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1 Introduction

What is Physics Beyond the Standard Model? Well, we know it exists, which is a good
start. This follows from the fact that the Standard Model (SM) alone does not explain a
number of experimental observations. Dark matter and neutrino masses, for example. These
things exist, yet we don’t know what the dark matter is, or how neutrino masses originate.
There are other experimental observations which, while accommodated within the SM, are
nonetheless downright peculiar. Puzzles of this form include the Strong-CP problem, the
hierarchy problem, and the unexplained hierarchical patterns of quark and lepton masses.
These puzzles are not due to a contradiction with experiment, yet they are not simply
æsthetic. As we will see, they may be hints towards the deeper structural aspects of the SM.
The goal of a Beyond the Standard Model (BSM) researcher is thus very simple to state:
Find solutions to these puzzles and determine how to confirm or deny their existence with
experiment.

In these lectures I hope to frame these puzzles in a way that is accessible to anyone
familiar with the SM, and sketch solutions that are currently under investigation. There
are many excellent textbooks on topics such as Supersymmetry. I wish to avoid duplication
of material, thus I will try to focus on material that is not in textbooks, and provide the
relevant references to the literature instead. I will also intentionally introduce and explain as
much common jargon as I can. Jargon is necessary for efficient communication of complex
notions however it is sometimes tricky early to understand what is precisely implied by
certain words, so hopefully we can cover as many terms as possible.1

Finally: This is the first iteration of these notes, so typos and errors (hopefully forgivable)
are guaranteed. Please take this opportunity to point them out and chide me for them. We
will all benefit.

2 The Only Game in Town: EFT

To solve any of the above problems one must construct theoretical models. Now, if you
manage to construct the entire fundamental theory of everything, explaining all questions
from dark matter to the nature of quantum gravity, then maybe you don’t need to play
by the rules of EFT. The rest of us mere mortal souls must instead all play by the same
rulebook. This rulebook is called Effective Field Theory (EFT), and it is the only sensible
way to factorise the physics of different length scales into bite-size chunks.

Operators

The recipe is very simple. Take every field in your theory, construct local operators, and
put them in your Lagrangian. An operator is simply a function of the fields, and by local
I mean one in which the interaction is local in position space, but in practise this usually
means you don’t do something daft like taking the square root of a derivative. Everywhere
that there should be a coefficient of an operator that is dimensionful, just parameterise it

1Jargon is also, sadly, often used as a vehicle to conceal ones lack of understanding, but we’ll try to avoid
that.
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with the appropriate powers of Λ and some unknown coefficient, lets call it c, that may as
well be O(1) for all you know. The Lagrangian is the action for the field theory.

Symmetries

Now, if you are to have a symmetry at low energies (usually called the IR) you will probably
have to respect it at high energies (called the UV), thus we often impose rules on the types of
operators allowed, which is that they don’t break the symmetries we expect to be observed
in nature. That’s about the long and short of it. Lets take an example. If we call the
left-handed electron field EL and a left-handed quark field QL, then we cannot write a
four-fermion operator such as

L ⊃ c

Λ2
(ER · EL)(ER ·QL) (2.1)

where the dot implies the usual spinor contraction for the Weyl fermion. This operator
explicitly breaks the symmetry of QCD, as well as electromagnetism. Rather, we should
write something like

L ⊃ c

Λ2
(ER · EL)(QR ·QL) (2.2)

which does respect the symmetries. This is a perfectly acceptable operator, and is actually
realised in nature, where the constraints on the coefficient from BSM effects require Λ/

√
c &

10’s TeV. The mass dimension of a fermion in 4D is d = 3/2, thus this operator is at d = 6.
If you would like to see all dimension 6 operators in the SM then look here [1].

Relevance

Since any scattering amplitude will scale with energy like (E/Λ)n for any operator, those
with lower mass dimension are most relevant at low energies. In fact, we often refer to
operators with dimension d < 4 as relevant, those with d = 4 as marginal, and those with
d > 4 as irrelevant. In the latter case, not because they are uninteresting, but because they
are less important at low energies. Turning this on its head, we see that if we want to get
access to these operators we must either go to higher energies, to make the operator more
important in the scattering process, or measure processes with such a high precision that we
can observe the small deviations predicted by higher dimension operators for E � Λ.

Power Counting

One might make assumptions based on aesthetic arguments, or motivations between ideas
about what exists at higher energies, as to the coefficients of these operators, usually called
‘Wilson Coefficients’. Indeed, there is a very useful technique known as naive dimensional
analysis (NDA), that can be very useful to organise where additional factors of 4π, or gauge
couplings, might show up (see [2]). However one should always remember that, unless
observed experimentally measured, these are assumptions, however well-motivated they may
be.
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Figure 1: Generating higher dimension operators by integrating out fields.

The Cutoff

We normally refer to the common scale Λ as the cutoff. The reason for this is that as we
approach that energy the scattering amplitudes, proportional to (E/Λ)n, start to approach
unity. When this happens the perturbative series will not converge, since 1n = 1, and
operators of arbitrarily high dimension are contributing equally to the scattering amplitude.
When this occurs we must specify the new full theory of microscopic physics that occurs
at the scale Λ, where now this new physics will involve new fields (sometimes we say new
degrees of freedom, or new particles, all meaning the same thing). In other words, when
this happens we are using the wrong description: The physics at high energies can no longer
be factorised out and we must specify it. For the example of eq. (2.2), we may have a new
scalar particle that has generated this interaction, as in fig. 1, and we should now include
all of the effects of this particle in our calculations.

With all of this in mind, we know what it means to define an EFT. An EFT is entirely
defined by it’s field content and its symmetries, and to some extent the cutoff. No more and
no less. Once so defined, you can make choices as to what values the coefficients of operators
take, and calculate!

2.1 Spurions

The concept of spurions is extremely useful in BSM theories. The idea is the following:
Imagine your theory would respect some global symmetry, G, but for a single operator in
the theory which actually breaks this symmetry explicitly. Lets call the coefficient of this
operator c̃. Then we are safe to assume that above this scale there is only one parameter in
the theory that breaks the symmetry.

In a quantum field theory everything that can happen will happen, by which I mean that
if you go to high enough loop order then every physical observable will eventually feel the
effects of c̃. However, any effects associated with the breaking of the symmetry breaking will
always be accompanied by c̃. If we take the limit c̃ → 0 then a symmetry is restored. This
is tremendously useful.

Let us see how this works in practise. Consider a single complex scalar field and a Weyl
fermion, both with mass and interactions that we will describe later. The Lagrangian is

L = −
∫
d4x

[
|∂µφ|2 + iψ†/∂ψ −M2

φ|φ|2 +
1

2
Mψψ

2

]
+ ... , (2.3)

where the usual spinor contractions are implied. Now, there are only two parameters here,
but there are actually four non-trivial symmetries to consider here. Let us first take Mφ → 0.
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In this limit the scalar field recovers a complex constant shift symmetry φ → φ + c, where
c is any complex number. This means that, if any interactions of the scalar respect this
symmetry, such as derivative interactions with other fields, ∂µφOµ, where O is any local
operator involving other fields in the theory, then at no order in perturbation theory will the
mass of the scalar ever become larger than Mφ.

There is a similar story for the fermion, where in the limit Mψ → 0 we recover what is
called a chiral symmetry, ψ → eiθψ. So the same holds true here: If all other interactions
respect the chiral symmetry, then the fermion will never obtain corrections to its mass greater
than Mψ.

In both of these limits, if we ignore gravity then there is also a scale symmetry, wherein
the fields and coordinates are rescaled by factors such that the action remains the same.
This symmetry commonly shows up in particle physics models, however, scale invariance is
usually broken by quantum corrections, such as in the running of the QCD gauge coupling,
thus care should be taken in employing this symmetry in models with interactions.

The final symmetry arises when Mψ = Mφ. In this limit the scalar and fermion have the
same mass, and the symmetry recovered is actually Supersymmetry! This means that if all
other interactions respect the Supersymmetry, the scalar and fermion will always have the
same mass. We will return to Supersymmetry in due course.

The same arguments apply not only for things like mass terms, but actually for any
operator in the theory in which a symmetry is recovered when the coefficient of that operator
goes to zero. This is clearly an extremely powerful line of reasoning, and it leads us to
the concept of technical naturalness, discussed in details here [3]. The basic idea is that
if a parameter (spurion) in a theory breaks a particular symmetry, then the size of that
parameter will not receive any large corrections in perturbation theory, so it is technically
natural for it to be small.

2.2 Small is not fine-tuned.

The spurion approach makes clear that the question of whether or not parameters in a theory
are fine-tuned is very sharply defined: If a parameter in a theory is unstable against quantum
corrections, then keeping it smaller than those corrections requires fine-tuning. This does
not imply, however, that any small parameter is fine-tuned. Let us take the electron Yukawa
coupling. In natural units this is a very small number λE ∼ 511keV/174GeV ≈ 3 × 10−5,
such that when electroweak symmetry is broken the electron mass is as observed.

Written in terms of the left and right-handed fields the Yukawa interaction is

LY ukawa = λEHLE
c + h.c... . (2.4)

Now, this is the only parameter (spurion) in the theory that breaks the electron chiral
symmetry H → H,L→ eiθL,Ec → eiθEc. This means that at the quantum level it will not
receive any corrections that aren’t proportional to λE and if it starts small it stays small.
Now it is certainly a puzzle as to why the electron Yukawa is exponentially smaller than the
top-quark Yukawa. In fact, there is a notion, outlined by Dirac in [4] that such unexpectedly
large or small mass ratios are unnatural in the sense that we would not expect them to
necessarily arise from some fundamental theory in which all parameters are comparable.
However, the electron Yukawa is not fine-tuned, as it breaks a symmetry and it is thus
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technically natural for it to be small. If there were some other source of electron chiral
symmetry breaking in the Lagrangian which was much larger, then the electron Yukawa
would be considered fine-tuned, but that is not the case.

2.3 Masses Versus Scales

Another useful tool to aid the BSM theorist is to keep in mind the fundamental different
between masses and interaction scales. To appreciate the difference between masses and
scales it is useful to reinstate in the action the appropriate powers of ~, while working in
units with c = 1. This means that time and length have identical units, while we distinguish
between units of energy (E) and length (L). Let us consider a general 4D action involving
scalar (φ), fermion (ψ), and vector gauge fields (Aµ), normalised such that all kinetic terms
and commutation relations are canonical. Moreover, we express masses in units of inverse
length, so that all mass parameters in the Lagrangian are written in terms of m̃ = m/~.
In our basis, there are no explicit factors of ~ in the classical Lagrangian in position space.
With these assumptions, the dimensionality of the quantities of interest, including gauge
couplings g, Yukawa couplings y, and scalar quartic couplings λ, are

[~] = EL , [L] = EL−3 , [φ] = [Aµ] = E1/2L−1/2 , [ψ] = E1/2L−1 , (2.5)

[∂] = [m̃] = L−1 , [g] = [y] = E−1/2L−1/2 , [λ] = E−1L−1 . (2.6)

Canonical dimensions in natural units with ~ = 1 are recovered by identifying E = L−1.
Note that [g2] = [y2] = [λ], in agreement with the usual perturbative series. It is also

important to remark that loop effects do not modify the dimensionality counting. Indeed,
one can prove that, in this basis, each loop in momentum space carries one factor of ~. So
each loop is accompanied by factors such as ~g2/(4π)2, ~y2/(4π)2, or ~λ/(4π)2, which are
all dimensionless quantities in units of L and E, and thus do not alter the dimensionality of
the quantity under consideration.

Unlike the case of natural units, dimensional analysis shows that couplings, and not
only masses, are dimensionful quantities. Then, for our discussion, it is useful to introduce
convenient units of mass M̃ ≡ L−1 and coupling C ≡ E−1/2L−1/2.

Let us now add to the Lagrangian an effective operator of canonical dimension d of the
general form

1

Λd−4
∂nD ΦnB ψnF . (2.7)

Here nD is the number of derivatives, nB the number of boson fields (Φ = φ, Aµ), and nF
the number of fermion fields, with nD + nB + 3

2
nF = d. The dimensionful quantity Λ that

defines the strength of the effective interaction will be called scale. Its dimensionality is

[Λ] =
M̃

C
n−2
d−4

, (2.8)

where n = nB + nF is the total number of fields involved in the operator. This result
can be immediately understood by recalling that each field carries an inverse power of C
([φ] = [Aµ] = M̃C−1, [ψ] = M̃3/2C−1) and the Lagrangian dimensionality is [L] = M̃4C−2.
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Since the exponent of C in Eq.(2.8) is strictly positive, scales and masses are measured
in different units and are not commensurable quantities. A scale is the ratio between a mass
and a certain power of couplings. Equation (2.8) dictates the minimum number of couplings
required to define the corresponding scale. If the operator is generated at the loop level in the
fundamental theory, the number of couplings entering the scale Λ can be larger than Eq.(2.8)
prescribes. However, as previously discussed, these couplings are always accompanied by an
appropriate power of ~ and do not alter the conclusion from dimensional analysis: masses
and scales are incommensurable.

Not only have masses and scales different dimensionality, but they also carry different
physical meanings. A mass is associated with Em = m̃~, the energy at which new degrees of

freedom appear. A scale is associated with EΛ = Λ~
2d−n−6
2(d−4) , the energy at which the theory

becomes strongly coupled, if no new degrees of freedom intervene to modify the effective
description. Therefore, a scale carries information on the strength of the interaction, but
gives no information about the energy scale of new dynamics. The latter is given by the
product of a scale times couplings, i.e. by mass.

Let’s flesh out an example, that we may return to later. Take a complex scalar field φ
with an action invariant under the global U(1) transformation φ → eiθφ. We may choose
a Higgs-like potential for φ, such that it obtains a vacuum expectation value |〈φ〉| = f

√
2.

We may parameterise the two degrees of freedom in φ however we wish. One option is
φ = (f+φr+iφi)/

√
2, however another equally valid parameterisation is φ = (f+ρ)eia/f/

√
2.

In this parameterisation

L = |∂µφ|2 − λ(|φ|2 − f 2/2)2 (2.9)

=
1

2

(
1 +

ρ

f

)2

(∂µa)2 +
1

2
(∂µρ)2 − λ

4

(
(f + ρ)2 − f 2

)2
. (2.10)

We usually refer to ρ as the ‘radial mode’, which has mass m2
ρ = 2λf 2. The field a is massless,

and enjoys a shift symmetry a→ a+ f . Fields of this type are known as Nambu-Goldstone
bosons (much more on this later). At energies far below the mass of the radial mode we
may integrate it out, to determine the EFT that describes the interactions of the Goldstone
boson. Doing this we find an EFT given by

L1

2
(∂µa)2 +

1

Λ4
(∂µa)4 . (2.11)

where Λ4 = 2λf 4 = m2
ρf

2. Now, imagine we could scatter these Goldstone bosons off one
another. Doing so, we would measure the interaction scale Λ. We could surmise that this
effective description must break down at energies E ∼ Λ, since the interactions becomes
strongly coupled here (E/Λ ∼ 1). If we weren’t thinking carefully we may even be sloppy
enough to assume that this is the energy where the interaction is ‘UV-completed’. In other
words, we could think this energy is the mass scale at which the particles responsible for
the higher dimension interaction appear. However, this could be totally wrong! The new
particles show up at mρ, which is a factor (2λ)1/4 below Λ. If λ were very small, the theory
could be UV-completed orders of magnitude before you reach the interaction scale. The
moral of the story is that in an EFT one should always keep in mind that the coefficient of
an operator alone does not at all signify the mass scale of the responsible new particles, and
the easiest way to see this is to remember that masses and scales are not the same thing.
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Let us consider some more examples of the relation between mass, scale, and coupling
in familiar theories. The first example is the four-fermion interaction in the Fermi theory.
Equation (2.8) with n = 4 and d = 6 gives

[Λ] = [G
−1/2
F ] =

[MW ]

[g]
. (2.12)

So MW is a mass and G
−1/2
F a scale. This is consistent with the notion that the new degrees

of freedom in the electroweak theory occur at E ∼ MW and not at E ∼ G
−1/2
F . The latter

is the energy scale at which perturbative unitarity would break down, in the absence of the
weak gauge bosons. Note also that, since G

−1/2
F ∼ v, the Higgs vacuum expectation value has

the meaning of a scale, and not of a mass. Indeed, in the Higgs mechanism, physical masses
are always given by the product of v times a coupling constant. This result has a more
general validity, which goes beyond the Higgs mechanism. From Eq.(2.5) we see that the
vacuum expectation value of a scalar field has always the dimension of a scale [〈φ〉] = M̃/C.

Another example is the Weinberg operator ``HH/Λν generating neutrino Majorana
masses in the SM. In this case n = 4 and d = 5, and Eq.(2.8) gives

[Λν ] =
[MR]

[λ2
ν ]

, (2.13)

where MR is the right-handed neutrino mass and λν is the Yukawa coupling that participates
in the see-saw mechanism. Since the physical neutrino mass is mν = v2/Λν = λ2

νv
2/MR, we

immediately see that the powers of couplings correctly match to give mν the dimension of
mass. Thus the UV-completion of the Weinberg operator may enter at energies far below
Λν if there is a small coupling in the underlying theory. This is the reason we could have
right-handed neutrinos as low as a few keV, if one is happy to tolerate the minute coupling
required.

Finally, let us consider the graviton coupling in linearised general relativity. With n = 3
and d = 5, Eq.(2.8) gives

[MP ] =
[Ms]

[gs]
, (2.14)

where we could, for example, interpret Ms and gs as the string mass and string coupling,
respectively. From this perspective it is evident that MP is a scale and not a mass. Therefore,
without any specific assumptions on the underlying couplings, we cannot conclude that the
new degrees of freedom of quantum gravity must appear in the proximity of MP !

Summary

This concludes our micro-tour of useful BSM Theory-widgets. While it took some time to
cover these aspects, they provide a crucial compass for navigating the landscape of BSM
theories. Before tackling the main subjects of these lectures, let me first mention an area
that is central in BSM theory, but I will not have time to cover.
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3 The Hierarchy Problem

Lets go back to life below 1 GeV. Working below this energy scale we observe that there are
three pion degrees of freedom, packaged into a neutral pseudoscalar field π0 and a charged
field π± = π1 ± iπ2, with masses m0 = 135 MeV and m± = 140 MeV. Clearly they are
very close in mass, so one might assume there is some symmetry that enforces their mass to
be equal. In fact, it is a good idea to think of these pions to be packaged into the adjoint
representation of SU(2), as Π = e

∑
i πiσi/fπ , where the latter are simply the Pauli matrices,

and an SU(2) transformation takes Π→ UΠU , where U is a unitary 2× 2 matrix.
Now we may trivially write their mass in an explicitly symmetry-invariant manner

LMass =
1

2
m2
πf

2
πTrΠ→ 1

2
m2
π(π2

0 + π2
1 + π2

2) + ... =
1

2
m2
ππ

2
0 +m2

ππ
+π− + ... . (3.15)

Lets do a spurion analysis. The parameter mπ is the only spurion that breaks a shift
symmetry acting on the pions, thus if we think of this as an EFT then perturbative effects
will not generate large corrections to their mass. Furthermore, this parameter respects the
SU(2) symmetry, thus all quantum corrections will respect the symmetry and the pions will
continue to have the same mass.

