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Two-loop effective potential for generalized gauge fixing
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We obtain the two-loop effective potential for general renormalizable theories, using a generalized
gauge-fixing scheme that includes as special cases the background-field R gauges, the Fermi gauges, and

the familiar Landau gauge, and using dimensional regularization in the bare and MS renormalization
schemes. As examples, the results are then specialized to the Abelian Higgs model and to the Standard
Model. In the case of the Standard Model, we study how the vacuum expectation value and the minimum
vacuum energy depend numerically on the gauge-fixing parameters. The results at fixed two-loop order
exhibit nonconvergent behavior for sufficiently large gauge-fixing parameters; this can presumably be
addressed by a resummation of higher-order contributions.
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I. INTRODUCTION

The effective potential [1-3] is a useful tool for the
quantitative understanding of spontaneous symmetry
breaking, with the most obvious application being to
electroweak symmetry breaking in the Standard Model
and its extensions.

In gauge theories, the effective potential is simplest and
easiest to compute in Landau gauge. The two-loop order
effective potential was originally obtained for the Standard
Model in [4], and extended to general theories in [5]. The
leading three-loop contributions for the Standard Model
were obtained in Ref. [6] in the approximation that the
QCD and top-quark Yukawa couplings are treated as much
larger than the other dimensionless couplings. These results
were then extended to full three-loop order for a general
theory in Ref. [7], where they were written in terms of the
basis of three-loop vacuum integral functions with arbitrary
masses, as given in [8]. (For an alternative treatment of the
necessary basis integral functions, see [9].) When the tree-
level Goldstone boson squared mass is small or negative, as
indeed occurs in the Standard Model, infrared (IR) diver-
gences or spurious imaginary parts arise in the effective
potential, but it has been shown that a resummation of
Goldstone boson propagator contributions cures this issue
[10,11]; for further development and related perspectives,
see [12—18]. The four-loop contributions to the Standard

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2018,/98(7)/076008(38)

076008-1

Model effective potential at leading order in QCD are also
known [19]. One application of these results is to precision
calculations of physical masses and other observables in
the Standard Model using the tadpole-free scheme, which
means that perturbation theory is organized around a
vacuum expectation value (VEV) defined as the minimum
of the effective potential. This contrasts with the choice of
expanding around the minimum of the tree-level potential,
which is often done but then requires inclusion of tadpole
diagrams and has formally slower convergence properties.
Full two-loop electroweak corrections to the Higgs boson,
W, Z, and top-quark masses in this tadpole-free scheme
have been given in Refs. [20-23]; these rely on the two-
loop Standard Model effective potential result. Softly
broken supersymmetric theories require a different renorm-
alization scheme based on dimensional reduction rather
than dimensional regularization, and the two-loop effective
potential for the minimal supersymmetric extension of the
Standard Model has been obtained accordingly in
Refs. [24-27,5,28]. All of these multiloop results have
been obtained in Landau gauge and no other, up to now. We
think it is reasonable to assert that Landau gauge is the
preferred choice whenever the effective potential plays a
central role in high precision calculations.

However, it is also sometimes considered beneficial to
make use of gauge invariance as a check of both calcu-
lations and conceptual understanding. This can be done by
considering the effective potential obtained with other
gauge-fixing schemes. It has long been understood
[2,29] that the effective potential, and the vacuum expect-
ation values of scalar fields defined by its minimum, does
depend on the gauge-fixing choice. This is not a problem,
because physical observables following from the effective
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potential, including its values at local minima, pole masses
of particles, and properly defined transition rates, are
independent of the choice of gauge fixing. Important results
and a variety of perspectives on the issues related to the
gauge dependence of the effective potential and the gauge
independence of physical observables can be found in
[2,29-53]. The Nielsen identities [33,34] parametrize the
fact that the gauge-fixing dependence of the effective
potential can always be absorbed into a redefinition of
the scalar fields. However, these identities hold to all orders
in perturbation theory, and practical results that are truncated
at finite order often require a careful treatment in order to
demonstrate gauge-fixing independence of physical quan-
tities. In some cases, there are subtleties involved in
verifying that a particular version of a calculated quantity
of interest is really a physical observable. Recently, it has
been argued that resummations of diagrams to all orders in
perturbation theory are necessary to make manifest the
gauge-fixing independence [45] and to cure [50] related
infrared (IR) divergence problems [35,37] that occur in
Fermi gauges.

One of the uses of the effective potential is to study
the stability of the Standard Model vacuum with respect
to the Higgs field [54-59,37,60-69,43,47,51,70,71]. The
observed value of the Higgs boson mass near 125 GeV
implies that the electroweak vacuum is metastable, if one
assumes that the Standard Model holds without extension
up to very high energy scales. As noted particularly in
[37,43], it is nontrivial to identify an instability scale that is
gauge independent. Care is needed to identify physical
observables correlated with the vacuum instability problem,
and to ensure that practical calculations of them in
perturbation theory maintain the gauge invariance that in
principle should govern an all-orders calculation, as dic-
tated by the Nielsen identities.

In this paper, we provide a calculation of the two-loop
effective potential in a general linear gauge-fixing scheme,
but leave aside such issues as resummation. We will provide
results for a general gauge theory, and then specialize to the
Abelian Higgs model and the Standard Model as examples.

To establish notations and conventions, let us write the
bosonic degrees of freedom in the Lagrangian as a list of
real gauge vector bosons Af(x) and a list of real scalar
fields ®;(x). The latter transform under the gauge group
with generators t;‘ , which are Hermitian, antisymmetric,

and therefore purely imaginary matrices. The indices
J,k, ... label the real scalars, and a,b,... are adjoint
representation indices for the real vector fields A%, with
coupling constants g, and totally antisymmetric structure
constants f¢, determined by [t%,*] = if*“t°. Before
gauge fixing, the Lagrangian is

1 1
Ly = _Z ”WFZU — iDy(I)jD#(I’j - V((I)j) + Leermions

(1.1)

where V(®;) is the tree-level scalar potential, and'

Fy, = 0,A] —0,A; + gaf"bCAZA,S, (1.2)

D,®; = 0,®; — ig, ALt Dy

(1.3)
Now we write each real scalar field as the sum of a constant
background field ¢; and a dynamical field R},

®;(x) = ¢; + R;(x). (1.4)
In this background, the fermion Lagrangian for a general
renormalizable theory can be written as

— iy A
‘Cfermions - ”//T G”Dﬂlljl

1 ) .
—§<M11 Yy + Y]IJle//]l//j +C.C.). (15)

Here y; are two-component left-handed fermion fields,
labeled by capital letters from the middle of the alphabet,
1,J,K,.... The covariant derivative acting on fermions is
Dy =0,y —ig, ATy, (1.6)
with gauge group generator Hermitian matrices 7/, which
also satisfy [T% T?] =ifecTc. In Eq. (1.5), Y/ are
Yukawa couplings, and M are ¢;-dependent fermion
masses. It is assumed that (by performing an appropriate
unitary rotation on the fermion indices) the fields y; have
been arranged to be eigenstates of the background field-
dependent squared masses
M? =M% = M, (1.7)
such that the mass matrix M’ connects pairs of fermion
fields with opposite conserved charges. Thus, it is under-
stood that primed indices I’,J’,K’... label the mass
partners of fermions with the opposite charges labeled
I,J,K, ... when they form a Dirac pair, while I’ = I for
each fermion with a Majorana mass and no conserved
charge left unbroken by the background fields ¢;. Because
two-component fermion fields are intrinsically complex,
the heights of the fermion indices are significant, and
raising and lowering them is taken to indicate complex
conjugation, so that
My = (M) Y=y 1§ =(T{)"

(1.8)

"The metric signature is (—, +, +, +). Throughout this paper,
by convention, repeated indices in each term are implicitly
summed over, unless they appear on both sides of an equation.
Thus, a is summed over in the last term of Eq. (1.3), but not in
Eq. (1.2).

076008-2



TWO-LOOP EFFECTIVE POTENTIAL FOR GENERALIZED ...

PHYS. REV. D 98, 076008 (2018)

The effective potential is then a function of the constant
background fields ¢;, and can be evaluated in a loop
expansion:

Ver(p;) = V(O)(¢j) + 1622 V(l)(¢j)
1
vy,
+ (16ﬂ2)2V2 () +---. (1.9)

where V(© (gb]) V(¢;) is the tree-level part, and the

contribution V(") is obtained for n > 1 from the sum of
1-particle irreducible n-loop Feynman diagrams with no
external legs. Carrying out the evaluation of the loop
corrections requires gauge fixing and regularization of
divergences.

A useful consistency check is obtained from renormal-
ization group invariance of the MS form of the effective
potential. Writing the loop expansion of the beta function
for each MS parameter X (including the background fields
¢;, and the gauge-fixing parameters discussed below) as

dx 1

OQ——=px=—-Px +

@ ..
do 16722 P+

1
6 (1.10)

then the requirement

dVes 0 0 B
a0 <Q8Q+;ﬂxax>veff—0 (1.11)

0

yields

+§(Z/f“

n

”) =0 (1.12)
at each loop order £ = 1,2, ....

II. GENERALIZED GAUGE FIXING

To treat the gauge fixing, consider an off-shell BRST
[72] formalism for the gauge invariance, with Grassmann-
odd ghost and antighost fields #* and #7“, and bosonic
Nakanishi-Lautrup [73] auxiliary fields »“. The BRST
transformations of the fields are essentially gauge trans-
formations parametrized by the ghost fields #*:

SprstAj = 0" = gaf " n° Ay, (2.1)
SprsTR; = 19,015 (i + Ry). (2.2)
SprstV1 = 19.1°TH w1, (2.3)
OprsTH = — %gaf“hcﬂh”f’ (2.4)
Sprs17T* = b, (2.5)

5BRSTba - 0 (26)
From these one can check the nilpotency of the BRST
transformations:

Sprst(dprsTX) = 0 (2.7)
for any field X. (Note that dggrgy is Grassmann odd; it
obtains a minus sign when moved past a fermion or ghost
field.) The Lagrangian in Eq. (1.1) is invariant under this
BRST transformation. Together, these facts mean that we
can obtain a BRST-invariant gauge-fixed Lagrangian by

L=Lym+ Lys + Lahosts (2.8)
where the gauge-fixing plus ghost part is obtained as a
BRST variation:

11
Lg §. 4 Lghost = OBRST <’1” {Efub“ —0'AS—ig, it Jk ] ) .
(2.9)

Here &, and g;ﬁ;’ are gauge-fixing parameters; in general the
latter may or may not be related to the background scalar
fields ¢; that the effective potential depends on. It follows
that

1 . Jaga
Loy = Eé’ab“b“ — b (O"A + ig. 9t Ry) (2.10)
and
Lhost = =011 + g, f*P O n" A,
+ 9218851915, (d1 + R)IiT*n” (2.11)

By integrating out the auxiliary fields b%, one can rewrite
Eq. (2.10) as

1
Eg.f. = 25‘1 <aﬂAa + lga¢] Jk )2'

(2.12)

There are various special cases of the above general

gauge-fixing condition that are of interest:

(i) Landau gauge: &51“ = 0 and &, — 0. This condition is
renormalization group invariant, and avoids kinetic
mixing between scalar and vector fields. The result-
ing simplicity is why this gauge condition is by far
the most popular one for practical applications
involving the effective potential.

(i1) Fermi gauges: qfﬁf = 0. This condition is renormal-
ization group invariant. However, the parameters &,
do run with the renormalization scale (except when
they vanish). A further complication is that when
&, # 0, the scalar and vector fields have propagator
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mixing with each other, which arises due to cross-
terms A;;0*R; in the scalar kinetic term in Eq. (1.1).
In the Landau gauge limit £, — 0, the effects of this
cross-term disappear from the scalar and vector
propagators.

(iii) “Standard” R: gauges: ¢ = &, <!, where the ¢¢' are
the classical VEVs that minimize the tree-level
scalar potential. This gauge-fixing condition is not
renormalization group invariant. In applications
other than the effective potential, one can also set
the background fields ¢; to be equal to 3', which
results in cancellation of the scalar-vector propaga-
tor kinetic mixing. However, when calculating the
effective potential Vq(¢;), the whole point is to
allow variation of the background scalar fields ¢;
that appear in the scalar kinetic terms, the scalar
potential, and in the fermion Lagrangian, so they
cannot be fixed equal to the tree-level VEVs (ﬁjl that
appear in the gauge-fixing term. Therefore the
AjO'R; cross-terms in the scalar Kinetic term in
Eq. (1.1) do not cancel against those in Eq. (2.12), so
that there is kinetic mixing between the scalar and
vector fields.

(iv) Background-field R: gauges: q;ﬁj’ =¢,¢pj. This
avoids kinetic mixing between scalar and vector
fields, by cancelling the cross-terms A" R; in the
scalar kinetic term in Eq. (1.1) against those in the
gauge-fixing term Eq. (2.12), after integration by
parts. However, this condition is not renormalization
group invariant, as noted immediately below.

(v) Generalized background-field R.; gauges: &Sj‘ =
Eb ; Where g isa gauge-fixing parameter that is
taken to be independent of £,. As a result, there is
propagator kinetic mixing between the scalars and
vectors, proportional to &, — Z::u. Also, it turns out
that £, and &, have different counterterms, and run
differently with the renormalization scale (except in
the Landau gauge case &, = &, = 0). To understand
this, note that invariance of the Lagrangian under the
BRST symmetry does not require any special
relationship between &, and &,. Therefore, they
are free to be renormalized differently, and explicit
calculation (given below for the Abelian Higgs
model and the Standard Model) shows that indeed
they are. In contrast, while &, appears in both Ly,

and Ly, those instances of &, are required to be
the same by the BRST invariance.

In this paper, we choose to specialize slightly to a
particular version of the last, generalized background-field
R, gauge-fixing condition. However, the 37 two-loop
effective potential functions that we will use to write the
results [listed below in Eq. (3.27), and evaluated in
Egs. (3.30)—(3.66) and (3.108)—(3.144)] are actually gen-
erally applicable, because they correspond to the complete

set of two-loop vacuum Feynman diagram topologies,
and so in principle are sufficient to evaluate the two-loop
effective potential even in the case of arbitrary (}53‘, or if the
parameter £, is generalized to a matrix &,p,.

