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Three-particle hyper-spherical harmonics and quark

bound states
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P.O.Box 57, 11080 Beograd, Serbia

E-mail: isalom@ipb.ac.rs

Abstract. We construct the three-body permutation symmetric hyperspherical harmonics
based on the subgroup chain S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ O(6) (and the subalgebra
chain u(1) ⊗ so(3)rot ⊂ u(3) ⊂ so(6)). These hyperspherical harmonics represent a natural
basis for solving non-relativistic three-body Schrödinger equation in three spatial dimensions.
In particular, we apply the calculated three-particle harmonics to the three-quark bound state
problem. We consider confining ∆- and Y-string three-quark effective potentials, and then
calculate the spectrum of low-lying (K ≤ 4) bound states.

1. Introduction
The quantum-mechanical three-body bound-state problem has been addressed by a huge
literature, in which the hyperspherical harmonics, Refs. [1, 2, 3, 4], provide one of the most
firmly established theoretical tools. Nevertheless, little is known about the general structure
of the three-body bound-state spectrum, such as the ordering of states, even in the (simplest)
case of three indentical particles. In comparison, the two-body bound state problem is well
understood, see Refs. [5, 6, 7, 8], where theorems controlling the ordering of bound states in
convex two-body potentials were proven more than 30 years ago. In this paper we make the first
significant advance in the three-body problem after the 1990 paper by Taxil & Richard, Ref. [9].

The basic difficulty lay in the absence of a systematic construction of permutation-
symmetric three-body wave functions. Classification of wave functions into distinct classes
under permutation symmetry in the three-body system, should be a matter of course, and yet
permutation symmetric three-body hyperspherical harmonics in three dimensions were known
explicitly only in a few special cases, such as those with total orbital angular momentum L = 0,
see Refs. [3, 10] before the recent progress made in Ref. [11]. In this paper we confine ourselves
to the study of factorizable (in the hyper-radius and hyper-angles) three-body potentials for
technical reasons: For this class of potentials our method allows closed-form (“analytical”)
results, at sufficiently small values of the grand angular momentum K (i.e. up to, and including
the K ≤ 8 shell). Factorizable potentials include homogenous potentials, which in turn include
pair-wise sums of two-body power-law potentials, such as the linear (confining) “∆-string”, and
the Coulomb ones, as well as the genuine three-body “Y-string” potential [12, 13].

In this paper, we shall: 1) show how the Schrödinger equation for three particles in a
homogenous/factorizable potential can be reduced to a single differential equation and an
algebraic/numerical problem for their coupling strengths; 2) use this result to explicitly confirm
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Richard and Taxil’s results, [9], for the ordering of K = 3 shell three-quark states, and thus
resolve the controversy with [14]; 3) calculate the K = 4 shell’s (purported “universal”) spectral
splittings in terms of four parameters (lowest hyperspherical harmonics expansion coefficients)
that characterize the three-body potential. 4) show that the first manifest differences in the
ordering of states in the Y- and ∆-string potentials appear in the K = 3 shell, and then reappear
more emphatically in the K = 4 shell.

Our work is based on the recent advances in the construction of three-body wave functions
with well-defined permutation symmetry, see Ref. [11].

2. Three-body problem in hyper-spherical coordinates
The three-body wave function Ψ(ρ,λ) can be transcribed from the Euclidean relative position
(Jacobi) vectors ρ = 1√

2
(x1 − x2), λ = 1√

6
(x1 + x2 − 2x3), into hyper-spherical coordinates as

Ψ(R,Ω5), where R =
√

ρ2 + λ2 is the hyper-radius, and five angles Ω5 that parametrize a hyper-
sphere in the six-dimensional Euclidean space. Three (Φi; i = 1, 2, 3) of these five angles (Ω5)
are just the Euler angles associated with the orientation in a three-dimensional space of a spatial
reference frame defined by the (plane of) three bodies; the remaining two hyper-angles describe
the shape of the triangle subtended by three bodies; they are functions of three independent
scalar three-body variables, e.g. ρ · λ, ρ2, and λ2. As we saw above, one linear combination
of the two variables ρ2, and λ2, is already taken by the hyper-radius R, so the shape-space is
two-dimensional, and topologically equivalent to the surface of a three-dimensional sphere.

There are two traditional ways of parameterizing this sphere: 1) the standard Delves choice,
[1], of hyper-angles (χ, θ), that somewhat obscures the full S3 permutation symmetry of the

problem; 2) the Iwai, Ref. [4], hyper-angles (α, ϕ): (sinα)2 = 1−
(
2ρ×λ
R2

)2
, tanϕ =

(
2ρ·λ

ρ2−λ2

)
,

reveal the full S3 permutation symmetry of the problem: the angle α does not change under
permutations, so that all permutation properties are encoded in the ϕ-dependence of the wave
functions. We shall use the latter choice, as it leads to permutation-symmetric hyperspherical
harmonics, see Ref. [11].

