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Abstract: Using de Wit-Nicolai D = 4 N = 8 SO(8) supergravity as an example, we

show how modern Machine Learning software libraries such as Google’s TensorFlow can

be employed to greatly simplify the analysis of high-dimensional scalar sectors of some M-

Theory compactifications. We provide detailed information on the location, symmetries,

and particle spectra and charges of 192 critical points on the scalar manifold of SO(8) su-

pergravity, including one newly discovered N = 1 vacuum with SO(3) residual symmetry,

one new potentially stabilizable non-supersymmetric solution, and examples for “Galois

conjugate pairs” of solutions, i.e. solution-pairs that share the same gauge group embed-

ding into SO(8) and minimal polynomials for the cosmological constant. Where feasible,

we give analytic expressions for solution coordinates and cosmological constants.

As the authors’ aspiration is to present the discussion in a form that is accessible

to both the Machine Learning and String Theory communities and allows adopting our

methods towards the study of other models, we provide an introductory overview over the

relevant Physics as well as Machine Learning concepts. This includes short pedagogical

code examples. In particular, we show how to formulate a requirement for residual Super-

symmetry as a Machine Learning loss function and effectively guide the numerical search

towards supersymmetric critical points. Numerical investigations suggest that there are no

further supersymmetric vacua beyond this newly discovered fifth solution.
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At the moment, the N = 8 Supergravity Theory is the only candidate in sight. There

are likely to be a number of crucial calculations within the next few years that have

the possibility of showing that the theory is no good. If the theory survives these tests,

it will probably be some years more before we develop computational methods that will

enable us to make predictions and before we can account for the initial conditions of

the universe as well as the local physical laws. These will be the outstanding problems

for theoretical physics in the next twenty years or so.

But to end on a slightly alarmist note, they may not have much more time than that.

At present, computers are a useful aid in research, but they have to be directed by

human minds. If one extrapolates their recent rapid rate of development, however, it

would seem quite possible that they will take over altogether in theoretical physics. So,

maybe the end is in sight for theoretical physicists, if not for theoretical physics.

S. Hawking, Conclusion of his 1981 Inaugural lecture [1]

“Is the end in sight for theoretical physics?”

1 Introduction1

Google’s primary open source library for Machine Learning, TensorFlow [2], has many po-

tential uses beyond Machine Learning. In this article, we want to show how it also is an

excellent tool to address one specific technically challenging M-Theory research problem:

finding static field configurations of dimensionally reduced models with known but struc-

turally complicated potentials, such as SO(8) supergravity [3, 4], which we study here, as

well as determining their stability properties. The underlying computational methods can

be readily generalized to other models, including for example maximal five-dimensional

supergravity [5].

For the impatient reader, there is an open sourced Google Colab at [6] that runs an

efficient search for vacuum candidates of SO(8) supergravity and can be used interactively

from within a web browser, alongside additional Python code to analyze numerical solu-

tions at [7].

1.1 On M-theory

“M-Theory”, or “The Theory Formerly Known as Strings” [8] is a so far only partially

explored and understood unifying framework for studying (some) field theoretic models

of quantum gravity. The five known (very likely) consistent ten-dimensional Superstring

theories (including compactifications to lower dimensions), as well as 11-dimensional su-

pergravity are understood to be different limits of M-Theory dynamics [9]. If supersym-

metry [10] is part of the answer why the observed fundamental laws of physics are the way

they are (and it seems to have some good answers to problems that arise in Planck-scale

physics), then, due to the existence of gravity, there is no way to escape the conclusion

that a viable theory must contain supergravity [11, 12] and in particular a supersymmetric

1An expanded introduction that provides more context on M-Theory and Machine Learning to interested

readers without a deep background in one of these subjects is available in version 3 of the arXiv preprint

of this work at: arXiv:1906.00207v3.
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partner to the graviton with spin-3/2, the gravitino. While the question is still not settled

whether one can construct a theory of supergravity that not only works as an effective

low energy theory but is well-behaved at every length scale [13, 14], it is generally thought

that problems that arise in simple models of supergravity [15] are ultimately resolved by

the notion of “point particles” in quantum field theory breaking down at very high ener-

gies [16], i.e. superstring theory. Now, if one accepts superstring theory, there is no way

to avoid the conclusion that there also needs to be a way to describe its non-perturbative

strong coupling limit, which then inevitably leads us to M-Theory [17].

Despite the remarkable success of the Standard Model (SM) of Elementary Particle

Physics [18], which quantitatively describes the properties and interactions of matter and

force particles so well that the LHC at the time of this writing did not to come up with clear

evidence of “new” (beyond-the-SM) physics, there are a number of unsolved problems, for

example non-observation of the particles that constitute Dark Matter [19], or explaining

why the neutron’s electric dipole moment is too small to be measurable [20]. The most

puzzling such problem of theoretical physics currently is perhaps explaining the observed

positive — but from a quantum field theory perspective extremely small — vacuum energy

density [21] of the universe. M-Theory currently struggles to give an answer to how this

could arise naturally. Even if M-Theory ultimately turned out to not be the correct answer

to the question how to quantize gravity, it already by now has made major contributions

to uncovering interesting hidden connections in pure mathematics, of which we here only

want to mention the geometric Langlands correspondence as one example, [22].

1.1.1 Unification

The unification of Quantum Electrodynamics with Quantum Chromodynamics (QCD) and

the Weak Force into the SM is highly successful from a theoretical perspective, with both

QCD and Electroweak theory individually being afflicted by problems that cancel in the

SM [23, 24]. A key property is that in the SM, all forces are described in an uniform

way by vector gauge bosons. Since spacetime symmetries (rotations and boosts) affect

all vector gauge bosons in the same way, one can consider superposition quantum states

between them. Indeed, the SM Photon emerges as a specific quantum superposition of a

Weak Force’s particle and another “hidden” force’s particle termed U(1)Y in a way that

is governed by properties of the Brout-Englert-Higgs Boson. This also sets — for example

— the relative strengths of the Electromagnetic and Weak forces. It is quite plausible that

at even (much!) higher energies (but somewhat below the quantum gravity energy scale),

the same mechanism also is at play in the form of “Grand Unification” [25, 26], merging

the Strong Force with the Electroweak Force.

The main new discoveries described in the current article are also about this “Higgs

effect” [27, 28], leading to some particular sets of particles and interactions in “low en-

ergy” physics, so in terms of basic mechanisms this is rather similar to what is now well

established SM physics. Our setting, however, is that of a model that might actually de-

scribe Planck-scale physics well, so if this construction ever turned out to somehow actually

be related to the SM (see e.g. [29–31] for some speculation in this direction), interesting

Physics that is not well understood yet would need to happen in the gap of ∼ 17 orders
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of magnitude between the Higgs boson energy scale and the quantum gravity energy scale.

In particular, there is a discrepancy on gauge groups, cosmological constant, and particle

chirality properties.

More likely, this work describes a collection of (stable as well as unstable background-

)solutions to the M-Theory field equations in a very different corner than the one that

describes the Standard Model. Given our still limited understanding of M-Theory, it nev-

ertheless seems useful to get a better idea about relevant properties, mechanisms, and

phenomena by investigating solutions that are accessible with current technology. In the

past, studying solutions to the 4-dimensional field theory equations and especially their

embedding into M-Theory has taught us some very useful lessons about compactification

mechanisms and about 11-dimensional dynamics. One in particular notes that SO(8) su-

pergravity also describes the physics of a stack of M2-branes [32].

1.1.2 Kaluza-Klein supergravity

While the observation, originally by Kaluza [33] and Klein [34], that four-dimensional

physics can be understood in the context of dynamics in higher dimension was certainly

interesting, the question remained how to find guidance on what higher dimensional dy-

namics to start from. A major step forward happened in 1979, when Cremmer, Julia, and

Scherk set out to construct the four-dimensional field theory with the maximum possi-

ble amount of boson-fermion symmetry [35–37]. Due to the complicated structure of the

(Higgs-like) scalar boson interactions, this was achieved by first realizing that such a the-

ory should be obtainable via compactification of a higher dimensional ancestor theory, and

that there can only be one graviton with helicity ±2 and no interacting massless particles

with higher helicity (due to nonexistence of a suitable source current), and that the high-

est dimension in which such a symmetry can exist is eleven (since otherwise dimensional

reduction to four dimensions would give rise to too many supersymmetry generators that

require going to helicities beyond +2 that cannot be consistently coupled). Constructing

the 11-dimensional model first in [35], the maximally symmetric four-dimensional model in

which all matter and force particles are unified succeeded in [36] via Kaluza-Klein reduction

on a 7-dimensional torus.

The “auxiliary” 11-dimensional field theory, originally introduced as a mathematical

trick, soon was found to be very interesting in itself. For example, it so turns out that

symmetry constraints completely determine its structure, and there is no way to adjust

its parameters or field content. It almost certainly describes the low energy limit of an

as yet unknown 11-dimensional theory of supersymmetric membranes (and perhaps other

dynamical degrees of freedom) which, upon dimensional reduction on a circle also wrapped

by one direction of the membrane, produces 10-dimensional Superstring Theory [9]. This

unknown (perhaps) 11-dimensional theory of (likely) supermembranes has been given the

provisional name “M-Theory”.

As explained, a key ingredient in the effort to unify force and matter quantum fields is

boson-fermion symmetry, or “Supersymmetry”, as it is commonly called. This is presently

is a somewhat esoteric topic outside of quantum field theory and some branches of differ-

ential topology, plus perhaps the theory of stochastic dynamical systems [38].
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1.1.3 Supergravity in eleven and four dimensions

A supersymmetry transformation changes the helicity of a particle by 1/2 and so — in a

theory of gravity — it must connect the helicity-2 graviton with a helicity-3/2 fermionic

particle, the “gravitino”. It is possible to construct models with more than the mini-

mal amount of supersymmetry that then fuse more helicity states [39–41], allowing one

to start with a helicity-2 graviton, apply a supersymmetry transformation to step down

to the helicity-3/2 gravitino, and use another independent supersymmetry transformation

to further step down to a helicity-1 photon-like particle that couples with gravitational

strength (a “graviphoton” [42]). A maximally supersymmetric theory in four dimensions,

as obtainable through dimensional reduction of 11-dimensional supergravity, has N = 8 in-

dependent supersymmetries that connect all quantum states from the helicity +2 graviton

down to the oppositely-polarized helicity −2 graviton, with (according to simple combina-

torics)
(
8
k

)
particles of helicity 2− k/2, so in total one graviton, eight gravitini, 28 photon-

or gluon-like force carriers, 56 spin-1/2 fermions, and 70 Higgs-Boson-like scalars. It was

the discovery of this N = 8 supergravity, which manages to unify all particles and inter-

actions starting from only a symmetry principle as input, that made S. Hawking suggest

in his 1981 inaugural lecture [1] that within perhaps 20 years, we would know the “Theory

of Everything”.

A peculiar feature of this construction is that it interprets the 70 Higgs fields as

parametrizing a very special 70-dimensional coset manifold. Just as the sphere can be

regarded as the manifold of 3-dimensional rotations (read: orthogonal bases) modulo an-

other rotation (around the outward-pointing direction), i.e. S2 = SO(3)/SO(2), and the

hyperbolic plane2 can be regarded as the coset space SO(2, 1)/SO(2) = SL(2)/SO(2), the

relevant scalar manifold of N = 8 Supergravity is3 E7(7)/SU(8), where SU(8) is the group

of complex 8 × 8 matrices with unit determinant and the maximal compact subgroup

of the 133-dimensional non-compact exceptional Lie group E7(7), which we describe in

appendix A.

In Cremmer and Julia’s original construction [36], which compactified 11-dimensional

Supergravity on a 7-dimensional torus, there are 28 photon-like gauge boson particles. Soon

after, it was realized that one can also obtain a four-dimensional theory with the maximal

amount of supersymmetry by dimensionally reducing on the “round” 7-dimensional sphere4

instead [46]. Here, one ends up with the 28 vector gauge bosons belonging to the non-

abelian gauge symmetry SO(8), which may superficially be thought of as some sort of more

complicated Quantum Chromodynamics (but with very differently behaving “quarks” and

“gluons”, and perhaps without confinement due to vanishing β-function). Clearly, given

that such nonabelian gauge symmetries do play an important role in the SM, this looks

like a major step in the right direction, but unfortunately, the group SO(8) is too small

2For a game that allows one to develop some intuition about living on a hyperbolic plane, see [43].
3Strictly speaking, it is actually E7(7)/(SU(8)/Z2), as the SU(8) group element that maps an 8-vector

(or 8̄-vector) to minus itself gets represented as the identity operation when acting on the scalar manifold,

while this does not happen for any other element from the center of SU(8), apart from the identity itself.
4The 7-sphere is rather special, as there are many (28 in total) different spaces that all are topologically

7-spheres, but not diffeomorphic to one another [44, 45].
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to embed the SU(3)QCD × SU(2)Weak × U(1)Y gauge group of the SM into it. Also, the

experimentally observed left-right asymmetry of the SM (“chirality”) cannot be obtained

by compactifying non-chiral 11-dimensional supergravity on a manifold [47].

The early literature on this topic contemplated scenarios in which the observed particles

would emerge as composite, being made of more fundamental “preons”, somewhat along

the lines of how QCD at lower energies gives rise to baryon and meson bound states. Given

that there are in terms of energy perhaps 17 orders of magnitude between the quantum

gravity scale and the Higgs boson energy scale, this may not be entirely unplausible. Still,

considering in particular the problems associated e.g. with chiral fermions, it is nowadays

generally regarded as more promising to investigate scenarios in which the SM’s gauge

symmetry directly emerges from some large higher-dimensional symmetry. Going from 11-

dimensional M-Theory to Superstring Theory first, and then down to four dimensions, there

are by now multiple options to directly get a large “Grand Unification” gauge symmetry

into which the SM gauge symmetry can be embedded.

The main focus of the current article, however, is not to provide more insights into

how experimental particle physics might be related to M-Theory. Rather, we want to allow

deeper investigations into the structure of M-Theory by both expanding our knowledge

on what possible background solutions to its field equations can look like, and also by

providing tools that allow one to come to grips with some of the technical complications

that arise in particular when working with high-dimensional scalar manifolds. In the past,

we have time and again seen the study of models of quantum gravity produce highly

surprising and useful insights even if they were not at all focused on the four-dimensional

world we inhabit. Most notably, there was the realization in 1997 [48] that the partition

function (/generating functional) of a Conformal Field Theory (CFT) can be the same

as the partition function of a supersymmetric theory of gravity with negative cosmological

constant (hence in “anti de Sitter (AdS) space”) in a different spacetime dimension (i.e. with

an extra spatial direction), the so-called AdS/CFT correspondence [48–50]. One example

for a rather surprising further development of this idea is the insight that Quantum Field

Theory may provide a lower bound for the ratio of shear viscosity to entropy density of

any liquid [51]. Another modern development that could not have been anticipated is the

application of this idea of gauge/gravity duality to study superconductivity [52–54]. To

give another example, “holographic duality” has been employed to map solution-generating

symmetries of the Einstein equations [55, 56] to solution-generating symmetries for the

Navier-Stokes equation [57, 58].

Concerning specifically AdS4/CFT3 duality, the holographic dual of the SO(8) super-

gravity studied here is (the k = 1 case of) three-dimensional ABJM theory [59], which

describes the dynamics of M2-branes. This was used e.g. in [60] to construct new su-

persymmetric AdS4 black holes and provide an explanation for their Bekenstein-Hawking

entropy, exploiting the relation between mass-deformed ABJM theory with N = 2 super-

symmetry and the AdS4 vacuum with N = 2 SU(3) × U(1) symmetry, which in this work

is called solution S0779422.

– 6 –



J
H
E
P
0
8
(
2
0
1
9
)
0
5
7

1.2 On machine learning

Artificial Intelligence (AI) is a broad field concerned with crafting algorithms for solving

problems that require some form of human-like intelligence. To avoid any misconceptions,

we clarify that the main concern of AI is not finding ways to allow algorithms to perform

introspective reasoning on par with or exceeding human ability. Indeed, as famously noted

by Alan Turing, the question of whether machines can think is ill-posed [61].

The earliest forms of AI consisted of explicit, manually-crafted rules. Machine Learning

(ML) introduced a new perspective on creating artificially intelligent algorithms. This field

was pioneered by Arthur Samuel, who demonstrated that a computer program can learn

to play the game of checkers better than the person who programmed it [62]. Instead of

operating with pre-adjusted rules and fixed numeric values, the algorithm would instead

tune itself in order to solve the problem. In other words, given a function of an input space

that represents the problem data and an output space that represents the problem solution,

the challenge becomes to learn the parameters of this function in such a way that its results

(the output, or the solution of the algorithm) is as close as possible to the correct solution.

Usually, the learned parameters are of numeric form. The field of ML is thus primarily

concerned with the pragmatic problem of finding and efficiently refining functions that

usually have a large number of adjustable (“learnable”) parameters, with the purpose of

solving challenging problems that often involve real-world data. ML methods are suitable

whenever facing a problem that is difficult to put into words or fixed rules.

In a way, Machine Learning (ML) and physics can be regarded as intellectual antipodes:

physics tries to understand fundamental processes and important mechanisms underlying

the functioning of a system, while ML tries solve a particular problem as well as possible,

while eschewing the need to fully understand it. In fact, the implicit knowledge obtained

by an ML algorithm by solving a problem is often difficult to analyze. Understanding how

certain highly-successful ML algorithms manage to solve highly difficult problems and visu-

alizing various parts of the learned function in order to produce an intuitive understanding

of the problem and the solution space is an active field of research [63].