So far so good. We have a pretty decent theory for the pions. However, there is an
elephant in the room. The charged pions interact with the photon through the kinetic terms

LKin =
1

2
(∂µπ0)2 + |(∂mu+ ieAµ)π+|2 . (3.16)

This interaction not only breaks the SU(2) symmetry, since it only affects the charged pions,
but it also breaks their shift symmetry! Although it may look innocuous, this is not some
minor modification of the theory. In fact, it completely destablises the entire setup. Even
without performing any calculations we know we now have a spurion parameter e that breaks
these symmetries, thus if we consider this as an effective field theory, which we should, then
there is absolutely nothing to forbid corrections arising at the quantum level that scale as

δLMass ∼
e2

(4π)2
Λ2π+π− , (3.17)

where the 4π factor is typical for a quantum correction. Now we have a hierarchy problem,
since if Λ & 750 MeV then we would have a huge puzzle, as these corrections would be greater
than the observed mass splitting. How can we address this puzzle? The most obvious answer
is that it must be the case that Λ . 750 MeV. In other words there must be new fields and
interactions that become relevant at a scale of E ∼ 750 MeV that will somehow tame these
corrections. It turns out that nature did indeed choose this route, and in fact the ρ-meson
shows up, alongside all the rest of the fields associated with QCD, and then eventually at
higher energies the quarks and gluons themselves. All of this physics at the cutoff and above
then explains why the pions mass splitting is what it is (see [24]). The actual correction is

m2
π± −m2

π0 ≈ 3e2

(4π)2

m2
ρm

2
a1

m2
ρ +m2

a1

log

(
m2
a1

m2
ρ

)
(3.18)

where ρ and a1 are the lightest vector and axial vector resonances. So this hierarchy problem
is resolved very clearly in QCD. The quadratic correction from electromagnetism very much
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exists and is calculable. New composite resonances kick in to tame these quadratic correc-
tions, and soon after that, above the QCD scale, the pion itself is no longer a physical state
as it is a composite made up of fermions. Fermions do not receive quadratic corrections to
their mass, so we can understand why the pion mass splitting is not sensitive to physics at,
for example, the Planck scale!

Imagine, however, that the expected new physics had not shown up at E ∼ 750 MeV.
What boat would we be then? Well, we would have a huge puzzle and we would have to
try and understand what is going on. We could simply add an additional parameter to our
action

δLTune ∼ δ2
mπ

+π− , (3.19)

and then fine-tune this against the other corrections to keep the sum small, however this
would seem very ad. hoc. However, nature did not choose this route. Instead, nature
chose for the mass splitting to be natural (= not fine-tuned). In essence, the requirement of
naturalness is satisfied precisely as we would expect from taking the measured mass splitting
and turning it around to predict new fields at some energy scale!

Nowadays with the Higgs boson we are in a similar boat, except we are just working
at higher energies. We have a scalar field, the Higgs. If the Lagrangian were simply the
kinetic terms and its mass, then we would have no problem at all, because the mass would
be the only parameter that breaks a shift symmetry for the Higgs, hence it would be stable
against quantum corrections. However, we also have the gauge interactions that break any
shift symmetry, just like the pions, but also more importantly the Yukawa interactions

LY ukawa = λHQU c + h.c.... . (3.20)

These interactions also break the shift symmetry, where the top Yukawa is the most signif-
icant breaking term. We may thus pursue exactly the same reasoning as for the pions. At
the quantum level there should arise corrections to the Higgs mass that scale as

δLMass ∼ 6
λ2
t

(4π)2
Λ2|H|2 . (3.21)

In natural units λt ≈ 1, thus for these mass-squared corrections to remain below the EW
scale we require Λ . 500 GeV. Just as for the pions, unless some new physics kicks in around
this scale we have an issue, which is that if the cutoff of the SM exceeds 500 GeV, then there
must be some sort of fine-tuning taking place.

So, we see that the hierarchy problem is not some wishy-washy notion, but is in fact very
crisp and familiar. For the pions the reasoning of EFT worked beautifully, so what is going
on with the Higgs? This question has pestered theorists for decades. In fact, a significant
portion of all BSM theories so far proposed are either concerned with the hierarchy problem,
or in some way framed within the context of a solution. I will now quickly sketch some of the
more vague ideas that people are thinking about these days, before delving, in much more
detail, into three paradigms for solving the hierarchy problem:

• Global symmetries

• Spacetimes symmetries

• Dynamics

This material will form the rest of these lectures.
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3.1 Scale-Invariance

The symmetries we have encountered that relate to particle masses are shift symmetries
(scalars), chiral symmetries (fermions), scale symmetries and Supersymmetry. Let us con-
sider the scale symmetry for the pion example discussed above. If one studies the charged
pion interaction with the photon

LKin =
1

2
(∂µπ0)2 + |(∂µ + ieAµ)π+|2 . (3.22)

we see that the action respects a symmetry xµ → αxµ, Aµ → α−1Aµ, π± → α−1π±. This
means that while the pion-photon interaction does break the pion shift symmetry, it also
respects classical scale invariance. This would then seem to imply that it alone cannot
generate a mass term for the pion at the quantum level since this would break the scale
symmetry. Indeed, this is true, since e carries no mass dimension. One may be tempted to
conclude then that no quantum corrections to the charged pion mass can arise. However,
this is clearly not true, both empirically and theoretically. The reason is that this argument
only works if there are no other dimensionful parameters in the theory. However, in the SM
there is the cutoff Λ ∼ GeV above the pion mass scale, and in combination with the coupling
e this generates the observed mass splitting.

Thus we see that having classical scale invariance cannot keep a scalar light if there are
other high energy scales in the theory. This means that one cannot simply state that in the
SM the Higgs interactions respect scale invariance, thus do not actually generate a hierarchy
problem. This reasoning can only work if there are no other large dimensionful parameters
in the entire theory of everything! It is a tall order indeed to find a theory in which this
logic can be used to evade the hierarchy problem. Nonetheless, there are serious efforts to
achieve precisely this goal (see e.g. [25]). The challenge is formidable, making this a very
interesting problem. Note that while gravity itself may not generate a Higgs mass correction
δm2 ∝M2

P , since this is dimensionally forbidden, in combination with SM gauge or Yukawa
couplings, there is no symmetry forbidding terms such as δm2 ∝ g2M2

P .

3.2 Breaking the Wilsonian Picture

The way in which we view the hierarchy problem is inherently Wilsonian. When we are
talking about EFTs in high energy physics we often refer to the picture as being ‘Wilsonian’,
because it was Ken Wilson who really put the entire EFT structure on a firm footing in
quantum field theories, particularly including quantum corrections [26].2 This Wilsonian
picture of quantum field theories is, of course, built upon the foundations of quantum field
theory. Thus, if we shake the foundations, perhaps the nature of the hierarchy problem will
change entirely, or even go away.

Quantum field theory has two properties fundamentally built in: Unitarity and causality.
Unitarity is essentially the requirement that the sum over probabilities of all possible out-
comes must equal unity. Causality is the requirement that an effect can not occur before its
cause. This can occur, for example, if there are closed timelike curves, violations of the null

2Ken Wilson was a truly remarkable human. Not only did he run a mile in less than four minutes, but
he also initiated the field of lattice quantum field theory. See [27] for more on his life in physics.
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energy condition, tachyons, ghosts, or violations of the Lorentz symmetry at high energies,
and, importantly, a Hamiltonian with energy bounded from below. Now, if we were to mess
with these ingredients then the Wilsonian picture can break down. For example, if causality
is violated then just as there may be correlations between space-like separated events, one
might hope to have correlations, or cancellations, between physics in the far UV and the IR,
since spacetime invariants are related to energy-momentum invariants. If this were the case,
perhaps we could understand the hierarchy problem as being solved by such a correlation.

One might naively expect something like a causality-violating theory to look very exotic,
however one can write down rather sane-looking Lorentz-invariant field theories which, upon
closer inspection, reveal themselves to violate causality. One particularly simple example for
a massless scalar field was exposed in [28]

L =
1

2
∂µφ∂

µφ− 1

Λ4
(∂µφ∂

µφ)2 . (3.23)

the negative sign in the second term is in fact the cause of the acausality, and allows for
superluminal propagation. Thus this theory is not actually an EFT in the Wilsonian sense,
at all, although it sure looks like it at first glance! Perhaps then something similar could be
true of the Standard Model, where it is not actually an EFT, so the hierarchy problem, at
least as we understand it, does not even exist.

With regards to the hierarchy problem, this type of approach has a long history. The
best-known example is the Lee-Wick class of theories, in which the hierarchy problem can
be resolved through the presence of higher derivative operators that, upon closer inspection,
can be understood as arising due to heavy ghost-like auxiliary fields. These extra fields lead
to SM propagators that behave as

∇(p2) ∼ 1

p2 −m2
− 1

p2 −M2
, (3.24)

which at high energies cancel, just like in Pauli-Villars regularisation, whereas at energies
E �M , look just like the usual SM propagators. As a result these theories cancel quadratic
UV-divergences as hoped, and the price paid for outflanking Wilsonian logic is a violation of
causality by the propagators with extra ‘wrong-sign’ residues. However, this is only apparent
at microscopic scales.

While any theory that evades the hierarchy problem through causality violation at high
energies is, presumably, likely to look like a variation of the Lee-Wick theories in some respect
or another, this approach has not really been fully in the spotlight as yet, and thus there may
be interesting alternatives based on this logic that may be very phenomenologically unique!
We will not go into this further here, but it is worth watching this space.

3.3 Just input parameters.

A more trivial possibility is if the Higgs mass is not predicted in any way by the true
fundamental theory. In this case it simply becomes an input parameter and it does not
make sense to question its value. This is a possibility, however it would mean admitting
defeat, and would essentially require that the reductionist paradigm has terminated, since
this would mean that the Higgs mass cannot be explained. Thus, if one wishes the hierarchy
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problem away with this argument, the consequences for fundamental science must also be
embraced. I mention this possibility here just for the sake of being comprehensive. Let us
now turn to some more concrete and well known scenarios.

3.4 Pseudo-Goldstone Higgs

When discussing how a scalar mass might be kept small I have frequently referred to the
scalar enjoying a shift symmetry. There is in fact a natural setting in which such symmetries
arise, and may even be generalised beyond to non-Abelian shift symmetries that include
non-linear interactions. It is a deep and very beautiful theorem, proven by Jeffrey Goldstone
and others [15, 16], that when an exact global symmetry is spontaneously broken this gives
rise to massless scalar bosons. More specifically, if a global symmetry G is spontaneously
broken to a smaller symmetry H then the theory will contain massless Nambu-Goldstone
bosons living in the coset space, G/H.

Now, calling it a broken symmetry is actually a bit of a misnomer, because the entire
symmetry G, is actually always there, however in the Lagrangian we will see the remaining
symmetry H very explicitly as a linearly realised symmetry, with fields transforming in the
usual way, whereas the symmetry for the other generators of G, described by generators
living in G/H, will actually be less apparent, and we only see it by its ‘non-linear’ action on
the Goldstone bosons, which to linear order will correspond to the shift symmetry we desire.

If the global symmetry is also explicitly broken then the fields are not true Goldstone
bosons, but if this explicit breaking is small then they may still be much lighter than the
other scales in the theory.

With this in mind, we can see why the pions were light. In the UV theory, which is QCD,
the up and down quark masses are much smaller than the strong coupling scale, and these
are the only parameters that explicitly break an SU(2)A chiral symmetry, which acts as the
chiral symmetry discussed for the electron case did, but as a non-Abelian transformation
acting on the up and down quarks. If we assume these mass parameters are the same, then
the approximate action is

S = −
∫
d4x

[
LKin +M(q†L · qR + h.c)

]
. (3.25)

where M � Λ and the quarks are in doublets. This action respects an SU(2)V vector flavour
symmetry qL → UqL, qR → UqR, however in the limit M → 0 the symmetry is doubled to
two independent symmetries qL → ULqL, qR → URqR. This means that the mass parameter
explicitly breaks an SU(2)A axial global symmetry. When the quarks condense due to QCD
〈q†L · qR〉 ∝ Λ3

QCD the axial symmetry is spontaneously broken SU(2)A → 0, hence we get
(22 − 1) Goldstone bosons. These Goldstone bosons are the three pion degrees of freedom
we have been discussing all along! When the quark masses are turned on the symmetry is
explicitly broken, thus the pions become massive, however they can be naturally lighter than
the cutoff as the quark mass is the only parameter that breaks the shift symmetry.

So the obvious questions is: Could the Higgs be a Goldstone boson and even perhaps
composite just like the pions? This has been an extremely active area of investigation and
the answer is yes, the Higgs could be just like the pion and, just as the charged pions have
gauge interactions that break their shift symmetry, so too can a pseudo-Goldstone Higgs
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boson. The top quark interactions which explicitly break the global symmetry, and hence
the shift symmetry, are very large however, so some work is required to have them not lead
to very large Higgs mass corrections.

Let’s see how this goes. Since the Higgs is not massless it is not really a Goldstone, but a
pseudo-Goldstone boson, just like the pions, thus I will refer to models of this class as pNGB
Higgs models, (pseudo-Nambu-Goldstone boson Higgs). The main classes of models of this
class are composite Higgs models (just like pions), Little Higgs models (similar technology,
but with machinery that can protect the Higgs mass to higher loop orders), and the recently
popular Twin Higgs models. In the next section I will sketch the main ideas common to
composite and Little Higgs models. However, if you wish to know more the lectures by
Contino [29] not only beautifully explain the field theory behind composite Higgs models,
but also present the types of models more commonly considered for vanilla composite Higgs
scenarios. The review by Schmaltz and Tucker-Smith on the Little Higgs models is a superb
starting point for these models [30].

pNGB Higgs

The basic recipe is the following. Let us take some symmetry G with a gauged subgroup
G̃, spontaneously broken to H with a gauged subgroup H̃. Now, we have have NG =
dim(G)−dim(H) Goldstone bosons, of which Ng = dim(G̃)−dim(H̃) are eaten by the gauge
bosons, leaving N = NG −Ng massless scalars at tree-level.

Thus we see that in order to fit a Higgs doublet into this concoction we must have at
least N ≥ 4 and H̃ ⊃ SU(2) × U(1). A great deal of effort has gone into enumerating
the possibilities, but let us study the absolute simplest one. This model has G = SU(3),
H = H̃ = SU(2), thus the number of Goldstone bosons is N = 8− 3 = 5. This model in fact
does not respect custodial symmetry, which means that the dangerous operator

OT =
1

Λ2
(H†DµH)2 (3.26)

that modifies the SM prediction for the W to Z-boson mass ratio can be generated by the
physics at the UV, so this model is actually very much disfavoured by the precision LEP
measurements. Nonetheless, this model is so simple that it serves well as a straw man for
pNGB scenarios, so we will study it here.

The low energy dynamics of the pNGBs are described in full generality by the CCWZ
construction [31,32], that I encourage you to read, however for these lectures it suffices that
we may capture the relevant operators by considering what is generally known as a non-linear
sigma model, with the field parameterisation

Σ = eiΠ/fΣ0, Π = πaT a, (3.27)

where πa are the pNGBs, T a are the broken generators of G, and 〈Σ〉 = |Σ0| = f . The global
symmetry breaking is induced by a scalar field, Σ, transforming as a 3 under SU(3), which
acquires a vacuum expectation value Σ0 = (0, 0, f). The pNGBs can thus be parameterized
by the non-linear sigma field as in Eq. (3.27), with

Π = πaT a =




0 0 h1

0 0 h2

h†1 h†2 0


+ . . . , (3.28)
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with T a the broken generators of SU(3)W and we have not included the additional singlet
pNGB corresponding to the diagonal generator. We may write the sigma field explicitly as

Σ =




ih1
sin(|h|/f)

|h|/f
ih2

sin(|h|/f)

|h|/f
f cos(|h|/f)



, (3.29)

where |h| ≡
√
h†h.

Gauge Interactions

The gauge interactions can be added in the usual way. If we wish, we can add them in an
SU(3)-invariant manner, with the covariant derivative

DµΣ , Dµ = ∂µ + ig
∑

a

W a
µλ

a , (3.30)

where λa are the SU(3) generators. Then we simply set all but the SU(2) gauge fields to
zero. Note that after electroweak symmetry breaking the interaction strength of the physical
Higgs boson with the SM gauge fields is suppressed by a factor

sin(v/f)

v/f
≈ 1− 1

6

(
v2

f 2

)2

, (3.31)

thus we can test a pNGB scenario like this by looking for modified Higgs interactions!
Gauging a subgroup of the full global symmetry is an explicit breaking of the global

symmetry, thus the pNGB Higgs mass is not protected against quadratic corrections in the
gauge sector. Indeed, in analogy with the pion mass corrections from before, at one loop
gauge interactions will generate a Higgs mass-squared proportional to

δm2
h ∼

g2

16π2
Λ2 (3.32)

where Λ is the UV cutoff. In a pNGB model where this is the full story then one must follow
calculations such as for the pion mass splitting, which include a priori unknown form factors,
in order to estimate the correct magnitude of the correction. Note that in order for these
corrections not to be too large one requires that the cutoff is not too far away, and thus the
full-blown dynamics of the composite sector, including heavy vector mesons, should/could
be accessible at the LHC.

We may also employ additional tricks to suppress these corrections. Imagine we didn’t
switch off the additional gauge bosons. Then we would have the full SU(3) symmetry,
however we wouldn’t have any leftover Goldstone bosons to play the role of the Higgs doublet.
Then let us instead take two separate Σ fields, each with their own SU(3) global symmetry,
but we gauge the diagonal combination of these symmetries, such that both fields are charged
under the SU(3) gauge symmetry. When both fields get a vev we get two sets of SU(3)/SU(2)
Goldstone bosons. One set is eaten, but the other set remains light. Since the original theory
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was written in a fully SU(3)-invariant manner, no quadratic divergences arise. At worst, at
one loop the gauge interactions will induce dangerous interactions such as (Σ1 · Σ2)2, but
this is suppressed by a loop factor, such that the resulting correction to the Higgs mass is

δm2 ∼ g4

16π2
log

(
Λ2

µ2

)
f 2 (3.33)

which is significantly smaller than the correction in the simplest model! This is the essence
of the Little-Higgs trick for the gauge sector, and it can be extended to a greater number of
symmetries to further suppress these corrections.

Top Quark Interactions

We must also add the top quark Yukawa. The simplest way to do this is to work in analogy
with the gauge sector. With the gauge sector we start with a full SU(3) gauge multiplet,
and set some fields to zero, which explicitly breaks the symmetry. Here we may do the
same, by introducing the incomplete SU(3) quark multiplet Q = (t, b, 0), alongside the usual
right-handed top tR. Then the Yukawa interaction can be written in an SU(3)-invariant
manner

Lλ = λtQ · ΣtR (3.34)

Of course, just as with the gauge sector, at one loop a quadratically divergent Higgs mass
correction will be generated

δm2 ∼ 3λ2
t

16π2
Λ2 . (3.35)

One may wish to simply tolerate this, and thus place strong limits on how large Λ can be
for the solution to the hierarchy problem to really hold. Other options include adding ‘top
partner fields’. For composite Higgs scenarios there are numerous possibilities, thus I refer
the interested reader to [33] for an overview. Let me just sketch a basic example showing
how these extra fields may cancel quadratic divergences.