We expand the wave function Ψ(R,Ω5) in terms of hyper-spherical harmonics YK
[m](Ω5),

Ψ(R,Ω5) =
∑

K,[m] ψ
K
[m](R)Y

K
[m](Ω5), where K together with [m] = [Q, ν, L, Lz = m] constitute

the complete set of hyperspherical quantum numbers: K is the hyper-spherical angular
momentum, L is the (total orbital) angular momentum, Lz = m its projection on the z-axis, Q
is the Abelian quantum number conjugated with the Iwai angle ϕ, and ν is the multiplicity label
that distinguishes between hyperspherical harmonics with remaining four quantum numbers that
are identical.

The hyper-spherical harmonics turn the Schrödinger equation into a set of (infinitely) many
coupled equations,

− 1

2µ

[
d2

dR2
+

5

R

d

dR
− K(K + 4)

R2
+ 2µE

]
ψK
[m](R)

+ Veff.(R)
∑

K′,[m′]

CK K′

[m][m′]ψ
K′

[m′](R) = 0 (1)

with a hyper-angular coupling coefficients matrix CK K′

[m][m′] defined by

Veff.(R)C
K′ K
[m′][m] = ⟨YK′

[m′](Ω5)|V (R,α, ϕ)|YK
[m](Ω5)⟩

= V(R)⟨YK′

[m′](Ω5)|V (α, ϕ)|YK
[m](Ω5)⟩. (2)

In Eq. (1) we used the factorizability of the potential V (R,α, ϕ) = V (R)V (α, ϕ) to reduce this
set to one (common) hyper-radial Schrödinger equation. The hyper-angular part V (α, ϕ) can
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be expanded in terms of O(6) hyper-spherical harmonics with zero angular momenta L = m = 0
(due to the rotational invariance of the potential),

V (α, ϕ) =

∞∑
K,Q

v3−body
K,Q YKQν

00 (α, ϕ) (3)

where v3−body
K,Q =

∫
YKQν∗
00 (Ω5)V (α, ϕ) dΩ(5) leading to

Veff.(R)C
K′′ K′

[m′′][m′] = V(R)

∞∑
K,Q

v3−body
K,Q

⟨YK′′

[m′′](Ω5)| YKQν
00 (α, ϕ)|YK′

[m′](Ω5)⟩ (4)

There is no summation over the multiplicity index in Eq. (3), because no multiplicity arises for

harmonics with L < 2. Here we separate out the K = 0 term and absorb the factor
v3−body
00

π
√
π

into

the definition of Veff.(R) =
v3−body
00

π
√
π
V(R) to find

CK′′ K′

[m′′][m′] = δK′′,K′δ[m′′],[m′] + π
√
π
∑∞

K>0,Q

v3−body
K,Q

v3−body
00

×⟨YK′′

[m′′](Ω5)|YKQν
00 (α, ϕ)|YK′

[m′](Ω5)⟩. (5)

Homogenous potentials, such as the ∆ and Y-string ones, which are linear in R, and the

Coulomb one, have first coefficients v3−body
00 in the h.s. expansion that are one order of

magnitude larger than the rest v3−body
K>0,Q . This reflects the fact that, on the average, these potential

energies depend more on the overall size of the system than on its shape, thus justifying the
perturbative approach taken in Ref. [9], with the first term in Eq. (5) taken as the zeroth-order
approximation.1

In such cases Eqs. (1) decouple, leading to zeroth order solutions for ψ K
0[m](R) that are

independent of [m] and thus have equal energies within the same K shell, and different energies in
different K shells. Two known exceptions are potentials with the homogeneity degree k = −1, 2,
that lead to “accidental degeneracies” and have to be treated separately.

The first-order corrections are obtained by diagonalization of the block matrices CK K
[m][m′],

K = 1, 2, ..., while the off-diagonal couplings CK K′

[m][m′],K ̸= K′ appear only in the second-

order corrections. Rather than calculating perturbative first-order energy shifts, a better
approximation is obtained when the diagonalized block matrices are plugged back into Eq.
(1), which equations then decouple into a set of (separate) individual ODEs in one variable,
that differ only in the value of the effective coupling constant:[

d2

dR2
+

5

R

d

dR
− K(K + 4)

R2
+ 2µ(E − V K

[md]
(R))

]
ψK
[md]

(R) = 0, (6)

where V K
[md]

(R) = CK
[md]

Veff.(R), with C
K
[md]

being the eigenvalues of matrix CK K
[m][m′].

