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PREFACE

High energy physics is the field of research in which the fundamental laws of nature are

studied: the elementary particles and their interactions. Large accelerators, in which par-

ticles collide with speeds close to the speed of light, have given very precise experimental

data. This culminated in the Standard Model of particle physics that describes all the

known elementary particles and three of the four fundamental interactions between them.

A seemingly unrelated direction of science is cosmology in which space and time on the

largest scales are studied with the goal to find out how the universe has become what it

is and how it will develop further. Observations in this field have often been plagued by

large uncertainties.

However, in the past decades the situation has changed substantially. New technologies,

often involving space satellites, have transformed cosmology into a precision science.

As such, cosmology provides a new window on high energy physics because many of

the problems in cosmology are closely related to high energy physics. Developments in

the fields of dark matter, dark energy, density fluctuations and many others do not only

advance the field of cosmology but also that of high energy physics.

In this thesis two subjects in theoretical cosmology that are closely related to high energy

physics are studied. The goal of the preface is to provide some background information

that puts these two subjects in a broader framework. Much more information can be found

in standard textbooks, such as references [1, 2, 3].

THE BIG BANG MODEL

According to the Big Bang model the universe is expanding. Initially the temperature

and density were high, but due to the expansion the universe cooled down and became

more and more dilute. This is widely accepted as a good description of the evolution of

the universe. The first observational evidence for the Big Bang model was obtained by

Hubble, who found that distant galaxies are moving away from us which indicates that

space is expanding.

1



Preface

The process of cooling down triggered a cascade of events. Some of these events are:

• The electroweak phase transition. In this phase transition the electroweak symmetry

was broken, which caused the weak interaction (which is responsible for nuclear

fission) to be separated from the electromagnetic interaction. It took place at around

10−10 seconds after the Big Bang. This phase transition is important for the model

that will be studied in part I.

• Nucleosynthesis. Nucleons (protons and neutrons) were bound together to form

the nuclei of some of the chemical elements, such as helium, lithium, and others.

This process occurred approximately three minutes after the Big Bang. The rela-

tive abundances of these elements have been calculated in the context of the Big

Bang model, and were found to be consistent with the observed values. Therefore

cosmologists are confident that the Big Bang model is valid at least from this mo-

ment onward. Any adjustments to the Big Bang model (like inflation, which will

be discussed below) should have taken place before nucleosynthesis.

• Photon decoupling and atom formation. Electrons were bound to the nuclei to form

neutral atoms. This took place at around 380 000 years after the Big Bang and

caused the universe to become transparent. The radiation that was emitted at this

moment is the Cosmic Microwave Background (CMB) radiation. This radiation is

observed by satellite and balloon experiments which give us the earliest picture of

the universe that we have. From this picture we know that the temperature of the

universe at the time of photon decoupling was nearly the same in all directions.

The observations of small fluctuations in the temperature have accelerated many

developments in cosmology in the past 15 years. The CMB has yielded two Nobel

prizes: in 1978 to Penzias and Wilson for its discovery, and in 2006 to Mather and

Smoot for the measurements of the CMB using the COBE satellite [4].

INFLATION

The classic Big Bang model is very successful, but it also has some inherent problems.

One of them is the flatness problem. From observations we know that the universe is

to a good approximation flat (the spatial curvature vanishes), but according to the theory

of general relativity this is not a stable situation: if the spatial curvature deviates only

a small amount from zero, it will grow quickly. The only possible explanation for the

current flatness of the universe is that the spatial curvature was initially extremely close

to zero. However, such an initial condition requires a high degree of fine tuning.

The flatness problem and other problems can be solved by introducing a period of in-

flation, which is a period in which the universe is expanding at an accelerated rate (in

contrast to the decelerating expansion in the classic Big Bang model). For example, for

2
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the flatness problem one can show that during inflation the curvature is quickly driven

to zero. Therefore a period of inflation can provide the desired initial conditions for a

subsequent Big Bang phase.

At the end of inflation the universe is empty and cold. In order to return to a Big Bang

phase the universe should be ‘reheated’. To not be in conflict with other observations, the

reheating temperature should at least be above the temperature of nucleosynthesis.

Inflation plays an important role in current research in theoretical cosmology and also in

this thesis.

BARYOGENESIS

Because the universe is empty at the end of inflation there are no baryons (which are the

most important constituents of the matter we observe) and also no anti-baryons. Therefore

the total baryon number B, which is the difference between the numbers of baryons and

anti-baryons, is equal to zero.

In the current universe however we observe only matter and nearly no anti-matter. Thus B

is nonzero, and there must have been a process after inflation (and before nucleosynthesis)

in which this asymmetry was generated. This process is called baryogenesis. It is a quite

nontrivial process, which is illustrated by the fact that up to now we have never witnessed

a baryon number changing event in the laboratory. Many models of baryogenesis have

been proposed in the past.

In the first part of this thesis a specific model is studied: Cold Electroweak Baryogenesis.

It combines a model of inflation with a model of baryogenesis which takes place just

after inflation, during the reheating process (which is called preheating in this particular

model).

DENSITY FLUCTUATIONS

The solution to the flatness problem and the other problems of the classic Big Bang model

was the original motivation for inflation. Nowadays the biggest virtue of inflation is con-

sidered to be the fact that it provides an explanation for the origin of the density fluc-

tuations. These density fluctuations are the seeds from which the large scale structure

(stars, galaxies, etc.) in the current universe has grown. They have been observed in

the CMB with increasing precision by the COBE [4] and WMAP [5] satellites and other

experiments.

The statistical properties of the fluctuations are characterized by their correlation func-

tions. Because these correlation functions depend on what happened during inflation,

3
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observations of the correlation functions provide a window into the physics of inflation.

This is not only interesting from the point of view of cosmology, but also from the per-

spective of high energy physics, because inflation may have occurred at energy scales that

are much higher than can ever be reached in the laboratory.

In the second part of this thesis we study the calculation of the cosmological correlation

functions from inflation in quantum field theory. Many calculations have been done using

classical field theory, and we estimate to what extent this gives a good approximation to

the quantum calculations.
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Cold Electroweak Baryogenesis
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CHAPTER 1

INTRODUCTION

The origin of the matter–anti-matter asymmetry is a long-standing problem in cosmol-

ogy. Over the course of time many baryogenesis models have been proposed, involving

different branches of high energy physics such as quantum gravity, Grand Unifying The-

ories, supersymmetry, neutrino physics, and also electroweak physics. Models in the last

class are called electroweak baryogenesis. In this part we study a variant of this class of

models, namely Cold Electroweak Baryogenesis (CEB). It features inflation at the elec-

troweak scale and, after this, electroweak symmetry breaking while the universe is still

cold. During the symmetry breaking process, baryogenesis can take place.

In this chapter CEB is introduced, after (very) short reviews of inflation model building

and baryogenesis.

1.1 INFLATION AND REHEATING

Some basic features of inflation model building and of reheating are reviewed. See for

extensive reviews e.g. references [6, 7, 8].

1.1.1 INFLATION

In a spatially homogeneous and flat universe, the metric is of the Friedmann-Robertson-

Walker (FRW) form:

ds2 = −dt2 + a(t)2dx2, (1.1)
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Chapter 1 - Introduction

where a is the scale factor and x is a comoving coordinate. Inflation is defined by the

condition that there is accelerated expansion

ä > 0, (1.2)

where a dot denotes differentiation with respect to time t. In general relativity acceler-

ated expansion can be caused by vacuum energy. The simplest way to introduce vacuum

energy is by a cosmological constant, but then the phase of accelerated expansion would

never end. Therefore one introduces a scalar field σ, called the inflaton, with a potential

V (σ) that can act as vacuum energy. The action is

S =
∫

d4x
√−g

(
1
2
M2

plR − 1
2
∂μσ∂μσ − V (σ)

)
, (1.3)

where Mpl is the reduced Planck mass defined by M2
pl = 1/8πGN with GN the New-

ton constant. The classical equations of motion for a and σ can be derived from the

action (1.3) which leads for spatially homogeneous σ to

3M2
plH

2 =
1
2
σ̇2 + V (σ), (1.4)

Ḣ = − σ̇2

2M2
pl

, (1.5)

0 = σ̈ + 3Hσ̇ + V ′(σ), (1.6)

where H = ȧ/a is the Hubble constant, and where a prime denotes differentiation with

respect to σ, so V ′(σ) = dV (σ)/dσ. The third equation follows from the first two.

From the second equation (1.5) one derives that there is accelerated expansion if H2 >

σ̇2/2M2
pl.

Slow-roll parameters. One often uses slow-roll parameters to determine whether an

inflaton potential V is suitable for (a considerable amount of) inflation. The first two

slow-roll parameters are defined as

ε ≡ 1
2

(
MplV

′

V

)2

≈ 1
2

σ̇2

H2M2
pl

, (1.7)

η ≡ M2
plV

′′

V
≈ − σ̈

Hσ̇
+

1
2

σ̇2

H2M2
pl

, (1.8)

where we have used the equations of motion (1.4)-(1.6) to obtain the approximate expres-

sions. For inflation the slow-roll parameters must be small: ε � 1, |η| � 1 (slow-roll

conditions).

8



Chapter 1 - Introduction

E-folds. The amount of expansion between initial time ti and final time tf can be ex-

pressed by the number of e-folds N(ti, tf ), which is the logarithm of the fraction of the

scale factors at the two times:

N(ti, tf ) ≡ ln
a(tf )
a(ti)

=
∫ tf

ti

H(t)dt. (1.9)

During slow-roll inflation, we can write

Hdt =
H

σ̇
dσ ≈ − V

M2
plV

′ dσ = ∓ 1√
2εMpl

dσ, (1.10)

where the sign depends on the direction in which σ rolls. From this expression it is clear

that a smaller ε and a larger shift of σ during inflation lead to a larger number of e-folds.

Typically it is assumed that the minimal required number of e-folds is approximately 50

to 60. However this number depends on some assumptions such as the scale at which

inflation occurs; for low scale inflation this number can be as small as N ≈ 25 [7].

Power spectrum. An important feature of inflation is that it can explain the origin of

the density fluctuations that have led to the structure in the universe. This subject will be

introduced in more detail in chapter 6. Here we just give the observational constraint on

the most important characteristic of these fluctuations, namely the power spectrum of a

quantity called the curvature perturbation ζ. In first approximation it is given by

Pζ =
1

24π2M4
pl

V

ε
, (1.11)

which is to be evaluated at the time of horizon exit of the observable modes (see also

chapter 6). This power spectrum is nearly flat (independent of k). The deviation from

flatness is quantified by the spectral index, defined by

n − 1 ≡ d lnPζ

d ln k
≈ −6ε + 2η, (1.12)

which is also evaluated at horizon exit. The values that follow from observations are [9]

Pζ ≈ 24.10−10, n ≈ 0.95, (1.13)

at the so-called pivot scale kpivot = 0.002/Mpc.

Example: chaotic inflation. To illustrate the concepts introduced above, we consider

here chaotic inflation [10], which is the simplest possible inflation model. It has a potential

V (σ) = m2
σσ2/2. The slow-roll parameters (1.7) and (1.8) are given by

ε = 2
M2

pl

σ2
, η = 2

M2
pl

σ2
. (1.14)

9



Chapter 1 - Introduction

One finds from equations (1.9) and (1.10) that from the point that the inflaton field is

σ ≈ √
4NMpl, approximately N e-folds of inflation will follow. At this point, the slow-

roll parameters are

ε = η ≈ 1
2N

, (1.15)

and the power spectrum (1.11) is

Pζ ≈ N2m2
σ

6π2M2
pl

. (1.16)

Using N = 50 and the observational value (1.13) for the power spectrum, one obtains

that mσ should be of the order of 10−5Mpl. Then the energy density at the beginning

of inflation is roughly 10−8M4
pl. This is smaller than the Planck density and one does

not expect that quantum gravity corrections are important. However this model is not

well motivated from the point of view particle physics, because nonrenormalizable terms

cannot be neglected for field values larger than Mpl. This is a typical problem for large

field models with only one field. In small field models, and in models with multiple fields,

this problem can be avoided.

Example: hybrid inflation. By introducing extra fields one can invent many more pos-

sible inflation models. An example with one extra field is hybrid inflation [11, 12, 13].

Consider the potential

V (σ, φ) = V (σ) + V0 +
1
2
(
λσφσ2 − μ2

)
φ2 +

λ

4!
φ4, (1.17)

where V (σ) is a potential that supports inflation. V (σ, φ) is sketched in figure 1.1.

Inflation takes place when σ takes values in the narrow, trough-like region at σ > μ/
√

λσφ.

The mass term of the effective potential for φ is positive and φ will have a vanishing ex-

pectation value. The period of inflation is effectively single field inflation and the power

spectrum and slow-roll parameters are determined by the potential V (σ) + V0. When

the σ field rolls down and becomes smaller than μ/
√

λσφ, the effective mass term of φ

becomes negative and φ will start to roll down. Inflation will end at this point (if it has

not ended before). The field φ is often called the waterfall field.

When φ rolls down there is often spontaneous symmetry breaking which can lead to the

generation of topological defects.

This model can be adjusted such that the inflaton field rolls from small values towards

larger values. Such a model is called ‘inverted hybrid inflation’ and is also used for CEB.

10



Chapter 1 - Introduction

Φ

Σ

V

Figure 1.1: Sketch of the potential V (σ, φ) of hybrid inflation, as given in equation (1.17).

1.1.2 REHEATING

At the end of inflation the universe is empty and at zero temperature. To return to the Big

Bang model, the energy in the inflaton field should somehow be transferred to the fields

of the Standard Model.

In the original reheating scenario [14, 15, 16, 17, 18] the energy transfer occurs by the

decay of inflaton particles into other particles. When the decay rate of the inflaton is

higher than the Hubble rate H of the expansion of the universe, this process can generate

a thermal state with a temperature that is called the reheating temperature.

There are many more possible mechanisms to drain the energy away from the inflaton

field, often nonperturbative in nature. In some cases these mechanisms can transfer the

energy much more quickly than in the original reheating scenario. Usually this does not

directly result in a thermal state. Therefore these scenarios with fast energy transfers go

under the name of preheating.

Several variations of preheating are possible. One of them, called resonant preheating

[19, 20, 21, 22], is based on the coherent oscillation of the inflaton field about its vacuum.

For suitable parameter values of the couplings of the inflaton field to other fields, there can

be resonant particle production in certain momentum bands of the other fields. This can

lead to a very efficient (partly) energy transfer from the inflaton field to the other fields.

Another preheating scenario is tachyonic preheating [23, 24, 25, 26, 27], that occurs in

hybrid inflation models. In this case the energy is in the waterfall field and when it rolls

down, it will transfer the energy to other fields. In [25] it was found that this occurs very

rapidly, after only a few oscillations about the vacuum.

11
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1.2 BARYOGENESIS

The observed baryon asymmetry of the universe is [28, 9]

η =
nb − nb̄

nγ
= (6.11 ± 0.19) × 10−10, (1.18)

where nb, nb̄ and nγ are the number densities of baryons, anti-baryons and photons. This

number is constant as long as the evolution of the universe is adiabatic and a successful

model of baryogenesis should be able to reproduce this asymmetry. In this section the

basic conditions that a baryogenesis model should satisfy are discussed and electroweak

baryogenesis is introduced. See [29, 30, 31, 32, 33] for reviews on (electroweak) baryo-

genesis.

THE SAKHAROV CONDITIONS AND THE STANDARD MODEL

It has long been known that any process of baryogenesis has to satisfy the three Sakharov

conditions [34]:

• Violation of baryon number B (which is the number of baryons minus the number

of anti-baryons) conservation. It is obvious that to create a baryon asymmetry, B

must not be conserved.

• Violation of C and CP symmetries, where C is charge conjugation and P is parity

transformation. If C is not violated ([H,C] = 0), we have:

〈B〉(t) = Tr (ρ(t)B) = Tr
(
eiHtρ(0)e−iHtB

)
= Tr

(
C−1CeiHtρ(0)e−iHtB

)
= −〈B〉(t), (1.19)

and therefore 〈B〉(t) = 0. Here ρ is a general density matrix, and we have used

[ρ(0), C] = 0 (the initial state is symmetric under C), the cyclic property of traces,

and the fact that baryons are odd under the charge transformation: CBC−1 = −B

(this holds even for neutral baryons, see section 2.3). The same reasoning goes for

CP , where one uses that baryons are even under parity conjugation PBP−1 = B.

• Deviation from thermal equilibrium. If the process would be in equilibrium, noth-

ing would change and no baryons would be created.

These conditions are a first test for any model of baryogenesis. Of course, for such a

model to be really responsible for the asymmetry (1.18) there are additional constraints:

the right amount of asymmetry should be created, and the asymmetry should not be

washed out by processes that take place at a later time (or the right amount should re-

main after a partial wash-out).

12
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Many models for baryogenesis have been proposed. Often these models use physics

beyond the Standard Model, i.e. particles and interactions that are not described by the

Standard Model and that have not (yet) been observed, e.g. because the particles are too

heavy to be created in particle colliders up to now. A popular way to extend the Standard

Model is by introducing supersymmetry. This leads to many new interactions, that can

both violate B conservation and C and CP symmetry. Another interesting possibility

is to extend the lepton sector of the Standard Model, which makes it possible to have

baryogenesis through leptogenesis [35].

It is intriguing that the Standard Model itself satisfies all the three Sakharov conditions

[36]. In a different order than above:

• Deviation from equilibrium can occur during the electroweak phase transition1.

The core of the Standard Model is the electroweak theory (see chapter 2). This

theory has a gauge symmetry that is spontaneously broken at low temperatures by

the expectation value of the Higgs field. At high temperatures the symmetry is

restored. Therefore when the universe cools down, there is a phase transition to the

broken symmetry phase, at which moment there can be deviation from equilibrium.

Models in which baryogenesis takes place during this electroweak phase transition

fall in the class of electroweak baryogenesis models.

• Violation of B conservation. In the Standard Model baryon number is violated

by a subtle quantum effect known as the electroweak anomaly (see section 2.4).

One can assign a Chern-Simons number NCS to a configuration of the electroweak

gauge fields at a certain time. According to the electroweak anomaly a change in

NCS is related to a change in the baryon number B. In the broken phase there is

an energy barrier that prevents NCS from being easily changed. This is called the

sphaleron barrier, after the configuration on the top of this barrier. It explains why

we do not observe baryon violation in the laboratory. But in the symmetric phase,

NCS and B can easily be changed.

• C and CP violation. In the fermion sector of the Standard Model C and CP

symmetries are violated. The latter effect is caused by the mixing of the three

generations [37] (see also section 2.3). For the quarks the mixing is parameterized

by the Cabibbo-Kobayashi-Maskawa (CKM) matrix, and for the leptons by the

the Maki-Nakagawa-Sakata (MNS) matrix. The complex phase factors in these

matrices cause CP violation.

However, electroweak baryogenesis using only Standard Model physics turns out not to

work for two reasons: the deviation from equilibrium during the electroweak phase tran-

sition is not strong enough, and also the CP violation is estimated to be much too small.

1The expansion of the universe also brings the universe out of equilibrium. However at electroweak scales,

the expansion rate (1.4) is H ≈ 10−15 GeV and its effect is negligible.
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Figure 1.2: Sketch of the effective potentials V (φ, T ) for temperatures above, at and below the

critical temperature Tc, for a first order phase transition (left) and a smooth crossover (right).

We discuss these issues below.

THE ELECTROWEAK PHASE TRANSITION

The nature of the electroweak phase transition depends on the parameters of the theory,

in particular on the Higgs mass mH. Numerical simulations [38, 39, 40, 41, 42, 43, 44]

have shown that there is a first order phase transition if mH � 72 GeV. For a larger Higgs

mass there is no phase transition but a smooth crossover.

If the phase transition is of first order, the effective potential for the Higgs field depends on

the temperature as sketched in the left-hand side of figure 1.2: for decreasing temperatures

a separate minimum develops that first represents a false vacuum, but becomes the true

vacuum at temperatures below the critical temperature Tc. The phase transition proceeds

by the formation of bubbles of the broken vacuum state that grow quickly for T < Tc. At

the bubble walls there is a strong deviation from equilibrium.

In case of a smooth crossover, the effective Higgs potential depends on the temperature

as in the right-hand side of figure 1.2: the minimum slowly moves from zero to nonzero

values, and there is never a period in which there is a strong deviation from equilibrium.

The lower bound on the Higgs mass from the LEP experiment at CERN is mH > 114 GeV

[45]. Therefore the electroweak phase transition is a smooth crossover and the deviation

from equilibrium is not enough to produce the baryon asymmetry (1.18).

14
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CP VIOLATION

The other issue is that the CP violation from the fermion sector in the Standard Model is

estimated to be much too small [46, 47]. It is believed to be proportional to

J
(m2

t − m2
c)(m

2
t − m2

u)(m2
c − m2

u)(m2
b − m2

s)(m
2
b − m2

d)(m
2
s − m2

d)
Λ12

, (1.20)

where the mi are the quark masses, Λ is an energy scale, and J is the Jarlskog invariant,

which is the simplest rephasing invariant quantity that can be constructed from the CKM

matrix V [48, 28]:

J = sin2 θ1 sin θ2 sin θ3 cos θ1 cos θ2 cos θ3 sin δ = (3.08+0.16
−0.18) × 10−5, (1.21)

where the θi and δ are angles in the Kobayashi-Maskawa parameterization of V . The

energy scale Λ is put in to construct a dimensionless number. One usually takes Λ =
102 GeV for the energy scale of the electroweak phase transition, which results2 in an

estimate of 10−19. It is hard to imagine how such a small CP violating effect can lead to

the asymmetry (1.18) which is of order 10−10.

Of course it is still possible to extend the Standard Model such that both problems, the

lack of deviation from equilibrium and the small CP violating effect, are avoided and

baryogenesis can still take place during the electroweak phase transition. For example

one can add another Higgs doublet [49, 50], consider supersymmetric extensions of the

Standard Model (see citations in [33]), or consider corrections from nonrenormalizable

operators [51]. We will consider yet another possibility: CEB.

1.3 COLD ELECTROWEAK BARYOGENESIS

THE ORIGINAL MODEL

CEB [52, 53] is a model that combines inflation and electroweak baryogenesis. It consists

of the Standard Model together with one extra scalar field σ that plays the role of the

inflaton field. σ is coupled to the Higgs field φ such that they together form a hybrid

inflation model (1.17), where φ plays the role of the waterfall field. Hence during inflation

the mass term of the Higgs potential has a positive sign, but as the inflaton rolls down and

becomes smaller the sign changes and the Higgs field starts to roll down. This induces

a process of tachyonic preheating. During this process the universe is strongly out of

equilibrium and baryogenesis can take place.

2We use mu = 0.003, md = 0.006, ms = 0.103, mc = 1.24, mb = 4.2, mt = 175 GeV.
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If it works, this model is interesting for a number of reasons. First it combines inflation

and baryogenesis in one model and it only needs one extra field apart from the Standard

Model for this3. Hence this single extra field would simultaneously solve two important

problems in cosmology.

Second it is interesting from the point of view of inflation model building because it has

inflation at a much lower scale than most inflation models (see for example also [54, 55]).

We will not pursue this direction further.

Third CEB is interesting from the point of view of baryogenesis model building, because

it is a completely different model of electroweak baryogenesis than the models that existed

before. This is the aspect we will be studying in the first part of this thesis.

DEVELOPMENT OF THE MODEL

After the first proposals in [52, 53] this model has been developed further. In [56] it

was noticed that quantum corrections spoil the potential such that inflation is no longer

possible. To avoid this problem an inverted hybrid inflation model was proposed in which

the inflaton runs away from the origin and in which the quantum corrections are under

control. Furthermore, two possible mechanisms for baryon production were mentioned

in this paper. One is based on resonant oscillations about the new vacuum, and the other

is based on the formation of topological defects.

In [57] this inverted hybrid inflation model was further worked out and its parameters were

constrained by the WMAP data. The result is that the model, with fine-tuned parameters,

is still allowed by observations. The potential used in [57] is

V (σ, φ) = V0 − 1
2
α2σ

2 +
1
4
α4σ

4 − 1
5
α5σ

5 +
1
6
α6σ

6+

− 1
2

(
λσφσ2φ2 − 1

2
μ2

)
φ2 +

1
4
λφ(φ2)2, (1.22)

which has nonrenormalizable couplings and is therefore not valid up to arbitrary scales.

Further studies, also using numerical simulations, were done in [27, 58, 59, 60, 61, 62,

63, 64], where [62] is reproduced in chapter 3 of this thesis. These studies a.o. confirmed

that there is baryon production, that an asymmetry can be created if the Lagrangian is

CP violating, and investigated the dependence of the asymmetry on the parameters, the

mechanism of baryon production, and the dependence on the speed at which the effective

Higgs potential changes. Recently the generation of magnetic fields in this model was

studied in [65].

3Note however that later versions of the model have nonrenormalizable couplings, as discussed below, and

will therefore need a UV completion not much above the electroweak scale.
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1.4 OUTLINE

In part I two aspects of CEB are studied: the baryon production mechanism and the CP

violation. Because CEB relies so strongly on the Standard Model, we first review some

relevant aspects of the (electroweak sector of the) Standard Model in chapter 2, including

the CKM matrix, the electroweak anomaly and the Chern-Simons and Higgs winding

numbers. Then in chapter 3 the mechanism is studied by which the Chern-Simons number

changes, building further on the work of [61]. Here a simplified model is used in which

the inflaton field is left out, and the transition is triggered by an instantaneous change of

the sign of the Higgs mass term. We find that configurations with a small Higgs field in the

center, called half-knots, play a central role in the process of changing the Chern-Simons

number. This work has been published in [62].

In chapter 4 the CP violating effect in the Standard Model is studied by integrating out

the fermions. In an expansion in fields of the resulting bosonic effective action we find

that the first CP violating term is indeed proportional to the factor (1.20). We argue that

the resulting estimate is valid in CEB and that therefore the strength of the CP violating

effect is too small to be responsible for the observed asymmetry (1.18). We conclude in

chapter 5.
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CHAPTER 2

STANDARD MODEL

The Standard Model of particle physics was developed in the early 1970s and describes

three of the four known fundamental interactions and all the known elementary particles.

It consists of the electroweak theory describing the electromagnetic and the weak interac-

tions, and Quantum Chromodynamics (QCD) that describes the strong interaction. These

interactions are mediated by gauge bosons. The interaction that is not included in the

Standard Model is gravity. The elementary fermionic particles of the Standard Model are

the quarks (that make up the baryons) and the leptons. The predictions of the Standard

Model are in agreement with all experimental data to date.

Because of its importance for CEB, we review here a few relevant aspects of the Standard

Model, in particular on the electroweak sector. More complete reviews can be found in

textbooks and lecture notes, see e.g. references [66, 67, 68, 69].

First we give the action of the Standard Model in section 2.1, and its formulation in the

unitarity gauge in section 2.2. We leave out the leptons and take only the quarks into

account. In section 2.3 the charge conjugation and parity transformations are reviewed.

Then the electroweak anomaly, responsible for baryon violation in the Standard Model,

is briefly reviewed in section 2.4. Finally we discuss the role of topological field configu-

rations in section 2.5.

2.1 ACTION

The Standard Model is a chiral gauge theory with gauge group SU(3) × SU(2) × U(1).
The matter fields are chiral fermions that couple to the gauge fields. The SU(2) × U(1)
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subgroup corresponds to the electroweak theory, which also contains a scalar field, the

Higgs field. The SU(3) subgroup corresponds to QCD.

We write the action of the Standard Model as

SSM =
∫

d4xLSM, LSM = LG + LH + LF + LY , (2.1)

where LG describes the gauge fields, LH the Higgs field, LF the fermions and LY the

Yukawa interaction between the fermions and the Higgs field. We describe the former

two terms in subsection 2.1.1 and the latter two in subsection 2.1.2.

2.1.1 BOSONS

GAUGE FIELDS

The gauge fields of the Standard Model are the U(1) field Bμ, the SU(2) fields Aa
μ, and

the SU(3) fields Gk
μ. The Lagrangian density of the gauge sector of the Standard Model

is given by (the sign is the consequence of our conventions, see Appendix A):

−LG =
1
4
BμνBμν +

1
4
Aa

μνAa,μν +
1
4
Gk

μνGk,μν , (2.2)

with

Bμν = ∂μBν − ∂νBμ, (2.3)

Aa
μν = ∂μAa

ν − ∂νAa
μ + g2 εabcA

b
μAc

ν , (2.4)

Gk
μν = ∂μGk

ν − ∂νGk
μ + g3 fklmGl

μGm
ν , (2.5)

where g2 and g3 are the coupling constants of SU(2) and SU(3) respectively, and εabc,

fabc are the structure constants of these groups.

HIGGS FIELD

The Higgs field φ is a scalar field that transforms as a doublet under the SU(2) group,

and can therefore be written as

φ =
(

ϕu

ϕd

)
, (2.6)

where the subscripts u and d denote up and down. The Higgs Lagrangian density is

−LH = (Dμφ)†Dμφ + V (φ), V (φ) = V0 − μ2φ†φ + λ
(
φ†φ
)2

. (2.7)
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The covariant derivative is

Dμφ =
(

∂μ − i

2
g1Bμ − ig2

τa

2
Aa

μ

)
φ, (2.8)

where g1 is the U(1) coupling constant, and τa are the Pauli matrices. The Higgs field

does not couple to the SU(3) gauge fields.

The minimum of the potential V (φ) is at φ†φ = v2/2, with v =
√

μ2/λ, which causes

spontaneous breaking of the SU(2)×U(1) gauge symmetry. This leads to effective mass

terms for gauge bosons and fermions, as we will see in section 2.2.

2.1.2 FERMIONS

CHIRAL FERMIONS

The Standard Model is a chiral gauge theory, which means that fermions of different

chirality couple differently to the gauge fields. Chiral fermions are described by Weyl

spinors, which are eigenspinors of γ5 (see Appendix A for conventions on γ matrices):

γ5ψR = ψR, γ5ψL = −ψL, (2.9)

where the subscripts R and L denote right- and left-handed. For later reference it is useful

to define the chiral projectors

PR =
1
2

(1 + γ5) , PL =
1
2

(1 − γ5) , (2.10)

such that

PRψ = ψR, PLψ = ψL, ψ̄PR = ψ̄L, ψ̄PL = ψ̄R, (2.11)

where ψ is a Dirac spinor.

Apart from the kinetic and Yukawa terms that are discussed below, chiral fermions can

also have Majorana mass terms if they are not charged under any gauge group. These

terms may occur in the lepton sector of the Standard Model but not in the quark sector.

Therefore we will not consider them here. Note that there are no Dirac mass terms for

chiral fermions.

KINETIC TERM LF

The fermions of the Standard Model are the quarks and the leptons. In this thesis we

consider only the quark sector1. The quarks of the Standard Model are the right-handed

1In the full quantum theory it is not possible to leave out the leptons because anomalies would make the

Standard Model inconsistent.
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Y
2 T a

2 T k
3

uR,g 2/3 0 λk/2
dR,g -1/3 0 λk/2
qL,g 1/6 τa/2 λk/2

Table 2.1: The quark fields of the Standard Model with their hypercharges Y and the generators

T a
2 and T k

3 of their representations under SU(2) and SU(3). τa and λk are the generators of the

fundamental representations of SU(2) and SU(3) respectively.

fields uR,g, dR,g and the left-handed field qL,g , where g is a generation index that runs

from one to three. The kinetic term (which includes the interactions with the gauge fields

via the covariant derivative) is given by

−LF = ūR,gγ
μDμuR,g + d̄R,gγ

μDμdR,g + q̄L,gγ
μDμqL,g, (2.12)

where the covariant derivative is

Dμψ =
(

∂μ − ig1
Y

2
Bμ − ig2T

a
2 Aa

μ − ig3T
k
3 Gk

μ

)
ψ, (2.13)

where ψ is to be substituted by uR,g, dR,g or qL,g . The hypercharge Y , and the generators

T a
2 and T k

3 depend on the species and are given in table 2.1.

It will be convenient to combine all the quark fields into one doublet:

qg =
(

ug

dg

)
= qL,g +

(
uR,g

dR,g

)
. (2.14)

The gauge fields can then be coupled to only the right- or left-handed parts of qg by using

the projectors PL and PR. The kinetic term (2.12) is then written as

−LF = q̄gγ
μDμqg, (2.15)

where the covariant derivative is

Dμqg =
{

∂μ − ig1

((
2/3 0
0 −1/3

)
PR +

(
1/6 0
0 1/6

)
PL

)
Bμ+

− ig2
τa

2
Aa

μPL − ig3
λk

2
Gk

μ

}
qg, (2.16)

where the matrices in SU(2) space have been explicitly written out for the Bμ term. Note

that there are no chiral projectors PL and PR for the SU(3) gauge fields.
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YUKAWA INTERACTIONS

The chiral quark fields can have Yukawa interactions with the Higgs field. In this section

we construct all the allowed interactions for the fields uR,g, dR,g and qL,g . At the end of

this section we will rewrite the result in terms of the field qg of equation (2.14).

Yukawa interactions couple left-handed spinors to right-handed spinors. The number of

possible interaction terms is strongly constrained by the condition of gauge invariance.

To get a term that is invariant under the SU(2) symmetry, the field qL must couple to the

Higgs field, either as q̄Lφ, or as q̄Lφ̃ (or hermitian conjugates), where

φ̃ = iτ2φ∗ =
(

ϕ∗
d

−ϕ∗
u

)
. (2.17)

To make the terms invariant under the U(1) group, one needs to count hypercharges.