Let us really make the interaction SU(3)-invariant by putting the missing field back in
Q = (t, b, T ), and also add a little bit of explicit breaking of SU(3) by coupling T to a
conjugate fermion to give it a Dirac mass MT � Λ. Thus we have

Lλ = λtQ · ΣtR +MTT
cT , (3.36)

where now the SM right-handed top quark will in general be a linear combination of tR
and Tc. At high energies MT is just a small perturbation, and the Yukawa is fully SU(3)
symmetric, thus based on symmetry reasons alone the largest quadratic correction we can
generate for the Higgs mass can at most be of the order

δm2 ∼ 3λ2
t

16π2
M2

T . (3.37)

If MT � Λ then we have tamed, to some degree, the quadratic corrections to the Higgs
from the top sector. One can show that this setup leads to a diagrammatic cancellation of
the form shown in fig. 2. However, we now have an additional coloured fermion that we can
search for at the LHC.
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Figure 2: The cancellation between quadratic divergences from the top quark loop and
fermionic top-partner loops.

Summary

This concludes a summary of the basic features of pNGB Higgs models. The details are
much more involved than I have sketched here, however these basic building blocks should
provide enough coverage to delve into the literature!

Twin Higgs

At its heart the Twin Higgs [34] is a pNGB Higgs model. One begins with a scalar multiplet
H transforming as a fundamental under a global SU(4) symmetry. The renormalizable
potential for this theory is

V = −m2|H|2 +
λ

2
|H|4 (3.38)

where we have intentionally written a negative mass-squared. In the vacuum the global
symmetry breaking pattern is SU(4)→ SU(3), thus irrespective of the magnitude of m there
will exist 7 massless Goldstone bosons. It is important to keep in mind that m could be very
large and in a theory with new physics scales, m2 will contain all of the perturbative divergent
contributions. For example, if there are new states of mass Λ we expect contributions
m2 ∼ loop × Λ2. This does not introduce additional quadratic divergences to the mass of
the Goldstone bosons since these contributions are SU(4) symmetric and thus the Goldstone
boson masses are still protected by Goldstone’s theorem.

Let us break up H into a representation of SU(2)A × SU(2)B ⊂ SU(4) as

H =

(
HA

HB

)
. (3.39)

We may rewrite eq. (3.38) as

V = −m2
(
|HA|2 + |HB|2

)
+
λ

2

(
|HA|2 + |HB|2

)2
, (3.40)

which is precisely the same as eq. (3.38), but written in a different manner. We may also
write this as

V =
λ

2

(
|HA|2 + |HB|2 − f 2

)2
. (3.41)
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Gauge Interactions

We now augment the theory by gauging the two SU(2)A×SU(2)B subgroups. If the vacuum
expectation value for H lies completely in the HB field then the three Goldstone bosons
from HB will be eaten by the SU(2)B gauge bosons, to become their massive longitudinal
components. The four Goldstone bosons from HA will remain uneaten because the off-
diagonal gauge bosons of SU(4) which would have eaten these degrees of freedom were
explicitly removed from the theory when we chose not to gauge the full SU(4) symmetry.
Thus we have four light scalars charged under the unbroken SU(2)A gauge symmetry. It is
apparent that if SU(2)A could be identified with the SM weak gauge group, and if HA could
be identified with the SM Higgs doublet, then we have a candidate solution of the hierarchy
problem! However there are some further complications which must first be overcome.

The first point to note is that by coupling the scalars to gauge bosons we have introduced
a new source of quadratic divergences. Regularising the theory with a cutoff Λ we generate
terms such as

V ∼ g2
A

16π2
Λ2
a|HA|2 +

g2
B

16π2
Λ2
a|HB|2 , (3.42)

where as yet there is no reason to believe the effective cutoff is the same for each field.
However, if we impose an exchange symmetry on the entire theory A ↔ B then gA = gB,
and assume the UV physics respects this exchange symmetry, such that Λa = Λb, then the
contributions in eq. (3.42) are equal. Furthermore, because they are equal they respect
the SU(4) symmetry, thus they do not actually introduce any new quadratically divergent
contributions to the Goldstone boson masses. Hence these dangerous contributions have
been ameliorated by a combination of Goldstone’s theorem and the fact that an exchange
symmetry accidentally enforces an SU(4)-invariant structure on the quadratic part of the
action. This is worth reemphasising: quadratic divergences have not been removed from
the theory, but the sensitivity of the Goldstone boson masses to those divergences has been
removed by Goldstone’s theorem.

Unfortunately at the level of the quartic couplings the picture is not as clean. The scalar
quartic couplings will run logarithmically due to the gauge interactions. This running must
only respect the exchange symmetry and the SU(2)A×SU(2)B symmetry, but not necessarily
the full SU(4) symmetry. In practice, even if we enforce an SU(4) symmetric scalar potential
in eq. (3.41) at a scale Λ, at the lower scale of symmetry breaking m we expect additional
contributions to the effective potential

VBR ∼
g4
A

16π2
log

(
m

Λa

)
|HA|4 +

g4
B

16π2
log

(
m

Λb

)
|HB|4 . (3.43)

Even when we impose the exchange symmetry, gA = gB, Λa = Λb, these terms explicitly
break the SU(4) symmetry, thus they will in general lead to a non-zero mass-squared for the
now pseudo-Goldstone bosons

m2
PNG ∝

g4
A

16π2
m2 log

(m
Λ

)
. (3.44)

This tells us that in this theory we may only hope to have a loop factor in the hierarchy

m2
h ∼

g4A
16π2m

2, and, as m is quadratically sensitive to the cutoff, a loop factor in the hierarchy
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m2 ∼ g2A
16π2 Λ2. In the end of the day with this mechanism we expect the cutoff scale of the full

theory to be an electroweak loop factor above the weak scale, demonstrating that the Twin
Higgs can only be a solution to the little hierarchy problem and to solve the full hierarchy
problem this theory must be UV-completed.

A final issue is that the theory presented above respects the exchange symmetry A↔ B.
This implies that the vacuum will also respect this symmetry, with vA = vB. Amongst other
things, this predicts that the SM Higgs boson would be a perfect admixture of HA and HB

and would couple to the SM gauge bosons with a suppression factor cos θAB = 1/
√

2. Clearly
this is at odds with observations. To resolve this issue we can, for example, introduce a small
soft symmetry breaking term

VSB = −m2
B|HB|2 . (3.45)

This term explicitly breaks the global symmetry and even the exchange symmetry. It is im-
portant to note that since mB breaks the exchange symmetry it may be small in a technically
natural manner. Even though the Goldstone bosons have obtained mass from this operator,
this mass is insensitive to the cutoff and can be naturally small: mGB � Λ, where Λ can be
interpreted as the cutoff of the theory. Importantly, this exchange symmetry breaking can
align most of the vacuum expectation value into the B sector, realising vA � vB. This will
suppress the Higgs mixing with the other neutral scalars and will also allow a hierarchical
structure vA � vB � Λ, at the cost of a tuning comparable to v2

B/v
2
A.

Yukawa Interactions

As far as the scalar fields and the gauge interactions are concerned, this is essentially all that
is required of the Twin Higgs model. Hypercharge may be trivially included in this picture.
The last step is to couple the SM Higgs to fermions. If we add Yukawa couplings of HA to
fermions, for example the up quarks, as

L ⊃ λAHAQAU
c
A , (3.46)

then we see an immediate problem. The top quark loops lead to SU(4)-violating quadratic
divergences

m2
A ∝

λ2
t

16π2
Λ2 (3.47)

and the solution has been destroyed. However, the resolution is immediately apparent. We
enforce the exchange symmetry A↔ B by introducing Twin quarks with identical couplings,
such that the Yukawa couplings are now

L ⊃ λAHAQAU
c
A + λBHBQBU

c
B (3.48)

and the quadratic divergences are once again SU(4)-symmetric

V ∼ λ2
A

16π2
Λ2
a|HA|2 +

λ2
B

16π2
Λ2
b |HB|2 , (3.49)

since λA = λB and ΛA = ΛB. Thus the theory at the scale Λ is approximately SU(4)
symmetric and the SM Higgs boson is realised as a pseudo-Goldstone boson of spontaneous
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Figure 3: The structure of the Twin Higgs model. The SM and an entire copy are
symmetric under a complete exchange of all fields. This ensures that the quadratic scalar
action respects an accidental SU(4) symmetry, of which the SM Higgs is a pNGB. All
interactions between the SM and Twin SM are through this single Higgs potential term.

global symmetry breaking. This renders the Higgs boson naturally lighter than the UV
cutoff of the theory, mh � Λ.

We can also see that if the Twin symmetry is imposed for all degrees of freedom, including
gluons and leptons, then at any loop order the Higgs mass will still be free of quadratic
sensitivity to the cutoff. This is the essence of the Twin Higgs mechanism which, in the
simplest incarnation, requires an entire copy of the SM which is completely neutral under
the SM gauge group, but with its own identical gauge groups. The only communication
between the SM and the Twin Sector is through the Higgs boson. This is depicted in fig. ??.

The presentation of the Twin Higgs mechanism may appear somewhat backwards and a
little laborious in comparison to other possible presentations. This has been intentional, in
the hope that it may anticipate a potential misconception for those not familiar with Twin
Higgs model. It is sometimes considered that it is seemingly ad hoc or arbitrary to add an
entire copy of the SM for the Twin Higgs mechanism to work. Hopefully this section has
made it clear that there is nothing arbitrary about the introduction of the new fields. The
mechanism is not justified by adding an entire copy of the SM and then proving a diagram-
by-diagram, and loop-by-loop, cancellation of quadratic divergences. Rather, the new fields
are introduced in order to realise an exchange symmetry A ↔ B. The exchange symmetry
ensures that at the quantum level the quadratic part of the scalar potential respects an
accidental SU(4) symmetry, even with quadratic divergences included. The observed Higgs
boson mass is insensitive to this SU(4)-symmetric quadratic divergence because it is a pseudo-
Goldstone boson of spontaneous SU(4) breaking.3

Phenomenology

Unlike in standard composite Higgs models, where the copious production of new coloured
particles at the LHC is a generic prediction, the collider signatures of the Twin Higgs are
thin on the ground. In both theories a key prediction is the existence of so-called ‘top
partners’ which regulate the quadratically divergent top quark loops contributing to the
Higgs mass-squared. In the Twin Higgs these are fermions charged under Twin QCDT but
not under SM QCD. They are in fact the first known example of a theory with the moniker
“Neutral Naturalness”, used to describe theories in which the top-partners are not charged
under QCD. This drastically suppresses top-partner production at the LHC since the only

3It is also possible to see a diagram-by-diagram cancellation of quadratic divergences rather than relying
on the symmetry-based argument here, however this is less illuminating.
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Figure 4: Expected collider limits on the parameter space of the Twin Higgs model (far
right axes) from constraints on exotic Higgs decays. Figure taken from [35].

coupling to the SM is through the Higgs and any top-partner production must go through an
off-shell Higgs boson. The most promising approaches to test the Twin Higgs lie elsewhere.

One very robust prediction of the Twin Higgs scenario is a universal suppression of Higgs
couplings to SM states. The reason for this is that the Higgs bosons from both sectors,
hA and hB, have a mass mixing controlled by the hierarchy of vevs v2

A/v
2
B. As hB is a

SM singlet this is equivalent to the usual “Higgs Portal” mixing scenario where all Higgs
couplings are diluted by a factor cos θ. This mixing may be constrained by searching for an
overall reduction in Higgs signal strengths at the LHC and, since the ratio v2

A/v
2
B is a driving

indicator of the tuning in the theory, Higgs measurements directly probe the tuning of the
Twin Higgs scenario. In fact, one-loop LEP constraints on modified Higgs couplings already
push this tuning to the ∼ 10− 20% level [36].

Another possibility is that due to the Higgs Portal mixing the heavy Higgs boson may be
singly produced at the LHC and it could decay in SM states with signatures, but not signal
strengths, identical to a heavy SM Higgs boson. It may also decay to pairs of Higgs bosons,
leading to resonant di-Higgs production.

More exotic signatures arise once the Twin sector is considered in full. If Twin sector
states are produced through the Higgs Portal they may decay into lighter Twin sector states,
eventually cascading down to the lightest states within the Twin sector. These lightest
states may then decay back into SM states, leading to a huge variety of exotic signatures.
In essence, the Twin Higgs scenario provides a framework in which many so-called ‘hidden
valley’ signatures [37–39] may be realised. As the motivation comes from the hierarchy
problem, it is necessary that the new states must lie within some proximity to the weak
scale. Taking naturalness as a guide there are many possibilities for the spectrum in the
Twin sector since it is possible that the lighter states which are less relevant for Higgs
naturalness may have modified couplings to the Twin Higgs or may even not exist in the
theory.

A particularly interesting example is for exotic Higgs decays into Twin glueballs, as
depicted in fig. 5. This is possible because the Higgs couples to the Twin Top quarks,
leading (at one loop) to a coupling to Twin gluons. The Higgs may thus decay to the Twin
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Figure 5: Twin glueball production and decay through the Higgs portal. Figure taken
from [40].

glueballs, which then decay back through an off-shell Higgs to SM states, including bottom
quarks. Such an exotic Higgs decay signature can be used to search for the Twin sector
states. The expected reach for scenarios like this, taken from [35], is shown in fig. 4.

3.5 Supersymmetry

In the last section we saw that a Higgs mass well below the cutoff can be explained if the Higgs
is a Goldstone boson of a spontaneously broken global symmetry, but what about spacetime
symmetries? In 1967 Coleman and Mandula proved that it is impossible to combine the
Poincaré and internal symmetries in any but a trivial way. Intriguingly, this proof only
applied to Lorentz scalar, i.e. bosonic, internal symmetries, and in 1975 Haag, Lopuszanski,
and Sohnius showed that, in addition to internal and Poincaré symmetries, it is possible to
extend the Poincaré symmetry to include spin-1/2 generators in a consistent quantum field
theory. This extension is known as supersymmetry. See [41–43] for standard texts on SUSY.

Any continuous symmetry has generators, and as with global symmetries, the super-
symmetry generators must commute with the Hamiltonian, and convert fermionic states to
bosonic states, and vice-versa. We call the SUSY generators Qα (α = 1, 2) and their com-
plex conjugate Qα̇ (α̇ = 1̇, 2̇). These are spinor quantities, and obey the commutation and
anti-commutation relations

[P µ, Qα] = [P µ, Qα̇] = 0 (3.50)

{Qα, Qβ} = {Qα̇, Qβ̇} = 0 (3.51)

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ (3.52)

where P µ is the usual generator of translations, ∂µ. I have shown only the commutation
and anti-commutation relations for one set of supercharges, e.g. N = 1 SUSY, however it is
straightforward to generalise these relations to more supercharges. I will continue to focus
on the case of N = 1 SUSY throughout this section. As these generators change the spin
of a state by a unit of 1/2, one would expect that in a supersymmetric theory states come
with some sort of ‘multiplet’ structure, in which there is a state of spin S and a state of
spin S + 1/2, where S = 0, 1/2 for a renormalizable theory. These multiplets are called
‘supermultiplets’, and we will now consider how they are constructed.

In order to begin constructing such multiplets it is instructive to begin by considering the
supersymmetry algebra as a graded Lie algebra. By extending the analogy with space-time
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translations, we define the group element

G(x, θ, θ) = e−i(xµP
µ−θQ−θQ) , (3.53)

where θ and θ are anti-commuting parameters. Now, using Hausdorff’s formula one can show
that under a transformation with parameters {x, θ, θ} followed by a SUSY transformation
with parameters {ζ, ζ} we have the set of transformations

xµ → xµ + iθσµζ − iζσµθ (3.54)

θ → θ + ζ (3.55)

θ → θ + ζ . (3.56)

This transformation in parameter space can be generated by the differential operators Q
and Q

ζQ+ ζQ = ζα
(

∂

∂θα
− iσµαα̇θ

α̇
∂µ

)
+ ζ α̇

(
∂

∂θα̇
− iθασµ

αβ̇
εβ̇α̇∂µ

)
. (3.57)

Again, by analogy with fields which are functions of space-time co-ordinates, we can
define a superfield as a field which is a function of the co-ordinates {x, θ, θ}. Henceforth we
will write superfields in bold font, and their component fields in plain font. As θ and θ are
Grassmann parameters, the Taylor expansion of a superfield in these co-ordinates terminates
as, e.g. θ1θ1 = 0. Thus, calling our superfield F (x, θ, θ), and expanding in the Grassmann
parameters, we have

F (x, θ, θ) = f(x) + θφ(x) + θχ(x) + θθm(x) + θθn(x) + θσµθvµ(x)

+θθθλ(x) + θθθψ(x) + θθθθd(x) (3.58)

which transforms under a SUSY transformation as

δζF (x, θ, θ) ≡ (ζQ+ ζQ)F . (3.59)

By comparing individual powers of θ after applying the SUSY transformation of eq.(3.59)
we can determine how the individual fields transform. Also, as the Taylor expansion in
θ terminates, we can see that the product of two, or more, superfields must itself be a
superfield, where the individual component fields are products of component fields of the
original ‘fundamental’ superfields.

Now we have a linear representation of the SUSY algebra, however, this representation
can be reduced. We define a chiral superfield, Φ, by the constraint Dα̇Φ = 0, where Dα̇ =

−∂/∂θα̇ − iθασµαα̇∂µ. Thus our chiral superfield takes the form

Φ(x, θ) = A(x) + iθσµθ∂µ(x)A(x) +
1

4
θθθθ∂µ∂

µA(x)

+
√

2θψ(x) +
i√
2
θθ∂µψσ

µθ + θθF (x) (3.60)

and an anti-chiral superfield takes a similar form, following from DαΦ
† = 0.
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The components of the superfield in eq.(3.60) transform under SUSY transformations as

δζA =
√

2ζψ (3.61)

δζψ = i
√

2σµζ∂µA+
√

2ζF (3.62)

δζF = i
√

2ζσµ∂µψ . (3.63)

From these transformations we see that the F -term transforms into a total derivative. If all
fields vanish at infinity then the F -term of a chiral superfield thus forms a SUSY-invariant
Lagrangian term. It follows that the F -term of any product of chiral superfields is a SUSY-

invariant Lagrangian term. In addition, the θ2θ
2

term in Φ†Φ also transforms into a total
derivative. This term is then also a candidate for a SUSY-invariant term in the Lagrangian,
and is given in component form as

Φ†Φ|
θ
2
θ2

= F ∗F +
1

4
A∗∂2A+

1

4
∂2A∗A− 1

2
∂µA

∗∂µA

+
i

2
∂µψσ

µψ − i

2
ψσµ∂µψ (3.64)

clearly giving the kinetic terms for the individual component fields.
Thus we are in a position to construct a SUSY-invariant theory with chiral superfields.

We can introduce one further ingredient which simplifies notation. Defining
∫
dθ = 0 and∫

θdθ = 1, then we can write our supersymmetric Lagrangian as

L =

∫
d2θd2θΦ†iΦi +

[∫
d2θ(fiΦi +mijΦiΦj + λijkΦiΦjΦk) + h.c

]
, (3.65)

where the first term is usually referred to as the Kähler potential, K, and the second term is

the Superpotential, W . The former picks up the θ2θ
2

term in K, and the latter the θ2 term
in W .

e can re-write this Lagrangian as

L =

∫
d2θd2θK(Φ†i ,Φi) +

∫
d2θW (Φi) +

∫
d2θW ∗(Φ∗i ) , (3.66)

where W is a function of chiral superfields only, and not their conjugates. Because of this we
say that the superpotential is a ‘holomorphic’ function of the chiral superfields. By defining
W i = ∂W

∂Ai
|θ=0, and W ij by analogy, then we find

∫
d2θW (Φi) = W iFi −

1

2
W ijψiψj − (total derivative) . (3.67)

By inspecting the kinetic terms for the component fields in eq.(3.64) we can see that
there are no derivative terms for the field F , and thus it does not propagate. We can then
simplify the supersymmetric Lagrangian by solving the Euler-Lagrange equation for F , i.e.
solving ∂L/∂F = 0. After performing this final step we find that Fi = −W ∗i. Using
this, rearranging total derivative terms, and employing the equations of motion, our final
supersymmetric Lagrangian, in component form, is

L = ∂µA
∗i∂µAi + iψ

i
σµ∂µψi −

1

2

(
W ijψiψj +W ∗

ijψ
i
ψ
j
)
−W ∗iWi . (3.68)
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This completes the construction of theories with N = 1 supersymmetry containing scalars
and fermions. It is quite remarkable that one can package fields in such a way that whatever
you do, if the theory is written as in eq. (3.65) the theory will inevitably be supersymmetric!