Example problems that have, sometimes surprisingly so, turned out to be amenable to

ML approaches include text [64] or object [65, 66] recognition in images, mapping pictures

to textual descriptions of their content [67], machine translation of natural language [68],

scoring possible moves in the game of Go [69] and Starcraft [70], and many more. Increas-

ingly, we also see ML methods being applied to problems that do not strictly follow this

pattern, such as synthesis of realistic-looking portraits [71].

Concerning direct applications of ML to theoretical physics, it can and indeed has

happened in the past that ML demonstrated an ability to predict a system’s behavior

well beyond what our current thinking would have considered possible, indicating the

existence of extra structure that our current models cannot capture well. For example, [20]

demonstrated a clever set-up that allows ML to accurately predict the behavior of a chaotic

system over eight Lyapunov times.

One particularly successful family of ML algorithms is that of Artificial Neural Net-

works (ANNs). ANNs are loosely inspired by biological brains, which are made of billions
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of interconnected neurons working together to control optimally the behaviour of intelli-

gent organisms. A simple model of a neuron, called a Perceptron, was proposed by Frank

Rosenblatt in 1958 [72], but the idea of networks composed of multiple layers of Perceptrons

only started becoming popular in the ML community in the 1980s [73]. ANNs consist of

artificial “neurons”, non-linear circuit elements that are interconnected through directed

artificial “synapses” that transmit signals with different efficacies, which act like “weights”

in directed graphs. The connectivity architecture of such a network is usually layered, the

intuition being that each layer builds up more abstract concepts than the previous. A

fully connected feedforward network includes connections between every node of a layer

and every node of the next layer, but other variations also exist, such as recurrent [74] or

convolutional [75] layers.

Such “layered” ANNs are popular as they are known to be universal approximators [76]

and have been found to work well for many problems, but it is by no means true that ML is

tied to this particular class of architectures. As long as there is a way to model a problem in

terms of a function that differentiably depends on many parameters, and parameter-tuning

can substantially improve performance, ML techniques are applicable.

Deep learning, which has recently achieved resounding success in solving difficult real-

world problems like the ones mentioned earlier, refers to ANNs with a large number of

stacked layers especially designed to apply specialized operations on the input. It was

not trivial to discover that such deep networks can work at all — until Hinton’s seminal

2006 article [77], which sparked the deep learning revolution, common thinking was that

networks with more than two layers were essentially impossible to train, and other ML

approaches, such as kernelized support vector machines [78], would generally perform better

than ANNs. Later progress uncovered a number of general misconceptions and useful tricks

on how to train ANNs, for example the superior performance of the “Rectified Linear

Unbounded” (ReLU) activation function [79] in comparison to the classical sigmoid non-

linear activation function used in earlier research.

What type of problems is ML applicable to? Depending on the amount and type

of available data, there are three main paradigms for training an ML model: supervised,

unsupervised and reinforcement learning. Supervised learning refers to data where the

expected result is known in advance for the data available; for example, given a large set

of images of people, the name of the person appearing in each image is also given. This

type of learning is often used with classification (“given m labels, pick the correct one”)

and regression (“predict a value in a continuous domain”), but can often be adapted for

other types of problems, for example in assessing the value of each possible next action

in a game [69]. Supervised learning with ANNs is currently the most widely-used and

successful approach to ML. In contrast, unsupervised learning occurs when no labels exist

for the given data; in this case, the aim is to group the data in such a way that items similar

to each other belong to the same group, or are close to each other in the output domain [80].

Examples where this approach is useful are fetching web pages, songs or videos similar to

the one that an internet user might be viewing or listening to currently. Nonetheless, such

problems can also be expressed as a supervised problems [81] Finally, reinforcement learning

is applied when no exact labels exist, but there is some knowledge on whether a proposed
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output is good or bad. This is applicable in particular to automated game playing, where

the algorithm acts as agent that chooses to perform a sequence of actions with the aim

of winning the game; by playing multiple games, it slowly learns to pick better actions

based on whether the past games resulted in wins or losses. Reinforcement learning can

also be combined with supervised learning: given a very large number of possible actions,

a supervised deep ANN can approximate the value of each possible action [82].

So how does learning in an ML model actually work? A key idea is that learning

involves the minimization of a loss (or error) function. This function is designed such that,

when applied to any given output, it provides a numerical measure of how far off this

output is from an expected answer. In supervised learning, this can be thought of as a

distance between the actual output and the target (desired) output of the algorithm. If

the value of the loss function is smaller, the error is smaller, and the algorithm is closer to

the desired output. Thus, instead of deeming an output as either correct or incorrect, the

loss function provides a graded measure of “wrongness”. The output of the network can

thus be often interpreted as a probability. Crucially, if the loss function is differentiable

with respect to the algorithm parameters (for example, in case of an ANN, the network

weights), the gradient of the loss function can be used to point towards the direction of the

minimum of this function. The gradient of the loss function (which usually is estimated

on a random selection of examples, see below) can be used to iteratively tune parameters

in order to improve the performance of predictions. For many problems, there are natural

choices of loss functions. For classification problems with n possible labels (e.g. “which digit

does the image show” with n = 10), the predicted probabilities can be regarded as dual

to chemical potentials, represented as (linearly) accumulated evidence Ej for or against

a particular classification label pj , i.e. pj = exp(−Ej)/
∑n

i=1 exp(−Ei) [83]. However,

any type of loss function can be employed as long as it indicates the correct solution to

the given problem, is differentiable with respect to the learnable parameters, and has a

reasonable shape — for example, not too many ‘bad’ local minima. One of the surprising

insights of the Deep Learning revolution was that a simple non-linear activation function

with discontinuous derivative that reduces to the identity in the activation region and to

the null function outside that region, i.e. ReLU (x) := (x + |x|)/2, allows training deeply

nested transformations to extract high-level information such as whether there is a face in

an image. In some situations, finding good loss functions to represent important aspects

of a problem is less straightforward, and may need some experimenting. In this work,

for example, we show how the desire to have unbroken vacuum supersymmetry can be

represented concisely through a ML loss function.

A key idea that made ANN-based learning possible is that, when given a computer

program that computes a Rn → R function f , it is possible to automatically transform this

into another program that computes the n-component gradient ∇f at any given point with

relatively small computational effort that is independent of n [84]. The work on reverse-

mode automated differentiation pre-dates and provides a more general framework than

“error backpropagation” for ANNs as it was rediscovered independently in 1985 in [85].

Interestingly, one can also regard “reverse mode automatic differentiation” as a discretized

version of the idea underlying Pontyragin’s maximum principle in Optimal Control Theory,

– 9 –
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i.e. the Hamilton-Jacobi-Bellman (HJB) equation [86] from the 50’s, in the sense that

applying reverse-mode AD to the most basic ODE solver algorithm directly produces the

HJB equation.

Given that not all ML applications use a single straightforward layered ANN archi-

tecture, it makes sense for a Machine Learning library like TensorFlow to provide some

form of general-purpose reverse-mode automatic differentiation capabilities. In principle,

there are three ways to do this, (1) full program analysis, which for a language as complex

as C++ or even only Python is a formidable task (this has been done for Scheme with

R6RS-AD, [87]), (2) implementing some “domain-specific language (DSL)” for arithmetic

graphs, and (3) “Tape-based” AD, where in the forward pass, the sequence of arithmetic

operations gets recorded on a “tape”, which then is replayed in reverse. TensorFlow 1.x

uses approach (2), while TensorFlow 2.x tries to make the tape-based paradigm the default

choice. In this article, we will exclusively use a graph-based TensorFlow 1 approach.

1.3 Tensors in machine learning

To give a rough mental picture of what the training process might look like at the level

of number-crunching, we give an example problem where the goal is to predict whether a

person appears or not in a given image. We assume that a labeled dataset on the order

of a million images is available for training. An image could be represented as a 3-index

array X[row, col, c], with indices providing row and column pixel coordinates as well as the

color channel c. The label for each image is represented by the number 1 of there is a person

in the image, and the number 0 if not. One would typically start by grouping example

images into sufficiently large (randomized) batches to get reasonable estimates for loss

function gradients with respect to model parameters, perhaps b = 1024 images per batch.

A batch of training images would then be naturally represented as a b-dimensional array

of pairs (Xb, Yb). It has become fashionable to call these higher-rank arrays “tensors”

in ML terminology, which indeed is a useful notion for expressing the ANN operations

in terms of tensor products and index-splitting operations. However, symmetry groups

to this date play a rather minor role in ML (with notable exceptions such as [88]), and

if they actually do, one often talks about “equivariant neural networks” to discriminate

these from networks with less structure. For a problem such as recognizing whether a

picture contains a person, which evidently benefits from utilizing symmetry, the common

approach is to factor out translational symmetry by effectively imposing constraints on

network parameters relevant for detecting the target entity, or elements of it, at different

locations in the image. This is usually done by “convolutional layers” that computes

convolutions C[b, i, j, k] =
∑

ξ,ηX[b, i+ η, j + ξ, c]S[k, η, ξ, c] of the example images with a

collection S[·, ·, ·, ·] of small stencils represented as an array of trainable parameters. The

stencil parameters then get adjusted in the training phase such that they are optimally

useful for coming up with a good probability prediction for the image to show a person in

any location. Each such stencil will consist of lines that describe typical features associated

with a person in the image, such as noses, eyes or ears. Intuitively, one could imagine one of

the stencils getting tuned by training to have large inner product with “the average shape

of all noses”, so getting specialized to a nose-detector. Each such stencil would, in turn, be
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made of lower-level stencils, such as lines with particular orientations, which, in the right

combination, form salient shapes. Subsequent processing layers in the network would then

collect and combine different such evidence and in the end produce a Bayesian prediction

roughly along the lines of: “We are highly confident to have seen a nose in the picture, and

we also have moderate confidence to have seen an eye somewhere, so, with high likelihood,

the image shows a person”. Krizhevsky’s seminal paper [65] explains in detail one such

convolutional ANN architecture for image processing. Recent work on feature visualization

in ANNs has spectacularly uncovered collections of shapes and patterns that hidden layers

in a network learn to recognize [63].

The above example illustrates why numerical higher-rank arrays are so prevalent in

modern ML. As hinted earlier in this section, one very common primitive “tensor” operation

in such a setting is batched matrix-multiplication. For example, linear conversion of a set

of example images from RGB color space to some implicit color space that can be trained

to be optimally useful for solving the problem codified by the loss function expressed as

X2[b, i, j, d] =
∑
c

X[b, i, j, c] ∗M [d, c]

with trainable parameters in the matrix M .

2 D = 4 SO(8) supergravity and its scalar sector

Let us briefly review some salient features of supergravity in four and eleven dimensions

before we look into finding equilibrium solutions to the equations of motion.

Four-dimensional supersymmetry can at most unify all particle states from the helicity

+2 down to the helicity -2 graviton. As there are eight helicity-1/2 steps between these

helicities, we can have at most eight times the minimal amount of supersymmetry, and

as each of these eight supersymmetry transformations comes as a real (Majorana) four-

dimensional spinor, we are looking at a theory with 8 · 4 = 32 supersymmetry components.

The highest spacetime dimension in which we can have a real 32-component spinor is d = 11

(or perhaps d = 12 if we accepted a second direction of time [89]). A supersymmetric theory

of gravity in D = 11 dimensions will have (D − 2)(D − 1)/2− 1 = 44 transversal graviton

polarization states (described by a symmetric traceless 9 × 9 matrix), plus 128 gravitino

degrees of freedom. The mismatch in the number of degrees of freedom is compensated

by a gauge field with 84 degrees of freedom, describing a higher-dimensional cousin of the

photon whose polarization is not given by a 1-dimensional vector, but by a 3-dimensional

volume(-form) embedded into 9-dimensional transversal space, AMNP , with associated (4-

form) field strength FMNPQ. With the “polarization” being a 3-dimensional object, this

(abelian) gauge field can not be sourced by charged particles (the 1-dimensional photon

polarization couples to the 1-dimensional worldline of an electron), but by some membrane-

like extended object that lives in eleven dimensions. This is now understood to be the M2-

brane [90]. It is amazing to see how starting from one of the three possible gauge principles,

the vector-spinor, in its very own preferred (maximal) dimension, one automatically obtains

a theory that unifies all three of the possible gauge principles, and furthermore turns out

to be completely fixed, i.e. not permit any free parameters.
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The Lagrangian of 11-dimensional Supergravity reads [91, 92]

L/e =
1

4
RMN

ABeM
AeN

B − i

2
Ψ̄MΓMNPDN

(
1

2
(ω + ω̃)

)
ΨP

− 1

48
FMNPQF

MNPQ

+
2

124
εMNPQRSTUVWXFMNPQFRSTUAVWX

+
3

4 · 122

(
Ψ̄MΓMNWXY ZΨN + 12Ψ̄WΓXY ΨZ

)(
FWXY Z + F̃WXY Z

)
where

e := det eM
A

DM (ω) := ∂m −
1

4
ωM

ABΓAB,

ωMAB :=
1

2
(ΩABM − ΩMAB − ΩBMA) +KMAB

KMAB :=
i

4

(
−Ψ̄NΓMAB

NPΨP + 2
(
Ψ̄MΓBΨA − Ψ̄MΓAΨB + Ψ̄BΓMΨA

))
ΩMN

A := ∂NeM
A − ∂MeNA

ω̃MAB := ωMAB +
i

4
Ψ̄NΓMAB

NPΨP

FMNPQ := 4δRSTUMNPQ∂RASTU

F̃MNPQ := FMNPQ − 3δRSTUMNPQΨ̄RΓSTΨU . (2.1)

2.1 Compactification to four dimensions

Freund and Rubin noted [93] that this theory preferentially compactifies to four dimensions

due to the presence of the four-form field strength FABCD. Indeed, a “flux” compactifi-

cation with FABCD ∼ εµνρσ, i.e. flux aligned with the submanifold of four-dimensional

spacetime, will look isotropic from the four dimensional perspective. Kaluza-Klein com-

pactification to four spacetime dimensions on a 7-sphere that is the surface of an 8-ball

gives the Lagrangian of the de Wit-Nicolai model [3, 46].

For our investigations, we are mostly concerned with the scalar sector of this “SO(8)

supergravity”. Naturally, polarized fields in 11 dimensions give rise to different types

of fields in four dimensions, depending on how 11-dimensional polarization is oriented

with respect to the split into a seven-dimensional compact manifold and four-dimensional

space-time, just like in original Kaluza-Klein theory, where the five-dimensional metric

gives rise to the four-dimensional metric (gravitons), vector potential (photons), and scalar

field (Higgs boson). Maximal supersymmetry fixes the particle content completely, and so

Cremmer and Julia’s construction of ungauged four-dimensional maximal supergravity that

compactifies on a 7-torus and drops higher Kaluza-Klein modes must give rise to the same

particle content as compactification on the surface of an 8-ball (and retaining only massless

modes). The rather nontrivial input here is that both constructions actually do lead to
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maximally supersymmetric models. In Cremmer and Julia’s construction, one gets 35 Higgs

fields from the 11-dimensional “AMNP -photons” for which the 3-dimensional polarization

is parallel to the direction of the 7-dimensional compactification manifold. Since reversing

the handedness of three-dimensional space can be expressed as an 11-dimensional rotation

that also reverses the handedness of the 7-dimensional compactification manifold, which is

experienced by a 3-form field as a sign reversal, these 7 ·6·5/3! = 35 scalar fields are pseudo-

scalars, i.e. odd under a parity transformation. Correspondingly, we get 7 ·8/2 = 28 scalars

from those polarization states of the 11-dimensional graviton gMN that are parallel to the

embedding manifold. However, we also get seven four-dimensional-2-form potentials AµνP
for which only one of the three 11-dimensional AMNP polarization directions is parallel to

the compactification manifold. These give rise to four-dimensional 3-form field strengths ∼
Fµνρ, which can be dualized to 1-form field strengths Gλ ∼ gλσε

σµνρFµνρ, which in turn

come from scalar potentials G = ∂AG. So, dualization [94, 95] of these 2-forms produces

another seven scalar fields which, like the 28 from the graviton, are parity-even, so (proper)

scalars. One finds that these indeed combine into one irreducible representation of eight-

dimensional rotations, so, in this compactification, we have 35 scalars (35+) as well as

35 pseudoscalars (35−) from the (lowest-energy Kaluza-Klein (“Fourier”) modes of the)

11-dimensional degrees of freedom. One indeed finds that these 35 + 35 scalar fields can

be understood at parametrizing the coset space E7(7)/(SU(8)/Z2).

Subtly, despite ungauged maximal supergravity and SO(8) supergravity having equiva-

lent particle spectra, and the latter also having a smooth limit in which the gauge coupling

constant is taken to zero,5 one can not readily identify the 70 scalars of one construction

with the 70 scalars of the other [96]. Rather, when compactifying on a 7-sphere, one has

to work out fluctuations around a compactification background geometry, as explained e.g.

in [97–100]. In the latter case, there is a straightforward way for the rotational symmetry of

the 8-ball to act on these fluctuations, so all four-dimensional fields should form SO(8) irre-

ducible representations. In the former case, the seven two-forms which one gets from AMNP

clearly do not form an irreducible representation of SO(8), so the symmetry enlargement

is an emergent phenomenon.

