least one reasonable
neutrino momentum together with ∕ET . As usual, the reconstructed SM gauge
boson momenta should in any case also pass the back-to-back cut of eqn.
(4.13).

When matching the signal expectation in the 3SHLM with the SM ex-
pectation in order to evaluate significances, the situation turns out to be
quite simple here: When dealing with electrons and muons exclusively, it
is basically possible to identify the final states on matrix element level at
the detector, so that the potential background is greatly dominated by ir-
reducible contributions. For example, in this case the only reducible back-
grounds would come from the loss of a lepton in a four-lepton final state or
from a two-lepton final state with another isolated fake lepton. All of these
processes are orders of magnitude smaller than the irreducible background of
the l�ll final state, either because of small cross sections or detector perfor-
mance, so that they can be readily neglected here. However, the problem of
statistical fluctuations is even worse here than for lljj due to the tiny cross

108



section of this final state, which requires a smoothing of the irreducible back-
ground analog to the procedure in the previous section. In this case, 103 fb−1

of data have been generated, simulated and scaled down to be compared with
the signal sample covering 100 fb−1 (cf. fig. 33), where the significances are
computed in the same way as for l�jj, using eqn. (4.16) together with an
optimized mass interval. The corresponding numerical results are

s (m′ = 380 GeV) = 6.5 (2.1)stat � within {365 GeV, 425 GeV} , (4.38)

s (m′ = 500 GeV) = 10.4 (2.6)stat � within {490 GeV, 550 GeV} , (4.39)

s (m′ = 600 GeV) = 7.7 (2.4)stat � within {579 GeV, 650 GeV} , (4.40)

hence all reaching the region just between the 3� and 5� discovery threshold
when systematic and statistical uncertainties are taken into account. In fact,
the different significances show the expected relative pattern for the various
values of the heavy mass parameter, with the best discovery prospects for
a medium value around m′ ∼ 500 GeV, which allows for the largest gW ′ff
values, and somewhat smaller significances for the light and the heavy W ′.
Finally, it is noteworthy that in the purely leptonic final state the signal
remains stable for m′ ≳ 500 GeV in contrast to the semi-leptonic channels,
because the resolution of the angular di-lepton separation is by far not limited
as strongly as for jet pairs.

4.5 Significances and Discovery Thresholds

This section is intended to summarize and generalize the results of the heavy
gauge boson searches in the different final states discussed in sections 4.2 –
4.4. For all signal significances, the statistical uncertainties are combined
quadratically with the estimation of the systematic uncertainty described in
section 4.2.2 in order to get a solid lower threshold of the significance values.
Furthermore, it is distinguished between the ideal delocalization scenario
introduced in [1] on tree level and the one-loop scenario of [43] with maximal
allowed W ′ coupling to SM fermions.

Ideal Delocalization With a strictly fermiophobic W ′ in the ideally delo-
calized scenario, all W ′ signals naturally vanish in the different final states.
This is of course no surprise in the lljj and l�ll channels with pure W ′ reso-
nances, whereas in the l�jj channel the dropping of the W ′ significance into
the ≪ 1� region after the disentanglement procedure introduced in section
4.2.3 can be seen as an argument for the general liability of the procedure
itself. The remaining signal in the l�jj channel stems from the Z ′ boson, con-
veying a significance of 13.4 (1.5)stat � for m′ = 500 GeV with an integrated
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ization, i. e. pure Z ′ signal (left) and maximal W ′ coupling to SM fermions
(right), as extrapolated from 100 fb−1 of simulated data. The continuous
lines indicate the significances computed from data in each case, whereas the
dashed lines denote the lower significance limits with statistical and system-
atic uncertainties taken into account.