In order to include gauge interactions we must also construct theories with vector fields,
which are contained in real vector superfields. These arise by considering a superfield,
V , which is constrained to satisfy V ∗ = V . Such a superfield can be constructed from
the general superfield in eq.(3.58). The general form for V contains numerous component
fields, however it is possible to remove some of these fields by performing a suitable gauge
transformation. The supersymmetric generalisation of an Abelian gauge transformation acts
on V as V → V + Λ + Λ∗, where Λ is a chiral superfield. It can be seen by comparing
eq.(3.58) and eq.(3.60) that this will correspond to a gauge transformation of vµ(x) →
vµ(x) + ∂µ(A(x)− A∗(x)), as expected.

By choosing the ‘Wess-Zumino’ gauge, in which the extra unwanted component fields are
gauged away, we have

V = −θσµθvµ(x) + iθθθλ(x)− iθθθλ(x) +
1

2
θθθθD(x) , (3.69)

where vµ(x) is a vector field, λ(x) is its fermionic partner, the ‘gaugino’, and D(x) is a scalar
field. We see that V is the supersymmetric generalisation of the Yang-Mills potential Aµ.
The transformation of the component fields under supersymmetry can again be calculated,
and it is found that the field D(x) transforms into a total derivative. We will also need
to construct a gauge-invariant field strength. From eq.(3.69) we see that the lowest gauge-
invariant components are λ and λ. Hence we can construct a gauge invariant chiral superfield
Wα = −1

4
DDDαV , where chirality follows from Dβ̇Wα = 0.

Now we can construct supersymmetric kinetic terms for the gauge fields as

∫
d2θ

1

4
W αW α +

∫
d2θ

1

4
W

α̇
W α̇ =

1

2
D2 − 1

4
F µνFµν − iλσµ∂µλ . (3.70)

This completes the construction of an Abelian SUSY gauge sector, however it now remains
to include gauge interactions with matter fields.

The lowest component of a chiral superfield is a complex scalar field, which will transform
under Abelian gauge transformations by multiplication of a space-time dependent phase. It
is clear, then, that in the language of superfields, a gauge transformation of a chiral superfield
will proceed as Φ→ e−igΛΦ. By considering the gauge transformation of a vector superfield
we then see that the combination Φ∗egV Φ is gauge invariant, however Φ∗Φ is not. Therefore,
to construct a supersymmetric theory with gauge interactions we use the gauge kinetic terms
of eq.(3.70), we impose that the superpotentialW is gauge invariant, and we adapt the Kähler
potential terms to the form Φ∗Φ→ Φ∗egV Φ

Finally, from eq.(3.70) we see that we have a new non-propagating auxiliary field, D.
Once again we can solve for ∂L/∂D = 0 and find that D = g

∑
i qiA

∗iAi. After performing
this final simplification, rearranging total derivative terms, and extending to the case where
the chiral superfields transform under a non-abelian gauge symmetry, we have a supersym-
metric gauge theory, with Lagrangian
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L = −1

4
F aµνF a

µν + iλ
a
σµDµλ

a +DµA
∗iDµAi + iψ

i
σµDµψi

+i
√

2g
∑

a

(A∗iT aψiλ
a − λaT aAiψ

i
)− g2

2

∑

a

(
∑

i

A∗iT aAi)
2

−1

2

(
W ijψiψj +W ∗

ijψ
i
ψ
j
)
−W ∗iWi , (3.71)

where Dµ is the gauge-covariant derivative, and T a is a generator of the non-abelian gauge
group. This completes the construction of supersymmetric gauge theories.

R-Symmetry

It is possible, but not required, that a supersymmetric theory can also possess a global
U(1) symmetry under which θ transforms. This symmetry is usually referred to as an R-
symmetry, and it is special as it distinguishes between components of a supermultiplet. If
this symmetry is present, and θ has charge qR then the superpotential has charge 2qR and
individual physical components of a chiral or vector superfield differ in charge by a unit of
qR. Any other global symmetries act on individual components of a chiral multiplet in the
same way, and do not act on vector multiplets.

Quadratic divergences

One of the most attractive features of SUSY is the absence of quadratic divergences. This
can be explained quite simply. In a supersymmetric theory in flat space the masses of fields in
a SUSY multiplet are equal, by SUSY. Fermion masses do not receive quadratic corrections
to their mass thus, by tying the mass of the scalar to the mass of the fermion the scalar itself
cannot receive quadratic corrections to it’s mass.

There is another way of seeing this, where we also learn about something known as
the ‘non-renormalization theorem’. As shown before, the superpotential is a holomorphic
function of the chiral superfields. In addition, any relevant operators must arise from the
superpotential in a renormalizable SUSY theory. We can usual the usual spurion trick that
has already come up many times and consider any parameters as SUSY-preserving vacuum
expectation values (vevs) of some background chiral superfield, and can then write our
superpotential with the understanding that all parameters are actually vevs of fields, and
assign global symmetry charges to these vevs to find the selection rules. For example, we
can consider a toy model with superpotential

W =
m

2
φ2 +

λ

3
φ3 . (3.72)

This theory has a global U(1)R symmetry and a global U(1) symmetry, which are both
broken by non-zero values for m and λ. We can still use the selection rules that arise as
a result of these symmetries and write down all renormalizable, holomorphic, terms which
behave well in the limits m→ 0 and λ→ 0. Doing this we find that the only superpotential
terms that are allowed are those already in eq.(3.72). Thus if we consider renormalizing this
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theory down to some scale then no new terms can arise in the superpotential involving the
cut-off. This has been proven at a greater level of rigour for SUSY theories using supergraph
techniques [44–47], and using the holomorphicity of the superpotential [48,49], and is general
referred to as the ‘Non-renormalization’ theorem.

The Kähler potential gives the standard kinetic terms, which are still renormalized, giv-
ing rise to wavefunction renormalization. Therefore terms in the superpotential are only
renormalized through wavefunction renormalization. Wavefunction renormalization is only
logarithmic in the cut-off, hence no quadratic divergences occur in this theory. Again, it can
be shown, along these lines, that this is true in general for SUSY theories.

Supersymmetry breaking

As we have not observed any scalar particles with electric charge −1 and a mass of 511 keV
we must conclude that the Universe is not supersymmetric, i.e. supersymmetry is broken.
However, this does not mean that supersymmetric theories don’t offer a resolution to the
hierarchy problem: If supersymmetry is restored at high energies then the hierarchy problem
is relieved to the point that the only troublesome hierarchy is between the electroweak scale
and the scale at which the theory becomes supersymmetric.

If we want a theory in which a symmetry is present at high energies, but apparently
absent at low energies, we require that the symmetry is spontaneously broken somewhere
along the way. As supersymmetry is inherently tied to space-time symmetries we must be
careful if we want to break supersymmetry spontaneously but not Lorentz symmetry. From
the last of the anti-commutation relations in eq.(3.52) we see that the vacuum energy, P0, is
given by

H = P0 =
1

4
({Q1, Q1̇}+ {Q2, Q2̇}) . (3.73)

As a result, in a globally supersymmetric theory, 〈0|H|0〉 6= 0 implies that Qα|0〉 6= 0 or
Qα̇|0〉 6= 0, and supersymmetry is broken. If we want to find a vacuum in which supersym-
metry is spontaneously broken we must then find one with non-vanishing energy density. If
we want to maintain Lorentz symmetry then the only fields which obtain vacuum expecta-
tion values (VEVs) must be Lorentz scalars, hence the only candidate terms are from the

scalar potential. However the scalar potential comes from Vscalar = 1
2
F ∗iFi + g2

2
DaDa. Thus

we know that for a supersymmetric theory to spontaneously break supersymmetry requires
a cosmologically stable vacuum in which Fi 6= 0 or Da 6= 0.

By analogy with spontaneously broken global symmetries, which give rise to a massless
Nambu-Goldstone boson, when global SUSY is spontaneously broken this leads to a massless
Nambu-Goldstone fermion, named the ‘Goldstino’. Why this is so can be seen quite simply
for F -term breaking of SUSY. At the minimum of the scalar potential we require that
dV/dAi = 0 and this implies that W ∗

i W
ij = 0. If there is F -term SUSY breaking then

Abs[W ∗
i ] 6= 0, and hence Wij has a zero eigenvalue, with eigenvector W ∗

i . But the fermion
mass matrix is given by Wij, and, as a result, there must exist a massless fermion, which lives
in the chiral multiplet that breaks SUSY. A similar argument applies for D-term breaking,
however in this case the goldstino is a gaugino of a vector multiplet.

The spontaneous breaking of supersymmetry leads to mass-splittings between component
fields of a superfield. It can be shown that in a theory with spontaneous SUSY breaking a
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mass-sum rule, Tr[M2
scalars] = Tr[M2

fermions], where the scalars are real, is obeyed. This rule
implies that if SUSY is broken spontaneously in the visible sector we should have observed
scalars with SM charges as light as the lightest fermions. As these scalars have not been
observed then SUSY must be broken in another sector, and then this SUSY-breaking must
be communicated to the visible sector, raising the masses of the unobserved superpartners.

This pattern of SUSY-breaking can be accounted for if we allow for some ‘spurion’ su-
perfield, X, with non-zero F -term in the vacuum, i.e. 〈X〉 = θ2FX . Alternatively one can
consider a vector superfield with a non-zero D-term. If some ‘messengers’ which communi-
cate with the SUSY-breaking sector and the visible sector have mass MM � Mweak we can
integrate them out, and include their effects by considering the effective field theory, with
higher dimension operators involving the field X and the visible sector fields. Operators
such as

K ⊃ X
†X

M2
M

Φ∗iΦi , W ⊃ X

MM

ΦiΦjΦk , W ⊃ X

MM

W αWα , (3.74)

lead to SUSY-breaking mass-terms for the scalars of a chiral superfield, m̃ = FX/MM , trilin-
ear scalar interactions, |Aijk| = FX/MM , or mass terms for the gauginos in a vector superfield,
Mλ = FX/MM . All such terms break supersymmetry ‘softly’, as they do not introduce new
quadratic UV -divergences into the theory, and only lead to quadratic divergences up to the
scale of the soft-terms.

The messenger superfields could be associated with some UV-completion, and would thus
typically have MM ' MP , where MP is the Planck mass. This scenario is usually referred
to as ‘Gravity Mediation’. Alternatively they could potentially have much lower mass, and
communicate with the visible sector through gauge interactions. In this case MM is not set,
but the soft terms come dressed with a loop-factor involving gauge charges.

Supergravity

General relativity (GR) is a successful theory of gravity on macroscopic scales, and is hence
desirable in any physical theory. We can think of GR as a theory of gauged local Lorentz
transformations, however, by going to a SUSY theory we have extended the Lorentz group
to include fermionic generators. Thus, if we gauge the Lorentz transformations we must also
gauge local SUSY transformations in order to maintain SUSY. In doing so we find a theory of
local supersymmetry. This theory is called ‘Supergravity’ (SUGRA). It is sometimes touted
as a surprising, and/or compelling, feature that gauging SUSY leads to GR, however this
should really come as no surprise as we still have the Lorentz group as a subgroup of the gen-
eral SUSY transformations, and one should then expect that gauging these transformations
would lead to GR.

There are many interesting features of SUGRA, which is a subject of much study in its
own right, however, for brevity, we will only comment on the features relevant to BSM.4

Perhaps the most interesting relevant feature of SUGRA is the requirement of a new spin-
3/2 field, called the gravitino, which is partnered with the graviton. This field has its own
set of Planck-suppressed interactions with other SUSY fields. An interesting analogy with
local gauge theories arises when SUSY is spontaneously broken. When a global symmetry is
spontaneously broken we expect a massless Nambu-Goldstone boson, and if this symmetry is

4An excellent textbook focussing specifically on SUGRA is [50].
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gauged we expect this boson to be ‘eaten’ by the massless gauge boson, leading to a massive
gauge boson. Interestingly, when SUSY is spontaneously broken we have a massless fermion,
the goldstino, however in a SUGRA theory this goldstino is ‘eaten’ by the gravitino, leading
to a massive gravitino.

The MSSM

Now we are equipped to construct a supersymmetric theory of the known particles and
interactions. We will consider first the minimal model, a.k.a. the ‘Minimal Supersymmetric
Standard Model’ (MSSM). In a supersymmetric version of the SM we will have to introduce
superpartners for all of the known fields of the standard model. It is conventional notation
to denote a superpartner of a SM field with a tilde, i.e. a ẽL is the superpartner of the left-
handed electron. The fermions of the standard model are contained in chiral superfields, and
thus we introduce ‘squarks’ in addition to the quarks, and ‘sleptons’ in addition to leptons.
Scalar partners of SM fermions are individually named with an ‘s’ in front of the name of
their fermion partner, i.e. sneutrino, selectron, sbottom, etc. The gauge fields will have to
live in a vector superfield and will thus have fermionic superpartners. The partners of the
gauge fields are termed ‘gauginos’ and, in specific cases, are differentiated from their bosonic
partners by the suffix ‘ino’. Thus along with gluons we now have gluinos, with W-bosons
winos, and with the hypercharge boson the bino. After electroweak symmetry breaking we
have charginos and two neutralinos from the electroweak gauge sector.

The simple extension of the SM to a SUSY theory enters difficulties when we consider
the SM Higgs boson. Because the Higgs is a scalar, in a SUSY theory it will have a fermionic
partner, the higgsino. This higgsino will have SM gauge charges and is a new fermion
contributing to anomalies in the previously anomaly-free SM. Thus in order to cancel this
new contribution we must add an additional chiral superfield with the opposite gauge charges
of the Higgs. Hence a supersymmetric theory has two Higgs doublets, as opposed to one in
the SM, and these doublets are ‘vector-like’, as they have equal and opposite gauge charges.
It is often stated that, as the superpotential is holomorphic and terms such as H†UQD

c are
not allowed, then an extra Higgs doublet must be introduced in order to give down-type
fermions mass. However this is not strictly true, as we know that SUSY must be broken,
and once SUSY is broken such arguments do not apply, whereas an gauge symmetry in QFT
must be anomaly-free, regardless of SUSY.

The superfields of the MSSM are summarised in table 1. The kinetic terms and gauge
interactions for all fields are as in eq.(3.71), and the superpotential for the MSSM is

WMSSM = µHuHd + λuHuQU
c + λdHdQD

c + λeHdLE
c (3.75)

where the λ are 3 × 3 Yukawa couplings and summation over flavour indices is implied.
Additional gauge-invariant, renormalizable, terms which violate baryon or lepton number
are also allowed. These are LLEc, U cDcDc, LQDc and µLLHu. These terms can lead
to rapid proton decay, amongst other forbidden processes, and thus should be suppressed.
To do this we impose an additional global symmetry by hand. This symmetry is a discrete
Z2 symmetry which is a subgroup of R-symmetry, known as R-parity. The R-parity charges
of the MSSM superfields are shown in table 1, and the Grassmann parameter θ is also odd
under this parity, hence the name ‘R’-parity. As θ is charged under this parity superpartners
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Field Gauge rep. R-parity Supermultiplet

Q (3,2, 1
6
) −1 Chiral

U c (3,1,−2
3
) −1 Chiral

Dc (3,1, 1
3
) −1 Chiral

L (1,2,−1
2
) −1 Chiral

Ec (1,1, 1) −1 Chiral

Hu (1,2, 1
2
) 1 Chiral

Hd (1,2,−1
2
) 1 Chiral

G (8,1, 0) 1 Vector

W (1,3, 0) 1 Vector

B (1,1, 0) 1 Vector

Table 1: The superfield content of the MSSM.

within a supermultiplet have different charges. Thus all SM fermions, gauge bosons, and
both scalar Higgs doublets are even under this parity, whereas all superpartners such as
gauginos, squarks, sleptons and higgsinos, are odd. Hence R-parity distinguishes between
the SM particles and those which we have added, with the exception of the extra Higgs
doublet.

Soft Masses.

The model as described so far is completely supersymmetric, however we have not observed
any R-parity odd particles, and thus we must softly break the supersymmetry. We say
that the breaking is soft because we only include operators that preserve SUSY in the high
energy limit. To achieve this we add only terms that that are less and less relevant at high
energies. Such operators have mass dimension D < 4, thus we can add explicit mass terms
for fields that break SUSY at the scale m, safe in the knowledge that they do not spoil the
cancellation of quadratic divergences at energies above E � m. In practise these soft terms
can be generated by some particular underlying model for SUSY breaking.

This is achieved at a phenomenological level by adding soft masses for all scalar fields and
all gauginos. We must also add to the scalar potential trilinear scalar interactions with the
same structure as the trilinear terms in the superpotential in eq.(3.75), as well as a ‘Bµ’ term
L ⊃ BµHuHd which mixes the two Higgs fields. All such soft-parameters are, in general,
complex, and need not have the same flavour structure as the SM Yukawa couplings. This
completes the construction of the MSSM as a phenomenological model.

Successes and motivation

The greatest success of the MSSM is that it addresses the hierarchy problem by removing
quadratic divergences, thus stabilising the electroweak scale against corrections from un-
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known physics in the far UV. There are however, additional hints that add to the appeal of
the MSSM. We briefly discuss these in no particular order.

Dark Matter

A particularly attractive feature of the MSSM arises as a result of protecting protons from
decaying. In section 3.5 we showed that an extra global symmetry, R-parity, must be imposed
in order to conserve baryon number and lepton number at the renormalizable level. This
extra symmetry largely distinguishes between SM particles and their partners, and has the
consequence that the lightest of the superpartners cannot decay, and is thus cosmologically
stable. If this stable particle is charged, or coloured then this stability is disastrous, however
if it is neutral then it may be a candidate for DM. It turns out that there are ten neutral
particles, four ‘neutralinos’ which are each a mixture of the bino, zino, and two higgsinos,
and there are also three neutral sneutrinos. The correct abundance of all of these particles
can remain as a result of the thermal freeze-out mechanism, suggesting that they could be
the DM. DM direct detection experiments place stringent bounds on how strongly the DM
can couple to nucleons, and this rules out the left-handed sneutrinos as DM candidates,
however if the lightest neutralino is dominantly made up of higgsino, or bino, components
then it can still make a good candidate for DM. Thus, as a result of protecting the proton
from decay, the MSSM contains a good candidate for DM. This will be discussed in Laura
Covi’s lectures.

Radiative Electroweak Symmetry Breaking

An additional, unexpected feature of the MSSM is that, for a large range of parameters,
the mass of the up-type Higgs boson is driven negative by radiative corrections. The result
being that even if the electroweak gauge symmetry is unbroken in the theory at high energies,
when one runs all of the parameters down to the weak scale the Higgs mass-squared becomes
negative, and the electroweak gauge symmetry is spontaneously broken. This is due to the
large Yukawa coupling of the Higgs multiplet to the top multiplet. Electroweak symmetry
breaking in this manner is not always guaranteed, however it does seem to be a fairly generic
feature of the MSSM, and similar extensions. Additionally, the Higgs seems to be special in
this respect as for most parameter regions no other scalars are driven to develop a vev.