The spectrum of three-body systems in homogenous potentials is now reduced to finding
the eigenvalues of a single differential operator, just as in the two-body problem with a radial
potential. The matrix elements in Eq. (5) can be readily evaluated using the permutation-
symmetric O(6) hyper-spherical harmonics and the integrals that are spelled out in Ref. [11].

1 (note that the h.s. matrix elements ⟨YK′′
[m′′](Ω5)|YKQν

00 (α, ϕ)|YK′
[m′](Ω5)⟩ under the sum are always less than 1

π
√

π
).
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This is our main (algebraic) result: combined with the hyperspherical harmonics recently
obtained in Ref. [11], it allows one to evaluate the discrete part of the (energy) spectrum of a

three-body potential as a function of its shape-sphere harmonic expansion coefficients v3−body
K,Q .

Generally, these matrix elements obey selection rules: they are subject to the “triangular”
conditions K′ +K′′ ≥ K ≥ |K′ −K′′| plus the condition that K′ +K′′ +K = 0, 2, 4, . . . , and the
angular momenta satisfy the selection rules: L′ = L′′, m′ = m′′. Moreover, Q is an Abelian (i.e.
additive) quantum number that satisfies the simple selection rule: Q′′ = Q′ +Q. That reduces

the sum in Eq. (5) to a finite one, that depends on a finite number of coefficients v3−body
K,Q ; for

small values of K, this number is also small.
A matrix such as that in Eq. (5) is generally sparse in the permutation-symmetric basis, so

its diagonalization is not a serious problem, and, for sufficiently small K values it can even be
accomplished in closed form: for example, for K ≤ 5, all results depend only on four coefficients
(v00, v40, v6±6, v80), and there is at most three-state mixing, so the eigenvalue equations are at
most cubic ones, with well-known solutions. For brevity’s sake we confine ourselves to K ≤ 4
states here.

3. Results
1) In the K = 2 band/shell of the three-body energy spectrum the eigen-energies depend on
two coefficients (v00, v40), and the splittings among various levels depend only on the (generally
small, see Table 1) ratio v40/v00. This means that the eigen-energies form a fixed pattern
(“ordering”) that does not depend on the shape of the three-body potential. The actual size
of the K = 2 shell energy splitting depends on the small parameter v40/v00, provided that the
potential is permutation symmetric. This fact was noticed almost 40 years ago, Refs. [15, 16],
and it suggested that similar patterns might exist in higher-K shells.

The advantage of permutation-symmetric hyperspherical harmonics over the conventional
ones is perhaps best illustrated here: the K = 2 shell splittings in the Y- and ∆-string potentials
were obtained, after some complicated calculations using conventional hyperspherical harmonics
in Ref. [17], whereas here they follow from the calculation of four (simple) hyper-angular matrix
elements.

2) Historically, extensions of this kind of calculations to higher (K ≥ 3) bands, for general
three-body potentials turned out more difficult than expected: Bowler et. al, Ref. [14], published
a set of predictions for the K = 3, 4 bands, which were later questioned by Richard and Taxil’s
[9], K = 3 hyperspherical harmonic calculation; see also Refs. [18]. This controversy had not
been resolved to the present day, to our knowledge, so we address that problem first: In the
K = 3 case the energies depend on three coefficients (v00, v40, v6±6), and there is no mixing of
multiplets, so all eigen-energies can be expressed in simple closed form that agrees with Ref. [9]
and depends on two small parameters v40/v00, v6±6/v00.

Note that the third coefficient v6±6 vanishes in the simplified Y-string potential without two-
body terms and thus causes the first observable difference between Y- and ∆-string potentials:
the splittings between [20, 1−], and [56, 1−], as well as between [20, 3−], and [56, 3−]. The
vanishing of v6±6 implies that the Y-string potential is independent of the Iwai angle ϕ, and
that consequently there is a (new) dynamical “kinematic rotations/democracy transformations”
O(2) symmetry, [12, 13] associated with it.

3) In the K = 4 band SU(6), or S3 multiplets have one of the following 12 values of the
diagonalized C-matrix CK

[md]
× v00

π
√
π
, from which one can evaluate the eigen-energies. We use

the baryon-spectroscopic notation: [dim., LP ], where dim. is the dimension of the SUFS(6)
representation and the correspondence with the representations of the permutation group S3
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is given as 70 ↔M , 20 ↔ A, 56 ↔ S.

