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We study critical phenomena of nonequilibrium phase transitions by using the AdS=CFT correspondence.
Our systemconsists of chargedparticles interactingwith a heat bath of neutral gauge particles. The system is in
current-driven nonequilibrium steady state, and the nonequilibrium phase transition is associated with
nonlinear electric conductivity. We define a susceptibility as a response of the system to the current variation.
We further define a critical exponent from the power-law divergence of the susceptibility. We find that the
critical exponent and the critical amplitude ratio of the susceptibility agreewith those of the Landau theory of
equilibrium phase transitions, if we identify the current as the external field in the Landau theory.
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I. INTRODUCTION

Nonequilibrium phenomena have wider variety com-
pared to equilibrium phenomena. The number of param-
eters that control the nonequilibrium systems is larger than
that of the equilibrium systems, in general. In nonequili-
brium steady states (NESSs), the typical additional param-
eter that is absent from equilibrium systems is current. For
example, a system attached to two heat baths of different
temperatures has a heat current. In this case, the heat
current is the “new” parameter, which is special to non-
equilibrium systems. Another example is an electric current
along an electric field in a conductor. In this case, the
equilibrium state is realized when the current is vanishing.
These new parameters, the heat current and the electric

current, measure the rate of entropy production (when the
electric field or the temperatures of two heat baths are kept
fixed), hence represent the “distance” from the equilibrium
states. A primary question in nonequilibrium physics is
how these parameters control the systems. In particular,
investigation of phase transitions under the presence of
current is one important research subject.1

In this paper, we study nonequilibrium critical phenom-
ena driven by an electric current density J. When a system
exhibits a second order phase transition under the presence
of J, a natural question is how the new parameter J controls
the critical phenomena. More specifically, the following

questions can be addressed. (1) Is it possible to define a
susceptibility with respect to J in a sensible way? (2) If yes,
how does it behave near the critical point? Are there any
critical phenomena associated with the new parameter J?
If it is the case, what are the critical exponents? (3) Do we
have more critical exponents for nonequilibrium phase
transitions than what we have for equilibrium systems? Can
we construct a theory for these critical exponents?
In order to reveal these issues, we employ the anti-de

Sitter/conformal field theory (AdS=CFT) correspondence.
The AdS=CFT correspondence is a duality between a
classical gravity theory and a strongly coupled quantum
gauge field theory [2,3]. This correspondence provides a
computational method for the gauge field theory beyond
the linear response regime in terms of general relativity.2

For example, a NESS of strongly interacting gauge
theory plasma was studied in Ref. [5]. It was shown in
Ref. [5] that the system exhibits not only positive differ-
ential conductivity (PDC) but also negative differential
conductivity (NDC) in the NESS driven by a constant
current. Furthermore, a first-order and a second-order
nonequilibrium phase transitions associated with the non-
linear conductivity were discovered in the same system
[6].3 In Ref. [6], critical exponents β and δ for the
nonequilibrium phase transition were defined.4 In the
Landau theory of equilibrium phase transitions, critical
exponent δ is defined from the power-law dependence of
the order parameter with respect to an external field (e.g., a
magnetic field in ferromagnets). In this case, the external
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1A first-order phase transition in the presence of heat current
has been studied in [1].

2A review on application of the AdS=CFT correspondence to
nonequilibrium physics is Ref. [4].

3A same type of phase transition was also observed later in a
different setup of holography in Ref. [7].

4The critical exponent δ in this paper is δ̃ in Ref. [6].
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field does not drive the system into nonequilibrium states.
On the other hand, the exponent δ in the nonequilibrium
phase transition was defined as the exponent of the power
behavior of the order parameter in the variation of the
current. Interestingly, the obtained values of the β and the δ
in the nonequilibrium phase transition agreed with those of
β and δ in the Landau theory of equilibrium phase
transitions, respectively, within the numerical error [6].
This result implies that a current density J, which is a
parameter that appears only in the nonequilibrium system,
plays a fundamental role in characterizing the nonequili-
brium phase transition. However, we still lack a complete
answer to the questions (1), (2) and (3) raised above.
In this paper, we further proceed calculations of critical

exponents associated with J in the nonequilibrium phase
transition. We define a susceptibility as a response of the
system to the current variation. We also define a critical
exponent γ from the power-law divergence of the suscep-
tibility. We find that the susceptibility shows critical
phenomena and the value of the critical exponent γ agrees
with that in the Landau theory of equilibrium phase
transitions. The critical amplitude ratio of the susceptibility
also agrees with that in the Landau theory. Together with
the results for β and δ, our results state that the critical
phenomena in the nonequilibrium phase transition in
question have remarkable similarity with those in the
Landau theory of equilibrium phase transitions, if we
identify the current as the external field.5

The organization of the paper is as follows. In Sec. II, we
review the Landau theory of equilibrium phase transitions.
In Sec. III, we explain the setup of our model. We focus on
the so-called D3-D7 system. In Sec. IV, we propose the
definitions of the susceptibility and the critical exponent γ
mentioned above. We compute them and the results will be
exhibited. We conclude in Sec. V.