luminosity of 100 fb−1, which is way beyond the 5� discovery threshold. The
high statistics in this channel allows for the usage of the scaling law in eqn.
(4.23) to extrapolate the significance to smaller integrated luminosities and
thus estimate the luminosity necessary for the Z ′ signal to just pass the dis-
covery threshold. Note that the systematic uncertainty is assumed as 10 %
relative to s and hence scales down along with s, whereas the absolute sta-
tistical uncertainty remains constant in this procedure, cf. eqn. (4.17). As
illustrated in fig. 34, an integrated luminosity of 15–20 fb−1 could suffice
to discover a relatively light Z ′ (m′ ≲ 500 GeV) in the ideally delocalized
scenario with 5� confidence at the ATLAS detector, in agreement with the
worst-case results of the parton level analysis carried out in [6]. For higher
mass values, however, the discovery prospects of this analysis begin to suffer
severely from the fundamental problem of separating highly collinear hadron
jets with a finite angular resolution (cf. section 4.2.1 and fig. 24 as well as
the next paragraph).

Almost Fermiophobic W ′ In the one-loop scenario introduced in [43],
where a vanishing coupling of the W ′ to SM fermions is excluded from ex-
perimental precision data, the finite W ′ contribution to the signal in the l�jj
final state further increases the observed significances. With the maximal
gW ′ff allowed by precision data, the 5� discovery threshold for the signal
in the l�jj channel may drop below 10 fb−1, even down to 5 fb−1, as long
as the heavy gauge bosons are comparably light (m′ ≲ 500 GeV), cf. fig.
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34. However, the picture is rather different for m′ = 600 GeV, showing a 5�
discovery threshold of at least 40–50 fb−1. This result illustrates the gen-
eral notion that above m′ ∼ 500 GeV the discovery threshold starts to grow
disproportionately with increasing mass parameter, at least in the approach
pursued in this analysis, because it is more and more problematic to sepa-
rately reconstruct the two parton momenta of the semi-leptonic channels on
detector level: The angular separation of the original partons simply becomes
too small for the jet algorithms with splitting parameter R = 0.4 to split the
calorimeter signals of the partons into two separate hadron jets, so that the
signal is majorly lost when requiring two hard jets for event selection. A pos-
sible loophole for this problem—which is not addressed any further in this
thesis—would be to downsize the splitting parameter of the jet algorithms.
However, this is a highly non-trivial step because the general jet calibration
seems to depend on this parameter, as indicated by the results in section
4.1.3 and fig. 18. Another approach, pointed out in [3], is to entirely give up
on the ambition to resolve the detector signal of the two strongly boosted
partons into two individual jets and rather treat it as one compound jet with
an invariant mass close to the W mass and an angular size corresponding to
the original separation of the partons.

In any case, once the Z ′ is discovered in the l�jj channel, the pure
W ′ channels lljj and l�ll as well as the disentanglement procedure in the
l�jj channel can be used to discriminate the different scenarios that may
be present in nature, i. e. ideal delocalization or finite couplings of the
SM fermions to the charged heavy gauge bosons. However, considering the
respective results of this analysis, it may take quite some time before the
integrated luminosity required for a solid 5� discovery of the W ′ is collected
at the ATLAS detector. On the grounds of this thesis, it can be stated that
the disentanglement procedure in the l�jj channel certainly offers the worst
discovery prospects: The 100 fb−1 data samples examined here turn out to
be way too small for a reliable W ′ discovery, irrespective of the actual point
in the parameter space of the 3SHLM. In the lljj channel, even a 3� dis-
covery of the W ′ within the first 100 fb−1 of data can only be expected for a
medium value of m′ around 500 GeV. It may be concluded that the leptonic
channel l�ll presents the only alternative which offers a realistic chance for a
5� discovery of the W ′ with an integrated luminosity ≲ 100 fb−1. Systematic
uncertainties taken into account, it is the only of all examined W ′ channels
where the signal significance robustly passes the 3� threshold in the entire
m′ range considered, while for medium values of m′ even the 5� threshold
may be reached within the first 70–80 fb−1 of ATLAS data.
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Conclusions