In general, determining the low-energy field content of Kaluza-Klein type compacti-

fications of M-Theory will require carefully analyzing the spectra of generalized Laplace

operators which act not on scalar but tensor-valued fields (see e.g. [92], esp. chapters 4,

5, 9), whose eigenfunctions can be thought of as generalized spherical harmonics that live

on the compactification manifold rather than the surface of a 3-dimensional ball (as the

spherical harmonics do). On other compactification manifolds, the low energy particle

content of the theory may be rather different, it may even contain more Higgs-like fields

than this SO(8) supergravity, as in the construction discussed in [101], which in total has

67 + 67 = 134.

The algebra so(8) of eight-dimensional rotations is very special in that it allows an S3
group of outer algebra automorphisms which permute the roles of the three different real

5This does not hold in general, and in particular not for maximal supergravity in five or seven dimensions,

see e.g. [5].
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eight-dimensional irreducible representations, the vectors, spinors, and co-spinors. Due to

this phenomenon of “triality”, we have a choice in how to attach the “vector”, “spinor” and

“co-spinor” label to the different eight-dimensional representations. While it is physically

reasonable and common in the literature to associate the 35+ with the symmetric traceless

matrices over the so(8) vectors 35v (given that they contain the graviton polarization

states), we deviate from this convention in the present work and instead associate the scalars

with the symmetric traceless matrices over the spinors 35+ ≡ 35s, while associating (now

in alignment with the literature) the pseudoscalars with the symmetric traceless matrices

over the co-spinors, 35− ≡ 35c. The advantage of this approach is that it aligns the

defining 8-representation of the maximal compact subalgebra su(8) of the e7(7) algebra

with the so(8) vector representation, as well as the 35s,c with the self-dual/anti-self-dual

four-forms of su(8), i.e. we can use the geometric so(8)-invariants γijkl
α̇β̇

, γijklαβ to translate

between (anti-)self-dual and symmetric-traceless-matrix language. We heavily rely on this

property to give simple expressions for the locations of all critical points.

While it would be tempting to give the full general N = 8 Lagrangian in the general

unifying form presented in [102] that uses the gauge group embedding tensor framework

to also include some alternative constructions in which the gauge group is a non-compact

group6 such as a different real form of SO(8), i.e. SO(p, 8−p), or a contraction thereof [103,

104], or a “dyonic” variant [105], it is more straightforward for this work to instead refer

to the “classical” de Wit-Nicolai Lagrangian in order to explain the physical role of some

key objects for which this work provides extensive data.

The Lagrangian of SO(8) supergravity reads [46]:

L/e = −1

2
R(e, ω)− 1

2
εµνρσ

(
ψ̄iµγνDρψσi − ψ̄iµ

←−
Dργνψσi

)
− 1

12

(
χ̄ijkγµDµχijk − χ̄ijk

←−
Dµγ

µχijk

)
− 1

96
Aijk`µ Aµijk`

−1

8

(
F+
µν IJ

(
2SIJ,KL − δIJKL

)
F+µν

KL + h.c.
)

−1

2

(
F+
µν IJ

(
SIJ,KLO+µν KL

)
+ h.c.

)
−1

4

(
O+
µν
IJ
(
SIJ,KL + uijIJvijKL

)
O+µν KL + h.c.

)
− 1

24

(
χ̄ijkγ

νγµψν`

(
Âijk`µ +Aijk`µ

)
+ h.c.

)
−1

2
δiji′j′ψ̄

i′
µψ

j′
ν ψ̄

µ
i ψ

ν
j

+

√
2

4

(
ψ̄iλσ

µνγλχijkψ̄
j
µψ

k
ν + h.c.

)
+

(
1

144
ηεijk`mnpqχ̄

ijkσµνχ`mnψ̄pµψ
q
ν +

1

8
ψ̄iλσ

µνγλχik`ψ̄µjγνχ
jk` + h.c.

)
6While one would be inclined to outright reject the idea of noncompact gauge groups, it turns out that

at least the obvious unitarity problems are avoided in supergravity as the vector kinetic term has a “mass

matrix” like factor involving the scalars that actually fixes the signs for non-compact directions [103], and

any concerns about renormalizability of such theories are not much different from standard supergravity.
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+

√
2η

6 · 144

(
εijk`mnpqχ̄ijkσ

µνχ`mnψ̄
r
µγνχpqr + h.c.

)
+

1

32
χ̄ik`γµχjk`χ̄

jmnγµχimn

− 1

96
χ̄ijkγµχijkχ̄

`mnγµχ`mn

+
√

2g Aij1 ψ̄µ iσ
µνψν j +

1

6
g A2

i
jk`ψ̄µ iγ

µχjk`

+g A3
ijk `mnχ̄ijkχ`mn + h.c.

+g2
(

3

4
Aij1 A1 ij −

1

24
A2

i
jk`A2 i

jk`

)
. (2.2)

In the above Lagrangian, O±µν KL is a bilinear function of the fermionic fields ψ and χ,

SIJ,KL is a function of the Higgs-fields, uijIJ and vIJKL are pieces of the E7 “vielbein”

in the 56× 56 representation that describes a point on the Higgs scalar manifold, while

the Aijk`µ are Higgs-scalar kinetic velocities. For details cf. [46, 102, 106].

This Lagrangian is a consistent truncation of 11-dimensional supergravity [100], i.e.

the Kaluza-Klein modes retained here do not source higher modes, and so any solution of

the four-dimensional field equations can be uplifted to an exact (non-linear) solution of the

equations of motion of 11-dimensional supergravity. This is a “miraculous” property of

the S7 compactification for which the F ∧F ∧A-term in the Lagrangian plays an essential

role. The gauge coupling constant g here is proportional to the inverse radius of the

compactification manifold S7 which, in Kaluza-Klein Supergravity, is not determined.

2.2 The scalar potential

In this work, we are mainly concerned with the ∝ g and ∝ g2 terms in the Lagrangian.

At order g1, we see Yukawa couplings that provide the (naive) gravitino and spin-1/2

fermion mass terms via their coupling to the Higgs-like scalars, ∼ gA1ψ̄σψ, ∼ gA3χ̄σχ,

and ∼ A2ψ̄γχ. Here, the “spin 1/2 fermion mass matrix” Aijk `mn3 , is given in terms of the

gravitino-fermion Yukawa matrix A2 as

Aijk `mn3 =

√
2

144
εijkpqr`

′m′A2
n′
pqrδ

`mn
`′m′n′ . (2.3)

At order g2, we have the scalar potential

V (φ) := −g2e
{

1

24
A2i

jk`A i
2 jk` −

3

4
Aij1 A1 ij

}
. (2.4)

Since we are restricting ourselves in this work to the single case of the compact gauge

group SO(8) of the original de Wit-Nicolai model [3], we can ignore a number of subtle

aspects of electric/magnetic duality in four-dimensional supergravity that become relevant

when trying to generalize our investigations to other gaugings in four dimensions, for details

see [105–107]. The problem at hand then consists of finding critical points of the scalar

potential V (φ0, . . . , φ69), parametrized by 70 scalar coefficients of non-compact generators

of the e7(7) algebra. In detail, the computation of the potential looks as follows, using
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the notational conventions of [108], apart from index-counting always starting at 0 in this

work, in order to make the correspondence between tensor arithmetic and numerical code

published alongside it even more straightforward.

V/g2 = −3

4
Aij1

(
Aij1

)∗
+

1

24
A2

i
jkl

(
A2

i
jkl

)∗
(2.5)

with:

A1
ij = − 4

21
Tm

ijm

A2 `
ijk = −4

3
T`
i′j′k′δijki′j′k′

T`
kij =

(
uijIJ + vijIJ

) (
u`m

JKukmKI − v`mJKvkmKI
)

VAB = exp

(∑
n

φng
(n)

)A
B

uij
IJ = 2VAB δmAδBn δabij δIJcd

forA < 28, B < 28, (a, b) = Z(m), (c, d) = Z(n)

uklKL = 2VAB δmAδBn δklabδcdKL
forA ≥ 28, B ≥ 28, (a, b) = Z(m− 28), (c, d) = Z(n− 28)

vijKL = 2VAB δmAδBn δabij δcdKL
forA < 28, B ≥ 28, (a, b) = Z(m), (c, d) = Z(n− 28)

vklIJ = 2VAB δmAδBn δklabδIJcd
forA ≥ 28, B < 28, (a, b) = Z(m− 28), (c, d) = Z(n)

Here, we are using the auxiliary function Z to translate integer indices for the adjoint

representation of so(8) to ordered pairs of indices in the defining representation, with

index-counting starting at zero,

Z(i · 8 + j − (i+ 1)(i+ 2)/2) = (i, j),

i.e. Z(0) = (0, 1), Z(1) = (0, 2), . . . , Z(27) = (6, 7).
(2.6)

The “input data” are the 70 φn coefficients of non-compact e7(7) generators g(n). Even

as in this work, we only use the non-compact and so(8) generators of e7(7), we give a

complete construction of the 133 56×56 generator matrices in appendix A, mostly to ensure

that all subsequent investigations into alternative gaugings can all use the same definitions.

2.2.1 Equilibria of the equations of motion

When looking for viable 11-dimensional field configurations of supergravity that correspond

to vacua of a four-dimensional theory, one is asking for solutions to the dynamical equations

of motion in which, from the four dimensional perspective, all directional quantities are

zero (since a “vacuum” should not have a preferred spatial direction) — so, we can set

all four-dimensional gauge boson field strengths to zero, i.e. we are here not interested in

“electrovacuum” [109] type solutions. Also, in this analysis, we set all fermionic (spin-1/2
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matter and spin-3/2 gravitino) fields to zero. We do not consider fermion condensates

here. This leaves us with the need to pick a ground state on the 70-dimensional manifold

parameterized by the Higgs-Boson-like scalars of the theory. Conceptually, one would want

to look for minima of the scalar potential, but the actual story is slightly more involved

here [110].

2.2.2 Vacuum stability

While the equations of motion for the scalar fields (and fields coupling to them) require the

gradient of the potential to vanish in a vacuum configuration, it so turns out that viable

vacuum states correspond not just to minima, but also some saddle points (and even a

maximum at the origin!) in the potential. This is due to the value of the scalar potential

playing the role of a cosmological constant in these models. So, for a negative cosmological

constant, our vacuum will have the geometry of a space of constant negative curvature

— an Anti-de Sitter (AdS) space. When studying stability with respect to small localized

scalar field perturbations of finite total energy, one has to take into account that the spatial

variation of such a perturbation can not be made arbitrarily small in an AdS background

geometry. So, if a localized perturbation of a spatially constant background scalar field

at a saddle point (or maximum) can decrease potential energy, the spatial gradient will

lead to an increase in kinetic energy that cannot be made arbitrarily small. One finds

that, overall, one can have (perturbative) stability even at a non-minimum critical point

(i.e. ∇V (φ0) = 0) as long as there is no direction δφ for which the 2nd derivative of

the scalar potential (in a parametrization that gives a “conventionally normalized” kinetic

term Lkin = 1
2 (δφ)2) is smaller than a threshold known as the Breitenlohner-Freedman

(BF) bound [111]:

m2L2 = −1

2
(d− 1)(d− 2)

V ′′(φ0)

V (φ0)
≥ −1

4
(d− 1)2, (2.7)

which for d = 4 is −9/4 = −2.25. Here, L is the AdS radius, L2 = m−20 = −3/V (φ0) [100].

Loosely speaking, “masslessness” does not correspond to zero eigenvalues of the mass ma-

trix in the curved AdS background. For a representation theoretic perspective and expla-

nation, cf. [107].

In fact, it so turns out that for standard SO(8) supergravity (and many other Kaluza-

Klein models), the potential does not seem to have any minima at all, but there are saddle

points that give rise to AdS backgrounds in which this bound is satisfied. In particular, any

background geometry with some residual supersymmetry will be stable and not violate this

bound. To date, there is only a single known critical point of the scalar potential of SO(8)

supergravity that corresponds to a stable non-supersymmetric AdS background [110, 112,

113]. While even this detailed investigation, which presents many more critical points, did

not manage to reveal any other stable non-supersymmetric solutions, and there are good

reasons to believe that they are indeed rare [114], there are indications that the method

used here to search for solutions tends to (unfortunately) somewhat avoid parameter space

regions that do correspond to stable critical points. This is, after all, how the new N =

1 SO(3) vacuum escaped discovery in earlier investigations. So, the authors consider it

possible (but unlikely) that there still are other such solutions that hide very well.
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2.2.3 Finding solutions

Historically, the most powerful approach to find critical points of supergravity potentials

before a more effective strategy was presented in [115] was to introduce “Euler angle style”

coordinate parameterizations of interesting submanifolds of the scalar manifold that have

been selected according to group-theoretical considerations in such a way that critical points

on the submanifold also will be critical points on the full manifold. While a full coordinate

parameterization of E7(7)/(SU(8)/Z2) is easily seen to be well outside computational reach,

it is indeed feasible to consider the subgroup SU(3) of SO(8) in an SU(3) ⊂ SU(4) ⊂ U(4) ⊂
SO(8) embedding and parameterize the six-dimensional manifold of SU(3)-invariant scalars.

When Taylor expanding the full 70-dimensional potential around a point that is a critical

point on such a subgroup-invariant submanifold, the linear term has to vanish, as the

gradient then also decomposes into irreducible representations of the selected subgroup, but

cannot carry any contributions that are not invariant under the chosen subgroup (since each

term in the Taylor expansion is). This strategy was used in [116] to find all7 critical points

with residual symmetry at least SU(3), and led to the general belief that going substantially

beyond this analysis by picking a smaller subgroup of SO(8) would be possible in principle,

but technically very much infeasible, with perhaps only a few possible exceptions. This is

due to the combinatorial explosion in algebraic complexity of explicit forms of coordinate-

parametrized potentials as the number of coordinates increases.

Now that we know many critical points that have very little or even no continuous un-

broken gauge symmetry at all, hindsight tells us that insisting on a fully analytic approach

to solve a “discovery”-type problem limited our view. While an analytic approach easily

becomes extremely complicated, all that complexity is eliminated by instead working with

numerically evaluated quantities, and focusing on the use of backpropagation rather than

analytic expressions in order to obtain gradients. Once one has good numerical data, one

can start looking for corresponding exact expressions.

Critical points of the scalar potential correspond to (true or false) vacuum solutions,

i.e. field configurations for which all directed quantities vanish, and the scalar fields do

not experience any acceleration. While false vacua are unstable with respect to some

small localized fluctuations that violate the BF bound, and the vast majority of critical

points of SO(8) supergravity are indeed observed to be of this type, they are nevertheless

interesting to study. In the past, we have learned much from such solutions. For example,

the study of the SO(7) critical point S0698771 in [117] revealed the need to generalize the

Freund-Rubin ansatz to include a warp factor, while some of the new solutions from [108]

have been useful to identify and resolve subtleties in the uplifting from four to eleven

dimensions in [100]. For some of the new solutions presented here, a deeper investigation

into the nature of accidental (i.e. unrelated to any obvious symmetry) degeneracies in the

mass spectra would seem appropriate.

So, while using the AdS/CFT correspondence to study e.g. condensed matter phe-

nomena is doubtful if the AdS side, when embedded into M-Theory, has unstable modes

7There is a second way to embed SU(3) into SO(8), but this does not come with an invariant submanifold

of scalars.
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(which may even be invisible in the truncation, as is the case for the SU(4) solution), one

would nevertheless want to at least come to a deeper understanding of the 11-dimensional

origin(s) of instability(-ies), perhaps even looking for ways of stabilization, cf. e.g. [118].

The scalars transform as a (reducible, nontrivial) representation of the gauge

group SO(8), and a critical point with nonzero vacuum expectation values for the scalars

will hence break the gauge symmetry to some subgroup of SO(8) via the Higgs effect. As

the scalar potential has an overall SO(8) rotational symmetry, a shift in the scalar fields

obtained by applying a small SO(8) rotation that actually moves the critical point on the

scalar manifold, i.e. some generator of the SO(8) symmetry that is broken by the particular

choice of the solution on its SO(8) orbit, corresponds to a flat direction in the potential. In

the particle spectrum, these shifts would hence correspond to massless scalar (“Goldstone”)

particles, which however for a broken local (gauge) symmetry get absorbed (“eaten”) by

the gauge field to form the extra (“longitudinal”) spin-1 polarization state that a massive

vector boson has over a massless helicity-1 vector boson. Likewise, massless fermions get

absorbed by the gravitinos to produce missing gravitino polarization states through the

super-Higgs effect.

2.3 TensorFlow to the rescue

While we cannot use the supergravity potential directly as a ML loss function (since we

are looking for saddle points, and not minima), it is possible to derive an expression that

conceptually can serve as the length-squared of the gradient, S := |∇V (φ)|2, which can be

used as a loss function and is reasonably easy to compute, cf. (2.21) in [119]:

S := |Qijkl(+) |
2,

where Qijkl(+) = Qijkl +
1

24
εijklmnpqQmnpq, and (2.8)

Qijkl =

(
3

4
A2m

ni′j′A2n
k′l′m −A1

mi′A2m
j′k′l′

)
δijkli′j′k′l′ .