II. LANDAU THEORY AND CRITICAL EXPONENT

We begin with a brief review of the Landau theory of
equilibrium phase transitions. The new definitions of the
susceptibility and the critical exponents in Sec. IV will be
given by using an analogy with the Landau theory.
Here we consider a phase transition of ferromagnets. In

the Landau theory, we assume the free energy is given as an
even function of the magnetization because of the sym-
metry under the spin flip. Since we are interested in the
critical point, we assume the magnetization is sufficiently
small. Then we can expand the free energy as a power
series in the magnetization and ignore the higher order
terms:

FðMÞ ¼ F0 þ aM2 þ bM4; ð1Þ

whereM is the magnetization as an order parameter. F0 and
b are constants, whereas a ¼ kðT − TcÞ=Tc with a constant
k. Tc is the critical temperature of the second-order phase
transition.
Since a thermal equilibrium state is realized as a

minimum of the free energy, we consider

∂FðMÞ
∂M

����
M0

¼ 2aM0 þ 4bM3
0 ¼ 0; ð2Þ

to obtain the thermal equilibrium magnetization M0:

M0 ¼
ffiffiffiffiffiffiffiffiffiffi
−

a
2b

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðTc − TÞ
2bTc

s
; ð3Þ

for T < Tc. If there is an external magnetic field in this
system, the free energy is written as

FðMÞ ¼ F0 þ aM2 þ bM4 −HM; ð4Þ

where H is the external magnetic field. Then, the thermal
equilibrium state is determined by the following relation:

∂FðMÞ
∂M

����
M0

¼ 2aM0 þ 4bM3
0 −H ¼ 0: ð5Þ

Although the solution of Eq. (5) is complicated, M0

becomes simple for T ¼ Tc:

M0 ¼
�
H
4b

�1
3

: ð6Þ

The magnetic susceptibility is defined as χ ¼ ∂M=∂H.
We obtain this from Eq. (5) as

χ ¼ 1

2aþ 12bM2
: ð7Þ

For T > Tc with M ¼ 0, we have

χ ¼ 1

2a
¼ Tc

2kðT − TcÞ
≡ χT>Tc

; ð8Þ

whereas

χ ¼ 1

2aþ 12bð−a=2bÞ ¼
Tc

4kðTc − TÞ≡ χT<Tc
; ð9Þ

for T < Tc. From Eqs. (8) and (9), the ratio of the
coefficients of jT − Tcj, which is called as critical ampli-
tude ratio, becomes two: χT>Tc

=χT<Tc
¼ 2. Note that this

value is independent of k and Tc we have introduced.

5In the present paper, we employ the same notations α, β, δ and
γ for the critical exponents of our nonequilibrium phase transition
as those of the Landau theory given in Sec. II. However, their
physical definitions should be distinguished.
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Let us derive the specific heat from the free energy. The
specific heat is defined by Cv ¼ −T∂2FðM0Þ=∂T2. For
T < Tc and H ¼ 0,

FðM0Þ ¼ F0 þ aM2
0 þ bM4

0 ¼ F0 −
k2ðT − TcÞ2

4bT2
c

: ð10Þ

Thus we find that the specific heat is constant.
The divergent behaviors of various quantities at the

critical point are characterized by the critical exponents.
The definitions of the critical exponents in ferromagnets are
given by

M0 ∝ jT − TcjβðT < TcÞ; ð11Þ

M0 ∝ jHj1=δðT ¼ TcÞ; ð12Þ

χ ∝ jT − Tcj−γðT < TcÞ; ð13Þ

χ ∝ jT − Tcj−γ0 ðT > TcÞ; ð14Þ

Cv ∝ jT − Tcj−αðT < TcÞ: ð15Þ

In the Landau theory, the critical exponents are determined
by Eqs. (3), (6), (8), (9), and (10) as:

β ¼ 1

2
; δ ¼ 3; γ ¼ γ0 ¼ 1; α ¼ 0; ð16Þ

and these values are the same as those in the mean-field
theory. Note that there are further two critical exponents η
and ν, which are related to the correlation functions.
However, these critical exponents cannot be determined
within the above discussion.We are not going to deal with η
and ν in the present paper.