This thesis encompasses theoretical, phenomenological and experimental as-
pects of the “Three-Site Higgsless Model” (3SHLM) introduced in [1]. The
model represents a minimal effective approach to extend the Standard Model
(SM), conveying a dynamic mechanism for the spontaneous breaking of the
electroweak gauge symmetry of the SM, which is experimentally confirmed
by the existence of the massive gauge bosons W and Z, via the insertion of
one additional SU (2) gauge factor into the electroweak gauge group. Hence
it represents the minimal deconstructed limit of a general class of compact-
ified five-dimensional gauge theories, which all share the phenomenological
prediction of additional Kaluza-Klein modes of the SM fields. In the special
case of the maximally deconstructed 3SHLM considered here, only one set
of additional modes remains in the spectrum, whereas the new set of gauge
bosons W ′ and Z ′ will deliver the dominant signatures of the model at LHC
energies.

The theoretical upper bound for the validity of the SM without any yet
undiscovered physics contributions is given by the energy scale of unitarity
violation in scattering amplitudes involving the longitudinal gauge boson
modes which come along with the spontaneous breaking of local symmetries
[23, 24]. Any extension of the SM, such as the 3SHLM, should not only
address the symmetry-breaking mechanism itself but also the impact of the
new physics on these unitarity-violating amplitudes. In this thesis, the basic
mechanism leading to unitarity violation in the SM is extensively reviewed,
verifying the linear divergence of top pair annihilation into gauge bosons as
well as the quadratic divergence of elastic and quasi-elastic 2→ 2 gauge boson
scattering with respect to the CMS energy, which fixes the upper validity
bound of the SM to 1.2 TeV. On the grounds of these considerations, the
leading-order effect of the new gauge bosons of the 3SHLM on the 2 → 2
scattering amplitudes of SM gauge bosons is computed explicitly, resulting in
a delay of unitarity violation by a factor 2 at most. On principle, the factual
amount of this delay largely depends on the mass parameter m′ of the new,
practically degenerate gauge bosons, so that the requirement of delaying
unitarity violation within the 3SHLM automatically sets a theoretical upper
bound to the said mass parameter m′ in the region of the SM consistency
limit mentioned above.

The lower bounds of any new physics generally come frome experimental
results. In the case of the 3SHLM, the new degrees of freedom associated
with the extended electroweak gauge group are severely constrained by ex-
perimental bounds on electroweak precision observables as determined at
the electron-positron collider LEP [38]. These electroweak precision tests

112



basically have two immediate consequences for the phenomenology of the
3SHLM: Firstly, the masses of all new particles are bounded from below,
with m′ > 380 GeV for the heavy gauge bosons and M > 3 TeV for the
heavy fermions [1]. Secondly, the coupling of the heavy charged gauge boson
W ′ to the SM fermions must vanish on tree level [1] or at least be very small,
∼ 1 % of the coupling of the SM W , according to a one-loop analysis in [43].

With the parameter space bounded this way, the 3SHLM offers a rather
unique signature of exclusively one neutral and possibly one charged vector
resonance in the energy range of the new proton-proton collider LHC at
CERN, which is just about to be launched for data taking. This gave rise to
the implementation of the model into the parton level Monte Carlo generator
WHIZARD [7] in order to perform a parton level analysis addressing the
discovery potential of the heavy gauge bosons at LHC experiments, whereas
s channel production and subsequent semi-leptonic decay via the greatly
dominant intermediate states Z ′ → WW and W ′ → WZ was considered
most promising [6]. The parton level analysis is verified in this thesis with
simulated detector data of the ATLAS detector [2, 4, 5], whereas the semi-
leptonic final states l�jj and lljj considered in [6] are complemented by the
purely leptonic final state l�ll. To that end, WHIZARD was used to generate
signal and background samples covering an integrated luminosity of 100 fb−1

for m′ = 380, 500 and 600 GeV with maximal gW ′ff allowed in the one-loop
scenario [43] as well as in the ideally delocalized scenario [1] for m′ = 500 GeV
as a cross-check. The parton level samples were hadronized with PYTHIA
[30] and simulated with the ATLAS detector simulation ATLFAST-2 [10],
whereas the heavy resonances in the invariant mass distributions of the four
final-state objects on detector level are examined in order to quantify the
discovery potential.