[
70, 0+

]
:

1

π
√
π

(
v00 +

√
3

2
v40 +

1

2
√
5
v80

)
[
56, 0+

]
:

1

π
√
π

(
v00 +

2√
5
v80

)
[
70, 1+

]
:

1

π
√
π

(
v00 − 1√

5
v80

)
[
70, 2+

]
:

1

π
√
π

(
v00 +

1

35

(
7
√
3v40 + 2

√
5v80

−3

√
3v240 − 2

√
15v40v80 + 5v280 + 120v26±6

))
[
70

′
, 2+

]
:

1

π
√
π

(
v00 +

1

35

(
7
√
3v40 + 2

√
5v80

+3

√
3v240 − 2

√
15v40v80 + 5v280 + 120v26±6

))
[
56, 2+

]
:

1

π
√
π

(
v00 −

12
√
3

35
v40 +

√
5

7
v80

)
[
20, 2+

]
:

1

π
√
π

(
v00 − 1√

5
v80

)
[
20, 3+

]
:

1

π
√
π

(
v00 −

3
√
3

14
v40 −

√
5

14
v80

)
[
70, 3+

]
:

1

π
√
π

(
v00 −

5
√
3

14
v40 +

1

14
√
5
v80

)
[
56, 4+

]
:

1

π
√
π

(
v00 +

5
√
3

14
v40 +

3

14
√
5
v80

)
[
70, 4+

]
:

1

π
√
π

(
v00 +

1

42
√
5

(
− 2v80

−
√

1215v240 − 54
√
15v40v80 + 9v280 + 1280v26±6

))
[
70

′
, 4+

]
:

1

π
√
π

(
v00 +

1

42
√
5

(
− 2v80

+

√
1215v240 − 54

√
15v40v80 + 9v280 + 1280v26±6

))
.

Table 1 shows that the ordering of K = 4 states is not universally valid even for these two
convex confining potentials. This, of course, is a consequence of different ratios v40/v00, v6±6/v00
and v80/v00. That goes to show that one cannot expect strongly restrictive ordering theorems
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Table 1. Expansion coefficients vKQ of the Y- and ∆-string potentials in terms of O(6) hyper-

spherical harmonics YK,0,0
0,0 , for K = 0, 4, 8, respectively, and of the hyper-spherical harmonics

Y6,±6,0
0,0 .

(K,Q) (0,0) (4,0) (6,±6) (8,0)

vKQ(Y) 8.18 -0.44 0 -0.09

vKQ(∆) 16.04 -0.44 -0.14 -0.06

to hold for three-body systems in general, the way they hold in the two-body problem, Ref.
[8]. Nevertheless, even the present results can be useful, as they indicate that certain groups
of multiplets are jointly lifted, or depressed in the spectrum, subject to the value of the ratio
v40/v00, with ordering within each group being subject to the finer structure of the potential,
i.e., to higher coefficients ratios v6±6/v00 and v80/v00.

Of course, similar conclusions hold also for K = 3 spectrum splitting, but are less pronounced,
as that shell depends only on two numbers: the ratios v40/v00 and v6±6/v00. As the difference
between ∆ and Y-string potentials is most pronounced in the value of v6±6, that is the case
where the distinction between these two potentials is most clearly seen.

4. Summary and Conclusions
We have reduced the non-relativistic (quantum) three-identical-body problem to a single
ordinary differential equation for the hyper-radial wave function with coefficients multiplying the
linear hyper-radial potential determined by O(6) group-theoretical arguments. That equation
can be solved in the same way as the radial Schrödinger equation in 3D. The breaking of the
O(6) symmetry by the three-body potential determines the ordering of states in the spectrum.

In three dimensions (3D) the hyper-spherical symmetry group is O(6), and the residual
dynamical symmetry of the potential is S3 ⊗ SO(3)rot ⊂ O(2) ⊗ SO(3)rot ⊂ O(6), where
SO(3)rot is the rotational symmetry associated with the (total orbital) angular momentum L.
We showed how the energy eigenvalues can be calculated in terms of the three-body potential’s
(hyper-)spherical harmonics expansion coefficients vKQ.

The ordering of bound states has its most immediate application in the physics of three
confined quarks, where the question was raised originally, Refs. [9, 14, 15, 16, 17]. We have
used these results to calculate the energy splittings of various SU(6)/S3 multiplets in the K ≤ 4
shells of the Y- and ∆-string potential spectra. The dynamical O(2) dynamical symmetry of
the Y-string potential was discovered in Ref. [12], with the permutation group S3 ⊂ O(2) as its
subgroup. The existence of an additional dynamical symmetry strongly suggested an algebraic
approach to this problem, such as that used in two-dimensional space, in Ref. [13]. We have
shown that the first clear difference between the spectra of these two models of confinement
appears in the K ≥ 3 shell. That is also the first explicit consequence of the dynamical O(2)
symmetry of the “Y-string” potential. We stress the analytical nature of our results, in contrast
to the numerical results of Refs. [18].

The next step would be to apply the method to linear combinations of homogenous potentials,
which can only be done numerically, however. Several “realistic” two-body potentials, such as
the Lennard-Jones inter-atomic one, as well as the “Coulomb + linear” quark-quark one, are
simple linear combinations of (only) two homogenous potentials.
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