To see why the qualifier “particular version” appears in
the preceding paragraph, note that when the rank of the
gauge group is larger than 1, the gauge fixing actually
depends on a choice of basis for the gauge %enerators,
because the form of Eq. (2.12) is not invariant” under an
arbitrary orthogonal rotation of the real vector labels a. To
choose a nice basis, consider the real rectangular matrix:

F; = ig,t5¢. (2.13)
The singular value decomposition theorem of linear algebra
says that a real rectangular matrix can be put into a diagonal
form by an invertible change of basis, so that for some
(perhaps background field-dependent) orthogonal matrices
(Oy)* and (Os)kj»

(OV)?PF(Og)yy = M55, (2.14)
Assume that we have already rotated to the diagonal basis,
which will be distinguished from now on by boldfaced
indices a, b, c,... for the vectors, and j,Kk,1,... for the
scalars, so that

Fj = M,63, (2.15)

where the M, are the singular values, with magnitudes equal
to the gauge boson masses. In general, this basis will mix
vector bosons belonging to different simple or U(1) factors
of the gauge Lie algebra; in particular, this occurs in the
Standard Model, where the mass eigenstate Z boson and
photon are mixtures of the SU(2), and U(1), gauge
eigenstate vector fields.

In this basis, Eq. (2.15) provides a natural correspon-
dence between the massive vector bosons and a subset of
the dynamical scalar bosons. The members of this subset of
the scalar bosons will be called Goldstone scalars because
of this association with massive vector bosons and therefore
with broken generators. However, the contributions to the
Goldstone scalar tree-level squared masses from the scalar
potential V do not vanish, because we are not expanding
around the minimum of the tree-level potential.

It is convenient to split the lists of real vector fields and
real scalar fields into those which have nonzero M,,
denoted by Zl’j and G,, respectively, and the remaining
ones, which will be denoted by Ay and R;. Thus, indices
A, B, C, ... are used to span the subspaces corresponding to
massive vectors and their corresponding Goldstone scalars,

*We will discuss this further in the concrete example of the
Standard Model, in Sec. IV C.
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while from now on non-boldfaced indices «, b, c, ... span
only the complementary subspace for massless vectors, and
non-boldfaced j, k, /, ... now span only the complementary
subspace of non-Goldstone scalars. Thus the lists of vectors
and scalars split up as

{As} = {74, A%}, (2.16)

oy

{R;} = {G4, R;}.

The ghosts and antighosts also split into these sectors in the
same way as the vectors:

(P} =0y, Ry =t a0,

where the same orthogonal rotation on the adjoint repre-
sentation indices has been used as for the vector fields. One
can also write

(2.17)

{M,} ={M,.0}, (2.18)
{&a} = {4, S} (2.19)
{&a} = {&4.0}. (2.20)

The vanishing of &, in Eq. (2.20) follows from Eq. (2.18),
because the &, always appear multiplied by the correspond-
ing M. In the following, the gauge interaction terms in the
Lagrangian will be written in terms of couplings:

abc

g El g?k’ 9?17 (221)

which are obtained respectively from the couplings g, f**,
igat%» and g,T{’ appearing in Eq. (1.6), by performing the
same basis change via orthogonal rotations on vector and
scalar indices as in Eq. (2.14). Note that we rely on the
index height to distinguish these vector-vector-vector,
vector-scalar-scalar, and vector-fermion-fermion interac-
tion couplings, because they all use the letter g, and
because scalar and vector indices can both be A, B, ....

The gauge-fixing and ghost terms in the Lagrangian then
become

1 ~ 1
'Cg.f. = _E (a”Zﬁ - gA]WAGA)2 - Z (aﬂA#)Z’
(2.22)
Lonos = =0 0,1" = EaMGTF " + g Al 07
— EAgh; MAR; T . (2.23)

This gauge-fixing can be specialized to the Landau gauge
(by taking ;EA = 0and é,, &, — 0), or the Fermi gauges (by
taking &, = 0), or the background-field R: gauges either in
the bare theory or at some particular renormalization scale

(by taking &, = &,).

There are contributions to the scalar squared masses
from the tree-level potential:

oV
OR;OR)

Wy = (2.24)

9
Ra=0

which, in the basis we are using, can be divided into

sectors as
2 2
( Hix  HBj )
2 2 ’
Har  Hap

One can always specify a basis consistent with the one
chosen so far, by doing a further rotation (if necessary)
among only the non-Goldstone scalar fields R;, with the
result that

(2.25)

/‘?k = .u?éjk (2.26)
is diagonal. However, in the most general case y3, is not
diagonal and 43, need not vanish. In the remainder of this
section we will discuss this general case, and in Sec. IV we
will discuss the simplifications that occur in the favorable
case p%p = S4pu3 and pi, = 0, with examples including
the Abelian Higgs model and the Standard Model.

The part of the Lagrangian quadratic in the bosonic and
ghost fields is, after integration by parts,

1 1 z
L= 51{,-[82 — Wi IR +5Gal0? = (E1/EA)M3]G

2
_l 2 GaGr—u?.GsR;
zﬂAB AU = HpjOAR;
1
AL + (16, = )0 AL

1
2P M)+ (16, - N2

+M (1 —EA/'fA)Zﬁa”GA +714[0% —ExMAIna +11,0°0,.
(2.27)

By taking the inverse of the quadratic kinetic differential
operator, one obtains propagator Feynman rules of the form
shown in Figs. 1 and 2. The propagators for scalars and the
massive vector bosons both involve the same unphysical
squared mass poles M2, labeled by k = 1, ..., N, with N the
total number of real scalars plus massive vector bosons. The
M? are the roots of a polynomial in —p? of order N,
involving the quantities M3, &y, &4, 43, 413 ;, and 43 5. The
M?2 may well be complex, and are not always obtainable in
closed algebraic form, but can be solved for numerically on
a case-by-case basis. The propagator Feynman rules also

involve residue coefficients agll?, bg’%, and cX}), which

similarly require numerical evaluation in the most general
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... k pA R
() (k)
> DI
— p*+ Mg — p? + M?
A v, B A B
ANNANA T P
s (n“” - p”p”/p2> L >y oY: —i0aB
—1 |0AB =
p2 + Mﬁ p2 - p2 + M/% p2 +€AM2

FIG. 1. The scalar, massive vector Z/;, and corresponding ghost propagators, in the general case of arbitrary mixing between Goldstone
scalars and other scalar and vector bosons. The squared mass poles M? arise as the roots of a polynomial of order N in —p?, where N is

the total number of real scalar bosons and massive vector bosons, with k =1, ..., N.
3
W v AIKI — oV (2.29)
ANNANS Pnnnnes = > .
| | OR;OR R, _,
—1 L 7 —1
— [ + (& — Dpp” /p°] —
p P ) oV
P = R R OROR.. (2.30)
FIG. 2. Feynman rules for the propagators of the massless ek N

vectors Ay, (wavy lines), and the corresponding massless ghosts
7%, n* (dotted lines with arrows), each carrying 4-momentum p*.

case. The massive vector boson propagators also have poles
at the physical squared masses M3. The massless vectors
and their corresponding ghosts are unmixed, and their
propagator Feynman rules are shown in Fig. 2. The two-
component fermion propagators follow from Eq. (1.5) in
the usual way [74,75], and are shown in Fig. 3.

The interaction part of the Lagrangian can now be
written in the form

1. 1.
'Cint = —glleleRle - ﬁ/{JklijRleRm

1 .
=5 (YR +cc) + g/ Ao,

1
~ GRAIR R = 5 R ABARPR Ry

— G MARZAM — gh EyM ARy

_ gabcAyaAybaﬂAs _ %gabegcdeApaAvbAﬁAg

+ grhe AR e, (2.28)

where the ¢-dependent (scalar)® and (scalar)* couplings
are defined from the tree-level scalar potential by

p—

—_—

ip-o
p?+ M7

—ip- 0
p?+ M7

FIG. 3.

The interaction vertex Feynman rules can be obtained in the
usual way, and are shown in Fig. 4. Here we have defined a
vector-vector-scalar coupling G?b in terms of the scalar-
scalar-vector coupling, according to

ab __
G =0, (2.31)
Gl = G = 4. M., (2.32)
GIB = g8 .My + ghsM. (2.33)

III. EFFECTIVE POTENTIAL AT
TWO-LOOP ORDER

A. General form

In this section we present the results for the effective
potential, with the general gauge fixing described above.
The one-loop effective potential contribution is

VO =S7F) =23 F () + Y BVA) - 2f(A,)],
(3.1)

I I 1 I
———— ————
—’L'MII, _iMII’

P + M? p? + Mj

Feynman rules for the propagators of the two-component fermions (using the conventions of [74,75]), each carrying

4-momentum p*. The arrows follow the helicity, and the large dots represent fermion mass insertions.

076008-6



TWO-LOOP EFFECTIVE POTENTIAL FOR GENERALIZED ... PHYS. REV. D 98, 076008 (2018)

‘]\\ ’/k j\ I I
\x/ \)_ _ _k_ _ _k_ _ _k_
,/ \\ ,/
1.7 tom 1.7 J J
iA\jkIm —iAjkl iyklJ —iYkry
I Js oy a 2] Hm,a
AN /7
N i ’ d
rd AN
q /l Y
J k’ v,b +k v,b
ig?'T, or —igt o, — P+ — i (G Gien + InTin) —in, G2P
M, a v, b H,a as, a,
Y v,b RN T L
P p s, AN -
< .
k p".f ’f
p,C a, d p,C b A~
_1G2£’§g abch/p _gabcp# _ingfAMA

FIG. 4. Feynman rules for interactions. Dashed lines represent scalars, solid lines with arrows represent fermions, wavy lines represent
vectors, and dotted lines with arrows represent ghosts. Boldfaced letters from the beginning of the alphabet (a, b, ¢, ...) run over
all real vectors in the theory and their corresponding ghosts and ant-ghosts. Bold-faced letters from the middle of the alphabet
(j.k.1,...) run over all of the real scalars in the theory. Capital letters from the middle of the alphabet (1,J, ...) represent two-

component fermions. The vector-vector-scalar coupling G".‘b is given by Eqs. (2.31)~(2.33). The (vector)* coupling is defined by
ace ,bde ade ~bce

Gibss = " 0% MupMus = Mot + 5 G4 Mt — n,wmp] + 6% 9" (15 = MypM.o)- The (vector)* coupling tensor is defined by
Ty = NP — q), + (g = k), + 1,,(k = p),. In the last, ghost-antighost-scalar, interaction, the index A corresponds to a vector

with nonzero physical mass.

where f(x) and fy(x) are renormalization scheme-
dependent loop integral functions, which will be given below a,=0 (3.3)
in the bare and MS renormalization schemes. Here and below,
we use a notation in which an index is used as a synonym for
the squared mass whenever it appears as the argument of a
loop integral function. For example, in Eq. (3.1), « stands for
M2, and I stands for M?, and A for M3, and we also use

for the ghost squared masses.

For the two-loop effective potential, there are 23 non-
vanishing Feynman diagrams, shown in Fig. 5. It follows
that the two-loop contributions to the effective potential are
given, in terms of the couplings and propagator parameters

A, = gAMi, (3.2) defined above, by
|

2
V(Ss) = 8/1"“"1 ;k almeS(K o), (3.4)

1
V.<95>S 12 — Al mne g )al((nalp fsss(k,0.p), (3.5)

2 1 K 1 K c
ngs) = Eg?kg?lag(l)f\/é‘(av K) + ) jkgﬁal((l)bfugfm(dv K), (3.6)
1
2

Vés)v 49Jk91ma§1 akmeSV K,0,a) +— gAkglm aj akm Astsv(K o.p) (3.7)

2 1 K 1 k). (o 1 k)1 (o
Vivs = 3 GG Frvs(abon) + 5 GRG0 frvg(o k) + 4 GIEGPagbRbEn frys(o.p.x).  (38)
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mV
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FIG. 5. The nonvanishing two-loop Feynman diagrams for the effective potential, for gauge-fixing choices that have propagator
mixing between massive vectors and Goldstone scalars. Scalar bosons, fermions, vector bosons, and ghosts are represented by dashed,
solid, wavy, and dotted lines, respectively. The arrows on fermion lines indicate the helicity, and large dots represent fermion mass

insertions. For the F F S and FFG diagrams, there are also diagrams with all fermion arrows reversed.

2 L. k) (o) (p
V.(SS)G = Eljklg;}magnl“;m) C/(ﬁ)fssc (x,0.p),

L x) (o
V(GGS = Elj"'GﬁlBaﬁ-nZCﬁ;ﬁ Cl(!ipl)fGGS(G’pv K),

2) (k)
1

1 .
V.(S‘GG = Eg?kgf;maj C,(Al>cg)lszGG(Kv c.p),

2 k) (o k) (o
V(G;V = Q?kquaagl)Cﬁuszsv(O'v K,a) + gkaf‘Cagl)CE\ﬁbﬁféfcsv(G’ K.p),

2 1 k) (o

V(GéG = ngkGllABcz(ﬁ)C)(E}lgc(c?fGGG(K’ c.p),
@ _ 1 g a ) ()

VGGVZEQ gjkCAjchfGGV(K»Uva)y
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2
V&,();G = —GAaGBacikcBJfVGG(a K,0)+ = GACGk cgﬁcéj CDfVGG(p,K o),

1 K K o
™G Fuya(ab.k) + PGS b fove (0. ),

2)
\% =
\aqe; 2

1 % F K
= Eg‘éjgﬁkéAégMAMBagﬁfms(Am B,. k),

2
V(H)G - gaABgAngMACBJf;mG( qu K)

Ve _

1 X
4% (g fvyv(a,b) + EgabAgabBbi;va(Ka a)

Bl= A=

+ gaAB aCDb( >b1(31>) VV(K’ O'),

2 1 1 K
Vi = - (™) fyvv(a.b,c) + ZgabAgabBbgngvv(K, a,b)

1 K o
+ ZgaABgaCDbExébgegf vyvik o, a),

2y 1 1 .
V;(m)V = Z (gabc)zfrmv(ay,, b’?’ C) + ZgabAgabBbgl);va(an, b'?’ K‘)

1
2
V(FJ)VS ) YJUYkIJa fFFS(I J, k),

2 1 '
V%;S Z(YJIJYkIJMII’MJJ’+CC) kaFFS(I,J,K),
V(Z) _1 aJ aIf (I J a)‘f'lgAJgBlb(K)f ‘([ J K)
FFV_2gI g] FFV\{sJ, D) 1 97 OapJ FFV\Ls Y, R

1 1 ! !
V%F 2911931M1 Myfrrv.J, a )+§g‘,‘”gﬁjM”ij/bg%fipv(l,],x),

2 . !
Ve = i M = el frrg (1 J.x).