The only promising final state with a Z ′ contribution is l�jj, where the
superposed Z ′/W ′ signal is estimated to cross the 5� threshold after the first
5–20 fb−1 of ATLAS data, depending on the actual value of gW ′ff . Once the
robustly coupling Z ′ is discovered in the l�jj channel, several alternatives ex-
ist to discriminate the ideally delocalized scenario from the one-loop scenario
with a finite gW ′ff . The method proposed in [6] of statistically disentangling
the superposed signal in the l�jj channel turns out to be the least feasible
for this task, conveying significances far below the discovery thresholds for
the disentangled W ′ signal in the 100 fb−1 samples. The other semi-leptonic
channel lljj already leads the W ′ signal very close to the 3� threshold, at
least for a medium m′ ∼ 500 GeV. Finally, the purely leptonic channel l�ll
has the best prospects of discovering the W ′ with no more than 100 fb−1 of
data: The significance exceeds 3� for all values of m′ considered, and a 5�
discovery may even be possible with 70–80 fb−1 when m′ ∼ 500 GeV.
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Figure 35: The 4-momentum flow convention and cyclic enumeration chosen
for all 2→ 2 processes considered in the course of this thesis. The resulting
momentum combinations for the Mandelstam variables are indicated in blue
(s), green (t) and red (u).

Appendix

A 4-Momentum Conventions

In order to make all expressions occuring in 2→ 2 scattering which depend on
the external 4-momenta—especially the Feynman amplitudes—as symmet-
ric as possible, a symmetric 4-momentum flow convention is adopted with
all momenta pointing inward (fig. 35), which imposes energy-momentum
conservation in the form

p1 + p2 + p3 + p4 = 0 . (A.1)

Together with a charge-conjugation of the final state particles, this corre-
sponds to swapping the entire final state into the initial state so that the
resulting Feynman amplitudes describe an annihilation of four particles into
the vacuum. Although essentially unphysical, the amplitude of such a pro-
cess remains unchanged with respect to the original one due to crossing sym-
metries. The Mandelstam variables are then given by squaring all possible
combinations of summing two of the four 4-momenta:

s ≡ (p1 + p2)2 = (p3 + p4)2 ≃ 2p1(3) ⋅ p2(4) ,

t ≡ (p1 + p4)2 = (p2 + p3)2 ≃ 2p1(2) ⋅ p4(3) ,

u ≡ (p1 + p3)2 = (p2 + p4)2 ≃ 2p1(2) ⋅ p3(4) . (A.2)

Here t and u were defined in crossed order, so that the enumeration of external
momenta in ℳ becomes cyclic (fig. 35). These definitions imply a relation

123



between the Mandelstam variables and the occuring masses mi of all external
particles involved:

s+ t+ u =
4∑
i=1

m2
i ≃ 0 , (A.3)

so that only two of the variables may be chosen independently. The approx-
imations given in (A.2) and (A.3) are valid in a regime where mi ≪

√
s. In

this limit t and u can be expressed by s and the scattering angle � only:

t =
(
− s

2
+
∑

m2
i +O

(
m4
i

s

))
(1− cos �) ≃ − s

2
(1− cos �) ,

u =
(
− s

2
+
∑

m2
i +O

(
m4
i

s

))
(1 + cos �) ≃ − s

2
(1 + cos �) . (A.4)

Note that in the special case of identical external masses m the terms of
O (m4

i /s) vanish and the left equal signs hold exactly without corrections,
with

∑
m2
i → 2m2.

