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Abstract. The reaction rate of the triple-alpha (3α) process at low temperatures,
where resonant reaction is not dominant, is calculated through the inverse process, the
photodisintegration of a 12C nucleus. For this, Schrödinger equations in a three-alpha (3-α)
model of 12C are directly solved by a Faddeev method, which has been successfully applied to
three-nucleon problem so far. The nuclear Hamiltonian consists of an α-α potential, which
reproduces the 8Be resonance state, together with three-body potentials to reproduce 12C
properties. Our results of the 3α reaction rate are about 103 times larger at low temperature
(T = 107 K) than a standard rate from the Nuclear Astrophysics Compilation of Reaction Rates
(NACRE), which means our results are remarkably smaller than recent results of quantum-
mechanical three-body calculations by Ogata et al.

1. Introduction
The 3α reaction, 4He+4He+4He (α+α+α) → 12C+γ, is known to play a significant role in the
stellar evolution scenarios. At temperatures higher than 108 K, the reaction is considered to be
dominated by so called resonant process [1, 2], which is consisting of two sequential steps:

α + α → 8Be
8Be + α → 12C(0+

2 ) + γ. (1)

Here, 8Be is the resonant state of α-α system with the energy of Er[8Be(0+)] = 91.89 keV
(Γ = 6.8± 1.7 eV) [3], and 12C(0+

2 ) is the second 0+ resonant state of the carbon nucleus, which
is known as Hoyle state, with the energy of Er[12C(0+

2 )] = 379.4 keV (Γ = 8.3 ± 1.0 eV) above
the 3-α threshold [4].

Since it is impossible to directly perform the 3α reaction in a laboratory, theories of nuclear
reactions are expected to provide a crucial information of its reaction rate, which is used as
astrophysical inputs. At high temperatures as T > 108 K, where the resonant process is expected
to be dominant, theoretical evaluations of the 3α reaction rate are performed with resonance
formulae for the reactions of Eq. (1). On the other hand, at low temperatures as T ∼ 107 K,
where the 3α reaction might be important in phenomena of accreting white dwarfs and neutron
stars, α particles do not have enough energies to produce the 8Be resonant state, and thus the
reaction proceeds through ”non-resonant process”. Nomoto et al. [5] evaluated non-resonant
3α reaction rates by extending the resonance formulae to low energy wings of the resonances.
Standard reaction rates by the NACRE compilation [6] followed the idea of Nomoto et al. with
a minor modification.
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On the other hand, theoretical treatments of quantum mechanical three-body reactions have
been well developed in a sense that precise numerical calculations are possible by numbers of
different methods. Recently, Ogata et al. [7] calculated the 3α reaction rate by solving a three-
body Schrödinger equation with the method of continuum-discretized coupled-channel (CDCC).
Their results (hereafter referred to as the OKK rate) at low temperature are quite different from
those given by Refs. [5, 6]: about 1026 (106) times larger at T = 107 K (108 K) compared to the
NACRE rate (see figure 3 below). In this paper, we calculate the 3α reaction rate by solving the
three-body Schrödinger equations by a different method from the CDCC, which is based on the
Faddeev method [8] improved in the treatment of the Coulomb three-body problem and having
been successfully applied to the study three-nucleon scattering systems [9].

In the following, after describing a formalism to calculate the 3α reaction rate shortly in Sec.
2, I will introduce interaction models among the α particles, and show some numerical results
in Sec. 3. A summary is given in Sec. 4.

2. Formalism
In the present work, we calculate the inverse reaction of the 3α reaction, namely the E2-
photodisintegration of the first excited state of 12C, 12C(2+

1 ):

12C(2+
1 ) + γ → α + α + α, (2)

in which the total angular momentum of the final 3-α state is 0. Using the disintegration cross
section σγ(Eγ), the 3α reaction rate ⟨ααα⟩ is calculated (See Ref. [10], e.g.) by

N2
A⟨ααα⟩ = N2

A(3)3/2240π

(
h̄

mαc

)3 c

(kBT )3
e
− EC

kBT

∫ ∞

|EC|
E2

γσγ(Eγ)e−
Eγ

kBT dEγ , (3)

where NA is the Avogadro constant, kB is the Boltzmann constant, mα is the mass of the α
particle, Eγ is the energy of photon, and EC is the (negative) energy of the 12C(2+

1 ) state, which
is related with the energy of the final 3-α state E as

E = Eγ + EC. (4)

We consider the 12C nucleus as a system of three α particles, 1, 2, and 3. Hereafter, we will
use indexes (i, j, k) to denote (1,2,3) or its cyclic permutations and an index i to indicate the
particle i or particles j and k.