Baryogenesis

Another hint lies in the problem of baryogenesis. It is known that in order to generate an
asymmetry between baryons and antibaryons in the early Universe the three conditions of
baryon-number violation, CP-violation, and out of thermal equilibrium dynamics must be
satisfied. These are known as the ‘Sakharov conditions’, after Andrei Sakharov, who first
wrote them down.5 It was once hoped that such conditions could be present during the
electroweak phase transition, as there is CP-violation in the quark sector, baryon-number
violation due to electroweak non-perturbative effects (sphalerons) and if the electroweak
phase transition is strongly first-order enough then in the bubble walls, which separate
the symmetric phase from the broken phase, there should exist out of thermal equilibrium

5Google him.
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conditions. Unfortunately, in the SM these conditions are not met to the extent that the
observed asymmetry can be achieved. However, going beyond the SM it is possible to meet
these conditions, with the introduction of new sources for all three necessary conditions. A
plethora of models for baryogenesis exist, but even within the MSSM such a scenario is now
possible.

Flavour and Neutrino Puzzles

The MSSM itself does not provide an explanation for the puzzle of the hierarchies of quark
and lepton Yukawas, nor for the relatively miniscule neutrino masses, however SUSY permits
to have perturbatively stable mass hierarchies between fundamental scalars, thus if any
solution to these puzzles requires new physics at high energies, SUSY provides a natural
accommodation of a light Higgs mass despite these high energy scales.

Gauge Coupling Unification

An unexpected surprise that arises whenever the Standard Model is supersymmetrized con-
nects the behaviour of the Standard Model gauge couplings to a deep idea concerning the
nature of the forces at extremely high energies. When the superpartners are added, it was
found that upon evolving the U(1)Y , SU(2)W , and SU(3)C gauge couplings up to high en-
ergies they appeared to unify at energies close to E ∼ 1016 GeV [51, 52]! This is shown in
Fig. 6. Of course, that two lines will cross is almost guaranteed, however three lines crossing
almost at a point is strongly suggestive of a deeper structure and a potential link between
SUSY and unification. This is especially compelling as SUSY is precisely the ingredient that
would allow for a stable hierarchy between the unification scale and the weak scale!

Ever since the unification of the electroweak forces was discovered, it has been believed
that further unification of all gauge forces, now including SU(3)C , may occur at very high
energies. A variety of larger gauge groups into which they may unify have been proposed,
however the simplest is arguably an SU(5) gauge symmetry [53].6 It is deeply compelling
that the Standard Model matter gauge representations neatly fall into multiplets of a larger
symmetry, such as SU(5), as this need not have been the case. A key feature which must
arise at the unification scale in such a theory is that the gauge couplings must themselves
become equal. Thus supersymmetric gauge coupling unification is strongly suggestive that
supersymmetry may go hand-in-hand with the unification of the forces and, if discovered,
the superpartners would provide a low energy echo of physics at extremely high energies.

When considering the role of the superpartners in supersymmetric unification one finds
that some are more relevant than others. The reason is that since the matter fermions of the
Standard Model fill out complete unified representations, so must their partners, the squarks
and the sleptons. Thus although the masses of squarks and sleptons may change the scale
at which unification occurs they do not significantly alter whether or not the couplings will
unify, unless they are split by large mass differences themselves. This means that the most
important superpartners for gauge coupling unification are the fermions: the gauginos and
the Higgsinos.

6It is also possible that the gauge forces unify with gravity, in the context of String Theory, however we
will not discuss this possibility here.
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Figure 6: Renormalization group evolution of gauge couplings up to high energies, taken
from [41]. The Standard Model gauge couplings are shown in dashed black and the gauge
couplings with superpartners added, with masses in the range 0.75 → 2.5 TeV, are shown
in red and blue. Unification of the forces at high energies is clearly apparent in the super-
symmetric case.

Studies of supersymmetric gauge coupling unification generally find that for successful
unification it is necessary to have gauginos and higgsinos not too far from the weak scale.
If the gaugino and Higgsino mass parameters are taken equal, then unification requires
µ, M̃1/2 . O(10 TeV) with some uncertainty due to unknown threshold corrections at the
unification scale [54]. The scalar soft masses, m̃0, may be arbitrarily heavy while preserving
successful gauge coupling unification. This realization led to the consideration of so-called
‘Split-Supersymmetry’ theories [55–57], in which the main motivations for the mass spectrum
are taken from gauge coupling unification and dark matter, as discussed previously.

The fact that, in addition to the gauge forces, also the matter particles are unified
in representations of the unified gauge symmetry group, can imply relations between the
Yukawa couplings of quarks and leptons at the unification scale [53,58–62]. To compare such
predictions with the measured values of the fermion masses, one has to take into account
the supersymmetric loop threshold corrections at the soft breaking mass scale [63–68], which
depend on the masses of the superpartners. Including them in the analysis, and using the
measured fermion masses and Higgs mass as constraints, unified theories are even capable
of predicting the complete sparticle spectrum [68,69].

The Higgs Mass

As is common in physics, when new symmetries are introduced to a theory, the predictive
power often increases. Because supersymmetry is softly broken, many new parameters as-
sociated with this breaking are introduced and certain aspects of the increased predictivity
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Figure 7: Higgs mass predictions as a function of the supersymmetry breaking soft mass
scale and the Higgs sector parameter tanβ, taken from [72]. In the High-Scale scenario all

soft masses µ, M̃1/2, m̃0 are varied together, whereas in the Split SUSY scenario µ, M̃1/2 are
kept at 1 TeV and only the scalar soft masses m̃0 are varied.

are lost. However, some predictability beyond the SM remains and the Higgs boson mass is
a prime example.

In the Standard Model, when the theory is written in the unbroken electroweak phase
there are only two fundamental parameters in the scalar potential, the doublet mass mH , and
the quartic coupling λ. In the broken electroweak vacuum this translates to two fundamental
parameters, the Higgs vacuum expectation value v = 246 GeV, and the Higgs scalar mass
mh. Once these two parameters are set, all other terms, such as the Higgs self-couplings, are
determined. Supersymmetric theories take this one step further as supersymmetry relates
the Higgs scalar potential quartic coupling to the electroweak gauge couplings in a fixed
manner. The story is complicated a little relative to the Standard Model by the two Higgs
doublets required in supersymmetric theories, however since the quartic couplings in the
scalar potential are no longer free parameters, once the vacuum expectation value is set
v =

√
v2
u + v2

d = 246 GeV, the Higgs mass is now also predicted by the theory. At tree level,
this prediction is

mh = MZ | cos 2β| . (3.76)

Clearly for any value of β this prediction is at odds with the observed value of mh ≈ 125
GeV and thus for consistency additional contributions to the Higgs doublet quartic terms
are required. Within the MSSM the only potential source is from radiative corrections at
higher orders in perturbation theory. The dominant corrections arise from loops of particles
with the greatest coupling to the Higgs, the stop squarks [70, 71]. If the soft mass splitting
between the top-quark and stop squarks is large enough then radiative corrections which are
sensitive to this supersymmetry breaking may spoil the supersymmetric prediction for the
Higgs quartic couplings and allow for contributions that may bring the Higgs boson mass
within the observed window.
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In Fig. 7 we show the expected soft mass parameter scales which reproduce the observed
Higgs mass. Clearly, within the MSSM the observed Higgs mass may be reproduced for
scalar masses in the range 1 TeV . m̃0 . 108 TeV.7 Furthermore, if we consider the range
tan β > 4, then scalar masses below O(10’s TeV) are required. This is the first upper
bound we have encountered for the scalar soft masses, resulting directly from the Higgs mass
measurements. Theoretically, this has given rise to a reduction in the allowed parameter
space of supersymmetric theories and in the context of so-called Split SUSY, where previously
scalar masses could take almost any value, now the Higgs mass measurements have led to
the so-called ‘Mini-Split’ scenario [54,74], where there is an upper bound on the value of the
scalar soft masses.

There are variants of the MSSM in which the Higgs mass may also be raised above the
MSSM tree-level prediction by utilizing additional effects deriving from couplings to new
fields. If the coupling is to new fields in the superpotential then such theories are typically
variants of the NMSSM, in which the Higgs doublets couple to an additional gauge singlet.
Alternatively, the corrections may arise from coupling to new gauge fields, due to additional
contributions to the quartic scalar potential predicted by supersymmetric gauge interactions.
Importantly, in these scenarios the additional enhancements of the Higgs mass only serve to
reduce the required value of the radiative corrections, and hence the required value of the
scalar soft masses. Thus the required scalar soft mass values shown in Fig. 7 serve as an
approximate upper limit for theories beyond the MSSM.

To summarize, the measurement of the Higgs mass has now provided information that
is key to understanding the expected mass ranges of superpartners, particularly for the stop
squarks. Although scalar masses may be as large as m̃0 ∼ 108 TeV, for a broad range of
parameter space, if it is the case that tan β > 4 this upper bound is reduced significantly to
m̃0 . O(10’s TeV).

SUSY circa 2017 and the Hierarchy Problem

With SUSY broken at a scale m̃, which represents the soft mass scale, the Higgs mass is no
longer protected from quantum corrections. Thus supersymmetry is effective in protecting
the Higgs mass all the way down from a high mass scale to the supersymmetry breaking
scale MNew → m̃, however from the soft mass scale down to the weak scale, m̃ → mh

supersymmetry is no longer present. This means that for a natural theory without tuning
we must expect m̃ ∼ mh, and conversely if m̃ � mh there must be some fine tuning to
realize the weak scale below the soft mass scale. These qualitative arguments may be made
quantitative. A well motivated measure for the degree of tuning in the weak scale with
respect to a given fundamental parameter in the theory, a, is [75,76]

∆[a] =
∂ logM2

Z

∂ log a2
. (3.77)

By minimising the weak scale potential at large tan β we find

M2
Z = −2(m2

Hu + |µ|2) , (3.78)

7In fact, if the soft scalar trilinear term Ãt is chosen so as to maximise the shift in the Higgs mass, the
lightest stop squark could be as light as ∼ 500 GeV [73].
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where m2
Hu

is the soft mass for the up-type Higgs which includes all radiative corrections. Let
us consider the tree-level contribution from the µ-term, along with the one-loop contributions
from stop squarks and the winos, and the two-loop contribution from gluinos, which are given
by

δm2
Hu(t̃) = −3y2

t

4π2
m2
t̃ log(Λ/mt̃) (3.79)

δm2
Hu(W̃ ) = −3g2

8π2
(m2

W̃
+m2

h̃
) log(Λ/mW̃ ) (3.80)

δm2
t̃ =

2g2
s

3π2
m2
g̃ log(Λ/mg̃) , (3.81)

where Λ is a UV-cutoff at which the full UV-completion of supersymmetry kicks in, and the
last term may be inserted into the first to obtain an estimate of the tuning from gluinos.
Conservatively taking Λ = 10 TeV we arrive at the following expectations for a theory which
is only tuned at the 10% level [77]:

µ . 200 GeV , mt̃ . 400 GeV , mW̃ . 1 TeV , mg̃ . 800 GeV , (3.82)

This picture is clearly at odds with the stop mass values required to achieve the observed
Higgs mass in the MSSM, shown in Fig. 7. However it may be that non-minimal struc-
ture beyond the MSSM lifts the Higgs mass without requiring large stop masses, thus this
constraint is not too significant. More importantly, current constraints on the Higgs boson
couplings, which would typically be modified if the stop squarks were light, already place
stringent constraints on light stop scenarios.

In many (but not all) concrete scenarios it is expected that the first two generation
squarks should not be significantly heavier than the stop squarks and, as the production
cross section is enhanced due to valence quarks in the initial state, constraints on first two
generation squarks are very strong, indirectly placing strong constraints on the naturalness
of many supersymmetric theories. Most relevant, however, are the direct searches for stops
and gluinos, which already show that significant portions of this parameter space are in
tension with LHC 13 TeV data, as seen in fig. 8 for the stops.

Where do these strong constraints leave the supersymmetric solution to the hierarchy
problem? As we are on the brink of a paradigm shift in our understanding of electroweak
naturalness a number of possibilities are plausible.

It could be that the weak scale is meso-tuned, as in Mini-Split supersymmetry, and the
æsthetic motivations for supersymmetry as a new spacetime symmetry are justified, whereas
the naturalness arguments were misguided, to at least some degree, since supersymmetry
does solve the big hierarchy problem and we are instead left with a relatively small tuning
of the weak scale up to energies as high as O(108) TeV. This scenario is in some sense quite
successful. A fundamental Higgs boson of mass mh . 135 GeV is predicted, gauge coupling
unification and successful dark matter candidates are realized, all at the cost of accepting
some meso-tuning. Although not necessarily guaranteed, the gauginos should be below mass
scales of ∼ O(few TeV), mostly driven by the dark matter requirement.

Another possibility which has only recently been explored is that the Mini-Split spectrum
is realized in nature, with all of the above successes, however the theory is not actually tuned
due to a hidden dynamical mechanism which renders the hierarchy from the weak scale to the
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Figure 8: Current expeimental limits on a simplified model with stop squarks and a
neutralino. These limits are already placing significant pressure on SUSY naturalness for
this class of models.

soft mass scale natural [78]. This can be achieved by employing the cosmological relaxation
mechanism of [79] in a supersymmetric context. In this case both the æsthetic arguments
for supersymmetry and the naturalness arguments for the weak scale were well founded,
however the two may have manifested in an entirely unexpected manner, with a cocktail
of symmetries and dynamics protecting the naturalness of the weak scale up to the highest
energies. As before, the gauginos should be below mass scales of ∼ O(10’s TeV), however
this expectation comes from the fact that a loop factor suppression between scalars and
gauginos is expected in this model and in addition the scalars cannot be arbitrarily heavy
due to the finite cutoff of the cosmological relaxation mechanism.

Alternatively, a reevaluation of the fine-tuning in the infrared may be required if a spec-
trum with heavy squarks is made natural due to correlations between soft mass UV-boundary
conditions and the infrared value of the Higgs mass, as in ‘Focus Point’ supersymmetry [80]
or in the recently proposed ‘Radiatively-Driven’ natural Supersymmetry [81]. In these cases
gauginos, Higgsinos, and most likely also stop and sbottom squarks are expected to still be
in the sub-10 TeV range. The first two generation squarks may be somewhat heavier.

Finally, it is still possible that the weak scale is relatively natural due to supersymmetry,
however the sparticles have evaded detection until now. If this is the case it is likely the stop
squarks are still relatively light, in the range of a few 100’s of GeV, and the Higgs mass is
raised by an additional tree-level term. For the stop squarks to evade detection there are a
number of possible scenarios. We will discuss just a few here. One is an example of a so-
called ‘compressed’ spectrum (see e.g. [82]), where the mass splitting between the stop and
the stable neutralino is so small that the tell-tale missing energy signature carried away by the
neutralino is diminished to the point of being unobservable. Another possibility is ‘Stealth
Supersymmetry’ [83,84], where again the missing energy signatures are diminished, however
in this case from sparticle decays passing through a hidden sector. Yet another possibility
is for R-parity violating decays of the superpartners [85], since in this case missing-energy
signatures are removed and the collider searches must contend with larger backgrounds

37



(see e.g. [86] for models and collider phenomenology). For a natural spectrum the first two
generations of squarks must also have evaded detection. One possibility is to raise their mass
above experimental bounds, which is compatible with naturalness if they stay within an order
of magnitude or so of the gluinos and stops [87–89]. Dirac gauginos also offer opportunities
for suppressing collider signatures, at no cost to the naturalness of the theory [90, 91], as
Dirac gauginos may naturally be heavier than their Majorana counterparts. This scenario
allows not only for the suppression of gluino signatures at the LHC, but also suppresses the
t-channel gluino exchange production of the first two generation squarks.

In summary, if we wish for supersymmetry to provide a comprehensive solution to the
electroweak hierarchy problem, then the full cohort of sparticles should lie belowO(few TeV).
Otherwise we are forced into considering at least some fine tuning of the weak scale or
alternatively the introduction of an additional mechanism, beyond supersymmetry, to enable
a natural weak scale.

3.6 Extra Dimensions

In the late 1990’s the theoretical physics community was electrified by an age-old question:
“What if there are extra dimensions beyond the four we are familiar with?”. This question
came to the fore because it was realised that extra dimensions can solve the hierarchy prob-
lem, or at least turn it on it’s head [92, 93]. Essentially, the hierarchy problem is resolved
if the cutoff of the SM EFT is actually at the weak scale. If this is the case, and the true
fundamental theory kicks in around Λ TeV, then we can understand why the Higgs mass is
near to this scale, since this is the natural scale of the theory. This part of the idea was thus
not all that radical, however the really radical part was that even the cutoff of the gravity
as we know it is at the weak scale, rather than at MP ≈ 2× 1018 GeV. We will see how this
works, but first let me point you towards some excellent lectures available online [94,95].

The N-dimensional graviton is massless, thus it will in general have a momentum de-
scribed by the null N-vector PM = (p, p

3
, p

E
) where p

E
is the spatial momentum in the extra

dimensions. Since the graviton is massless we have PMP
M = 0, which we may rearrange as

p2 − |p
3
|2 = |p

E
|2 . (3.83)

Although simple, this equation is very revealing. It tells us that a massless field in N-
dimensions will have an apparent 4D mass given by its momentum in the extra dimension!

m2 = |p
E
|2 . (3.84)

We must still have our familiar massless graviton from 4D, which must then correspond to
an N-dimensional graviton with vanishing extra-dimensional momentum p

E
= 0. This also

means that the wavefunction of the massless graviton in the extra dimension must be flat in
some, since it carries no extra-dimensional momentum ∂mh0 = 0.

A massless graviton in N-dimensions has N(N−3)/2 degrees of freedom. This means that
from a 4D perspective we will expect to see not only the massless and massive spin-2 fields in
4D (2 and 5 degrees of freedom respectively), but also additional scalar, vector, and tensor
fields all coming from the original N-dimensional metric. For now, we only want to consider
the 4D Planck constant, thus we need only consider the massless graviton we see in 4D.
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Thus, without loss of generality we may write the extra dimensional metric as a background
metric accompanied by 4D metric fluctuations. Let us consider extra-dimensional geometries
in which, through a coordinate transformation, the metric can be taken to be ‘conformally
flat’,

ds2 = g̃MNdxMdxN (3.85)

= eA(xm)gMNdxMdxN (3.86)

= eA(xm)

(
gµν4 (xµ)dxµdxν +

∑

m

dx2
m

)
(3.87)

where Greek indices are for 4D coordinates and lowercase Latin indices are for extra di-
mensional coordinates. The 4D fluctuations are taken independent of the extra dimensional
coordinates, since the massless 4D graviton carries no extra-dimensional momentum.

The Einstein-Hilbert action for gravity in N-dimensions is given by

SEH =

∫
dNxMN−2

N

√
−g̃R(g̃) (3.88)

where g is the determinant of the metric, and R is the Ricci scalar. Now, for N > 4 we
need to figure out what the effective 4D Planck constant will look like. With a textbook bit
of work, using standard properties of the Ricci scalar under Weyl transformations, and the
fact that ∂mg

µν(xµ) = 0, we may re-write the Einstein-Hilbert action as

SEH =

∫
dNxMN−2

N e
N−2

2
A(xm)

√−g4R4(g4) (3.89)

where R4(g4) is the usual 4D Ricci scalar. The usual 4D Einstein-Hilbert action is given by

SEH =

∫
dNxM2

P

√−g4R4(g4) (3.90)

thus we may now identify the observed Planck’s constant as

M2
P =

∫
dN−4xmMN−2

N e
N−2

2
A(xm) . (3.91)

Let us now consider some explicit examples.