In these equations, all indices (1nc1ud1ng K, 0, p) are summed over in each term.
It remains to find the followmg 37 two-loop integral functions:

Fss(x.y), fsss(x.y.2), fvs(x, ), Tos(x, ), Fssv(x.y.2),
Fssv(x.y.2), Fovs(x.y.2), Tovs(x.y.2), fovs(xy.2), fssa(x.y.2),
fees(x.y.2), fsGa(x.y.2). fasv(x.y.2), fasv(x.y.2), feea(x,y,2),
feov(x.y.2), fvee(x.y.2), fvee(x.y.2), Fove(x.y.2),

fove(x,y,2), f,ms(x,y,z), frmG(X,y’Z)’ Fyv(x,y),

Fovxy).  fovxy). fuwwxy.2). fow®y.2). ferv(xy.a).
Fov(xy:2)s fap(y.2). fres(xy.2). frrs(xy.2),

frev(xy,2)s  frero(e3.2)s frevey.2), frev(xy.2), frra(%),2).

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

’One might naively expect functions fggy (x.y.2), fyy6(x..2), and fyyy(x,y.z) to appear in Eqgs. (3.14), (3.16), and (3.20),

respectively. However, those three contributions turn out to vanish identically.
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In the next subsection III B, we present the results for the
loop integration functions in the case that all parameters of
the theory are taken to be bare parameters using dimen-
sional regularization [76—80]. In Sec. III C, we present the
result in the more practically relevant case that all param-
eters are renormalized in the MS [81,82] scheme. In both
cases, we write the results in terms of one-loop and two-
loop basis vacuum integrals following the conventions of
Refs. [5,7]; these are reviewed for convenience in
Appendix A below.

B. Results for two-loop effective potential
functions in terms of bare parameters

In this section, we report the results for the two-loop
effective potential in terms of bare parameters. This means
that all of the masses and couplings appearing in Egs. (3.1)
and (3.4)—(3.26) are the bare ones, and the corresponding
loop integral functions will be distinguished by using f in

|

place of f in the names of the functions. Then then one-
loop integrals appearing in Eq. (3.1) are
f(x) =xA(x)/d, (3.28)

£,(x) = (d — 1)xA(x)/3d. (3.29)

[The notations for the basis integrals A (x) and I(x, y, z) are
reviewed in Appendix A.] For the two-loop integrals
appearing in Egs. (3.4)—(3.26), we obtain

foss(x,v,2) = =I(x,y,2),
fss(x.y) = A(X)A(y),
fys(x,y) = (d = DA(x)A(y),
fys(x.y) = A(X)A(y),

fssv(x.y.2) = % [=A(x.y. )(x.y.2) + (x = y)*1(0.x.y) + zA(X)A(y) + (y = x = 2)A(¥)A(2) + (x = y = D) A(y)A(2)].

fosp(x,9,2) = é{(x —y)*[I(x,y.2) = 1(0,x, )] + (x =y — 2) A(x)A(z) + (y — x — 2)A(y)A(2)},

(3.34)

(3.35)

I
foostny.2) = 7o [F+y = 210 y.2) + (1= 210.%.2) + (7 = 2°1(0.,2) - 2°1(0,0.2)

+ (2= x = y)A(X)A(y) + yA(x)A(z) + xA(y)A(z)],
fVVS(x7y’ Z) = _fVVS(x’y’ Z) - I(x’y’ Z)’
fyys(x,y,2) = fpps(x,y.2) + (2 = d)I(x,y,2),

fsso(x.y,2) = (x = y)1(x, 5, 2) + [A(x) = A(Y)]A(2),

fGGS(x7yv Z) =

N[ =

fs66(x,y,2) = —(x = y)(x = 2)1(x,y,2) + (y = X) A(x)A(y) + (z — ) A(x)A(z) + xA(y)A(z),

1
stv(xJ” Z) = —Efssv(xvy’z)7

1
fGSV(X’J”Z):Z_Z

foe6(x.y.2) = %{(x — Dz =x=y)I(x,y,2) = AX)AG)] + (x +y)[A(Y) - AX)]A(2)},

1

foov(x,y,2) = 3 A(x.y, 2)T(x. . 2) + (x +y —2)A(X)A(y) + (x + 2= y)A(x¥)A(z) + (y + 2 = x)A(y)A(2)].

[(c+y=2)1(x,y,2) + A)A(y) — A(x)A(2) - A(y)A(2)],

[(y=x)(x=y+2)1(x,y.2) + (x=y)*1(0.x,y) + (x =y + 22) A(y)A(z) + (y = x) A (x) A (2)].

(3.36)
(3.37)
(3.38)

(3.39)

(3.40)
(3.41)

(3.42)
(3.43)
(3.44)

(3.45)

fvea(x,y.z) =;—x[/1(x,y71)1(x,y,1) —(y=2)*1(0,y.2) + (x+y —2) A (x)A(y) + (x =y + 2) A(x) A(z) —xA(y)A(2)],

(3.46)
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fVGG(xvaZ) = dx

+(r+y-2)AXA(2) + (x + 2 - y)A(x)A(y)],

fyyg(x,y.2) = 4)1@ {(x —y)[A(x.y.2) +4(d = 1)xy]I(x, y. z) — x(x — 2)*1(0,x,2)

+y(y=2)*1(0,y,2) + (x = y)(x +y — 2)A(x)A(y)

+y[(4d = 6)x +y — Z]A(x)A(z) — x[(4d = 6)y + x — ZJA(y)A(2)},

1
foyg(x,y.2) = —Zfssv(Z,y,x)’

fs(x.y,2) = I(x,y,2),

fmyG(x’va) = —fs6s(x,2,5),

fuv(ey) = U A wAw)
Y

fov () = LA waw)
@-1

fyp(x,y) = y A(xX)A(y),

fyyv(x,y,2) IE{—W ¥, 2)[Ax,y,2) +4(d = 1) (xy +xz+ y2)]1(x,y,2)

+(x—y)
—2)2[y* + 22+ (4d - 6)yz]1(0,y,2) —x*1(0,0,x)
7—4d)(x* +y* —xz—y7) + (2—4d +4/d)xy + *]zA (x)A(Y)

+[( )
+[(7-4d) (x> + 22 —xy—yz) + (2—4d +4/d)xz+ y*]yA(x)A(2)
+[( )

7—4d)(y* + 2> —xy —xz) + (2—4d +4/d)yz + ¥*|xA(y)A(z) }.
foyv(x.y.2) 4x]yz{(y 2)*[A(x, y. 2) +4(d = 1)yz]I(x, y, 2)
—(y—2)*y? + 22 + (4d - 6)yz]1(0.y.2) — (x — 2)*221(0, x, 2)
— (x = y)*y*1(0,x,y) + y*1(0,0,y) + z*1(0,0.2) — x(y — 2)*A(y)A(2)

+[(7-4d)y(z—y)+ (x—2)z+ (6 —4d — 4/d)xy|zA(x)A(y)
+[(7=4d)z(y —2) + (x = y)y + (6 —4d — 4/d)xz]yA(x)A(2) },

fopy(x.y.2) = @ {=24(x.y. 2)1(x.y.2) + (x = 2)°21(0, x.2) + (y = 2)*21(0. y. 2)

- 221(0,0,2) + [22 — xz — yz + 4xy(1/d — 1)]A(x)A(y) + z[xA(y) + yA(x)]A(2)}.

1

L [(x+y-2)(x+z2=y)I(x,y.2) + (y = 2)*1(0,y.2) — xA(y)A(z)

2[x% +y? + (4d = 6)xy]1(0,x,y) —z*1(0,0,2) + (x — 2)*[x* + 22 + (4d — 6)xz) 1 (0, x,7) — y*

(3.47)

(3.48)
(3.49)

(3.50)

(3.51)
(3.52)
(3.53)

(3.54)

1(0,0,y)

(3.55)

(3.56)

(3.57)

By (x.7.2) = - [A0x 3. )L 3. 2) = (¢ = y)1(0.x.y) = ZA(X)AW) + (x =y + ) AXA(R) + (v =2 + JAR)A ).

fm7\7(x’ Y, Z) = 2z

+(y—x+2)A(X)A(z) + (x =y + 2)A(Y)A(2)],
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frrs(x,y.2) = (x +y —2)1(x,y,2) + A(X)A(y) — A(x)A(z) — A(y)A(2),

frrs(x,y.z) =2I(x,y,2),

1

(3.60)

(3.61)

frpv(x.y.2) = ;{M(x, y.2) +(d=1)z(x+y—2)[I(x.y.2) — (x = )*L(0,x,y) + [x — y + (2 — d)z]A(x)A(2)

+—x+(2-d)JA)A(2) + (d - 2)zA(x)A(y)},
frpp(x,y.2) = %{(xz +yz = x* +2xy = y)I(x,y,2) + (x = y)*1(0. x, y) + (x = y)[A(y) — A(x)]A(2)}.

frev(x.y.z) =2(d-1)I(x,y.2),
frrp(x,y.2) =21(x,y,2),

frr(x,y,2) = (v + 2= 2)1(x,y,2) — A(x)A(y) — A(x)A(z) + A(y)A(2).

C. Results in terms of MS parameters

In this subsection, we provide the results for the
effective potential loop integral functions, this time as they
appear in the MS scheme with renormalization scale Q, and
In(x) = In(x/Q?), and renormalized basis integrals A(x)
and I(x,y,z) given in Appendix A.

The one-loop functions for the MS scheme can be
obtained from the ones for the bare scheme by including
counterterms for the ultraviolet one-loop sub-divergences,
and then taking the limit as ¢ — 0. One has

2
f(x) = lim {f(x) + %] , (3.67)
2
Fula) = i £0)+ 3, (3.68)

. 1
fsss(x.9.2) = g%{fsss(xv)’v z) + @(x +y+72)
. 1 1
fss(x,y) = 11_{% fgs +€—2xy +g [VA(x) +xA(y)] ¢,
. 3 1
fvs(x.y) = llfé fys +€—2xy +E[(d_ 1)yA(x) + 3xA(y)] ¢,

1 1
Fustron) = timf s + Ly + DA G+ xA0)

(3.62)
(3.63)

(3.64)
(3.65)

(3.66)

[
with the results

(3.69)

X2
fv(x) = [In(x) = 5/6], (3.70)

which should be used in Eq. (3.1) for the MS scheme.

Similarly, the two-loop functions appearing in Egs. (3.4)—
(3.26) in the MS scheme can be obtained by taking the limit
€ — 0 afterincluding counterterms for the one-loop and two-
loop subdivergences. The two-loop counterterms are deter-
mined by modified minimal subtraction and the requirement
that the resulting functions are finite as ¢ — 0. The inclusions
of counterterms are as follows:

—i(x+y+z)+2[A(x)+A(y)+A(z)}}, (3.71)
(3.72)

(3.73)

(3.74)

. 1 1
Fssv(x,v,2) = 11r%{fssv(x, y.2) + 32 (=3x% =3y? =3xz —3yz +2%) + P (3x? + 3y* = 77> + 18xy + 15xz + 15yz)

+ é [-3xA(x) =3yA(y)+ (1 =d)(x+y— Z/3)A(z)]},

(3.75)
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1

. 1
fssi(x.y.2) = lg%{fssv(x, v.2) 55y, 2) = 2]+ 5 (¥ = y)?

1=y = A + (- x - DA0) - G-+ AG) | 370

. 1 1
frvs(x,y,2) = hmo{fvvs(X, y.2) + 52 (9x 49y + 122) + = (2z — 15x — 15y)

+ 4% [(d=1)A(x) + (d—1)A(y) + 4A(z)]}, (3.77)

Fovs(3.2) = i Fos5,0,2) 4 0 (6 3) = g (64 53-+.62) + 3 BAG) + (0= DAG ] (379

fovs(x,y,2) = lg%{fVVs(x’Y»Z) —l—%(x +y+4z) +é(—3x -3y +22) +i[A(x) +A(y)+ 4A(z)]}, (3.79)

1

Fosclr.2) = limd Biso(2) 53 (=) (e =)+ 5 (=) 53 +2) 44 [ =2+ DAW) + 0 -x=DAD)

€

(3.80)
: 1 2 2 2 1
fags(x.y.2) = lim3 fggs(x. . 2) +@(z —a =yt =2 =2yz) (kb y =)y 4 2)
1
+ 5 [AG) - 3AD) + (- 26 29A G . (3.81)
. 1 o1
fsea(x.y,2) = Lli% fs6a(x.,2) +F(y+z—x)(xy+xz+yz—x )4‘%()6—)’)(2—)‘)()”‘)’4‘2)
1
+ [(A(x,v,2) +3yz)A(x) + yzA(y) + yzA(z)]}, (3.82)
1 1
fosv(x,v,2) = lin%{fGSV(x, y,2) + yy (3x? +3y? +3xz +3yz — %) + e (7z2/3 — x* — 6xy — y* — 5x7 — 5y7)
1
+ % [BxA(x) +3yA(y)+(d—=1)(x+y— z/3)A(z)]}, (3.83)
. 1 o1
feso(x.y.2) = limy fgep(x. y.2) + 12 (2xy +xz+3yz = 2y%) + - (v = x)(2x + 2)
1
o=y + DAL + (x +y)A(z)/2]}, (3.84)
: 1 2 2 2 1
foag(x.y.2) = lime foge(x. v, 2) + 75 (0= y) (" +y* = 2% = 20z = 2yz) + - (x = y) (e —x = y)(x +y +2)
1
+ % [x(x =y —=22)A(x) + y(x =y + 22)A(y) + (y — x)zA(2)] } (3.85)
1
feov(x,y.2) = lif%{fGGv(X, .2+ (=x% —y3 = 23+ 3x%y + 3xy% + 3x%z + 3xz> + 3%z + 3yZ?)
1 1
+ 1 (3 4+ 33 +723/3 = X2y — xy? — x?z — y*z — 5x7% — 5yz> — 6xy7) + % [x(3y + 3z — x)A(x)
+yBx+3z—y)A(y) + (d-1)z(x+y—2z/3)A(z)] } (3.86)
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. 1 1
free(x.v.2) = III%{fVGG(x, y,2) + 52 (3y? 4+ 3z% — x* + 3xy + 3xz7) + S (7x2/3 — y* — 22 = 5xy — 5x7 — 6y7)

+ i [(d=1)(y+z—x/3)A(x) +3yA(y) + 3ZA(Z)]}, (3.87)
free(x.y.2) = liiré{fmc(x,y,z) —&—é(xy +xz—x*=y*—-2)+ 81€ (x> =y =22 + xy + xz7 + 2y7)
#3042 DAL - yAD) - AG ), (3.88)