The disintegration reaction is calculated by defining a wave function [11]

|Ψ⟩ =
1

E + ıϵ − H3α
Hγ |ΨC⟩, (5)

where H3α is a Hamiltonian of the 3-α system, Hγ is the (E2) electromagnetic transition
operator, and ΨC is a wave function of the initial 12C(2+

1 ) state.
Since there is no incoming wave in this process, the asymptotic form of the wave function Ψ

is given as a purely outgoing wave of the three particles with a breakup amplitude f (B):

Ψ(x,y) → eıK0R

R5/2
f (B)(Θ, x̂, ŷ), (6)

where we use a set of Jacobi coordinates {x,y} defined as

x = r1 − r2, y = r3 −
1
2

(r1 + r2) (7)
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with ri being the position vector of the particle i, and define a hyper radius R and a hyper angle
Θ as

R =
√

x2 +
4
3
y2, (8)

x = R cosΘ, y =
√

3
4
R sinΘ. (9)

The variable K0 is given by

K0 =
√

mα

h̄2 E. (10)

The photodisintegration cross section is given by the breakup amplitude as

σγ(Eγ) =
(

3
4

)3/2 2h̄K0

mαc

∫
dΘdx̂dŷ cos2 Θ sin2 Θ|f (B)(Θ, x̂, ŷ)|2. (11)

Next, we apply the three-body Faddeev method to Eq. (5) [11]. In the following, we will
consider only two-body potential for simplicity, and write the Hamiltonian as

H3α = H0 +
3∑

i=1

Vi, (12)

where H0 is the internal kinetic energy operator of the three-body system, and Vi is a two-body
potential (2BP) between particles j and k.

The wave function Ψ is decomposed into three components:

Ψ = Φ(1) + Φ(2) + Φ(3), (13)

and these (Faddeev) components satisfy the following Faddeev-type equations:

Φ(i) = Gi(E)Hγ,iΨC + Gi(E)Vi

(
Φ(j) + Φ(k)

)
(i = 1, 2, 3). (14)

Here, we defined a channel Green’s function Gi(E) as

Gi(E) =
1

E + ıϵ − H0 − Vi
, (15)

and decomposed the electromagnetic operator as

Hγ = Hγ,1 + Hγ,2 + Hγ,3. (16)

Due to a severe singularity in the integral kernel caused by the long-range property of
the Coulomb interactions, we solve a modified version of Eq. (14) as described in Ref. [9].
Some technical remarks in solving the Faddeev equations for three-body breakup reactions
accommodating three-body potentials are given in Refs. [9, 12].

3. Models and calculations
3.1. Interactions
An interaction potential for the α-α system is taken from Ref. [13]:

V (x) =
(
125P̂2α,L=0 + 20P̂2α,L=2

)
e−(x/1.53)2 − 30.18e−(x/2.85)2 +

4e2

x2
, (17)
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Figure 1. Calculated α-α scattering phase
shifts for L = 0 and L = 2 partial waves with
the potential Eq. (17). Experimental data are
taken from Ref. [14].

where P̂2α,L is a projection operator on the L angular momentum state. This potential is a
shallow one that does not contain forbidden states, and produces a L = 0 resonance (8Be) at
0.093 MeV with the width of 8 eV. Figure 1 shows the scattering phase shifts for the L = 0 and
L = 2 partial waves using this potential.

In order to reproduce some 3-α observables, such as binding energies and resonance energies,
we introduce a three-body potential (3BP), which depends on the total angular momentum of
the 3-α system, which takes a form given in Ref. [13]:

V3α =
∑

J=0,2

P̂3α,JW
(J)
3 exp

(
−AαR2

2b2
3

)
, (18)

where P̂3α,J is a projection operator on the 3-α state with the total angular momentum J ,
Aα = mα/mN = 3.97 and b3 = 3.9 fm, and the strength parameters W

(J)
3 will be determined in

the following.

3.2. Three-body calculations
For the initial state of the E2-photodisintegration, the 12C(2+

1 ) state, we calculate a 3-α bound
state by taking into account α-α states of the angular momentum up to 2 with the 2BP, Eq.
(17) and the 3BP, Eq. (18). The strength parameter of the 3BP is determined to be W

(2)
3 = −56

MeV, which gives the binding energy of 12C(2+
1 ) state as -2.763 MeV in comparison with the

empirical value of -2.8357 MeV [4].
For calculations of 3-α continuum states with zero angular momentum, we take into account

the 2BP of L = 0. It turns out that calculated photodisintegration cross sections reveal a sharp
peak corresponding to the Hoyle state, and the energy of the peak position strongly depend on
the choice of the 3BP strength parameter. Calculated cross sections for W

(0)
3 = -169.0 MeV,

-169.5 MeV, and -170.0 MeV, which produce the 3-α resonance energy close to the experimental
value, are shown in figure 2. Obtained values of the 3-α resonance energy and the width of
the resonance peak as well as the E2 strength function B(E2; 0+

2 → 2+
1 ) are shown in table 1.