Those of the quarks are given in table 2.1. The Higgs field φ has Y = 1 and φ̃ has

Y = −1. It follows that the only gauge invariant combinations are(
q̄Lφ̃
)

uR, and (q̄Lφ) dR (2.18)

and hermitian conjugates. Finally there is nothing that prevents the generations from

mixing, which results in

−LY =
(
q̄L,gφ̃

)
Fu

gg′uR,g′ + (q̄L,gφ) F d
gg′dR,g′ + h.c., (2.19)

where Fu and F d are matrices in generation space.

Just as we did above for the kinetic term, we can write the Yukawa interaction in terms of

the field qg . To this end it is useful to introduce the notation

Φ =
(
φ̃ φ
)

=
(

ϕ∗
d ϕu

−ϕ∗
u ϕd

)
, (2.20)

and to combine the Fu and F d matrices into a bigger matrix

F =
(

Fu 0
0 F d

)
. (2.21)

The field qg and the matrix F live in a six dimensional space with SU(2) indices and

generation indices (we suppress the SU(3) indices). We call this isogeneration space. Φ
also lives in this space; it is identity for the generation subspace. The Yukawa term (2.19)

is then written as

−LY = q̄ ΦFPRq + h.c., (2.22)

where we suppressed all the indices.
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2.2 UNITARITY GAUGE

The Higgs field plays an important role in the Standard Model: it has a non-vanishing

vacuum expectation value which causes spontaneous breaking of the SU(2)×U(1) gauge

symmetry. As a consequence gauge bosons and fermions can obtain masses. This is not

at all clear from the formulation of the previous section. In this section the action of

the Standard Model is reformulated by fixing the gauge in the unitarity gauge and by

transforming the gauge bosons and the fermions to their mass eigenstates. The resulting

interactions will be used in chapter 4.

2.2.1 HIGGS FIELD

In the unitarity gauge, the gauge is fixed such that the Higgs field (2.6) has ϕu = 0 and

ϕd is real. Expanding about the (tree level) vacuum gives

φ =
1√
2

(
0

v + h

)
, (2.23)

where v is the vacuum expectation value, and h is a real field with mass

mH =
√

2λ v, (2.24)

which is obtained from the potential V (φ) in the Lagrangian density (2.7).

2.2.2 GAUGE BOSON MASS EIGENSTATES

The vacuum expectation value in (2.23) leads to quadratic terms for the gauge fields from

the kinetic term (Dμφ)†Dμφ in the Lagrangian density (2.7). These terms mix the dif-

ferent gauge fields, but they can be diagonalized by transforming the gauge fields to their

mass eigenstates: (
Z0

μ

Aμ

)
=
(

cos θW − sin θW

sin θW cos θW

)(
A3

μ

Bμ

)
(2.25)

W±
μ =

1√
2

(
A1

μ ∓ iA2
μ

)
. (2.26)

where θW is the Weinberg angle, which satisfies tan θW = g1/g2. The masses of the

transformed fields are

mW =
1
2
g2v, mZ = mW / cos θW , mA = 0. (2.27)

The massless boson Aμ is identified with the photon.
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Note that in the unitarity gauge (2.23) the Higgs field has only one degree of freedom left;

the other three have been ‘eaten’ by the massive gauge bosons.

The covariant derivative (2.16) acting on the quark field q can be rewritten in terms of the

gauge boson mass eigenstates. Using the definition of the electric charge

e = g1 cos θW = g2 sin θW , (2.28)

one obtains

Dμqg =

{
∂μ − ieAμ

(
2/3 0
0 −1/3

)
− i

e√
2 sin θW

(
0 W+

μ

W−
μ 0

)
PL+

− i
e tan θW

6
Z0

μ

(
−4PR − (1 − 3

tan2 θW
)PL 0

0 2PR − (1 + 3
tan2 θW

)PL

)
+

− ig3
λk

2
Gk

μ

}
qg, (2.29)

where the chiral projectors have disappeared in the interactions with the photon Aμ.

2.2.3 FERMION MASS EIGENSTATES

In the unitarity gauge, Φ becomes proportional to unity: Φ = ϕd 1. The Yukawa interac-

tion (2.22) is then

−LY = ϕd q̄
(
FPR + F †PL

)
q. (2.30)

By transforming the quark field q such that F becomes real and diagonal, this term be-

comes a mass term for ϕd → v/
√

2.

To find the necessary transformation rules, we write the matrix Fu in a polar decompo-

sition as PuUu, with Pu =
√

FuFu† and Uu = (Pu)−1Fu. The matrix Pu is positive

definite and hermitian and can be written as V uDuV u† with Du a real (and positive)

diagonal matrix. The matrices V u and Uu are unitary. Together we have

Fu = V uDuV u†Uu, F d = V dDdV d†Ud, (2.31)

where we have applied the same reasoning to F d. Hence if we transform the quark field

by

qL,g →
(

V u
gg′ 0
0 V d

gg′

)
qL,g′ , qR,g →

(
Uu†

gg′V u
g′g′′ 0

0 Ud†
gg′V d

g′g′′

)
qR,g′′ ,

(2.32)

25



Chapter 2 - Standard Model

the Yukawa interaction (2.30) becomes

−LY = ϕd q̄Dq, D =
(

Du 0
0 Dd

)
, (2.33)

which is a mass term for ϕd → v/
√

2. The mass eigenstates ug are called the up, charm

and top quark (for generation indices g from one to three), and the mass eigenstates dg are

called the down, strange and bottom quark. The (diagonal) elements of D are the Yukawa

coupling constants λu, λc, λt, λd, λs and λb.

The transformations (2.32) do not commute with all the fermion-gauge interactions. In-

spection of the covariant derivative (2.29) shows that the term with the W± is affected,

and becomes

q̄γμ

(
−i

e√
2 sin θW

(
0 W+

μ V

W−
μ V † 0

)
PL

)
q, (2.34)

where V = V u†V d is the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The other terms

of the covariant derivative (2.29) are unaffected by the transformations (2.32). For later

reference it will be convenient to use the notation

τ̃+ =
e√

2 sin θW

(
0 V

0 0

)
, τ̃− =

e√
2 sin θW

(
0 0

V † 0

)
, (2.35)

such that the interaction term between the quark field q and W± (2.34) is written as

−i q̄γμ(W+
μ τ̃+ + W−

μ τ̃−)PLq. (2.36)

The CKM matrix V is a unitary matrix that has nine parameters (for three generations).

Three of these parameters are real rotation angles (from the real subgroup O(3)). The

other six parameters are complex phase factors. One can rotate away five of these phases

by global transformations qL,g → eiαqL,g (because six fields have five relative phases).

Therefore the CKM matrix contains four observable parameters, one of which is a com-

plex phase factor.

2.3 C AND P TRANSFORMATIONS

For baryogenesis it is essential that charge (C) and charge-parity (CP ) symmetries are

broken. In this section we recall how the C and P transformations act on the various

fields, and apply these transformations to a few relevant operators, in order to show that

C and CP are indeed not symmetries of the Standard Model.
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THE TRANSFORMATIONS

A scalar field φ transforms as

Cφ(t,x)C−1 = φ(t,x)∗, (2.37)

Pφ(t,x)P−1 = φ(t,−x). (2.38)

A vector field Aμ transforms as

CAμ(t,x)C−1 = −Aμ(t,x)∗, (2.39)

PAμ(t,x)P−1 = −(−1)μAμ(t,−x), (2.40)

where (−1)μ is −1 for μ = 0 and 1 for μ = 1, 2, 3 (there is no summation over the μ

indices). From these transformation rules it follows that the corresponding field strength

Fμν transforms as

CFμν(t,x)C−1 = −Fμν(t,x)∗, (2.41)

PFμν(t,x)P−1 = (−1)μ(−1)νFμν(t,−x). (2.42)

As a consequence
∫

FμνFμν is invariant under C (where we use that this term is real) and

P , and
∫

εμναβFμνFαβ is invariant under C but changes sign under P transformations.

A fermion field ψ transforms as

Cψ(t,x)C−1 = −βCψ∗(t,x) = (ψ̄C−1)T , (2.43)

Pψ(t,x)P−1 = βψ(t,−x), (2.44)

from which one can derive for ψ̄

Cψ̄(t,x)C−1 = −(Cψ(t,x))T , (2.45)

Pψ̄(t,x)P−1 = ψ̄(t,−x)β. (2.46)

The definitions of the matrices β and C are given in Appendix A.

APPLICATIONS

Next we apply these transformations to a few relevant operators.

Baryon number. Baryons are bound states of three quarks. The baryon current is there-

fore defined by

3jμ
B ≡ jμ

q = iq̄γμq, (2.47)

where there is summation over the (implicit) group and generation indices. It transforms

as

Cjμ
B(t,x)C−1 = −jμ

B(t,x), P jμ
B(t,x)P−1 = −(−1)μjμ

B(t,−x), (2.48)

Thus the baryon number B =
∫

d3x j0
B is odd under C and even under P .
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Quark interactions. Next we consider the interaction terms of the quarks. The quark-

Higgs interaction in the unitarity gauge and in terms of the fermion mass eigenstates

(2.33) is invariant under C and P (after integration over spacetime). The interactions

with the W± fields in (2.36) transform as:

C

{
q̄γμ

(
0 W+

μ V

W−
μ V † 0

)
PLq

}
C−1 = q̄γμ

(
0 W+

μ V ∗

W−
μ V T 0

)
PRq, (2.49)

P

{
q̄γμ

(
0 W+

μ V

W−
μ V † 0

)
PLq

}
P−1 = q̄γμ

(
0 W+

μ V

W−
μ V † 0

)
PRq, (2.50)

where we have used that W±∗
μ = W∓

μ . Hence both C and P symmetries are violated.

Under the combined CP transformation the only change is that the CKM matrix V is

complex conjugated. Because the V is complex, there is CP violation.

The other quark-gauge interactions only interchange PL and PR under both C and P

transformations and are invariant under the combined CP transformation.

2.4 ELECTROWEAK ANOMALY

After having established that the Standard Model violates C and CP symmetries, we pro-

ceed to another essential ingredient for baryogenesis: violation of baryon number conser-

vation. In the Standard Model this happens via the electroweak anomaly [70]. This is

a subtle quantum effect and is closely related to the Adler-Bell-Jackiw (ABJ) anomaly,

which is well covered in textbooks (e.g. [66, 68]).

In this section we review the ABJ anomaly very briefly (see the aforementioned textbooks

for more details), and then explain in more detail how the electroweak anomaly equation

can be derived from the standard ABJ anomaly result.

2.4.1 ADLER-BELL-JACKIW ANOMALY

Consider massless Quantum Electrodynamics (QED) with action

S =
∫

d4x ψ̄γμ (∂μ − ieAμ) ψ. (2.51)

At the classical level the currents

jμ = iψ̄γμψ, jμ
5 = iψ̄γμγ5ψ, (2.52)

are conserved:

∂μjμ = 0, ∂μjμ
5 = 0, (2.53)
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as can easily be checked by using the classical equations of motion. The conservation of

the current jμ corresponds to a U(1) symmetry (which is gauged), and of the current jμ
5

to an axial U(1) symmetry. However in the presence of an electromagnetic field the latter

symmetry can be broken by a quantum effect, which is called the ABJ anomaly [71, 72].

The anomaly can be proven in a number of ways. We will consider the divergence of the

expectation value of jμ
5 in the presence of gauge fields:∫

d4x e−iq·x 〈k1, k2|jμ
5 (x)|0〉 = (2π)4δ4(k1 + k2 − q)ε∗ν(k1)ε∗ρ(k2)Mμνρ(k1, k2),

(2.54)

where εν(k1) and ερ(k2) are polarization vectors of the electromagnetic field. The ampli-

tude Mμνρ is given by the triangle diagrams

μq

p − k1

p + k2

p

k1

k2

ν

ρ

+
μq

p − k2

p + k1

p

k2

k1

ρ

ν

, (2.55)

which are equal to

(−1)
∫

d4p

(2π)4
Tr

[
γμγ5

−(p/ − k/1)
(p − k1)2 − iε

e γν −p/

p2 − iε
e γρ −(p/ + k/2)

(p + k2)2 − iε

]
+

(k1 ↔ k2, ν ↔ ρ). (2.56)

The divergence of the expectation value (2.54) can be calculated (after careful regulariza-

tion) and is∫
d4x e−iq·x〈k1, k2|∂μjμ

5 (x)|0〉 =
e2

2π2
εανβρk1αε∗ν(k1)k2βε∗ρ(k2)δ4(k1 + k2 − q).

(2.57)

It can be shown by considering higher loop diagrams and other matrix elements that there

are no other contributions. One concludes that the ABJ anomaly equation is

∂μjμ
5 = − e2

8π2
FμνF̃μν , (2.58)

with F̃μν = 1
2εμναβFαβ . Note that both sides of this equation are quantum operators.

The anomaly only affects the axial current jμ
5 and not the vector current jμ such that the

gauge symmetry is not broken.

2.4.2 ELECTROWEAK ANOMALY

In the electroweak theory the effect is basically the same, albeit slightly more compli-

cated because of the chiral nature of this theory. As a consequence quark number (and
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therefore baryon number) conservation is violated by the anomaly. Here we calculate the

divergence of the quark current in the presence of gauge fields of the Standard Model by

making use of the ABJ calculation above.

We use the formulation of the Standard Model as in section 2.1 and not the gauge fixed

formulation of section 2.2. So the quark-gauge interactions follow from the covariant

derivative (2.16). The quark current is defined in (2.47) and the relevant expectation value

is∫
d4x e−iq·x〈k1, ν, a; k2, ρ, b| jμ

Q(x) |0〉 = (2π)4δ4(k1+k2−q)εa
ν
∗εb

ρ

∗Mμνρ,ab(k1, k2).

(2.59)

where εa
ν is the polarization vector corresponding to the field Bν (in this case there is only

one U(1) field and no index a), Aa
ν or Ga

ν . The amplitude Mμνρ,ab is

(−1)
∫

d4p

(2π)4
Tr

[
γμ −(p/ − k/1)

(p − k1)2 − iε
Γν,a −p/

p2 − iε
Γρ,b −(p/ + k/2)

(p + k2)2 − iε

]
+

(k1 ↔ k2, a ↔ b, ν ↔ ρ), (2.60)

where the field q is running around in the loop and the trace is over Dirac, group and

generation indices. The vertices Γμ,a follow from the covariant derivative (2.16), and are

U(1) : Γμ = g1γ
μ

((
2/3 0
0 −1/3

)
PR +

(
1/6 0
0 1/6

)
PL

)
, (2.61)

SU(2) : Γμ,a = g2γ
μ τa

2
PL, (2.62)

SU(3) : Γμ,a = g3γ
μ λa

2
. (2.63)

For different combinations of external gauge fields we can relate expression (2.60) to the

one of the ABJ anomaly (2.56). If the two external gauge fields are from different groups,

the expression vanishes because of the trace over the gauge indices. Moreover, if there is

no projector PL or PR at all in (2.60), the expression vanishes too (by Furry’s theorem),

which is the reason that the SU(3) fields do not contribute to the electroweak anomaly.

Consider first the case of two U(1) fields Bμ. Because PLPR = 0 and P 2
L = PL,

P 2
R = PR, the contributions are

g2
1

(
(1/6)2 0

0 (1/6)2

)
PL, and g2

1

(
(2/3)2 0

0 (−1/3)2

)
PR. (2.64)

The first contribution relates to the ABJ expression by a factor:

−1
2
× ng × 3SU(3) × 2 × (1/6)2 × g2

1

e2
, (2.65)
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and the second by a factor

1
2
× ng × 3SU(3) × (

4
9

+
1
9
) × g2

1

e2
, (2.66)

where the factors −1/2 and 1/2 come from PL and PR, and where ng is the number

of generations, which is equal to three in the Standard Model. These factors add up to

3ngg
2
1/4, so that the contribution to ∂μjμ

Q is

−3ng
g2
1

32π2
BμνB̃μν . (2.67)

Next consider the case of two SU(2) fields Aμ. Again there is a PL projector that gives a

factor −1/2. Furthermore there is a trace over two Pauli-matrices, which is Tr(τaτ b) =
δab/2. Together this contribution relates to the ABJ expression by a factor

−1
2
× ng × 3SU(3) × δab

2
× g2

2

e2
. (2.68)

In this nonabelian case there are also contributions from matrix elements with three of

four external gauge fields. These contributions add up to the gauge invariant result

3ng
g2
2

32π2
Aa

μνÃa,μν . (2.69)

In total the electroweak anomaly equation is (note that the baryon current is one third of

the quark current)

∂μjμ
B = ng

(
g2
2

32π2
Aa

μνÃa,μν − g2
1

32π2
BμνB̃μν

)
. (2.70)

As in the ABJ case the anomaly does not affect the currents that couple to the gauge fields.

The anomaly in the lepton current can be calculated in the same way and turns out to be

equal to the one in the baryon current. Therefore the difference between baryon number

and lepton number B − L is conserved also in the quantum theory. The sum B + L is

however not conserved.

2.5 TOPOLOGY IN THE ELECTROWEAK THEORY

At the classical level the right-hand side of the anomaly equation (2.70) has a topological

interpretation, which is discussed in this section. The Chern-Simons number of the gauge

fields and the related Higgs winding number are introduced, and the conditions under

which they are integer winding numbers are discussed.
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2.5.1 CHERN-SIMONS NUMBER NCS

In this section we consider only the SU(2) gauge fields Aa
μ, which corresponds to setting

g1 = 0. The anomaly equation then becomes

∂μjμ
B = ng

g2
2

32π2
Aa

μνÃa,μν . (2.71)

The right-hand side of the anomaly equation is, just like the left-hand side, a total deriva-

tive:
g2
2

32π2
Aa

μνÃa,μν = ∂μjμ
CS, (2.72)

where the Chern-Simons current is defined by

jμ
CS =

1
16π2

εμναβ Tr
(

AνAαβ + i
2
3
AνAαAβ

)
, (2.73)

and we use the notation Aμ = g2
τa

2 Aa
μ and Aμν = g2

τa

2 Aa
μν .2 Thus the Chern-Simons

number is

NCS =
∫

d3x j0
CS = − 1

16π2
εijkTr

(
AiAjk + i

2
3
AiAjAk

)
, (2.74)

with the convention ε0123 = −1. Both the Chern-Simons current and the Chern-Simons

number are not gauge invariant.

If both sides of the anomaly equation (2.71) are integrated over all space, and over time

from initial time ti up to final time tf , one obtains the relation

B(tf ) − B(ti) = ng (NCS(tf ) − NCS(ti)) , (2.75)

with B =
∫

d3x j0
B and where we have assumed that the currents vanish at spatial infinity.

Hence baryons can be produced by changing the Chern-Simons number of the gauge

fields. Because the right-hand side of the anomaly equation (2.71) is gauge invariant, the

difference of the Chern-Simons numbers is also gauge invariant.

Under certain conditions, the Chern-Simons number is integer because it is a winding

number. These conditions are that the field strength vanishes (Aμν = 0) and that space

has the topology of a three sphere S3. If the field strength vanishes, the vector potential

is pure gauge:

Aμ = iU∂μU−1, U ∈ SU(2). (2.76)

Therefore Aμ is completely determined by U and is a map from S3 to SU(2) ∼= S3. Such

maps fall in homotopy classes that are characterized by the integer winding number

− 1
24π2

∫
d3x εijkTr(U∂iU

−1U∂jU
−1U∂kU−1). (2.77)

2In chapter 3 the conventions are slightly different: the coupling is called g instead of g2 and it is absorbed

in the definition of Aa
μ (such that Aμ = Aa

μτa/2). Moreover Aμν is there called Fμν .
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For Ajk = 0 the Chern-Simons number (2.74) is equal to this winding number, which

shows that it is integer under the mentioned conditions.

2.5.2 HIGGS WINDING NUMBER Nw

One can also assign a winding number to the Higgs field. It is convenient to use the matrix

notation of the Higgs field (2.20):

Φ =
(
φ̃ φ
)

=
ρ√
2
Ω, (2.78)

with ρ2 = 2(ϕ∗
uϕu + ϕ∗

dϕd) and with Ω ∈ SU(2). The Lagrangian density (2.7) is then

written as

−LH =
1
2
Tr
(
(DμΦ)† DμΦ

)
+ λ

(
1
2
Tr
(
Φ†Φ

)− v2

2

)2

, (2.79)

where the covariant derivative is DμΦ = (∂μ − iAμ)Φ.

Analogously to the winding number (2.77), we define the Higgs winding number as

Nw = − 1
24π2

∫
d3x εijkTr(Ω∂iΩ−1Ω∂jΩ−1Ω∂kΩ−1), (2.80)

which is only well defined if ρ 
= 0 everywhere in space, and which is not gauge invariant

under ‘large’ gauge transformations. Note that, different from the Chern-Simons number,

the Higgs winding number is also integer if the Higgs field is not in vacuum (as long as

ρ 
= 0). But similar to the Chern-Simons number, the Higgs winding number is only

guaranteed to be integer if space has the topology of a three sphere S3.

2.5.3 CHANGING NCS AND Nw

Suppose that space has the topology of a three sphere S3. Then in vacuum both NCS

and Nw are integer. In fact, from the covariant derivative term in (2.79) one sees that in

vacuum Ω = U and therefore that NCS = Nw = n.

To go to another vacuum with NCS = Nw = n ± 1, the system has to pass through a

non-vacuum state. The energy barrier in between the different vacua has (locally) the

shape of a saddle, and the configuration at the lowest point on top of the barrier is called

the sphaleron [73, 74]. It has NCS = n ± 1/2, and Nw is not defined because ρ =
0 in the center of this configuration. Because of this barrier, the tunneling amplitude

from one vacuum to the other is strongly suppressed at low temperatures (compared to

the electroweak scale), which explains why baryon number violation is not observed in

the laboratory. However at high temperatures there are fluctuations over the barrier and

baryon number can easily be changed.
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In reality we do not know the global topology of the universe. However the sphaleron

configuration is a local configuration, that will not be influenced by the global topology

of the universe (as long as the universe is much larger than the inverse electroweak scale).

Therefore NCS and Nw will still change by integers, even if the topology of the universe

is not S3.

We will discuss more configurations that change NCS and Nw in chapter 3.
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CHAPTER 3

CHERN-SIMONS AND WINDING

NUMBER IN COLD

ELECTROWEAK BARYOGENESIS

3.1 INTRODUCTION

Baryogenesis, the creation of the baryon asymmetry in the universe, is a long-standing

problem in cosmology. It dates back to 1967 when Sakharov suggested that the baryon

asymmetry is not an initial condition of the universe, but might be created later in a pro-

cess based on particle physics [34]. This idea has gained support from the inflationary sce-

nario, since inflation is supposed to have diluted any pre-existing asymmetry. Sakharov

formulated his well-known conditions for baryogenesis: baryon number conservation, C,

and CP must be violated, and a state of non-equilibrium must prevail.

Of the many particle physics scenarios that have been proposed in the past decades im-

plementing such a process, electroweak baryogenesis [29, 30, 75] is interesting in that it

suggested the possibility to explain the baryon asymmetry using mostly Standard Model

physics. In this scenario the baryon number violation is caused by the anomaly that re-

lates a change in baryon number B to a change in Chern-Simons number NCS of the

electroweak gauge fields:

ΔB = 3〈ΔNCS〉. (3.1)

Furthermore the Standard Model violates C, it has a CP violating phase in the CKM

quark mixing matrix, and the out-of-equilibrium conditions can be provided by an elec-
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troweak phase transition. This phase transition was supposed to be caused by the lowering

temperature of the universe, and to be sufficiently out of equilibrium it had to be of first

order. However subsequent work has shown that for the experimentally allowed range of

the Higgs mass, the electroweak phase transition is only a crossover (see e.g. [76]). It is

widely believed that a crossover transition is too close to equilibrium for creation of the

asymmetry. Furthermore, the CKM CP violation has been found to be much too small

[47, 77, 78].

A few years ago, new scenarios were proposed [52, 53], in which electroweak baryoge-

nesis takes place during a tachyonic transition. In such a transition the effective mass

term in the Higgs potential starts being positive, and can change sign due to the coupling

to an inflaton field, as in hybrid inflation [13]. The accompanying instability can lead to

strongly out-of-equilibrium conditions with large occupation numbers in the Higgs and

gauge fields, during which the energy in the Higgs field is transferred to the other fields

by wave-like ‘rescattering’. The process is called tachyonic preheating [25]. During the

transition there can be substantial changes in the Chern-Simons number, and also the

baryon number via the anomaly equation (3.1). The universe was assumed to be cold

after electroweak-scale inflation, so initially the transition takes place at practically zero

temperature.

In subsequent papers the scenario was further refined and tested. Considerations of quan-

tum corrections led to a change of model to inverted hybrid inflation [56], in which the

inflaton rolls away from the origin instead of towards it. In [57] it was shown how WMAP

data constrain the parameters of a model and it was noted that it might be falsified by the

LHC. The transition was studied by analytic and numerical methods [79, 58, 59, 60, 61],

and the magnitude of the asymmetry generated by a form of CP violation was computed

in [58, 61].

The CP violating term in the Lagrangian that was used in [61] does not occur in the

Standard Model. Of course, one is also interested in the CP violation from the CKM

matrix. As mentioned above, this CP violation has been estimated to be much too small

for baryogenesis [47, 77, 78], but these estimates do not seem to apply to a tachyonic

transition at zero temperature. In fact, it has been suggested [80] that the effect might be

much larger in this case. It is therefore important to make sure whether the CP violation

of the Standard Model is sufficient to produce the baryon asymmetry.

Trying to investigate this problem by numerical simulation with three generations of

fermions is a practically impossible task. Instead we have in mind a more tractable ap-

proach: if the changes of NCS occur in a certain type of local field configuration, we could

estimate the produced asymmetry by simulating only this local configuration. There is

reason to believe that the change of NCS indeed occurs in local configurations: in [60]

evidence is found for local structures in numerical simulations, and in [53, 56] it is sug-

gested that topological defects called textures play a role in this process. The presence of a
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texture depends on the winding number of the Higgs field Nw. In the vacuum NCS = Nw.

A texture is a configuration which has winding number different from the Chern-Simons

number. It is unstable and can decay either by changing the winding number or the Chern-

Simons number. In [81, 82] a scenario for electroweak baryogenesis is investigated in

which the change of Chern-Simons number occurs during the decays of textures. The

textures were supposed to be formed directly after a first order electroweak phase tran-

sition, and the produced asymmetry was estimated by simulating a single texture and its

decays. Such an approach was investigated further in ref. [83], where it was concluded

that it is unlikely to be successful and that the asymmetry depends on too many vari-

ables to bypass a fully-fledged numerical simulation. We believe this conclusion is not so

clear-cut and consider it worthwhile to understand more fully the mechanism that changes

Chern-Simons numbers in tachyonic transitions.

In this chapter we study the production of winding and Chern-Simons number in a tachy-

onic transition. We shall argue that instead of textures, related configurations with half-

integer winding number are important. We call such configurations half-knots.1 These

typically occur in regions where the Higgs magnitude has a small minimum. They can be

stabilized when the Chern-Simons number density adjusts to the winding number density

and the Higgs field relaxes towards its ground state, leaving a blob-like half-knot both

in winding number and in Chern-Simons number. Half-knots have a rather high winding

number density in their center and can be visualized in numerical simulations. We present

some examples in detail.

In section 3.2 we review the Chern-Simons number, winding number and winding con-

figurations in this model. Next we turn to the tachyonic transition and discuss our expec-

tations with respect to the half-knots in this transition, in section 3.3. In section 3.4 we

present the results of the numerical simulations, and we discuss the results in section 3.5.

3.2 WINDING IN THE SU(2) HIGGS MODEL

In this section we review some topological features of the SU(2) Higgs model, since it

is the part of the Standard Model that plays a dominant role in the tachyonic transition.

First we introduce the model and define the Higgs winding number and the Chern-Simons

number. Then we discuss topological defects that may play a role in the transition: tex-

tures, sphalerons and half-knots.

1The word half-knot appeared earlier in [84].
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3.2.1 SU(2) HIGGS MODEL

The action is given by

S = −
∫

d4x

[
1

2g2
TrFμνFμν +

1
2

Tr
[
(DμΦ)† DμΦ

]
+ λ

(
1
2

Tr
[
Φ†Φ

]− v2

2

)2
]

,

(3.2)

where the field strength is Fμν = ∂μAν − ∂νAμ − i[Aμ, Aν ], the vector potential can

be written as Aμ = Aa
μτa/2, and the covariant derivative acting on the Higgs field is

DμΦ = (∂μ − iAμ)Φ. We use a metric with signature (-1,1,1,1) and for the Higgs field

we use the matrix notation:

Φ =
(

ϕ∗
d ϕu

−ϕ∗
u ϕd

)
=

ρ√
2

Ω, ρ2 = 2(ϕ∗
uϕu + ϕ∗

dϕd), Ω(x) ∈ SU(2). (3.3)

We call ρ the Higgs length. The Higgs and W masses are given by mH =
√

2λ v and

mW = gv/2, we also use the notation

μ =
√

λv2. (3.4)

As part of an extended theory, the mass term −λv2 1
2 Tr Φ†Φ is to be replaced by an

effective mass term

μ2
eff

1
2

Tr Φ†Φ, (3.5)

where μ2
eff depends on time through the coupling to another field (inflaton). Initially it is

positive, and when it changes to negative the tachyonic transition starts. Eventually μ2
eff

will relax to the Standard Model value

μ2
eff → −λv2 = −μ2. (3.6)

The rate of change of μeff depends on further details of the theory.

Throughout this chapter we we use the so-called ‘temporal gauge’ A0 = 0, which still

leaves the freedom to do time-independent gauge transformations.

3.2.2 TOPOLOGY IN THE SU(2) HIGGS MODEL

The non-conservation of baryon number in the Standard Model follows from the anomaly

in the divergence of the baryon current,

∂μjμ
B = 3 q, (3.7)

q =
1

32π2
εκλμνTr FκλFμν = ∂μjμ

CS. (3.8)
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Here 3 is the number of generations and jμ
CS is the Chern-Simons current; q is sometimes

called the topological charge density, since, for classical fields, and in Euclidean space-

time, its integral over a four-dimensional manifold without boundary is an integer, the

topological charge. Taking the expectation value of (3.7) in the initial (Heisenberg) state

and integrating between (real) times 0 and t gives

B(t) − B(0) =
∫ t

0

dx0

∫
d3x 〈3q〉 = 3〈NCS(t) − NCS(0)〉, (3.9)

with B = 〈∫ d3xJ0
B〉 the baryon number and

NCS =
∫

d3x j0
CS, j0

CS = − 1
16π2

εjklTr

[
Aj

(
Fkl + i

2
3
AkAl

)]
, (3.10)

the Chern-Simons number operator. We assumed that
∫

d3x ∂k〈jk
CS〉 vanishes, e.g. in a

model with periodic boundary conditions, or because the fields vanish sufficiently fast at

spatial infinity.

At this stage the Chern-Simons number and current are still operators, whereas the baryon

number B is a c-number in the way we have written it. In the following we shall make a

classical approximation (see section 3.3), and therefore we assume from now on that all

fields are classical. Note that NCS(t) and NCS(t) − NCS(0) are in general not integers.

The winding number of the Higgs field is given by

Nw =
∫

d3xnw, (3.11)

nw =
1

24π2
εijkTr

[
∂iΩΩ−1∂jΩΩ−1∂kΩΩ−1

]
, (3.12)

where Ω is given implicitly by (3.3); this is a valid definition as long as ρ 
= 0 everywhere.

Classical vacuum configurations are given by

Φ =
v√
2

Ω, Aj = −i∂jΩΩ−1, Ω ∈ SU(2). (3.13)

Here Ω is arbitrary. It is easy to check that in the vacuum (3.13) the winding number

density nw equals the Chern-Simons number density j0
CS.

The winding number (3.11) and Chern-Simons number (3.10) are not gauge-invariant;

they change by an integer under so-called large gauge transformations. As a consequence

a vacuum configuration can have any integer winding number and Chern-Simons number,

as long as they are equal NCS = Nw. Under gauge transformations NCS and Nw change

by the same amount, so that the difference Nw − NCS is gauge-invariant. The change in

time of NCS as defined by the integral over q in (3.9) is also gauge invariant.

In the following we briefly discuss two well-known configurations that can play a role

in changing the Chern-Simons and/or the winding number, namely the sphaleron and the

texture.
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3.2.3 SPHALERON

A sphaleron transition is a change from a vacuum with winding numbers NCS = Nw = n,

to another vacuum with NCS = Nw = n ± 1. It has been shown [73, 74] that the system

must pass an energy barrier. The static and unstable configuration at the minimum barrier

height is called a sphaleron, and its energy is the sphaleron energy. This configuration

has vanishing Higgs length in the center, so that the winding number is not defined: it

jumps by an integer exactly at the transition. The Chern-Simons number of a sphaleron is

precisely 1/2 (up to an integer).

The sphaleron energy Esph is proportional to v/g, and approximately 10 TeV. Because of

this high energy barrier, tunneling through the barrier (which corresponds to an instanton-

like event) is strongly suppressed. Therefore the baryon number is effectively conserved

at low temperatures. At higher temperatures the suppression is weaker because of thermal

fluctuations over the barrier. It is also useful to interpret this in terms of an effective tem-

perature dependent Higgs length 〈ρ〉 < v and an effective barrier height ∝ 〈ρ〉/g. Above

the electroweak phase transition temperature 〈ρ〉 vanishes and sphaleron transitions occur

unsuppressed. During a tachyonic electroweak transition there are also frequent fluctua-

tions over the barrier, as observed numerically in the susceptibility 〈N2
CS(t)〉 [60, 61].