III. SETUP

To realize a system in NESS, we employ (3þ 1)-
dimensional SUðNcÞ N ¼ 4 super-symmetric Yang-Mills
(SYM) theory with a fundamentalN ¼ 2 hypermultiplet as
the microscopic theory. The theory contains the gauge
particles in the adjoint representation (which we call gluon
sector) and the charged particles (quark sector) in the
fundamental and antifundamental representation. Here the
charge is that of the globalUð1ÞB symmetry, and not that of
the color. In this sense, the gluon sector is neutral. We apply
an constant external electric field acting on this charge. We
take the large-Nc limit in order to realize a NESS. This is
because the degree of freedom of the gluon sector, which is
OðN2

cÞ, becomes sufficiently larger than that of the quark
sector, which is OðNcÞ. Then we can ignore the back-
reaction to the gluon sector in this limit. As a result, the
gluon sector acts as a heat bath for the quark sector. Then
the system realizes a NESS with a constant current of the
charge. The D3-D7 system is the gravity dual of our

microscopic theory [8]. The D7-brane is embedded in the
background geometry which is a direct product of a
5-dimensional AdS-Schwarzschild black hole (AdS-BH)
and S5. The gluon sector and the quark sector correspond to
AdS-BH and the D7-brane, respectively.
The metric of the AdS-BH part is given by

ds2¼−
1

z2
ð1− z4=z4HÞ2
1þ z4=z4H

dt2þ1þ z4=z4H
z2

dx⃗ 2þdz2

z2
; ð17Þ

where z (0 ≤ z ≤ zH) is the radial coordinate of the
geometry. The boundary is located at z ¼ 0, whereas the
horizon is located at z ¼ zH. The Hawking temperature is
given by T ¼ ffiffiffi

2
p

=ðπzHÞ. t and x⃗ denote the (3þ 1)-
dimensional spacetime coordinates of the gauge theory.
The metric of the S5 part is given by

dΩ2
5 ¼ dθ2 þ sin2 θdψ2 þ cos2 θdΩ2

3; ð18Þ

where 0 ≤ θ ≤ π=2 and dΩd is the volume element of a
d-dimensional unit sphere. For simplicity, the radius of the
S5 part has been taken to be 1. This is equivalent to choosing
the ’t Hooft coupling λ of the gauge theory at λ ¼ ð2πÞ2=2.
In our D3-D7 system, the D7-brane is wrapped on the S3

part of the S5. Since the radius of the S3 part is cos θ, the
configuration of the D7-brane is determined by the function
θðzÞ. The asymptotic form of θðzÞ is given by

θðzÞ ¼ mqzþ
1

2

�hq̄qi
N

þm3
q

3

�
z3 þOðz5Þ; ð19Þ

where hq̄qi denotes the chiral condensate and mq is the
current quark mass [9,10]. (See also Ref. [11].) N ¼
TD7ð2π2Þ ¼ Nc=ð2πÞ2 in our convention.
The D7-brane action is given by the Dirac-Born-Infeld

(DBI) action:

SD7 ¼ −TD7

Z
d8ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgab þ ð2πα0ÞFabÞ

p
: ð20Þ

Here TD7 is the D7-brane tension, ξ are the world-volume
coordinates, gab is the induced metric and Fab is the Uð1Þ
field strength on the D7-brane. The Wess-Zumino term
does not contribute in our setup. Assuming the external
electric field E is applied along the x direction, the
asymptotic form of the gauge field Ax on the D7-brane
is related to E as

Axðz; tÞ ¼ −Etþ const:þ J
2N

z2 þOðz4Þ: ð21Þ

Here we have employed the gauge ∂xAt ¼ 0. Thus, the
Lagrangian density in the D7-brane action (20) is explicitly
written as
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LD7 ¼ −N cos3 θgxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgttjgxxgzz − gzzð _AxÞ2 þ jgttjðA0

xÞ2
q

;