Flat extra dimensions

If the extra dimensions are flat we have A(xm) = 0. Then, if the length of each extra
dimension is rm, we have

M2
P = MN−2

N

∏

m

rm . (3.92)

Let’s take each extra dimension to be of the same size r0, then, solving for MP ≈ 2 × 1018

GeV, we have that the required size of the extra dimensions are

r0 ≈ 2× 10
32
N−4

−19

5
2

N−4

(
1 TeV

MN

)N−2
N−4

m . (3.93)
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Clearly, for a single extra dimension we would need the extra dimension to have a size about
as large as 5 astronomical units, roughly the distance from the Sun to Jupiter. Since at
distances below this scale gravitational physics would start to appear 5D, rather than 4D,
the predictions of this theory would not match 4D Einstein’s gravity. In fact, gravitational
physics on much smaller distance scales has already been probed, so this theory is ruled out.

However, for two extra dimensions, they only need to have a size in the mm level. Grav-
itational physics on these distance scales is only just beginning to be probed, making this
scenario very appealing for laboratory probes of gravity.

Why does such a scenario solve the hierarchy problem? The reason is that the cutoff
of the theory is MN ∼ TeV’s, and not 2 × 1018 GeV. Essentially, the cutoff of field theory,
where the full theory of quantum gravity must kick in, has been moved down to near the
weak scale. This means that, from the EFT perspective, there is no hierarchy problem, since
the Higgs mass is indeed near the cutoff of the theory, exactly as expected.

There is, however, a delicate subtlety. This comes down to the fact that we now have to
understand why the extra dimension is so large [96]. After all, for the N = 6 case the size of
the extra dimension corresponds to an energy in the ballpark of 0.1 meV. Now there is a huge
hierarchy between fundamental scales MN/(1/r0)! This means that while the electroweak
hierarchy problem is resolved, a new one pops up in its place regarding the volume of the
extra dimensions. There are, however, ways to get around this problem, as described in [96].

Randall-Sundrum

Let us make a jump from particle physics to cosmology. In cosmology we have previously
faced immense hierarchy problems, related to the flatness and homogeneity of the universe.
The flatness problem relates to the fact that the geometry of the Universe is very close to
flat. If the Universe expanded in a radiation-dominated manner since the big bang then
the contribution of the curvature must have been initially very finely tuned to avoid the
curvature dominating at late times. Similarly, the horizon problem is also a fine-tuning
problem in the sense that the initial conditions could have been very precisely fine-tuned to
make it appear homogeneous now, however that is not what one would generally expect if
the big bang only involved a radiation-dominated epoch.8

Of course, cosmologists have had tremendous success in solving these hierarchy problems
through the theory of inflation, so let us revisit the details. Einstein’s equations in the
presence of a cosmological constant are, in a general number of dimensions, given by

GMN = −ΛgMN . (3.94)

Let us consider two general metrics of the form

ds2 = −dt2 + e
√
±2α/3t

∑

m

dx2
m , ds2 = e

√
±2α/3xM

(
−dt2 +

∑

m 6=M

dx2
m

)
+ dx2

M (3.95)

where the indices run over all spatial dimensions. These metrics are clearly of the same form,
yet in the first the time direction is ‘special’, and in the latter a spatial direction is special.

8I’ll leave it to the cosmology talks to cover these topics in more detail!
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Respectively they yield an Einstein tensor of the form

GMN = −αgMN , GMN = αgMN . (3.96)

Thus, for Λ > 0, corresponding to a positive cosmological constant and de-Sitter geometry,
we may choose α = Λ and we recover the usual solution for cosmological inflation. As we
move along the time dimension the proper distance between two space-time points grows
exponentially. This is highly non-trivial, as it can explain how spacetime events that appear
to be causally connected only now, for example photons coming from opposite sides of the
Universe, may in fact have been causally connected at earlier times. This explains the horizon
problem. The flatness problem is similarly solved. Thus inflation solves these hierarchy, or
fine-tuning, problems very convincingly. These hierarchies really do deal with hierarchies of
scales, thus it is appealing to consider whether a similar mechanism could be used for the
weak scale.

Let us now consider Λ < 0. This is anti-de-Sitter geometry. If there is an additional
extra dimension, that we will parameterise with the coordinate y, then we can use the

second metric with a scale factor e±
√

2|Λ|/3y. Everything should follow in analogy with the
inflationary case, however the scales will now become exponentially warped as we move along
an extra spatial dimension. This is, in fact, the proposal of Randall and Sundrum [97]. Let
us now see in detail how this works.

There are different ways in which one can frame this proposal, however the one which
illuminates the mechanism most clearly is one in which all fundamental parameters are taken
to be of order the Planck scale. So let us take MP ∼ M5 ∼ α. The last parameter we will
trade for k = α/3, which can be easily inserted into the metric above. Now let us imagine
the Higgs boson is not a 5D field, but in fact lives on a 4D slice of the extra dimension, that
we will locate at y = y0. Following the standard EFT rules we will write the Higgs mass at
the same mass scale as the other parameters in the theory, thus the quadratic action for the
Higgs living on this slice is

L =

∫
d4xdyδ(y − y0)

√−g̃√
g55

(
gµν∂µH

†∂νH
† − λ(|H|2 − f 2)2

)
, (3.97)

where, as indicated above, the decay constant is near the Planck scale f ∼MP . Let us now
insert the explicit form of the metric and integrate over the delta function

L =

∫
d4xe−4ky0

(
e2ky0ηµν∂µH

†∂νH
† − λ(|H|2 − f 2)2

)
. (3.98)

Finally, canonically normalising the Higgs field, we have

L =

∫
d4x

(
ηµν∂µH

†∂νH
† − λ

(
|H|2 − f 2e−2ky0

)2
)

. (3.99)

Remarkably, the natural scale for the Higgs vacuum expectation value is exponentially de-
pendent on the position of the brane on which the Higgs field lives. This is the essence
of the Randall-Sundrum solution to the hierarchy problem, and we can arrive at a natural
value for the weak scale with y0 ∼ k−1 log v/MP . Since the brane position is only logarith-
mically dependent on the required separation of scales the hierarchy problem is truly solved
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in the sense that the radius of the extra dimension need not be hierarchically larger than
the relevant length scales.

One might correctly object that we do not, in fact, live in an AdS universe. This issue is,
however, relatively straightforward to resolve. To fully solve Einsteins equations one must
also consider the boundaries of the extra dimension. It turns out that one can place 4D slices
at these boundaries with their own cosmological constant and if one choose a finely-tuned
value for the cosmological constant on these branes the final 4D Universe may in fact have
a small cosmological constant. This is a tuning, but it is none other than the fine tuning
we must accept for the cosmological constant in the first place, thus it is not related to the
electroweak hierarchy.

Other geometries / Linear Dilaton theory

There are many different geometries that may be interesting to study. As an example,
consider the following theory

S =

∫
d4x dy

√−g M
3
5

2
eS
(
R+ gMN∂MS ∂NS + 4k2

)
, (3.100)

wheer S is a scalar field, usually referred to as the dilaton. One can justify this action with
a constant shift symmetry S → S + α, accompanied by a Weyl rescaling gMN → e2α/3gMN ,
broken only by the parameter k, which can thus be naturally small. However, one should
not become overly beguiled by such mixed Weyl-Scalar shift symmetries, as one can always
perform a Weyl transformation into a frame, known as Einstein frame, where this is simply
a shift symmetry acting on the scalar alone. This transformation is

gMN → e−
2S
3 gMN (3.101)

which turns the total action into

S =

∫
d4x dy

√−gM
3
5

2

(
R− 1

3
gMN∂MS ∂NS + e−

2S
3 4k2

)
. (3.102)

Whether one works in Jordan frame or Einstein frame is irrelevant, the physics will be the
same. For fun, let’s stay in the Jordan frame. The EOM for S is

∂ye
S∂yS − 4k2eS = 0 . (3.103)

This is solved for the spacetime-dependent background value 〈S〉 = ±2ky. Interestingly, the
background metric in this frame is flat gMN = ηMN . Alternatively, one could have worked
in the Einstein frame, and deduced the same result.

This setup also allows for a solution of the hierarchy problem, somewhere between the
flat and RS cases, with very interesting phenomenology. This scenario demonstrates an even
richer realm of possibilities than before, as the behaviour of fields and their couplings is no
longer solely determined by the metric, but by the interactions with the dilaton. This can be
seen in the Jordan frame, where the metric is entirely flat, whereas some bulk 5D operator,
or brane localised operator, may couple differently to the dilaton

L =
∑

j

cje
αjSOj (3.104)
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where Oj could contain SM fields, the coefficient cj depends on the microscopic structure
of the UV theory, and αj depends on the charge of the operator Oj under the dilaton shift
symmetry. This means that different quantities may be warped by different exponential
factors, unlike in RS where one does not have this freedom.

Mass spectra, wavefunctions, localisation, and all that.

There is a tremendous amount of interesting phenomenology related to extra dimensional
models. This involves the spectra of additional resonances, and other notions such as locali-
sation of fields, which is related to the wavefunctions of various modes in the extra dimension.
To develop some familiarity with these aspects let us consider a simplified scenario, which is
a massless 5D scalar φ in a nontrivial background geometry. Without loss of generality we
may write the action as

S = −1

2

∫
d4x

∫ πR

−πR
dy eA(y)

[
(∂µφ)2 + (∂yφ)2

]
. (3.105)

where A(y) is some general function. Note that both Randall-Sundrum and Linear Dilaton
models can be written in this form, and in general any 5D geometry will take this form as one
may always perform a diffeomorphism to go to this ‘conformally flat’ frame. Interestingly, if
the prefactor has come only from the metric, and not additional factors such as a background
scalar profile, then it turns out that the mass spectrum and wavefunctions are the same for
the massless bulk scalar as for the graviton. Let us see what they are.

As the extra dimension is finite, extra dimensional momenta will be quantized, in just
the same way as for a particle in a box in quantum mechanics. Thus we may decompose the
5D field as an infinite tower of momentum eigenstates. These eigenstates correspond to 4D
mass eigenstates. To do this we perform a Kaluza-Klein reduction into 4D fields

φ(x, y) =
∞∑

n=0

φ̃n(x)ψn(y)√
πR

. (3.106)

The 5D field satisfies the equation of motion

eA(y)∂µ∂
µφ+ ∂ye

A(y)∂yφ = 0 . (3.107)

An on-shell 4D scalar satisfies the equation ∂µ∂
µφ̃n(x) = m2

nφ̃n(x), thus we may rewrite this
equation of motion, for each mode, as

eA(y)m2
nψn(y) + ∂ye

A(y)∂yψn(y) = 0 . (3.108)

We must now consider the boundary conditions. For a bulk scalar they can in general be
complicated, however if there is a boundary mass term then they will typically be of the
form ∂yφ = mφ. This comes from continuity of the equation of motion at the boundary,
sometimes known as the ‘jump conditions’. If the boundary mass term is vanishing we
have ∂yφ|y=0,πR = 0, which is known as a Neumann boundary condition. If the boundary
mass term is infinite then we must have φ|y=0,πR = 0, known as Dirichlet. Note that when
choosing boundary conditions the appropriate boundary potential must be there, in order
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to satisfy conditions known as junction conditions that follow from the discontinuity of the
wavefunction over a boundary. Anyway, lets keep life simple and choose to have no boundary
potential, corresponding to Neumann boundary conditions. This is the usual case for the
graviton as well.

We see that for this general geometry we have a massless mode with a flat profile

ψ0(y) = const , m0 = 0 . (3.109)

The other potential zero mode does not satisfy the boundary conditions. This means, for
example, that in any general 5D geometry the graviton wavefunction is flat. However, as we
will see, this does not imply that the graviton is not localised preferentially towards one end
of the extra dimension.

To solve for the wavefunctions of the massive modes we must solve the eigenfunction
equation

m2
nψn(y) + A′(y)ψ′n(y) + ψ′′n(y) = 0 . (3.110)

for whichever specific geometry we are interested in.9

For a flat extra dimension this equation is very simple to solve, since A′(y) = 0. Subject
to the boundary conditions, this leads to the solutions

ψ0(y) ∝ const (3.111)

ψn(y) ∝ cos
ny

R
, n ∈ N (3.112)

with mass

m2
0 = 0 , m2

n =
n2

R2
. (3.113)

For the linear dilaton setup this equation is also simple to solve, since A′(y) = −2k.
Subject to the boundary conditions, this leads to the solutions

ψ0(y) ∝ const (3.114)

ψn(y) ∝ ek|y|
(
kR

n
sin

n|y|
R

+ cos
ny

R

)
, n ∈ N (3.115)

with mass

m2
0 = 0 , m2

n = k2 +
n2

R2
. (3.116)

For Randall-Sundrum the solution is a little more complicated. In this case we may write
A(y) = −3 log |ky|.10 The solution is now

ψ0(y) ∝ const (3.117)

ψn(y) ∝ y2

(
J2(mny)− J1(mn/k)

Y1(mn/k)
Y2(mny)

)
... , n ∈ N (3.118)

9To simplify things, we may perform a field redefinition ψn(y) = e−A(y)/2ψ̃n(y), such that the equation
of motion becomes (m2

n − A′2(y)/4 − A′′(y)/2)ψn(y) + ψ′′n(y) = 0. This does not, of course, change the
solutions, but may be useful in calculations.

10Note that in this basis we usually refer to the coordinate z, since y is conventionally reserved for the
non-conformally flat version of the metric ds2 = e2kydx2 + dy2, but for the sake of consistency of notation
here we will stick with the current notation.
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with mass

m2
0 = 0 , Sol(J1(mnπR)Y1(mn/k)− Y1(mnπR)J1(mn/k)) = 0 . (3.119)

Note that expressions that appear to be different exist in the literature, such as in [95],
however one should realise that they are all the same, differing only by a wavefunction
redefinition, or a change of coordinates.

To understand the localisation of a Kaluza-Klein modes we need to know where they
‘live’ in the extra dimension. To be sure of making physical statements, one must define
a measure that is independent of changes of coordinates. In other words, it must be a
diffeomorphism-invariant quantity. The obvious candidate is the field density

dPn(y)

dy
= eA(y)|ψn(y)|2 (3.120)

since this originates from the diffeomorphism invariant term
√−gd5x|φ|2. Thus we see that

for a flat extra dimension the zero mode and excited modes are evenly distributed along the
extra dimension. For the linear dilaton case the excited modes are distributed in exactly the
same way as a flat extra dimension, but the zero mode is exponentially distributed towards
one end of the extra dimension. For Randall-Sundrum it is conventional to make a change
of coordinates to the metric ds2 = e2kydx2 + dỹ2, for which we would define ky = ekỹ, where
one see that the zero mode is exponentially distributed and the excited modes are evenly
distributed, but this time with Bessel functions, rather than sinusoids. This is why we refer
to gravity being exponentially localised in Randall-Sundrum, since the 4D graviton is the
zero mode, who is indeed exponentially localised at one end of the extra dimension.

These are the basic tools for model building in extra dimensions, where it is possible
to localise different fields for different purposes. For example, this has been used to realise
models for small neutrino masses, flavour hierarchies, and many other possibilities. Let us
now end our foray into the fifth dimension by stepping back into 4D, discretely.

Dimensional Deconstruction.

While it is natural to associate the physics of extra dimensions with gravity, it is possible to
do 5D model building without ever stepping foot into a fully-fledged 5D model. This is based
on the idea of ‘dimensional deconstruction’ [98], which essentially borrows the theoretical
technology of lattice QCD to do model building! Let us start by considering N + 1 scalar
fields in 4D, with the usual kinetic terms

L =

∫
d4x

∑

j

1

2
∂µφj∂

µφj . (3.121)

Now we will add ‘nearest-neighbour’ mass terms between the scalars that are of a form more
familiar from condensed matter physics than particle physics

L =

∫
d4x

∑

j

1

2
m2(φj − φj−1)2 . (3.122)
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Figure 9: A schematic of dimensional deconstruction with a multi-site model. If some
SM operator is coupled to the end of the chain it will inherit a suppressed coupling to the
massless mode, scaling like 1/

√
N , as well as a coupling to the massive fields.

These interactions still respect a shift symmetry φj → φj + const, thus although the mass
terms involve every scalar, a massless mode must emerge once we diagonalise the mass
terms since there is a degree of freedom protected by this shift symmetry. Since the shift
symmetry acts equally on all field, when we go from the interaction basis φj, to the mass
basis φ̃j, through an orthogonal rotation, we will find that the massless mode has an equal
overlap with each of the interaction basis fields. The massive modes will have a spectrum
that approaches mn ∼ mn/N , and the overlap between mass eigenstates and interaction
eigenstates will be found to be sinusoidal. This is of course very familiar from a flat extra
dimension.

To see the connection, let’s revisit some basics of lattice field theory. Take a field living
in 4 + 1 dimensions φ(x, y), where y is the extra dimension. In a compact extra dimension
this gives rise to an infinite number of 4D fields, as we have seen. We can understand
this by having a single 4D field living at every slice of the extra dimension. Now we may
discretise the extra dimension, turning it into a lattice. Thus the position along the extra
dimension becomes a discrete variable yj = ja, where a is the lattice spacing a = L/N , L is
the length of the dimension, and N is the number of lattice sites. Now we have N 4D fields
φ(x, y) → φj(x, ) for each lattice site. The final, crucial, ingredient is that we must have
some way to deal with extra dimensional derivatives ∂yφ(x, y)→? The correct prescription
is of course to simple use the definition of the derivative ∂yφ(x, y)|y → (φj+1(x)− φj(x))/a.
This is all the machinery we require to transform our extra dimension into a lattice.

Lets put this to practice for a bulk scalar in a flat extra dimension

S = −1

2

∫
d4x

∫ πR

−πR
dy
[
(∂µφ)2 + (∂yφ)2

]
(3.123)

→ −1

2

∫
d4x

[
N∑

j=0

(∂µφj)
2 +

N−1∑

j=0

1

a2
(φj+1(x)− φj(x))2

]
(3.124)

(3.125)

This is simply the condensed-matter inspired action we wrote above! Thus we see that
reversing the direction, the continuum limit a → 0, Na → L, is simply a massless scalar in
a flat extra dimension.

This may seem like a rather trivial set of steps, but it can be tremendously useful in
model building. The reason is that one can play with extra dimensional model building, and
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make use of particle locality in an extra dimension, by playing with models in ‘theory space’,
as sketched above. This is shown schematically in fig. 9.

While there is not time to go into it here, this notion of locality is very useful in terms
of controlling radiative corrections. For example, when one has a symmetry that is only
broken when all interactions between the fields are considered, known as collective symmetry
breaking, this means that loop corrections must involve all sites of the chain before they can
transmit a symmetry-breaking spurion to some observable. This then means that symmetry-
breaking effects can be delayed to very high loop orders, which is particularly useful for
composite Higgs models, where we already saw that gauge and Yukawa interactions break
the shift symmetry of the Goldstone Higgs. In dimensionally-deconstructed models the
relevant dangerous corrections can then be delayed to higher loop order.