3.2.4 TEXTURE

Without gauge fields, a texture is a configuration with a nonzero winding number Nw,

with the Higgs length equal to the vacuum value everywhere, and with only gradient

energy. According to Derrick’s theorem [85] such a configuration is unstable because

its energy can be lowered indefinitely by shrinking it. Numerical simulations show that

textures shrink quickly, and it was argued in [84] that in the end the configuration looses

its winding number and decays into outgoing waves (see also [86] for work on collapsing

textures).

For the SU(2) Higgs model a natural extension of a texture is a gauged texture: a configu-

ration with Chern-Simons number different from the winding number: NCS −Nw = ±1.

One can think of an initial configuration in which the gauge fields are pure-gauge with

integer Chern-Simons number and Higgs length equal to the vacuum value. Just as in the

global case, a gauged texture is unstable. There are basically two ways in which it can

decay [81, 82]: when its size is smaller than approximately 1/mW , it decays by chang-

ing the winding number, and when it is larger it decays by changing the Chern-Simons

number. In either case NCS − Nw → 0 and the configuration can spread indefinitely into

outgoing waves.
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3.2.5 HALF-KNOT

Although the total winding number in a finite volume with periodic boundary conditions is

integer, in practice there is no reason to find local configurations with nearly integer wind-

ing number or Chern-Simons number. This is because there is no mechanism that would

create such configurations, as there is, for example, energy minimization for monopoles.

Consequently the winding number density can be spread out over the volume. However as

we will argue below, there will be high winding number density regions where the Higgs

length is very small. The total winding number in such a region is typically not integer,

but close to 1/2, which is why we call these configurations half-knots.

ONE DIMENSION

We illustrate this idea first in the simpler but analogous one dimensional case with a

complex scalar field Φ and global symmetry group U(1),

Φ =
1√
2

(φ1 + iφ2) =
ρ√
2

Ω, Ω ∈ U(1). (3.14)

The winding number density is (x ≡ x1)

nw = − i

2π
Ω∗∂xΩ =

1
2πρ2

(φ1∂xφ2 − φ2∂xφ1). (3.15)

In a coordinate patch where we can write Ω(x) = exp[iω(x) + const.] we also have

nw = 1
2π ∂xω.

In order to gain some intuition, let us consider the following simple form

φ1(x) = cos(x) − .95, φ2(x) = sin(x), (3.16)

for which the Higgs length ρ has a minimum when x is close to zero. This configuration

is shown in a parametric plot in figure 3.1 at the end of this chapter. In this plot the

Higgs length ρ is the distance from the origin, and the change of phase corresponds to the

‘winding’ of the curve around the origin. When there is a small Higgs length, the phase

changes quickly (in this case approximately by an amount +π) and there is a high winding

number density. We can see this also in figure 3.2, where the Higgs length squared ρ2 and

the winding number density are plotted. We call such a region with small Higgs length

and large winding number density a half-knot. Note that the total winding number is

integer (in this case +1), but that only part of the winding number density is concentrated

in a small region. The rest of it is distributed approximately homogeneously over the rest

of space.
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We can formalize the half-knot by approximating φ1 and φ2 locally (around x = 0) by a

linear form

φα = cα + dαx, α = 1, 2. (3.17)

This corresponds to approximating the circle near the origin by a straight line, and gives

nw =
1

2πρ2
(c1d2 − c2d1), (3.18)

ρ2 = cαcα + 2cαdαx + dαdαx2, (3.19)

and a contribution to the winding number

Npeak
w ≡

∫ ∞

−∞
dx nw =

1
2

sgn(c1d2 − c2d1) = ±1
2
. (3.20)

We have extended the integral to ±∞, but of course, the linear approximation breaks

down somewhere and the integral is to be interpreted as the contribution from a peak in

the winding density.

THREE DIMENSIONS

In this subsection we introduce half-knots for the three dimensional case. As in the one

dimensional case we parameterize the Higgs field by real fields

Φ =
1√
2

(φ41 + iφaτa) , (3.21)

A simple example is a configuration that can locally be approximated by Fourier modes:

φα(x) = sin(x · kα − εα), α = 1, . . . , 4. (3.22)

The Higgs length
√

φαφα will be small near the origin if all the εα � 1. In order to get

a local minimum and not a long streamline of small Higgs length, the vectors kα should

span three dimensional space. In figure 3.3 we plotted the Higgs length and the winding

number density as a function of x = x1 and y = x2, in a slice through z = x3 = 0.05,

for the case

k1 = (1, 0, 0), k2 = (0, 1, 0), k3 = (0, 0, 1), k4 = (0, 0, 1), ε1 = ε2 = ε3 = 0.1, ε4 = 0.

(3.23)

The integrated winding number in a box x, y, z ∈ [−0.5, 0.5] around the peak is found to

be 0.43, and it does not depend strongly on the integration volume.

The 3D half-knot may be formalized similar to the 1D case by using a linear approxima-

tion in a region where the Higgs length ρ is small (on the scale of mH),

φα(x) = cα + dαkxk. (3.24)
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Then the winding number density is given by

nw =
1

12π2ρ4
εjklεαβγδ∂jφα∂kφβ∂lφγ φδ, (3.25)

and in the linear approximation this gives

nw =
1

2π2ρ4
det M, (3.26)

where M is the 4 × 4 matrix consisting of the column vectors dα1, dα2, dα3, cα,

det M = (1/6)εjkl εαβγδ dαj dβk dγl cδ. (3.27)

The integral over the winding density can be done by shifting coordinates, x → x′,

xk = x′k − gkldαl cα, (3.28)

where gkl is the inverse of fkl defined by

fkl = dαkdαl, gklflm = δk
m. (3.29)

In terms of the shifted coordinates we have

φα = c′α + dαkx′k, c′α = cα − dαkgkldβlcβ , c′αdαk = 0, (3.30)

and the length of the Higgs field is given by

ρ2 = c′αc′α + fkl x
′kx′l. (3.31)

The winding number of the half-knot equals∫
d3xnw =

1
2

sgn det M = ±1
2
. (3.32)

Since fkl is a positive matrix, the center (maximum winding-number density) of the half-

knot is at x′ = 0, and it has an ellipsoidal shape (surface of constant nw). Its energy

density has a constant contribution from the gradients, 1
2∂kφα∂kφα = 1

2dαkdαk, whereas

the contribution from 1
4λ(ρ2 − v2)2 drops off away from the center.

When ρ vanishes in the center as a consequence of dynamics, so when the vector cα

vanishes, the winding number may or may not flip sign, depending on how the vector cα

recovers from zero. A pure-Higgs half-knot can decay by spreading. With a gauge field

present, the Chern-Simons number may adjust to the winding number locally, such that

the difference between winding and Chern-Simons number essentially vanishes.

Half-knots occur generically near the moment textures decay by changing their winding

number, or near sphaleron transitions, because at these moments the Higgs length van-

ishes at a point. But half-knots are more general, for example, they occur in random field

configurations, e.g. initial conditions for classical evolution. It is not clear yet at this stage

that they are relevant, but in the simulations we will see that they are.
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3.3 WINDING IN THE TACHYONIC TRANSITION

In this section we discuss the evolution of winding number and Chern-Simons number in

a fast tachyonic transition. First we will review the relevant features of such a transition.

After that we will discuss the importance of half-knots and differentiate between early

and late half-knots.

3.3.1 TACHYONIC TRANSITION

At the onset of the tachyonic transition, when the effective mass parameter μ2
eff of the

Higgs field changes sign, the universe is assumed to be in a homogeneous state with

〈Φ〉 ≈ 0. As μ2
eff → −μ2, the Higgs potential becomes unstable near the origin and

the low momentum modes of Φ grow very fast. Since the couplings in the Standard

Model are fairly weak, it makes sense to study this process neglecting interactions. In this

approximation the Fourier modes of the Higgs field satisfy

Φ̈α(k, t) + [μ2
eff(t) + k2]Φα(k, t) = 0, (3.33)

which can be solved exactly for the initial stage where μ2
eff ≈ −M3t [87, 79] (choosing

t = 0 as the onset of the transition). It turns out that the unstable field modes, i.e. the

modes with k2 < −μ2
eff grow very fast; the number of unstable modes also grows when

−μ2
eff increases.

INTERACTIONS

An estimate for the moment that interactions set in is given by the time that the average

Higgs field reaches the point where the second derivative of the potential vanishes. This

is around mHt = 4.8 for an instantaneous quench and mH/mW =
√

2 [61]. There are

both self-interactions of the Higgs field and interactions with the gauge field. The self-

interactions slow down the growth of the Higgs field, and eventually lead to an oscillation

near the vacuum state. The interactions with the gauge fields lead to a strong growth of

the gauge fields [59, 60]. The oscillation of the Higgs field is damped by the interactions,

and when more fields are added in a realistic situation, this suppression is expected to be

even stronger. Eventually the energy will be distributed over all modes, and the system

thermalizes.
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INSTANTANEOUS QUENCH

As in [58, 59, 61], we make in this chapter the approximation that the change of the

potential is instantaneous in order to obtain the most dramatic effects,

μ2
eff(t) = +μ2, t < 0,

= −μ2, t > 0. (3.34)

Moreover we do not consider the inflaton field in our simulations. In this quenching

approximation the modes of the Higgs field grow exponentially fast [58, 61]:

Φα(k, t) ∝ exp[
√

μ2 − k2 t]. (3.35)

CLASSICAL APPROXIMATION

Another approximation that we use is the classical approximation. Intuitively one can see

that the fields can be considered to be classical, because the Bose fields grow exponen-

tially fast and the occupation numbers are therefore quickly much larger than one. For

the gauge field the occupation numbers become substantial only after the Higgs current

in its equation of motion has grown sufficiently large, which typically takes a few m−1
H

units of time [59]. The approximation is implemented as follows [58, 61]. Before the

instantaneous quench the fields are in the zero-temperature ground state corresponding to

positive μ2
eff = μ2. With neglected interactions this corresponds to a Gaussian distribu-

tion, which can be followed until it becomes classical and a switch to classical evolution

can be made. However, because quantum and classical evolution are formally the same

for Gaussian systems (so systems without interactions), this switch can already be made

directly after the quench at time zero. The classical evolution is computed from the fully

non-linear equations of motion, including the interactions. Making the switch early on

also enables a more gradual inclusion of the effect of the interactions. We draw a number

of Higgs field configurations from the classical part of the Gaussian distribution, and take

these configurations as initial conditions for the system after the quench. For simplicity,

the initial gauge potentials are set to zero, whereas the SU(2) electric fields are calculated

from Gauss’ law [61]. Then we evolve each of these configurations according to the clas-

sical equations of motion. In the end we compute expectation values by averaging over

the initial distribution.

The classical approximation for a tachyonic transition has been compared with quantum

methods like the 2PI-method in [88], and it turned out that the two approximations agreed

for the times and couplings used here, giving further support for both.
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3.3.2 WINDING AND CHERN-SIMONS NUMBER DENSITIES

In the initial conditions for the tachyonic transition the gauge fields are negligible, and

since the gauge potentials are zero in our implementation, the Chern-Simons number

density is zero. The Higgs field initially has fluctuations around zero and therefore it has

nonzero winding number density. Since the initial conditions are random, the winding

number density will be randomly distributed over the volume. The total winding number

in the volume will be integer and does not have to be zero.

When the system thermalizes and the temperature decreases, the Chern-Simons number

will approach the winding number. If the winding number would not change during the

process, the Chern-Simons number, approaching the initial winding number, would be

determined by the initial conditions, and CP violating interactions could not influence

the final outcome.

In reality the winding number does change during the process, and this makes it possible

that CP violation creates an asymmetry. The winding number can change when the

Higgs length becomes zero in a point, and as we argued in the previous section there will

be half-knots around such points. There are two periods when the Higgs has a chance to

be small and change of winding is likely to occur: early in the transition when the Higgs

field starts from a small fluctuation, and later on, when the Higgs length bounces back

due to its self-interaction, or just any interactions, e.g. scattering of non-linear waves.

In both periods half-knots will occur; we call them early and late half-knots respectively.

3.3.3 EARLY HALF-KNOTS

In the initial conditions of the tachyonic transition, the Higgs field has small fluctuations

around zero. The number density of minima of the Higgs length is, depending on the

initial conditions, roughly proportional to k3
max where kmax is the largest wavenumber

that is initialized. Because of the peculiar feature of the tachyonic transition that modes

grow faster as their wavelengths are larger, this number density of minima will quickly

decrease. Hence initially there are many half-knots, but their number quickly decreases.

Some half-knots will manage to survive longer. When a half-knot still exists when the

gauge fields start to become important, the Chern-Simons number density in these regions

can adjust to the winding number density. When the Chern-Simons number becomes ap-

proximately equal to the winding number in a blob, the covariant derivative DiΦ becomes

small, the gradient energy diminishes and the half-knot becomes stable.

The early half-knots are perhaps not so important for baryogenesis. In principle CP

violation could cause an imbalance in the formation and decay of the number of half-

knots and anti-half-knots. However in this early period there are no interactions yet, and
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CP violation cannot have acted. Also when the early half-knots stabilize and survive

CP violation is not important because then the winding number does not change. So we

expect that we should look at the late half-knots for possible effects of CP violation.

3.3.4 LATE HALF-KNOTS

The Higgs length can also become small later in the transition. For example this can

happen when the Higgs field bounces back in its potential, or because of interactions in

general. In this case there will be late half-knots in which the winding can change. Be-

cause interactions are important to create these half-knots, also CP violating interactions

can influence this process. There may also be longer lived half-knots, not stabilized by

the gauge fields, whose probability to decay is influenced by the stronger CP violation at

later times.

3.4 NUMERICAL SIMULATIONS

In this section we first describe briefly the setup of our simulations, and then present the

results.

3.4.1 SETUP

In [61] numerical simulations were described with the SU(2) Higgs model, using the

approximations described in section 3.3.1, and with an extra CP violating term in the

action. For the present work we extended the computer code of [61] to be able to observe

the winding number density and a local quantity nCS closely related to the Chern-Simons

number density (see below). We do not use the CP violation of the code of [61] because

at this point we are interested in the mechanism of winding number and Chern-Simons

number production, and not yet in the creation of the asymmetry.

The simulation was performed on a 603 lattice, with periodic boundary conditions and

with a lattice spacing of 0.35 m−1
H , such that the physical volume was L3 = (21m−1

H )3.

The initial conditions mentioned in 3.3.1 are the “just-a-half” initial conditions as de-

fined in [58, 61]. Effectively this means that only the growing modes, with momentum k

smaller than μ, are initialized with probability given by the vacuum state. Furthermore we

took λ/g2 = 1/4, which is equivalent to mH/mW =
√

2. (We shall also present some

results for mH/mW = 2.) For the determination of the initial conditions, which are set

by quantum fluctuations, we also have to fix g2. We chose g2 = 4/9. See [61] for more

details on the numerical implementation.
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The density nCS is defined as

nCS(x, t) =
∫ t

0

dt′ q(x, t′), (3.36)

where q is the gauge-invariant topological charge density given in (3.8). Since q = ∂μjμ
CS

and the Chern-Simons current is zero for our initial conditions,

nCS(x, t) = j0
CS(x, t) + ∂k

∫ t

0

dt′ jk
CS(x, t′). (3.37)

So nCS differs from j0
CS by a divergence and they both integrate to NCS. In the following

we shall call nCS the Chern-Simons density, for simplicity, but it should be kept in mind

that it is not equal to j0
CS.

3.4.2 RESULTS

ONE TYPICAL TRAJECTORY

In order to investigate classical field configurations we look at single trajectories. In this

subsection we consider one typical trajectory.

Total Nw and NCS as function of time in a typical run. The variables considered in

[61] were the spatial average of the Higgs length squared

ρ2 = L−3

∫
d3x ρ2, (3.38)

the winding number Nw and the Chern-Simons number NCS. In figure 3.4 we show

the evolution of these variables in time for our typical trajectory, from mHt = 0 up to

mHt = 30. The winding number Nw fluctuates initially, and later stays put at an integer.

The initial fluctuations indicate that there must be zeroes in the Higgs length. In the

continuum these fluctuations would be between integers (a ‘devil’s staircase’), but here

they appear as smoothed out by the lattice discretization.

We also see that the Chern-Simons number starts only when the average Higgs length is

already rather large, and that at the later times NCS ≈ Nw. (Occasionally we also have

seen trajectories for which the two differed at mHt = 30 by a number of order 1, and only

at much later times NCS approached Nw (sometimes this took as long as mHt ≈ 500)).

3D pictures of nw and nCS. Next we look at the densities of the winding number and

Chern-Simons number in this trajectory. Figure 3.5 displays the winding number density
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in the three dimensional simulation volume from times mHt = 1 to mHt = 15. Note that

the box has periodic boundary conditions. Red indicates positive density, blue negative.

In the beginning there are many ‘blobs’ in winding number density. We will argue below

for two specific cases that these blobs are half-knots with a small Higgs length ρ in their

center. Sometimes they change sign. The number of blobs decreases first until approx-

imately time mHt = 9, then it increases until approximately mHt = 13 after which it

decreases again. Some of the early blobs that are there already from the beginning sur-

vive all the time. The blobs that appear after time mHt = 9 seem to be uncorrelated to

the blobs that were there before. We call these new blobs the late blobs.

In figure 3.6 the Chern-Simons number density is shown from times mHt = 7 to mHt =
15. Before mHt = 7 the Chern-Simons number density is negligibly small. Also in

the Chern-Simons number density there are blobs. These blobs are correlated with the

winding number blobs.

Small Higgs length means a lot of winding. We argued above that regions with small

Higgs length have typically a large winding number density. This is confirmed in the sim-

ulations. In figure 3.7 the absolute value of the winding number density |nw| is plotted

versus the normalized Higgs length (ρ/v)2 for each point on the lattice. The configu-

ration of the typical trajectory at time mHt = 6 is used, when the gauge fields are still

unimportant. We see that |nw| and (ρ/v)2 are correlated such that, when the Higgs length

on a lattice point is small, the winding number density is typically large.

A consequence of this correlation is that when the average Higgs length is small, there will

typically be more winding blobs. We saw this already in the three dimensional pictures of

the winding number density: there were less winding blobs around time mHt = 8, when

the average Higgs length is large. We can show this more quantitatively, by plotting [89]∫
d3x |nw| in figure 3.8. We see in this figure that the peak in

∫
d3x |nw| at mHt ≈ 20

is much smaller than the corresponding one at mHt ≈ 12. This agrees with the fact that

there are much less lattice points with small Higgs length at mHt = 20. We can also see

this from the histograms in figure 3.9. Below we will refer to blobs that are created in the

nth minimum of the Higgs length as nth generation blobs.

Correlation between winding number and Chern-Simons number. Because the Higgs

and gauge fields interact, nw and nCS are correlated. This could already be seen in the

three dimensional pictures, but we can also calculate the correlation

C(r, t) =
∫

d3x [nCS(x, t) − nCS(t)][nw(x + r, t) − nw(t)]√∫
d3x [nCS(x, t) − nCS(t)]2

√∫
d3y [nw(y, t) − nw(t)]2

, (3.39)

where the ‘over-bar’ denotes the spatial average, as in (3.38). This correlator is plotted

versus r = |r| at various times in figure 3.10. It shows a spatial correlation developing on
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distances of order m−1
H , modulated in time and showing a tendency to diminish at later

times.

It is also instructive to plot its value at r = 0 versus time, see figure 3.11. We see that

the correlation C(0, t) develops already at early times, it peaks at times mHt ≈ 12 and

16, and there is a rapid drop after the first peak. This drop occurs when the average Higgs

length has become small after its first maximum, and
∫

d3x |nw| is on the rise again (cf.

figure 3.7). We interpret this as being caused by the creation of many new winding blobs

when the Higgs length is small again, for which nw is still uncorrelated with nCS. When

C(0, t) peaks for a second time the average Higgs length is large again and
∫

d3x |nw| is

low. We suspect that this is because the winding blobs that still exist when the average

Higgs length is large, exist already for some time and the Chern-Simons number density

has had some time to adjust. Later on the correlation decreases, which is presumably

caused by random fluctuations.

In the following two subsections we zoom in on two blobs, first on an early blob and then

on a late survivor.

EARLY BLOB

For the early blob we take the one indicated by the arrow in figure 3.12. Let us first look

at the distributions of the Higgs length and the winding number density in this blob. In a

vertical slice in the xz-directions through the center of the blob, the Higgs length and the

winding number density are plotted in figure 3.13, at time mHt = 2. The Higgs length

has a minimum and the winding number has a large peak at this minimum. These figures

look very similar to the analytical example in figure 3.3.

Next we have calculated the sums of some quantities in a ball around the center of the

blob. For this we had to determine the position of the center, which is slightly ambiguous.

We did it by defining the center as the point where the winding number density is maximal.

The position of the center can change a bit at different times, so we determined the center

at each time step. In the left panel of figure 3.14 we show the integrated winding number

density

Nball
w =

∫
ball

d3xnw, (3.40)

integrated Chern-Simons number density

Nball
CS =

∫
ball

d3xnCS, (3.41)

and the volume-averaged Higgs length

ρ2
ball

=
∫

ball

d3x ρ2
/∫

ball

d3x 1, (3.42)
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for a ball of radius 6 lattice units, corresponding to 2.1 m−1
H , as a function of time. For

reference the Higgs length averaged over the full simulation volume is also shown.

The winding number in the ball first decreases until mHt = 5, then increases until mHt =
10 and afterwards stays approximately constant near a value of 0.3. The Chern-Simons

number becomes visible from mHt ≈ 8 onwards, has a small peak and stays constant near

0.2 after mHt ≈ 13. The winding number and Chern-Simons number end up being close

to each other. The average Higgs length in the ball grows only much later than the one

in the full volume, and also oscillates with a somewhat higher frequency. It also exhibits

much less damping, which is suggestive of oscillons [90, 91].2 We will comment later on

the dip in the winding number at time mHt = 5.

The right panel of figure 3.14 shows the energy in the same ball with radius 2.1 m−1
H .

We display the excess energy above the average energy relative to the sphaleron energy,

i.e.
∫
ball

d3x (ε − ε)/Esph, where ε is the energy density and ε its average over the total

volume. The average energy density is simply that of the origin of the Higgs potential,

ε = m4
H/16λ, and the sphaleron energy for mH =

√
2 mW is Esp ≈ 3.78 (4πmW /g2)

(see e.g. [92]), and so
∫
ball

d3x ε/Esp ≈ 0.29. Hence, the sphaleron energy in this plot is

at 0.71.

We show the total energy in the ball as well as its contributions from the Higgs and

the gauge fields (the contribution from the covariant derivative is allocated to the Higgs

fields). We see that the gauge fields contribute most to the energy. It is remarkable that the

peak in the total energy occurs at a time where the average Higgs length in the ball has its

first maximum, that the peak is significantly higher than the sphaleron energy, and that the

energy has already fallen back to the average already shortly after mHt = 15. Evidently,

a strong energy flow into and out of the ball is taking place. At the later times Nball
CS has

roughly the same value as Nball
w .

To see how these results depend on the radius of the ball we show in figure 3.15 the

winding number and Chern-Simons number in balls with increasing radii, from 3 up to 15

lattice units. They clearly depend on the radius, and for the larger balls Nball
w increases

above 1/2. This may be caused by another blob of the same sign that is close (cf. figure

3.5, e.g. at time mHt = 15 the distance between the centers of the two blobs is about 13

lattice units).

Here we return to the dip that we observed at mHt = 5 in figure 3.14. From figure 3.15

we see that the dip is also there for larger radii of the ball; apparently the winding number

is not flowing out of the ball, but is really decreasing. In the continuum this can only

occur when the Higgs length ρ is exactly zero somewhere. But on the lattice we will

2The Higgs mode of the ideal oscillon found [91] for mH = 2 mW oscillates at a slightly lower frequency

than mH/2π but in our case the effective Higgs mass will be lowered by a non-zero effective temperature in the

bulk.
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miss already a significant amount of winding number when the spatial size of the winding

number peak becomes smaller than a lattice unit. Hence we interpret the observed dip as

a lattice artefact, signaling a half-knot in the center of which the Higgs length decreases

(which makes the peak sharper) until mHt = 5, and increases again after that.

Further insight can be obtained from the profiles of the Higgs length and the winding-

number density around the center of the blob, ρ(r) and nw(r). They are plotted in figures

3.16 and 3.17, for times mHt = 1 to 10. The profiles are determined by averaging at fixed

distances r from the center over all directions. For the position of the center we used the

same values as in figure 3.14.

From the Higgs length profiles we see that, while the Higgs length in the bulk grows

steadily from the beginning, in the center of the blob it remains very small up to time

mHt ≈ 6, and starts to grow only after that. At the latest time ρ(r) looks like an oscillation

about the equilibrium value. The winding number density profile is already well defined

at time mHt = 1. It then shrinks and becomes steeper towards the center, mHt = 2 and 3.

This shrinking and steepening appears to get blurred by lattice artefacts at mHt = 4, 5, 6
(note that the profiles here are shown on a much smaller scale than the ρ-profile in figure

3.16), and as mentioned earlier, we believe this is the reason for the dip in Nball
w at mHt =

5. From time mHt = 10 the winding number profile broadens.

We conclude that we have witnessed the formation of a half-knot, that nearly decayed by

shrinking, but got ‘saved’ by the gauge field adjusting its Chern-Simons number density

and diminishing the Higgs gradient density |DiΦ|2. Remarkably, this adjustment goes

together with a big jump in gauge-field energy. At later times the well-dressed blob carries

no excess energy, and the process has led to a local change in the total Chern-Simons

number.

LATE TRANSITION

Above we have seen (in the three dimensional pictures 3.5, 3.6 and the |nw| graph 3.8) that

new blobs are created when the average Higgs length is small. Sometimes the winding

number Nw changes in such a blob. Here we present an example of such a late blob

in which the winding number changes. It comes from another trajectory than the one

used before. Figure 3.18 shows the evolution of ρ2, Nw and NCS in this run up to time

mHt = 30. Note that the winding number changes from −1 to 0 between mHt = 23 and

mHt = 24. This change takes place in the blob that we are going to consider.

Figure 3.19 shows 3D plots of the winding and Chern-Simons number densities at times

mHt = 23 and 24. The change of the winding number occurs in the blob that changes

sign at the top of the box. At the same position there is a positive Chern-Simons number

density both before and after the change of winding number.
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In figure 3.20 the Higgs length and the winding number density in a horizontal slice

through the blob are shown for times mHt = 23 and mHt = 24. There is a pronounced

minimum in the Higgs length at the place of the peak in the winding number density. The

latter changes quite abruptly from negative to positive.

Next we plot Nball
w , Nball

CS and ρ2
ball

for a ball of radius 6 in lattice units (2.1m−1
H ) as

a function time in the left panel of figure 3.21. The average Higgs length in the ball is

approximately in anti-phase with the average Higgs length in the full volume, and there

appears to be no damping, suggesting as in figure 3.14 a connection with the oscillon

phenomenon [90, 91]. The winding number flips sign around mHt = 2 and becomes

negative. Then it makes limited excursions, even at the times where there are large peaks

in ρ2
ball

, but between times mHt = 23 and mHt = 24 it makes a rapid jump by about

+0.6, a substantial part of 1 for this relatively small ball. At this point ρ2
ball

has a

minimum. The Chern-Simons number of the ball does not follow the winding number

very much. It shows mild negative peaks at mHt = 9 and 18, shortly before the peaks

in ρ2
ball

, and between mHt = 18 and 30 it gradually increases by about 0.6 (about the

same as the jump in Nball
w at mHt = 23. In the right panel of figure 3.21 the total energy

in the ball and the contributions from the gauge and the Higgs fields are plotted versus

time. As in figure 3.14, we display the excess energy above the average, and with respect

to the sphaleron energy. The contribution from the gauge fields is again dominant in the

first two peaks (which coincide with the peaks in ρ2
ball

), but at mHt = 23 (where ρ2
ball

has a minimum) the Higgs energy clearly dominates. There is a moderate rise of the

energy between mHt = 22 and 27. Given that the subtracted energy is about 0.29 Esp,

its maximum value is about 15% higher than the sphaleron energy. The Nball
w and Nball

CS

data for balls with increasing radii are given in figure 3.22. The result is comparable to

the early blob: both the winding number and the Chern-Simons number increase with

increasing radius, indicating that there is not a sharp boundary of the blob. However, the

sharp rise in Nball
w between mHt = 23 and 24, and the steady increase of Nball

CS after

mHt = 18, are present for all ball radii.

Figures 3.23 and 3.24 show the profiles of the Higgs length and the winding number

density, from times mHt = 19 to mHt = 27. The Higgs length at the center is decreasing

and apparently developing a zero at time mHt = 23, when the winding number changes,

and after that it increases again. The winding profile becomes very steep around this time,

as we saw also in figure 3.20. Lattice artefacts do not seem to be prominent in this case.

Afterwards the winding density spreads and becomes very small.

The transition at mHt = 23 bears the hallmarks of a sphaleron transition: a gradual O(1)
increase in NCS and an O(1) jump in Nw, which occur locally in a blob, in the center

of which ρ goes through zero, together with a gradual increase in Nbal
CS and a switch of

sign in Nball
w . The energy at that time in the ball of radius 2.1m−1

H (1.5m−1
W ) is also

reasonably close to the sphaleron value (≈ 0.9Esp). The properties of the subsequent
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maximum at mHt = 27 look rather similar to the two earlier ones, in its dominance of the

gauge-field energy and the accompanying maxima in ρ2
ball

.

3.4.3 DISTRIBUTIONS AND SUSCEPTIBILITIES

Here we present some quantitative results for the late distribution of winding numbers,

and for the growth of the Chern-Simons susceptibility 〈N2
CS〉 during the transition. The

winding-number distribution is expected to be Gaussian for large volumes, but its volume

dependence may contain non-trivial deviations. The rate of change of the Chern-Simons

susceptibility has been interpreted as an effective sphaleron rate and used [60] to estimate

the asymmetry induced by CP violation. In this section we also show results for mass

ratio mH = 2mW , in addition to the value mH =
√

2 mW used throughout this article.

We vary mH/mW by varying the Higgs self coupling λ while keeping fixed the gauge

coupling g2, the volume in Higgs mass units, (mHL)3, and the lattice spacing in Higgs

mass units, amH.

WINDING DISTRIBUTION

Figure 3.25 shows the normalized distribution of winding numbers at mHt = 50 obtained

from a sample of about 2000 initial conditions for each parameter set. Three fits to the

data are shown as well, one based on a Gaussian and two models based on generation

via winding blobs. In a first approximation we treat such blobs as being dilute and in-

dependent, which means that in a sufficiently large volume the probability for n blobs

is pn = crn/n!, where c is a normalization constant following from
∑

n pn = 1. For

n = 1, 2, . . . this gives c = e−r, and r is the average number of blobs, which is propor-

tional to the volume.

From a Kibble mechanism viewpoint one might expect each blob to contribute one unit

to the winding number. For n blobs there may be k blobs contributing +1 and n−k blobs

contributing −1, such that the winding number is N = k(+1) + (n− k)(−1) = 2k − n.

Assuming a probability a for +1 and (1 − a) for −1, the probability for winding number

N would be given by

PN =
∞∑

n=0

pn

n∑
k=0

(
n

k

)
δ2k−n,N ak(1−a)n−k = e−r

(
a

1 − a

)N/2

IN (2r
√

a(1 − a)),

(3.43)

where IN is the usual Bessel function. In our case of no CP violation, a = 1/2, and

P
(1)
N (r) = e−rIN (r). (3.44)
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For r � 1 this becomes indistinguishable from a Gaussian,

PGauss
N (σ) =

1√
2πσ2

e−N2/2σ2
, (3.45)

with σ ≈ r.

However, we have argued and presented evidence that in a tachyonic quench the initial

winding blobs are half-knots, some of which become stabilized by the gauge field and pick

up a Chern-Simons number equal to their winding number ±1/2. So their initial winding

number is conserved, although they later decay by spreading. This suggest that we modify

the above model by taking into account the half integer winding of the blobs. Since the

total winding number is integer, we could modify the above reasoning by assuming that

in case n is odd, there is a compensating contribution ±1/2 somewhere in the volume,

writing N = k(+1/2)+ (n− k)(−1/2)± 1/2, with equal probability 1/2 for the ± sign.

The even-n contribution to PN is unmodified. This gives

P
(1/2)
N (r) = e−r

[
I2N (r) +

1
2
I2N+1(r) +

1
2
I2N−1(r)

]
. (3.46)

Alternatively, we can model the compensating ±1/2 contribution by a half-knot and only

allow even n, such that pn → rn/n! cosh r, which leads to the simpler form

P
′(1/2)
N (r) = I2N (r)/ cosh(r). (3.47)

The distributions PN are normalized,
∑∞

N=−∞ PN = 1.

The χ2 values of the fit presented in the upper plot of figure 3.25 for the half-knot based

model of equation (3.47) is clearly lower than the integer model and also the Gaussian

model. For the model of equation (3.46) the result is comparable. For the lower plot

the integer-knot model gives a better fit but the difference with the half-knot model is

not significant (χ2/ d.o.f. = 1.3 vs. 1.1). This we consider additional support for the

relevance of half-knots in the tachyonic transition.