ð22Þ

where the prime and the dot denote the differentiation with
respect to z and t, respectively. The induced metric agrees
with the metric of AdS-BH (17) except for gzz ¼
1=z2 þ θ0ðzÞ2. According to the AdS=CFT dictionary,
the current density J (in the x direction) is given by
J ¼ ∂LD7=∂A0

x.
Let us perform a Legendre transformation

L̃D7 ¼ LD7 − A0
x
∂LD7

∂A0
x

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gzz

�
gxx −

E2

jgttj
�
ðN2jgttjg2xx cos6 θ − J2Þ

s
; ð23Þ

so that J becomes a control parameter. The Euler-Lagrange
equation for θ is

∂
∂z

∂L̃D7

∂θ0 −
∂L̃D7

∂θ ¼ 0: ð24Þ

In addition, requiring the on-shell D7-brane action (23) to
be real, we can determine the relationship between J and
E as

J ¼ πNTðe2 þ 1Þ1=4 cos3 θðz�ÞE; ð25Þ

where z� is the point at which L̃D7 equals zero [11]. More
explicitly, z�¼ð

ffiffiffiffiffiffiffiffiffiffiffi
e2þ1

p
−eÞ1=2zH and e¼2E=ðπ ffiffiffiffiffi

2λ
p

T2Þ.
We need to solve the equation of motion (EOM) (24)

numerically in order to obtain θðz�Þ explicitly. We employ
two boundary conditions: θðzÞ=zjz¼0 ¼ mq and θ0jz¼z� ¼
½B −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2

p
�=ðCz�Þ. Here B ¼ 3z8H þ 2z4Hz

4� þ 3z8� and
C ¼ 3ðz8� − z8HÞ tan θðz�Þ. The second boundary condition
is derived from the EOM at z ¼ z� [12]. (See also Ref. [5].)
After solving the EOM numerically under these boundary
conditions, we pick out the corresponding values of J and E
so that mq agrees with the designed value. Since the
numerical analysis becomes unstable at z ¼ 0, z ¼ zH
and z ¼ z�, we avoid these points by introducing cutoffs.
We choose mq ¼ 1 and N ¼ 1 for simplicity. In other

words, our J is understood as J=N when we assign general
value to N. The J − E characteristics at various temper-
atures are shown in Fig. 1.
For T < Tc the NDC region, where the slope of the J-E

curve is negative, is smoothly connected to the PDC region,
where the slope is positive. On the other hand, for T > Tc
there is an intermediate region between the NDC region
and the PDC region, where E has three different possible
values at a given J. Since the value of E has to be selected to
one of them, E jumps to another value at some point in this

region. It was proposed that the transition point is deter-
mined by a thermodynamic potential defined by using the
Hamiltonian of the D7-brane [6]. The Hamiltonian density
is given by

H̃D7 ¼ _Ax
∂L̃D7

∂ _Ax

− L̃D7

¼ gxx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jgttjgzz

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 cos6 θjgttjg2xx − J2

jgttjgxx − E2

s
: ð26Þ

Then the thermodynamic potential is defined as

F̃D7ðT; J;mqÞ ¼ lim
ϵ→0

�Z
zH

ϵ
dzH̃D7 − LcountðϵÞ

�
; ð27Þ

where Lcount denotes the counterterms that renormalize the
divergence at the boundary z ¼ 0. Lcount is given by

Lcount ¼ L1 þ L2 − LF þ Lf; ð28Þ

where each term of (28) is given in Ref. [11] as

L1 ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γij

q
; ð29Þ

L2 ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γij

q
θðϵÞ2; ð30Þ

Lf ¼
5

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det γij

q
θðϵÞ4; ð31Þ

LF ¼ 1

2
E2 log κϵ: ð32Þ

Here γij is the induced metric on the z ¼ ϵ slice and κ is a
factor in order to make the argument of the logarithm
dimensionless. The value of κ is scheme dependent, and we
have chosen this value as one of the possible choices so
that ∂2LD7=∂E2 ¼ 0 for vacuum (T ¼ 0, E ¼ 0, mq ≠ 0).

FIG. 1. The J-E characteristics at various temperatures: T ¼
0.34378 > Tc (circle), T ¼ 0.34365 ¼ Tc (box), and T ¼
0.34356 < Tc (triangle).
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It has been found that the stable state has the lowest E at a
given J [6]. As a result, the transition point between the
NDC phase and the PDC phase is the point indicated by the
arrow between A and B in Fig. 1. We call the transition for
T > Tc the first-order transition because E changes dis-
continuously. We call the transition for T ¼ Tc the second-
order transition because the differential resistivity ∂E=∂J
diverges there while the σ ¼ J=E changes continuously [6].

IV. RESULTS

In this section, we consider the critical phenomena of the
nonequilibrium phase transition given in the previous
section.