. 1 1
Frvolxo,2) =t By, ,2) 4 2 (6= 3)92/8 =3 =3) + 5 (= )38+ 38y +9)

24¢
+ é (d—=1)[(9y + 9z —8x)A(x) — (9x + 9z — 8y)A ()] }, (3.89)
fove(x,y,2) = liilg{fwc(x,ya ) + é (3y% 4322 — x> + 3xy + 3x2) + é (x? = 5y% — 22 — xy — xz — 6y2)
%[(3y +3z—x)A(x) + (d = 1)yA(y) + 3zA(2)] } (3.90)
. 1 1 1
Fans(x,y,2) = gg{fms(x,y, 2) =52ty + )+ oty +z) = [AL) +AQY) + A(Z)]}, (3.91)

. 1 1
S (%, y,2) = ggg{fnnc(x,y&) + ==+ 2+ 2y +292) +—(y-x-2)(x+y+2z)

4¢? 4e
3 A+ -y +2A0) + 4G (392)
Fuvte) = limd fn500) + s+ gony-+ 2 (0= DPAG) +3A0)] 3.99
Fovto) = limd oy (53) + a0 oo+ BAG) + (d= DsA0) (3:94
fyv(x, y)hm{fv (¥ +72 : xy+81 xy+43 A (x )+xA(y)]}, (3.95)

. 1 1
fvvv()ﬁy’z):1‘1“%{fvvv(x7y’1)—4€2[25(x2+y2+2 ) +36(xy +x2+y2)] + 5= [128(x* +y> +2°) + 387 (xy +xz +yz)]

24e
1
+§(1 —d)[(25x+ 18y +182)A(x) + (25y + 18x+ 182)A(y) + (25z + 18x + 18y)A(z)]}, (3.96)
1
fovv(x,9,2) = ling{fwv(x,y, )+ — (2% 4 6y* 4 627 — 21xy — 21xz — 18yz) oo (4y + 472 — x? —xy — xz — 3yz)
1
+ i [2(x — 6y —62)A(x) + (d—1)(2y —=3x = 32)A(y) + (d — 1)(2z = 3x — 3y)A(z)]}, (3.97)
. 3 (I 3
frov(x.y.2) =lims fppy(x.y.2) —@(2xy+xz+yZ)+§(6z taztyz—xy) = [y +2)AR) + (x+2)AD)] ¢

(3.98)
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. 1 1
fov(x,y.2) = 111%{f,mv(x, v,2) + 12 (3x2 +3y? — 22 + 3xz + 3yz) + 50 (7% = 3x% = 3y? — 18xy — 15xz — 15y7)
1
+ % [3xA(x) +3yA(y) + (d=1)(x+y —z/3)A(2)] }, (3.99)

. 1 1
Fv(x,9,2) = hrra{f,m\;(x,y, 7) + E(xz +yz=x2—y2 -2+ g(z2 —x2 —y? 4 2xy + xz + y2)
e—

+%[—xA(X) —yA(y) + (x+y—z)A(z)]}, (3.100)

. 1 1
frrs(x,y,2) = Ilng{fm(x,y, D457 (@ ==y =2z = 2y2) F - (¥ by - D) (x+y +2)

L [-rA ()~ YAQ) + (Z—2x—2y)A(z)}}, (3.101)
. 1 1 2
frrs(x,y,2) = l%{fFFS(X’YvZ) - g(x ty o)+ (xty+) - T[AK) +AL) + A(z)]}, (3.102)
. 1 1 1
Frev(x,y,2) —ll_%{fpw(x,y,z) +2—€2z(2z—3x—3y) —2—€z(x—|—y+8z/3) +2(1 —d)(x+y—21/3)A(z)}, (3.103)

. 1 1 1
Srrv(x,3,2) = llf%{fFFv(x,y,Z) —g(xz +y2+xz/24+yz/2) +og 4y +xz+yz) =~ [2xA(x) + 29A () + (x +)A(2)] }

(3.104)

frev(xy.2) = lg%{fppv(x,y,z) —:—2(x+y+z) +é(x+y+5z) —S[A(x) +A(y)+ (d- 1)A(z)/3}}, (3.105)

Ferolnone) =l trry(x.2) = 3 (kY +2) 4 L4y 42 =2 AW + AD)+AGD ] (2100

. 1 1
frrc(x.y,2) = hrr(}{fﬁm(x,y,Z) + z—ez(xz -y = =2y -2x2) +—(y+z-x)(x+y+72)

2¢e
+ é [(x =2y = 22)A(x) — yA(y) - zA(Z)]}- (3.107)

Using Egs. (A6) and (A11), we thus obtain the MS two-loop functions:

fsss(x.y.2) = =1(x.y.2), (3.108)
Fss(x.y) = A(x)A(y). (3.109)
fvs(x.y) = 3A(x)A(y) + 2xA(y). (3.110)
fis(x.y) = A(x)A(y). (3.111)

Fssv(x.y,2) = % [=A(xy, 2)I(x. y. 2) + (x = y)21(0,x,y) + (y — x = 2)A(x)A(2) + (x — y — 2)A(y)A(z)]

+A(x)A(y) +2(3x + 3y — 2)A(2)/3. (3.112)

fssv(x,9,2) = é{(x — ¥ [I(x,y.2) = 1(0,x.y)] + (x =y = 2)A(¥)A(z) + (y —x —2)A(y)A(z)},  (3.113)
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fovs(x.y.2) = % [—(x+y—2)1(x,y,2) + (x = 2)*1(0,x,2) + (y — 2)*1(0,y. 2)

= 221(0,0,2) + (z = x = y)A(x)A(y) + YA(x)A(2) + xA(y)A(2)],
Jovs(x.y.2) = =fyys(x.y.2) = 1(x,y.2) = A(y)/2,
Fvvs(x.y.2) = fovs(x.y.2) = 21(x.y.2) + A(x)/2 + A(y)/2 + 2A(z) —x -y — 2,
fssa(x.y.2) = (x =y)I(x.y.2) + [A(x) — A(y)]A(2),
feas(x.y.2) = % [(x+y = 2)(x,y,2) + A(X)A(y) = A(x)A(z) = A(Y)A(2)],
fsaa(x.y.2) = =(x = y)(x = 2)I(x.3.2) + (y = X)A(X)A(y) + (2 = X)A(x)A(z) + xA(y)A(2).

1
stv(xJ” Z) = —Efssv(x’yv Z)v

fosv(x,y,2) =i[(y—X)(x—y+Z)1(x,y,Z) + (x=)21(0,x,y) + (x =y +22)A(y)A(z) + (y — x)A(x)A(z)].

2z

feae(x.y.2) = %{(x =z =x=y)(x,y,2) —AX)AG)] + (x +y)[A(y) —A(x)]A(2)},

foev(x,y,2) = % [A(x,y, 2)1(x,y,2) + (x +y = 2)A(X)A(y) + (x + z = y)A(x)A(z)
+(y+z=x)AM)A2)] + 2(z/3 —x = y)A(2),

fvee(x,y,2) = %[ﬂ(& v, ) (x,y.2) = (y = 2)*1(0,y,2) + (x + y = 2)A(x)A(y)

+ (x =y + 2)A(x)A(z) = xA(y)A(2)] + (x/6 — y/2 — z/2)A(x),

froe(x,y,2) = %[(x +y—2)(x—y+2)I(x,y.2) + (y = 2)*1(0,y.2) + (x = y + 2)A(x)A(y)

+ (x +y = 2)A(x)A(z) — xA(y)A(2)],

(x=y)[A(x.y,2) + 12xy]I (x.y,2) = x(x —2)*1(0,x,2)

1
fVVG(x’y’Z)_@{

(3.114)
(3.115)
(3.116)
(3.117)
(3.118)
(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

+y(y=2)*1(0..2) + (x =) (x + y —2)A(x)A(y) + y[10x + y — 2] A(x)A(z) — x[10y + x — z]A(y)A(2) }

+(v/2+2/2=2x/3)A(x) = (x/2+2/2=2y/3)A(y) + (x=y)(x+y+2),
fove(x.9,2) = —%fssv(zay’x) + (v/2 +2/2 = x/6)A(x) — yA(y)/2,

Fs(x,y,2) = 1(x,,2),

fmyG(x9va) = —fees(x,2,¥),

27 45 63

fyv(xy) = ZA(x)A(y) t3 [VA(x) + xA(y)] + 6
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Fov(x,) = JACIAD) + S W) +3xAG) +00/16 (3.131)
Frr(e.2) = JACIAL) + 5 AW) +xAW)] - /16 (3.132)

Frv(6.9.2) = T {3, DA . 2) + 1200y + 32 + 32l (5,7,

4xy
+ (x = y)*(x? + y* + 10xy)1(0, x,y) — 2*1(0,0,z) + (x — 2)>(x* + 2> + 10x2)1(0, x, z) — y*1(0,0, y)
+ (v — 2)2(y* + 22 + 10y2)1(0, y, z) — x*1(0,0, x) + (z> = 9x> — 9y* + 9xz + 9yz — 13xy)zA( JA(Y)
+ (3 = 9x% =922 + 9xy + 9yz — 13x2)yA(X)A(z) + (x* — 9y* — 922 + 9xy + 9xz — 13y2)xA(y)A(z) }
— [(40x 4 3y + 32)A(x) + (40y + 3x + 32)A(y) + (40z + 3x + 3y)A(2)]/24 + A(x,y,2)
+ 161(xy + xz + yz)/ 16, (3.133)

fovv(x,9,2) = ﬁ {0 =2)?[Ax, y,2) + 12y2)I(x, y, 2) = (y = 2)*[y* + 22 4+ 10yz]1(0, y, z) = (x = 2)*2*1(0, x, 2)

= (x = )2y*1(0.x.y) + y*1(0.0.y) + 2*1(0.0. 2) — x(y — 2)*A(y)A(2)
+ [xz =22 = 1xy = 9yz + 9y*JzA(X)A(y) + [xy = y* = 11xz = 9yz + 92°]yA(x)A(2) }
+ [=15(y + 2)A(x) + (8y — 4z = 3x)A(y) + (82 — 4y = 3x)A(2)]/8 + (y —2)* — x(y +2)/16,  (3.134)

1
fovv(xy,z) = Iy {=2(x.y. 2)1(x,y.2) + (x — 2)?21(0, x,2) + (y — 2)%2(0, y, 2) — 2°1(0,0, 2)

+ [22 = xz — yz = 3xy]A(x)A() + z[xA(y) + YA(x)]A(z)} — [YA(x) + xA(y)]/8 + xy/16,  (3.135)

Sy (x,5,2) = 2% Ax.y. )1 (x.y.2) = (x =y)*1(0.x.3) = zA(x)A(y) + (x =y + 2)A(x)A(2) + (y = x + 2)A(y)A(2)]

+ (z/3 —x = y)A(2), (3.136)

v (X,3,2) = 2% [(y=x=2)(x =y =2)I(x,y,2) + (x = y)*1(0,x,y) = zA(x)A(y) + (y — x + 2)A(x)A(2)

+ (x =y +2)A)A()]. (3.137)
frrs(x.y.2) = (x +y = 2)I(x.y.2) + A(x)A(y) - A(x)A(z) — A(y)A(2), (3.138)
frrs(x,y,2) =21(x,y,2), (3.139)

Trrv(x,y,2) = é{[ﬂ(x,y, 2) +3z(x +y =) (x,y.2) = (x = ¥)*1(0,x,y) + [x = y = 2z]A(x)A(2)
+ [y —x = 2z]A(y)A(z) + 2zA(x)A(y) } — 2xA(x) — 2yA(y) + (22/3 — 2x — 2y)A(z2)
+x+y-2)x+y+a2). (3.140)

Frev(xy.2) = %{(xz +yz =2+ 2xy = y)(x,y,2) + (x = y)*1(0,x,y) + (x = y)[A(y) —A()]A(z)},  (3.141)

Frrv(x.y.2) = 61(x,y.2) — 4A(x) — 4A(y) + 2x + 2y + 2z, (3.142)
Frrv(xy,2) =21(x,y,2), (3.143)
frrc(x.y,2) = (y + 2= x)I(x,y,2) = A(x)A(y) — A(x)A(z) + A(y)A(z). (3.144)
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The results for fgs, fsss: fvs: fssvs fvvss fvvs fyvy,
Smvs Srrss frFss frrv, and fppy agree with those
found in Refs. [4,5]; the other functions do not contribute
in Landau gauge. In Ref. [5], some of these functions
were combined, so that a function fg,.g. included all of
the effects of fyyy, fyy, and f,,y. In the present paper
we choose to keep them separate so that the functions are

|

Fssv(x,,0) = (x +y)* = 2xA(x) = 2yA(y) + 3A(x)A(y) + 3(x + )1(0,x, ),
Fssv(2,,0) = =(x +y)* + 2xA(x) + 2yA(y) = 2A(x)A(y) = (x + ¥)I(0,x,y),
frvs(0,y,2) = 41y[(32 =9y)1(0,y,2) = 321(0,0,z) + 3A(y)A(z) + 8yA(z) — y(3y + 22)],
fvvs(0,0,2) = =31(0,0,z) +7A(z)/2 — 5z/4,

Jovs(0,9,2) = L [=3(y +2)1(0,y,2) +321(0,0,z) = 3A(y)A(z) — y(y + 22)],

4y

fovs(x,0,2) = % [=3(x + 2)1(0, x,2) + 321(0,0,2) — 3A(x)A(2) + 2xA(x) — x(x + 22)],
frvs(0,0,2) = =3A(2)/2 + 2/4,
Fows(0.3:2) = 332 = )1(0.3.2) = 32(0.0.2) + 3A0)AG) = 2AL) +3(r + 22,
Fris(0,0,2) = =1(0,0,2) + 3A(2)/2 — /4,
Fasv(x.3.0) = [=3(x + y)I(0.x.y) = 3A(x)A(y) + 2xA(x) + 2yA(y) — (x +)*]/2,
fasv(x.y,0) = yI(0,x.y) + A(x)A(y) — xA(x) = YA(Y) + (x +¥)*/2,
fr66(0.y.2) = [-3(y + 2)1(0,y.2) = 3A(y)A(2) + 2vA(y) + 22A(2) — (v + 2)*/4,

Fv66(0.9.2) = [(y + 2)1(0.y. 2) + A(y)A(z) — 2yA(y) — 2zA(z) + (v + 2)*] /4.

in correspondence with the Feynman diagrams, to keep
their origins clear.