CHERN-SIMONS SUSCEPTIBILITY

Figure 3.26 shows the time dependence of 〈N2
CS〉 for the mass ratios mH/mW =

√
2

and 2. Both curves show an initial rapid rise, and the
√

2 case shows a deep dip near

mHt = 13. This is about the time where the average Higgs length also has its first

minimum (actually approximately one m−1
H unit later) . At this time

∫
d3x |nw| has risen

again substantially (figure 3.8), and there is evidently no instantaneous connection with

the winding number. The dip is much less pronounced (and shifted) for mass-ratio 2 case,

presumably due to the stronger coupling λ, which implies a smaller initial energy density

(m4
H/16λ). We have seen that the dip in the average Higgs length is also less deep in
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this case. This suggests fewer second-generation winding blobs, which may explain the

quicker flattening of 〈N2
CS〉, compared to the

√
2 case. Correspondingly, the effective

sphaleron rate d〈N2
CS〉/dt (e.g. averaged over an oscillation) will be substantial over a

larger time span when mH/mW decreases.

An alternative interpretation for the first minimum in the susceptibility could be given in

terms of NCS bouncing back from a barrier in the potential of its effective equation of

motion. The ρ-dependence of this barrier may even lead to resonant behavior [58, 61].

3.5 SUMMARY AND DISCUSSION

In the theory of baryogenesis the change of the Chern-Simons number of the SU(2) gauge

field plays an important role, and we studied the mechanism by which this can occur in

a tachyonic electroweak transition. The tachyonic instability occurs initially in the Higgs

field, and because of its coupling to the gauge field through the covariant derivative, one

expects a correlation between the Chern-Simons number and the Higgs winding number.

We argued that in a tachyonic transition there will be many places where the Higgs length

is small in a typical field configuration. These places are important since the winding

number can change when the Higgs length goes through zero, possibly under influence

of CP violation, and this may also induce a change in the Chern-Simons number. On

the other hand, small Higgs lengths imply small Higgs currents, which may limit their

influence in the equation of motion of the gauge field. Regions with small Higgs length

have in general a large winding-number density which is why we call them winding blobs.

The integrated winding number in these blobs does not need to be integer, and the basic

objects have winding number close to ±1/2, the half-knots. When the dynamics causes

the Higgs length to vanish in the center of a half-knot, its winding number may flip sign.

Half-knot configurations occur also naturally during sphaleron transitions and decaying

textures loosing their winding number, since these have a moment at which the Higgs

length vanishes at a point in space. The pure-Higgs half-knots can evaporate by increasing

the Higgs length in the center, but they may also get ‘dressed’ by the gauge field adjusting

its Chern-Simons number density locally to the winding. The configuration may then

decay by spreading into the environmental fluctuations, and the half-knots have acted like

local seeds of Chern-Simons number change.

We observed the winding blobs in numerical simulations of the tachyonic transition in

the SU(2) Higgs model. Because of their large winding number density, they are easy

to spot. We indeed observed a strong correlation between the half-knot winding density

with the Chern-Simons number density.3 The picture sketched above was supported by

3We recall that in our numerical simulation we actually used nCS, which is a gauge-invariant modification

of j0
CS with the same total Chern-Simons number.

56



Chapter 3 - Chern-Simons and winding number in Cold Electroweak Baryogenesis

the behavior of the integrated winding and Chern-Simons densities in small balls, as well

as the radial profiles of the spherically averaged densities. Our findings for the profiles

are similar to the one shown in [60].

We also analyzed an example of a realistic sphaleron transition. This occurred quite late

in a blob that survived a relatively long time, showing signs of stability reminiscent of

oscillons [90, 91]. In the present case we do not expect such objects to live very long as

they will be destroyed by thermal fluctuations.

We found that the winding blobs can be divided into two classes. The early blobs are

remnants from the initial conditions, and can sometimes survive when they are stabilized

by the gauge fields. The late blobs occur when the Higgs length bounces back to small

values, and there can be second, third, . . . , generations, especially for smaller Higgs self-

couplings. Most of the early blobs are probably not important for CP violation, because

interactions become important too late for them. CP violation can however affect the late

blobs.

The distribution of Chern-Simons numbers is expected to be approached by the distri-

bution of winding numbers when the volume becomes large. We studied the winding

number distribution and found that it could be fitted by models based on half-knots, better

than by a model based on integer components and even marginally better than a Gaussian,

although for large volumes all the model-distributions are expected to become indistin-

guishable from a Gaussian.

Finally we presented new results on the susceptibility of Chern-Simons numbers, which

has been used in estimates of the baryon asymmetry [60]. Some aspects of its dependence

on the Higgs self-coupling could be interpreted in terms of generations of half-knots, but

a detailed understanding is difficult. Nevertheless, we expect that the increased under-

standing obtained in this chapter is of use for modeling cold electroweak baryogenesis.
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Figure 3.1: Parametric plot of φ2(x) versus φ1(x) for x ∈ [−π, π], for the configuration of

equation 3.16.
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Figure 3.2: The Higgs length ρ2 and the winding number density nw for the configuration of

equation (3.16) as function of x.
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Figure 3.3: The Higgs length ρ2 (left) and the winding number density nw (right) for the configu-

ration (3.22), (3.23), as function of x and y, with z = 0.05.
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Figure 3.4: Results of a typical run for times mHt = 0 to mHt = 30. Plotted are ρ2/v2, the total

winding number Nw and total Chern-Simons number NCS.
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Figure 3.5: Winding number density nw from mHt = 1 to mHt = 15. Red is positive, blue is

negative.
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Figure 3.6: Chern-Simons number density nCS from mHt = 7 to mHt = 15. Before mHt = 7 the

Chern-Simons number density is negligibly small. Red is positive, blue is negative.

Figure 3.7: The absolute value of the winding number density |nw| versus the Higgs length for all
lattice points in the simulation volume, at time mHt = 6.
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Figure 3.8: The integral
R

d3x |nw| and the spatial average of the squared Higgs length versus
mHt.
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Figure 3.9: Histograms that display the distribution of the Higgs length on the lattice at times

mHt = 8, 12 and 20.
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Figure 3.10: The correlation C(r, t) between nCS and nw, defined in (3.39), versus r = |r| at
various times.
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Figure 3.11: The correlation C(0, t) versus time.

Figure 3.12: The winding number density at time mHt = 1 of the same run as used before. The

blob that we consider in this section is indicated by the arrow.
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Figure 3.13: Left the Higgs length (vertical) at time mHt = 2 is plotted for a slice through the

blob, as function of the x and z coordinates (a vertical slice). Right the winding number density at

time mHt = 2 is plotted for the same slice through the blob.
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Figure 3.15: Nball
w (left) and Nball

CS (right) for balls with varying radii, increasing from 3 lattice

distances up to 15 lattice distances.
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Figure 3.16: Profiles of the normalized Higgs length ρ2(r)/v2 for times mHt = 1 to mHt = 10.

On the horizontal axis is the distance from the center, r, in lattice units (0.35 m−1
H ).
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Figure 3.17: As in figure 3.16 for nw(r) for timesmHt = 1 tomHt = 5 (left) and untilmHt = 10

(right).
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Figure 3.19: 3D plot for the winding number density (upper two figures) and Chern-Simons number

density (lower two figures) at times mHt = 23 (left) and mHt = 24 (right).

Figure 3.20: Upper plots: Higgs length as function of the x and z coordinates through the blob.

Left is at timemHt = 23, right at timemHt = 24. Lower plots: the corresponding winding number

density.
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Figure 3.22: The analog of figure 3.15: Nball
w (left) and Nball

CS (right) for balls with varying radii,

increasing from 3 to 15 lattice units.
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Figure 3.24: As in figure 3.23 for nw(r).
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CHAPTER 4

CP VIOLATION

4.1 INTRODUCTION

In the previous chapter the baryon production mechanism in CEB was studied in detail.

Another essential ingredient for baryogenesis is CP violation, which is the subject of this

chapter. The goal is to estimate the size of CP violation from the CKM matrix in CEB.

In conventional electroweak baryogenesis models baryon production takes place at the

temperature of the electroweak phase transition (TEW ∼ 102 GeV). Using this temper-

ature in the estimate (1.20) one finds that the size of CP violation is much too small to

account for the baryon asymmetry of the universe. However, CEB takes place at (initially)

zero temperature and it is not clear how to interpret equation (1.20) for this model (see

also [80]).

In this chapter we consider the CP violating imprint from the CKM matrix on the boson

fields of the Standard Model by integrating out the quarks. The resulting effective action

can be expanded in various ways: in a heat kernel expansion (see [93] for a recent re-

lated approach), a derivative expansion [80], or an expansion in fields [46, 47]. We use

an expansion in fields and determine at which order the first CP violating term occurs.

Furthermore we apply this to CEB, and compare with the derivative expansion.
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4.2 CP VIOLATION IN EXPANSION IN FIELDS

Consider the Lagrangian density of the Standard Model (2.1), and integrate out the quarks

to obtain the effective action Seff :

eiSeff =
∫

Dq̄Dq ei
R

d4xLSM , (4.1)

In this section we will consider the expansion of Seff in the fields W± and ϕd, and analyze

the CP violating contributions in this expansion. We work in the unitarity gauge as

described in section 2.2, and do not consider the Z0, A and Gk fields (but see the comment

at the end of section 4.2.2).

4.2.1 EXPANSION IN FIELDS

The expansion of the effective action Seff in W± and ϕd in momentum space is

1
n!n!(2m)!

∑
n,m

∫ ( 2n∏
i=1

d4ki

(2π)4

)⎛⎝ 2m∏
j=1

d4qj

(2π)4

⎞
⎠ (2π)4δ4(

2n∑
i=1

ki +
2m∑
j=1

qj)

W+
μ1

(k1)W−
μ2

(k2)W+
μ3

(k3) · · ·W−
μ2n

(k2n)ϕd(q1) · · ·ϕd(q2m)

Γμ1...μ2n
n,m (k1, . . . , k2n; q1, . . . , q2m), (4.2)

where the effective vertex functions are

(2π)4δ4(
2n∑
i=1

ki +
2m∑
j=1

qj) Γμ1...μ2n
n,m (k1, . . . , k2n; q1, . . . , q2m) =

δ2n+2mSeff

δW+
μ1(k1) · · · δW−

μ2n(k2n) δϕd(q1) · · · δϕd(q2m)
. (4.3)

As will become clear below, there must be an equal number of W+ and W− fields, and

also the Higgs fields ϕd must come in even numbers. Because the gauge is fixed, the

individual terms in the expansion are not gauge invariant. However, the full effective

action is gauge invariant.

1PI DIAGRAMS

The effective vertex functions Γ can be represented by sums of 1PI diagrams that consist

of a quark loop with bosonic external lines. Diagrams with more loops would require
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internal boson lines, and do not occur because the bosons are not integrated out. Consider

the contributions

p

μ1 +
k1

q1

q2

μ2 −
k2

−p

μ1 +
k1

q1

q2

μ2 −
k2

, (4.4)

where the diagram on the right-hand side is only different from the one on the left-hand

side by the reversed fermion arrow (and the corresponding sign change of p). The curved

dashed lines indicate more external lines that have not been drawn. There are other di-

agrams (with different orderings of the external lines) that contribute, but we will not

consider these.

Using the interactions (2.33) and (2.36), the diagram on the left-hand side of (4.4) trans-

lates to

−
∫

d4p

(2π)4
Tr
(

τ̃+γμ1PL
(p/ − k/1)
(p − k1)2

D
(p/ − k/1 − q/1)
(p − k1 − q1)2

D ×
(p/ − k/1 − q/1 − q/2)
(p − k1 − q1 − q2)2

τ̃−γμ2PL · · ·
)

(4.5)

where the trace is over the Dirac-indices, group indices and generation indices. The trace

over SU(3) indices is trivial and gives a factor three. The trace over the Dirac indices and

the trace over isogeneration indices can be taken apart, such that equation (4.5) becomes

−3
∫

d4p

(2π)4
Δμ1...μ2n

n,{m1,...,m2n}(PL)Mn,{m1,...,m2n}, (4.6)

with m1 = 1 for this particular case, and where we have defined

Δμ1...μ2n

n,{1,...,m2n}(X) =

TrD

(
γμ1X

(p/ − k/1)
(p − k1)2

(p/ − k/1 − q/1)
(p − k1 − q1)2

(p/ − k/1 − q/1 − q/2)
(p − k1 − q1 − q2)2

γμ2 · · ·
)

(4.7)

Mn,{m1,...,m2n} = Trig
(
τ̃+Dτ̃− · · · ) , (4.8)

where TrD stands for the trace over Dirac indices, X is a matrix with Dirac indices, Trig
is the trace over isogeneration space indices, and D = D2. The dependence of Δ on the

external momenta is suppressed. The subscript n, {m1, . . . ,m2n} denotes that there are

2n W± lines and that there are mi pairs of Higgs lines at each position in between the

W± lines. The mi must add up to m.
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At this point it is clear that the fields must come in pairs. If there is an odd number

of Higgs interactions in between two W± interactions, the Dirac trace in equation (4.5)

vanishes because of the chiral projectors. Furthermore the isogeneration trace M vanishes

if there is an odd number of W± lines, and also if the W+ fields do not alternate with the

W− fields.

Similar as equation (4.5) for the left-hand diagram of (4.4), one obtains for the the right-

hand diagram

−
∫

d4p

(2π)4
Tr
(
· · · τ̃−γμ2PL

(p/ − k/1 − q/1 − q/2)
(p − k1 − q1 − q2)2

D
(p/ − k/1 − q/1)
(p − k1 − q1)2

D ×
(p/ − k/1)
(p − k1)2

τ̃+γμ1PL

)
, (4.9)

(where we have taken p → −p with respect to (4.5)). By taking the transpose of the

matrix inside the trace, using some of the relations for γ-matrices in Appendix A and the

relation τ̃+T = τ̃−∗, this can be rewritten to

−3
∫

d4p

(2π)4
Δμ1...μ2n

n,{m1,...,m2n}(PR)M̄∗
n,{m1,...,m2n}, (4.10)

where M̄ is obtained from M by interchanging τ̃+ ↔ τ̃−:

M̄n,{m1,...,m2n} = Trig
(
τ̃−Dm1 τ̃+ · · · ) . (4.11)

CP VIOLATING CONTRIBUTION

The interactions of the Standard Model are nearly invariant under CP transformation: the

only change is that the CKM matrix V is complex conjugated (see section 2.3). For the

diagrams (4.4) this implies that under CP transformation only the isogeneration traces

M and M̄ in equations (4.6) and (4.10) are complex conjugated. The CP violating con-

tribution is therefore the difference between the results (4.6) plus (4.10) and these same

results with complex conjugated M and M̄ :

− 3
∫

d4p

(2π)4

{
Δ(PL) (M − M∗) + Δ(PR)

(
M̄∗ − M̄

)}
=

− 6i

∫
d4p

(2π)4

{
Δ(

1
2
)
(
ImM − ImM̄

)− Δ(
γ5

2
)
(
ImM + ImM̄

)}
, (4.12)

where we have suppressed the indices of Δ and M .

This is the CP violating contribution of the effective vertices Γ. For the full effective

action (4.2) one expects that CP violating terms contain an epsilon tensor εμ1μ2μ3μ4 ,

which can only come from the trace Δ(γ5/2). Therefore we consider in the following

only this term.
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4.2.2 CP VIOLATION

As expected, the CP violating contribution (4.12) is only nonzero if the imaginary part

of V is nonzero. However for simple diagrams, the traces M and M̄ turn out to be real

even if V is complex. In this section we derive the lowest order diagrams for which the

CP violating contribution does not vanish, by starting with diagrams without W± lines,

and subsequently adding W± lines.

Less than four W± lines. If there are no W± lines, the isogeneration space matrix

contains only powers of D and therefore M is real.

For two external W± lines the τ̃+ and τ̃− matrices bring in complex numbers. However

the trace M is always real, as we show here. The most general M with two external W±

lines is

M1,{m1,m2} = Tr
(
τ̃+Dm1 τ̃−Dm2

)
. (4.13)

The complex conjugate can be obtained by taking the hermitian conjugate of the matrix

inside the trace

M∗
1,{m1,m2} = Tr

(Dm2 τ̃+Dm1 τ̃−) , (4.14)

where the relation τ̃+† = τ̃− is used. Using the cyclic property of traces, one sees that

M∗
1,{m1,m2} = M1,{m1,m2}.

FourW± lines. For four W± lines the most general M is

M2,{m1,m2,m3,m4} = Tr
(
τ̃+Dm1 τ̃−Dm2 τ̃+Dm3 τ̃−Dm4

)
. (4.15)

If three of the four mi are equal to 1, this M is real which can be seen in a similar way

as above. If two consecutive mi are equal to 2, and the other two mi are equal to 1,

M is complex. However in this case the corresponding M̄ is equal to M∗, and therefore

ImM̄ = −ImM and the sum (ImM+ImM̄) in the term with Δ(γ5/2) in (4.12) vanishes.

One finds the first CP violating contribution to the effective action for m1 = 3, m2 = 2,

m3 = m4 = 1. It can be checked (for example by using Mathematica) that for this case

ImM2,{3,2,1,1} = − e4

4 sin4 θW

J(λ2
b + λ2

s + λ2
d)δλ

12, (4.16)

ImM̄2,{3,2,1,1} =
e4

4 sin4 θW

J(λ2
t + λ2

c + λ2
u)δλ12, (4.17)

where J is the Jarlskog invariant (1.21), and we have used the notations

D = diag(λ2
u, λ2

c , λ
2
t , λ

2
d, λ

2
s, λ

2
b), (4.18)

δλ12 = (λ2
t − λ2

c)(λ
2
t − λ2

u)(λ2
c − λ2

u)(λ2
b − λ2

s)(λ
2
b − λ2

d)(λ
2
s − λ2

d), (4.19)
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where diag denotes a diagonal matrix in isogeneration space. The CP violating contribu-

tion (the term with Δ(γ5/2) from equation (4.12)) from this diagram is then

3ie4

2 sin4 θW

Jδλ12(λ2
t + λ2

c + λ2
u − λ2

b − λ2
s − λ2

d)
∫

d4p

(2π)4
Δ2,{3,2,1,1}(

γ5

2
), (4.20)

where the result of the integral is a function of the external momenta ki and qj . Note the

resemblance with the standard estimate (1.20).

There are also CP violating contributions from diagrams with permutations of the mi,

e.g. m1 = 2, m2 = 3, m3 = m4 = 1. The contribution from this permutation is

− 3ie4

2 sin4 θW

Jδλ12(λ2
t + λ2

c + λ2
u − λ2

b − λ2
s − λ2

d)
∫

d4p

(2π)4
Δ2,(2,3,1,1)(

γ5

2
). (4.21)

This term is not expected to cancel (4.20), because the Δ’s are different functions of the

external momenta.

Comments. These diagrams with four W± lines and fourteen Higgs lines are the lowest

order CP violating diagrams. Diagrams with more W± lines need also more Higgs lines.

E.g. diagrams with six W± lines must have at least nine pairs of Higgs lines (so eighteen

Higgs lines). These diagrams are therefore of higher order in both the W± fields and in

the Higgs field.

Interactions with other gauge bosons (Z, A and Gk) lead to insertions in the isogeneration

trace M of matrices that are diagonal in SU(2) space and proportional to the identity

matrix in generation space. Clearly these interactions are not interesting from the point of

view of CP violation.

4.2.3 VALIDITY OF EXPANSION IN FIELDS

Next we examine when the expansion in fields (4.2) can be expected to be valid.

An extra W± line introduces an extra factor

e√
2 sin θW

W± p/

p2
, (4.22)

as follows from the interaction term (2.36). Here p is the loop momentum, which is the

sum of the original loop momentum and the external momentum ki through the extra

W± line. Because (e/
√

2 sin θW ) ≈ 0.45, this factor is typically smaller than one for

momenta ki � W±, and one expects that for such momenta, higher order terms become

smaller and the expansion is valid.
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Similarly an extra Higgs line introduces an extra factor

D
ϕd p/

p2
, (4.23)

as follows from the interaction (2.33). Here D is the diagonal matrix (2.33) containing

Yukawa couplings λi that vary in size from 10−5 up to 1. In general one expects that they

will occur in products that are smaller than one. For example we have seen above that the

CP violating terms are proportional to

(λ2
t λ

2
bλcλs)2 � 1. (4.24)

So also in this case one expects that the expansion is valid for momenta larger than the

fields qj � ϕd, where qj is the external momentum through the extra Higgs line.

In the previous section we have seen that the lowest order CP violating terms are of

rather high order in the fields. This means that, if the expansion is valid, the CP violating

contributions are automatically very small.

4.3 CP VIOLATION IN CEB

In this section we estimate the size of CP violation from the CKM matrix in CEB. We

argue by estimating the typical sizes of the external momenta and the fields that the ex-

pansion is expected to be valid in CEB. As a consequence CP violation from the CKM

matrix in CEB is expected to be small.

Consider first the momenta. From the equation of motion (3.33) one sees that they are set

by the scale μeff , even if the field Φ is small. In the instantaneous quench that is used in

chapter 3, μeff = ±√
λv (equation (3.34)), where the sign is positive before the quench

and negative after the quench (we used λ = 1/9 for the case mH/mW =
√

2 and λ = 2/9
for the case mH/mW = 2). In slower quenches (see [63]), the change of μeff is gradual

but eventually it will reach the same value.

We can also check from the simulations that the momenta are at scale v. For example in

figure 3.23, the largest length scale is of the order of 20 lattice units, which corresponds

with a smallest momentum of around 0.4 v.

Next consider the fields. The Higgs and gauge fields start close to zero at the onset of the

transition, but grow quickly towards the new vacuum value v/
√

2 (from the simulations

we know that the gauge fields grow soon after the Higgs field becomes large). In some

regions the Higgs field remains small or becomes small again later, for example in the

half-knot configurations that we studied in chapter 3. These configurations are important

for the baryon number violation.
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From these estimates we expect that in CEB the ‘expansion parameters’ (4.22) and (4.23)

are smaller than one and that the expansion is valid. This is especially so in the half-knot

configurations where ϕd is even smaller. Therefore we expect that CP violation from

CKM matrix in CEB is small.

4.4 COMPARISON WITH DERIVATIVE INTERACTION

It is interesting to compare with the derivative expansion of the effective action. This

expansion can be obtained by expanding Seff in derivatives of fields (Dμϕd and Fμν ,

around Dμϕd = Fμν = 0). This expansion is quite different from the expansion in fields

of above, because the latter is not valid for vanishing momentum (so for Dμϕd = Fμν =
0).

In [80] the derivative expansion of Seff is studied by making use of the general formalism

for derivative expansions for chiral gauge theories derived in [94, 95]. The expansion of

[80] is actually an expansion in the number of indices μ. No CP violation is found up to

fourth order, but it is anticipated to come in at sixth order. The structure of the coefficients

at fourth order suggests that the CP violating term at sixth order will not be suppressed

by the factor δλ12, and is therefore potentially important.

To determine when this expansion is valid one can again check when terms of higher or-

der become smaller. Dμϕd and Fμν have dimensions of momentum squared. Therefore

higher order terms need to have higher powers of a dimensionful quantity in the denomi-

nator. The only dimensionful quantity that is available is Dϕd, where D is the matrix of

Yukawa couplings. Therefore the expansion parameter is roughly p/Dϕd, the inverse of

equation (4.23) of the expansion in fields. As a consequence we expect that the derivative

expansion will not be valid for CEB.

4.5 DISCUSSION

In this chapter we have studied CP violation from the CKM matrix and applied the results

to estimate the CP violating effect in CEB. In an expansion in fields of the bosonic

effective action of the Standard Model, CP violating contributions start at fourth order

in the gauge fields and fourteenth order in the Higgs fields. We expect that in CEB this

expansion is valid, and that therefore the CP violating effect is small (of the order of the

standard estimate (1.20)).

We have used equilibrium quantum field theory in this chapter, even though CEB is clearly

not in equilibrium and a correct description requires non-equilibrium quantum field the-
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ory (see also part II). However we do not expect that the CP violating effect in non-

equilibrium field theory will be much larger.

Intuitively one can explain the smallness of the CP violation for large momenta as fol-

lows. The CP violation depends on mass differences of quarks. When the dynamics

is at momentum scales that are much larger than the mass differences, these differences

become relatively small, and so does the CP violation. In case that the momenta are of

the order of the mass differences (or smaller), the CP violating effect can be much larger.

For example this occurs in KK̄ and BB̄ oscillations where CP violation is observably

large. This is also in agreement with the expected coefficients of the first CP violating

terms (of sixth order) in the derivative expansion, which are probably not suppressed by

δλ12.

The problem with constructing a model of electroweak baryogenesis with CP violation

from the CKM matrix seems to be that these models typically have two mismatching

scales: the baryon violation occurs at electroweak scales, and the CP violation is only

substantial at lower energy scales. To construct a working model one can try to resolve this

mismatch (see however [96] for an attempt along another way). An example is presented

in [97, 98, 99], where it is suggested that quarks with small momenta (at the low end of a

thermal distribution) can generate a large CP violating effect. However this model turns

out to be not viable [77, 100, 78].
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CHAPTER 5

CONCLUSIONS

In this part we studied Cold Electroweak Baryogenesis, which is a model that combines

low scale inflation and electroweak baryogenesis. This model of electroweak baryoge-

nesis is quite different from electroweak baryogenesis models studied before, because it

takes place during a tachyonic transition at zero temperature instead of during the elec-

troweak phase transition at finite temperature. In previous work [58, 61] it has been

confirmed, using numerical simulations in the SU(2) Higgs model, that this model can

work: there is indeed baryon production, and if there is CP violation an asymmetry can

be produced. Here this work is extended in two directions: the mechanism of baryon

production in CEB is studied in detail, and the amount of CP violation from the CKM

matrix is estimated.

In chapter 3 we studied the mechanism of baryon production in detail. The baryon number

is related to the Chern-Simons number NCS via the anomaly equation (2.70) of the gauge

fields, which is in turn closely related to the Higgs winding number Nw. To obtain more

insight in the evolution of these numbers, we studied their densities nCS and nw.

It has been suggested [56] that the Chern-Simons number is changed by decaying Higgs

winding configurations, that are created by the Kibble mechanism. We find a slightly

different picture: there are no clear-cut Higgs winding configurations, because there is no

mechanism that can concentrate an integer winding number in a limited region in space

(as there is energy minimization for stable winding configurations like monopoles). But

there are regions where the Higgs length is small. These ‘half-knots’ have a large winding

number density nw and a total winding number of approximately 1/2. The winding num-

ber in the total volume is still integer; the other half is spread out over this volume. When

the Higgs length in the center of a half-knot vanishes, the sign of its winding number can

change. The total winding number Nw then changes by an integer. When the system re-
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laxes to its vacuum, the Chern-Simons number NCS adjusts to the Higgs winding number

Nw and a baryon has been produced.

These half-knots can occur in the initial conditions by statistical fluctuations, in which

case we call them ‘early half-knots’. We found that they can also be formed later on.

These ‘late half-knots’ seem to occur in regions where the Higgs length oscillates about

its new vacuum quite strongly, often not in phase with the overall oscillation of the Higgs

length, and with very little damping. These regions are reminiscent of oscillons. Because

interactions are necessary for creating a CP asymmetry, we expect that only the late

half-knots are important for baryogenesis.

In chapter 4 we estimated the size of CP violating effect from the CKM matrix in

CEB. We did this by analyzing the effective action that is obtained by integrating out

the fermions of the Standard Model. In the expansion in fields of this effective action, the

first CP violating term comes in at fourth order in the gauge fields W± and at fourteenth

order in the Higgs field ϕd, in a way that is similar to the estimate (1.20). The expansion

is valid for large momenta compared to the fermion ‘masses’ λiϕd. When the expansion

is valid, the CP violating term is automatically very small because it is proportional to

high powers of the expansion parameters.

An alternative expansion is the derivative expansion, that is valid for small momenta

compared to the fermion masses. As explained in [80], it is likely that the coefficients

of the CP violating terms are not suppressed by the factor (1.20) as is the case in the

expansion in fields.

For the case of CEB we argue that the momenta are larger than the fermion masses,

and consequently that the expansion in fields is expected to be valid and the CP violating

effect to be small. In models of baryogenesis that use the electroweak anomaly for baryon

number violation, the energy scale of baryon violation is the electroweak scale, while the

CP violation from the CKM matrix is typically only significant at lower energy scales.

We conclude that CEB is an interesting alternative to more conventional baryogenesis

models. The mechanism of baryon production is quite different and may involve oscillons.

However we expect that CEB shares the problem of too little CP violation from the CKM

matrix with conventional electroweak baryogenesis models. To resolve this the model has

to be adjusted, for example by somehow matching the energy scales of baryon violation

and CP violation, or by adding an extra source of CP violation.
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CHAPTER 6

INTRODUCTION

Looking up at the sky at night, one sees that the matter in the universe is not at all ho-

mogeneously distributed: inside the stars the matter density is huge, but outside the stars

there is hardly any matter at all. Yet there is evidence that in the early universe the mat-

ter distribution was quite homogeneous. For example the temperature that is observed in

the Cosmic Microwave Background (CMB) radiation is the same in all directions, up to

small inhomogeneities of the order of 10−5. These small inhomogeneities are the seeds

of the large inhomogeneities that we observe nowadays. They grow under the influence

of gravity.

One of the attractive features of inflation is that it provides an explanation for the origin

of these small fluctuations: quantum fluctuations during inflation are amplified and can

become observable. Different inflation models lead to different statistical properties of the

fluctuations, which are characterized by correlation functions. For the simplest inflation

models the spectrum is close to Gaussian (there is only a nontrivial two point function),

but in more complicated models there can also be non-Gaussian features. Hence obser-

vations of correlation functions of the temperature fluctuations in the CMB can teach us

lessons about inflation.

These observations have become much more precise in the past fifteen years. The first

detection of the temperature fluctuations has been done with the COBE satellite in 1992.

Since then there have been many more experiments, among which the WMAP satellite,

that observed the temperature fluctuations with increasing precision. In the future the

precision will become even better with the Planck satellite [101].

Theoretical calculations of the quantum fluctuations are often done using free field theory,

which gives a good approximation because the interactions during inflation are typically

small (in agreement with the absence of observations of non-Gaussian features). But
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a(t) H(t)

cosmological constant (w = −1) eHt t0

radiation (w = 1/3) t1/2 t−1

matter (w = 0) t2/3 t−1

Table 6.1: Time dependence of the scale factor a and the Hubble rateH for some important stages

in the evolution of the universe.

because of the improving precision of the observations, also theoretical calculations are

currently being done at higher orders [102, 103, 104, 105, 106, 107, 108]. One can distin-

guish two effects from interacting fluctuations: backreaction on the classical background,

which affects the Hubble rate H and the slow-roll parameters, and interactions between

the fluctuations themselves. In calculations of the latter effect, one often uses classical

physics to calculate the evolution of the fluctuations. In the next chapter, which has been

published as [109], we check how good this approximation is.

This chapter is meant as introduction to and motivation for the next chapter. We shortly

review some aspects of cosmological perturbation theory, and of existing calculations of

inflationary fluctuations.

6.1 COSMOLOGICAL PERTURBATION THEORY

From the fact that the CMB is nearly homogeneous we know that it is sensible to approx-

imate the (early) universe as a homogeneous universe. In chapter 1 we gave the evolution

equations (1.4)-(1.6) for a homogeneous universe during inflation. Here we are interested

in perturbations about the homogeneous solution, hence in cosmological perturbation the-

ory (see [110] for a review).

6.1.1 SCALES

First we compare the evolution of the wavelengths of the perturbations with the evolution

of the horizon length H−1.

The wavelengths of the perturbations are stretched with the expansion of the universe and

therefore grow with the scale factor a. The evolution of a depends on the (homogeneous)

energy ρ and pressure P of the universe via the equation of state, which is assumed to be

given by the ratio w = P/ρ. For some important cases the time dependence of a and H

is given in table 6.1.
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t

late timesearly times

inflation after inflation

x

horizon exit

wavelength

horizon length

Figure 6.1: Sketch of the evolution of a wavelength of a perturbation, and of the horizon length

H−1.

During inflation the equation of state is close to w = −1. Therefore a grows (nearly)

exponentially, and the horizon length H−1 is (nearly) constant. Hence the wavelengths

grow faster than the horizon length; the modes are said to ‘leave the horizon’. The moment

when the wavelength is equal to the horizon length is called the moment of horizon exit.

For a mode with comoving momentum k this occurs when k/aH = 1. Modes with

k � aH are outside the horizon.

The fluctuations at the end of inflation are referred to as the primordial fluctuations. After

inflation and reheating the universe is first radiation dominated and then matter dominated.

In these periods the scale factor grows as t1/2 and t2/3 respectively, while the horizon

length grows linearly in time. Hence the growth of the wavelengths is slower than that of

the horizon length and the modes enter the horizon again. The large scale fluctuations that

we observe now (e.g. in the CMB), are currently inside the horizon but have been outside

the horizon before. The situation is sketched in figure 6.1.

6.1.2 DEGREES OF FREEDOM

Next we study which degrees of freedom can fluctuate and define the curvature pertur-

bation which is the quantity in terms of which the primordial fluctuations are usually

expressed.

First there are the matter fields. For cosmology one is interested in their influence on

spacetime and therefore in their energy-momentum tensor Tμν . Its scalar perturbations
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are

δρ = −δT 0
0 , δP =

1
3
δT i

i , ∂iδq = δT 0
i , (6.1)

where we have neglected anisotropic stress.