Summary

We have only scratched the surface here, but have already seen that study of extra dimen-
sional scenarios has led to radically new perspectives on the hierarchy problem, as well as
a tremendously useful tool in model building: locality. General theoretical tools are rare to
come by, and in some sense locality became a new arrow in the quill of the model builder,
alongside symmetries, and is still widely used.

3.7 Cosmological Relaxation

The previous approaches to the hierarchy problem have utilised symmetries, internal and
spacetime, to explain a small Higgs mass. However, recently a radical new approach to the
hierarchy problem, “The Relaxion”, has been proposed [79].11 This approach uses symme-
tries in the underlying model, but the Higgs mass itself is not protected by a symmetry.
Instead, dynamical evolution of this Higgs mass in the early Universe halts at a point where
it is tuned to be much smaller than the cutoff. Essentially one has a dynamical explanation
for the tuning!

As described in [79], if the Higgs is a fundamental scalar then the hierarchy problem
relates to the fact that if we keep the theory fixed but change the Higgs mass, the point with
a small Higgs mass is not a point of enhanced symmetry. However, this may be a special
point with regard to dynamics, since this is the point where the SM fields become light.

This perspective suggests that theories may exist where the Higgs mass is an evolving
parameter in the early Universe. Once the Higgs mass-squared becomes very small, or passes
through zero, some non-trivial dynamics may occur which halts the evolution of the Higgs
mass-squared, fixing it at a hierarchically small value. This is precisely the form of the
relaxion proposal.

The structure of the theory is relatively simple to write down and we will, as always, rely
on EFT arguments. Let us consider the SM as an effective theory at the scale M , which is
the cutoff of the theory. Following the standard EFT rules we include all of the operators,
including non-renormalizable ones, consistent with symmetries. All dimensionful scales are
taken taken to the cutoff M . We add to this theory a scalar φ which is invariant under a

11A similar idea was considered much earlier for the cosmological constant problem [99], and alternative
relaxation-based approaches to the gauge hierarchy problem have also been explored [100,101] more recently.
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continuous shift symmetry, φ→ φ+ κ, where κ is some constant. This shift symmetry only
allows for kinetic terms for φ. We then add a dimensionful spurion field g which breaks this
shift symmetry. As g is the only source of shift symmetry breaking then a selection rule may
be imposed, such that any potential terms for φ will enter in the combination (gφ/M2)n.
Thus the theory is written

L = LSM −M2|H|2 + gφ|H|2 + gM2φ+ g2φ2 + ... (3.126)

where the ellipsis denote all of the other higher dimension terms and it should be understood
that the coefficients of all the operators in eq. (3.126) could vary by O(1) factors and the
negative signs have been taken for ease of presentation.

The next step is to add an axion-like coupling of φ to the QCD gauge fields

φ

32π2f
GG̃ . (3.127)

As we have learned, this coupling is very special. As GG̃ is a total derivative, in perturbation
theory eq. (3.127) preserves the shift symmetry on φ, thus it is consistent to include this
operator without a factor of g in the coupling. Perturbatively this operator will not generate
any potential for φ, thus all of the shift-symmetry breaking terms involving g remain radia-
tively stable and it is technically natural for them to be small. However, non-perturbatively
the full topological structure of the QCD vacuum breaks the shift symmetry φ → φ + κ
down to a discrete shift symmetry φ→ φ+ 2πfz, where z is an integer. Thus the complete
story behind the model is one of symmetries. φ enjoys a shift symmetry which is broken
to a discrete shift symmetry by QCD effects. The discrete shift symmetry is then broken
completely by g.

The final trick lies in the fact that the φ-potential generated by QCD effects depends on
the light quark masses, which in turn depend on the Higgs vacuum expectation value. In
practice this potential is

VQCD ∼ f 2
πm

2
π cosφ/f (3.128)

∝ f 3
πmq cosφ/f (3.129)

∝ f 3
πλu,d〈|H|〉 cosφ/f . (3.130)

Let us now consider the vacuum structure of the theory for two values of φ. If M2−gφ >
0 then the effective Higgs mass-squared is positive. QCD effects will break electroweak
symmetry, and quark condensation will lead to a tadpole for the Higgs field, which will in
turn lead to a very small vacuum expectation value for the Higgs. Thus in this regime the
axion potential of eq. (3.130) exists but is extremely suppressed. If M2−gφ < 0 the effective
Higgs mass-squared will be negative and the Higgs will obtain a vacuum expectation value.

Cosmological Evolution

The general idea of the relaxion mechanism is sketched in fig. 10. Imagine at the beginning
of a period of inflation the relaxion field begins at values far from the minimum of the scalar
potential. We can, without loss of generality, take this to be at φ = 0. Due to its potential
it will roll, with Hubble friction providing the necessary dissipation for this to occur in a
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Figure 10: Evolution of the relaxion field in the early Universe from a point where the
effective Higgs mass-squared is postive (left), passing through zero (middle), and negative
(right).

controlled manner. This Hubble friction can be understood from the equation of motion for
a scalar in an inflating background

∂2
t φ+ 3H∂tφ ≈ gM2 + ... , (3.131)

where the ellipsis denotes higher order terms in g. During inflation H = const, and this term
provides a constant source of friction, and for large H, one has a non-accelerating solution
to the equations of motion φ ∼ (gM2/3H)t. All the while the effective Higgs mass-squared
is evolving.

Once the effective mass-squared passes through zero the Higgs will obtain a vacuum
expectation value and the axion potential of eq. (3.130) will turn on, growing linearly with
the Higgs vev. If the gradient of this potential becomes locally great enough to overcome
the gradient of the g-induced relaxion potential, i.e.

f 3
π

f
λu,d〈|H|〉 > gM2 , (3.132)

then the relaxion will stop rolling and become stuck. Once it has become stuck the effective
Higgs mass-squared has also stopped evolving. If g is taken to be appropriately small, then
this evolution will cease at a point where the Higgs vev is small 〈|H|〉 � M . As g is a
parameter which can take values that are naturally small, and g ends up determining the
final Higgs vev, a naturally small value for the weak scale may be generated.

If it could be taken at face value, the picture painted above is quite a beautiful portrait
involving SM and BSM symmetries and dynamics. QCD plays a crucial role in determining
the weak scale and solving the hierarchy problem. Only an axion-like field, already motivated
by the strong-CP problem, is added. Inflation, which is already required in cosmology, pro-
vides the dissipation required for solving the hierarchy problem. We even find an explanation
for some other puzzles in the SM, such as why there are some quark masses determined by
the weak scale which are nonetheless lighter than the QCD strong coupling scale. However,
as we will see, some puzzles remain to be understood, presenting a number of interesting
areas to explore on the theoretical front.

49



Parameter Constraints

To determine the viability of the relaxion mechanism it is necessary to consider any con-
straints on the theory. We will list them here, and derive them in the lecture.

• ∆φ > M2/g: For the relaxion to scan the entire M2 of Higgs mass-squared it must
traverse this distance in field space.

• HI > M2/MP : Inserting the previous ∆φ into the potential we find that the vacuum
energy must change by an amount ∆V ∼M4. For the inflaton to dominate the vacuum
energy during inflation we require VI > M4, which corresponds to the aforementioned
constraint on the Hubble parameter during inflation.

• HI < ΛQCD: For the non-perturbative QCD potential to form, the largest instantons,
of size l ∼ 1/ΛQCD, must fit within the horizon.

• HI < (gM2)1/3: Fluctuations in the relaxion field during inflation (due to finite Hubble)
must not dominate over the classical evolution if the theory is to predict a small weak
scale.

• Ne & H2
I /g

2: Inflation must last long enough for the relaxion to roll over the required
field range.

• gM2f ∼ Λ4
QCD: It must be possible for a local minimum to form in the full relaxion

potential whenever the Higgs vev is at the observed electroweak scale.

Combining these constraints it was found in [79] that the maximum allowed cutoff scale in
the theory is

M <

(
Λ4M3

Pl

f

)1/6

∼ 107 GeV×
(

109 GeV

f

)1/6

. (3.133)

It is compelling that such a large hierarchy can be realised within the relaxion framework.
Let us now saturate eq. (3.133) and take f = 109 GeV to explore the other parameters of
the theory. In this limit we find

g ∼ 10−26 GeV , ∆φ ∼ 1040 GeV , 5× 10−5 GeV . HI . 0.2 GeV , Ne & 1043 .
(3.134)

All of these features are quite puzzling or unfamiliar. As such they may represent interest-
ing opportunities for continued theoretical investigation. The parameter g which explicitly
breaks the shift symmetry is extremely small. Recent work along has already shed some light
on this question [102]. On a related note, the required field displacement is not only large,
it is ‘super-duper Planckian’ [103] How such large field displacements can be accommodated
by a story involving quantum gravity remains to be fully understood.

With regard to the inflationary aspects, the Hubble parameter is much smaller than is
typical in inflationary models. The number of e-foldings is huge (remember the scale factor
grows during inflation by a factor ∼ eNe). Although not a problem in principle, it may be
difficult to realise a natural inflationary model with the appropriate slow-roll parameters
which reheats the Universe successfully and also accommodates the observed cosmological
parameters.
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A more tangible puzzle arises in the simplest QCD model presented above, as it is already
excluded by experiment. In the electroweak breaking vacuum the full relaxion potential will
be minimized whenever

∂Vg
∂φ

+
∂VQCD
∂φ

= 0 , (3.135)

where Vg is the scalar potential generated from the terms which explicitly break the shift
symmetry, all originating from the parameter g, and VQCD is the axion-like potential coming
from the non-perturbative QCD effects. Since the relaxion is stopped by QCD effects before
it reaches the minimum of Vg, the first term in eq. (3.135) is non zero. This then implies that
the second term in eq. (3.135) must also be non-zero. By construction, VQCD is minimised
whenever the effective strong-CP angle is zero, thus if it is not minimised the effective strong-
CP angle must be non-zero. In fact, it is typically expected to be close to maximal if the
relaxion has stopped in one of the first minima that appears after the Higgs vev starts to
grow. This is in clear contradiction with experimental bounds on the strong-CP angle and
so the model must be extended, and a number of options have been proposed.

4 The Strong-CP Problem

The strong-CP problem concerns a beguiling aspect of the SM, where reasoning based on
perturbation theory fails spectacularly, and very beautiful quantum field theory was required
to untangle the physics. It is concerned with a CP-odd interaction

L = θ
g2

32π2
εµναβG

a
µνG

a
αβ , (4.136)

where θ is an unfixed parameter. This rather innocuous looking term brings us face-to-face
with the difference between classical and quantum theories in two important ways:

• a) In a classical theory a symmetry of the Lagrangian is a symmetry of the physics.
In a quantum theory a symmetry of the path integral is a symmetry of the physics.
The two are not one and the same if the path integral measure is not invariant under
a symmetry.

• b) A total derivative term, which essentially lives on the boundaries of space time, does
not change the equations of motion and is thus classically unimportant in perturbation
theory. However, in a quantum theory it can still have dramatic physical consequences.

Let us investigate these two aspects in more detail.

Symmetries: Quantum or Classical?

Consider a theory with a massless Dirac quark in the fundamental representation of SU(3).12

The fermionic part of the action is

L = iψγµDµψ . (4.137)

12This discussion will sketch the more detailed explanation given in [5,6], where the Fujikawa explanation
[7, 8] is given.

51



This action is invariant under the global chiral field redefinition ψ → eiαγ5ψ. Since this is
a symmetry of the classical action we would usually expect it to be symmetry of the full
theory. Noether’s theorem means that there must therefore be a conserved current. To derive
the current conservation equation for a global symmetry a quick method is to promote the
global transformation to a local one α → α(x), perform a symmetry transformation, and
then apply the variational principle to α(x) to find a current conservation equation ∂µJ

µ

under the restriction that α(x) is a constant.13

In a quantum theory physical predictions follow from the path integral, which is

Z =

∫
DψDψexp

[
i

∫
d4xiψγµDµψ

]
, (4.138)

thus for physical predictions in the quantum field theory to be invariant the path integral
measure DψDψ must also be invariant under a symmetry transformation. Under the local
chiral transformation we have

DψDψ → |J |−2DψDψ , (4.139)

where J is the Jacobian, in full analogy with the Jacobian arising in a change of variables
in a multiple integral. There is not time to go into the derivation of this Jacobian, however
I urge the interested reader (you should be interested), to go and read the relevant chapters
of [5,6] for an explanation, as this is fundamental stuff! It turns out that, by using functional
determinant methods, and a clever bit of divergence regulation, the Jacobian may be written

J = exp

[
i

∫
d4xα(x)

g2

32π2
εµναβG

a
µνG

a
αβ

]
. (4.140)

Combining this with the variation from the action, we have

Z =

∫
DψDψexpi

∫
d4x

[
iψγµDµψ + α(x)

(
∂µJ

µ +
g2

32π2
εµναβG

a
µνG

a
αβ

)]
. (4.141)

This is remarkable! A symmetry of the classical action is, in fact, not a symmetry of
the quantum theory. Since it is not a symmetry it cannot be spontaneously broken, thus
when quarks condense one should not expect a pseudo-Goldstone boson associated with the
spontaneously broken U(1) chiral symmetry, as it is not a symmetry of the theory. Indeed,
this is the reason one does not have a light η′ meson, since the η′ is associated with this
spontaneous symmetry breaking.

Let us now consider a theory in which the quarks now have Dirac mass, which may, in
general, contain a phase, and the usual topological term

Z =

∫
DψDψexp

[
i

∫
d4xiψ

(
γµDµ +me−2iθqγ5

)
ψ + θ

g2

32π2
εµναβG

a
µνG

a
αβ

]
. (4.142)

Usually, we would understand the quark mass phase to be unphysical, as we could simply
perform the chiral rotation ψ → eiθqγ5ψ to eliminate it from the action entirely. However, if
we do perform this rotation we simply shift the phase into the topological term

Z →
∫
DψDψexp

[
i

∫
d4xiψ (γµDµ +m)ψ + (θ + θq)

g2

32π2
εµναβG

a
µνG

a
αβ

]
. (4.143)

13This sounds a bit long-winded, but is equivalent to the usual procedure for deriving a Noether current.
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This can be understood from eq. (4.141), where a constant rotation α(x) = θ has been
performed, and integration by parts shows that the middle term vanishes.

Similarly, we could entirely remove the original topological term, with a similar rotation
ψ → e−iθγ5ψ, however now the topological term moves into quark mass

Z →
∫
DψDψexp

[
i

∫
d4xiψ

(
γµDµ +me−2i(θq+θ)γ5

)
ψ

]
. (4.144)

However we might try, we cannot remove the sum of these terms from the action, thus we
should start to expect it may, in fact, be physical! This concludes the discussion of point
a), where we see that although the Lagrangian may possess a symmetry, the full quantum
theory may not possess this symmetry if the path integral measure is not invariant. Let us
now proceed to point b).

Totally Derivative

Eq. 4.136 may actually be written as a total derivative of a current, sometimes referred to
as a Chern-Simons current

L = θ
g2

32π2
εµναβGa

µνG
a
αβ (4.145)

= θ
g2

32π2
∂µJµ , Jµ = εµναβ

(
AaνG

a
αβ −

2

3
fabcAaνA

b
αA

c
β

)
. (4.146)

Now, as total derivatives do not enter the equations of motion, we are well used to discarding
them when performing calculations in perturbation theory. Indeed, if we include this term in
the action we will find that at no point does θ ever show up in the prediction for a physical
process. So, from this perspective, we might be tempted to forget about it in any case.

There is, however, an important subtlety. While this reasoning is perfectly valid in
perturbation theory, there may be non-perturbative field configurations at infinity that have
non-trivial properties. We are familiar with these sorts of surprises from the Aharanov-Bohm
effect. In that case, although a charged particle feels no force as it is taken around a solenoid,
a long way from it where the magnetic field is negligible, it does pick up a phase due to the
non-trivial topological structure of the field configuration.

While not, of course, exactly the same, QCD instantons are similar. These non-trivial
field configurations have a finite action, as they vanish at infinity, however they do have non-
trivial topology all the way out at infinity. In fact, they carry a kind of winding number,
that counts the number of times the gluon field has wound around the sphere at infinity.
Just as the Aharanov-Bohm phase is physical, in that it leads to measurable effects, so too
are the QCD instantons. This means that although the QCD topological term is a total
derivative and leads to no effects in perturbation theory, it is still physical and may show up
in experiments through non-perturbative effects.

We usually consider non-perturbative effects to be small whenever perturbation theory is
valid, since the non-perturbative effects tend to scale as ∼ e8π2/α(µ), where µ is the relevant
energy scale. When perturbation theory is under control α � 1 and these effects are ex-
ponentially small. However, when perturbation theory starts to break down, α ∼ 4π, these
effects can become large. In fact, this is precisely what happens with QCD, since the gauge
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Figure 11: Generation of the neutron EDM from loops involving pions and the η′ meson.
Figure taken from the original CERN preprint [9].

coupling becomes large and the non-perturbative effects are significant. In summary, when
perturbation theory is breaking down, one cannot ignore the presence of total derivative
operators such as eq. (4.136) in the presence of non-trivial topology.

Now, how might we observe the physical effects? As we showed in the previous section,
one can entirely remove the topological term from the action by performing a chiral phase
rotation that pulls the phase into the quark masses. Then, when we go to the chiral La-
grangian, which is the effective field theory that concerns QCD at low energies after quark
condensation as 〈qq〉 ∼ fπe

iπ/fπ , including the pions, and also nucleons separately, this phase
shows up in the mass terms, and hence also in the interactions between fields. Loop dia-
grams [9], shown in fig. 11, then lead to a neutron electric dipole moment, arising from a
mismatch in phases between vertices involving the pions and the η′.

The resulting value for the nEDM is (see e.g. [10])

dn
e
∝ −(θ + θq)

mumd

(mu +md)(2ms −mu −md)
. (4.147)

Experimental constraints on the nEDM constrain the sum of phases to be (θ + θq) . 10−11.
Thus the sum of CP-violating angles is required to be extremely small. The strong-CP
problem arises not so much because the angle is necessarily is a small number, but rather
that there is no good reason for it to be small. We cannot simply assume that CP is a good
symmetry of nature, because we have measured that it is not in the quark sector through
meson anti-meson mixing. As we know there are phases in the quark mass matrices then θq
should be there as well, but then how could this phase ‘know’ about θ in such a way as to
delicately cancel it?

The Strong-CP problem is clearly a very serious issue! Let’s explore some of the possible
solutions.

4.1 Massless quark solution

This is the most minimal solution. Let me give three explanations for it:
Poor man’s explanation: Staring at eq. (4.147) we see that the nEDM vanishes if one of

the quark masses goes to zero! Thus there is no conflict with nEDM constraints in this case.
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Less poor man’s explanation: In eq. (4.144) we have performed a chiral rotation to move
the strong-CP phase into the quark mass term. However, if m = 0 then this term does not
arise in the action, thus we can remove the strong-CP phase from the action with a chiral
field rotation, meaning it is unphysical and will not show up in any observable.

Rich man’s explanation: In reality, QCD interactions generate the ’t Hooft determinant
interaction, which looks like

Det[qq] (4.148)

for the Weyl quarks that will generate a mass for all of the quarks, thus the quarks are really
massless as such. In fact, what really happens in this case is that the η′ meson acquires a
vacuum expectation value that exactly cancels the strong-CP angle.

Unfortunately, or fortunately if you share my perspective, the massless quark solution is
experimentally excluded [10]. This exclusion comes from the fact that the other properties
of the known mesons, including pions, require all of the quarks to have some sort of bare
mass. So we must look elsewhere.