The Qijkl+ is the (self-dual) change of the value of the potential under an infinitesimal

variation of the vielbein when multiplying with an infinitesimal E7 element from the left,

i.e. we are not considering δV = V (V(φ+ δφ))− V (V(φ)), which would be the gradient of

the potential with respect to the Higgs fields φ, but use the E7 structure of the potential

and rather consider

δV = V ((1 + δV) · V(φ))− V (V(φ)) (2.9)

i.e. the change of the potential with respect to a small E7 rotation applied to the vielbein

matrix V from the left. As the 70 parameters of δV transform as self-dual 4-forms under

the SU(8) subgroup of E7(7), the self-dual part of the tensor Qijkl that multiplies this

variation to give the change to the potential has to vanish at a critical point. (This is also

the variation one has to perform to get second derivatives at a critical point that correspond

to actual particle masses, i.e. where the normalization of the kinetic term is the conventional

one.) Since we want to compute the tensors A1, A2 anyway as part of the search procedure,

e.g. to add a supersymmetry-encouraging term to the loss function as discussed later, this is
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straightforward to implement. A slightly less efficient strategy would be to ask TensorFlow

for the length-squared of the gradient, which would (in “classic” TensorFlow graph-mode)

perform a backpropagating transformation on the computational graph, costing roughly

twice the memory, and six times the computation time.

From the ML perspective, minimizing the “stationarity violation” S of the potential

then is a problem of just tuning 70 “learnable” parameters so that the stationarity condition

is satisfied. While it is indeed possible to use the rotational SO(8) symmetry of the potential

to further reduce this 70-dimensional optimization problem to a 70 − 28 = 42-dimensional

one, performing the search in the full 70 dimensions instead seems to make sense, as it is

not very clear what a “good” random distribution to sample starting points from would

be. Furthermore, even if one chooses to use SO(8) symmetry to (say) diagonalize the

35 pseudo-scalars, it may well happen that a critical point discovered in this way is more

easily understood in a presentation that diagonalizes the 35 scalars. So, one should anyway

always be able to diagonalize any solution for any of these two representations.

Performing numerical optimization in some 70-dimensional space looks like an unusu-

ally easy ML problem. Yet, there are some peculiarities:

• We are not interested in one minimum of the loss function, but (ultimately) want to

know all inequivalent ones.

• The idea of “stochastic gradient descent” does not make sense in this setting: there is

a well-defined gradient, but there are no “examples to perform well on”, and therefore

also no human-provided labels to tune towards.

• The loss function takes a highly uncommon form. In particular, its computation

involves exponentiating a complex matrix (in a differentiable way).

• We are actually interested in high numerical accuracy in our numerically tuned “train-

ing parameters”.

Our problem, then, is to:

• numerically find solutions to the S = 0 stationarity condition (2.8),

• canonicalize them to a form with few parameters, and obtain highly accurate numer-

ical data, and

• extract information about physical properties (such as particle charges and masses)

as well as (if possible) analytic expressions for the location of the solution.

Ideally, one would like the last step to at the very least produce sufficiently accurate

numerical data to leave little doubt about the actual existence of a critical point — even if

its location and properties are only approximately known. In the authors’ view, seeing that

the stationarity condition is satisfied numerically to better than 10−100 (as was achievable

for most of the new solutions) is rather convincing.

Of the above steps, the first “discovery” step, when attempted without an efficient

computational framework that can do automated backpropagation, would ask for manually
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re-writing Ricci-calculus code. While this is certainly doable by hand (as has been demon-

strated with [108] and especially [115], which was published including hand-backpropagated

code), it requires both effort and practice, and it certainly would be useful if this mechan-

ical transformation were automated — especially when computations involve steps such

as matrix exponentiation. Also, debugging hand-written gradient backpropagation code is

often tedious, but at least straightforward, since one can always check the claimed sensi-

tivitites in the backward pass by ad-hoc injecting an ε change into the associated quantity

in the forward pass and observing the actual sensitivity.

Here, TensorFlow can help in these ways:

• We only need to write code for the computation of the loss function. All code that

then computes the gradient efficiently is generated automatically.

• It becomes almost trivial to do exploration that requires computing gradients for

scalar(!) quantities that are themselves defined in terms of gradients.

• Tensor arithmetic be executed on hardware that has been optimized to perform well

on such tasks, such as in particular GPUs.

• Google Colab sandbox notebooks [120] simplify TensorFlow based code sharing and

collaboration.

While TensorFlow also allows executing code on specialized Machine Learning hard-

ware, such as Google’s Tensor Processing Units (TPUs) [121], this is at present not an

interesting option for this research here, since ML applications generally can work with

much lower numerical accuracy than what is needed in this work, and so there is not a

strong economic incentive towards high numerical precision for TPUs. Similarly, while

quantum field theoretic problems often involve somewhat sparse tensors (in particular due

to sparsity of Gamma matrices), the general trend in ML seems to be away from designs

that rely on sparsely populated tensors, and so trying to exploit sparseness to improve

computational efficiency when solving field theory problems like the ones studied here with

TensorFlow may often not be worthwhile.

The second point above is interesting. As is known from the general theory of reverse-

mode automatic differentiation of algorithms [84], it is always possible to compute the

gradient of a scalar function that is described by an algorithm in a way that needs no more

than some small constant k times the effort for evaluating the original function, independent

of the number of components of the gradient! In practice, k somewhat depends on e.g. cache

performance, and one typically finds k ∼ 5, but never k ≥ 10.

2.3.1 Simplifying basic analysis

For this work, masses of the scalars had to be determined in order to check whether any

modes violate the BF bound (2.7). Still, no code had to be written to implement the mass
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matrix formula, eq. (2.25) from [119],

L(Σ2) = − 1

96
gµν∂µΣijkl ∂νΣijkl − g2

96

((
2

3
V +

13

72

∣∣A2`
ijk
∣∣2)Σijkl Σ

ijkl

+

(
6A2k

mniA2
j
mn` −

3

2
A2n

mijA2
n
mk`

)
ΣijpqΣ

klpq

−2

3
A2

i
mnpA2q

jk`ΣmnpqΣijkl

)
. (2.10)

Rather, scalar masses were computed directly by just left-multiplying the vielbein matrix

with an exponentiated e7 generator Taylor-expanded to 2nd order only, and then using Ten-

sorFlow’s tf.hessians() function to obtain the mass matrix. This performs 70 gradient

computations each no more than six times as expensive as one evaluation of the potential

starting from the unperturbed vielbein, rather than ∼ 702 evaluations of the potential. In

this sense, this work provides an independent confirmation for the correctness of (2.10),

given that masses match values from the literature for critical points known earlier.

As the potential is exactly known, our gradients are not noisy estimates (as they

usually are in ML), and it makes sense to employ an optimization method that can

utilize this, i.e. conjugate-gradient optimization or BFGS optimization [122], which

both try to use subsequent gradient evaluations to estimate the 2nd-order struc-

ture of the objective function. One convenient way to use TensorFlow as a “gradi-

ent machine” for various such higher order optimization methods is provided by the

tf.contrib.opt.ScipyOptimizerInterface() helper function. One must be aware, how-

ever, that for degenerate minima of the objective function, these optimization methods are

not expected to always perform well very close to the minimum, and given the rather

special structure of the problem at hand, we may well encounter such degenerate minima.

Starting at randomly chosen locations on the 70-dimensional scalar manifold over and

over again produces different critical points. For this work, the authors solved about 390 000

numerical minimization problems, each producing a critical point, that afterwards were de-

duplicated. Two solutions were considered equivalent if both the cosmological constant as

well as the eigenvalue spectrum of the A1IJA1
JK tensor were compatible to within the

estimated numerical accuracy of a solution candidate. There are some cases of critical

points with very similar cosmological constant, but no degeneracies arise at the finesse

provided by the Snnnnnnn naming scheme that is used in this work for solutions.

Given location information for a solution-candidate that is good to more than about

five decimal digits, the discovery problem can be considered solved, and one then has to

deal with the subsequent problem of finding a highly accurate — ideally, analytic — form.

In some cases, one finds that the geometry of a critical point is rather special, making it

hard for a higher order optimizer to produce an accurate location. In such situations, it

typically helps to run basic gradient descent (still with hardware floating point accuracy)

as a post-processing step, which also can be done very efficiently with TensorFlow.

Using this approach, different critical points of the scalar potential get re-discovered

many times over. One finds that the relative sizes of “basins of attraction” for different

solutions are very different. While details do of course somewhat depend on the probability
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distribution used to generate starting points, one observes (for example) that the likelihood

to end up at critical point S1400056 is about 100× higher than the likelihood to end up at

the S1400000 vacuum. Indeed, some of the solutions presented here were seen only once.8

This makes it rather likely that just increasing the effort by another factor 10 would produce

further solutions. Figuratively speaking, we suffer from some vacua strongly vacuuming in

(pardon the pun) a large region of search space.

2.3.2 Loss function design

Given this situation, one naturally would like to have alternative approaches to investigate

the structure of the scalar manifold. One idea — inspired by Morse Theory9 [123] —

is to look not for the minima of the scalar function that measures stationarity violation,

but its saddle points, and then determine how following the gradient when starting from

small perturbations along special unstable directions (such as the principal axes of the

Hessian) carries one into different critical points of the potential. As it is plausible that a

critical point with a small basin of attraction when minimizing stationarity violation may

actually be reachable by walking down from a saddle that has a large basin of attraction

in the search for such saddles, this change of perspective may offer a way to improve the

efficiency of the search for overlooked critical points.

It turns out that implementing this idea in the most naive way is very easy with

TensorFlow, requiring only very little coding while (due to backpropagation) still offering

very good numerical performance. In order to give an impression of how little effort this is

indeed, we show example code in appendix C. One notes that the corresponding calculations

involve third derivatives of the potential (as the stationarity condition is a function of the

gradient, and in order to determine its saddle points, we look at its gradient-squared, as

well as the 2nd derivative (Hessian) of the stationarity condition). Still, as long as these

derivatives get combined into intermediate scalar quantities (such as: length-squared of a

gradient), the basic insight of reverse mode automatic differentiation holds, i.e. an extra

derivative only multiplies the computational effort by a factor of about six (but retaining

high numerical accuracy).

While naively following the gradient disrespects the underlying symmetry of our 70-

dimensional space,10 this may actually help rather than harm the search, with an eye on

the intended purpose, by breaking up degeneracies in principal axes. With this “naive”

saddle point approach, one observes that minimization is much more likely to run into a

saddle than a minimum of the stationarity condition. Inspection makes it plausible that

knowing the height of the saddle as well as the value of the potential to three digits after

the point suffice to (mostly) deduplicate saddles, and with this, one can produce a “subway

8Specifically: S2503105, S2547536.
9One needs to keep in mind that critical points of the (un-adulterated) potential may well be degenerate,

and not of the generic form required by Morse Theory. For example, even when removing the SO(8)

degeneracy S0800000 has extra flat-to-2nd-order directions.
10The gradient is an element of the cotangent space, and, with our parametrization of the e7 algebra,

already at the origin, taking a step in the corresponding coordinate-direction is conceptually wrong, as

it needs to be mapped back to an element of tangent space with the inverse scalar product of the non-

orthogonal basis used here.

– 23 –



J
H
E
P
0
8
(
2
0
1
9
)
0
5
7

map” of how one can cross from one critical point to another via some saddle. Irrespective

of whether one uses the “physically correct” geometry on the scalar manifold or not, a

(mostly) complete map is too complex to be fully visualized. Figure 1 provides a glimpse

on what a tiny part of the graph looks like.

Generating 600 (non-unique) near-origin saddle points and then analyzing their 12 000

unstable principal axes did indeed confirm that some critical points which are hard to

find by minimizing the stationarity condition are easier to obtain by this saddle point

method. In particular, the odds for hitting the non-supersymmetric stable point raise from

about 1 : 20 000 to about 1 : 600. This (limited) analysis did, however, not produce any new

critical points in the near-origin region where the search was performed. In the authors’

opinion, observing that a somewhat independent method only reproduces the solutions

found with a straightforward random search, but fails to discover new ones, suggests that

the list presented here likely is the near-complete answer to the question what the critical

points of SO(8) supergravity are, at least in the near-origin region. That is, the authors

expect the long list to likely still miss a few cases, perhaps even rather interesting ones,11

but not to list only a small selection of critical points that happen to be strongly attractive

in a random search.

Likewise, TensorFlow makes it very simple to tweak loss functions in order to search

for points on the scalar manifold with specific desired properties. Clearly, one would like

to know whether the current work now gives a complete list of the supersymmetric vacua

of SO(8) supergravity. While the methods employed here are insufficient to stringently

prove this, it is very easy to tune the search to strongly favor supersymmetric critical

points. A straightforward way to do this is to replace the length-squared-of-the-gradient

loss function L0 = |∇V |2 with a loss function that includes another term which is zero

for supersymmetric solutions only. The obvious idea here is that, for a supersymmetric

solution, there needs to be a massless gravitino, i.e. some vector ηK such that

LS :=

∣∣∣∣A1
IJA1IKη

K +
V

6g2
ηK
∣∣∣∣2 = 0. (2.11)

Due to the SO(8) symmetry of the potential, we do not have to compute an eigenvector

in a differentiable way here, but can simply fix ηK = δK0 without loss of generality. Using

not L0 but L0 + λLs with a BFGS optimizer is indeed observed to be extremely effective

for finding supersymmetric solutions. Taking λ ∼ 10, and starting from a randomly picked

70-dimensional vector (with coordinates drawn from a normal distribution), with uniform

distribution of a length multiplier, one observes that numerical optimization occasionally

does get caught in a new local minimum with L0 > 0 (i.e. not a critical point), but

otherwise manages to find each of the known supersymmetric vacua multiple times with

in less than an hour of computing time on moderately recent hardware. This approach

also unearths one additional supersymmetric vacuum (which also is found many times

11Soon after the first release of a preprint of this article, follow-up work [124] as a by-product indeed

gave early evidence for the existence of two further unstable critical points not listed here, S2096313

with SO(3)×U(1) symmetry, and S2443607 with SO(3) symmetry. These solutions will be discussed in the

upcoming article.
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Figure 1. A tiny part of the “watershed map” of critical points of the stationarity condition.

Minima of the stationarity condition (at value zero) are (true and false) vacua of the potential, and

labeled using the naming scheme introduced in [125]. Saddles are also labeled by cosmological con-

stant, e.g. the saddle at −V/g2 ≈ −7.605 corresponds to W07605. Edge labels indicate how many

gradient-parallel (in naive geometry) paths along a principal axis run into a particular critical point.

over) that has N = 1 supersymmetry and breaks SO(8) to SO(3). This is the solution

named S1384096, see section 3 and the appendices for properties. Running this search for

a day on a single computer produced 7150 supersymmetric solutions, with each of the now

five solutions (SO(8), G2, SU(3)×U(1), U(1)×U(1), SO(3)) being discovered many times

over, the lowest count being 318 for S0600000.

Is it also possible to directly encode BF-stability as a ML loss function, and hence

directly search for stable vacua in a similar way? In principle, this can be implemented

e.g. by adding to the stationarity-violation loss L0 another non-negative contribution LBF

that can only be zero if the scalar mass matrix S with all eigenvalues shifted up by the BF

bound is positive semidefinite, i.e.

LBF :=
∑
A,B

∣∣∣∣SAB +
9

4
IAB − ΛCAΛCB

∣∣∣∣2, (2.12)

where one introduces a lower triangular matrix Λ of 70 · 71/2 = 2485 trainable parameters

that will, when minimizing the loss, try to (Cholesky-)factorize the shifted mass matrix.

Unfortunately, the associated cost that comes with this large increase in the number of
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training parameters means that loss minimization becomes (in comparison) painfully slow.

One notes that the mass matrix in general unfortunately is not 35+, 35−-block-diagonal. We

anticipate that this technique might become useful for problems with smaller scalar sectors,

such as perhaps maximal gauged D = 5 supergravity, but not for SO(8) supergravity

in D = 4. Still, there are other minor (fixable) annoyances with the basic form of this

loss contribution, such as bad behavior in the V > 0 region, and the new term driving the

search too fast towards the origin.

There are many more ways in which being able to effortlessly engineer loss functions

might help. For example, it might be feasible to multiply the stationarity-violation with

an extra factor that increases as search approaches known strong attractors, effectively

reducing the size of their basin of attraction. One obvious way in which this could be

realized would be to add factors of the form

|Qijkl|2 ·

(∑
n,p

f
(

tr
(
A1 ijA1

ik
)p
− cn,p

))
(2.13)

where the sum over p runs over (the first few) powers of the gravitino mass matrix that

we use to “fingerprint” solutions, the cn,p is the corresponding known fingerprint-value for

the n-th known too-attractive solution that should be punished in the search, and f is

some function with f(x) ≈ 1 away from 0 and f(x) � 1 near 0. Some experimenting will

be needed to find an approach that does not create many new nonzero minima of the loss

function.

2.4 Canonicalization

For any critical point obtained by a numerical search, the SO(8) symmetry of the scalar

potential allows us to freely pick an arbitrary point on its SO(8) orbit as an equivalent

presentation. Naturally, one would want to use a form that allows describing the solu-

tion with a minimal number of parameters. This is not only desirable for typographic

compactness, but also establishes the connection with simple exact analytic descriptions

of these critical points. Setting an additional coordinate on E7(7)/(SU(8)/Z2 to zero cor-

responds to imposing an extra algebraic constraint on the solution, and using sufficiently

many such constraints to eliminate all freedom to rotate a solution produces a 56-bein ma-

trix with only algebraic entries, since the defining properties of the 56-bein, i.e. belonging

to E7(7)/(SU(8)/Z2), can also be expressed through algebraic constraints. Specificaly, the

56-bein respects the symplectic invariant of Sp(56) as well as Cartan’s quartic invariant

of E7(7) (e.g. (B.4b) in [37]),

56 → (28,28) : (xij , y
kl)

I4 = xijy
jkxkly

li − 1

4

(
xijy

ij
)2

(2.14)

+
1

96

(
εijklmnpqy

ijyklymnypq + εijklmnpqxijxklxmnxpq

)
.