Second there is the metric tensor gμν which has ten degrees of freedom: two tensor, four

vector and four scalar degrees of freedom. Fluctuations in the tensor and scalar degrees of

freedom are ‘amplified’ during inflation and are therefore interesting (see next section).

The tensor fluctuations correspond to gravitational waves and can also have an imprint in

the CMB. Their observation would be an important source of information. However they

have not been observed yet and we will not consider them here. Vector fluctuations are

not amplified and will also not be considered here. With only scalar perturbations, the

metric can be written as

ds2 = −(1 + 2A)dt2 + 2a∂iBdxidt + a2 [(1 − 2ψ)δij + 2∂ijE] dxidxj . (6.2)

This set of scalar energy-momentum perturbations (6.1) and metric perturbations (6.2) is

not gauge invariant and also contains redundant degrees of freedom (gauge modes and

modes that can be eliminated by constraint equations). Often one uses combinations of

these perturbations that have certain advantages in certain gauge fixings.

The primordial fluctuations are usually expressed in a combination that corresponds to

the curvature perturbation. Its definition depends on the coordinate system. Two common

definitions are

−ζ = ψ +
H

ρ̇
δρ, R = ψ − H

ρ + P
δq, (6.3)

which are respectively the curvature perturbation on uniform-density hypersurfaces and

the comoving curvature perturbation. It can be shown that they differ by terms that are

proportional to k2/(aH)2, which are small outside the horizon.

The curvature perturbation is often referred to as the adiabatic perturbation. There can

also be isocurvature (or entropy) perturbations. The total entropy perturbation is (see e.g.

[111])

S = H

(
δP

Ṗ
− δρ

ρ̇

)
. (6.4)

In linear approximation in the fields, the change in the curvature perturbation on scales

outside the horizon (neglecting spatial derivatives) can be expressed as [111]

Ṙ ≈ −3H
Ṗ

ρ̇
S. (6.5)

Therefore the curvature perturbation remains constant outside the horizon if there are no

isocurvature perturbations. This is for example the case if there is only one fluctuating

degree of freedom (as in single field inflation, see below).
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6.1.3 OBSERVATIONS

In the end we observe temperature fluctuations in the CMB. Hence to compare the cal-

culated primordial fluctuations with observations, the evolution of the primordial fluctu-

ations has to be calculated up to the time of photon decoupling and then they have to be

transformed to temperature fluctuations. By following this procedure one has found that

the primordial power spectrum of the curvature perturbation and its spectral index are

given by equation (1.13). Hence the fluctuations are small and their spectrum is nearly

flat.

Moreover we know (see e.g. [112, 113]) that the observations are consistent with primor-

dial fluctuations that are purely adiabatic. A mix between adiabatic and entropy perturba-

tions is also allowed, but pure entropy perturbations are ruled out.

As mentioned above, no signs of tensor modes have been found yet. Also no non-

Gaussian corrections have been found yet. The constraints on these effects will be im-

proved significantly in the future with the Planck satellite.

6.2 INFLATIONARY FLUCTUATIONS

The primordial fluctuations are the fluctuations at the end of inflation. As mentioned

above, one usually considers only the fluctuations in the curvature perturbation. This

section contains a short review of the theoretical calculation of the correlation functions

of the curvature perturbation at the end of inflation.

6.2.1 QUANTUM FLUCTUATIONS IN DE SITTER SPACE

A de Sitter universe is a universe with a positive cosmological constant. An inflating

universe is quasi de Sitter: the potential energy acts as a cosmological constant, but is not

completely constant. In the limit that the slow-roll parameters vanish, it becomes exactly

a de Sitter universe. We first consider quantum fluctuations in an exact de Sitter universe.

A de Sitter universe is a curved spacetime, and quantum fields on such spacetimes have

peculiar properties [114]. The most famous example is a black hole. Hawking showed

[115] that if one puts a quantum field in the background spacetime of a black hole, the

black hole emits thermal radiation in this field: the Hawking radiation. In a de Sitter

universe there is a similar effect.

For our purposes we are interested in correlation functions of a quantum field in de Sitter

space as a function of time. Because the background is time dependent, the system is
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not in equilibrium and one has to use non-equilibrium field theory. This is based on the

Closed Time Path formalism, as described in section 7.2.1.

During inflation interactions are typically small and the correlation functions can be well

approximated by free field theory. Of course the only nontrivial correlation function in

this case is the two point function, from which one derives the power spectrum. Consider

a free, massless and minimally coupled scalar field φ with action

S = −1
2

∫
d4x

√−g ∂μφ∂μφ (6.6)

on a de Sitter background. In terms of conformal time τ = − ∫∞
t

dt′/a(t′) the metric is

ds2 = a(τ)2
(−dτ2 + dx2

)
, (6.7)

with scale factor a(τ) = −1/Hτ . The two point function of φ at equal times τ is called

F (k, τ, τ) (see equation (7.17)):

F (k, τ, τ) =
∫

d3x e−ik·x〈φ(τ,x)φ(τ, 0)〉. (6.8)

The total power of the field fluctuations is∫
d3k

(2π)3
F (k, τ, τ) =

∫
dk

k
P(k, τ), P(k, τ) =

k3

2π2
F (k, τ, τ), (6.9)

where P(k, τ) is the power spectrum. Using the result (7.24) for F (k, τ, τ) one finds for

scales well outside the horizon (|kτ | � 1) that the power spectrum is

P =
H2

4π2
. (6.10)

This power spectrum is independent of k and is therefore called a flat spectrum.

6.2.2 SINGLE FIELD INFLATION

In single field inflation the accelerated expansion is caused by the potential energy of one

scalar field. This field is supposed to have a spatially homogeneous expectation value,

which slowly rolls down from the potential. The scalar perturbation about the homoge-

neous background is quantized, and has fluctuations with a power spectrum as described

above. In the context of inflation one often chooses a gauge (coordinate system) in which

this scalar degree of freedom is the curvature perturbation. In this section we closely

follow [116] to derive the action for the curvature perturbation at second order, and use

equation (6.10) to obtain its power spectrum. We also repeat the argument in [116] for

conservation of the curvature perturbation to all orders.
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ACTION OF THE CURVATURE PERTURBATION

For the current purpose it is convenient to work in the ADM formalism [117], in which

the metric is parameterized as

ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt), (6.11)

where N is the lapse function and N i the shift function. Note that in this section we use

coordinate time t instead of conformal time τ . The action (1.3) for single field inflation

becomes

S =
1
2

∫ √
h

[
NR(3) − 2NV + N−1(EijE

ij − E2)+

N−1(σ̇ − N j∂jσ)2 − Nhij∂iσ∂jσ

]
, (6.12)

where

Eij =
1
2

(
ḣij −∇iNj −∇jNi

)
, E = Ei

i , (6.13)

and where ∇i is the covariant derivative calculated with the metric hij . The gauge in

which the remaining scalar degree of freedom is the curvature perturbation, is

δσ = 0, hij = a2e2ζ [exp(γ)]ij , ∂iγij = 0, γii = 0, (6.14)

where γij is the tensor perturbation which we neglect in the remaining. Note that ζ is

dimensionless. We follow here the notation of [116], but the ζ of equation (6.14) actually

corresponds to the R of equation (6.3).

N and N i can be seen as Lagrange multipliers, i.e. their equations of motion

∇i

[
N−1(Ei

j − δi
jE)
]

= 0, (6.15)

R(3) − 2V − N−2(EijE
ij − E2 + σ̇2) = 0, (6.16)

are constraint equations. They can be solved perturbatively in terms of ζ and their solu-

tions can be put back into the action, to obtain the action for ζ. It turns out [116] that it is

sufficient to solve equations (6.15) and (6.16) to first order, in order to obtain the action

to second order. The resulting action is

S =
1
2

∫
d4x

σ̇2

H2

[
a3ζ̇2 − a(∂ζ)2

]
. (6.17)

For constant σ̇ this is just the action (6.6) of a scalar field with a normalization factor

|σ̇/H| =
√

2εMpl, where ε is the slow-roll parameter (1.7). In the limit ε → 0, the action

of ζ vanishes and ζ is not well defined.
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In general however σ̇ and ε will not remain constant. At this point the advantage of

using the curvature perturbation ζ comes in: because ζ is conserved outside the horizon

(see below) it is sufficient to calculate ζ just after horizon exit, even if the background

changes. The power spectrum of ζ can then easily be obtained by dividing equation (6.10)

by 2εM2
pl evaluated at the time just after horizon exit, and is:

Pζ =
1

8π2M2
pl

H2

ε
. (6.18)

Using the equation of motion (1.4) and the slow-roll approximation, this can be rewritten

to equation (1.11).

To be able to calculate higher point correlation functions and loop corrections, one needs

to solve the action of ζ to higher orders. In [116] the action is calculated up to third

order, and the tree-level three point correlation function is obtained. It is found that this

non-Gaussianity is too small to be observable.

ζ CONSERVATION

In single field inflation there are no isocurvature perturbations. Therefore the curvature

perturbation is conserved outside the horizon in linear approximation, as was mentioned

above. In fact it is shown in [116] and [118] that this conservation holds to all orders

under the assumption that fluctuations with wavelengths of the horizon length or smaller

can be neglected (the procedure of leaving out the short wavelength is called smoothing).

Here we repeat the argument that is presented in [116].

Instead of solving the constraint equations (6.15) and (6.16) perturbatively in ζ as we did

above, we solve them here perturbatively in derivatives. We write N = 1 + δN + . . .

where δN is of first order in derivatives but to all orders in fields, which is consistent with

the structure of the constraint equations. N i is of zeroth order in derivatives. To first order

in derivatives we have

EijE
ij − E2 = −6H2 − 12Hζ̇ + 4H∇iN

i + . . . . (6.19)

Using this and the background equation of motion (1.4), the Hamiltonian constraint (6.16)

becomes

−2V δN + 6Hζ̇ − 2H∇iN
i = 0, (6.20)

where R(3) drops out because it is of second order in derivatives. Then the action up to

first order in derivatives can be rewritten as

S = −
∫

d4x a3e3ζ (1+ δN) 2V = −
∫

d4x a3e3ζ(6H2− σ̇2 +6Hζ̇−2H∇iN
i) =∫

d4x
[
2∂t

(
a3e3ζH

)
+ 2H∂i

(
a3e3ζN i

)]
, (6.21)
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where we have used (6.16) and (6.20) and left out R(3). Both terms of (6.21) do not

contribute to the classical equation of motion. All the remaining terms in the action have

at least two derivatives.

The argument for ζ conservation is that if one neglects the spatial derivatives (smoothing),

the classical equation of motion that is derived from this action always has a constant so-

lution. This remains true even if the background parameters like H and ε are not constant.

This is clearly a valid argument for contributions from tree level diagrams, but not nec-

essarily for contributions from loop diagrams, since then internal lines can have large

momenta.

6.2.3 MULTIFIELD INFLATION

There are many inflation models that involve more than one field. Examples are multifield

models like assisted inflation [119] and N-flation [120], in which there are several fields

that contribute to the accelerating expansion. Another possibility is that there is only

one field that causes the accelerating expansion, but that there are other fields that cause

the density fluctuations, as in the curvaton mechanism [121, 122, 123]. A motivation to

study these inflation models is that often models of physics beyond the Standard Model

involve many fields. Models with several fields can have advantages over single field

inflation. For example they may need less fine-tuning, or they may not need the inflaton

field displacement to be larger than Mpl as is often the case in single field inflation models.

In inflation models with more than one field the curvature perturbation is not conserved

outside the horizon, because there are isocurvature perturbations. As a consequence the

primordial fluctuations are much harder to calculate. The correlation functions cannot be

calculated just after horizon exit, but their evolution up to the end of inflation has to be

taken into account.

The existing methods to calculate the evolution of the correlation functions after horizon

exit use classical physics. This is expected to give a good approximation, because the

occupation numbers of the field modes after horizon exit grow quickly, which is usually

an indication for classical behaviour (see also Appendix B). In the next chapter we will

investigate this classical approximation for a toy model. Here we briefly review two clas-

sical methods to calculate the evolution of correlation functions: the stochastic approach

and the δN formalism.
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STOCHASTIC APPROACH

In the stochastic approach [124, 125] a field operator φ is split up in a ‘coarse grained’

part φ̄ that is considered to be classical, and a remaining part:

φ(t,x) = φ̄(t,x) +
∫

d3k

(2π)3
θ(k − βa(t)H)

[
akφk(t)eik·x + a†

kφ∗
k(t)e−ik·x

]
, (6.22)

where φ̄ is multiplied by the unity operator, and where β � 1 is a constant. The equation

of motion for the coarse grained part φ̄ is, neglecting the terms with two derivatives,

˙̄φ(t,x) = − 1
3H

V ′(φ̄) + f(t,x), (6.23)

with

f(t,x) = βa(t)H2

∫
d3k

(2π)3
δ(k − βa(t)H)

[
akφk(t)eik·x + a†

kφ∗
k(t)e−ik·x

]
. (6.24)

At this point, equation (6.23) is reinterpreted [125] as a classical Langevin equation for

the stochastic quantity φ̄, with a stochastic noise term f(t,x) that has statistical properties

characterized by expectation values of the quantum operator f(t,x).

In [126, 127, 128, 129] this method has been applied to calculate non-Gaussianities in

multifield inflation. Another use of the stochastic approach is in nonperturbative appli-

cations. As is well known (see also next chapter) corrections in de Sitter can grow after

horizon exit and eventually become nonperturbatively large. The stochastic approach has

been used to investigate this regime in [125, 130, 131, 132].

δN FORMALISM

The number of e-folds of inflation N from an initial time until the end of inflation can

be obtained by integrating over the trajectories of the inflaton fields. For example the

integral over the trajectory of the inflaton field in single field inflation is given by equations

(1.9) and (1.10). Hence N depends on the initial values of the inflaton fields, and small

perturbations δσA in the initial conditions give small perturbations δN in the number of

e-folds. The curvature perturbation ζ can be shown1 to be equal to the perturbation δN ,

and can therefore be expanded as:

ζ = δN = NAδσA +
1
2
NABδσAδσB + . . . , (6.25)

1Here N is calculated as the number of e-folds between a flat hypersurface at initial time and a uniform-

density hypersurface at final time.
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where this ζ is again the ζ of equation (6.3), and where NA = ∂N/∂σA. In the δN

formalism, correlation functions of ζ are expressed, via equation (6.25), in terms of cor-

relation functions of the field perturbations δσA at the initial time. Usually one takes

this initial time to be the time of horizon exit of the modes one is interested in, and one

assumes that the δσA are Gaussian at this time.

Originally [133] the δN formalism was used to calculate the two point function of ζ in

order to determine the power spectrum in multifield inflation models. Later the formalism

was extended [134] to calculations of non-Gaussianities. N is calculated using classical

physics, and as a consequence the δN formalism is classical.

Note that the perturbations δσA are not homogeneous in space, but that N and its deriva-

tives are always calculated using homogeneous fields. This is justified by the separate

universe assumption: regions that are separated by at least a horizon distance H−1 can-

not influence each other and evolve as separate universes. In practice this assumption

acts as smoothing, because perturbations with wavelengths shorter than the horizon are

neglected so that the fields can be considered to be homogeneous in each ‘separate uni-

verse’. This smoothing assumption is often left implicit, but it is not always valid. For

example in [135], where non-Gaussianity from preheating is investigated, it is found that

it is necessary to also consider the modes inside the horizon to obtain reliable results.
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CHAPTER 7

CLASSICAL APPROXIMATION

TO QUANTUM COSMOLOGICAL

CORRELATIONS

7.1 INTRODUCTION

The precision of measurements of temperature fluctuations in the Cosmic Microwave

Background radiation has increased enormously in the recent past and is expected to in-

crease even more in the near future. From these measurements, statistical properties of the

primordial cosmological perturbations can be deduced. They are found to have a nearly

flat power spectrum, and to be close to Gaussian. Non-Gaussian effects (see [136] for

a review) may be detected in the future and can provide a powerful tool to discriminate

between different inflation models.

There is therefore a large interest in calculating the statistical properties of the primordial

cosmological perturbations for different inflation models. In these calculations the cos-

mological perturbations are often parameterized by the curvature perturbation ζ, which is

the perturbation in scalar curvature on time slices of uniform density. This parameteri-

zation is convenient because of the property that, under certain conditions, perturbations

in ζ remain constant after their wavelengths have grown larger than the horizon length,

i.e. after horizon exit. This has been shown for linear perturbation theory in [137], to all

orders in ζ for single field inflation in [116], and nonperturbatively for adiabatic perturba-

tions in [118]. The latter two references use a derivative expansion and therefore assume

that effects from wavelengths of the order of the horizon and shorter are negligible.
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In more complicated models for inflation, e.g. those involving multiple fields, the curva-

ture perturbation ζ is not constant after horizon exit. Therefore evolution after horizon

exit might lead to non-Gaussian effects, which has been investigated in [138, 139, 140,

126, 127, 128, 129, 141, 134, 108, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,

153, 107]. These investigations have been done by solving classical equations of motion,

which is assumed to be a good approximation to the quantum theory, because quantum

effects are presumably negligible for wavelengths much longer than the horizon length

(see [154] for a recent argument).

The goal of this chapter is to investigate up to which order corrections to cosmological

correlation functions that are generated after horizon exit can be calculated reliably using

classical physics. For this we study φ3 theory on an exact de Sitter background for a

massless minimally coupled scalar field φ, as toy model for the curvature perturbation ζ on

an inflationary background. We consider correlation functions with (external) momenta

much smaller than the Hubble scale H in the quantum theory, using the Closed Time Path

(CTP) formalism (also known as in-in formalism, see e.g. [155, 156]), as is also done

by Weinberg in [102, 103]. Furthermore we formulate a classical theory with statistical

fluctuations, in such a way that correlation functions in this theory can easily be compared

with those in the quantum theory.

In short our results for the φ3 toy model are that the tree level contributions in the quantum

theory can be approximated quite well by classical physics (which sounds trivial, but we

argue that this is not completely so). As was argued in [102, 103] there can be loop

corrections that grow after horizon exit. We find that a classical approximation is expected

to be able to reproduce a certain class of these corrections, but not all of them. The

reason is that loop integrals get growing contributions not only from loop momenta with

magnitude of the order of the external momenta (which are smaller than H), but also from

loop momenta of the order of H . This is supported by an explicit calculation of the one

loop correction to the two point function, where we use a small mass as infrared regulator.

We argue that a classical approximation is not expected to be good at scales around H , and

that in general it cannot reproduce contributions from these loop momenta. An exception

is the one loop correction, for which we find that the classical approximation can be saved

by choosing a suitable ultraviolet cutoff.

We generalize the arguments for the toy model to derivative interactions, and apply them

to the curvature perturbation ζ. This leads to the conclusion that corrections to correlation

functions generated after horizon exit in multifield inflation models can, up to one loop

level, be approximated by classical physics. We also compare with a theorem derived by

Weinberg [102]. We find that it is not excluded that there are corrections to correlation

functions of ζ that grow after horizon exit, even in single field inflation.

We remark that the problem we are addressing is related to, but different from the prob-

lem of the quantum-to-classical transition [157, 158, 159, 160, 161, 162], that deals with
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the way quantum fluctuations acquire classical properties by decoherence, and with the

production of entropy. In this chapter we are not investigating how a quantum system

evolves to a classical system; we are considering a quantum system and a classical system

separately from each other and investigate how well the classical system can reproduce

correlation functions of the quantum system.

In the next section we recall the CTP formalism, using a variation of the Keldysh-basis,

and apply it to φ3 theory on a de Sitter background (for other applications of the CTP

formalism to interacting fields in cosmology see [163, 164, 165, 166, 167, 168, 169, 170,

171, 172, 173, 174, 175, 176, 177, 104, 105, 106]). Subsequently we analyze contri-

butions to correlation functions with small external momenta, that are generated after

horizon exit (but still during inflation). In section 7.3 we show how correlation functions

in classical φ3 theory on a de Sitter background can be calculated perturbatively, starting

from given initial conditions. The perturbative contributions are graphically represented

in a way that is similar to Feynman diagrams in the quantum theory. Next in section 7.4

we argue that the classical theory can approximate the contributions from small internal

momenta in the quantum theory quite well, but that this is in general not the case for large

internal momenta. The one loop correction is an exception: we show that by choosing

a suitable ultraviolet cutoff, the classical approximation can be good. We generalize our

arguments and conclude in section 7.5.

In Appendix B details of the quantization are given and a comparison is made with finite

temperature field theory. Appendix C contains an argument on closed retarded loops. In

Appendix D diagrams in the classical and quantum theory are compared. To illustrate the

arguments in this chapter, we give in Appendix E the detailed calculations of the one loop

correction to the two point function in the φ3 toy model, that is generated after horizon

exit.

7.2 QUANTUM THEORY

In this section we set up the quantum theory using the CTP formalism, and analyze the

contributions to correlation functions that are generated after horizon exit.

The Lagrangian density of φ3 theory is

L[φ] =
√−g

(
−1

2
∂μφ∂μφ − 1

2
m2φ2 − 1

2
ξRφ2 − λ

3!
φ3

)
+ δL (7.1)

where we are using a metric gμν with signature −+++. Except when we need the mass

m as infrared regulator, we take m = 0 and ξ = 0 to obtain a massless minimally coupled

scalar field. The term δL contains the counterterms:

δL =
√−g

(
−δ1φ − 1

2
δZ∂μφ∂μφ − 1

2
δmφ2 − δλ

3!
φ3

)
. (7.2)
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We added a linear counterterm δ1 to keep 〈φ〉 = 0 for all times, at one loop level1, hence

up to O(λ3). The potential can be stabilized by adding a φ4 term if desired. We use a

spatial momentum cutoff Λ as ultraviolet regulator. Then

δm =
λ2

4(2π)2
ln

Λ
μ

+ O(λ4), (7.3)

where μ is a renormalization scale.

7.2.1 CLOSED TIME PATH FORMALISM ON A DE SITTER BACK-

GROUND

CTP FORMALISM

In a system with time-dependent Hamiltonian H(t), that starts in a state |in〉 at initial time

ti, the expectation value of an operator Q at time t > ti is given by

〈Q(t)〉 =
〈

in
∣∣∣∣
[
T̄ exp

(
i

∫ t

tin

dt′ H(t′)
)]

Q

[
Texp

(
−i

∫ t

tin

dt′ H(t′)
)]∣∣∣∣ in

〉
, (7.4)

where T means a time-ordered product and T̄ an anti-time-ordered product. In the Closed

Time Path (CTP) formalism (or in-in formalism) [156] this expectation value can also be

calculated using path integrals, from the generating functional

Z[J+, J−, ρ(tin)] =
∫

Dφ+
inDφ−

in 〈φ+
in|ρ(tin)|φ−

in〉 ×∫ φ−
in

φ+
in

Dφ+Dφ− exp
[
i

∫ t

tin

dt′
∫

d3x
(L[φ+] − L[φ−] + J+φ+ + J−φ−)] . (7.5)

The path integral on the second line can be written in short-hand notation as∫
Dφ exp

[
i

∫
C

dt′
∫

d3x (L[φ] + Jφ)
]

, (7.6)

where C is the so-called Schwinger-Keldysh contour which runs from tin to t and back.

The field φ and source J are split up in φ+, J+ on the first part of this contour, and φ−, J−
on the second part, with the condition φ+(t) = φ−(t). The integration along the contour

C explains the name Closed Time Path formalism. The path integral on the first line of

equation (7.5) imposes that at the initial time tin the state of the system is given by the

1It can be checked that this is possible by calculating the tadpole diagram, using the F two point function of

equation (7.24) and the infrared and ultraviolet regulators as discussed later in this chapter.
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density matrix ρ(tin). Expectation values are obtained by variation of the sources J+ and

J−:

〈T̄ (φ(x1) . . . φ(xn)) T (φ(xn+1) . . . φ(xn+m))〉 =

δn+mZ[J+, J−, ρ(tin)]
δJ−(x1) · · · δJ−(xn) δJ+(xn+1) · · · δJ+(xn+m)

∣∣∣∣∣
J+,J−=0

, (7.7)

where the times x0
j are smaller than or equal to the time t used in definition (7.5).

When calculating these correlation functions perturbatively, we need to know the free two

point functions with all four possible time orderings:

G−+(x, y) = i〈φ(x)φ(y)〉(0), (7.8)

G+−(x, y) = i〈φ(y)φ(x)〉(0), (7.9)

G++(x, y) = i〈Tφ(x)φ(y)〉(0) = θ(x0 − y0)G−+(x, y) + θ(y0 − x0)G+−(x, y),
(7.10)

G−−(x, y) = i〈T̄φ(x)φ(y)〉(0) = θ(x0 − y0)G+−(x, y) + θ(y0 − x0)G−+(x, y),
(7.11)

where the superscript (0) denotes the free field correlation functions. They obey the

identity

G++(x, y) + G−−(x, y) = G−+(x, y) + G+−(x, y), (7.12)

and they can be put together in a matrix:

G(x, y) =
(

G++(x, y) G+−(x, y)
G−+(x, y) G−−(x, y)

)
. (7.13)

Note that the two point functions depend on the initial conditions via the dependence on

ρ(ti) of the generating functional (7.5).

In the context of the classical approximation it is useful to transform the φ+ and φ− fields

to a different basis, which is a variation of the Keldysh basis (see also [178]):(
φ(1)

φ(2)

)
=
(

(φ+ + φ−)/2
φ+ − φ−

)
= R

(
φ+

φ−

)
, with R =

(
1/2 1/2
1 −1

)
.

(7.14)

The Lagrangian density L[φ+] − L[φ−] transforms to

L[φ(1), φ(2)] =
√−g

(
− ∂μφ(1)∂μφ(2) − (m2 + ξR)φ(1)φ(2)+

− λ

3!

(
3(φ(1))2φ(2) +

1
4
(φ(2))3

))
. (7.15)
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The free two point functions in this basis can easily be obtained by the transformation

GK(x, y) = RG(x, y)RT =
(

iF (x, y) GR(x, y)
GA(x, y) 0

)
, (7.16)

with

F (x, y) = − i

2
(
G−+(x, y) + G+−(x, y)

)
, (7.17)

GR(x, y) = G++(x, y) − G+−(x, y) = θ(x0 − y0)
(
G−+(x, y) − G+−(x, y)

)
,

(7.18)

GA(x, y) = G++(x, y) − G−+(x, y) = θ(y0 − x0)
(
G+−(x, y) − G−+(x, y)

)
,

(7.19)

where we have used identity (7.12). They obey the equations

(
�x + m2 + ξR(x)

)
F (x, y) = 0, (7.20)(

�x + m2 + ξR(x)
)
GR,A(x, y) =

δ4(x − y)√−g(x)
, (7.21)

with

�x =
1√−g(x)

∂μ

(√
−g(x) gμν(x)∂ν

)
. (7.22)

The GR and GA two point functions are often called the retarded and advanced propaga-

tors. Note that GA(x, y) = GR(y, x).

FEYNMAN RULES ON A DE SITTER BACKGROUND

The metric of the de Sitter background is

ds2 = −dt2 + a2(t) dx2, (7.23)

where a(t) is the FRW scale factor. The Hubble rate is H = ȧ/a. In de Sitter space

the scale factor is a(t) = a0 exp(Ht). We will use conformal time τ = − ∫∞
t

dt′/a(t′),
which runs from −∞ to 0. The scale factor in conformal time is a(τ) = −1/Hτ .

As initial state ρ(τin) we take the adiabatic or Bunch-Davies vacuum for τin → −∞.

One expects that other choices will give the same results because this state is an attractor

state [179, 180]. The free field operator with this initial state is given in equation (B.5) in
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Appendix B and it can be used to derive the free two point functions (7.17)-(7.19):

F (k, τ1, τ2) =
H2

2k3

[
(1 + k2τ1τ2) cos k(τ1 − τ2) + k(τ1 − τ2) sin k(τ1 − τ2)

]
,

(7.24)

GR(k, τ1, τ2) = θ(τ1 − τ2)
H2

k3

[
(1 + k2τ1τ2) sin k(τ1 − τ2)+

− k(τ1 − τ2) cos k(τ1 − τ2)
]
, (7.25)

and GA(k, τ1, τ2) = GR(k, τ2, τ1). Here the two point functions depend only on the

length of the spatial momentum k = |k|. Representing the φ(1) field with a full line

and the φ(2) field with a dashed line, the Feynman rules for the two point functions, the

vertices and the counterterm are2

τ1 τ2 = F (k, τ1, τ2), (7.26)

τ1 τ2 = −iGR(k, τ1, τ2) = −iGA(k, τ2, τ1), (7.27)

τ1
τ2

τ3

= −iλ a4(τ1)δ(τ1 − τ2)δ(τ1 − τ3), (7.28)

τ1
τ2

τ3

= − iλ

4
a4(τ1)δ(τ1 − τ2)δ(τ1 − τ3), (7.29)

τ1 τ2 = −ia4(τ1)δ(τ1 − τ2) δm. (7.30)

When a two point function is attached to a vertex, the corresponding time has to be

integrated over. A closed loop corresponds with an integral over spatial momentum∫
d3p/(2π)3.

EXAMPLE: EQUAL TIME TWO POINT FUNCTION

As an example to which we will return repeatedly, we consider the equal time two point

function up to one loop level:∫
d3x e−ik·x〈φ(τ,x)φ(τ,0)〉. (7.31)

The tree level contribution is given by

τ τ
F (k, τ, τ). (7.32)

2These Feynman rules should not be confused with the graphical representation developed in [181].

101



Chapter 7 - Classical approximation to quantum cosmological correlations

There is no contribution with the GR two point function because that vanishes for equal

times. At one loop level there are contributions

τ τ
A

τ τ
B

τ τ
C

τ τ
D

, (7.33)

where diagrams A, C and D have also mirror versions that correspond to interchanging

the endpoints. There is also the diagram

τ τ
, (7.34)

but it vanishes because of the θ-functions in the GR two point functions. This is an

example of the general fact that diagrams with no external GR two point functions vanish,

as explained in Appendix C. Furthermore there are diagrams with dashed lines at the

endpoints, but these diagrams vanish also because of θ-functions. Diagrams with tadpoles

are canceled by the linear counterterm δ1.

Using the Feynman rules, the diagrams can be translated to integrals. For example dia-

gram A translates to

τ τ
A

= (−i)2(−iλ)2
∫ τ

τin

dτ1 a4(τ1)
∫ τ

τin

dτ2 a4(τ2) ×

GR(k, τ, τ1)F (k, τ, τ2)
∫

d3p

(2π)3
GR(|k + p|, τ1, τ2)F (p, τ1, τ2). (7.35)

The symmetry factor is 1 because the propagators in the loop are different (diagrams B

and C have symmetry factor 1/2). The momentum integral is both infrared and ultraviolet

divergent. The ultraviolet divergence is the same as the one that occurs in Minkowski

space and is canceled by the counterterm in diagram D. The infrared divergence has to be

regularized, e.g. by giving φ a small mass or by taking space to be finite.

In Appendix E the one loop correction (7.33) is calculated explicitly using an initial time

τH with |kτH | < 1.

102



Chapter 7 - Classical approximation to quantum cosmological correlations

7.2.2 LATE TIMES

COSMOLOGICAL CORRELATION FUNCTIONS

In this chapter we consider cosmological correlation functions, by which we mean equal

time correlation functions∫
d3x1 . . . d3xr e−ik1·x1−...−ikr·xr 〈φ(τ,x1) . . . φ(τ,xr)φ(τ,0)〉, (7.36)

where the time τ is late, i.e. is well after horizon exit with respect to the spatial momenta

ki, which can be expressed as |kiτ | � 1. Similarly, early times are times for which

|kiτ | � 1.

We constrain the analysis further by only considering contributions to these cosmological

correlation functions that are generated after horizon exit. For this we introduce a split

in time at τH , a few (NH ) e-folds after horizon exit, such that |kτH | = exp(−NH) �
1. Correlation functions at τH have accumulated contributions from earlier times, of

which we only keep the free field contributions. Then we use these correlation functions

as initial conditions for the evolution after τH . In practice this means that we use the

Feynman rules as described in the previous subsection, with the only difference that we

take τH as initial time. This procedure is not completely correct because the neglected

contributions generated before τH are of the same order in the coupling constant as the

contributions generated after τH . But it does not change the qualitative behaviour of

the contributions generated after τH , and neglecting the contributions from before τH

simplifies the calculations significantly. We comment further on this point in section

7.5.1.

Different contributions to cosmological correlation functions (7.36) depend in different

ways on the time τ . Those that are proportional to positive powers of τ are dominated

by their values at the initial time τH . These contributions are negligible if τH is taken

sufficiently long after horizon exit. Contributions that are proportional to a non-positive

power of τ can grow after horizon exit and will therefore dominate. In [102, 103] it is

shown that these contributions do not grow faster than powers of ln(−Hτ), so negative

powers of τ do not occur. In this chapter we call contributions that are proportional to τ0

(including powers of ln(−Hτ)) late time contributions. In this subsection we analyze the

dependence on τ of the different contributions by counting powers of τ .

Contributions can contain integrals over spatial internal (loop) momenta p, which can

be arbitrarily large. We have found that the power counting goes quite differently for

small internal momenta (smaller than the Hubble scale H , i.e. |pτ | � 1) than for large

internal momenta (of the order of the Hubble scale and larger, i.e. |pτ | � 1). Therefore

we analyze first the case that all internal momenta are small, and consider then arbitrary

(amputated) 1PI diagrams for which all the internal momenta are large and the external
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momenta are small. These 1PI diagrams can be treated as effective (non-local) couplings

in the analysis for small internal momenta, and in this way our analysis covers the whole

range of internal momenta. After this general analysis, we compare our results with the

specific case of the one loop correction to the two point function.