Despite the factors of 1/x, 1/y, or 1/z appearing in the
above expressions, the two-loop integral functions are all
finite and well defined in the limits of massless vector bosons.”
To make this plain, one can take the appropriate limits x — 0,
etc. The limiting cases that are not immediately obvious are
(3.145)

(3.146)
(3.147)

(3.148)

(3.149)

(3.150)
(3.151)
(3.152)

(3.153)
(3.154)
(3.155)
(3.156)

(3.157)

fvve(0.y.2) = L [(z2 4+ yz = 8y*)I(0, y,z) — 221(0,0,2) + (z — 8y)A(y)A(z)] + (y — 32)A(y)/6 — 2A(z) /2

4y
+ (v +2)(z—3y)/4,

fVVG(O’ 0, Z) =0,

fve(0,y.2) = [=3(y + 2)1(0,y, z) — 3A(y)A(z) + 22A(z) — (v + 2)*] /4.

(3.158)
(3.159)

(3.160)

fovv(0.y.2) = il (v 4+ 2)(Ty = 2)(Tz = ¥)I(0,y,2) + 7y*1(0,0,y) + 72°1(0,0, z) + 7(yz — y* — 2)A(y)A(z)]

4yz

5
— = [(32y + 32)A(y) + (322 + 3y)A(z)] + 4y + 422 + 217yz/ 16,

24

(3.161)

“However, this is not true at three-loop and higher orders for similar loop integral functions involving massless gauge bosons. The
three-loop contribution to the Standard Model effective potential has a (benign) IR logarithmic divergence due to doubled photon

propagators [7].
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Fovv(0,0,2) = 2521(0,0,2)/2 — 61zA(2) /6 + 2322/4,

(3.162)

Jovv(0.y.2) = L [=3(y 4+ 2)*1(0,y,2) + 3y*1(0,0,y) +32°1(0,0,2) — 3(y* + 6yz + 22)A(y)A(2)] + 6yA(y) + 6zA(2)

4yz
—2y? =272 — 15yz/2,

fovv(x,0,2) = L [(xz = 2x? +722)1(0,x, z) — 7221(0,0, z) + (7z — 11x)A(x)A(2)]

4x

— 11zA(x)/8 + (z — 3x/8)A(z) + z(8z — 5x)/16,

foov(0,y,2) = 41y[3(y +2)21(0,y,2) — 3221(0,0, z) + 3zA(y)A(2)] — ZA(y)/2 + z(y + 22) /4,

Fav(2..0) = [=3(x + y)I(0,x,y) = 3A(x)A(y) + 2xA(x) + 2yA(y) — (x + y)*]/2,

S (x,9,0) = [(x + ¥)1(0,x,y) + A(x)A(y) — 2xA(x) = 2yA(y) + (x + ¥)*]/2,

(3.163)

(3.164)

Fovy(x.0.0) = —xI(0,0,x)/2, (3.165)
Fovv(0.0,2) = =321(0,0.2)/2 + 9zA(2) /2 — 52 /4, (3.166)
(3.167)

frvv(0,0.2) =32A(2)/2 = /4, (3.168)

(3.169)

(3.170)

Jrrv(x.y.0) =0, (3.171)

(3.172)

Frrv(x,9,0) = 2(x 4+ y)1(0,x,y) + 2A(x)A(y) — 2xA(x) = 2yA(y) + (x + ).

For convenience, the results listed in Egs. (3.108)—
(3.172) are also given in the Supplemental Material
[83] (see file “functions”). In order to carry out the
renormalization group invariance check of Eq. (1.12) in
specific models, it is useful to have the derivatives
of the above integral functions with respect to the
renormalization scale Q. These are provided in
Appendix B.

IV. EXAMPLES

A. Simplifications for models without
Goldstone boson mixing

In favorable cases, the Goldstone sector scalar squared
masses are separate from the non-Goldstone scalars, and
diagonal, so that the contributions in Egs. (2.24) and (2.25)
satisfy

,“,24]‘ =0, (4.1)

Hip = Sani- (4.2)
This implies a significant simplification, because now the
propagators for each index A do not mix, and the unphys-
ical squared masses M2 occurring in the scalar and massive
vector propagators are obtained as the solutions of only

|

quadratic equations. This happy circumstance occurs for
theories with only one background field ¢; in a single
irreducible representation of the gauge group, as in the
Abelian Higgs model and the Standard Model. However,
Eq. (4.1) fails to hold in theories such as the minimal
supersymmetric Standard Model or more general two
Higgs doublet models; those theories do have mixing
between the Goldstone and physical Higgs scalar bosons,
and so must be treated with the more general formalism
given in Sec. III above.

In the following, we present the results for the case that
Egs. (4.1) and (4.2) hold; then the propagator Feynman
rules for the bosons simplify to the forms shown in Figs. 6
and 7. The unphysical squared mass poles M2 for the
massive vectors and Goldstone scalars are now at

- 1 =
M3 = B3+ (1 = i1 + 4 - e0M3)).

(4.3)
for each index A, with residue coefficients
M2 _ M2
o = ST, (@)
M, —M;
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71 ZNT) u/ 2 LoV b+ b —1
i n pp/p pp A A _
p* + M3 p* \PPH+Mi,  pP+ M p? + a3

FIG. 6. Feynman rules for the propagators of the Goldstone scalars G, (dashed lines), massive vectors Z,"} (wavy lines), and the
corresponding ghosts and antighosts 5, 7* (dotted lines with arrows), each carrying 4-momentum p*, in the special case that Eqgs. (4.1)
and (4.2) hold. The squared masses M7 , and the coefficients a}, by, and ci are defined in Egs. (4.3)~(4.6).

i v
———————— ANNANN e P
—i —q —1
- _° v + — 1ptp? 2 _°
" 2 (" + (€a — Dp''p" /p°] =

FIG. 7.

Feynman rules for the propagators of the non-Goldstone scalars R; (dashed lines), massless vectors Ay, (wavy lines), and the

corresponding massless ghosts 77, n* (dotted lines with arrows), each carrying 4-momentum p*, in the special case that Egs. (4.1) and

(4.2) hold.

(284 — E)EMS — £ M5
M/ZL:I: - M%«,:F

bi = , (4.5)

Ci _ (§A - EA)MA ) (46)
4 M%,i _M/ZA,:F

Note that the superscript labels & here correspond to the
labels « appearing in Fig. 1, and

ai; +a; =1, (4.7)
by + by =&y, (4.8)
i +c;=0. (4.9)

The massive vectors Z,’;‘ and their associated Goldstone
scalars G, have propagator mixing proportional to &, — &,
and they have three distinct poles in —p?, at M7, Mﬁ’ .. and
Mf‘._. The latter two squared mass poles are real (but not
necessarily positive) if and only if

4(a — EA)MI%W% = (ﬂf\)z- (4.10)
Note that care is needed to cancel 4 in this inequality,
because it can have either sign. At one-loop order, complex
squared mass poles do not lead to an imaginary part of the
effective potential [50], but the two-loop order basis
integral I(x,y,z) has a less obvious branch cut structure
when one or more of its arguments are complex. In this
paper, we will simply avoid choices of the gauge-fixing

parameters that make the squared mass arguments
complex.
As simple special cases, we have

background-field R gauge:
M.%L+ = é:AMi +'u%4’ Mi,— = Mi,;] = §AM/247

ay=1, a;=0, bf=0, by;=¢&,, ci=0, (4.11)
and the further specialization
Landau gauge: M3 , =p3, M;_=M;, =0, (4.12)
a; =1, a; =0, bt =0, cx=0. (4.13)

As before, we use the index of a field as a synonym for
the squared mass whenever it appears as the argument of a
loop integral function, so that in the following,

A= M3, (4.14)
AL =M, (4.15)
A, = EM3. (4.16)

The one-loop contribution to the effective potential can
now be reexpressed as
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vih=> f(H-2) f)
+Y_Bfv(A)+fA)+FA)=2f(A)).  (4.17)

In order to facilitate compact expressions below, we also
extend the squared-mass notations to the massless vector
fields, so that when appearing as the argument of a two-
loop integral function, a and a,. and a, are to be interpreted
according to Eqs. (4.14)—(4.16) when a = A, and are taken
to vanish when a = a. We also define residue coefficients

(4.21)

when j = j is a non-Goldstone scalar. Furthermore, when
J+ appears as an argument in a loop integral function, it is to
be interpreted either according to Eq. (4.15) for a Goldstone
scalar or

Ji = ﬂf, (4.22)
for a non-Goldstone scalar. [Note that j_ is not relevant as
the argument of a loop integral function, because of
Eq. (4.21).] The two-loop contributions to the effective

+
ba =0, (4.18) potential, given in the most general case in Egs. (3.4)—(3.26),
b =&, (4.19) now become
1., , .
so that the notation b is to be interpreted by either Eq. (4.5) V%) = gxwkka;af( fss(Je- Ke). (4.23)
or Egs. (4.18)—(4.19), depending on whether the corre-
sponding vector field is massive or not. Similarly, for scalar 2 1 g e )
fields, the notation for coefficients ajTt is to be interpreted Viss = 1 (W) a5agay fsss(ie ke L), (4.24)
using Eq. (4.4) when j = A is a Goldstone scalar, or .
(2> — 2 € 3 e’ _ .
a}L — 1’ (420) VVS - 5 (g?k) aJ[ VS(a’ Je) + bafVS(ae” .]6)]7 (425)
|
1
2 €€ . ¢’ .
Visw = 3 (9 2a5ag Fssy (e ke a) + 05 Fago(ic ke ae). (4.26)
1
2 € . €/ . €/ ¢ .
Vivs = 3 (GI)2as[fyvs(a.b. ic) + 265 frvs(ag b ic) + b by frvs(ac ber o). (4.27)
2 1 j e € " .
V.(%‘)G = ElAJkg?kajak ¢y [ssc(ie- Kes Aer), (4.28)
2 1 j e € €' .
V<c;2;s = EAABJG?BCACB% fees(Ae, Bes jer), (4.29)
1
2 e € € .
V(SG>G = EggjggjachchSGG(JeaAe’aBe”)a (4.30)
2 e € . ¢ .
VE;;V = g‘?AG?aCAaj [ GSV(Ae’ Je's a) + ba fGSV(Aga Jeos ay ], (431)
1
2 € E/ e//
V(GéG = zggBGé‘BCACBCC fGGG(Ae’ Be” Ce”)v (432)
2) 1 aAB ,a . .
Vooy =3 9asCicsfeov(Ac, Bo. a), (4.33)
1
2 e € el
Vi/();c = EGgaGgaCACB [fvee(a,Ae, By) + by fuge(ae, Ac, Bo)l, (4.34)
2 1 . y
vif\)/G = EgabAszcA[ VVG(a’ b’ Ae) + 2baf\7VG(ae'7 b’Ae)}’ (435)
y 1 : oz . .
V;(M?S’ = EggjgfnggBMAMBajfm/S(Arp B"I’ Je)s (436)
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V,(;)G = B E My f (2, Ay B, (4.37)

VR = 3 (™[ a.b) + 255 gy (a. b) + b3bi fov (ac. be)]. (4.38)

V@v = %( )2 [fyyy(a, b, €) + 35 fyyy(ac, b, €) + 3b5b5 frvv(ac, by, ), (4.39)
VEL = 1™ P18, by €) + b o (a,. by ). (4.40

Vitgs = %Yj”YjIJa‘EifFFS(I’ Jode), (4.41)

ngfs %(YJUYJI’J’MH'MJJ’ +c.c)aifrrs(l 7, Je), (4.42)

VSVZ}V ;Q?ng rrv(.J,a) + bafppp(1. 7, a.)], (4.43)

V%z;:-v = ; Mg MMy [frpv(LJ,a) + baferv(lJ,a0)], (4.44)

VO = i Y oM™ = c.c) e frrg(1 T AL (4.45)

In these equations, all indices are summed over in each term that they appear in, including €, ¢/, ¢’ each summed over =+.

B. Abelian Higgs model

Consider as an example the Abelian Higgs model. The Lagrangian is
1
L= _ZF”DF/”’ - D”Q)*DMQ) -A= mzl(I)P - j'|q)|4 + [’gAfA + ‘Cghostsv (446)

where @ is a complex scalar field charged under a U(1) gauge symmetry with vector field Z, and field strength

F, = 8”Zy - 8DZ”, (4.47)

with covariant derivatives
D,® = (8,4 — ieZM)d), (4.48)
DHD* = (0! + ieZH)D*, (4.49)

and A is a positive scalar self-interaction coupling, m? is a squared mass, and A is a field-independent vacuum energy
(needed for renormalization scale invariance of the effective potential). Now write

D(x) = \/LE [+ H(x) +iG(x)], (4.50)
where ¢ is the position-independent background scalar field, and H, G are real scalar fields. Then,
L= %F,,DF/‘” ——(a H+ eZ,G)? %(aﬂc —eZ,(p+H))*—A —%mz[G2 + (¢ + H)? —%[02 + (¢ + H)*?
+ Ly + Lohosts (4.51)

where, in terms of the Nakanishi-Lautrup Lagrange multiplier field » and the ghost and antighost fields # and 7,
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1

L. —

of. ngz - b(0,2" - e&¢G), (4.52)

‘Cghost = _8y’7/8”’7 - 562¢<¢ + H)ﬁ'l (453)

This Lagrangian is invariant under the Grassmann-odd
BRST symmetry:

OprsTZ, = 0,11, (4.54)
SprstG = e(¢p + H)n, (4.55)
dprsTH = —eG, (4.56)
Oprst7 = b, (4.57)
Oprstl = 0, (4.58)
Ogrsth = 0. (4.59)

Because the BRST symmetry does not require any par-
ticular relation for & and Zj there is no reason that they
should not be renormalized differently, with independent
counterterms.