B Contractions of Longitudinal Polarization

Vectors

B.1 W 1/2 Scattering

As pointed out in section (1.1), the contractions of external longitudinal
gauge bosons with each other or with external 4-momenta in 2→ 2 scattering
amplitudes potentially deliver factors which violate partial-wave unitarity in
the high-energy limit. In order to evaluate all kinematically different types of
these contractions, and to express them in terms of the Mandelstam variables,
an explicit choice of the four external 4-momenta defined in appendix A is
made in the CMS frame:

−p1/2 ≡ (E,±p⃗ ) ,

p3/4 ≡ (E,±p⃗ ′) (B.1)

with ∣p⃗ ∣ = ∣p⃗ ′∣ ≡ p and ∠ (p⃗, p⃗ ′) = � ,

where p2
i = m2 ∀ i, see below for external Z. The general result of contracting

two longitudinal polarization vectors in the CMS is then given from eqn.
(1.8):

"L (pi) ⋅ "L (pj) = p2

m
− E2

m
cos' with ' = ∠ (p⃗i, p⃗j)

= E2

m
(1− cos')− 1 , (B.2)
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where the mass shell condition p2 = E2 −m2 was used in the second line.
Evaluation of this expression in the s channel, with ' = � and s = 4E2,
gives

"L
(
p1(3)

)
⋅ "L

(
p2(4)

)
≡ ["L ⋅ "L]s = s

2m2 − 1 , (B.3)

whereas in the t channel, collecting a global sign from the definition (B.1)
and setting ' = �, one arrives at

["L ⋅ "L]t = t
2m2 + t−u

s−4m2

= t
2m2 + t−u

s
+ +O

(
x−1
)

(B.4)

with the large parameter x ≡ s/m2. The result for the u channel, ' = �− �,
can be easily obtained from (B.4) using the crossing symmetry t↔ u:

["L ⋅ "L]u = u
2m2 + u−t

s−4m2

= u
2m2 + u−t

s
+O

(
x−1
)
. (B.5)

Note that the dimensionless quantities t/m2 and u/m2 merge two orders of
x, cf. eqn. (A.4), therefore the exact relations for t and u have to be plugged
into all terms of the x expansions in (B.4) and (B.5) except for the last one
each.

Now the results of contracting a polarization vector with an external 4-
momentum are given for each kinematic channel. The general result of such
a contraction in the CMS is, from eqn. (1.8),

"L (pi) ⋅ pjm = Ep
m2 (1− cos')

=
(

1
4
x− 1

2
+O

(
x−1
))

(1− cos') , (B.6)

where the mass shell condition has been expanded in m/E,

p = E

√
1− m2

E2 = E
[
1− 1

2

(
m
E

)2 − 1
8

(
m
E

)4
+O

((
m
E

)6
)]

, (B.7)

and plugged in to give the second line of (B.6). In the s channel, this leads
to [

"L ⋅ pm
]
s

= s
2m2 − 1 +O

(
x−1
)
, (B.8)

while inserting the 4-momenta corresponding to the t and u channels gives[
"L ⋅ pm

]
t

= t
2m2 + t

s
+O

(
x−1
)

(B.9)

and
[
"L ⋅ pm

]
u

= u
2m2 + u

s
+O

(
x−1
)
. (B.10)
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Note that the x expansions for the contractions of polarizations among each
other, eqns. (B.3) – (B.5), differ from the contractions between polarizations
and momenta just given in eqns. (B.8) – (B.10) only in the subleading order
(for the s channel even in the sub-subleading order), as could be expected
from eqn. (1.9). For completeness, and to make things easier in the course of
section 1.3, the differences of these contractions are also given here for each
kinematic channel: [

"L ⋅
(
p
m
− "L

)]
s

= 0 +O
(
x−1
)
, (B.11)[

"L ⋅
(
p
m
− "L

)]
t

= u
s

+O
(
x−1
)
, (B.12)[

"L ⋅
(
p
m
− "L

)]
u

= t
s

+O
(
x−1
)
. (B.13)