SMALL INTERNAL MOMENTA

When the internal momenta are small, the expressions for the free two point functions F

(7.24) and GR (7.25) can be expanded in kτi:

F (k, τ1, τ2) =
H2

2k3
[1 + O(k2τ2

i )], (7.37)

GR(k, τ1, τ2) =θ(τ1 − τ2)
H2

3k3
[k3(τ3

1 − τ3
2 ) + O(k5τ5

i )], (7.38)

where k2τ2
i indicate all possible combinations k2τ2

1 , k2τ1τ2 and k2τ2
2 , and similarly for

k5τ5
i . Using the lowest order of these expansions, it is easy to count the powers of τi of

the contribution of an arbitrary Feynman diagram. The F two point function does not con-

tribute any factor of τi, and the GR two point function gives a factor of τ3
i . Furthermore,

a vertex contributes a factor a4(τi) ∝ τ−4
i , and an integral

∫
dτi ∝ τi, so effectively it

contributes a factor τ−3
i .

We can divide the Feynman diagrams into two classes: diagrams that contain only vertices

with one dashed line (diagrams A, B and D in the example of the two point function

(7.33)), and diagrams that contain one or more vertices with three dashed lines (diagram

C in (7.33)). Because each dashed line is attached to a GR two point function, diagrams

of the first class have an equal number of vertices as GR two point functions. Each vertex

contributes a factor τ−3
i and each GR two point function a factor of τ3

i and therefore

diagrams from the first class are proportional to τ0
i . Because these diagrams can contain

integrals like
∫

dτi/τi, they can be proportional to powers of ln(−τi), which are largest

for the upper limit of the time integrals, i.e. τ .

Diagrams from the second class have more GR two point functions than vertices, and are

therefore proportional to positive powers of τi. For example a diagram with one vertex

with three dashed lines has two more GR two point functions than if this vertex would

have had one dashed line, and is therefore suppressed by a factor of |kτi|6. The contribu-

tions from diagrams of the second class are largest for the lower limit of the time integrals,

i.e. for τH . Therefore the contributions of diagrams from this class are suppressed with

respect to contributions of the first class by a factor of |kτH |6 = exp(−6NH), and they

do not have the growing factors of ln(τ/τH).

The power counting of τi that is done here is similar to the power counting of the scale

factor a in the derivation of the theorem in [102]. The expansion of the two point functions
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(7.37) and (7.38) can be compared with the asymptotic expansions of the wavefunctions

for late times in [102]. The difference is that here we use power counting to differentiate

between growing and vanishing contributions to correlation functions for a specific (φ3)

interaction, whereas in [102] it was used to differentiate between interactions leading to

different late time behaviour. We return to this in section 7.5.2.

LARGE INTERNAL MOMENTA

We consider an arbitrary amputated 1PI diagram, which has small external momenta, and

we integrate the internal momenta starting at a scale M somewhat smaller than H . We

use a cutoff Λ as ultraviolet regulator. Because both M and Λ are physical scales and not

comoving scales, the limits of the momentum integrals are time dependent: Ma(τi) and

Λa(τi), where τi corresponds to the time of one of the vertices. We take for this time the

earliest time that occurs in the loop, because that corresponds with the smallest cutoff.3

In this way the momentum integrals do also contribute time dependencies, which we also

have to take into account.

Suppose that our arbitrary amputated 1PI diagram has E external lines and N vertices,

each with V legs. Then there are P internal lines and L loops with

P =
1
2

(NV − E) , (7.39)

L =
1
2

(NV − E) − N + 1. (7.40)

Furthermore from equations (7.24) and (7.25) we see that each internal two point function

contributes factors proportional to

(piτj1)
nβ

p3
i

e±ipiτj2 , (7.41)

where nβ = 0, 1, 2. Each vertex gives
∫

dτj/τ4
j , and each loop gives an integral

∫
d3pi.

We ignore powers of the external momenta because the internal momenta are much larger,

p � k. Then we can count the powers of p and τ of the diagram:

p
(−3+n)P+3L−l
i τ−3N+nP−l

j

∣∣∣∣
Λa(τj)

Ma(τj)

→
(

Λ
H

)n
2 (NV −E)−3N−l+3

τ−3
j , (7.42)

where n is the sum of the nβ , and where l is a non-negative integer that represents the

fact that p integrals can also lead to factors of 1/τ instead of an extra factor p (see e.g.

the integrals (E.22)-(E.30) in the example calculation of Appendix E). We ignore the

contribution from the lower limit Ma(τj), because the full result cannot depend on the

split in the integrals.4

3If an ultraviolet divergence is local, it occurs only if the times of the vertices in the loop are equal (i.e. they

are proportional to δ(τj1 − τj2 ) for all times τji ); then it does not matter which time one chooses.
4This is confirmed for the specific case considered in Appendix E.

105



Chapter 7 - Classical approximation to quantum cosmological correlations

Apparently the power of τj is independent of the details of the calculation: contributions

from large internal momenta to 1PI diagrams are always proportional to τ−3
j .

We can now compare the 1PI diagram, seen as an effective coupling, with a tree level

coupling. They are both proportional to τ−3
j , but they differ in the possible numbers of

(external) dashed lines. The 1PI diagrams can have any number of dashed lines, instead of

one or three dashed lines for the tree level coupling. However, as shown in Appendix C, it

turns out that 1PI diagrams with no external dashed lines vanish. Hence the non-vanishing

1PI diagrams can have one or more external dashed lines.

The 1PI diagrams, being effective couplings for small momenta, can be put into the anal-

ysis for small internal momenta of section 7.2.2. The power counting argument of that

section shows that only those effective couplings with one external dashed line can lead

to contributions proportional to τ0. Effective couplings with more external dashed lines

lead to contributions that are suppressed by (at least) a factor |kτH |3.

The power of Λ/H in equation (7.42) does depend on the details of the calculation. When

it is non-negative, it can cause an ultraviolet divergence. Some divergent terms are pro-

portional to δ(τj1 − τj2) for all the times τji
that occur in the loop. These divergences

are the usual local divergences and are canceled by counterterms. Non-local divergent

terms can also occur (an example of this is given below), as a consequence of the way

in which the total correction is split up in contributions from individual diagrams. They

must cancel between different contributions in order to make the total result finite.

It is interesting to consider the errors that occur when the ultraviolet regulator Λ is not

taken to infinity but kept finite. From equation (7.42) it is clear that, after the counterterms

have been taken into account, the errors will be proportional to positive powers of H/Λ.

Hence if Λ is taken to be smaller than H , large errors occur, but if Λ is taken to be larger

than H the errors are suppressed. Clearly, internal momenta of the order magnitude of

the Hubble scale H still contribute to the correlation functions, even though H is much

larger than the external momenta k/a(τ). This is a feature of quantum field theory in de

Sitter space that is different from what one would expect from field theory in flat space.

In the latter case, from the point of view of effective field theories, one expects only

contributions from internal momenta of the order of magnitude of the external momenta.

Contributions from higher scales are said to decouple. In de Sitter space, scales decouple

only when they are larger than the Hubble scale H .

EXAMPLE: LATE TIME CONTRIBUTIONS TO EQUAL TIME TWO POINT FUNCTION

AT ONE LOOP

The general analysis of this subsection can be checked in the example of the late time

contributions to the one loop correction to the two point function (7.33), as calculated in
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Appendix E. In this calculation the momenta are split up between small and large at a

comoving scale Mcm, which obeys |Mcmτ | � 1 and Mcm > k.

Small internal momenta. The results for small internal momenta of diagrams A and B

are given in equations (E.11) and (E.58), respectively. Diagram C does not give any late

time contribution. After attaching the external lines, the dominant terms can be found in

equations (E.49) and (E.71) and are proportional to

λ2

δ
ln2 τ

τH
with δ =

m2

3H2
, or λ2 ln3 τ

τH
, (7.43)

depending on the values of δ and ln(τ/τH), where δ is the infrared regulator. In this

calculation we have used an expansion that is valid for |δ ln(−kτ)| < 1, and therefore

this calculation is only valid for a limited amount of time. When |δ ln(−kτ)| approaches

1, the term on the right in (7.43) becomes of comparable magnitude to the term on the

left.

Two powers of the logarithm ln(τ/τH) come from the two time integrals corresponding

with the two vertices. The extra factor of ln(τ/τH) in the term on the right in (7.43),

is the consequence of the momentum integration, and was observed earlier in a similar

calculation in [175], where also a small mass was used as infrared regulator.

Large internal momenta. For large momenta the result for the amputated diagrams are

given in (E.42) for diagrams A and D, (E.61) and (E.62) for diagram B and (E.65) for

diagram C. Diagram A has a local ultraviolet divergence that is canceled by the coun-

terterm, diagram D. Diagrams B and C have divergent terms that are non-local and that

cancel each other. The finite remainder is suppressed for late times. The contribution

(E.62) from diagram B only removes the dependence on the scale Mcl. Therefore only

diagram A leads to late time contributions, in agreement with the result above that late

time contributions can only come from 1PI diagrams with one external dashed line.

The term from diagram A that grows quickest for large internal momenta, after attaching

the external lines, can be found in equation (E.49) and is proportional to

λ2 ln3 τ

τH
, (7.44)

which is comparable to the term on the right in (7.43) for the small internal momenta.

Complete result for the one loop correction. The complete result of the late time

contributions to the one loop correction is two times equation (E.49) added to equation
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(E.71), which gives

λ2

36(2π)2k3

{
7
9δ

+
392
27

− 7
3
γ − 17

18
π2 − 4

3
ln 2 − 4ζ(3) − ln

2μ

H
+

4
9

ln(−kτH)+(
2
δ

+ 15 − 17
3

γ − 2
3
π2 − 8

3
ln 2 − 3 ln

2μ

H
+

8
3

ln(−kτH)
)

ln
τ

τH
+(

2
δ

+
22
3

− 2γ − 2 ln 2 + 4 ln(−kτH)
)

ln2 τ

τH
+

8
3

ln3 τ

τH
+ O(

τ

τH
) + O(δ)

}
.

(7.45)

Note that a consequence of the growing behaviour of loop corrections is that the theory

becomes nonperturbative if one waits long enough.

7.3 CLASSICAL THEORY

In this section we consider classical φ3 theory for a massless minimally coupled field φ.

The evolution of classical fields on a de Sitter background is governed by the equation of

motion (which can be derived from the Lagrangian density (7.1))

∂2
τφ(x) + 2Ha(τ)∂τφ(x) −∇2φ(x) + a2(τ)

λ

2!
φ2(x) = 0, (7.46)

where we use x = (τ,x) with τ conformal time. Initial conditions have to be imposed at

an initial time τin. We focus on the calculation of equal time correlation functions

〈φ(τ,x1) . . . φ(τ,xn)〉cl, (7.47)

where the subscript “cl” denotes a correlation function in the classical theory. In this

section we show how to calculate these correlation functions in a way that is similar to

the interaction picture in quantum field theory: first we calculate the free field correla-

tion functions starting from the initial conditions and using the free equations of motion,

and then we calculate perturbative corrections, expressed in terms of these free field cor-

relation functions. In [182, 178] this method was used in the context of thermal field

theory. Furthermore we show that the contributions to the correlation functions can be

represented graphically in a way that is similar to Feynman diagrams.

7.3.1 PERTURBATIVE CALCULATION OF CORRELATION FUNCTIONS

We assume that at the initial time τin initial conditions are given for the correlation func-

tions

〈φ(τin,x1) . . . φ(τin,xn)〉cl, (7.48)
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and first order time derivatives of these correlation functions. In the free field case (λ =
0), the initial conditions can be evolved in time using the free field equations of motion.

Then one obtains the free field correlation functions

〈φ0(τ1,x1) . . . φ0(τn,xn)〉cl, (7.49)

where the subscript “0” denotes the free field solutions, and where the times τ1, . . . , τn

do not have to be equal.

To calculate perturbative corrections to the correlation functions, we first solve the classi-

cal equation of motion for φ(x) perturbatively. The first order correction is

φ1(x) = − λ

2!

∫
d4y a4(y0)GR(x, y)φ2

0(y), (7.50)

where y0 denotes conformal time, and where the retarded propagator GR(x, y) is the

solution of

1
a2(x0)

(
∂2

x0
+ 2Ha(x0)∂x0 −∇2

)
GR(x, y) =

δ4(x − y)
a4(x0)

, (7.51)

where we used the de Sitter metric (7.23). This equation is the same as (7.21), so that the

retarded propagator in the classical theory is equal to the one in quantum theory, given in

equation (7.25) after a spatial Fourier transform. Higher order perturbative corrections to

the solution of the equation of motion are obtained by

φi(x) = − λ

2!

∫
d4y a4(y0)GR(x, y)

i−1∑
j=0

φj(y)φi−j−1(y). (7.52)

By iteration the i-th order solution can be expressed in terms of the zeroth order solution

φ0(x). The full perturbative solution of the equation of motion (7.46) is the sum

φ(x) =
∑

i

φi(x). (7.53)

Perturbative corrections to the correlation function (7.47) are obtained by replacing the

φ(xi)’s in (7.47) by the perturbative solution (7.53), and ordering the terms according to

the total powers of λ:

〈φ(τ,x1) . . . φ(τ,xn)〉cl =
∑

r

〈φ(τ,x1) . . . φ(τ,xn)〉rcl, (7.54)

with

〈φ(τ,x1) . . . φ(τ,xn)〉rcl =
∑

i1+...+in=r

〈φi1(τ,x1) . . . φir
(τ,xn)〉cl. (7.55)

When the φij
’s are completely expressed in terms of free field solutions φ0(x), the cor-

rections to the correlation function (7.55) are expressed in terms of free field correlation

functions, which we have obtained from the free equations of motion and the initial con-

ditions in (7.49).
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7.3.2 GRAPHICAL REPRESENTATION

When we choose the initial conditions to be Gaussian, it is possible to represent the con-

tributions on the right hand side of equation (7.55) graphically in a way that is similar

to the Feynman diagrams of the quantum theory. In the free field case, Gaussian initial

conditions evolve to Gaussian free field correlation functions. Therefore the free field

correlation functions are completely determined by the two point function, which we call

suggestively Fcl:

Fcl(x1, x2) = 〈φ0(x1)φ0(x2)〉cl. (7.56)

We assign graphical rules analogously to the quantum case:

x y
= −iGR(x, y), (7.57)

x y
= Fcl(x, y), (7.58)

=
−iλ

2

∫
d4y a4(y0), (7.59)

and furthermore

x
= φ0(x). (7.60)

The r-th order corrections on the right-hand side of equation (7.55) can be constructed

graphically in two steps. First the φi’s of equation (7.52) are represented by tree graphs

where the endpoint x and the i vertices are connected to each other by GR propagators.

The remaining free legs of the vertices are occupied by the φ0’s of (7.60). For example

the second order solution φ2(x) can be represented by

x φ2(x) = 2
∫

d4y a4(y0) (−i)GR(x, y)
−iλ

2!
φ0(y) ×

∫
d4z a4(z0) (−i)GR(y, z)

−iλ

2!
φ2

0(z), (7.61)

where the factor 2 comes from two equal contributions.

In the second step the tree graphs representing the φij
in (7.55) are glued together at

the crosses in all possible ways. When two crosses are glued together, a full line is cre-

ated representing the free two point function (7.58). Consider for example the contribu-

tion 〈φ2(x1)φ0(x2)〉cl to the second order two point function 〈φ(x1)φ(x2)〉(2)cl . The tree
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graphs representing φ2(x1) and φ0(x2) can be glued together in two ways:

x1 x2
(−i)2(−iλ)2

∫
d4y a4(y0) GR(x1, y) ×

∫
d4z a4(z0) GR(y, z)Fcl(y, z)Fcl(z, x2), (7.62)

(where an extra factor 2 comes from two ways of contracting the φ0’s), and

x1 x2

(−i)2(−iλ)2

2

∫
d4y a4(y0)GR(x1, y)Fcl(y, x2)×

∫
d4z a4(z0)GR(y, z)Fcl(z, z). (7.63)

The former diagram is equal to diagram A in the quantum theory (equation (7.33), after

a spatial Fourier transform) if Fcl(x1, x2) equals the F two point function in equation

(7.24).

Both diagrams (7.62) and (7.63) can be divergent, depending on Fcl. If the divergences

are local they can be canceled by adding counterterms. In fact diagram (7.63) contains a

tadpole diagram, which is automatically local and can be canceled completely by a linear

counterterm.

Similarly one can construct the contribution 〈φ0(x1)φ2(x2)〉cl, which is equal to the mir-

ror version of diagram A in (7.33). Finally there is 〈φ1(x1)φ1(x2)〉cl, which is equal to

diagram B in the quantum theory. It is not possible to obtain diagram C in the classical

theory.

Note that the resulting classical diagrams can have loops. This illustrates that loop cor-

rections occur not only in the quantum theory, but also in the classical theory. These

diagrams do not vanish, because there are statistical fluctuations.

7.4 CLASSICAL APPROXIMATION

In section 7.2 we have investigated the late time behaviour of the quantum theory, and

in section 7.3 we have set up the classical theory. The graphical representation of the

classical perturbative corrections as described in section 7.3.2 suggests that the classical

theory reproduces exactly the diagrams of the quantum theory with only vertices with one

dashed line. In Appendix D a precise argument is given that shows that this is indeed

the case. Hence if we choose the initial conditions of the classical approximation such
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that the classical free field two point function Fcl is equal to the quantum F two point

function (7.24), the classical approximation reproduces the contributions of the quantum

theory coming from these diagrams.

In the one loop correction to the two point function (7.33), this means that the classical

approximation is given by diagrams A, B and D (counterterms are still necessary in the

classical approximation).

In this section we investigate how good the classical theory is as a classical approximation

to the quantum theory for late times.

7.4.1 SMALL INTERNAL MOMENTA

As argued in section 7.2.2 for small internal momenta, the diagrams with only vertices

with one dashed line give exactly the contributions in the quantum theory that are pro-

portional to τ0. The other diagrams, that have vertices with three dashed lines and are

not in the classical approximation, give contributions that are suppressed by |kτH |6 =
exp(−6NH), because each vertex with three dashed lines leads to two more retarded

propagators compared to a vertex with one dashed line. These contributions do not grow

after horizon exit. Therefore, for small internal momenta the classical approximation is

good up to errors that are suppressed by a factor of exp(−6NH) with respect to the late

time contributions.

This is confirmed in the example of the one loop correction to the two point function.

Here the late time contributions from small internal momenta are completely coming from

diagrams A and B and these diagrams do indeed occur in the classical approximation.

The internal momenta in tree diagrams are always small. Therefore the tree level contri-

butions in the quantum theory can well be approximated by a classical approximation, if

τH is chosen sufficiently long after horizon exit. Note that this is not trivial: the quantum

theory contains tree diagrams with vertices with three dashed lines that do not occur in

the classical approximation.

7.4.2 LARGE INTERNAL MOMENTA

In section 7.2.2 we have seen that in the quantum theory loop corrections get late time

contributions from internal momenta up to the Hubble scale H , from 1PI diagrams with

one external dashed line. This set of diagrams is not the same as the diagrams of the clas-

sical approximation. Namely the 1PI diagrams with one external dashed line can contain

vertices with three dashed lines, but these diagrams do not occur in the classical approxi-

mation. Therefore, the classical approximation misses late time contributions from large
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internal momenta. This could have been expected: the classical approximation is not

supposed to be good for physics at scales around H .

For one loop corrections the classical approximation can be saved: it turns out that the

classical approximation does not miss any late time contributions, because at one loop

level there are no 1PI diagrams having both one external dashed line and a vertex with

three dashed lines. However, another problem arises: because the classical approximation

has fewer diagrams than the quantum theory, not all ultraviolet divergences are canceled.

In the next subsection, we treat these new ultraviolet divergences by introducing a cutoff.

In the two point function this becomes apparent by the fact that the classical approxima-

tion does not contain diagram C. As a consequence, the ultraviolet divergence of diagram

B is not canceled. As mentioned above, this ultraviolet divergence is not local, and can

therefore not be canceled by a counterterm.

7.4.3 CLASSICAL APPROXIMATION AT ONE LOOP

In order to deal with the ultraviolet divergences in the classical approximation at one loop,

we introduce a cutoff at a physical scale Λ (we use a physical scale and not a comoving

scale, such that we can use the arguments of section 7.2.2). In the following we estimate

the magnitude of the error that is induced by this cutoff in one loop diagrams.

First of all there are the ultraviolet divergences that made the cutoff necessary. From

equation (7.42) we see that they are proportional to (Λ/H)n1 with n1 ≥ 0 (the case

n1 = 0 can give a factor ln(Λ/H)). As argued above, these divergences occur (at least

at one loop level) only in 1PI diagrams with two or more external dashed lines, and are

therefore, according to the argument in section 7.2.2, suppressed by a factor exp(−3NH)
or a positive power of this factor. Thus errors coming from the divergent terms have an

extra factor of exp(−3NH)(Λ/H)n1 with respect to late time contributions from large

internal momenta.

This can be checked for the example in Appendix E: the term of the amputated version of

diagram B that causes a linear divergence in the classical approximation is given in (E.61).

Together with the external GR two point functions, the divergent term has an extra factor

|kτH |3(Λ/H) with respect to non-vanishing late time contributions, e.g. equation (E.62).

Secondly there are the errors from terms that are proportional to inverse powers of Λ and

that would vanish if the cutoff would be sent to infinity. For 1PI diagrams with one ex-

ternal dashed line, these errors can be proportional to τ0 and give late time contributions.

These errors therefore have only an extra factor of (H/Λ)n2 with n2 > 0, with respect to

other late time contributions from large internal momenta.
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The total error thus scales like

c1 e−3NH

(
Λ
H

)n1

+ c2

(
H

Λ

)n2

, (7.64)

with respect to other late time contributions, where ci are constants of O(1). To make this

factor considerably smaller than one, τH should be chosen long enough after horizon exit

and the cutoff Λ should be chosen considerably larger than the Hubble scale H; e.g. if

n1 = n2 = 1 and c1 = c2, Λ should be chosen of the order of exp(3NH/2)H .

Instead of introducing the cutoff by hand in the momentum integrals, one can also remove

the ultraviolet divergences by changing the ultraviolet behaviour of the initial conditions.

For example one can put a cutoff in the initial conditions:∫
d3x e−ik·x 〈φ(τH ,x)φ(τH ,0)〉cl =

H2

2k3
(1 + k2τ2

H)θ(Λcm − k), (7.65)

where Λcm is now a cutoff in comoving momentum. The physical scale Λ that corre-

sponds with Λcm is |Λcm/a(τ)|, thus the error estimate (7.64) becomes now

c1 e−3NH |Λcmτ |n1 + c2

∣∣∣∣ 1
Λcmτ

∣∣∣∣
n2

. (7.66)

Another possibility is to choose initial conditions as∫
d3x e−ik·x 〈φ(τH ,x)φ(τH ,0)〉cl =

H2

2k3

1 + k2τ2
H

1 + k2τ2
c

, (7.67)

where there is not a hard cutoff, but the loop diagrams are made finite (except for the

tadpole diagram, which does not cause problems because it can be canceled by a lo-

cal counterterm). The time τc acts like an inverse (soft) cutoff in comoving momenta,

so that it should be taken small enough to make τ/τc � 1 and large enough to keep

|kτH |3(τ/τc)n small.

7.4.4 EXAMPLE

In Appendix E we have calculated the one loop correction to the two point function in the

quantum theory. As an example, we have computed numerically the error that comes from

using a finite cutoff for a specific set of parameters, as a function of the cutoff. This is

done for diagram A by taking the upper limit in equation (E.31), adding the counterterm

(diagram D), and subtracting the term that remains finite in the limit Λ → ∞ (i.e. the

second line of (E.42)). Then the external lines are attached and the times τ1 and τ2 are

integrated numerically. For diagram B the upper limit in equation (E.60) is used, and

there are no counterterms. The results are divided by the full correction (7.45), and are
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Figure 7.1: Plot of the numerically calculated error with respect to the complete result (7.45), for

diagrams A and D (full line) and diagram B (dashed line), versus the cutoff Λ/H . We have used

kτH = −0.4, kτ = −0.03, δ = 0.1, and 2μ = H .

plotted, separately for diagrams A and D, and for diagram B, in figure 7.1. Both errors are

much smaller than the full correction (7.45). The error from diagrams A and D is clearly

decreasing for increasing cutoff. The error from diagram B is suppressed, but increasing

linearly with the cutoff. These results agree with the arguments given in this section.

7.5 DISCUSSION AND CONCLUSIONS

7.5.1 EARLY TIME CONTRIBUTIONS

Both in the quantum theory and in the classical theory we have neglected early time

contributions, i.e. contributions from times before τH . In both cases they can be included

by imposing initial conditions at τH , which can be obtained by calculating equal time

correlation functions at τH in the quantum theory with initial time τin → −∞.

In the quantum theory the initial conditions can be represented by non-local n-point vertex

functions that act only at the initial time τH , as explained for example in [156]. These ver-

tex functions can have any number of dashed and full lines. They can give by themselves

constant late time contributions, and can also occur in diagrams that give growing late

time contributions. These extra ingredients make the arguments and calculations more

complicated, but do not change them qualitatively. For example the calculation of the

one loop correction to the two point function in Appendix E will have extra contributions

from early times, of order λ2 but without growing factors ln(τ/τH).

In the classical theory a similar thing can be done. A practical problem is that not all

the vertex functions can be represented in the classical theory, because they can have
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any number of dashed lines, while in the classical theory only vertices with one dashed

line can be represented. Instead the initial conditions at τH can be imposed by adjusting

the free field correlation functions. They are then in general non-Gaussian and cannot

be represented only by the free field two point function (7.56). As a consequence, the

calculations become more complicated, but not qualitatively different, as is the case in the

quantum theory.

7.5.2 GENERALIZATION TO DERIVATIVE INTERACTIONS

Throughout this chapter we have used φ3 theory as a toy model. For other interactions

the analysis of this chapter can be adjusted, which is straightforward for φn interactions,

but less so for derivative interactions, which are of particular interest for cosmology.

Let us first consider contributions from small internal momenta. A spatial derivative leads

to an inverse power of the scale factor, or equivalently to a factor of τ . As can be seen

from the power counting argument in section 7.2.2, this extra factor of τ suppresses late

time contributions and prevents that any factors of ln(τ/τH) occur.

For a temporal derivative the situation is more complicated. If a time derivative ∂t1 =
−Hτ1∂τ1 acts on an F two point function, which can be expanded as (7.37), the constant

term vanishes, so the result is proportional to τ2
i and as a consequence, late time contribu-

tions are suppressed. But if a time derivative acts on a GR two point function, which can

be expanded as (7.38), the result is still proportional to τ3
i , and there is no suppression of

late time contributions yet. Only when there is also a time derivative acting on the other

time argument ∂t2 , the result becomes proportional to τ5
i and late time contributions are

suppressed.

Hence when an interaction has one time derivative, e.g. φ̇φ2, there are still late time

contributions: if at all vertices (with one dashed line) the time derivatives act at the dashed

line, no extra factors of τi appear and late time contributions are not suppressed. But when

an interaction has two time derivatives, e.g. φ̇2φ, there is no way to avoid suppression of

the late time contributions: in a diagram with N vertices (all of this type and with one

dashed line), there are N GR two point functions and 2N time derivatives, so that there

must be at least one GR two point function with time derivatives on both sides, or an F

two point function with a time derivative.

For large internal momenta, we can reconsider the power counting argument in section

7.2.2. A derivative (spatial or temporal) leads in (7.42) to either an additional factor pτ ,

or to no additional factors. Hence derivatives only change the value of the integer l, and

do not change the arguments of section 7.2.2. Apparently late time contributions from

large internal momenta are not necessarily suppressed by derivative interactions.

In [102] these matters are treated in a slightly different way. There the time integrals are
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performed first, and after that the momentum integrals, which is a different order than

employed in this chapter. For fixed external and internal momenta, a theorem is derived

that shows that if the interactions obey certain conditions, the time integrals converge for

τ → 0. For the wavefunctions an asymptotic expansion is used, which is valid for late

times (or equivalently small momenta).

Because in this theorem τ → 0 is taken, relative to which all fixed momenta are small,

and because of the use of the asymptotic expansion, this theorem can be compared with

our findings above for small internal momenta. They are indeed in agreement with the

conditions of the theorem.

7.5.3 COMPARISON TO STOCHASTIC APPROACH

It is interesting to compare the classical theory as described in section 7.3, to the stochastic

approach [124, 125]. In this approach the field φ is also considered to be a classical field

with statistical fluctuations after horizon exit. The difference with the classical theory of

section 7.3 is that the fluctuations are not imposed as initial conditions at a fixed initial

time, but are put into the system stochastically at wavenumber H at all times.

The stochastic approach has in the recent literature been used for different purposes, e.g.

for calculating non-Gaussianities perturbatively in multifield inflation [126, 127, 128,

129], and for investigating nonperturbative behaviour in de Sitter space that occurs at

very late times [125, 130, 131, 132] when the factors ln(−τ) have grown so large that they

overcome the suppression by small coupling constants. In the latter case it has been ar-

gued [130, 131, 132] that the stochastic approach can reproduce the terms with the largest

power of ln(−τ) at each order in the coupling constant (leading log approximation).

Below we first discuss the case of only a massless minimally coupled scalar field with

nonderivative interactions, as in section 7.3. Then we make some remarks on theories

with derivative interactions and with other fields than massless minimally coupled scalars.

MASSLESS MINIMALLY COUPLED SCALAR WITH NONDERIVATIVE INTERACTIONS

The stochastic approach mostly does not use a mass as infrared regulator, but a finite lower

limit for the momentum integrals: the classical field φ is defined to contain only modes

with comoving wavenumber k > H . Physically this corresponds to considering only a

finite patch of de Sitter space, the size of which increases exponentially by the expansion.

So to compare with the classical theory of section 7.3, we need to reformulate the latter

using this infrared regulator.

Apart from the different infrared regulator, the stochastic approach makes two additional

approximations with respect to the classical theory of section 7.3. First the classical field
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is assumed not to contain modes with wavenumber k > Ha; hence the momentum inte-

grals have an upper limit Ha. Second, the wavefunction of the free scalar field (B.4), that

is used to characterize the stochastic fluctuations, is approximated by its leading term for

late times: φk,1(τ) → i H√
2k3 . In the classical theory of section 7.3 this is equivalent to

taking only the leading term of the expansion of the F two point function, as is done in

equation (7.37). Also the retarded propagator GR is approximated by its leading term, as

in equation (7.38).

We now compare the stochastic approach with the classical theory of section 7.3 for the

one loop correction of the two point function in φ3 theory, in particular the term with the

largest power of ln(−τ). For the classical theory we can use the calculation in Appendix

E; we only adjust the infrared regulator. This means that in the calculations for small

internal momenta we put δ → 0, and use a lower limit H for the momentum integrals.

For diagram A this changes equation (E.11) to

iλ2θ(τ1 − τ2)
6(2π)2H4(τ1τ2)4

(
2(τ3

1 − τ3
2 ) ln

Mcm

H

)
. (7.68)

The calculation for large internal momenta is unchanged and gives a finite contribution

after adding the counterterm of diagram D. Attaching the external lines and performing

the time integrals gives for the term with the largest power of ln(−τ)

λ2

36(2π)2k3

{
− 1

3
ln3 τ

τH

}
. (7.69)

For the small internal momenta of diagram B we use the integral

∫ Mcm

H

dp

p2

∫ p+k

|p−k|

dp′

p′2
=

1
k2

(
ln

k2

H2
+ ln

Mcm − k

Mcm + k
+

2k

Mcm
− 2
)

, (7.70)

so that the analog of (E.58) becomes

−λ2

4(2π)2k3H4(τ1τ2)4

(
ln

k2

H2
+ ln

Mcm − k

Mcm + k
+

2k

Mcm
− 2
)

. (7.71)

Again the integral for the large internal momenta remains unchanged (we use a cutoff as

described in section 7.4.3), and attaching the external lines and performing the time inte-

grals gives a leading logarithmic term of ln2(τ/τH). Apparently there is no contribution

to the ln3(τ/τH) term from diagram B when we use this infrared regularization.

We can calculate the same quantity in the stochastic approach by using stochastic sources.

However we will not do this, but instead repeat the calculation of above, using the addi-

tional assumptions of the stochastic approach (i.e. taking the leading order approxima-

tions for the propagators (7.37), (7.38), and the upper limit k < Ha in the momentum

integral). We expect that this does not make a difference for the result of the largest
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power of ln(−τ) and therefore we interpret the result of this calculation as the result of

the stochastic approach.

With the approximations of the stochastic approach, the calculation of diagram A re-

duces to the calculation for small internal momenta done above, with only the upper limit

changed from Mcm to Ha(τ2). For the amputated version of diagram A the result is then

iλ2θ(τ1 − τ2)
6(2π)2H4(τ1τ2)4

(
2(τ3

1 − τ3
2 ) ln

−1
Hτ2

)
, (7.72)

and after attaching the external lines and performing the time integrals, the result for the

largest power of ln(−τ) is the same as in our formulation of the classical theory, (7.69).

For the amputated version of diagram B the result is

−λ2

4(2π)2k3H4(τ1τ2)4

(
ln

k2

H2
+ ln

Ha(τ2) − k

Ha(τ2) + k
+

2k

Ha(τ2)
− 2
)

, (7.73)

which, similarly to the contribution (7.71) for our formulation of the classical theory, does

not lead to ln3(τ/τH) terms.