At the Lie algebra level (i.e. prior to exponentiation), this then means that there are ex-

act analytic expressions for the coordinate-parameters describing a given solution, typically
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of the form {algebraic number} × log{algebraic number}. Given that the actual 56-bein

entries may well be determined by rather complicated intersections of many algebraic va-

rieties, actually finding algebraic forms may well be computationally out of reach in some

cases (i.e. one may well imagine to encounter zeros of irreducible polynomials of degrees

well beyond 1000). Still, for some of the new solutions described here, the authors were

able (with reasonable computational effort) to determine analytic expressions from high-

precision numerics alone. Each such expression is correct with overwhelming likelihood.

This procedure starts with first obtaining high-precision (hundreds to thousands of

correct digits) numerical data for quantities that are known to be algebraic (i.e. vielbein

entries and derived quantities, such as the cosmological constant). Unfortunately for us,

as extremely high numerical accuracy is generally not very relevant for ML, TensorFlow

does not support tensor arithmetics with higher numerical precision than what common

hardware can provide, i.e. IEEE-754 double precision floating point. In that sense, from the

perspective of M-Theory research, TensorFlow perhaps is best thought of as a “discovery

machine” and not a “precision machine”, carrying over terminology from accelerator physics

(e.g. [126, 127]).

In principle, it would be doable to run already the “discovery” computation with

adjustable accuracy, computing e.g. the algebraic entries of V to hundreds of decimal

digits. This technique has partly been employed in [108], bases on highly performant

compiled Common Lisp code in conjunction with an adapter library that allows a common

generic limited-precision numerical optimizer to work in an high precision setting, but all

this generally involves carefully performing the code transformations needed for sensitivity

backpropagation by hand.12 This technique that produces algebraic expressions in a fully

automatized way should hence not (yet) be considered as being easy to apply and widely

accessible. It hence makes sense to aim for a clearer separation of the “discovery” and

“precision” steps.

2.5 Parameter-reducing heuristics

An approximate location of a solution obtained by the “discovery” step, once suitably

rotated to be coordinate-aligned to the largest possible extent (using the procedure de-

scribed further on), gives us an idea about what coordinates on the scalar manifold can

be set to zero, and what others can likely be set to identical values (or simple rational

multiples of one another). One finds that most solutions are very non-generic and allow

very many such simplifying linear identities. In terms of automated processing of many

solution-candidates, this then requires code that tries some basic heuristics (and automat-

ically abandons them when they turn out to not actually hold at high precision). The

basic process is to go through all coordinates, check if an observed coordinate is close

to another one seen earlier (or a simple rational multiple thereof, or zero) within some

tolerance limit τ such as 10−3, 10−4, 10−5, etc. If so, the observed coincidence is assumed

to hold, and codified in a linear model-parameters-to-solution-coordinates matrix map. If

12At the time of this writing, trying to combine the “mpmath” [128] and “autograd” [129] Python libraries

in order to achieve this does not work.
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the attempt to improve accuracy based on such a model map runs into a dead end, the

process is restarted with a less permissive tolerance limit τ . This “automated heuristic

modeling” step typically reduces a 70-dimensional optimization problem to a much more

manageable problem in 2–20 or so parameters, for which obtaining high-accuracy data is

very often feasible even without having fast gradient computation available. The most

important techniques here are using a multidimensional Newton solver (as provided by the

“mpmath” [128] package), and high-precision Nelder-Mead optimization, which is feasible

for up to about 14 parameters. If both these techniques fail, it is sometimes useful to use

basic fixed-scaling (TensorFlow-based) gradient descent with hardware numerics to turn a

solution that is good to eight digits into one that is good to at least twelve. One finds that

basic gradient descent with some simple heuristic to make learning rates adaptive indeed

seems to work better for this problem than any of the more advanced minimization methods

that are currently popular in ML applications, e.g. Adam, RMSProp, AdaGrad, FTRL. In

some situations, the parameter reducing heuristic produced a problematic canonical form,

and one has to start over with canonicalization after applying a random SO(8) rotation to

the solution.

This “distillation” step produces a high degree of evidence for the existence of a par-

ticular critical point (the length of the potential’s gradient having been shown numerically

to reach values typically below 10−20), as well as a first highly accurate location described

by only a few numbers, and also information on whether the solution is sufficiently well-

behaved (i.e. non-degenerate) for the multidimensional Newton method to allow quick

determination of coordinates and physical properties such as the cosmological constant to

an accuracy of hundreds of digits.

2.6 Coordinate-aligning rotations

As a point on the scalar manifold can be described by giving two symmetric traceless

matrices, one carrying the 35s and one carrying the 35c representation of so(8), and we

can always use a SO(8) rotation to diagonalize one of these, the effective dimension of

the scalar manifold relevant for finding critical points is reduced to 70 − 28 = 42. Still,

even if one exploited this symmetry from the start and only looked for critical points

for which one of 35s,35c is diagonal, this does not eliminate the need to numerically

canonicalize a solution, as any degeneracy in the entries of the diagonal matrix would leave

some residual rotational symmetry that can be used to reduce the number of non-zero

entries in the other diagonal matrix. For example, if the parameters in 35s can be brought

into the form diag(3A, 3A,−A,−A,−A,−A,−A,−A), this still leaves a residual symmetry

of SO(2)×SO(6) which must be fixed by imposing algebraic constraints on the 35c in order

to make the entries of the 56-bein matrix algebraic.

As it hence is difficult, in a numerics-based search, to avoid the need for a “canoni-

calization” step that eliminates residual rotational freedom, we may just as well fish for

solutions in full 70-dimensional parameter space. While our particular choice of e7 gen-

erators leaves us with a non-diagonal scalar product on the 70-dimensional manifold of
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scalars,13 we nevertheless start the search with a 70-vector picked at random from a distri-

bution that is isotropic with respect to the coordinate-basis, not the restricted e7 Killing

form. This choice is apparently “good enough” to find many new solutions.

For elements of a 35-dimensional irreducible representation of SO(8), it is easy to

numerically find a rotation Gd that diagonalizes the corresponding symmetric traceless

matrix. The orthonormal eigenbasis serves this purpose if we multiply the last eigenvector

with ±1 in order to ensure a positive determinant. Knowing how to diagonalize, say, 35s,

how do we then find the corresponding action on the 35c (and vice-versa)? Logarithmizing

the group element to obtain the algebra element is out of the question, but we can employ

a higher-dimensional generalization of Davenport chained rotations [130, 131] to write Gd
as a product of a sequence of up to 28 rotations in coordinate-aligned planes,

Gd = R67(α67) · · ·R57(α57) · · ·R56(α56) · · · ·R02(α02) ·R01(α01), (2.15)

each of which, when moved to the left size, cancels another off-diagonal entry of Gd without

destroying earlier such reductions.14 Using this presentation, we can then proceed to

logarithmize each factor

Rγδ(αγδ) = exp (rγδ · αγδ) (2.16)

and find the corresponding Lie algebra action on the 8c representation by employing the γαβ
γ̇δ̇

invariant. Lifting this to an action on 35c ⊂ (8c × 8c) and exponentiating, we can readily

determine the action of Gd on 35c. An alternative approach would be to run numerical

minimization starting from Lie algebra elements that get exponentiated to obtain group

actions on the 35s and 35c with an objective function that punishes off-diagonal elements

for the matrix carrying the 35s representation.

Once the 35s has been diagonalized by any such method that also gives us the effect

of the rotation which was employed on the 35c, we can proceed to determine the resid-

ual subalgebra of so(8) that keeps the diagonalized 35s unchanged. We can employ this

subalgebra to reduce the number of off-diagonal entries for the matrix carrying the 35c
representation, but in general not completely. Also, this residual symmetry group will

typically be rather small — such as SO(3) × SO(2). It hence makes sense to consider this

step as a somewhat low-dimensional numerical optimization problem. In general, problems

that maximize the number of zero entries in a matrix often are hard, but here, a common

sparseness-encouraging ML technique works reasonably well: we use the L1-norm of the

off-diagonal matrix entries as a loss function.

After this sparseness-encouraging rotation, which will in general have put many more

than 28 coefficients to zero, we proceed by making an automated guess for the form of the

symmetric matrices carrying the 35s and 35c representations as described.

2.7 “Algebraization”

Once an highly-accurate numerical value for a known-to-be-algebraic parameter has been

found, one can use an integer relation algorithm such as PSLQ [132] to find a polynomial

13It is orthonormal up to an overall factor, and the non-orthogonal inner products of the basis vectors

that correspond to the diag(1,−1, 0, . . . , 0), diag(0, 1,−1, 0, . . . , 0) parts of the symmetric traceless matrices.
14For better numerical stability, one should re-order processing of row-entries by absolute magnitude.
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of which this is a zero and that seems plausible, i.e. the total information content of

its coefficients is much smaller than the information content of the known digits of the

parameter. This works well for up to a few thousand decimal digits. More specifically, one

scans for a set of integer coefficients cj , j ∈ {0, 1, . . . , N − 1}, |cj | < 10d such that for a

number ξ known to D (perhaps D ∼ 300) digits after the point, with D > N · d + 30, we

have |
∑

j cjξ
j | < 10−(Nd+10). If such a polynomial is found, we can easily determine its

actual zero to D digits after the point, and check if this polynomial correctly predicts many

further digits of ξ that were known but not used to find the cj . Naturally, if there is a single

candidate polynomial that was found by using 300 known good digits of precision manages

to predict the next 50 digits, we would expect this to happen purely by chance to be ∼ 1 :

1050. So, by using a large enough reservoir of extra precision, we can make the likelihood

to accidentally predict an incorrect algebraic expression fantastically small. While this

still does not constitute a strict mathematical proof, it would be rather unreasonable to

disbelieve the result. Of course, it will in many cases then be possible to independently

establish the validity of a claimed exact expression, but this will generally require ingenuity

and effort beyond what can easily be automated to process scores of solutions.

2.8 Tweaks to the basic procedure

In general, it makes sense to use moderately refined numerical data (e.g. known to be good

to 14 digits of accuracy) and then repeat the entire procedure that starts with finding

a coordinate-aligning so(8) rotation from cleaned up numerical data, as limitations on

numerical precision of input data from the ML library data may have caused the (imperfect)

heuristic that suggests a low-dimensional model to miss some reduction opportunities. In

particular, starting from an already partially parameter-reduced model will lead to rather

short products of Davenport chained rotations, which are numerically much better behaved

than those seen in the initial reduction step.

Once highly-accurate and nicely coordinate-aligned numerical data are available, in-

verse symbolic computation methods can automatically search for exact expressions for

physically relevant properties such as the cosmological constant, coordinates, particle

masses and charges (and hence also residual supersymmetry), and others.

2.9 Extracting the physics

Unbroken continuous gauge symmetries can be determined numerically by mostly straight-

forward methods, and Lie group theory then allows an automatic classification. In a first

step, one determines the space h of so(8) generators that leave a given solution invariant

and splits it into orthogonal pieces w.r.t. the Cartan-Killing metric h = [h, h]+h′. This sep-

arates off the generators of the U(1)N part of the residual symmetry. For all new solutions

described here, the dimension of the semisimple [h, h] =: h̃ part is 0, 3, or 6, so the corre-

sponding non-abelian symmetry algebra can only be k ·so(3), k ∈ {0, 1, 2}, but perhaps em-

bedded into so(8) in different ways. The authors’ automated analysis handles this case by

looking for a maximal set of p orthogonal and commuting h̃-elements h̃c,j , j ∈ {0, . . . , p−1}
(which thanks to so(8) being the algebra of a compact Lie group are simultaneously diag-

onalizable in the adjoint representation), then splitting h̃ into subspaces that are simulta-
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neous eigenspaces for these p generators, labeled by p-dimensional vectors of eigenvalues.

After defining a subspace of positive roots and identifying simple roots, taking the com-

mutators of raising and lowering operators associated with simple roots produces a basis

for the Cartan subalgebra that is useful for numerically identifying angular momentum

spectra, which for k · so(3) are straightforward to map to the irreducible representation

content. For U(1)N generators, the N = 2 case will in general require finding a rotation

that coordinate-aligns the charge lattice. In any case, we scale every U(1) generator u

such that exp(2πu) is the identity on all particle states, while no λu with 0 < λ < 1 also

has this property. For solutions whose gauge group has a single U(1), we use superscripts

to indicate electric charge of particle states, while for solutions with U(1) × U(1) abelian

gauge symmetry, we use super- and sub-scripts for the two different types of charges.

Having split the unbroken symmetry in this way, we can proceed to present branching

rules for the 8v,s,c as well as 28, and decompose particle mass-eigenstates for the spin-1/2

fermions, spin-3/2 gravitinos, and spin-0 scalars in terms of irreducible representations of

the residual gauge algebra. For the scalars, we first try to split mass eigenspaces into or-

thogonal subspaces of the parity operator P that is +I on 35s and is −I on 35c. However,

the analysis presented here only splits off the pure P = 1 and P = −1 subspaces and subse-

quently merges their joint orthogonal complement into one subspace. Mass eigenstates are

then determined on these three subspaces, and marked with a superscript of (s), (c), or (m)

for the “mixed” case, respectively. This step is numerically slightly problematic, as it so

turns out that, for some critical points, we find P = 1−ε eigenstates with ε < 10−3. Hence,

auto-identification of some mass eigenstate as a pure scalar or pure pseudoscalar state may

be somewhat unreliable. It is nevertheless reassuring that decomposition of weights into

irreducible representations is observed to always succeed, which it would not if some P -

eigenvectors were wrongly assigned to subspaces. All particle masses are known with an

accuracy of more than eight digits, but it may happen that different particle masses look

the same when truncated to three digits after the point for presentation. This explains why

some solutions list the same mass as belonging to more than one mass-subspace. This hap-

pens e.g. for S1039624, which lists scalars with m2/m2
0 of −2.417m1+++++1−−−− ,−2.417m1 ,

rather than −2.417m1+++++1−−−−+1 i.e. there is a two-dimensional subspace of mass eigen-

states with electric charges ±4 and another one-dimensional mass eigenstate with a too-

close-to-be-discriminated-at-presentation-accuracy mass. For a solution to be perturba-

tively stable, no scalar mass-eigenstate must have m2/m2
0 that violates the BF bound

of −9/4. Unstable mass-eigenstates that violate this bound are marked with an aster-

isk (∗) in the tables.

As none of the new solutions has a residual gauge group that contains a simple group of

rank ≥ 2, and so apparently all such solutions already have been identified and studied in

detail in the 80’s [116], there is no compelling reason to automate assignment of quantum

numbers to such larger symmetry groups.

Residual supersymmetry can be identified [133] numerically by using Singular Value

Decomposition (SVD) to look for solutions of

ηiA2
jkl
i = 0 . (2.17)

The corresponding gravitino states are marked with an asterisk in the tables.
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3 A guide to the new solutions

Detailed data on all the solutions obtained in a large TensorFlow based cluster search are

presented in appendix D.

The structure of the location data presented in these tables is explained in section 2.4.

Given the sheer amount of data (masses and charges for 26k particles!), it makes sense

to include a lookup table that lists the most important properties. This is presented in

appendix D. Let us in this section highlight some specific examples with interesting prop-

erties.

S1384096 is a new stable vacuum with N = 1 supersymmetry. This is clearly the

most remarkable new discovery. As the 10-parameter form presented here resisted all

attempts to increase numerical accuracy by employing a multidimensional Newton solver,

a computationally rather expensive Nelder-Mead optimization had to be performed to

extract 500+ digits of numerical accuracy. With this, PSLQ based analysis (using 400

digits of accuracy to predict 120 further digits) was able to determine the cosmological

constant algebraically as a root of the following (rather remarkable!) polynomial:

v := −V/g2 ≈ −13.84096, w := v4

220 · 330 = 515w3 − 28 · 34 · 7 · 53 · 107 · 887 · 1567w2 + 215 · 317 · 210719w

=⇒ v =
2

3125
· 135001/4 · 51/2

· {21/3 · (11731979383924735786651611328125 · 1291/2

+4882181729086557805429315734818179)1/3

+22836248051085301205852 · 22/3 ·D−1/3 + 220704046052}1/4

where D := 11731979383924735786651611328125 · 1291/2

+4882181729086557805429315734818179. (3.1)

Further, the gravitino masses are roots of these algebraic expressions:

µ := m2/m2
0[ψ] = {A zero of. . . }

µ− 1 (µ = 1.0),

9µ3 − 48µ2 + 80µ− 48 (µ ≈ 2.90620272),

4µ3 − 28µ2 + 64µ− 49 (µ ≈ 3.17965204),

36µ3 − 216µ2 + 412µ− 321 (µ ≈ 3.41145711).

(3.2)

The gauge group SO(3) is embedded in a triality-invariant way as the diagonal sub-

group of a SO(3) × SO(3) ⊂ SO(8). There are ten SO(3)-invariant scalars which all have

different masses apart from a pair of two with m = 0. A detailed study of the analytic

properties of this new solution is in progress [124]. Remarkably, S1384135, which has

only a minimally lower cosmological constant has a Gravitino state that almost would sat-

isfy the Killing spinor equation (no other Gravitino in the long list comes this close) and

also has its gauge group — here, U(1) — embedded in a triality-invariant way. The mass

spectra of these two solutions are very similar.
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One notes that all the cosmological constant polynomials that have been identified have

rather special form which, given their 2-3-5-factorizations, somehow seems to be suggestive

of an underlying E8 structure.