The parameters of the theory are ¢, e, 4, m?, A, & and E
This model can be obtained from the general case by

gy = e, (4.60)

1y = —the = —i, (4.61)
961 = —9hc = € (4.62)
o = &, (4.63)

$% =0, (4.64)

FZ; = eg, (4.65)
FZy =0. (4.66)

Because there is only one Goldstone boson and it does not
mix with the non-Goldstone scalar H, the formalism of the
previous Sec. IV A applies. The squared mass eigenvalues
for use as arguments of loop integral functions are

H=m?+ 3142, (4.67)

2.8 34
e =22
SS 4

2).B
V(ss>s = PP 3fsss(H . H.H) + a2 f555(H, Z, Z,) + a2fs5(H.Z_,Z_) + 2a,a_fg55(H. Z, , Z_)],

7 = e*¢?, (4.68)
~ 1 ~
z,=82+3 |G+ \/G[G+4(§—§)Z]], (4.69)
n=_E&z, (4.70)
where
G = = m? + Ig>. (4.71)

We also have bosonic propagator residue coefficients:

Z, -7

aL = ﬁ y (472)
_e-dHiz-izs
by == — (4.73)
_(E=9eg

The effective potential in terms of bare parameters can be
written as

1

n 1
1672

(2)
16y 7T

Ve = VY v+ (4.75)

where the subscript B stands for bare. The tree-level and
one-loop contributions are

1 1
Vgn = u* (AB + Em%(ﬁ% + 1/13454) . (4.76)

Vg) = [HBA<HB) +Z+,BA(Z+,B) +Z—,BA(Z—,B>

—2n5A(np) + (3 —-2€)ZpA(Zp)]/(4—2¢).  (4.77)
where Hg, Zg, Z. p, and 7y are obtained from Eqgs. (4.67)—
(4.70) by substituting bare parameters everywhere, and € =
(4 —d)/2 in d spacetime dimensions, and u is the regu-
larization scale (see Appendix A). The two-loop contribu-
tions to the effective potential in the bare scheme can also
be obtained from Egs. (4.23)—(4.45), yielding

A
(fss(H,H) + aifs5(Z,.Z,) + a’fss(Z_, Z_) +2a,a_fs5(Z,, Z )] + 3 la fss(H,Z,) + a fs5(H,Z_)],

(4.78)

(4.79)
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2
2), e
vigh = ) [fvs(Z.H) + b.fy5(Z, . H) + b_fys(Z_. H) + a.fys(Z.Z,) + atys(Z.Z_) + a, b Kys5(Z,. Z,)
+ab fy5(Z.Z) +a_btys(Z, 2 ) + arb fyg(Z_.2.)]. (4.80)
2
e
Vi = £ la fssv(H.Z,.Z) + a fssy(H.Z_,Z) + a, b fg59(H, 21, Z,) +a b fs9(H.Z_.Z)
tab fsy(H.Z,.Z_)+a b fsy(H.Z_.Z,)), (4.81)
2),
Vivs = €2 vys(Z.Z H) 4+ 2b Roys(Z1 Z.H) + 2b_yys(Z-. Z.H) + DRy 5(Z0. 2, H)
+ b2 595(Z_,Z_H)+2b.b_ty;4(Z,,Z_,H)), (4.82)
2),
Vis = —2Aeglasc fsso(H. 2o Z.) + a_c_fs56(H.Z_. Z_)
taicfso(H.Z Z ) +acfs56(H.Z_,Z,)], (4.83)
2).
Vise = 222 (Al oos(Zo Zo H) + Aloos(Zo. 2o H) + 2e,c_fos(Z 2 H)), (4.84)
1
2),
Vits =5l soa(H. 2. Z,) + soo(H. 2. 2.) + 2 e fso(H. Z,.2.)] (4.85)
Vi = —26%ple fosy(Zy H.Z) + c_fgsy(Zo H.Z) + c.b fg59(Zy . H.Z.) + c_b_fg5y(Z_ . H. Z_)
+oeyb tosy(Zy H.Z )+ c b fes9(Z.H,Z )], (4.86)
|
V<2)~B _ 1~2 4h2F H 4.87 1 Cfl
ms =55 € ¢ Lys(n.n. H). (4.87) fp= it (4.92)
where the model-independent integral functions were given B
above in Sec. III B. There is no need to distinguish between EB _ E + 1 ‘11 +oee, (4.93)
bare and renormalized parameters in the two-loop part, 167 €

because the difference is of higher order in the loop
expansion.

Now we can derive the MS version of Vg, using an
alternative but equivalent method to that described above in
the general case. To do so, consider the relationships
between bare and MS parameters:

2 2 2
1 1 ch,
s o i G ],
L T +(16ﬂ'2)2|:€2 € ]+ '
(4.88)
1 1 ct,
el €ia Ga, G ,
B=H ( +167r2 e (162%)? | & et
(4.89)
1 1 cy, b
An = —2¢e A L ﬁ A e,
B=H < e e +(16ﬂ2)2[€2 et
(4.90)
1 cf
eB—W(e—l—@ (151 >, (491)

¢ ¢ ¢
1 ¢ 1 c c
2 D¢ g2 1,1 2,2 2,1
P =1 <1+167r2 € +(16ﬂ2)2|:€2 + e] )

(4.94)
with counterterm coefficients:
' = (44— 3e?)m?, (4.95)
cyy = (=1022 + 162€* +43e*/6)m?,  (4.96)
oy = (282 = 244¢? + 10e*)m?, (4.97)
¢t | = 1022 — 64e* + 3e*, (4.98)
b =—602° +28/%% + 794e* /3 = 52¢°/3,  (4.99)
b, = 1004° — 90/%e? + 472e* — 8¢, (4.100)
ety = (m?)?/2, (4.101)
c = 2e*(m?)?, (4.102)
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e, = (22-3¢2/2)(m?)?, (4.103)

¢, =¢é'/e, (4.104)

which can be obtained from existing results in the literature
[84-86], and

¢ | = —e¥/3, (4.105)

& = PEE-E-10/3), (4.106)

! =23 -&+28), (4.107)

) =222+ e*(=5/3 + E1 + &), (4.108)
=5 -3E+E2+E3-E+E).  (4.109)

We obtained Egs. (4.105)-(4.109) by requiring no 1/e or
1/€? poles survive in Vg when written in terms of the MS
parameters. This involves reexpanding Vs from Eq. (4.75)
both in 1/167% and in € to get the MS version of the
expansion:

1 1
V=V vy
eff + + (167[2)2

o | 74O NN

(4.110)

The tree-level and one-loop contributions in the MS
expansion are

1 1

v :A+§m2¢2+1/1¢4, (4.111)

VO = f(H) +3fv(Z) + f(Zs) + [(Z-) = 2f (n),
(4.112)

where f(x) and fy(x) were given in Egs. (3.69) and (3.70)

above. The results obtained for the two-loop MS contri-

bution V@ are just given by Eqs. (4.78)—(4.87) with each

function f substituted by the corresponding function f from

Sec. III C. Using Egs. (3.108)—(3.127) and then combining
the coefficients of basis functions, one obtains

VO =N"CIT, + Y CMAA+ ) CA+C
7 K 7
(4.113)

5
where

>The basis integrals 1(0,0,H), 1(0.H,Z), 1(0,H,Z.,), and
I(0,H,Z_) appear in individual diagram contributions, but
cancel completely in the total.

T ={I(H.HH).I(H.Z.2).1(HZZ).1(H.Z.Z.),
I(H.Z_.Z_),1(H.Z_.Z,).1(H.Z,.Z.).

I(H,n,n)}, (4.114)

A={A(H),A(Z),A(Z,),A(Z_)},  (4.115)

and the coefficients CJZ, C}“ﬁ, C;.‘l, and C are rational

functions of the MS parameters of the theory. Although
there is significant simplification in the coefficients after
combining diagrams, some of them are still somewhat
complicated, so the explicit result for V2 is relegated to the
Supplemental Material (see file “V2AH”), in a form
suitable for evaluation by computers.

The beta functions of the parameters of the theory in the
general form of Eq. (1.10), at the orders needed to check
renormalization group invariance, are

Y = (m2)2, (4.116)
BY = 8e2(m?)2, (4.117)
pY = (82— 6e?)m?, (4.118)
B = (86¢*/3 + 644e? — 402%)m?, (4.119)
BV = 66t — 12624 4202, (4.120)
PP = —208¢0/3 + 316¢41/3 + 1126212 — 2403,
(4.121)
pY = e3/3, (4.122)
pY) = (3-&+28)e%, (4.123)
B = [e*(=10/3 + 28 +28) — 42, (4.124)
pY = —2e2¢/3, (4.125)
ALY =26 (E-E-10/3)E (4.126)

These can be obtained from the counterterms pro-
vided above.
The background field R: gauge-fixing result is obtained

by setting & = &, which simplifies V) greatly, resulting in
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Ve, = {[Hz -
—[(H-G)*/4I(H.Z,,Z,) +
[nH —n*/2 — H? /4]1(H,n, 1) —
3(H - G)/8]A(Z,)?

[(Z+n—H)/2]A(Z)A(n) +
[

walee s

where now Z_ =5y =¢Z and Z, =5+ G. This gauge
has the nice property that all squared mass arguments
are real and positive as long as & is positive with
¢Z > —G, in which case there are no infrared problems
for small G. However, as noted above, this gauge-fixing
condition is not respected by renormalization, as can be
seen from Egs. (4.125) and (4.126), which clearly do
not preserve &= & if imposed as an initial condition.
Moreover, if the MS gauge fixing parameters obey & = &
at some particular choice of renormalization scale, then
the corresponding bare parameters will not obey this
condition.

C. The Standard Model

In this section we obtain the Standard Model results
as a special case of the results above. The parameters
of the theory consist of the constant background
Higgs scalar field ¢, a field-independent Vacuum energy
A, a Higgs scalar squared mass parameter m?, a nggs
self-interaction coupling A, gauge couplings g3, g, ¢, the
top-quark Yukawa coupling y,, and gauge-fixing param-
eters &, &z, &, Ew, EW. The two-loop effective potential
does depend on the QED gauge-fixing parameter £,, but
not on the corresponding QCD SU(3), gauge-fixing
parameter £ocp. There is no parameter z’},, because the
photon is massless. The Yukawa couplings of all
fermions other than the top quark are negligible, and
neglected.

The field content with n; generations consists of:

real vectors: A, Z, Wg, W,, (4.128)
real scalars: H, G, G, Gg, (4.129)

2-component fermions :
t.1,b,b, 1.7, v, + (ng—1)x (u,ii,d.d,e.e,v,), (4.130)

and the color octet gluons, which do not pose any problems
with respect to gauge fixing. The charged W bosons and
charged Goldstone scalars have been split into real and
imaginary parts Wx, W; and Gy, G; respectively. We now

(H—-Z—G)/2JA(H)A(n) + Z[G + H + 2Z/3]A(Z) + 3Z*A(H)

H?/4-3Z21(H,Z,Z)+ [(H+Z-G)y—n*/2-A(G,H,Z2)/2I(H,Z,Z.)

(H+n—2)*/2=2yH|I(H,Z.n) + [(H — Z.)*/2)[(H.n. Z.)
3(H — G)*/4)I(H.H. H) +

[H/4—2Z/2]A(Z)* + [H/4 = n/2]A(n)?

+[3(H = G)/8]A(H)* + [(H +2Z —n = G)/2JA(2)A(Z,) + [(Z;. — H)/2]A(mA(Z.)
(3Z—-H+ G)/2]A(H)A(Z) + [(H +2Z - G)/4|A(H)A(Z,)
+Z°A(Z,)-Z°(2Z+ H)}/¢*,  (4.127)

list all of the (non-QCD) interactions of the Standard
Model.®
The scalar cubic interactions are

AHHH — 6, (4.131)
AHGoGo = JHGrGr = JHGIGr = 2)0p, (4.132)
and the scalar quartic couplings are
iHHHH :/IGoGoGoGo :lGRGRGRGR :lG,G,G,G, =6 (4133)
j’HHGOGO — lHHGRGR — /IHHG,G, — /'iGOGOGRGR
= 160000101 = J0kGrGIGI = 2, (4.134)

with both of these lists supplemented by all cases dictated
by the symmetry under interchange of any two scalars. The
Yukawa couplings (neglecting all fermion mass effects
other than the top quark) are given by

YHIT — _yGrbT — jyGol — jyGibT — y /\/2,

(4.135)
with symmetry under interchange of the fermion (last two)
indices. The electroweak gauge boson interactions with the
fermions are given by couplings of the type ¢*':

ng(f =Isgeyw =Yg sy, (4.136)
Zf = Qsd'sw, (4.137)

A ]
gff = —g7 = Qye, (4.138)

where

®The conventions for the couplings used in the present paper
differ in certain minus signs from those listed in Sec. VA
[Egs. (5.2), (5.15)—(5.18), (5.20), (5.22), (5.23), (5.26), (5.28),
and (5.29)] of Ref. [7]. The two conventions are related by field
redefinitions, specifically, flipping the signs of Wy, Z, A, and G,.
The convention chosen here avoids minus signs in Eqs. (4.154)
and (4.155) below. The resulting effective potential is of course
independent of this convention choice.
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e=gq/\ &+ 9% (4.139)
sw=9/\ &+ 9% (4.140)
cw=9/\/ &+ 9% (4.141)

and O, =2/3and Q;, = —-1/3 and Q, =0 and Q, = —1,
and I, =1,=1/2 and I; =1, =-1/2, and Y; = Q; —
1 f for each f, and

gy =gl = g™ = gl = g/2, (4.142)

gy = —gu = ge" = =gl = ig/2.  (4.143)

The nonzero vector-scalar-scalar interaction couplings of
the type g‘j.‘k are

g =e. (4.144)

G =\ +9%/2. (4.145)

9, = (7 =97/ (2\/ g+ 9’2), (4.146)
96, = 908 = 9o, = 9oon = 9/2. (4147

with antisymmetry under interchange of the scalar (low-
ered) indices. The vector-vector-scalar-scalar interactions
are determined in terms of these [see Eq. (2.28) and Fig. 4],
and so there is no need to list them separately. The nonzero
vector-vector-scalar couplings of the type GJ*.‘b follow from

Egs. (2.31)—(2.33), and are given by

Gelr = —GE' = geg)2, (4.148)
Géfv’ _ _GéZVR =ded)/2, (4.149)
GleWe — GV — 212 (4.150)

G# = (& + ¢ b2, (4.151)

and others determined by symmetry under interchanging
the vector (raised) indices. Finally there are the totally
antisymmetric vector-vector-vector couplings defined by

GV = ¢,

gZWRW, — g2/ /92 _|_g/2‘

The matrix F?; of gauge boson masses, using the
ordered bases (Wg,W;,Z,A) and (G;,Gg,Gy, H), is

(4.152)

(4.153)

diagonal, and positive in the convention chosen here when
¢ is positive, with nonzero entries:

FWRG, :FW[GR :MW :g¢/2, (4154)
FZG(] = MZ = 92 + gl2¢/2 (4155)
The gauge-fixing part of the Lagrangian is
-t gay- Loz _Em,G,)
28,0 2y T T
1 -
T2, (0, Wk — EwMy G))?
114
1 ~
~ e, (0,Wy - EwMyGR)?. (4.156)
w

As an aside, we note that our choice of basis for the
gauge-fixing terms differs from the choice made in
Ref. [43], in which the neutral bosons have a gauge fixing
Lagrangian that is instead equivalent to the form:

1 - 1 -
T2E (0,B* — E;MpGy)* — 2, (0,W§ — &My Gy)?