In this calculation the stochastic approach reproduces the same leading logarithmic term

(but not the same subleading logarithmic terms) as the classical theory in our formulation,

using a lower momentum limit as infrared regulator. We remark that if we would have

split the momentum integrals at a physical scale Mcma instead of the comoving scale Mcm

in the calculation of the classical theory, all the contributions to the leading logarithmic

term would have come from small internal momenta. It is reasonable to expect that this

remains true for higher orders. Moreover the approximations for the propagators in the

stochastic approach are then also the same as we made in the calculation for the small

internal momenta. Therefore we expect that the stochastic approach will give the largest

logarithmic term at each order in the coupling, consistent with the arguments in [130, 131,

132].

Because of the used approximations, the stochastic approach has fewer problems with the

ultraviolet than our formulation of the classical theory (see sections 7.4.2 and 7.4.3). The

drawback of using these approximations is that even at one loop order, only the leading

logarithmic term can be obtained, whereas in our formulation of the classical theory, also

the subleading logarithmic terms can be obtained at one loop order, as explained in section

7.4.3.

DERIVATIVE INTERACTIONS AND OTHER FIELDS

As argued in section 7.5.2, derivative interactions typically lead to positive powers of

τ and therefore to suppression of late time contributions from small internal momenta.

There can also be interactions with fields that are not massless minimally coupled scalar

119



Chapter 7 - Classical approximation to quantum cosmological correlations

fields. The wavefunctions of these fields are proportional to a positive power of τ for

late times, instead of to τ0, as is the case for massless minimally coupled scalar fields.

Therefore the leading terms of the expansions of the F two point functions of these fields

are also proportional to a positive power of τ . If a diagram contains such an F two point

function, this diagram cannot lead to late time contributions from small internal momenta.

However, even if there are no late time contributions from small internal momenta, it

is still possible that there are late time contributions from large internal momenta. The

stochastic approach makes approximations that are not valid for large internal momenta.

Therefore one expects the stochastic approach to have problems with reproducing the late

time contributions for this case. These problems can be circumvented for corrections

that come from a massless fermion [183] or from a photon [132], by integrating out the

fermion or photon and considering the resulting effective theory of the scalar field.

7.5.4 APPLICATION TO THE CURVATURE PERTURBATION

The motivation for this work comes from cosmological perturbations generated during a

period of inflation. As mentioned in the introduction, a suitable parameterization for these

cosmological perturbations is the curvature perturbation ζ, which typically has interac-

tions involving derivatives. It is of interest to know late time contributions of correlation

functions of ζ, and whether these can be approximated by a classical approximation.

For small internal momenta, one can derive the interaction terms for the various degrees

of freedom in a specific model of inflation, and then use the conditions of the theorem of

[102] to decide whether these interactions can lead to late time contributions. For single

field inflation (possibly together with N free massless scalar fields) it is shown in [102]

that the interactions do obey the conditions, and therefore do not give late time contribu-

tions to all orders. This can be compared with [118], where it is argued, using classical

physics, that ζ is conserved after horizon exit. This argument is only valid for adiabatic

perturbations which applies to single field inflation and for small internal momenta be-

cause the large internal momenta are removed by a smoothing procedure. Indeed we

found in section 7.4.1 that for small internal momenta the quantum theory can be approx-

imated quite well by classical physics.

For inflation models involving more fields, there are typically interactions that do not obey

the conditions of the theorem in [102], and therefore can lead to late time contributions.

Correspondingly, the perturbations are not adiabatic in these models, hence the argument

of [118] does not apply and it is no surprise that ζ is not conserved after horizon exit.

For large internal momenta the situation is different. Since derivatives do not necessar-

ily suppress late time contributions, it is possible that loop corrections lead to late time

contributions, even for single field inflation. Moreover, a classical approximation would
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only be able to approximate these contributions up to one loop. An explicit calculation

should decide on whether these contributions occur or not. The sample calculation in

[102] seems to indicate that there are no late time contributions, even for large internal

momenta, but we are concerned about the fact that in this calculation τ → 0 is taken

before the momentum integrals are performed. The terms that are discarded in this way

might lead to late time contributions.

Note that the background spacetime in inflation is not exactly de Sitter, but typically has

a slowly decreasing Hubble constant H . This time dependence should be taken into ac-

count when deriving the wavefunctions for the fluctuating fields, and when doing the time

integrals. Moreover, the fluctuations can react back on this background and in this way

change the time dependence of H . This backreaction can be calculated by considering

one point functions of the fluctuating fields, as is done for example in [184, 104, 105].

7.5.5 CONCLUSIONS

We have investigated up to which order corrections to cosmological correlation functions,

generated after horizon exit, can be calculated reliably using classical physics. We have

done this by making a detailed study of φ3 theory on a de Sitter background, for a massless

minimally coupled scalar field φ as a toy model.

In the quantum theory we studied late time contributions (generated after horizon exit)

to equal time correlation functions with external momenta much smaller than the Hub-

ble scale. We found that in loop corrections the loop integrals get contributions from

internal momenta up to the Hubble scale H . This is different from the intuition from

effective field theories in flat space that loop integrals are dominated by internal momenta

of the same order of magnitude as the external momenta. Our calculation of the one

loop correction to the two point function supports the argument that the contributions

from large internal momenta (around scale H) are not negligible: they are proportional to

λ2 ln3(τ/τH), whereas the contributions from the small internal momenta are also pro-

portional to λ2 ln3(τ/τH), or to λ2 ln2(τ/τH)/δ, with δ = m2/3H2.

Furthermore we found that a classical approximation can approximate contributions from

small internal momenta quite well, but that this does not hold for contributions from

large internal momenta. This is not surprising, because the classical approximation is

only supposed to work for physics at momentum scales much below the Hubble scale

H . As a consequence, the classical approximation is good at tree level, but in general

not for loop corrections. An exception is the one loop correction, for which the classical

approximation can be good if an ultraviolet cutoff Λ > H is introduced.

We argued that the results presented for the φ3 toy model can be extended to derivative

interactions, and be applied to the curvature perturbation ζ. For non-Gaussian effects in
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multifield inflation models this means that at leading order, which is tree level, can be

approximated quite well using classical physics. Also the one loop corrections can be

approximated if a suitable cutoff is chosen. But for higher order corrections, the classical

approximation is not expected to reproduce all late time contributions.

For small internal momenta, we found that derivatives tend to suppress late time cor-

rections, in a way that agrees with the theorem derived by Weinberg [102]. However, for

large internal momenta late time contributions need not be suppressed. Consequently, it is

possible that the curvature perturbation ζ is not conserved to all orders after horizon exit,

even for single field inflation. There might be contributions to correlation functions of ζ

that grow after horizon exit, coming from loop corrections. These contributions would

be suppressed by powers of the coupling constant H/Mpl and possibly also by slow-roll

parameters, but they would be amplified by powers of the number of e-folds ln a.
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CONCLUSIONS

Currently the evolution of cosmological correlations after horizon exit is calculated using

classical physics, which is expected to be a good approximation. Yet there are reasons to

study quantum corrections to cosmological correlations. First it is important to estimate

the size of the quantum corrections, and to check if the approximation is indeed good.

Second there is a more fundamental reason: we should check if we understand quantum

field theory well enough to be able to do these calculations and if it behaves as we expect

it to behave, or quoting [102], we “ought to know what our theories entail”.

In this context we studied in chapter 7 a toy model of φ3 theory on an exact de Sitter

background. We formulated the CTP formalism of quantum field theory in a suitable

way, and derived the corresponding diagrammatic expansion. Next we derived which

terms contain contributions that grow after horizon exit (late time contributions).

In our classical theory with statistical fluctuations, all the late time contributions of the

quantum theory at tree level can be reproduced exactly. Those at one loop level can

be reproduced approximately, by using suitable initial conditions and a carefully chosen

ultraviolet cutoff. The classical methods discussed in section 6.2.3 can have errors at this

order: the stochastic approach usually has an ultraviolet cutoff that is smaller than the

Hubble scale H , and the δN formalism uses smoothing which also leads to errors.

From two loop level on, there can be late time contributions in the quantum theory from

large internal momenta that cannot be reproduced by a classical theory.

It would be interesting to extend this work by applying this method to the curvature per-

turbation ζ, which has (much) more complicated interactions than the toy model. The

arguments [116, 118] that show that ζ is conserved to all orders outside the horizon use

a smoothing assumption. It is possible that without this assumption, ζ is not conserved

123



Chapter 8 - Conclusions

anymore to all orders.
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APPENDIX A

CONVENTIONS

We use a metric gμν with signature −+++.

For the γ matrices we use the representation

γ0 = −i

(
0 1
1 0

)
, γi = −i

(
0 τ i

−τ i 0

)
, (A.1)

where the τ i are the Pauli matrices, and which satisfies {γμ, γν} = 2gμν . Furthermore

we have

ψ̄ = ψ†β, (A.2)

with

β = iγ0, β2 = 1, βγμβ = −γμ†, (A.3)

and

C = γ2β, C† = C−1 = CT = −C CγμC−1 = −γμT . (A.4)

We define

γ5 = iγ0γ1γ2γ3, γ†
5 = γ5, γ2

5 = 1, {γμ, γ5} = 0. (A.5)

The γ5 matrices are used in the projectors PL,R:

PL =
1
2
(1 − γ5), PR =

1
2
(1 + γ5), (A.6)

and obey

PL,Rγμ = γμPR,L, βPL,Rβ = PR,L, CPL,RC−1 = PT
L,R. (A.7)
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APPENDIX B

FREE SCALAR FIELD ON A DE

SITTER BACKGROUND

B.1 SCALAR WAVEFUNCTION

The free field equation of motion for a scalar field on a de Sitter background is

∂2
τφ(x) + 2Ha(τ)∂τφ(x) −∇2φ(x) + a2(τ)

(
m2 + ξR

)
φ(x) = 0, (B.1)

where we use x = (τ,x) with τ conformal time. After a spatial Fourier transformation

the solutions for the mode functions are (see e.g. [114])

φk,α(τ) = −
√−πτ

2a(τ)
H(α)

ν (−kτ), (B.2)

where H
(α)
ν (−kτ) are the Hankel functions for α = 1, 2, and where ν is determined by

ν2 =
9
4
− m2

H2
− 12ξ. (B.3)

For massless minimally coupled fields, m = 0, ξ = 0 and thus ν = 3/2 (we choose ν to

be positive). Then the modefunctions reduce to

φk,1(τ) = i
H√
2k3

(1 + ikτ)e−ikτ (B.4)

and φk,2(τ) = φ∗
k,1(τ). For kτ → −∞ the φk,1(τ) mode function is proportional to

e−ikτ/a(τ) and is called the positive frequency solution1. Using these mode functions,

1Often the Hankel functions are used with a negative argument: H
(α)
ν (kτ). Then the φk,2(τ) mode function

is the positive frequency solution.
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the scalar field operator can be decomposed as

φ(τ,x) =
∫

d3k

(2π)3
(
eik·xαk φk,1(τ) + e−ik·xα†

k φ∗
k,1(τ)

)
, (B.5)

where the annihilation operators αk and creation operators α†
k satisfy the commutation

relations

[αk, α†
k′ ] = (2π)3δ3(k − k′), [αk, αk′ ] = 0. (B.6)

The normalizations are chosen such that

[φ(τ,x), π(τ,x′)] = iδ3(x − x′), (B.7)

where π(τ,x) = a2(τ)∂τφ(τ,x) is the conjugate momentum, and that a(τ)φ(τ,x) is a

conventionally normalized free field for kτ → −∞. The state |0〉 defined by

αk|0〉 = 0 (B.8)

corresponds therefore with the free vacuum state in Minkowski spacetime for kτ → −∞.

This state is called adiabatic or Bunch-Davies vacuum and is the state with respect to

which we calculate correlation functions in this paper.

B.2 PARTICLE CREATION

Despite the confusing nature of the concept of particle number in curved spacetime (see

e.g. [114]), we give here a definition of the particle number in the frame of a comoving

observer in de Sitter spacetime. This definition of particle number then allows us to make

a comparison with the classical approximation in thermal field theory in the next section.

Using comoving time, the free Lagrangian is the spatial integral over the Lagrangian

density (7.1) with λ = 0

L[ϕk, ∂τϕk] =
∫

d3k

(2π)3

(
1
2
a2|∂τϕk|2 − 1

2
a2k2|ϕk|2 − 1

2
(m2 + ξR)a4|ϕk|2

)
,

(B.9)

where we have taken

φ(τ,x) =
∫

d3k

(2π)3
ϕk eik·x, (B.10)

where the ϕk are time dependent operators. In this form the Lagrangian describes a

system of uncoupled harmonic oscillators with frequencies ωk =
√

k2 + a2(m2 + ξR).
The conjugate momentum is defined as πk = δL/δ(∂τϕk) = a2∂τϕk, and using this the

Hamiltonian becomes

H[ϕk, πk] =
∫

d3k

(2π)3

(
1
2
|πk|2
a2

+
1
2
a2k2|ϕk|2 +

1
2
(m2 + ξR)a4|ϕk|2

)
. (B.11)
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By analogy to the harmonic oscillator, we define time dependent annihilation and creation

operators ᾱk and ᾱ†
k by

aϕk =
1√
2ωk

(
ᾱk e−ikτ + ᾱ†

−k eikτ
)
,

πk

a
=

1
i

√
ωk

2

(
ᾱk e−ikτ − ᾱ†

−k eikτ
)
.

(B.12)

They obey the commutation relation

[ᾱk, ᾱ†
k′ ] = (2π)3δ3(k − k′). (B.13)

The Hamiltonian (B.11) expressed in terms of these operators has the familiar form

H =
∫

d3k

(2π)3
(
ᾱ†

kᾱk +
1
2
[ᾱk, ᾱ†

k]
)
ωk. (B.14)

If we take m = 0 and ξ = 0 we can use the modefunction φk,1(τ) of equation (B.4) to

express the operators ᾱk, ᾱ†
k in terms of the operators αk, α†

k in the mode decomposition

(B.5):

ᾱk =
−i

2kτ
(1 + 2ikτ)αk + i

e2ikτ

2kτ
α†
−k, (B.15)

ᾱ†
−k =

−ie−2ikτ

2kτ
αk +

i

2kτ
(1 − 2ikτ)α†

−k. (B.16)

For kτ → −∞ the ᾱk operator becomes equal to αk. We can define nk and ñk by

〈0|ᾱ†
kᾱk′ |0〉 = nk (2π)3δ3(k − k′), nk =

1
4k2τ2

(B.17)

〈0|ᾱkᾱ−k′ |0〉 = e2ikτ (ñk +
i

2kτ
)(2π)3δ3(k − k′), ñk =

1
4k2τ2

(B.18)

where one can interpret nk as the particle number and ñk as a kind of off-diagonal par-

ticle number, with respect to the vacuum at kτ → −∞. Clearly these quantities are

proportional to a2.

B.3 COMPARISON WITH THERMAL FIELD THEORY

It is interesting to compare with thermal field theory on a Minkowski background (see

[182, 178]). The F two point function in a thermal system with temperature T in Minkowski

spacetime is given by

F (k, t1, t2) =
1
k

(
nth(k) +

1
2

)
cos k(t1 − t2) nth(k) =

1
ek/T − 1

, (B.19)
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where nth(k) is the particle number. For small momenta with respect to the temperature

k � T , nth � T/k, which becomes large and classical behaviour emerges. Moreover

the GR two point function does not have this amplification factor; it is given by

GR(k, t1, t2) =
θ(t1 − t2)

k
sin k(t1 − t2). (B.20)

Therefore a diagram containing a vertex with more than one dashed line is suppressed

with respect to the same diagram with a vertex with one dashed line.

To compare this with the de Sitter case, it is natural to consider aφk(τ). Then we have

a(τ1)a(τ2)F (k, τ1, τ2) =
1
k

[(
1

2k2τ1τ2
+

1
2

)
cos k(τ1 − τ2) +

τ1 − τ2

2kτ1τ2
sin k(τ1 − τ2)

]
.

(B.21)

We see that for equal times τ1 = τ2 = τ this quantity grows as

1
2k2τ2

+
1
2
∝ n + ñ +

1
2
. (B.22)

The quantity a(τ1)a(τ2)GR(k, τ1, τ2) does not have this amplification factor for late

times, as can be seen from expansion for small kτ . Therefore a diagram containing a

vertex with more than one dashed line is suppressed with respect to the same diagram

with a vertex with one dashed line, as in thermal field theory.

Both in the de Sitter case as in thermal field theory, the arguments given above explain

why the classical approximation is good for small physical internal momenta, i.e. k/a �
H (|kτ | � 1) or k � T . But, as we argue in this paper for the de Sitter case, for large

internal momenta (≈ H or ≈ T ) problems arise for the classical approximation (compare

with Hard Thermal Loops [185] in thermal field theory).
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APPENDIX C

AMPUTATED DIAGRAMS WITH

NO EXTERNAL DASHED LINES

The contribution of an amputated diagram with no external dashed lines, as for example

occurs in diagram (7.34), vanishes. The reason is that in such a diagram there is always a

closed loop of GR two point functions. This can be seen by picking an arbitrary vertex,

and from there following one of the dashed lines along a GR two point function to another

vertex. From this new vertex one can repeat this to go to the next vertex. Because there

are no external dashed lines, this can be repeated indefinitely while staying inside the

diagram. Since there is only a finite number of vertices in the diagram, one eventually

ends up at a vertex for the second time. Therefore there must be a closed loop of GR two

point functions in a diagram with no external dashed lines.

Because of the θ-functions of the GR two point functions, the times of the vertices of a

closed loop of GR two point functions have to be ordered. But in a closed loop there is

always at least one GR two point function for which the θ-function vanishes, and therefore

the complete diagram vanishes. Even if all the internal times of the loop are equal, the

diagram vanishes because the GR two point function vanishes if the time arguments are

equal.
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APPENDIX D

CORRESPONDENCE BETWEEN

DIAGRAMS IN QUANTUM AND

CLASSICAL THEORY

In this Appendix we show that, if one chooses initial conditions such that

Fcl(k, τ1, τ2) = F (k, τ1, τ2), (D.1)

the classical approximation reproduces the diagrams of the quantum theory with only

vertices with one dashed line.

Discarding the vertex with three dashed lines in the quantum theory corresponds to dis-

carding the term with (φ(2))3 in equation (7.15). An arbitrary equal time correlation

function, calculated up to order n in the coupling λ, can then be written as

〈φ(τ,x1) . . . φ(τ,xr)〉 = 〈φ(1)(τ,x1) . . . φ(1)(τ,xr)
1
n!
(
S̄int

)n〉(0), (D.2)

where the superscript (0) denotes the free correlation function, and where the modified

interaction part of the action is given by

S̄int = −
∫ τ

−∞
dτa4(τ)

∫
d3x

λ

2!
(φ(1))2φ(2). (D.3)

On the right hand side of equation (D.2) the fields φ(1) and φ(2) have to be contracted in

all possible ways: every φ(2) is contracted with a φ(1) to a retarded propagator GR, and

the remaining φ(1)’s are contracted with each other to F two point functions. Suppose
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that we do have contracted the φ(2)’s, but not yet the remaining φ(1)’s. The correlation

function can then be drawn as a number of disconnected diagrams, in which the vertices

are connected by GR two point functions and which have loose ends representing φ(1)’s

that are yet to be connected. In total there are n vertices. Each disconnected diagram can

be a tree diagram or a loop diagram. A loop diagram with only GR two point functions

vanishes, as explained in Appendix C. Hence if one of the disconnected diagrams contains

a loop, the complete contraction does not contribute to the correlation function, and for

all non-vanishing contractions the disconnected diagrams are tree diagrams. These tree

diagrams are the same tree diagrams in the classical theory that represent the perturbative

solutions φi in the classical theory (7.52), where all the φ(1)’s in the quantum theory

correspond with free field solutions φ0 in the classical theory. The symmetry factors are

also equal because they arise in the same way (the factor 1/n! is canceled by a factor n!
from the n equivalent vertices). The remaining contractions of the φ(1)’s in the quantum

theory are equal to the contractions of the φ0’s in the classical theory, because of equation

(D.1).

Therefore the classical theory with the same couplings as the quantum theory, and using

initial conditions such that (D.1) holds, gives all the diagrams using only the vertex with

one dashed line in the quantum theory, up to vanishing diagrams. Hence this classical

theory reproduces the late time contributions for small internal momenta.
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APPENDIX E

ONE LOOP CORRECTION TO

TWO POINT FUNCTION

In this appendix we calculate the one loop correction to the two point function as given in

equation (7.33). We first consider the diagrams with one external dashed line (diagrams

A and D), and then the ones with two external dashed lines (diagrams B and C). The

complete result is given in equation (7.45).

E.1 DIAGRAMS A AND D

We start with the diagrams with one external GR two point function. First we calculate

the amputated diagrams, and then attach the external lines. The amputated diagrams are:

A
p′

p

k

τ1 τ2

k D

τ1 τ2
. (E.1)

The amputated version of diagram A is given by

Aamp(k, τ1, τ2) =
−i(−iλ)2

H8τ4
1 τ4

2

∫
d3pd3p′

(2π)3
δ3(k− p− p′)GR(p′, τ1, τ2)F (p, τ1, τ2) =

iλ2

(2π)2kH8τ4
1 τ4

2

∫ ∞

0

dp p

∫ p+k

|p−k|
dp′ p′ GR(p′, τ1, τ2)F (p, τ1, τ2), (E.2)
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where we have used the identity∫
d3p d3p′ δ3(k + p + p′)f(k, p, p′) =

2π

k

∫ ∞

0

dp p

∫ p+k

|p−k|
dp′ p′f(k, p, p′). (E.3)

We will evaluate this integral below. For diagram D we see from equations (7.30) and

(7.3) that it is equal to

Damp(k, τ1, τ2) = −i a4(τ1)δmδ(τ1 − τ2) =
−iλ2

4(2π)2H4τ4
1

ln
(

Λ
μ

)
δ(τ1 − τ2), (E.4)

where Λ is the ultraviolet momentum cutoff and μ is a renormalization scale. The coun-

terterm δZ is finite and leads to terms proportional to positive powers of τ , and is therefore

left out.

We calculate the integral (E.2) by splitting the p integral in a small momentum part∫Mcm

0
dp and a large momentum part

∫ Λa(τ2)

Mcm
dp, with |Mcmτi| � 1 and Mcm > k.1

E.1.1 AMPUTATED DIAGRAM FOR SMALL INTERNAL MOMENTA

The integral in equation (E.2) is infrared divergent for p → 0. We regulate this divergence

by giving the field a small mass m � H , such that ν = 3/2 − δ with δ = m2/3H2. The

F and GR two point functions are then, using equations (7.17), (7.18) and (B.5),

F (k, τ1, τ2) =
π
√

τ1τ2

4a(τ1)a(τ2)
Re
(
H(1)

ν (−kτ1)H(1)
ν

∗
(−kτ2)

)
, (E.5)

GR(k, τ1, τ2) = − π
√

τ1τ2

2a(τ1)a(τ2)
θ(τ1 − τ2) Im

(
H(1)

ν (−kτ1)H(1)
ν

∗
(−kτ2)

)
. (E.6)

Using (see [186])

H(1)
ν (−kτ) = Jν(−kτ) + i

(
cos νπ

sin νπ
Jν(−kτ) − 1

sin νπ
J−ν(−kτ)

)
, (E.7)

Jν(−kτ) =
1

Γ(ν + 1)
(− 1

2
kτ
)ν(1 + O(k2τ2)

)
, (E.8)

and the identity Γ(ν)Γ(1 − ν) = π/ sin νπ, we obtain

F (k, τ1, τ2) =
H2

2k3
(k2τ1τ2)δ, (E.9)

GR(k, τ1, τ2) = θ(τ1 − τ2)
H2

3

(
τ3
1

(
τ2

τ1

)δ

−
(

τ1

τ2

)δ

τ3
2

)
. (E.10)

1In [175] a similar split of integrals is used to calculate a similar integral. Note however that the integral

there differs from the integral here, because the self-energy kernel of [175] is not the same as the amputated

diagram A.
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The integral is

iλ2

(2π)2kH8τ4
1 τ4

2

H4θ(τ1 − τ2)
(
τ3
1 |τ2|2δ − |τ1|2δτ3

2

)
6

∫ Mcm

0

dp
p2δ

p2

∫ p+k

|p−k|
dp′ p′ =

iλ2θ(τ1 − τ2)
(
τ3
1 |τ2|2δ − |τ1|2δτ3

2

)
6(2π)2H4(τ1τ2)4

Mcm
2δ

δ
=

iλ2θ(τ1 − τ2)
6(2π)2H4(τ1τ2)4

(
τ3
1 − τ3

2

δ
+ 2τ3

1 ln |Mcmτ2| − 2τ3
2 ln |Mcmτ1| + O(δ)

)
.

(E.11)

E.1.2 AMPUTATED DIAGRAMS FOR LARGE INTERNAL MOMENTA

For large momenta we approximate the field to be massless and we use the two point

functions of equations (7.24) and (7.25), which we write as

F (k, τ1, τ2) =
H2

2

3∑
i=1

Fi(k, τ1, τ2), (E.12)

F1(k, τ1, τ2) =
1
k3

cos kΔτ,

F2(k, τ1, τ2) =
1
k2

Δτ sin kΔτ,

F3(k, τ1, τ2) =
1
k

τ1τ2 cos kΔτ,

with Δτ = τ1 − τ2, and similarly

GR(k, τ1, τ2) = θ(τ1 − τ2)H2
3∑

i=1

GR
i (k, τ1, τ2), (E.13)

GR
1 (k, τ1, τ2) =

1
k3

sin kΔτ,

GR
2 (k, τ1, τ2) =

−1
k2

Δτ cos kΔτ,

GR
3 (k, τ1, τ2) =

1
k

τ1τ2 sin kΔτ.

In the following calculations we use the definitions

Si(x) =
∫ x

0

dx′ sin x′

x′ , Ci(x) = −
∫ ∞

x

dx′ cos x′

x′ , (E.14)

which behave for small respectively large arguments as

Si(x) = x + O(x3), Si(x) =
π

2
− cos x

x
− sin x

x2
+ O(x−3), (E.15)

Ci(x) = γ + lnx − x2

4
+ O(x4), Ci(x) =

sin x

x
− cos x

x2
+ O(x−2), (E.16)
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and the identities

∫ p+k

p−k

dp′
sin p′Δτ

p′2
= − sin(p + k)Δτ

p + k
+

sin(p − k)Δτ

p − k
+

Δτ
(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

)
, (E.17)∫ p+k

p−k

dp′
cos p′Δτ

p′2
= − cos(p + k)Δτ

p + k
+

cos(p − k)Δτ

p − k
+

− Δτ
(
Si((p + k)Δτ) − Si((p − k)Δτ)

)
, (E.18)∫ p+k

p−k

dp′ sin p′Δτ =
−1
Δτ

(cos(p + k)Δτ − cos(p − k)Δτ) =
2

Δτ
sin kΔτ sin pΔτ,

(E.19)∫ p+k

p−k

dp′ cos p′Δτ =
1

Δτ
(sin(p + k)Δτ − sin(p − k)Δτ) =

2
Δτ

sin kΔτ cos pΔτ.

(E.20)

Next we calculate the contributions

∫ Λa(τ2)

Mcm

dp pFi(p, τ1, τ2)
∫ p+k

p−k

dp′ p′ GR
j (p′, τ1, τ2), (E.21)

for i and j from 1 to 3:

#1: F1(p, τ1, τ2)GR
1 (p′, τ1, τ2)

∫ Λa(τ2)

Mcm

dp
cos pΔτ

p2

∫ p+k

p−k

dp′
sin p′Δτ

p′2
=[

− cos pΔτ

p

(
− sin(p + k)Δτ

p + k
+

sin(p − k)Δτ

p − k
+

Δτ
(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

))]Λa(τ2)

Mcm

+

∫ Λa(τ2)

Mcm

dp

{
− Δτ

sin pΔτ

p

(
− sin(p + k)Δτ

p + k
+

sin(p − k)Δτ

p − k
+

Δτ
(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

))
+

cos pΔτ

p

(
sin(p + k)Δτ

(p + k)2
− sin(p − k)Δτ

(p − k)2

)}
,

(E.22)
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#2: F1(p, τ1, τ2)GR
2 (p′, τ1, τ2)

− Δτ

∫ Λa(τ2)

Mcm

dp
cos pΔτ

p2

∫ p+k

p−k

dp′
cos p′Δτ

p′
=

Δτ

[
cos pΔτ

p

(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

)]Λa(τ2)

Mcm

+

Δτ

∫ Λa(τ2)

Mcm

dp

{
Δτ

sin pΔτ

p

(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

)
+

− cos pΔτ

p

(
cos(p + k)Δτ

p + k
− cos(p − k)Δτ

p − k

)}
,

(E.23)

#3: F1(p, τ1, τ2)GR
3 (p′, τ1, τ2)

τ1τ2

∫ Λa(τ2)

Mcm

dp
cos pΔτ

p2

∫ p+k

p−k

dp′ sin p′Δτ =

τ1τ2 sin kΔτ

Δτ

∫ Λa(τ2)

Mcm

dp
sin 2pΔτ

p2
=

τ1τ2 sin kΔτ

Δτ

[
− sin 2pΔτ

p
+ 2Δτ Ci(2pΔτ)

]Λa(τ2)

Mcm

,

(E.24)

#4: F2(p, τ1, τ2)GR
1 (p′, τ1, τ2)

Δτ

∫ Λa(τ2)

Mcm

dp
sin pΔτ

p

∫ p+k

p−k

dp′
sin p′Δτ

p′2
=

∫ Λa(τ2)

Mcm

dp Δτ
sin pΔτ

p

(
− sin(p + k)Δτ

p + k
+

sin(p − k)Δτ

p − k
+

Δτ
(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

))
,

(E.25)

#5: F2(p, τ1, τ2)GR
2 (p′, τ1, τ2)

− Δτ2

∫ Λa(τ2)

Mcm

dp
sin pΔτ

p

∫ p+k

p−k

dp′
cos p′Δτ

p′
=

− Δτ2

∫ Λa(τ2)

Mcm

dp
sin pΔτ

p

(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

)
, (E.26)
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#6: F2(p, τ1, τ2)GR
3 (p′, τ1, τ2)

Δτ τ1τ2

∫ Λa(τ2)

Mcm

dp
sin pΔτ

p

∫ p+k

p−k

dp′ sin p′Δτ =

τ1τ2 sin kΔτ

∫ Λa(τ2)

Mcm

dp
1 − cos 2pΔτ

p
=

τ1τ2 sin kΔτ

[
ln p − Ci(2pΔτ)

]Λa(τ2)

Mcm

, (E.27)

#7: F3(p, τ1, τ2)GR
1 (p′, τ1, τ2)

τ1τ2

∫ Λa(τ2)

Mcm

dp cos pΔτ

∫ p+k

p−k

dp′
sin p′Δτ

p′2
=

τ1τ2

∫ Λa(τ2)

Mcm

dp cos pΔτ

(
− sin(p + k)Δτ

p + k
+

sin(p − k)Δτ

p − k
+

Δτ
(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

))
=

− τ1τ2

2

[
sin kΔτ

(
ln(p2 − k2) − Ci(2(p + k)Δτ) − Ci(2(p − k)Δτ)

)
+

cos kΔτ
(
Si(2(p + k)Δτ) − Si(2(p − k)Δτ)

)]Λa(τ2)

Mcm

+

τ1τ2 Δτ

∫ Λa(τ2)

Mcm

dp cos pΔτ
(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

)
,

(E.28)

#8: F3(p, τ1, τ2)GR
2 (p′, τ1, τ2)

− τ1τ2Δτ

∫ Λa(τ2)

Mcm

dp cos pΔτ

∫ p+k

p−k

dp′
cos p′Δτ

p′
=

− τ1τ2Δτ

∫ Λa(τ2)

Mcm

dp cos pΔτ
(
Ci((p + k)Δτ) − Ci((p − k)Δτ)

)
, (E.29)

#9: F3(p, τ1, τ2)GR
3 (p′, τ1, τ2)

τ2
1 τ2

2

∫ Λa(τ2)

Mcm

dp cos pΔτ

∫ p+k

p−k

dp′ sin p′Δτ =
τ2
1 τ2

2

Δτ2
sin kΔτ

[
sin2 pΔτ

]Λa(τ2)

Mcm

.