S1600000 and S1800000 extend the known list of solutions with rational (even

integer) cosmological constant by two new entries, the others being S0600000 with

N = 8 SO(8) symmetry, S0800000 with SU(4) symmetry, S1200000 with N =

1 U(1)×U(1) symmetry, and the only known stable non-supersymmetric point S1400000,

which has SO(3)×SO(3) gauge symmetry (listed as SO(4) in the summary table). Despite

both S1600000 and S1800000 having no residual gauge symmetry, they have rather re-

markable and currently unexplained degeneracies in particular in the fermion mass spectra.

Such “accidental degeneracies” also occur for some other critical points, such as S1046018

or S1176725.

The S0847213 solution is the only “modern” critical point with residual gauge sym-

metry for which the 8v,s,c branching does not have any residual triality symmetry. Also,

it is the only case with a 3-component gauge group.

The S1039230 solution has been first described in [134]. In total, there are three

known critical points with residual gauge symmetry SO(4). The gauge group embedding

has V ↔ S triality symmetry for this solution, while it has V ↔ C triality symmetry for

the S0880733 solution and S ↔ C symmetry for the (BF-stable!) S1400000 solution.

S2099419 and S2099422 are a pair of critical points with extremely similar but

nevertheless different particle properties and also cosmological constant. There are a few

other examples for critical points with very small difference in the cosmological constant

and similar properties, such as the pair S2511744-S2512364, or S3254262-S3254576.

For almost every solution, the number of scalar modes with m2/m2
0 = 0 matches the

number of broken so(8) generators, as it has to according to Goldstone’s theorem. Two

solutions have extra massless (w.r.t. “naive mass”, not AdS-massless) modes that survive

being eaten by gauge bosons: S0800000 (i.e. the SU(4) critical point) and S1200000 (i.e.

the N = 1 U(1)×U(1) vacuum).

Solutions S1200000, S2279257 and S2279859 are listed in the summary table with

symmetry U(1)1, since in these cases, the charge of all U(1)-charged particles is the same

in magnitude. Still, these particle-states are listed as having charges 1++ etc. in the tables

for typographic reasons, due to the 8s,c representations branching to 4× 1+ + 4× 1−, but

the spectrum not having any particles transforming under these representations.

While this expanded list did not uncover any other stable non-supersymmetric critical

points beyond the known SO(3)×SO(3) solution S1400000, we observe a another instance

of the phenomenon that instabilities can become invisible when truncating a solution to

the scalar submanifold that is invariant under the unbroken gauge group. This was first

observed and discussed in detail for S0800000 in [118]. There, the unstable scalars come

as a single 20-dimensional irreducible representation of SU(4), and the question was raised

whether one could project out these unstable modes with an orbifold construction which

would have to use a non-abelian discrete subgroup of SU(4) other than the Weyl group

(since in these cases, the 20’ decomposes with singlets). This phenomenon also happens

for the SO(7) critical points S0668740 and S0698771, where the unstable modes trans-
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form as a 27, as well as for S1424025, where the unstable modes form a single 5 of SO(3).

Clearly, the analysis of all viable discrete subgroups of the gauge group under which this ir-

reducible representation branches without singlets is greatly simplified by going from SU(4)

to SO(3), where there is an obvious candidate symmetry (namely the icosahedral group)

under which 5→ 5.

Remarkably, S2416856 has no residual gauge symmetry, but six unstable scalar modes

with 1+2+3 mass-degeneracy. While trying to find a way to stabilize this solution seems

hopeless here, it would be interesting to understand what symmetry is responsible for the

accidental mass degeneracies in the unstable modes.

The solutions S1195898 and S2503105 feature a peculiar SO(3) gauge symmetry

which is embedded in a triality-invariant way, with branching 8v,s,c → 3+5. In both cases,

there are only two SO(3)-invariant scalars, but unfortunately, one of them is unstable. This

is also the only instability of these solutions. Remarkably, the minimal polynomial for the

cosmological constant is identical for these two solutions, so this seems to be an example

of the algebraic equations for a vanishing gradient allowing a pair of real solutions that

are Galois conjugates. It is noteworthy that even in the large numerical search performed

here, S2503105 was a chance hit that only showed up once. Had it been missed, it is

conceivable that it ultimately might have been found in a detailed study of S1195898 as

an algebraically equivalent solution. So, looking for Galois conjugates seems to be one new

method to fill possible gaps in the list of solutions.

The same Galois-doubling phenomenon occurs also for the pair S1039624–S1402217,

which both also have identically embedded gauge group. One might speculate that Galois

conjugates may well occur more often, in particular with solutions without residual symme-

try and a cosmological constant that is not known algebraically. Perhaps then, it may be

possible to extract algebraic numbers that are easier to identify from pairs of numerically

known cosmological constants of critical points with identically embedded gauge group.

A rather unique property of the S4168086-solution will be the topic of a short follow-

up article.

4 Conclusions and outlook

Some problems in the world are very amenable to ML based approaches, others not so

much. As we are, during the current ML revolution, working on finding out which is

which, we sometimes encounter pleasant surprises. Being able to present an elegant way to

address a fundamental need in quantum gravity research — the need to be able to analyze

potentials on complicated high-dimensional scalar manifolds — certainly is one of these.

More work remains to be done that analyzes other relevant cases using the methods

presented here, in particular the scalar sector of maximal D = 5 gauged supergravity [5],

i.e. the AdS side of the best studied case of the AdS/CFT correspondence, as well as

CSO(p, q, r)-gaugings of four-dimensional maximal supergravity, plus their dyonic vari-

ants [105], and other gaugings discussed in [102], as well as gauged supergravities in three

and two dimensions.
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Also, while the present article is a major step forward towards a proven-exhaustive

classification of the critical points of SO(8) supergravity, this challenging problem is still

out of reach. It is quite likely that the rather peculiar form of the minimal polynomials

of the cosmological constant that could be obtained for about three dozen critical points

(including all solutions that can be described with up to six parameters) is a very major

clue which the authors currently do not know how to utilize. Nevertheless, having an

algebraic expression for the cosmological constant typically means that it is also feasible

to find algebraic expressions for the entries of the 56-bein matrix, and hence quite a bit

of the work required to uplift a critical point to a solution of the equations of motion of

11-dimensional supergravity can be automated. Not surprisingly, giving exact expressions

for coordinates (which are not algebraic, but typically {algebraic} · log {algebraic}) is quite

a bit harder (in fact, with the techniques employed here, this could only be achieved for

a few coordinates), but might actually be unnecessary to answer most questions as long

as the vielbein entries are known exactly and one can show that the vielbein indeed is

an element of E7(7). Clearly, it would be very interesting to know in particular for all the

supersymmetric vacua what 11-dimensional geometries these solutions correspond to — and

also what the CFT renormalization group flows on M2-branes between the corresponding

fixed points look line.

For all solutions presented here, numerical data on their location are available in the

source package of the arXiv.org preprint of this article. In many cases, the authors have

been able to numerically reduce the violation of the stationarity condition to much less

than 10−1000, and for each claimed critical point, it would be unreasonable to doubt its

existence. Unfortunately, going from machine accuracy as obtained with TensorFlow to

high accuracy is a somewhat messy process as the heuristics to guess a low-dimensional

model as well as the attempt to use a multi-dimensional Newton solver do occasionally

fail (for quite a few independent reasons) and require manual intervention. Due to limited

time and a rather large number of cases to analyze, the quality of numerical data is rather

uneven, typically providing 100+ good digits, but sometimes only providing as few as 16.

With a bit of numerical experimenting, it typically is possible to obtain 1000+ good digits

for any given solution within about two days of work.

Quite a few of the solutions feature (occasionally large) accidental degeneracies in the

spectrum that should be understood and may point to exploitable symmetry properties.

It may well be that the accidental U(1) 6⊂ SO(8) “background round S7 diffeomorphism”

symmetry of the S1400000 solution discussed in [113], is a first example of such an extra

symmetry. Also, it is interesting to observe that, out of all the solutions newly discovered

by employing numerical methods, there is a single one for which the residual symmetry

group is not embedded in a way that has triality symmetry. Clearly, triality seems to play a

rather important role, and so re-phrasing the problem in octonionic language might reveal

additional structure.

In this work, we have only scratched the surface on cleverly engineering loss functions

in order to extract additional information from the scalar potential. We expect that, with

some ingenuity, much more is possible here, perhaps even allowing an efficient direct scan

for BF-stable critical points.
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Given that even this long list will still have some gaps, what are the most promising

approaches to fill them? One strategy still is to parametrize and study interesting subman-

ifolds, such as the manifold of scalars that are invariant under the SO(3) gauge group of

the new supersymmetric vacuum. Also, assuming that there indeed are perfect algebraic

“Galois twin” solutions (i.e. not only the cosmological constant, but also all particle masses

are related by root flipping), it may be possible to discover new solutions by obtaining al-

gebraic expressions for some at present only numerically known solutions and then check

whether root-flipping can produce new real solutions. A very promising further approach

may be to study the extremal structure of the “dyonic” variants described in [105] and

study the fate of critical points when changing the new ω-parameter. In [134], this method

found the third SO(4) critical point S1039230 before it was independently rediscovered

here, and it may well reveal further solutions.

Historically, the potential of SO(8) supergravity was first written down in [3]. About

fourty years later, we now have what is likely the almost-complete list of critical points, and

very likely the complete list of supersymmetric vacua of this theory. Given that some of

the ideas that enabled this analysis were about as old as the original problem but largely

unknown in the String Theory community, and were identified as useful and had to be

brought together as part of one of the authors’ personal journey, it seems likely that other

technically hard problems in String Theory also would benefit from more exchange with

other fields of research. We hope that by aiming to keep the introduction in this article

accessible to readers with a technical background who are not experts in field theory, we

might attract the attention of experts who can contribute missing puzzle pieces that we are

not even aware of yet, perhaps even allowing a completeness proof of the list of solutions

(perhaps after filling the last gaps).
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A E7 conventions

Spin(8) triality provides some intuitive insights into the question why the exceptional Lie

group E7 exists. Let us start from the observation that one can, for example, understand

the algebra rotations in nine spatial dimensions, so(9), as an expansion of the group of

rotations in eight spatial dimensions, so(8), by eight extra elements rk8 that, when scaled

and exponentiated, rotate each of the coordinate axes of eight-dimensional space against
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the ninth axis,

Rk8(α)mn = exp(αrk8)mn

= (δkmδkn + δ8mδ8n) cosα+ (δkmδ8n − δ8mδkn) sinα
. (A.1)

and themselves transform under so(8) as eight-dimensional vectors, while giving rise to

other so(8) rotations in their commutator, [r08, r18] = −2r01 so that we get an overall struc-

ture of [g, g] ∼ g, [g, h] ∼ h, [h, h] ∼ g. Likewise, one can obtain the 63-dimensional alge-

bra sl(8) from the 28-dimensional algebra of so(8) by adding 35 generators that transform as

symmetric traceless matrices under so(8). One easily sees how for the 8-dimensional vector

representation of sl(8), the generators can be expressed in a basis of symmetric and anti-

symmetric traceless matrices, where the latter form the subalgebra of so(8) and the former

are the generators that extend this to sl(8). One notes that one also gets a 63-dimensional

real algebra (over complex matrices) that closes if one multiplied each of the extra 35

generators with i, so that commutator relations are of the form [g, g] ∼ g, [g, ih] ∼ ih,

[ih, ih] ∼ −g. The extra minus sign here also shows up in the signature of the quadratic

invariant that can be formed from the generators, the Killing form, Gmn := Tr (gmgn).

Applying this “Weyl unitarity trick” to sl(8) produces the Lie algebra of the compact Lie

group SU(8), i.e. su(8).

Now, the so(8) (or “spin(8)”) algebra is special in that there is a non-abelian S3
symmetry that acts on its irreducible representations. This symmetry permutes the

roles of the three inequivalent eight-dimensional irreducible representations, the “vectors”,

“spinors”, and “co-spinors”. Let us consider extending so(8) with an eight-dimensional

vector representation v as before in order to get so(9), but simultaneously with eight-

dimensional spinors s and co-spinors c in such a way that we get commutator relations of

the form [g, g] ∼ g, [g, v] ∼ v, [v, v] ∼ g, [v, s] ∼ c plus the corresponding cyclically triality-

rotated forms such as [s, s] ∼ g, [s, c] ∼ v, etc, by employing the invariant tensor γi
αβ̇

of so(8) that implements a non-degenerate generalized product of eight-dimensional repre-

sentations. There is a unique way to work out commutator relations such that the Jacobi

identity [a, [b, c]] + {cyclic} = 0 holds, and this gives the Lie algebra of the 28 + 3 · 8 = 52-

dimensional exceptional group F4. Performing a similar construction that extends so(8)

in a triality-symmetric way now with the symmetric traceless matrices over the vectors,

spinors and co-spinors produces the 28 + 35v + 35s + 35c = 133-dimensional Lie algebra

of e7. It is possible to choose signs such that one of the 35-dimensional representations

extends so(8) to su(8), while the other two each extend so(8) to sl(8). This then gives

the noncompact real form e7(7) that shows up in four-dimensional N = 8 supergravity.

So, in a sense, the e7 algebra can be thought of as a generalized algebra of rotations with

“siamese triplet” structure, three organisms co-joined at the so(8) heart, but functioning

as one whole body. In order to make this work self-contained, we spell out the conventions

underlying our construction of e7(7) in detail. These match [108], apart from index counting

always being 0-based the present article.

We start from the so(8) “Pauli-matrices” γi
αβ̇

in the conventions of Green, Schwarz,

and Witten [135], but with all indices shifted down by 1, as it makes much more sense
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in a computational setting to consistently start index counting at zero. The nonzero en-

tries of γi
αβ̇

are all ±1, and we list them in compact form iαα̇±, so e.g. 357− translates

as γi=3
α=5,β̇=7

= −1, etc.

007+ 016− 025− 034+ 043− 052+ 061+ 070−
101+ 110− 123− 132+ 145+ 154− 167− 176+
204+ 215− 226+ 237− 240− 251+ 262− 273+
302+ 313+ 320− 331− 346− 357− 364+ 375+
403+ 412− 421+ 430− 447+ 456− 465+ 474−
505+ 514+ 527+ 536+ 541− 550− 563− 572−
606+ 617+ 624− 635− 642+ 653+ 660− 671−
700+ 711+ 722+ 733+ 744+ 755+ 766+ 777+

(A.2)

The Spin(8) traceless symmetric matrices over the vectors and spinors are “bosonic”

objects, i.e. cannot discriminate between a 360-degrees rotation and the identity, so they

must be expressible in terms of SO(8) representations alone. It so turns out that the 35s

and 35c are equivalent to the self-dual, respectively anti self-dual four-forms of SO(8), and

the corresponding Spin(8)-invariant dictionaries are the tensors

γijklαβ = γmαγ̇γ
n
γγ̇γ

p
γε̇γ

q
βε̇δ

ijkl
mnpq (A.3)

γijkl
α̇β̇

= γmγα̇γ
n
γγ̇γ

p
εγ̇γ

q

εβ̇
δijklmnpq. (A.4)

We choose the basis for e7(7) such that the last 28 generators (elements #105 to #132)

form the so(8) subalgebra, elements #0 to #34 transform as symmetric traceless matrices

over the spinors 35s, elements #35 to #69 as symmetric traceless matrices over the co-

spinors 35c, and elements #70 to #104 as symmetric traceless matrices over the vectors.

Thus, the last 63 elements form the sub-algebra su(8), and the first 70 elements the 70 non-

compact directions of the coset manifold of supergravity scalars. An E7 adjoint index A
splits as (with the underline representing a single index that can be associated with a pair

of so(8)-indices):

A → (αβ) + (γ̇δ̇) + (ij) + [kl] (A.5)

We furthermore choose the basis for so(8) in such a way that element 105 + n, when

acting on the vector representation of so(8), would be represented as the rotation ma-

trix (r[jk])
m
p = δjmδkp−δ

j
pδkm, i.e. the rotation that takes the k-direction into the j-direction,

with 0 ≤ j ≤ k ≤ 7, where n = j ·8+k−(j+1)(j+2)/2. Hence, e7 basis element #105 cor-

responds to the rotation r[01], basis element #106 = r[02], etc. (lexicographically ordered).

For the three 35-dimensional symmetric traceless irreducible so(8) representations,

we use the convention that the first 7 basis elements correspond to the diagonal matri-

ces diag(1,−1, 0, . . . , 0), diag(0, 1,−1, 0, . . . , 0), diag(0, . . . , 0, 1,−1) (in that order), while

element 7+n corresponds to the matrix (S(jk))
m
p = δjmδkp+δjpδkm, again with 0 ≤ j ≤ k ≤ 7,

and also n = j · 8 + k− (j+ 1)(j+ 2)/2 — and with a likewise lexicographical order for the

corresponding non-diagonal parts of S(αβ) and S(α̇β̇). With these conventions, the e7 sym-

metric bilinear form obtained from the fundamental representation, gAB = TAC
DTBD

C is
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almost diagonal, with entries +96 for B = C < 70, entries −96 for B = C ≥ 70, entries −48

for the non-orthogonal generators corresponding to the diagonal parts of the symmetric

traceless matrices over the spinors and co-spinors (i.e. gA=0B=1, gA=3B=2 gA=35B=36, etc.),

and entries +48 for GA=70B=71, etc. for the diagonal part of the 35v representation.

In order to define the 56-bein, we need explicit generators for the pseudoreal 56-

dimensional fundamental representation of e7. In the expressions below, the Einstein sum-

mation convention does not apply for “technical” auxiliary indices that are set in typewriter

font and do not belong to irreducible representations).