B.2 External Z0 Bosons

As soon as external Z0 occur in the asymptotic states, the results of the
previous paragraph must be somewhat modified to account for the mass
splitting between W± and Z0. For scattering processes with altogether two
Z and two W , which are the only possible ones on tree level, the various
kinds of mixed Lorentz contractions of polarization vectors and 4-momenta
with respect to external W and Z can be found easily using the proper
mass shell conditions, pi (W )2 = m2 and pi (Z)2 = m2

Z , the definition of the
longitudinal polarization vector, eqn. (1.8), and the mass-shell expansion,
eqn. (B.7). The polarization contractions give:

["L (W ) ⋅ "L (Z)]s = s
2mmZ

− � +O
(
x−1
)
, (B.14)

["L (W ) ⋅ "L (Z)]t = t
2mmZ

+ t−u
s
� +O

(
x−1
)

(B.15)

with � ≡ m2
Z+m2

2mmZ
= 1

2

(
cos �! + 1

cos �!

)
,

and the usual exchange t↔ u for th u channel. The contractions of longitu-
dinal polarizations and 4-momenta result in:[
"L (W ) ⋅ p(Z)

mZ

]
s

=
[
"L (Z) ⋅ p(W )

m

]
s

= s
2mmZ

− � +O
(
x−1
)
, (B.16)[

"L (W ) ⋅ p(Z)
mZ

]
t

= t
2mmZ

+ t
s
� + u

s
� +O

(
x−1
)
, (B.17)[

"L (Z) ⋅ p(W )
m

]
t

= t
2mmZ

+ t
s
�− u

s
� +O

(
x−1
)
, (B.18)

with � ≡ m2
Z−m

2

2mmZ
= 1

2
sin �! tan �! ,

and t↔ u for the u channel.
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C Comparison of ATLFAST-2 and Full Sim-

ulation

C.1 Jet Variables
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Figure 36: Comparison of transverse momentum pT (left) and the number
per event (right) of reconstructed hard jets (cone algorithm with R = 0.4
on topoclusters, cf. section 4.1.3), from fully simulated and ATLFAST-2
calorimeter data, analog to the procedure of fig. 14 in section 3.2.3. Although
the data seem to show some small systematic deviations, i. e. in ATLFAST-
2 data pT is slightly shifted to larger values and also the jet numbers are
somewhat larger in average, the overall agreement is still solid enough to
justify the usage of ATLFAST-2.
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Figure 37: Comparison of the angular variables (�, ') of reconstructed jets
from fully simulated and ATLFAST-2 data, analog to the procedure in section
3.2.3. These distributions are in very good agreement.

128



C.2 Electron Variables

 [MeV]
T

p
50 100 150 200 250 300

310×

en
tr

ie
s 

/ 1
0 

G
eV

210

310

410
full sim.

ATLFAST−2

 [MeV]
T

p
50 100 150 200 250 300

310×

bi
n 

ra
tio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

# of electrons / event
0 2 4 6 8 10

 e
nt

rie
s 

/ b
in

3
10×

0

2

4

6

8

10

full sim.

ATLFAST−2

# of electrons / event
0 2 4 6 8 10

bi
n 

ra
tio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 38: Comparison of transverse momentum pT (left) and the number per
event (right) of reconstructed electrons from fully simulated and ATLFAST-2
calorimeter data, analog to fig. 36 for jets.
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Figure 39: Comparison of the angular variables (�, ') of reconstructed elec-
trons from fully simulated and ATLFAST-2 data. While the distributions
of the azimuth angle ' are non-surprisingly in good agreement, the pseudo-
rapidity � is slightly but siginificantly shifted to larger transversality in the
ATLFAST-2 sample.
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klarheiten während meiner Arbeit involviert waren und nicht selten zu deren
Lösung beigetragen haben. Schließlich möchte ich meinen Eltern, Ralf und
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Ich, Fabian Bach, erkläre hiermit, dass ich diese Masterarbeit in allen Teilen
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