A. β and δ

In our nonequilibrium phase transition, the critical
exponents β and δ are defined in Ref. [6] as

Δσ ∝ jT − Tcjβ; jσ − σcj ∝ jJ − Jcj1=δ; ð33Þ

where T is the heat-bath temperature and Δσ is the
difference of the conductivity between the PDC phase
and the NDC phase at a transition point. σc and Jc are the
conductivity and the current density at the critical point,
respectively.Δσ is evaluated along the line of the first-order
phase transition. The value of δ is evaluated along the line
of T ¼ Tc. These definitions correspond to Eqs. (11) and
(12) in the Landau theory: the definitions (33) were
proposed by using an assumption that σ − σc and J − Jc
play a role of the order parameter and that of the external
field, respectively. Our numerical data are shown in Fig. 2.
We obtain β ¼ 0.505� 0.008 and δ ¼ 3.008� 0.032.
It has been proposed in Ref. [6] that the chiral condensate

hq̄qi is another candidate for the order parameter. Then we
have another definition of the critical exponents:

Δhq̄qi∝ jT−Tcjβchiral ; jhq̄qi− hq̄qicj∝ jJ−Jcj1=δchiral ;
ð34Þ

where hq̄qic is hq̄qi at the critical point. We show the
numerical results for chiral condensate in Fig. 3. We find
that these critical exponents are βchiral ¼ 0.515� 0.029 and
δchiral ¼ 2.999� 0.061. We have reconfirmed the results
found in Ref. [6]. Note that all of these values agree with
those of the Landau theory given in (16) within the
numerical error.

B. γ

This section is the main part of the present paper which is
about the definition and calculation of the critical exponent
γ. First we define the critical exponent γ for our non-
equilibrium phase transition. In Sec. II, we have reviewed
that the critical exponent γ in the Landau theory is defined
by using the magnetic susceptibility χ ¼ ∂M=∂H, whereM

(a)

(b)

FIG. 2. (a) Critical behavior of the difference of the conduc-
tivity Δσ near the critical point and (b) that of σ − σc.

(a)

(b)

FIG. 3. (a) Critical behavior of the difference of the chiral
condensate hq̄qi near the critical point and (b) that of
hq̄qi − hq̄qic.
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is the magnetization and H is the external magnetic field.
Near the critical point, the magnetic susceptibility behaves
as χ ∝ jT − Tcj−γ . In our nonequilibrium phase transition,
since we use either the conductivity or the chiral condensate
as the order parameter, it is natural to generalize the
definition of χ as

χ̃ ¼ ∂ðσ − σcÞ
∂J ; χ̃chiral ¼

∂ðhq̄qi − hq̄qicÞ
∂J ; ð35Þ

where J is again assumed to act as the external field. We
can rewrite χ̃ by using the definition of conductivity
σ ¼ J=E,

χ̃ ¼ 1

E
−

J
E2

∂E
∂J ; ð36Þ

so that it can be calculated from the J-E characteristics.
We propose to define the critical exponent γ as

χ̃ ∝ jT − Tcj−γ ð37Þ
in our nonequilibrium phase transition.6 There are two
possible definitions of χ̃ for T > Tc: that in the NDC phase
and that in the PDC phase

χ̃NDC ¼ ∂ðσNDC − σcÞ
∂J ; χ̃PDC ¼ ∂ðσPDC − σcÞ

∂J : ð38Þ

As shown in Fig. 4, the behaviors of the susceptibilities
in these phases are similar to each other and it is found
that each value of γ is γNDC ¼ 1.018� 0.043 and γPDC ¼
1.014� 0.042. We find that they agree with that from the
Landau theory (16), γ ¼ 1, within the numerical error.
In addition, we evaluate the γ for T < Tc. In the liquid-

vapor phase transition, the susceptibility should be calcu-
lated along the critical isochore in the crossover region.

(a)

(b)

FIG. 4. Critical behaviors of χ̃ for T > Tc (a) in the NDC phase
and (b) in the PDC phase.

FIG. 5. The phase diagram for our nonequilibrium phase
transition. The filled circles are on the line of the first-order
phase transition. The critical point (CP) is at Tc ¼ 0.34365. The
open circles are the inflection points where σ ¼ σc ¼ 0.0156.

(a)

(b)

FIG. 6. (a) Critical behavior of χ̃ for T < Tc and (b) the
divergence of χ̃ near the critical point.