(E.30)
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Together this becomes[
cos pΔτ

p

(
sin(p + k)Δτ

p + k
− sin(p − k)Δτ

p − k

)
+

τ1τ2 sin kΔτ

2

(
2Ci(2pΔτ) + Ci(2(p + k)Δτ) + Ci(2(p − k)Δτ)+

ln
p2

p2 − k2
− 2

sin 2pΔτ

pΔτ

)
− τ1τ2

2
cos kΔτ

(
Si(2(p + k)Δτ) − Si(2(p − k)Δτ)

)
+

τ2
1 τ2

2

Δτ2
sin kΔτ sin2 pΔτ

]Λa(τ2)

Mcm

+

∫ Λa(τ2)

Mcm

dp
cos pΔτ

p

{
sin(p + k)Δτ

(p + k)2
− sin(p − k)Δτ

(p − k)2
+

− Δτ

(
cos(p + k)Δτ

p + k
− cos(p − k)Δτ

p − k

)}
. (E.31)

For the upper limit the boundary term vanishes as 1/Λ2, except the last term which we will

discuss below. The lower limit of the boundary term gives (where we use that |Mcmτi| �
1)

2
3
kΔτ3 − 2kτ1τ2 Δτ

(
− 2 + γ + ln 2McmΔτ

)
+ O(τ4

i ). (E.32)

Using Mathematica, the integral in (E.31) becomes for |Mcmτi| � 1

kΔτ3

9

(
8 − 6γ − 6 ln 2McmΔτ

)
+ O(τ4

i ). (E.33)

Together equation (E.31) becomes

2k

3
(τ3

1 − τ3
2 )
(7

3
− γ − ln 2Mcm(τ1 − τ2)

)
− 2

3
kτ1τ2(τ1 − τ2)+

τ2
1 τ2

2

Δτ2
sin kΔτ sin2 Λa(τ2)Δτ + O(τ4

i ). (E.34)

The term that contains the sin2 Λ is logarithmically divergent for Λ → ∞. This can be

seen as follows. Consider the integral

∫ ∞

−∞
dΔτ θ(Δτ) f(Δτ)

sin2 Λa(τ2)Δτ

Δτ
=

1
2

∫ ∞

0

dΔτ f(Δτ)
1 − cos

(
−2Λ
H

Δτ
τ1−Δτ

)
Δτ

,

(E.35)

where f(Δτ) is a test function. The integral can be split into two integrals∫ ∞

0

= lim
ε→0

∫ η

ε

+
∫ ∞

η

, (E.36)
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where η is used as a regulator time, which we take to zero in the end, after taking the limit

Λ → ∞. In the first integral we can approximate

Δτ

τ1 − Δτ
≈ Δτ

τ1
, f(Δτ) ≈ f(0), (E.37)

so that it becomes

lim
ε→0

∫ η

ε

dΔτ f(0)
1 − cos

(
−2Λ
H

Δτ
τ1

)
Δτ

=

lim
ε→0

f(0)
(

ln
η

ε
− Ci(

−2Λη

Hτ1
) + Ci(

−2Λε

Hτ1
)
)

= f(0)
(

γ + ln
−2Λη

Hτ1

)
, (E.38)

where we have taken Ci(−2Λη/Hτ1) → 0, and Ci(−2Λε/Hτ1) → γ +ln(−2Λε/Hτ1).
The remaining integral is

lim
Λ→∞

∫ ∞

η

dΔτ f(Δτ)
1 − cos(−2Λ

H
Δτ

τ1−Δτ )
Δτ

=
∫ ∞

η

dΔτ
f(Δτ)

Δτ
, (E.39)

where the term with the cosine vanishes, provided that the test function f(Δτ) vanishes

sufficiently fast as Δτ → ∞. Together we obtain for Λ → ∞

∫ ∞

−∞
dΔτ θ(Δτ) f(Δτ)

sin2 Λa(τ2)Δτ

Δτ
=∫ ∞

−∞
dΔτ f(Δτ)

1
2

[
θ(−η + Δτ)

Δτ
+ δ(Δτ)

(
γ + ln

−2Λη

Hτ1

)]
, (E.40)

which is in the language of distributions

θ(Δτ)
sin2 Λa(τ2)Δτ

Δτ
=

1
2

[
θ(−η + Δτ)

Δτ
+ δ(Δτ)

(
γ + ln

−2Λη

Hτ1

)]
. (E.41)

Using this result in equation (E.34), gathering the right prefactors and adding the contri-

bution from the counterterm (E.4), we obtain for the large momentum contribution

iλ2θ(τ1 − τ2)
2(2π)2H4(τ1τ2)4

(
2
3
(τ3

1 − τ3
2 )
(7

3
− γ − ln 2McmΔτ

)
− 2

3
τ1τ2(τ1 − τ2)+

(τ1τ2)2

2

[
θ(−η + Δτ)

Δτ
+ δ(Δτ)

(
γ + ln

−2μη

Hτ1

)])
. (E.42)
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E.1.3 ATTACHING THE EXTERNAL LINES

Adding the small and large momenta contributions, we obtain for the amputated diagrams

A and D:

Aamp(k, τ1, τ2)+Damp(k, τ1, τ2) =
iλ2θ(τ1 − τ2)

6(2π)2H4(τ1τ2)4

(
(τ3

1 − τ3
2 )
(

1
δ

+
14
3

− 2γ

)
+

− 2τ1τ2(τ1 − τ2) + 2τ3
1 ln
∣∣∣∣ τ2

2(τ1 − τ2)

∣∣∣∣− 2τ3
2 ln
∣∣∣∣ τ1

2(τ1 − τ2)

∣∣∣∣+
3
2
(τ1τ2)2

[
θ(−η + τ1 − τ2)

τ1 − τ2
+ δ(τ1 − τ2)

(
γ + ln

−2μη

Hτ1

)]
+ O(τ4

i ) + O(δ)

)
,

(E.43)

where the dependence on Mcm has dropped out. The full correlation function is obtained

by

−i

∫ τ

τH

dτ1

∫ τ

τH

dτ2 GR(k, τ, τ1)F (k, τ, τ2)
(
Aamp(k, τ1, τ2) + Damp(k, τ1, τ2)

)
.

(E.44)

Because the external momentum k is small, i.e. |kτi| � 1, we can use the expanded

versions of the two point functions (7.37), (7.38) (or the ones of (E.9), (E.10), but this

gives only corrections of order O(δ)). Using the integrals

∫ τ

τH

dτ1

∫ τ1

τH

dτ2
(τ3 − τ3

1 )(τ3
1 − τ3

2 )
(τ1τ2)4

=
1
3

(
1 + 2 ln

τ

τH
+

3
2

ln2 τ

τH

)
+ O(

τ

τH
),

(E.45)∫ τ

τH

dτ1

∫ τ1

τH

dτ2
(τ3 − τ3

1 )(τ1 − τ2)
(τ1τ2)3

= − 1
12

(
11 + 6 ln

τ

τH

)
+ O(

τ

τH
), (E.46)

∫ τ

τH

dτ1

∫ τ1

τH

dτ2

(
τ3 − τ3

1

)
(τ1τ2)4

(
τ3
1 ln
∣∣∣∣ τ2

2(τ1 − τ2)

∣∣∣∣− τ3
2 ln
∣∣∣∣ τ1

2(τ1 − τ2)

∣∣∣∣
)

=

1
18

(
97
6

− 18 ζ(3) − 2π2 − 6 ln 2 + (13 − 3π2 − 12 ln 2) ln
τ

τH
+

(3 − 9 ln 2) ln2 τ

τH
+ 3 ln3 τ

τH

)
+ O(

τ

τH
), (E.47)∫ τ

τH

dτ1

∫ τ1

τH

dτ2
(τ3 − τ3

1 )
(τ1τ2)2

[
θ(−η + τ1 − τ2)

τ1 − τ2
+ δ(τ1 − τ2)

(
γ + ln

−2μη

Hτ1

)]
=

1
6

(
8 − 2γ − π2 − 2 ln

2μ

H
+ 6
(
1 − γ − ln

2μ

H

)
ln

τ

τH

)
+ O(

τ

τH
), (E.48)
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(recall that η is sent to zero), this becomes

λ2

36(2π)2k3

{
1
3δ

+
194
27

− 7
6
γ − 17

36
π2 − 2

3
ln 2 − 2ζ(3) − 1

2
ln

2μ

H
+(

2
3δ

+
127
18

− 17
6

γ − 1
3
π2 − 4

3
ln 2 − 3

2
ln

2μ

H

)
ln

τ

τH
+(

1
2δ

+
8
3
− γ − ln 2

)
ln2 τ

τH
+

1
3

ln3 τ

τH
+ O(

τ

τH
) + O(δ)

}
. (E.49)

There is an equal contribution from the diagram with τ1 and τ2 interchanged. Note that

there is no dependence on ln k/μ for |kτ | � 1.

E.2 DIAGRAMS B AND C

The amputated versions of the diagrams with two external GR propagators are

B
p′

p

k

τ1 τ2

C
p′

p

k

τ1 τ2
. (E.50)

They translate to

Bamp(k, τ1, τ2) =
(−iλ)2

2H8(τ1τ2)4

∫
d3pd3p′

(2π)3
δ3(k − p − p′)F (p′, τ1, τ2)F (p, τ1, τ2)

=
−λ2

2(2π)2kH8(τ1τ2)4

∫ ∞

0

dpp

∫ p+k

|p−k|
dp′p′ F (p′, τ1, τ2)F (p, τ1, τ2),

(E.51)

Camp(k, τ1, τ2) =
(−i)2(−iλ)2

8H8(τ1τ2)4

∫
d3pd3p′

(2π)3
δ3(k − p − p′)GR(p′, τ1, τ2)GR(p, τ1, τ2)

=
λ2

8(2π)2kH8(τ1τ2)4

∫ ∞

0

dpp

∫ p+k

|p−k|
dp′p′GR(p′, τ1, τ2)GR(p, τ1, τ2),

(E.52)

where both diagrams have a factor 1/2 for symmetry. Diagram C has an additional factor

1/4 from the vertex with three dashed lines (7.29). We split the p integral again into a

small momentum part and a large momentum part.

E.2.1 AMPUTATED DIAGRAMS FOR SMALL INTERNAL MOMENTA

For small internal momenta we use the expanded propagators (E.9) and (E.10).
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Diagram B. The integral is

−λ2

2(2π)2kH8(τ1τ2)4
H4 (τ1τ2)

2δ

4

∫ Mcm

0

dp

∫ p+k

|p−k|
dp′

(pp′)2δ

(pp′)2
=

−λ2 (τ1τ2)
2δ

8(2π)2kH4(τ1τ2)4(2δ − 1)

(∫ k

0

dp p−2+2δ
(
(p + k)−1+2δ − (k − p)−1+2δ

)
+

∫ Mcm

k

dp p−2+2δ
(
(p + k)−1+2δ − (p − k)−1+2δ

))
. (E.53)

The integral on the middle line of (E.53) is finite, but the individual parts are infrared

divergent. Therefore we calculate the individual parts for δ > 1/2, and in the end use

analytic continuation to δ � 1. The integrals are (using p = kx)

∫ 1

0

dx x−2+2δ (1 + x)−1+2δ =
∞∑

n=0

(−1)n

n!
Γ(1 + n − 2δ)

Γ(1 − 2δ)

∫ 1

0

dxx−2+n+2δ

= − 1
2δ

+ ln 2 + O(δ), (E.54)∫ 1

0

dx x−2+2δ (1 − x)−1+2δ = B(−1 + 2δ, 2δ) =
1
δ
− 2 + O(δ), (E.55)

∫ Mcm/k

1

dx x−2+2δ (1 + x)−1+2δ =
∫ 1

k/Mcm

dy
y1−4δ

(1 + y)1−2δ

= 1 − k

Mcm
− ln 2 + ln

(
1 +

k

Mcm

)
+ O(δ),

(E.56)∫ Mcm/k

1

dx x−2+2δ (x − 1)−1+2δ =
∫ 1

k/Mcm

dy
y1−4δ

(1 − y)1−2δ

=
∫ 1−k/Mcm

0

dz z−1+2δ (1 − z) + O(δ)

=
1
2δ

− 1 +
k

Mcm
+ ln

(
1 − k

Mcm

)
+ O(δ),

(E.57)

where we have used analytic continuation in the first two integrals and y = 1/x and

z = 1 − y in the latter two. The right hand side of equation (E.53) becomes

−λ2(k2τ1τ2)2δ

8(2π)2k3H4(τ1τ2)4(2δ − 1)

(−2
δ

+ 4 − 2
k

Mcm
+ ln

1 + k/Mcm

1 − k/Mcm
+ O(δ)

)
=

−λ2

4(2π)2k3H4(τ1τ2)4

(
1
δ

+
k

Mcm
− 1

2
ln

Mcm + k

Mcm − k
+ 2 ln(k2τ1τ2) + O(δ)

)
. (E.58)
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Diagram C. From equations (E.52) and (E.10) we see directly that diagram C does not

give late time contributions and also does not have an infrared divergence.

E.2.2 AMPUTATED DIAGRAMS FOR LARGE INTERNAL MOMENTA

The contributions from large internal momenta can be calculated in a similar way as is

used for diagram A in section E.1.2.

Diagram B. The sum of integrals

3∑
i=1

3∑
j=1

∫ Λa(τβ)

Mcm

dp pFi(p, τ1, τ2)
∫ p+k

p−k

dp′ p′ Fj(p′, τ1, τ2), (E.59)

(where τβ = τ1, τ2, depending on which time is earlier), is equal to

[
cos pΔτ

p

(
cos(p + k)Δτ

p + k
− cos(p − k)Δτ

p − k

)
+

− τ1τ2 sin kΔτ

(
Si(2pΔτ) + 2

cos2 pΔτ

pΔτ

)
+

(τ1τ2)2

Δτ
sin kΔτ

(
p +

sin 2pΔτ

2Δτ

)]Λa(τβ)

Mcm

+

∫ Λa(τβ)

Mcm

dp
cos pΔτ

p

{
cos(p + k)Δτ

(p + k)2
− cos(p − k)Δτ

(p − k)2
+

Δτ

(
sin(p + k)Δτ

p + k
− sin(p − k)Δτ

p − k

)
+

− pτ1τ2

(
cos(p + k)Δτ

p + k
− cos(p − k)Δτ

p − k

)}
. (E.60)

The only ultraviolet term comes from the last term of the boundary term and is, including

the correct prefactor:

−λ2 sin kΔτ

8(2π)2kH4(τ1τ2)2Δτ

[
p +

sin 2pΔτ

2Δτ

]Λa(τβ)

Mcm

. (E.61)

The only term that gives late time contributions is the first line in the integral. It is

−λ2

4(2π)2k3H4(τ1τ2)4

(
− k

Mcm
+

1
2

ln
Mcm + k

Mcm − k
+ O(τ2

i )
)

. (E.62)
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Diagram C. The sum of integrals

3∑
i=1

3∑
j=1

∫ Λa(τβ)

Mcm

dp pGR
i (p, τ1, τ2)

∫ p+k

p−k

dp′ p′ GR
j (p′, τ1, τ2), (E.63)

is equal to

[
sin pΔτ

p

(
sin(p + k)Δτ

p + k
− sin(p − k)Δτ

p − k

)
+

+ τ1τ2 sin kΔτ

(
3 Si(2pΔτ) − 2

sin2 pΔτ

pΔτ

)
+

(τ1τ2)2

Δτ
sin kΔτ

(
p − sin 2pΔτ

2Δτ

)]Λa(τβ)

Mcm

+

∫ Λa(τβ)

Mcm

dp
sin pΔτ

p

{
sin(p + k)Δτ

(p + k)2
− sin(p − k)Δτ

(p − k)2
+

− Δτ

(
cos(p + k)Δτ

p + k
− cos(p − k)Δτ

p − k

)
−

pτ1τ2

(
sin(p + k)Δτ

p + k
− sin(p − k)Δτ

p − k

)}
. (E.64)

Only the last term of the boundary term is ultraviolet divergent:

λ2 θ(τ1 − τ2) sin kΔτ

8(2π)2kH4(τ1τ2)2Δτ

[
p − sin 2pΔτ

2Δτ

]Λa(τβ)

Mcm

. (E.65)

The diagram with the vertices interchanged gives the same result, except that θ(τ1 − τ2)
is replaced by θ(τ2 − τ1). There are no further late time contributions.

Ultraviolet divergences. The ultraviolet divergent terms of diagrams B (E.61), C (E.65),

and C with the vertices interchanged, add up to

[ −λ2 sin kΔτ

8(2π)2kH4(τ1τ2)2Δτ

sin 2pΔτ

Δτ

]Λa(τβ)

Mcm

, (E.66)

which is finite and does not give late time contributions.
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E.2.3 ATTACHING THE EXTERNAL LINES

Adding the small and large momenta contributions, we obtain for the amputated diagrams

B and C:

Bamp(k, τ1, τ2) + Camp(k, τ1, τ2) =

−λ2

4(2π)2k3H4(τ1τ2)4

(
1
δ

+ 2 ln(k2τ1τ2) + O(τi) + O(δ)
)

, (E.67)

where the dependence on Mcm has dropped out. The full correlation function is obtained

by

−
∫ τ

τH

dτ1

∫ τ

τH

dτ2 GR(k, τ, τ1)GR(k, τ, τ2)
(
Bamp(k, τ1, τ2) + Camp(k, τ1, τ2)

)
.

(E.68)

Because the external momentum k is small, i.e. |kτi| � 1, we can use the expanded

version of the GR propagator (7.38) (or the one of (E.10), but this gives only corrections

of O(δ)). Using the integrals∫ τ

τH

dτ1

∫ τ

τH

dτ2
(τ3 − τ3

1 )(τ3 − τ3
2 )

(τ1τ2)4
=

1
9

+
2
3

ln
τ

τH
+ ln2 τ

τH
+ O(

τ

τH
), (E.69)

∫ τ

τH

dτ1

∫ τ

τH

dτ2
(τ3 − τ3

1 )(τ3 − τ3
2 )

(τ1τ2)4
ln(k2τ1τ2) =

1
27

(
2 + 6 ln(−kτH)+

12
(
1 + 3 ln(−kτH)

)
ln

τ

τH
+ 27

(
1 + 2 ln(−kτH)

)
ln2 τ

τH
+ 27 ln3 τ

τH

)
+

O(
τ

τH
), (E.70)

this becomes

λ2

36(2π)2k3

(
1
9δ

+
4
27

+
4
9

ln(−kτH) +
( 2

3δ
+

8
9

+
8
3

ln(−kτH)
)

ln
τ

τH
+

(1
δ

+ 2 + 4 ln(−kτH)
)

ln2 τ

τH
+ 2 ln3 τ

τH
+ O(

τ

τH
) + O(δ)

)
. (E.71)
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SUMMARY

Throughout the course of time there have been many different ideas about cosmology,

which is the study of the development of the universe on the largest scales. Nowadays the

consensus is that the universe has reached its current state after a long period of expansion

and cooling down. This idea is supported by ample observational evidence. Fred Hoyle, a

scientist who was critical of the model of an expanding universe, described it derisively in

a BBC radio show in 1950 as “this Big Bang model”, a term which has eventually become

the name of this model.

There have also been many different ideas about the fundamental building blocks of na-

ture. The branch of modern science that investigates nature at the smallest scales is called

high energy physics or elementary particle physics. Particles are collided in accelera-

tors, and the particles that are created in this process are studied. All the elementary

particles and their interactions discovered in this way, are described very precisely by a

quantum field theory called the Standard Model of particle physics. Despite the fact that

the Standard Model explains the experimental data very well, there are indications that it

is not yet complete.

Even though cosmology deals with the largest scales and high energy physics with the

smallest, these two fields are connected. Many of the indications that the Standard Mo-

del is incomplete come from cosmology. An example that plays an important role in

this thesis is inflation. This is a period in the early universe in which space expanded at

an accelerated rate (in contrast with the decelerated expansion that occurred afterwards).

From cosmology there are strong arguments that a period of inflation has occurred, but it

seems impossible to explain this using the laws of the Standard Model. Apparently some

extra ingredients have to be added. Other examples of the interconnection of cosmology

and high energy physics are dark matter, dark energy and baryogenesis. This intercon-

nection implies that cosmology provides an interesting alternative way to investigate the

fundamental laws of nature.

This has only become a realistic possibility due to the many developments in cosmology

over the past decades. New technologies, such as telescopes on satellites and large arrays
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of detectors on earth, are providing large amounts of precise data. These developments

changed the character of cosmology into a precision science. Expectations are that these

developments will continue in the future and that cosmology will become more and more

interesting for high energy physics.

In this thesis two subjects on the border between cosmology and high energy physics are

treated. These are described more precisely in the following.

COLD ELECTROWEAK BARYOGENESIS

The first part of this thesis deals with the matter–anti-matter asymmetry. For every char-

ged particle in the Standard Model there is a corresponding anti-particle with the opposite

charge but otherwise identical characteristics. When a particle meets its anti-particle, they

annihilate each other and radiation is emitted. Because we seldom see particle annihila-

tion in everyday life, we know that there are nearly no anti-particles. There are also no

indications of large amounts of anti-matter elsewhere in the universe. This leads us to

conclude that there is a matter–anti-matter asymmetry. The process by which such an

asymmetry is created is called baryogenesis.

It is not easy to determine whether or not such a process could have occurred within the

laws of the Standard Model. For baryogenesis different numbers of particles and anti-

particles have to be created, and there has to be a bias in favor of particles. Moreover,

baryogenesis has to take place in a state that deviates strongly from thermal equilibrium.

The Standard Model satisfies these conditions qualitatively in a scenario that is called

Electroweak Baryogenesis. But quantitative analyses show that the asymmetry produced

in this scenario is far too small. Therefore it is not possible to explain baryogenesis using

purely Standard Model physics.

Over the course of time many other baryogenesis scenarios have been proposed, based

on extensions of the Standard Model. One of these is Cold Electroweak Baryogenesis,

which is based on a small extension of the Standard Model in which only an inflaton field

is added. The interaction between the inflaton field and the fields of the Standard Model

is such that it is possible for baryogenesis to take place directly after inflation, when the

universe is still cold.

In the first part of this thesis the Cold Electroweak Baryogenesis model is studied more

precisely. In chapter 3 the mechanism of particle production is studied using numerical

simulations. The main conclusion is that certain field configurations, called ‘half-knots’,

play an important role. These occur in the initial conditions, but can also be created later

on. Those created later are likely to play a role in the generation of the asymmetry in this

model.

In chapter 4 the possible degree of the asymmetry is investigated. This investigation leads
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to the expectation that the asymmetry in Cold Electroweak baryogenesis is comparable to

that of the original model of Electroweak Baryogenesis and therefore not large enough.

Apparently this extension of the Standard Model by only an inflaton field is not sufficient

to explain the asymmetry.

QUANTUM COSMOLOGICAL CORRELATIONS

The second part of the thesis deals with density fluctuations in the early universe. From

observations of the background radiation (the radiation that was emitted approximately

380 000 years after the Big Bang) we know that the matter in the universe was distributed

very homogeneously at that time: fluctuations in the density were smaller than the average

density by a factor of about 100 000. Under the influence of gravity these fluctuations

have grown into the structure we observe today: stars, galaxies, clusters of galaxies and

structures on even larger scales.

The question is where the first small density fluctuations come from. It is generally as-

sumed that they were generated by amplification of vacuum fluctuations during inflation.

This effect, which applies to fluctuations with a large wavelength, is similar to the Haw-

king radiation that is emitted by black holes.

The observed fluctuations are characterized by correlation functions. Current observati-

ons indicate that their distribution is close to Gaussian, i.e. they are completely charac-

terized by their two point function, and that the power of the fluctuations is nearly scale-

independent. This corresponds to what one would expect for fluctuations generated during

inflation. It will be interesting to see if more precise observations will lead to corrections

to this distribution, because these corrections may teach us lessons about the physics of

inflation.

For this reason a lot of effort is being put into the calculation of these quantum cosmo-

logical correlations generated in different models of inflation, in order to compare them

to observations. These calculations use techniques from non-equilibrium quantum field

theory and are rather complicated. Often, a part of the calculation is simplified by using

classical field theory. One expects this to be a good approximation for a number of rea-

sons.

In chapter 7 a toy model is used to study these calculations more precisely. For this model

the calculations (in quantum field theory) are formulated in such a way that they can easily

be compared to those in classical field theory. The main conclusion is that a calculation

in classical field theory can indeed be a good approximation of the corresponding one in

quantum field theory, but that some higher order corrections cannot be reproduced. In

addition we find that there is a certain freedom in defining the classical field theory and

we discuss how this can be resolved. A detailed calculation is given as example.
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SAMENVATTING

In de loop der tijden zijn er zeer uiteenlopende ideeën geweest over kosmologie, de studie

naar de ontwikkeling van het heelal op de grootste schalen in ruimte en tijd. Tegenwoordig

is de wetenschappelijke consensus dat het heelal in zijn huidige toestand is gekomen

na een lange periode van uitdijing en afkoeling, wat ondersteund wordt door een ruime

verscheidenheid aan waarnemingen. In een radioshow van de BBC in 1950 gebruikte

Fred Hoyle, een wetenschapper die kritisch tegenover het model van een uitdijend heelal

stond, de spottende beschrijving “this Big Bang model.” Sindsdien is de naam Big Bang,

in het Nederlands vertaald met oerknal, als geuzennaam in gebruik gebleven.

Hiernaast is ook altijd veel nagedacht over de fundamentele bouwstenen van de natuur.

De tak van wetenschap die onderzoek doet naar de allerkleinste schalen is de hoge energie

fysica (ook wel elementaire deeltjesfysica genoemd). In versnellers worden deeltjes met

grote snelheden met elkaar in botsing gebracht en worden de deeltjes die hierbij vrijkomen

bestudeerd. Alle elementaire deeltjes en wisselwerkingen die op deze manier zijn ontdekt

worden met grote precisie beschreven door een quantumveldentheorie met de naam Stan-

daardmodel. Ondanks het feit dat het Standaardmodel alle experimentele data goed kan

verklaren, zijn er allerlei aanwijzingen die doen vermoeden dat het niet compleet is.

Hoewel kosmologie over de grootste schalen gaat en hoge energie fysica over de kleinste

schalen, zijn deze vakgebieden toch met elkaar verbonden. Veel van de aanwijzingen dat

het Standaardmodel incompleet is komen uit de kosmologie. Een voorbeeld daarvan, dat

ook een belangrijke rol speelt in dit proefschrift, is inflatie. Dit is een periode in het vroege

heelal waarin de ruimte versneld is uitgedijd (in tegenstelling tot de vertraagde uitdijing

die daarna plaatsvond). Er zijn sterke kosmologische argumenten dat er zo’n periode is

geweest, maar het lijkt onmogelijk om inflatie binnen de wetten van het Standaardmodel

te verklaren. Blijkbaar moeten er nieuwe ingrediënten worden toegevoegd. Ook donke-

re materie, donkere energie en baryogenese zijn voorbeelden van de verwevenheid van

kosmologie en hoge energie fysica. Kosmologie is dus, naast de deeltjesversnellers, een

interessante manier om onderzoek te doen naar de fundamentele natuurwetten.

Dit is pas echt mogelijk geworden door de snelle ontwikkeling die de kosmologie in de
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laatste paar decennia heeft doorgemaakt. Nieuwe technologieën, zoals telescopen op sa-

tellieten en grote arrays van meetinstrumenten op aarde, leveren een omvangrijke stroom

aan nauwkeurige meetgegevens op. Hierdoor is de kosmologie veranderd in een precisie-

wetenschap. De verwachting is dat deze ontwikkeling zich voortzet in de toekomst en dat

kosmologie daardoor steeds interessanter wordt voor de hoge energie fysica.

In dit proefschrift worden twee onderwerpen op het grensvlak van kosmologie en hoge

energie fysica behandeld, die hieronder nader worden beschreven.

KOUDE ELECTROZWAKKE BARYOGENESE

Het eerste deel van het proefschrift gaat over de asymmetrie tussen materie en anti-

materie. Voor elk geladen deeltje in het Standaardmodel is er ook een anti-deeltje met een

tegenovergestelde lading, maar met voor het overige dezelfde eigenschappen. Als een

deeltje zijn anti-deeltje ontmoet, verdwijnen beide onder uitzending van straling. Om-

dat er in de wereld om ons heen niet vaak deeltjes plotseling verdwijnen, weten we dat

er bijna geen anti-deeltjes zijn. Ook verder bij ons vandaan in het heelal zijn er geen

aanwijzingen voor grote aantallen anti-deeltjes. Er is dus een asymmetrie tussen materie

(deeltjes) en anti-materie (anti-deeltjes). Het proces waarin deze asymmetrie is gecreëerd

heet baryogenese.

Het is niet eenvoudig om vast te stellen of baryogenese kan hebben plaatsgevonden bin-

nen de wetten van het Standaardmodel. Voor baryogenese moeten er processen plaats

kunnen vinden waarin verschillende aantallen deeltjes en anti-deeltjes worden gecreëerd

en daarbij moet er een voorkeur zijn voor deeltjes boven anti-deeltjes. Bovendien moet

het plaatsvinden in een toestand die ver uit thermisch evenwicht is. Op kwalitatief niveau

kan het Standaardmodel aan al deze eisen voldoen in een scenario dat electrozwakke ba-

ryogenese heet. Maar kwantitatieve analyses laten zien dat de geproduceerde asymmetrie

in electrozwakke baryogenese veel te klein is. Blijkbaar kan baryogenese niet binnen de

fysica van het Standaardmodel verklaard worden.

In de loop van de tijd zijn er veel alternatieve modellen voor baryogenese bedacht, geba-

seerd op uitbreidingen van het Standaardmodel. Eén daarvan, koude electrozwakke ba-

ryogenese, is gebaseerd op een kleine uitbreiding van het Standaardmodel waarin slechts

een inflaton veld wordt toegevoegd. De wisselwerking tussen dit veld en de velden van

het Standaardmodel is zodanig dat baryogenese direct na inflatie, als het heelal nog koud

is, plaats kan vinden.

In het eerste deel van dit proefschrift wordt het model van koude electrozwakke bary-

ogenese nader bestudeerd. Het mechanisme waarmee deeltjes en anti-deeltjes worden

geproduceerd, wordt in hoofdstuk 3 onderzocht met behulp van numerieke simulaties. De

belangrijkste conclusie die daar getrokken wordt is dat bepaalde veldconfiguraties, zoge-
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naamde ‘half-knots,’ een belangrijke rol spelen. Deze configuraties kunnen al voorkomen

in de begincondities, maar kunnen ook pas later ontstaan. Vooral de versies die later

ontstaan zijn waarschijnlijk belangrijk voor het creëren van een asymmetrie in dit model.

In hoofdstuk 4 wordt onderzocht of de geproduceerde asymmetrie groot genoeg zou kun-

nen zijn. De conclusie is dat verwacht kan worden dat de asymmetrie in koude elec-

trozwakke baryogenese vergelijkbaar klein is als die in het oorspronkelijke model van

electrozwakke baryogenese, en dus niet groot genoeg is. Blijkbaar is de hier gebruikte

toevoeging aan het Standaardmodel niet voldoende om de asymmetrie te verklaren.

QUANTUM KOSMOLOGISCHE CORRELATIES

Het tweede deel van het proefschrift gaat over dichtheidsfluctuaties in het vroege heelal.

Uit waarnemingen van de achtergrondstraling (de straling die ongeveer 380 000 jaar na de

oerknal werd uitgezonden) weten we dat vroeger de materie in het heelal zeer homogeen

verdeeld was: de fluctuaties in de dichtheid waren 100 000 keer zo klein als de gemiddelde

dichtheid. Onder invloed van de zwaartekracht zijn deze fluctuaties in de loop van de tijd

gegroeid en is het heelal steeds klonteriger geworden. Op deze manier zijn uiteindelijk

de sterren, sterrenstelsels, clusters van sterrenstelsels en nog grotere structuren, die we

tegenwoordig waarnemen, gegroeid.

De vraag is nu waar de eerste, kleine dichtheidsfluctuaties vandaan kwamen. In de kosmo-

logie wordt meestal aangenomen dat deze fluctuaties zijn veroorzaakt tijdens een periode

van inflatie. Het blijkt namelijk dat tijdens inflatie vacuümfluctuaties versterkt worden

als de golflengte van de fluctuaties groot is. Dit effect is vergelijkbaar met de Hawking

straling die door zwarte gaten wordt uitgezonden.

De waargenomen fluctuaties in de achtergrondstraling worden gekarakteriseerd door cor-

relatiefuncties. Uit deze correlatiefuncties kan tot nu toe worden afgeleid dat de fluctuaties

in goede benadering Gaussisch verdeeld zijn, d.w.z. dat ze volledig door hun tweepunts-

functie zijn bepaald, en dat het vermogen van de fluctuaties bijna schaalonafhankelijk is.

Dit is in overeenstemming met wat men zou verwachten als de fluctuaties tijdens inflatie

zijn veroorzaakt. Het wordt echt interessant als de waarnemingen nauwkeuriger worden

en er correcties op deze verdeling zullen worden gevonden, omdat deze correcties meer

inzicht kunnen geven in de fysica van inflatie.

Daarom wordt er veel moeite gedaan om deze quantum kosmologische correlaties te

berekenen uitgaande van verschillende modellen van inflatie, om deze uiteindelijk te

vergelijken met de waarnemingen. Dit zijn ingewikkelde berekeningen waarvoor niet-

evenwichtsquantumveldentheorie nodig is. Om zo’n berekening te versimpelen wordt

vaak een gedeelte van de berekening gedaan met behulp van klassieke veldentheorie. Er

zijn allerlei redenen om aan te nemen dat dit een goede benadering oplevert.
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Samenvatting

In hoofdstuk 7 wordt een versimpeld model gebruikt om deze berekeningen nader te be-

studeren. Voor dit model worden de berekeningen (in quantumveldentheorie) geformu-

leerd op een manier dat ze makkelijk te vergelijken zijn met klassieke veldentheorie. De

belangrijkste conclusie is dat berekeningen in klassieke veldentheorie inderdaad goede

benaderingen kunnen zijn voor die in quantumveldentheorie, maar dat sommige hogere

orde correcties niet gereproduceerd kunnen worden. Verder vinden we dat er een bepaal-

de vrijheid is in het definiëren van de klassieke veldentheorie en we bespreken hoe dit

opgelost kan worden. Als voorbeeld is een berekening volledig uitgewerkt.
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