Given T (E7)
AB

C , the e7 generator matrices g used to define the scalar potential

are
(
g(n)
)C

B =
(
T (E7)

A=n

)
B
C for n = 0, . . . , 69. These 56 × 56 matrices

(
g(n)
)

look

as follows (with Z(n) given by (2.6)):

T (SU(8))
Aj
k =



+i for A = j = k < 7

−i for A+ 1 = j = k < 7

+i for 7 ≤ A < 35, (m, n) = Z(A− 7), j = m, k = n

+i for 7 ≤ A < 35, (m, n) = Z(A− 7), j = n, k = m

+1 for 35 ≤ A, (m, n) = Z(A− 35), j = m, k = n

−1 for 35 ≤ A, (m, n) = Z(A− 35), j = n, k = m

S(SO(8))abcd
(αβ) =

{
γabcdαβ (δαm δ

β
m − δαn δβn) for (αβ) = m = n− 1 < 7

γabcdαβ (δαm δ
β
n + δαn δ

β
m) for (αβ) ≥ 7, (m, n) = Z((αβ)− 7)

C(SO(8))abcd
(α̇β̇)

=

 γabcd
α̇β̇

(δα̇m δ
β̇
m − δα̇n δβ̇n) for (α̇β̇) = m = n− 1 < 7

γabcd
α̇β̇

(δα̇m δ
β̇
n + δα̇n δ

β̇
m) for (α̇β̇) ≥ 7, (m, n) = Z((α̇β̇)− 7)

T (E7)
AB

C =



1
8S

(SO(8))abcd
(αβ)(δ

a
mδ
b
n − δanδbm)(δcpδdq − δcqδdp) for

A < 35, (αβ) = A,
B ≥ 28, (p, q) = Z(B − 28),

C < 28, (m, n) = Z(C)

1
8S

(SO(8))cdab
(αβ)(δ

c
mδ
d
n − δcnδdm)(δapδ

b
q − δaqδbp) for

A < 35, (αβ) = A,
B < 28, (p, q) = Z(B),

C ≥ 28, (m, n) = Z(C − 28)

i
8C

(SO(8))abcd
(α̇β̇)

(δamδ
b
n − δanδbm)(δcpδdq − δcqδdp) for

35 ≤ A < 70, (α̇β̇) = A− 35,

B ≥ 28, (p, q) = Z(B − 28),

C < 28, (m, n) = Z(C)
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T (E7)
AB

C =



− i
8C

(SO(8))cdab
(α̇β̇)

(δcmδ
d
n − δcnδdm)(δapδ

b
q − δaqδbp) for

35 ≤ A < 70, (α̇β̇) = A− 35,

B < 28, (p, q) = Z(B),

C ≥ 28, (m, n) = Z(C − 28)

2T (SU(8))
Aj
k
(
δ
q
nδ
j
mδ

p
k + δ

p
mδ
j
nδ

q
k − δ

p
nδ
j
mδ

q
k − δ

q
mδ
j
nδ

p
k

)
for

A ≥ 70, A = A− 70

B < 28, (p, q) = Z(B),

C < 28, (m, n) = Z(C)

2
(
T (SU(8))

Aj
k
)∗ (

δ
q
nδ
j
mδ

p
k + δ

p
mδ
j
nδ

q
k − δ

p
nδ
j
mδ

q
k − δ

q
mδ
j
nδ

p
k

)
for

A ≥ 70, A = A− 70

B ≥ 28, (p, q) = Z(B − 28),

C ≥ 28, (m, n) = Z(C − 28)
(A.6)

B The octonions and the spin(8) invariant γi
αβ̇

This section provides a simple and fully self-contained instructive example for using Tensor-

Flow to numerically solve tensorial algebraic constraints with very little mental effort. The

basic techniques are essentially the same as the ones used for the main part of this work.

Also, this section provides a detailed answer to the question how two common conventions

for Octonions and spin(8) gamma matrices are related.

The Lie group Spin(8) has three inequivalent irreducible eight-dimensional repre-

sentations, the vectors 8v, for which we use indices i, j, k, . . ., the spinors 8s, indexed

with α, β, . . ., and the co-spinors 8c, indexed with α̇, β̇, . . .. The spin(8) invariant γi
αβ̇

provides a unique way to map spinors and co-spinors to vectors, φ(·, ·) : 8s × 8c → 8v :

(s, c)→ v such that (e.g.) for any non-zero element S of 8s, the map 8c → 8v : c 7→ φ(S, c)

is nondegenerate.

This means that we can use γi
αβ̇

to define an invertible 8-dimensional product, that

is, an 8-dimensional real division algebra. Now, using e.g. an explicit form of the (8, 8, 8)

tensor γi
αβ̇

such as the one given in [135], eq. (5.B.3), which has no reason to know about

the division algebra interpretation, some arbitrary choice has been made for the vector

space bases of the 8v, 8s, 8c representations. Without loss of generality, we can identify

the chosen basis of 8v with the basis of the “output” vector space of the octonionic product

as it is defined in [136], with the octonionic imaginary units e1 . . . e7 satisfying:

ejej = −1, ejek = −ekej (j 6= k), e1 · e2 = e4

ei · ej = ek =⇒ ei+1 · ej+1 = ek+1 and e2i · e2j = e2k (mod 7).
(B.1)

Then, as we want to retain orthonormality (but not necessarily handedness), we can

try to find one O(8) element that changes the basis of 8s, and another O(8) element that
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changes the basis of 8c in order to precisely align the entries of the (8, 8, 8)-tensor γi
αβ̇

with

the (8, 8, 8)-tensor of the octonionic multiplication table. This objective provides 83 =

512 constraints, while we only have 2 · 28 continuous parameters (two eight-dimensional

rotations) to do the alignment. Hence, it is quite a nontrivial statement that the stated

objective can indeed be achieved. (It so turns out that there are discrete choices for this

problem that differ in the way how signs are distributed.) For this instructional example,

we are extra lazy and do not even try to employ a proper parametrization of O(8) elements

(such as e.g. via a Cayley transform M = (I − A)(I + A)−1). Rather, we design our

optimization problem such that we in principle allow arbitrary elements of GL(8), but

introduce a term in our objective function that punishes deviations from orthonormality.

The important point about the piece of code shown below is that, while this solves a

numerical optimization problem in 2 · 64 = 128 parameters both with very good perfor-

mance and accuracy, nowhere did the need arise for us to provide any code that computes

gradients. This is all handled by the TensorFlow framework.

import numpy

import t en so r f l ow as t f

def get gamma vsc ( ) :

”””Computes SO(8) gamma−matrices . ”””

# Conventions match Green , Schwarz , Witten ’ s .

e n t r i e s = (

”007+ 016− 025− 034+ 043− 052+ 061+ 070− ”

”101+ 110− 123− 132+ 145+ 154− 167− 176+ ”

”204+ 215− 226+ 237− 240− 251+ 262− 273+ ”

”302+ 313+ 320− 331− 346− 357− 364+ 375+ ”

”403+ 412− 421+ 430− 447+ 456− 465+ 474− ”

”505+ 514+ 527+ 536+ 541− 550− 563− 572− ”

”606+ 617+ 624− 635− 642+ 653+ 660− 671− ”

”700+ 711+ 722+ 733+ 744+ 755+ 766+ 777+” )

r e t = numpy . z e r o s ( [ 8 , 8 , 8 ] )

for i j k c in e n t r i e s . s p l i t ( ) :

i j k = tuple (map( int , i j k c [ : −1 ] ) )

r e t [ i j k ] = +1 i f i j k c [−1] == ’+’ else −1
return r e t

def g e t o c t on i on mu l t t ab l e ( ) :

”””Computes the oc ton ion ic mu l t i p l i c a t i o n t a b l e ”””

# Cf . diagram at : h t t p ://math . ucr . edu/home/baez / octonions /

r e t = numpy . z e r o s ( [ 8 , 8 , 8 ] )

f a n o l i n e s = ”124 156 137 235 267 346 457”

for n in range (1 , 8 ) :

r e t [ 0 , n , n ] = −1
r e t [ n , n , 0 ] = r e t [ n , 0 , n ] = 1

r e t [ 0 , 0 , 0 ] = 1

for c i j k in f a n o l i n e s . s p l i t ( ) :

i j k = map( int , c i j k )

for p , q , r in ( ( 0 , 1 , 2 ) , (1 , 2 , 0 ) , (2 , 0 , 1 ) ) :

# Note t ha t we have to ‘ go aga ins t the d i r e c t i on o f the arrows ’

# to make the correspondence work .

r e t [ i j k [ r ] , i j k [ p ] , i j k [ q ] ] = −1
r e t [ i j k [ r ] , i j k [ q ] , i j k [ p ] ] = +1

return r e t
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def f i nd t r an s f o rms ( ) :

with t f . Graph ( ) . a s d e f a u l t ( ) :

# Ensure r e p r o d u c i b i l i t y by seed ing random number genera tors .

t f . set random seed (0 )

t rans forms = t f . g e t v a r i a b l e ( ’ t rans forms ’ , shape=(2 , 8 , 8 ) ,

dtype=t f . f l o a t64 ,

t r a i n ab l e=True ,

i n i t i a l i z e r=t f . r andom no rma l i n i t i a l i z e r ( ) )

id8 = t f . constant (numpy . eye ( 8 ) , dtype=t f . f l o a t 6 4 )

gamma = t f . constant ( get gamma vsc ( ) , dtype=t f . f l o a t 6 4 )

o tab l e = t f . constant ( g e t o c t on i on mu l t t ab l e ( ) ,

dtype=t f . f l o a t 6 4 )

# Transform gamma matr ices step−by−step , s ince t f . einsum () does not

# do SQL− l i k e query p lanning op t imi za t i on .

rotated gamma = t f . einsum (

’vAb ,bB−>vAB ’ , t f . einsum ( ’ vab , aA−>vAb ’ , gamma, t rans forms [ 0 ] ) ,

t rans forms [ 1 ] )

de l ta mul t = rotated gamma − o tab l e

d e l t a o r t h o s = t f . einsum ( ’ ab , cb−>ac ’ ,

t rans forms [ 0 ] , t rans forms [ 0 ] ) − id8

d e l t a o r t h o c = t f . einsum ( ’ ab , cb−>ac ’ ,

t rans forms [ 1 ] , t rans forms [ 1 ] ) − id8

# This ’ l o s s ’ f unc t ion punishes d e v i a t i on s o f the ro ta t ed gamma matr ices

# from the oc ton ion ic mu l t i p l i c a t i o n tab l e , and a l s o d e v i a t i on s o f the

# spinor and cospinor trans format ion matr ices from or t ho gona l i t y .

l o s s = ( t f . nn . l 2 l o s s ( de l ta mul t ) +

t f . nn . l 2 l o s s ( d e l t a o r t h o s ) + t f . nn . l 2 l o s s ( d e l t a o r t h o c ) )

opt = t f . c on t r i b . opt . Sc ipyOpt im i z e r In t e r f a c e (

l o s s , opt ions=dict ( maxiter =1000))

with t f . S e s s i on ( ) as s e s s :

s e s s . run ( t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) )

opt . minimize ( s e s s i o n=s e s s )

return s e s s . run ( [ l o s s , t rans forms ] )

l o s s , t rans forms = f i nd t r an s f o rms ( )

print ( ’ Loss : %.6g , Transforms :\n%r \n ’ % (

l o s s , numpy . round( transforms , dec imals =5)))

## Prints :

# Loss : 2.19694e−11, Transforms :

# array ( [ [ [ 0 .5 , −0. , −0. , 0 .5 , 0 .5 , 0 . , 0 .5 , 0 . ] ,

# [−0.5 , 0 . , 0 . , 0 .5 , −0.5 , 0 . , 0 .5 , 0 . ] ,

# [−0. , −0.5 , 0 .5 , −0. , −0. , 0 .5 , 0 . , 0 . 5 ] ,

# [ 0 . , 0 .5 , −0.5 , −0. , −0. , 0 .5 , −0. , 0 . 5 ] ,

# [−0.5 , 0 . , −0. , −0.5 , 0 .5 , 0 . , 0 .5 , 0 . ] ,

# [ 0 .5 , −0. , 0 . , −0.5 , −0.5 , −0. , 0 .5 , −0. ] ,

# [ 0 . , −0.5 , −0.5 , 0 . , 0 . , −0.5 , −0. , 0 . 5 ] ,

# [−0. , 0 .5 , 0 .5 , 0 . , −0. , −0.5 , −0. , 0 . 5 ] ] ,

#

# [[−0. , 0 .5 , 0 .5 , 0 . , 0 . , −0.5 , 0 . , 0 . 5 ] ,

# [ 0 . , 0 .5 , 0 .5 , −0. , −0. , 0 .5 , 0 . , −0.5] ,

# [ 0 .5 , −0. , 0 . , 0 .5 , 0 .5 , 0 . , −0.5 , 0 . ] ,

# [ 0 .5 , 0 . , −0. , −0.5 , 0 .5 , 0 . , 0 .5 , −0. ] ,

# [−0. , −0.5 , 0 .5 , −0. , 0 . , −0.5 , −0. , −0.5] ,

# [−0. , −0.5 , 0 .5 , −0. , 0 . , 0 .5 , 0 . , 0 . 5 ] ,

# [ 0 .5 , 0 . , 0 . , 0 .5 , −0.5 , −0. , 0 .5 , −0. ] ,

# [ 0 .5 , −0. , −0. , −0.5 , −0.5 , −0. , −0.5 , −0. ] ] ] )
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C TensorFlow code for watershed analysis

Finding saddles in the stationarity condition (2.8) as well as their principal axes can in

principle be done symbolically, at the level of tensor equations (requiring substantial ef-

fort), or by manually performing the backpropagation code transformation, and then once

again on the backpropagated code (requiring substantial effort). The code below illustrates

how TensorFlow allows one to achieve this objective with minimal additional coding effort

(27 lines of code) if one already has code to compute the stationarity condition violation.

The code shown here sets up a TensorFlow session context (roughly: an association be-

tween a graph describing tensor arithmetic operations and hardware resources) and then

executes a sequence of independent minimization-searches as specified, serializing results

to the filesystem.

def do water shed descent ( s e e d s s c a l e s =[(0 , 0 . 1 ) ] ,

out=’ watershed {} . p i c k l e ’ ) :

graph = t f . Graph ( )

with graph . a s d e f a u l t ( ) :

t f s c a l a r e v a l u a t o r = s c a l a r s e c t o r . g e t t f s c a l a r e v a l u a t o r ( )

t i npu t = t f . p l a c eho ld e r ( t f . f l o a t64 , shape =[70 ] )

t v70 = t f . Var iab le (

i n i t i a l v a l u e=numpy . z e r o s ( [ 7 0 ] ) , t r a i n ab l e=True , dtype=t f . f l o a t 6 4 )

op a s s i gn i npu t = t f . a s s i gn ( t v70 , t i npu t )

s i n f o = t f s c a l a r e v a l u a t o r ( t f . c a s t ( t v70 , t f . complex128 ) )

t p o t e n t i a l = s i n f o . p o t e n t i a l

t s t a t i o n a r i t y = s i n f o . s t a t i o n a r i t y

t g r a d s t a t i o n a r i t y = t f . g r ad i en t s ( t s t a t i o n a r i t y , t v70 ) [ 0 ]

t l o s s = t f . t ensordot ( t g r a d s t a t i o n a r i t y , t g r a d s t a t i o n a r i t y , 1)

t s t a t i o n a r i t y h e s s i a n = t f . h e s s i an s ( [ t s t a t i o n a r i t y ] , [ t v70 ] ) [ 0 ]

opt imize r = t f . c on t r i b . opt . Sc ipyOpt im i z e r In t e r f a c e ( t l o s s )

with t f . S e s s i on ( ) as s e s s :

s e s s . run ( [ t f . g l o b a l v a r i a b l e s i n i t i a l i z e r ( ) ] )

for n , ( seed , s c a l e ) in enumerate ( s e e d s s c a l e s ) :

rng = numpy . random . RandomState ( seed=seed )

v70 = rng . normal ( s i z e =70, s c a l e=s c a l e )

s e s s . run ( [ op a s s i gn i npu t ] , f e e d d i c t={t i npu t : v70 })
opt imize r . minimize ( s e s s )

n i n f o = s e s s . run ( [ t p o t e n t i a l , t s t a t i o n a r i t y , t l o s s ,

t v70 , t s t a t i o n a r i t y h e s s i a n ] )

with open( out . format (n ) , ’w ’ ) as h :

p i c k l e . dump( n in fo , h )
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D Overview over the solutions

In this table, we list all known critical points of SO(8) supergravity ordered by negative

cosmological constant −V/g2. The table’s columns are:

N Number of the solution

S Tag of the solution, based on the truncated integer part of −V/g2 · 105.

N Number of unbroken supersymmetries. Empty for unstable vacua.

H The residual gauge symmetry Lie group H.

T Triality-invariance of the H ⊆ SO(8) embedding.

M The dimension of the H-invariant submanifold of the scalar manifold.

P Number of parameters of the solution.

D Degree of the cosmological constant’s minimal polynomial.

A Numerical accuracy.

C Citations, major articles that covered this solution.