Although the calculations do not reproduce the B(E2) value, we do not introduce an effective
charge in the present work.

Calculated 3α reaction rates are shown in figure 3 as a function of the temperature
T7 = T/(107K) together with the NACRE rate and the OKK rate for a comparison. In figure
4, ratios of our calculations to the NACRE rate are shown.

Apparently our results are not consistent with the OKK rate at low temperatures. Compared
to the NACRE rate, our results are about 103 times larger at T7 = 1 almost independently on
the choice of the 3BP strength parameter. At higher temperatures, the results with different
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Figure 2. Photodisintegration cross section
for the process, Eq. (2), as a function
of the photon energy. The solid (black),
dashed (red), and dotted (green) lines denote
calculations with W

(0)
3 = −169.0 MeV,

W
(0)
3 = −169.5 MeV, and W

(0)
3 = −170.0

MeV, respectively.

Table 1. Resonance parameters of the Hoyle state and the E2 strength function B(E2) for the
transition from the Hoyle state to 12C(2+

1 ) state for the calculations with W
(0)
3 = −169.0 MeV,

-169.5 MeV, and -170.0 MeV. Experimental values are taken from Ref. [4].

W
(0)
3 (MeV) Er (MeV) Γ (eV) B(E2; 0+

2 → 2+
1 ) (e2fm4)

-169.0 0.396 19.2 9.9
-169.5 0.380 10.2 9.8
-170.0 0.364 5.0 9.9
Exp. 0.3794 8.3±1.0 13.3±1.8
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Figure 3. 3α reaction rate as a function of
the temperature T7 = T/(107K). The solid
(black), dashed (red), and dotted (green)
lines denote calculations with W

(0)
3 = −169.0

MeV, W
(0)
3 = −169.5 MeV, and W

(0)
3 =

−170.0 MeV, respectively. The dashed-
dotted (blue) line denotes the NACRE rate
[6]. The dashed-dotted-dotted (purple) line
denotes the OKK rate [7].

3BP strength parameters tend to approach to the NACRE rate. The results with W
(0)
3 = −169.5

MeV, which almost reproduces the 3-α resonance energy, are about 30% smaller than the
NACRE rate for T7 > 10. This reduction rate almost agrees with that of the E2 strength as
compared to the experimental value as demonstrated in table 1, which means that our calculation
renormalized by an effective charge to reproduce the E2 strength may reproduce the NACRE
rate well at higher temperatures.

The underestimation of the NACRE rate compared to ours at low temperatures is
qualitatively consistent with an argument of Ogata et al. that it is because of a proper
magnification of the Coulomb barrier between an α-α pair and the spectator α particle by
the use of resonant α-α wave functions instead of the non-resonant ones. However, the size of
its effect in our rates is extremely smaller than that of the OKK rate.
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Figure 4. Ratio of the 3α reaction rate to the
NACRE rate. The solid (black), dashed (red),
and dotted (green) lines denote calculations
with W

(0)
3 = −169.0 MeV, W

(0)
3 = −169.5

MeV, and W
(0)
3 = −170.0 MeV, respectively.

4. Summary
In this paper, calculations of the 3α reaction as a quantum mechanical three-body problem are
performed. For this, a wave function corresponding to the inverse process, Eq. (2), is defined
and solved by applying the Faddeev three-body theory with accommodating long-range Coulomb
force effect, which has been successfully applied for three-nucleon systems.

Our results of the 3α reaction rate are consistent with the NACRE rate at higher temperatures
of T7 > 10, where the resonant process may be dominant, and are about 103 times larger at low
temperature of T7 = 1. This means that the ratio of the OKK rate to the present result still
exceeds 1020 at T7 = 1.

Although the three-body Hamiltonian used in the CDCC calculations and that in the present
calculation are not exactly the same, they are essentially the same kind in a sense that potential
parameters are determined so as to reproduce the resonance and binding energies of the 2-α and
the 3-α systems. Thus the difference might be ascribed to the methods to solve the three-body
problem, which should be clarified. Also, it would be interesting to extend the calculations for
the use of various α-α and 3-α interaction models including a microscopic cluster model and for
higher energies.
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