(4.157)

where My = ¢'¢p/2 and B* = cyA¥ — syZF and Wy =
cwZt + syA* are the gauge-eigenstate neutral vector fields
for U(1), and SU(2), respectively. Note that there is no
redefinition of gauge-fixing parameters that can make this
choice equivalent to ours in general, because the cross-terms
are different; in particular, Eq. (4.157) implies a mixing
between the photon and the Z boson (unless &; = &,) and
between the photon and the neutral Goldstone boson (unless
&&= —5E). We prefer our choice of a mass-eigenstate
basis for the gauge fixing terms because it avoids this tree-
level gauge-dependent mixing of the photon. This inequi-
valence illustrates the general remark made just before
Eq. (2.13) above, concerning the fact that the form of the
gauge-fixing terms depends on the choice of basis. (The
equivalence could be restored if the gauge fixing parameter
£, were generalized to a matrix &g,.)

The squared mass poles associated with the electroweak
bosons and their ghosts are at 0 and

H = m?* + 3¢*, (4.158)
Z= (4 +g%¢*/4, (4.159)

~ 1 ~
Zy=62Z+5 {G + \/G[G +4(&,-&,)7]|,  (4.160)
nz = &2, (4.161)
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= /2. 4.166
W = g¢?/4, (4.162) =it/ (4.166)
Because there is no mixing among the Goldstone bosons

- 1 = or between them and H, the results of Sec. IVA apply.

Wy =SwW+ ) G+ \/G[G +4(w — 5W)W] . (4.163) Using those results, and combining coefficients of basis
functions, the tree-level and one-loop results for the

Standard Model in the MS scheme are

nw = EwW, (4.164)
VO = A+ m2p?)2 + Ap* /4, (4.167)
where VIO = f(H) = 12(T) + 6y (W) + 2f(W.)
G = m? + 147, (4.165) +2f(W) =41 (nw) +3fv(2) + f(Z)
+ f(Z2) = 2f(nz), (4.168)

which coincides the Landau gauge version of the common
Goldstone squared mass. The only other nonzero squared  and, using Eqgs. (3.108)—(3.172), the two-loop part V(?) can

mass is that of the top quark, be written in the same form as Eq. (4.113), but now with
|
A={A(H), A1), A(W),A(W..), A(W_). A(nw). A(Z), A(Z.). A(Z-). A(nz) } (4.169)
and’
Z=A{I(H1T17T),1TT,2),(TT,2.),(T,T,Z,),1(0,T,W),1(0,T,W_),

1
100, T7,W,),1(0,0,Ww),1(0,0,Z),1(0, W,W_), 1(0,W, W), I[(0, W_, W),
100,y W), 100, . W_). 1(0, . W), I(H, H, H), I(H, W, W),

IHWW_), I HW W), IHW_W_),IHW_W,),I(HW,W,),
I(H,nw,nw),I(H,Z2,Z2),1(H,Z,Z_),1(H,Z,Z.),I(H,Z_,Z_),I1(H,Z_,Z..),

I(H,Z_ ,Z.),I(H,nz,nz), IW,W,Z), IW,W_,Z), IW,W_,Z_),I(W,W_,Z.),

IWW ,Z) AW W L, Z)IWW L, Z ) IW_W_,Z)I(W_,W,,Z),

I(W_ W Z ) IW_ W, Z) IW W, Z) I (nw.nz. W), I (nw. nw. Z),

I(nw.nw. Z2) L (nw.nw. Z,). L(nw.nz. W_), 1(nw.nz. W)} (4.170)
The coefficients in this result for V(2 are rather complicated, so they are again relegated to the Supplemental Material [83]
(see file “V2SM”), in a form suitable for evaluation by computers. [For convenience, we also include separate files
V2SMFermi, V2SMbackgroundRxi, and V2SMLandau for the specializations to Fermi gauges (with EZ = EW = 0) and to
background field R: gauges (with &, =&, and &y = &) and Landau gauge (with &, =&, = &, = &y = &y = 0),
respectively.]

The check of renormalization group invariance of the effective potential can now be carried out as in Eq. (1.12), with the
beta functions:

A = 2(m?)2, (4.171)
Y = (12 + 4% - 1237)(m?)?. (4.172)
AU = m2(6y2 + 122 - 942/2 — 3¢°/2), (4.173)

"The following basis integrals appear in individual diagram contributions, but cancel completely from the total: / (0,0,H),1(0,0,7),
1(0,0,ny), 1(0,0,W_), 1(0,0,W,), I1(0,H,W), I(0,H,W_), 1(0,H,W,), I(0,H,Z), 1(0,H,Z_), I(0,H,Z,), I(0,W,Z),
100,W.Z22), 1(0,W.Z,), I(0.W_.Z), 1(0,W_.Z_), I(0,W_.Z.), I(0.W_.Z), I(0.W,.Z_), I1(0.W,.Z.), 1(0.ny.nz).
IW_ W_,Z ), I(W_W_,Z ), W, W..Z_), (W, W..Z.,).
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) = m2(40g3y? — 27y} /2 + 45537 /4 + 85y29” /12 — T2y22 + (Sng — 385/16)g*

B = —3202y% + 8002y + 30y0 — 842 /3 — 3y4A — 9y2g* /4 + 213222 /2 — 19y2 ¢4 /4 + 452 242

+36¢%22> = 31213,

+ 150262 /8 4 (25n5/9 + 157/48)g* 4+ 72g*A + 24421 — 6042), (4.174)

BV = —6y% + 12y24 + 9g*/8 + 367¢% /4 + 3g* /8 — 922 — 39”4 + 242, (4.175)
+85y2g”22/6 — 144y22% + (497/16 — 4ng)g® — (97/48 + 4ng/3)g > — (239/48 + 20n5/9) 5> g*
—(59/48 +20n5/9)g"® + (10ng — 313/8)g*A + 39¢¢>A/4 + (229/24 + 50n;/9)g"* A + 1084%2%

(4.176)

) = (20n6/9 +1/6)g", (4.177)

B = (dng/3 - 43/6)g, (4.178)

Y = [-3y7 + 92/4 + 392 /4 + By — Ew/2)F + (/2= £,/9) (& + 7). (4.179)

B = {7227y} /4 = 203 — 4507 /8 — 8547 /24] = 64° + (511/32 = 5ng/2)g" — 94°¢>/16 — (25n/18 + 31/96)g'*
=3 Ewd + E(P + 7)) 2 + Ewl(Ew/4 =2 — Ew /8 — E2/4)g* + E,P g% /4] + £, (Ew — 3) eGP /4
+ &gt el — /4 + Eyerg? /A + E (P + 97?8 + Ew(1Tg* + Pg?) /4

+&,(17¢* + 42 g% + ¢*)/8} 9.

BY = £y P[25/3 = 8nG /3 — Ew — CEs — 538,
B = Ey[63F + (41/6 = 8ng/3)g? =392 /2 + &€ /2 + (Ew/2 = Ew)P + E20%s% /2 = o + 9)/2),

B = &P (25/3 = 8ng/3 = 28w) — 953 (1/3 + 40ng/9)),

(4.180)
(4.181)

(4.182)

(4.183)

ﬂé? =E,[6y7 + (41/6 = 8ng/3)g*c}, — (11/6 +40ng/9)g>s3, — 6> + Ewe® —Ewg® + (£, — &) (g7 + g7)/2] (4.184)

B = &,e2(8 — 64nG /9 — 2.

Equations (4.171) and (4.172) were obtained in Ref. [7],
and Eqs. (4.173)—(4.178) and the parts of Eqs. (4.179) and
(4.180) that do not depend on the gauge-fixing parameters
Ews &7, Ew, &, can be found in the literature, e.g., in
Refs. [84-86]. The results dependent on the gauge-fixing
parameters in Egs. (4.179)-(4.184) were obtained here by
requiring that V. satisfies renormalization group invari-
ance. Again we note that any equality among any subset of
the parameters &y, &, EW, EZ, and .f,, will not be preserved
under renormalization group evolution, except in the
special case that the corresponding parameters vanish.
Also, if the MS gauge fixing parameters obey &y = &y
and/or &, = &, at some particular choice of renormalization
scale, then the corresponding bare parameters will not obey
these conditions, and vice versa.

(4.185)

V. NUMERICAL RESULTS FOR THE
STANDARD MODEL

Consider the Standard Model with the following
input parameters as a benchmark (the same as in
Refs. [7,19,21-23], but with various other approximations
for the effective potential):

Q =M, =17334 GeV, (5.1)
v:(Q) = 0.93690, (5.2)
95(Q) = 1.1666, (5.3)
9(Q) = 0.647550, (5.4)
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J(Q) = 0358521, (5.5)
A(Q) = 0.12597, (5.6)
m2(Q) = —(92.890 GeV)> (5.7)
A(Q) = 0. (5.8)

Then, in the Landau gauge, the minimum of the (real part of
the) two-loop effective potential is at

o = $-" = 246.950 GeV,

min

(5.9)

VE (1) = —(105.560 GeV)*. (5.10)
With this choice of input parameters, the Landau
gauge Goldstone boson MS squared mass is G =
—(30.763 GeV)?, so that Vg is actually complex at its
minimum. For simplicity we do not apply the Goldstone
boson resummation procedure [10,11] to eliminate the
spurious imaginary part here. Instead, we simply minimize
the real part of Vg, and it should be understood below that
the spurious imaginary part is always dropped. As shown in
Ref. [10], the practical numerical difference between the
VEV obtained by minimizing the real part of the non-
resummed effective potential and the VEV obtained by
minimizing the Goldstone boson-resummed effective poten-
tial, which is always real, is very small.

In Fig. 8, we show the results for v = ¢;, and Vg (v) as
a function of £ for the cases:

background field R; gauge:

§E§W:EW:§Z:EZ:§}H (5.11)
and &y =&, =0.

(5.12)

Fermi gauges: é =&y =&, =&,

In the background field R; gauge, for small & one finds that
M?% . and M7, are negative and so Vg (v) has a spurious
imaginary part, but M% . becomes positive for & > 0.11112,
and M3, , is positive for & > 0.14388, so that there is no
spurious imaginary part at the minimum of the two-loop
effective potential for £ larger than this. (Very small cusps are
visible on the background field R: gauge curve for v,
corresponding to the points where M%  and M7, . go
through 0.) In the Fermi gauge, M% | and M7, ,_ are positive
but M7 _ and M7, _ are negative for all positive &, so that the
effective potential always has a spurious imaginary part,
which again is ignored in the minimization.

Although v is a nontrivial function of &, the minimum
vacuum energy V. (v) is a physical observable (e.g., by
weakly coupling to gravity) and in principle should be

b LR | LR |
245
S
o)
©)
— 240
£
£
1l
>
235 Background Ré gauge
Fermi gauge
230 PR | PR | Lol M T
0.01 0.1 1 10 100
T il T il T ]
5 Background Fté gauge, 2-loop / ]
I Background Rg gauge, 1-loop 1 ]
4r Fermi gauge, 2-loop ]

------ Fermi gauge, 1-loop

_
T T

Viin@©) 7V, ,,(0) - 1 (per cent)

0.01 0.1 1 10 100
g
FIG. 8. The Higgs VEV (top panel), and the resulting fractional

change in the vacuum energy compared to the Landau gauge £ = 0
result, in per cent (bottom panel), at the minimum of the two-loop
Standard Model effective potential, as a function of the gauge-
fixing parameter & The solid blue (thicker) curves show the result
for the background field R: gauges (with &=¢&y = Ew =
E,=E,= &,), and the solid red (thinner) curves are the results
for the Fermi gauges (with { = &y = &, =&, and ;‘*W = EZ =0.)
The other input parameters are as given in Egs. (5.1)—(5.8) of the
text. In the top panel, very small cusps are barely visible in the
background field R; gauge v curve at the points £ = 0.11112 and
0.14388 below which M7 | and M7, , respectively, are negative.
In the bottom panel, we also show for comparison the results from
the one-loop approximations, as dashed lines. The dependence of
the VEVon £is expected, but in principle the minimum value of the
vacuum energy is an observable and should be independent of £.
The significant deviation from this idealized behavior shown in the
bottom panel is due to a breakdown in perturbation theory
truncated at two-loop order for large &.

completely independent of £ when computed to all orders
in perturbation theory. In the second panel of Fig. 8, it can
be seen that the latter property indeed holds in the back-
ground field R; gauge to better than 1 part per mille for
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FIG. 9. The fractional change in the vacuum energy in per cent,
at the minimum of the two-loop Standard Model effective
potential, as a function of the background R, gauge-fixing
parameter E=&yy =&y =&, =&, = ¢,. The comparison value
Vmin (0, M,) is the Landau gauge result with the input parameters
of Egs. (5.1)~(5.8) at Q =M, To find V(& Q), these
parameters are then run using their two-loop renormalization
group equations to the scale Q, the gauge fixing is then imposed
with parameter £, and the two-loop effective potential is mini-
mized. From top to bottom on the left, the curves are
Q0 =250 GeV, 225 GeV, 200 GeV, M,=173.34 GeV,
150 GeV, 125 GeV, and 100 GeV. On each curve, the black
dot is the point to the right of which the effective potential is real
at its minimum; to the left of the dot, it is actually the real part of
the effective potential that is minimized.

& <16 and to better than 1% for & < 37, but the situation
rapidly deteriorates for larger £ In Fermi gauge, the
deviation is larger, but V(v) differs from its Landau
gauge value by less than 1 part per mille for all £ < 1.88 and
by less than 1% for ¢ < 14; the deviation again grows
rapidly for larger & In the second panel of Fig. 8 the results
from the one-loop effective potential approximations are
also shown, as dashed lines; the deviations are significantly
worse than at two-loop order.

In Fig. 9, we show results for the background field R;
gauge for seven different choices of the renormalization
scale Q. In each case we show the deviation of Vg i (€, Q)
compared to the benchmark value Vg i, (0, M) obtained in
Landau gauge and with Q set equal to M, = 173.34 GeV.
To make this graph, the parameters in Egs. (5.1)—(5.8) are
first run® according to their two-loop renormalization group
equations to the scale O, and then the minimum value of the
two-loop effective potential Vg in (&, Q) is obtained. Since

8Background field R; gauge is not respected by renormaliza-
tion group running, so we do not run &. Instead, the value of £ is
the one imposed at Q. Also, note that the running of A is crucial
for getting the correct Vg min (€, Q).