4.2 Spontaneous CP Breaking

If CP were a symmetry of nature then there would be no strong-CP problem. Interestingly,
even though we observe CP violation in nature, we can make use of this fact if CP is truly a
fundamental symmetry of nature at high energies that has been spontaneously broken, such
that at low energies we don’t observe it to be a symmetry. In this way, one starts with a
theory that is CP-invariant and has, for example, a quark mass matrix that is entirely real.
Then, CP is spontaneously broken by the vacuum expectation value of a CP-odd scalar. The
interactions of this scalar may be engineered such that CP-violation shows up in the CKM
matrix, but not in the strong-CP angle. In this way one has a symmetry-based explanation
for the smallness of the Strong-CP angle [11–13] . (See [14] for a recent appraisal).

4.3 The Axion

Perhaps the favoured solution to the strong-CP problem is the axion, and so I would like
to spend some time on it. It is a theorem that when a continuous global symmetry is
spontaneously broken this gives rise to a massless Nambu-Goldstone boson [15,16].

We already studied the U(1) case in sect. 2.3. There the Goldstone boson a is massless,
and enjoys a shift symmetry a → a + f . This is the ‘nonlinear’ realisation of the U(1)
symmetry. Thus, although we often refer to symmetries as being spontaneously broken,
they are really not broken at all, as the symmetry remains, however the way it acts on the
relevant fields is very different. Since the radial mode is heavy we may henceforth forget
about it, and just consider the field U = feia/f/

√
2.

Now let us return to the quarks and charge them under this symmetry, such that they
cannot have a bare mass term, but can only have a Yukawa interaction with the complex
scalar, enforced by the U(1) symmetry. Once the scalar obtains a vev then we can see that
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the action for the quarks becomes

L = iψγµDµψ + eiθqλφψψ + h.c.+ θ
g2

32π2
εµναβG

a
µνG

a
αβ (4.149)

→ iψγµDµψ +mψe
iθq+a/fψψ + h.c.+ θ

g2

32π2
εµναβG

a
µνG

a
αβ (4.150)

→ iψγµDµψ +mψe
iθq+θ+a/fψψ + h.c. , (4.151)

where in the last line we performed a chiral rotation to move the QCD angle into the quark
mass term, and the hermitian conjugate is just an alternative way of writing action without
the γ5 matrix.

The important point is that the Goldstone boson enters the action in just the same way as
the bare CP-violating angles. Henceforth we will refer to this field as the axion, and we will
refer to this U(1) symmetry as U(1)PQ, after Roberto Peccei and Helen Quinn, who spotted
that this global symmetry had very interesting implications for the strong-CP problem. Since
the axion has a shift symmetry, we may happily shift away the angles a→ a−f(θq +θ) such
that the action is simply

L = iψγµDµψ +mψe
ia/fψψ + h.c. (4.152)

This is, of course, relating a shift of the axion field to a quark chiral field rotation! The overall
background value of the axion field 〈a/f〉 is now the total physical strong-CP phase. For
example, the neutron electric dipole moment is simply proportional to this value nEDM ∝
〈a/f〉. What should this value be?

Lets see what happens when the quarks condense and work now within the SM. We
will not include the neutral pion field, associated with the spontaneous breaking of the
chiral SU(2) symmetry, however one should consult [17] for a clear and up-to-date treatment
including the pions. The result in the SM for the approximation mu = md = mq is that
mq〈qq〉 = f 2

πm
2
π, thus the action becomes

L = eia/f〈mψψψ〉+ h.c. (4.153)

→ f 2
πm

2
πe

ia/f + h.c. (4.154)

Thus the potential generated for the axion, within QCD, is

V (a) = −f 2
πm

2
π cos

(
a

f

)
. (4.155)

Note that this is a very non-trivial result. We started with a global symmetry which was
spontaneously broken, leading to a massless Goldstone boson. However, this symmetry was
anomalous at the quantum level, under QCD. This means that although in perturbation the-
ory no mass would ever be generated for the axion, there was no obstruction to generating
a mass non-perturbatively, and this is precisely what has happened: The U(1)PQ symmetry
was not a true quantum symmetry of the theory, and when QCD became strongly coupled
non-perturbative effects become large. Since these effects need not respect the global sym-
metry, they need not respect the shift symmetry of the axion, and they can, and do, generate
a potential and a mass for the axion.
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In addition, this potential respects a residual shift symmetry a/f → a/f + n2π. This
is related to the fact that there is a redundancy in the Lagrangian in the case of the global
U(1) symmetry, which is that for eiθ is completely unchanged under a rotation of ∆θ = n2π.
This is a discrete gauge symmetry, which is not broken, and this is showing up in the axion
potential!

This potential is minimised for 〈a〉 = 0, meaning that this field will automatically evolve
to a value that predicts a vanishing neutron electric dipole moment. This solves the strong-
CP problem! This solution was pointed out by Weinberg and Wilczek independently, and is
often referred to as the Weinberg-Wilczek axion. Wilczek called it the axion after a popular
cleaner brand, as it cleans up the strong-CP problem. However, there is no free lunch, and
although the strong-CP problem has been solved, the price of the solution is a brand new
particle. A particle we should be able to observe!

4.4 Axion phenomenology.

To understand how the axion behaves we need to spend some time thinking about its origin.
The SM alone cannot accommodate this particle, thus there must exist a new complex scalar
field somewhere and furthermore this means we need not associate f with the weak scale.
To see this, consider a scenario where the quarks considered before are not the SM quarks,
but actually some new quarks we have not observed yet. Then the same procedure follows
as above, where the quark masses are mQ = λf , however we may perform a set of chiral
rotations

mQe
ia/fQQ→ a

f

g2

32π2
εµναβG

a
µνG

a
αβ → mqe

ia/fqq , (4.156)

meaning that the axion coupling to the light SM quarks can arise even if the axion originally
only coupled to some heavy quarks. This is known as the KSVZ axion [18, 19]. One can
construct a similar argument using multiple Higgs doublets, known as the DFSZ axion
[20,21]. The essence being that the U(1)PQ symmetry must link the axion to the light quark
mass phase, but it is not really important how that is achieved. Thus, we may take f as a
free parameter.

The next step is to consider the mass of the axion. This is entirely determined by f , and
by expanding the cosine potential we found earlier we see that it is given by [17]

ma ≈ 5.7× 10−6eV

(
1012GeV

f

)
. (4.157)

So we see that this particle can be very light indeed. Usually we would expect to have
observed all particles lighter than∼ TeV masses, however the question of observation depends
on the interactions.

Since the action respects a shift symmetry on the axion a→ a+κ, where κ is a constant,
we may understand all of the interactions of the axion as taking the form

LInt =
cj
f

(∂µa)Oµj , (4.158)

where Oµj is some operator in the SM such as qγµγ5q, lγµγ5l, or even a coupling to photons

JµEM where ∂µJ
µ
EM = F̃ µνFµν . So in general all of the couplings are proportional to 1/f ,
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and if all of the cj ∼ O(1) then for a given scattering process at an energy E the interaction
strength will be proportional to ∼ E/f , thus for E � f the interactions are extremely weak,
and may evade detection.

One final comment is in order. One should not get too comfortable with assuming
cj ∼ O(1). The cj are essentially the U(1)PQ charges of the relevant fields, and there is
actually no technical obstruction to having hierarchical charges, so it may be that coupling
strengths of radically different magnitude could show up in different microscopic models.

Axions and stars

Interestingly, to find a heavenly particle such as the axion, one of the best places to look is
the stars! The basic physics is quite simple. The axion will in general be coupled to quarks,
but also typically leptons and photons. Thus, due to these couplings, scattering processes
such as the Primakoff process

γ + Ze→ a+ Ze (4.159)

can lead to axion production. In the hot dense environment of a stellar core scattering
processes up to energies E ∼MeV’s are copious. The next question is what would happen
to these axions? If the coupling is weak enough (f is large enough), then they may entirely
escape the star after production. Now, we do not search for these escaping axions from
distant stars, but we may search for their indirect effects as they will carry energy out of the
core of the star, leading to additional cooling of the star beyond the usual SM processes.

The effect can be observable, even for minuscule couplings, for a very simple physical
reason. Electrons and photons, when produced in the inner volume of a star cannot escape
the star immediately. Thus while heat transport does occur due to these process, heat loss
only occurs at the surface of a star. However, if axions are produced throughout the entire
volume of the star and they can escape the star unhindered, this energy loss process becomes
a volume effect, rather than an area effect.

We can use this fact to make a very quick estimate of the sort of sensitivity we can expect.
Let’s consider the Sun. The production of axions in the volume of the star will be roughly
proportional to

Γa ∝
(
Ea
f

)2

× n , (4.160)

where n is the total number of particles in the star, that we will estimate to be the number
of baryons. For a star like the Sun n ∼ 1057. For an electromagnetic effect occurring on the
surface we would expect the rate to scale like

Γγ ∝ 4πα× n2/3 . (4.161)

Now, for the axion effect to be detectable it should be at least comparable to the SM rate.
The temperature at the core of a star is of the order T ∼ keV, thus we may estimate Ea ∼
keV. For these rates to be equal we see that, extremely roughly,

f ∼ 105 GeV . (4.162)

Now, this estimate was extremely crude, and if we understand an object very well we will be
able to discriminate effects that are smaller than the known processes, so we should be able
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Figure 12: Numerous constraints and search prospects for axions, taken from [22] where
an excellent overview and figure explanation may be found.

to do even better. Despite this gross oversimplification, we have not done too badly, since
the true constraints from cooling of the Sun work out to be around f ∼ 106 GeV, which
isn’t too far off!

Stronger constraints arise from other objects. Examples include the cooling of red giant
stars, or the cooling of ancient White Dwarf stars in globular clusters. These are some of the
oldest stars we know of in the Universe, thus they have had a long time to cool down. Since
we understand their physics relatively well, including their cooling rate and, in many cases,
production processes, we can set strong bounds on additional cooling processes by observing
populations of these stars.

The strongest bounds come from the imaginatively named SN1987A (a supernova that
occurred in 1987). The physics is very neat. During a supernova there is copious neutrino
production from the formation of a neutron star core p+e→ n+ν. Even though neutrinos are
weakly interacting, the medium is so dense that they do not actually escape the supernova
directly, but slowly diffuse out over a period of seconds. Fortuitously, neutrino detectors
on the Earth were able to observe the neutrinos from SN1987A, thus we saw this event
in omnicolour (photons and neutrinos). If axions were also produced and can escape they
would speed up the energy release, and thus the duration of the neutrino burst would be
shorter, thus we may place constraints on axions from these extreme observations. Because
the temperature is much higher in a supernova, the axion coupling is stronger, and hence we
may set stronger bounds!

All of these bounds may be seen in fig. 12.
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Axion Dark Matter

The axion is already a pretty compelling candidate for BSM physics due to it’s elegant
solution of the strong-CP problem. However, it has one more trick up it’s sleeve that probably
makes it the most compelling BSM particle going. In an expanding Universe we may write
the metric in comoving time with scale factor a(t) as ds2 = dt2 − a2(t)dx2, such that in this
basis the action for a scalar field, approximating the potential with the lowest order mass
term as V (φ) ≈ 1

2
m2φ2, is

L = a3(t)
1

2

(
(∂tφ)2 − a−2(t)

∑

i

(∂xiφ)2 −m2φ2

)
. (4.163)

The prefactor simply comes from the usual term
√−g in GR. Assuming only time-variations

for now, the equation of motion for the scalar field is

∂t
(
a3(t)∂tφ

)
− a3(t)m2φ = 0 . (4.164)

This is why you often see the equation of motion for a scalar field in an expanding background
as

∂2
t φ+ 3H(t)∂tφ = m2φ , (4.165)

where H(t) = (∂ta(t))/a(t). One often sees alternative derivations of this equation, however
I prefer to go straight to the EOM.

For m→ 0 we see that φ =const is a solution of this equation, thus, while H2 � m2, the
scalar field will remain approximately constant, evolving very slowly along its potential. On
the other hand, when H2 � m2 the solution will be a standard sinusoid φ ∼ sin(mt). The
cross-over between these two phases of evolution will occur whenever 3H ∼ m.

Applying this to the axion, we see that in the early Universe, even after inflation has
ended, the axion field value will be approximately constant and it will not have evolved to
the minimum of its potential, where it solves the strong-CP problem. Only when we satisfy
H ∼ m will it start to oscillate. When the oscillations begin the energy density scales, for
small misalignment angles, just as for a simple harmonic oscillator, thus the oscillating axion
field behaves just like cold dark matter!

Seeing axions in the Laboratory

Axion detection is currently a very exciting field, with new ideas popping up all the time. I
will sketch a selection of the experimental ideas on the table.

If the axion makes up the dark matter this means we are immersed in a background axion
field that is oscillating as a(t) = a0 sin(mat), thus the frequency of the oscillations can be
described as

ω ≈ 2× 109Hz

(
1012GeV

f

)
. (4.166)

Being bathed in this oscillating field, one could hope to detect these oscillations via an axion
‘haloscope’. There are number of different techniques. The axion-photon coupling is

L =
αa

fγγ
F µνF̃µν (4.167)

∝ aE ·B . (4.168)
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This means that in a background magnetic field 〈B〉 6= 0, an axion and photon actually
mix, and dark matter axions can convert into photons, that can be observed. Another set
of experiments leverage the fact that, in a background magnetic field, when the axion field
is oscillating it sources an oscillating electric current, that can be detected.

Since the background value of the axion field is the background value of the nEDM, one
can also search for oscillating nEDMs, and a number of exciting detectors have been proposed.
One can also search for the oscillating background matter field through its gravitaitonal
effects.

Alternatively, one could hope to produce axions and then observe them. For example, as
we have demonstrated, they can be produced copiously in the Sun, and could then convert
into ∼ keV photons in the laboratory. A number of experiments along these lines are known
as axion ‘helioscopes’. One could also hope to detect the extremely weak force generated by
the axion, such as it’s influence on spin-mediated interactions.

I have intentionally not named any detectors, since I would inevitably leave an important
one out, however I will leave you with the following fig. 12, which will be discussed in detail
in the lectures, for more information.

Summary

The axion is an extremely predictive solution to a difficult problem. It has played a major
role in BSM theory for decades, and will continue to do so. In these lecture notes I have not
covered many other interesting aspects, such as black hole superadiance, the details of axion
dark matter in cosmology and structure formation, however I hope to have provided at least
a jumping off point for this exciting field of research.

Summary

The relaxion is not a complete story yet, so it is perhaps premature to include it in a lecture
course. However, it is the first step towards a radically different perspective on the hierarchy
problem, a perspective that may an important role in BSM theory for a long time to come.
We are really just at the starting point in trying to understand cosmological or dynamical
approaches to the hierarchy problem, but already there is promise. There have been other
proposals since the original relaxion idea. Many of them are based on the relaxion framework,
however the recently proposed NNaturalness takes an entirely different, but still cosmological
perspective [104]. All I would say at this point is: Watch this space!

5 Where do we stand now?

In these lectures I have opted to cover a lot of ground, in not too much detail. The reason for
this approach is that the current LHC results have left the field of BSM theory in disarray.
This is a very good thing, as there is no single fad that theorists are focussing on, and
ever more daring ideas are being put forth as time goes on. Thus to dive into BSM theory
nowadays requires a solid grounding in QFT, including the basic principles of EFT, fluency
in the basics of cosmology and GR, and most importantly a great deal of imagination guided
by the neat ideas of the past. Some of the ideas I have introduced you to, such as the Twin
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Higgs and the Relaxion, are not textbook material, but this is what makes them exciting.
Perhaps some element of these concepts may turn out to be just the ingredient we have been
looking for.

One should never overlook the fundamental difference between a theoretical problem and
any null experimental results for a particular solution to that problem. The only way the
theoretical problems I have discussed will go away is if we gain a theoretical or experimental
understanding of their solution. The fact that the LHC, or other experiments, have not yet
given us clues does not mean the problems have gone away. It means that either the solution
is hiding well, or we don’t even understand the questions we are asking! This means the
stakes are now very high indeed, and we need radical ideas, ones that will push our intuition
and our preconceived notions of the fundamental laws of nature to their limits. This is why
it’s a great time to be a BSM theorist. The problems are starkly laid out, nothing less than
a complete paradigm shift appears to be called for, and we have the LHC and a burgeoning
field of smaller experiments probing every corner of coupling and mass-scale that we can hope
to access. I hope these lecture notes provide a broad enough base from which an ambitious
theorist feels ready to jump in.

6 Homework

Masses versus scales

• Derive the dimensions in Eq. 2.4 and 2.5 of fields and couplings. Confirm that loop
corrections do not carry dimension, and show that the Planck scale is not a mass scale.

Hierarchy Problem

• Calculate the correction to the SM W-to-Z boson mass ratio coming from eq. (3.26).

• Show that eq. (3.26) cannot be forbidden whenever the Higgs doublet is embedded
in an SU(3) → SU(2)-based model as Σ ≈ (h1 + ih2, h3 + ih4, 0). Now show that it
can be forbidden by an SO(4) global symmetry when the Higgs is embedded in an
SO(5)→ SO(4) model as Σ ≈ (h1, h2, h3, h4, 0).

• Start with eq. (3.36) and make a field rotation to go to the fermion mass eigen-
state basis. After this, using the standard scaling of a loop integral with the cutoff∫
d4qTr(mI4)/(q2 − m2) ∝ Λ2 and a similar scaling for

∫
d4qTr/q/q/(q2 − m2)2 show

that in loops of fermions the quadratic divergences cancel. Standard identities for loop
integrals, such as in the Appendices of Peskin and Schroeder, may be useful.

• Assuming HA is the Standard Model Higgs doublet and HB = f + hT/
√

2 (the other
three Goldstones have been eaten), determine the scalar HA cubic interaction with
hT and then integrate out hT at the diagramatic level to show that the Twin top
quarks cancel the quadratic divergences, confirming the expectation based on the global
symmetry breaking pattern.

• Show that for Grassmann variables θ2
1 = 0. Recalling that θ and θ are left and right-

haned Weyl spinors derive the general form of an N = 1 superfield in eq. (3.58) by
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Taylor expansion by writing all possible non-vanishing Lorentz-invariant terms. For
a discussion of Lorentz-invariant Weyl spinor contractions see, for example, Section 2
of [41].

• For a general metric of the form

ds2 = gMN dx
MdxN = ĝµν(x, z) dx

µdxν + dz2 . (6.169)

Then, up to total derivatives,

√−gR5(g) = (6.170)
√
−ĝ
[
R4(ĝ) +

(ĝµν∂zĝµν)
2

4
+

(∂yĝ
µν)(∂yĝµν)

4

]
.

Also, in an 5D a Weyl rescaling changes the Ricci scalar by

R5(e2ω(y)g) = e−2ω(y)
(
R5(g)− 8∂2

yω − 12(∂yω)2
)

. (6.171)

Using these formulae derive eq. (3.89) for the part of the metric containing the massless
graviton from eq. (3.88).

Strong CP Problem

• Prove the invariance of eq. (4.137) under chiral rotations, using the standard relations
for Dirac matrices.

• Following [17] evaluate the axion mass with non-equal quark masses and axion-pion
mixing included. To save time, expand the scalar potential to quadratic order, and
then integrate out the π0 by solving ∂V/∂π0 = 0 and inserting the solution into the
potential for the axion.

• Draw the relevant Feynman diagrams for axion production in stars.
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