6Note that if the state with larger E were more stable, the
transition point would be at C in Fig. 1. However, we cannot
calculate χ̃ at this point because ∂E=∂J is always divergent there.
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Therefore, it is necessary to determine the line that
corresponds to the critical isochore for our nonequilibrium
phase transition. In analogy with the ferromagnet phase
transition or the liquid-vapor transition, we choose this
point as the inflection point in the J-σ curve. The phase
diagram is shown in Fig. 5 and it is found that the inflection
point for T < Tc is nearly constant with σ ¼ σc ¼ 0.0156.
We show the relationship between the values of χ̃

and the temperature along the σ ¼ σc line in Fig. 6. The
numerical data gives γcrossover¼1.022�0.025. Furthermore,
if we assume that γNDC ¼ γPDC ¼ γcrossover, we find
χ̃crossover=χ̃NDC¼2.2�0.4 and χ̃crossover=χ̃PDC¼2.0�0.4.

These results agree with the fact that the critical
amplitude ratio in the Landau theory is 2. The critical
phenomena are exhibited in Fig. 6.
All of the above arguments go along with the chiral

condensate instead of the conductivity. The critical behav-
iors of the susceptibilities with respect to the chiral
condensate are shown in Fig. 7. The obtained values of
the corresponding critical exponents are γNDCchiral ¼
1.015� 0.028, γPDCchiral ¼ 1.007� 0.022, and γcrossoverchiral ¼
0.979� 0.029. They agree with (16), again. The corre-
sponding critical amplitude ratios are χ̃crossoverchiral =χ̃NDCchiral ¼
2.0� 0.3 and χ̃crossoverchiral =χ̃PDCchiral ¼ 1.9� 0.3which agree with
2 within the numerical error.

V. CONCLUSION AND DISCUSSION

We found that the critical exponents of our nonequili-
brium phase transition agree with those in the Landau
theory: β ¼ 1=2, δ ¼ 3, and γ ¼ 1. The critical amplitude
ratio of χ̃ also agreed with that of the Landau theory. Our
results satisfy the scaling laws such as the Widom scaling,
γ ¼ βðδ − 1Þ, within the numerical error.
We have two remarks. There are models of equilibrium

phase transitions in which a deviation of the law
of rectilinear diameter gives the critical exponent
α [13–16]. Let us see how it goes for our case. If we
assume that the foregoing method is valid in our system, we
may define α as

σave ¼ σc þ AjT − Tcj1−α; ð39Þ
where A is a constant, σave ¼ ðσNDC þ σPDCÞ=2 and σc is
the critical conductivity at T ¼ Tc. In Fig. 8, we show the
conductivities in the PDC phase, those in the NDC phase,
and their averages. We obtain the value of the exponent
α ¼ 0.048� 0.111, which agrees with (16) of the Landau
theory. We may define αchiral as

hq̄qiave ¼ hq̄qic þ BjT − Tcj1−αchiral ; ð40Þ
where B is a constant, hq̄qiave ¼ ðhq̄qiNDC þ hq̄qiPDCÞ=2
and hq̄qic is the critical value of the chiral condensate.

(a)

(b)

(c)

FIG. 7. Critical behaviors of χ̃chiral (a) in the NDC phase, (b) in
the PDC phase, and (c) in the crossover region.

FIG. 8. Critical behaviors of the conductivities in the NDC
phase and the PDC phase and the average of them.
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However, our numerical data shows that B ≃ 0: the values
of the chiral condensates in each phase are arranged
symmetrically with respect to the critical value, as is the
case with the ferromagnet phase transition. For this reason,
we cannot determine the value of αchiral accurately in this
manner. We leave more concrete definition of the critical
exponent α for our phase transition to future work.7

The second remark is on the relationship with the Landau
theory. In our definitions of the critical exponents, we
assumed that J − Jc plays a role of the magnetic field H in
(4). We find that the critical exponent and the critical
amplitude ratio of the susceptibility we defined agree with
those of the Landau theory of equilibrium phase transitions.
Together with the results for β and δ, our results state that
the critical phenomena in the nonequilibrium phase tran-
sition in question have remarkable similarity with those in
the Landau theory of equilibrium phase transition.

Coming back to the questions raised in Sec. I, we
obtained the answers to the questions (1) and (2) as far
as for the nonequilibrium phase transitions considered in
this paper: we can define the susceptibility associated with
J in a completely parallel manner to that in the Landau
theory, and the susceptibility shows critical phenomena
with γ ¼ 1. For the question (3), our results suggest that the
critical exponents γ and δ associated with J may be
formulated by using a theory similar to the Landau theory.
However, further investigation is necessary to get the
complete answer. This is an issue for future research to
explore.
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