The tag in the S-column uses the truncated, rather than rounded, value of the potential,

in alignment with earlier articles that use this naming scheme — which has become nec-

essary due to the large number of solutions without any unbroken gauge symmetry. The

N -column is empty for (BF-)unstable critical points, and shows the number of unbroken

supersymmetries for stable critical points. Supersymmetric solutions are automatically sta-

ble. The H-columns lists residual gauge symmetry (ignoring extra discrete factors), where

we make an effort here to be specific about the actual group. So, if a so(3) subalgebra is

embedded into so(8) in such a way that some particle state transforms as a spinor, we call

the gauge group “Spin(3)”, otherwise “SO(3)”. For SO(3) × SO(3) ≡ SO(4), we use the

name “SO(4)” if all particle states can be arranged into representations of SO(4) (which

would not hold e.g. for an isolated (3,1) representation), and SO(3) × SO(3) otherwise.

For U(1) factors, we indicate with a subscript the largest observed particle charge once the

generator has been re-scaled to the minimal length that makes all charges integral. So, for

example, the gauge group of S0880733 that is associated with the Lie algebra so(3)+so(3)

is “SO(4)”, while the gauge group of S1075828 is “Spin(3)×U(1)4”. The T -column indi-

cates what subgroup of the “triality” outer automorphism group S3 of so(8) the embedding

of H is invariant under. Here, “V SC” means full triality invariance, while “SC” means

invariance under a S ↔ C exchange, etc. The M,P,D-columns provide different rough

measures of the complexity of the solution. The M -column shows the dimension of the H-

invariant submanifold of the scalar manifold, if there is some residual gauge symmetry H.

If one wanted to find exact expressions for the location and properties of a solution without

resorting to inverse symbolic computation, one would want to coordinate-parametrize this

manifold M . A critical point of the restricted potential on M is then guaranteed to also be

a critical point on the whole scalar manifold [116]. The P -column lists the number of dif-

ferent numerical parameters used in this work to describe the solution. It is possible that,

in some cases, one can use a SO(8) rotation to find an alternative form with even fewer

parameters, so this value only gives an upper bound on how many coordinate-parameters

are necessary. The D-column shows the degree of the smallest polynomial with integer
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coefficients that could be found which has a zero at −V/g2 — if algebraic identification of

the cosmological constant was successful given the number of available digits. An entry a

indicates an a-th order polynomial, while an entry ab indicates an a-th order polynomial

in xb. The A-column shows the decimal logarithm of the residual value of the stationarity

condition |Qijkl|2. So, an entry of 100 means that |Qijkl|2 < 10−100 for the numerical

location data that have been made available alongside the preprint of this work. The p

column shows the page number on which the solution can be found, and the C-column

lists major articles in which the corresponding critical point is discussed. A “*” indicates

a new discovery.

Given the sheer number of almost 200 critical points, and observing that detailed data

on each of these typically fills more than half a page, the total amount of data is too large

to be included in full in a journal publication. Hence, the authors decided to make both

raw data and typeset summaries available as ancillary files to this article’s preprint on

arXiv.org. The URL for a typeset PDF document that describes the properties of critical

point Snnnnnnn is:

https://arxiv.org/src/1906.00207v4/anc/extrema/Snnnnnnn/physics.pdf

while the URL for raw position data is:

https://arxiv.org/src/1906.00207v4/anc/extrema/Snnnnnnn/location.py.txt

In online versions of this article, the overview table should have working clickable links

to the corresponding detailed physics summaries and high-accuracy scalar parameters.15.

For each solution, the detailed table shows the location in the form of two symmetric

traceless matrices, Mαβ and Mα̇β̇ , which have been rotated to maximize (but in some cases

perhaps not globally) the number of zero entries. The normalization of these matrices is

such that the e7 generator G in the fundamental 56-representation that is parameterized

by the matrices Mαβ ,Mα̇β̇ satisfies

trG ·G = 48 ·
(
MαβMαβ +Mα̇β̇Mα̇β̇

)
. (D.1)

In the literature, locations of critical points are typically given in φijkl four-form lan-

guage, e.g. (4.7) in [133] for the solution S1400000,

φijkl = artanh (2/
√

5)
((
δ1234ijkl + δ5678ijkl

)
+ i
(
δ1235ijkl − δ4678ijkl

))
. (D.2)

The dictionary to translate between φijkl and Mαβ , Mα̇β̇ reads:16

√
2 · φijkl = Mαβγ

ijkl
αβ + i ·Mα̇β̇γ

ijkl

α̇β̇
(D.3)

15An expanded version of this work with a consolidated table of detailed properties of critical points is

available as a pre-publication preprint of this work on arXiv.org at https://arxiv.org/abs/1906.00207v4
16For spin(8) with the obvious basis choices for representation spaces, there is no difference between upper

and lower indices.
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The detailed location data on arXiv.org allow checking all claims made here about

the existence of particular critical points to numerical machine precision with the code

that has been made available alongside [137]. For some critical points, the numerical data

provided are accurate to beyond 1000 digits, which should in some cases be sufficient to

obtain algebraic expressions for the 56-bein matrix entries via inverse symbolic computation

techniques, hence allowing automation(!) of the uplifting to 11 dimensions along the lines

of the construction presented in [100, 113]. Unfortunately, for about 40 critical points, the

authors were not able to obtain data that in accuracy go substantially beyond numerical

hardware (i.e. IEEE-754 double float) precision.

For the scalars φ, the tables list masses m2/m2
0[φ] = m2L2 relative to the AdS ra-

dius L2 = −3/V according to eq. (2.7) and (2.10). The “naive” gravitino masses m2/m2
0[ψ]

listed are the eigenvalues of 2 g2L2A1 ijA1
ik, so unbroken supersymmetry shows as a

mass-squared eigenvalue of +1. Likewise, fermion masses m2/m2
0[χ] are eigenvalues

of 2 g2L2 · 16A3 ijk lmnA3
ijk pqr.

The code that was written to automate gauge group representation assignment for the

particle spectra only processes gauge groups whose Lie algebra is of the form so(3)a+u(1)b,

which must hold for all new solutions, as all the solutions with symmetry at least su(3)

have been classified a long time ago [116], and there are no critical points with residual

symmetry su(3) 6⊇ s ⊆ so(5). So, data on the spectrum of these points were added by

hand, based on [118] and [30].

N S N H T M P D A C

1 S0600000 8 SO(8) V SC 0 0 1 ∞ [46][110]

2 S0668740 SO(7) V C 1 1 14 2399 [116]

3 S0698771 SO(7) V S 1 1 12 2400 [138]

4 S0719157 1 G2 V SC 2 2 14 2399 [116]

5 S0779422 2 SU(3)×U(1)6 − 4 2 12 2400 [116]

6 S0800000 SU(4) V SC 2 1 1 2400 [116]

7 S0847213 Spin(3)×U(1)2×U(1)2 − 8 3 2 1978 [125]

8 S0869596 SO(3)×U(1)4 V S 4 2 22 2398 [125]

9 S0880733 SO(4) V C 6 2 22 2398 [125]

10 S0983994 SO(3)×U(1)4 V C 4 3 14 2399 [125]

11 S0998708 U(1)4 V SC 14 9 2399 [108]

12 S1006758 U(1)2 V SC 26 10 257 [125]

13 S1039230 SO(4) V S 6 2 12 2398 [134]

14 S1039624 U(1)6 V C 20 6 54 227 [125]

15 S1043471 10 2399 [108]

16 S1046017 6 219 [125]

17 S1067475 U(1)2×U(1)4 V C 12 5 34 2398 [108]

18 S1068971 U(1)4×U(1)4 V S 18 7 52 2399 [125]

19 S1075828 Spin(3)×U(1)4 V S 10 5 12 256 [125]

20 S1165685 U(1)4×U(1)4 V S 18 1 2 2398 [108]

21 S1176725 4 44 2399 [125]

22 S1195898 SO(3) V SC 2 3 34 2398 [125]

23 S1200000 1 U(1)1×U(1)1 SC 14 2 1 2399 [108]

24 S1212986 U(1)4 V SC 14 6 257 [125]

25 S1271622 Spin(3) V S 20 3 3 2398 [125]

26 S1301601 U(1)4×U(1)4 V C 18 4 34 2397 [125]

27 S1360892 U(1)6×U(1)2 SC 18 5 32 238 [108]

28 S1362365 U(1)2 V SC 26 10 241 [125]

29 S1363782 18 230 [125]

30 S1366864 9 24 [125]
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https://arxiv.org/src/1906.00207v4/anc/extrema/S0600000/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0600000/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0668740/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0668740/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0698771/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0698771/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0719157/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0719157/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0779422/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0779422/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0800000/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0800000/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0847213/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0847213/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0869596/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0869596/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0880733/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0880733/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0983994/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0983994/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S0998708/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S0998708/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1006758/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1006758/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1039230/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1039230/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1039624/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1039624/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1043471/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1043471/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1046017/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1046017/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1067475/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1067475/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1068971/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1068971/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1075828/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1075828/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1165685/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1165685/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1176725/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1176725/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1195898/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1195898/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1200000/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1200000/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1212986/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1212986/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1271622/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1271622/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1301601/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1301601/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1360892/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1360892/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1362365/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1362365/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1363782/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1363782/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1366864/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1366864/location.py.txt
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N S N H T M P D A C

31 S1367611 13 38 [108]

32 S1379439 10 2398 [125]

33 S1384096 1 SO(3) V SC 10 6 34 522 ∗

34 S1384135 U(1)2 V SC 26 11 227 [125]

35 S1400000 0 SO(4) SC 4 1 1 2397 [110]

36 S1400056 18 149 [125]

37 S1402217 U(1)6 V C 20 6 54 245 [125]

38 S1424025 SO(3) V SC 10 6 232 [125]

39 S1441574 U(1)4 V C 36 11 148 [125]

40 S1442018 U(1)4 V C 36 12 228 [125]

41 S1443834 U(1)6 V S 20 10 23 [125]

42 S1464498 7 42 2398 [125]

43 S1465354 19 24 [125]

44 S1469693 U(1)2 V SC 26 6 12 2398 [125]

45 S1470986 8 2397 ∗

46 S1473607 8 74 2398 ∗

47 S1474271 11 2398 ∗

48 S1477609 6 228 ∗

49 S1497038 U(1)2 V SC 26 12 17 [108]

50 S1514242 8 226 ∗

51 S1571627 U(1)4 V S 36 5 112 2397 ∗

52 S1586253 15 237 ∗

53 S1588533 12 38 ∗

54 S1596185 11 216 ∗

55 S1600000 3 1 2398 ∗

56 S1603495 10 2398 ∗

57 S1609267 16 2397 ∗

58 S1611549 U(1)6 V S 20 6 2398 ∗

59 S1624005 13 596 ∗

60 S1624009 10 204 ∗

61 S1627388 13 2398 ∗

62 S1637792 11 17 ∗

63 S1637802 7 257 ∗

64 S1641445 18 24 [108]

65 S1650530 16 146 ∗

66 S1650772 14 256 ∗

67 S1652031 18 200 ∗

68 S1652212 8 2397 ∗

69 S1671973 U(1)4 V S 36 7 2398 ∗

70 S1691171 12 216 ∗

71 S1775878 10 26 ∗

72 S1775885 16 204 ∗

73 S1787646 13 26 [108]

74 S1800000 4 1 258 ∗

75 S1805269 9 26 [108]

76 S1810641 U(1)2 V SC 26 8 2396 ∗

77 S1880177 U(1)4 V C 36 12 146 ∗

78 S1889269 U(1)4 V C 36 10 44 220 ∗

79 S2006988 U(1)4 V SC 14 9 2397 ∗

80 S2040656 26 21 ∗

81 S2043647 23 22 ∗

82 S2043965 19 21 ∗

83 S2045402 U(1)4 V SC 14 9 2397 ∗

84 S2054312 17 257 ∗

85 S2054714 U(1)4 V SC 14 6 2397 ∗
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https://arxiv.org/src/1906.00207v4/anc/extrema/S1400056/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1400056/location.py.txt
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https://arxiv.org/src/1906.0207v4/anc/extrema/S1402217/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1424025/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1424025/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1441574/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1441574/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1442018/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1442018/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1443834/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1443834/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1464498/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1464498/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1465354/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1465354/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1469693/physics.pdf
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https://arxiv.org/src/1906.0207v4/anc/extrema/S1473607/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1474271/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1474271/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1477609/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1477609/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1497038/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1497038/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1514242/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1514242/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1571627/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1571627/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1586253/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1586253/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1588533/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1588533/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1596185/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1596185/location.py.txt
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https://arxiv.org/src/1906.0207v4/anc/extrema/S1600000/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1603495/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1603495/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1609267/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1609267/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1611549/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1611549/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1624005/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1624005/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1624009/physics.pdf
https://arxiv.org/src/1906.0207v4/anc/extrema/S1624009/location.py.txt
https://arxiv.org/src/1906.00207v4/anc/extrema/S1627388/physics.pdf
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86 S2074862 13 837 ∗

87 S2095412 15 2397 ∗

88 S2099077 U(1)2×U(1)4 V S 12 6 256 ∗

89 S2099419 16 195 ∗

90 S2099421 12 22 ∗

91 S2101265 13 21 ∗

92 S2118474 16 243 ∗

93 S2121742 13 235 ∗

94 S2126597 9 74 [108]

95 S2135328 26 224 ∗

96 S2135978 26 19 ∗

97 S2140848 9 24 [108]

98 S2144361 27 18 ∗

99 S2144749 27 18 ∗

100 S2145935 18 149 ∗

101 S2147655 18 222 ∗

102 S2153574 17 2397 ∗

103 S2154972 12 2397 ∗

104 S2160231 18 226 ∗

105 S2171187 13 236 ∗

106 S2178669 11 257 ∗

107 S2183495 18 234 ∗

108 S2206714 10 2396 ∗

109 S2215486 U(1)4 V SC 14 9 2397 ∗

110 S2240836 18 21 ∗

111 S2241557 11 2397 ∗

112 S2262631 13 2397 ∗

113 S2279257 U(1)1 SC 30 12 17 ∗

114 S2279859 U(1)1 SC 30 7 216 ∗

115 S2291945 U(1)6 V S 20 6 241 ∗

116 S2308861 18 153 ∗

117 S2309630 12 2397 ∗

118 S2335620 18 244 ∗

119 S2348985 12 28 ∗

120 S2389014 U(1)4 V S 36 15 24 ∗

121 S2389433 U(1)4 V S 36 9 2396 ∗

122 S2395245 13 233 ∗

123 S2411233 13 2396 ∗

124 S2416856 6 193 ∗

125 S2416940 9 226 ∗

126 S2420275 17 836 ∗

127 S2423138 13 2396 ∗

128 S2435197 U(1)4 V SC 14 10 2397 ∗

129 S2435907 11 207 ∗

130 S2440304 16 230 ∗

131 S2447241 18 226 ∗

132 S2457396 U(1)2 V SC 26 10 225 ∗

133 S2476056 26 17 ∗

134 S2482062 U(1)2 V SC 26 13 219 ∗

135 S2484339 26 18 ∗

136 S2488182 17 214 ∗

137 S2488241 26 203 ∗

138 S2497037 18 17 ∗

139 S2502436 18 19 ∗

140 S2503105 SO(3) V SC 2 3 34 2397 ∗
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141 S2503173 18 18 ∗

142 S2511744 U(1)4 V S 36 9 2397 ∗

143 S2512364 10 17 ∗

144 S2514936 18 223 [108]

145 S2519962 U(1)2×U(1)4 V S 12 6 238 ∗

146 S2522870 U(1)4 V SC 14 9 836 ∗

147 S2535465 U(1)4 V C 36 15 17 ∗

148 S2535919 17 218 ∗

149 S2547536 U(1)2×U(1)4 V S 12 6 256 ∗

150 S2550397 16 223 ∗

151 S2551136 14 23 ∗

152 S2566527 17 20 ∗

153 S2584003 13 245 ∗

154 S2595657 U(1)4 V C 36 12 2396 ∗

155 S2625940 13 245 ∗

156 S2644794 17 19 ∗

157 S2648510 27 20 ∗

158 S2650165 U(1)4 V SC 14 6 2396 ∗

159 S2652206 18 225 ∗

160 S2652377 26 16 ∗

161 S2653753 17 235 ∗

162 S2655334 U(1)2 V SC 26 14 76 ∗

163 S2655918 U(1)4 V SC 14 9 227 ∗

164 S2666807 13 225 ∗

165 S2697505 U(1)4 V S 36 11 218 ∗

166 S2702580 7 32 2396 ∗

167 S2705605 16 116 ∗

168 S2707528 U(1)4 V S 36 9 255 ∗

169 S2751936 U(1)6 V S 20 10 2396 ∗

170 S2803140 8 2396 ∗

171 S2849861 18 18 ∗

172 S2855585 U(1)4 V S 36 11 2396 ∗

173 S2874576 26 226 ∗

174 S2952191 U(1)6 V S 20 6 2396 ∗

175 S2980210 U(1)4 V S 36 15 75 ∗

176 S3108383 U(1)4 V S 36 11 2396 ∗

177 S3155402 18 230 ∗

178 S3166153 12 2396 ∗

179 S3254262 13 17 ∗

180 S3254576 15 220 ∗

181 S3254929 10 2396 ∗

182 S3305153 9 2395 ∗

183 S3498681 18 234 ∗

184 S3560884 13 241 ∗

185 S3640089 U(1)4 V S 36 11 233 ∗

186 S3777270 16 226 ∗

187 S3908381 18 234 ∗

188 S4009882 19 236 ∗

189 S4045562 18 232 ∗

190 S4145121 18 21 ∗

191 S4168086 9 42 227 ∗

192 S4599899 12 235 ∗
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