Vetr.min (€, Q) is a physical observable, it should in principle
be independent of both £ and Q if calculated to all orders. We
see that for £ less than of order roughly 30, in the two-loop
approximation the dependence on ¢ is much smaller than the
dependence on the renormalization scale, but for larger £ this
is no longer true as perturbation theory breaks down.

The increasingly strong deviation of Vg nin(€)/
Vet min(0) from 1 is evidently due to the failure of the
two-loop truncation of the perturbative expansion for large
£. The fact that the £ — oo limit of the effective potential is
problematic when calculated at finite loop order in Fermi
gauges has been noted already in [45,50,53]. In Ref. [45], it
was shown how a resummation of a class of diagrams to all
orders in perturbation theory restores the gauge-fixing
independence within Fermi gauges. The Fermi gauge fixing
also has IR divergence problems [35,37,45] in the limit that
the minimum of the tree-level potential coincides with the
minimum of the full effective potential. Reference [50]
showed that the same resummation that fixes the IR
problems of Fermi gauges also cures the gauge dependence
issue. We expect that a suitable resummation of higher-
order diagrams will also eliminate the problematic behavior
for large £ in more general gauge-fixing schemes, including
the background field R; gauge-fixing scheme illustrated
here. However, this is beyond the scope of the present
paper. In any case, it is worth noting that for a range of
reasonable values of £ (say, 0.25 < & < 10) the background
field R gauge does not have infrared subtleties or spurious
imaginary parts (which can occur at smaller £, depending
on Q) and the minimum value does not have a significant
dependence on the gauge-fixing parameter (which occurs at
larger ¢).

VI. OUTLOOK

In this paper, we have obtained the two-loop effective
potential for a general renormalizable theory, using a
generalized gauge fixing scheme that includes the
Landau gauge, the Fermi gauges, and the background-field
R: gauges as special cases. The essential results are given as
37 loop integral functions in Egs. (3.108)—(3.144), with
special cases arising for vanishing vector boson masses
given in Egs. (3.145)—(3.172). For convenience, these
results are also provided in the Supplemental Material
[83] (see file “functions”).

In the most general case, these 37 functions contribute to
the two-loop effective potential as in Egs. (3.4)—(3.26). The
practical implementation of this result is sometimes com-
plicated by the fact that the squared masses appearing as
arguments of the loop integral functions can be complex.
As far as we know, a complete treatment of the two-loop
vacuum integral basis functions I(x,y,z) for complex
arguments does not yet exist, and would be a worthwhile
subject of future investigations. In favorable cases such as
the Standard Model or the Abelian Higgs model, the
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absence of Goldstone mixing with other scalars allows a
significant simplification, as given in Egs. (4.23)—-(4.45),
because the squared masses are then always solutions of
quadratic equations. However even in these simplified
cases the squared masses can still be complex, depending
on the choice of gauge-fixing parameters. In the numerical
examples of the present paper, we simply avoided choices
that could lead to complex squared masses.

For softly broken supersymmetric theories the results
above will need to be extended. This is because the MS
scheme based on dimensional regularization introduces an
explicit violation of supersymmetry. For applications to the
Minimal Supersymmetric Standard Model or its extensions,
it will be necessary to instead use the DR’ scheme based on
dimensional reduction, which respects supersymmetry.
This will require a slightly different calculation than the
one here, as has already been done [5] in the Landau gauge
special case.

In our numerical study of the Standard Model case, we
found that fixed-order perturbation theory breaks down for
sufficiently large & (although moderately large choices & <
10 seem to be fine, and introduce a smaller variation than
does the choice of renormalization scale, at least for the
minimum vacuum energy as a test observable). This is not
unexpected, and given the results of e.g., Refs. [45,50] it
seems likely that some appropriate resummation to all
orders in perturbation theory of selected higher-order
corrections will cure that problem in the most general
cases. This could also be a worthwhile subject of
future work.

However, an alternate point of view, to which we are
sympathetic, is that the complications associated with
generalized gauge-fixing schemes provide a strong moti-
vation to simply stick to Landau gauge. This avoids all
possibilities of complex squared masses, kinetic mixing
between Goldstone scalars and massive vector degrees of
freedom, as well as the nontrivial running of the gauge-
fixing parameters. By sticking only to Landau gauge, one
does lose the checks that come from requiring independ-
ence of physical observables with respect to varying gauge-
fixing parameters, but there are other powerful checks
within Landau gauge coming from the cancellations of
unphysical Goldstone contributions to physical quantities,
as shown for example in Refs. [20-23]. From that point of
view, the present paper might serve as a pointed warning
about the difficulties to be faced for those who would dare
to venture outside of Landau gauge.
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APPENDIX A: BASIS INTEGRALS

In this Appendix, we review the conventions and
notations for the one-loop and two-loop basis integrals,
which follow Refs. [5,7,8].

Define the Euclidean integral notation in

d=4-2¢ (A1)

dimensions:

/,, (1672) (;:)d/ddp.

Here p is the regularization scale, related to the MS
renormalization scale Q by

(A2)

drp® = e’ Q2. (A3)

Then the basis integrals appearing in the two-loop effective
potential in terms of bare parameters are defined as

A(x) = /p e 1+ o= x(e"Q?/x)T (=1 +¢€), (A4)
1
Hoe2) :/p/q[p2+X][qz+yH(p—q)2+Z]' (53)
Expanding in small €, we write
A@»:-§+Auymm4m+~w (A6)
with
A(x) = xIn(x) — x, (A7)
where
In(x) = In(x/Q?), (A8)

and A.(x) is known, but we won’t ever need its explicit
form and it won’t appear in the final expressions for the
renormalized effective potential. Sometimes the following
identities can be useful:

diiA(x) —A()/x+ 1, (A9)
d
o Ae(x) = [Ac(x) = Ax)]/x (A10)

We also expand
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I(x,y,2) = —(x +y+2)/26® + [A(x) + A(y) + A(z) = (x +y + 2)/2]/e
+1(x,9,2) + Ac(x) + A (y) + Ac(z) + O(e), (A11)

where I(x,y,z) is known in terms of dilogarithms. The basis integrals needed for the two-loop effective potential
contribution written in terms of MS parameters are just the non-boldfaced integrals A(x) and I(x,y, z). In any two-loop
quantity written in terms of MS parameters, all of the A, functions always cancel against one-loop contributions; this is a
useful check.

Below, we define for convenience

D = [p* +xlg* +]l(p - 9)* + 2. (A12)
Then a useful integral table is
/p/qé— I(x,y,2), (A13)
/ /%2: A(y)A(z) = xI(x,y,2), (A14)
[ [ F5= 3= 31.2) ~ ACIAD) + ACAG) + AWAG)L (A15)
[/ P eX(xy.2) = (45 + DAGIAG), (Al6)
2.2
[ [P = otty.2) = sAWAG) - yABIAG) (a17)
2(p.
[ [P2D Lt 3= 9l 2) +5ADAD) - AWAG - (14 2)AWARL  (A18)
[ [P = Lty = P12 + (5 y = DACIAD) + (2= 35 = DAGIAL) + (2 = v 3AGIAL),
(A19)
/ / (pDz)S =310, y,2) + [ +y*+ 22 +xy+xz+ (2+4/d)yz7]A()A(z), (A20)
/ / (p2l))2q2 = —x*yI(x.y.2) + XP*A(x)A(z) + y(x +y + 2)A(y)A(z), (A21)
2020, .
[ [ e - v )1y - PAWAG) + PAGWAG)
+ [x% 4+ 2xy + 2y + (2 + 4/d)yz] A(y)A(2)], (A22)

[ [P e =310 2) - AWAG) 23+ 3)AWAR) +y(x + DAWAGL  (A23)

/ / P(p-a)° _ % [—x(x +y = 2)*T(x,y,2) + (&% + 3xy + 4y* — xz + 4yz/d)A(y)A(2)

+x(z=x—y)A(x)A(y) + x(Bx +y —2)A(x)A(z2)], (A24)
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/ / (pbq)S - é [(z=x=yPT(x,y.2) + [-x* = y* = 22 = (2 + 4/d)xy + 2xz + 2yz]A(x)A(y)

+ 7% + 52 + 22 +dxy + (4/d — 4)xz - 2yz]A(x)A(2)
+ [Ty2 + x2 4+ 22 +dxy + (4/d — 4)yz — 2xz]A(y)A ()], (A25)

and others obtained by p <> ¢ and x <> y. Other integrals can be obtained from the above by e.g.,

1 1 [1 1 ] (A26)
pr(p*+x) x[p* pr+x]
We also make use of the notation

Mx,y,z) = x> +y* + 22 = 2xy — 2xz — 2yz. (A27)

APPENDIX B: DERIVATIVES WITH RESPECT TO THE RENORMALIZATION SCALE

In this Appendix, we collect the derivatives of the loop integral functions with respect to the MS renormalization scale Q.

055 Fs5(.3) = =2yA(x) = 2A) (B1)

Qs Fsss(w.3:2) = 2x-+ 3+ 2= AGx) = A(Y) ~ A2 (B2)

0.5 Fvs:y) = =41y = 63A(x) = 6xA(). (83)

Q.5 75(5.) = ~2A(X) = 23A(), (B4)

QaaQ Fosy (X, 9.2) = =222 — 12xy — 2% — 6xz — 6yz + 1022/3 + 6xA(x) + 6yA(y) + (6x + 6y — 22)A(z),  (BS)
Q%fssv(x, y,2) = 2[~(x = y)* + (y = x + 2)A(x) + (x =y + 2)AQ) + (x +¥)A(2)], (B6)
Q.55 vus(.3:2) = 93/2 +93/2 = 2 = 9A(x)/2 = 9A()/2 — 6A(). (87)

Q5 Frust.3:2) = o+ 3y + 62 = 34(3) = 340))/2. (B)

Q55 775(5.3.2) = 35/2+ 33/2= 2= A()/2 = AL)/2 = 2A(2), (B9)

Q50 Fssoy.z) = 2y =x)(x+y +2) +2(x =y = DAG) + 2(x =y + DA0). (B10)
Q%fccs(x, y.z) = (z—x—=y)(x+y+2z)+xA(x) + yA(y) + (2x + 2y — 2)A(2), (B11)

Q%fscc(x,y, 2) =2[(x = y)(x = 2)(x +y + 2) — yzA(y) — yzA(2) + (2xy + 2xz2 —x* —yz —y* = 22)A(x)],  (BI2)
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0
Q@fcsv(x,y, z) = x> + 6xy + y* + 3xz + 3yz — 5722 /3 — 3xA(x) — 3yA(y) + (z = 3x = 3y)A(2),

Q%fm@,y,z) — (x=y) (264 2) +2(y —x = DAQ) = (x + YA,

Q%fccc(%)” ==y x+ty—2)(x+y+2z) +x(y —x+22)A(x) —y(x —y +22)A(y) + (x — y)zA(z),

d
Q@fccv(x,y, 7) = —x* =y =523 /3 + x%y + X’z + xy? + y*z + 3x7° + 3y7?

+ 6xyz + x(x — 3y = 32)A(x) + y(y — 3x = 32)A(y) + 2(z — 3x — 3y)A(2),

Q%fmc(x, y,2) = [y? + 6yz + 22 + 3xy + 3xz — 5x%/3 = 3yA(y) — 3zA(z) + (x — 3y — 37)A(x)]/2,

B
Q@vaG(x,y, 2) = [y? = 2yz+ 22 —xy —xz2— x> + yA(y) + zA(z) + (x -y — 2)A(x)]/2,

Q%fvvc(x,y, 2) = [(y = x)(22x + 22y + 272) /3 + (8x — 9y — 92)A(x) + (9x — 8y + 92)A(y)]/2,

Q%f‘?m(% y.2) = [=x* + xy + 3y* + xz + 6yz + 22 + (x — 3y — 32)A(x) — 3yA(y) — 3zA(z)]/2.

050 Fmslx:3.2) = 21=x =y = 2+ AL + AD) + AL
Q5 Fmole.3.2) = 1=y + 2)(x+y +2) = ¥AG) + (3 = 2= 2AD) - 24(2),
Q.5 rvlx.y) = =4539/2 = 2TyA(X)/2 - 2T3A() 2.
Q.55 rvlx.3) = =9x3/2 = A()/2 = 93A40)/2,
0 5 7o) = =x3/2 = A2 = 3A0) /2,

d
Q@fvvv(x,y, 7) = (—28x? — 243xy — 28y? — 243xz — 243yz — 287°)/6 + (25x + 18y + 182)A(x)

+ (18x 4 25y + 182)A(y) + (18x + 18y + 252)A(2),

0
Q@f‘?w(x, y.2) = x* 4+ 4xy — 6y? 4+ 4xz + 9yz — 62% + (6y + 62 — x)A(x)

+3(3x -2y +32)A(y)/2 +3(3x + 3y — 22)A(z) /2,
Q%fvw(x,m) = [xy —xz —yz — 622 4+ 3(y + 2)A(x) + 3(x + 2)A(y)]/2.

0
Q@f,mv(x,y, z) = x> + 6xy + y* + 3xz + 3yz — 57°/3 — 3xA(x) = 3yA(y) + (z = 3x — 3y)A(2),
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9
Q@fﬂnv(x,y, 2) = X% =2xy +y* = xz = yz = 2 + x¥A(x) + yA(y) + (2 = x = y)A(2),

Q

00

Q

(B30)

Qs Fres(23:2) = 2z = ¥ =3)(+y +2) +3A4() +YAG) + (2 + 2 = DA, (B31)
Qi frrstyiz) =4{-r=y =2+ AGx) + AD) + A (B32)

O o Frev(x.v.2) = (63 + 6y + 82/3) + (63 + 6y ~42)A(2), (833)

0-L frpplv,2) = —8xy = 2z = 232 + 43A(x) + AyA(y) +2(x + Y)A(2), (B34)
QaanFFV(x,y,z) = —4(x+y+3z) + 12A(x) + 12A(y) + 12A(z), (B35)

Qs Frpoly.2) = 4mx =y = 24 A(X) + A0) +A(2)] (B30)
QifFFG@CJ’» z) =2[(x—y—2)(x +y+2) + (2y + 2z — x)A(x) + yA(y) + zA(2)]. (B37)
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