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Abstract

We build on previous studies of the Higgs and Coulomb branches of SUSY quiver theories having 8 
supercharges, including 3d N = 4, and Classical gauge groups. The vacuum moduli spaces of many such 
theories can be parameterised by pairs of nilpotent orbits of Classical Lie algebras; they are transverse to 
one orbit and intersect the closure of the second. We refer to these transverse spaces as “Slodowy intersec-
tions”. They embrace reduced single instanton moduli spaces, nilpotent orbits, Kraft-Procesi transitions and 
Slodowy slices, as well as other types. We show how quiver subtractions, between multi-flavoured unitary or 
ortho-symplectic quivers, can be used to find a complete set of Higgs branch constructions for the Slodowy 
intersections of any Classical group. We discuss the relationships between the Higgs and Coulomb branches 
of these quivers and T ρ

σ theories in the context of 3d mirror symmetry, including problematic aspects of 
Coulomb branch constructions from ortho-symplectic quivers. We review Coulomb and Higgs branch con-
structions for a subset of Slodowy intersections from multi-flavoured Dynkin diagram quivers. We tabulate 
Hilbert series and Highest Weight Generating functions for Slodowy intersections of Classical algebras up 
to rank 4. The results are confirmed by direct calculation of Hilbert series from a localisation formula for 
normal Slodowy intersections that is related to the Hall Littlewood polynomials.
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1. Introduction

This paper builds on recent studies of SUSY quiver theories having 8 supercharges and Clas-
sical flavour and gauge groups, including both the Higgs and Coulomb branches of 3d N = 4
and the Higgs branches of 4d N = 2 theories. The vacuum moduli spaces of many such theories 
are related to the nilpotent orbits of Classical Lie algebras.

In essence, the nilpotent orbits Oρ of the algebra g of a Lie group G are defined by equiva-
lence classes of nilpotence conditions on representation matrices [1]. Such nilpotence conditions 
also describe the manner in which (combinations of) scalar fields in the F-term equations (de-
rived from a superpotential) vanish at the SUSY vacuum, and can be specified (indirectly) by a 
quiver gauge theory. A “Slodowy slice” Sρ ≡ O⊥

ρ is a space transverse to (or commuting with) 
a nilpotent orbit, yet lying within the adjoint orbit of the ambient group G [2]. These transverse 
spaces may be restricted to their intersections with the closure of any enclosing nilpotent orbit 
Oσ , leading to a wide variety of spaces, each parameterised by a pair of nilpotent orbits [3]. We 
refer to these spaces, Sσ,ρ ≡ Oσ ∩ Sρ as “Slodowy intersections”.1 They embrace, as limiting 

1 There is no settled terminology: in [4] these are termed “Slodowy varieties”; in [3] and [5] “intersections”; in [6]
“nilpotent Slodowy slices”; in [7] “S3-varieties”. Since the spaces are not generally nilpotent with respect to their sym-
metry group, F ⊆ G, and are always intersections (labelled by a pair of orbits), we prefer “Slodowy intersections”.
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cases, nilpotent orbits, Slodowy slices (intersected with the nilcone) and Kraft-Procesi transitions 
[8]; other types appear for G Classical of rank 3 upwards.

The connection was made in [9] between (the 3d boundary conditions on) Type II brane 
systems [10] in 4d N = 4 CFTs and Slodowy intersections. These 3d boundary conditions cor-
respond to brane configurations that determine the Higgs branch vacuum moduli spaces of these 
theories. It was shown how the pole structure of these moduli spaces leads to their description 
as Slodowy intersections. This connection was deployed in [5], using S-duality and 3d mirror 
symmetry, to relate the Higgs and Coulomb branches of SUSY field theories characterised by 
D-brane configurations, with the latter encoded in quiver diagrams. These seminal papers have 
precipitated many studies.

More recently, in [11], systematic methods were distilled for identifying SUSY quiver gauge 
theories whose Higgs or Coulomb branches correspond to the (closures of) nilpotent orbits of 
Classical algebras. In [12], this approach was extended to identify certain dual quiver theories 
whose Coulomb or Higgs branches are the Slodowy slices to these orbits.

This paper extends this systematic approach across the whole family of Slodowy intersections. 
In the interests of brevity, we draw extensively on [11] and [12], with cross-references to tables 
and formulae therein.

The language of quivers provides a rich description of the global, flavour and gauge sym-
metries underlying the quiver constructions for Slodowy intersections. In the case of the Higgs 
branch, there is a class of quivers, based on Nakajima (unitary) quiver varieties introduced in 
[13]. These were extended to ortho-symplectic types in [8]. There is an overlapping set of unitary 
quivers based on Dynkin diagrams [14]. Many of these quivers can be interpreted as intersections 
both on their Higgs and Coulomb branches. For G Classical, the Higgs and Coulomb branches 
of certain dual quiver pairs can be related using the concept of 3d mirror symmetry [15,16].

Alternative descriptions exist for many Slodowy intersections in terms of T ρ
σ (G) theories [17]. 

It is argued herein that an analysis in terms of pairs of nilpotent orbits of G is (i) more complete 
for the intersections of BCD groups, by virtue of dealing with special and non-special orbits on 
the same footing, and (ii) provides a clearer view of the mechanisms behind 3d mirror symmetry.

We deploy the technology of the Plethystics Program [18], and its subsequent developments, 
to characterise Slodowy intersections by Hilbert series (“HS”), both in refined and unrefined 
form, and by their transformations to Highest Weight Generating (“HWG”) functions [19]. These 
provide a precise way of describing both the representation content and grading of theories (for 
example, by R-charges). In particular, refined Hilbert series and HWGs provide a means of test-
ing whether (branches of) different quiver theories represent the same moduli spaces.

In section 2, we summarise key aspects of the theory surrounding the nilpotent orbits and 
Slodowy slices of a Classical algebra g. Each Slodowy intersection Sσ,ρ is defined by a pair 
of nilpotent orbits, where Oσ contains Oρ . In cases where neither orbit contains the other, no 
intersection exists.

Matrices from (or functions on) an intersection Sσ,ρ transform in a global symmetry, F(ρ) ⊆
G, which is some subgroup of the ambient symmetry group. The dimensions of the Sσ,ρ are at 
most those of the nilcone (or maximal nilpotent orbit) of G, and their number increases rapidly 
with the rank of G.

Slodowy intersections can be analysed, either in terms of equivalence classes of sub-spaces of 
matrix representations, or, by virtue of the Jacobson Morozov Theorem, in terms of the embed-
dings of su(2) into g that define nilpotent orbits, along with the commuting sub-algebras f ⊆ g

that define Slodowy slices. In principle, either framework can be used to calculate Hilbert series. 
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The latter approach, which we follow, fits naturally with the methods of quiver subtractions and 
Higgs or Coulomb branch HS constructions, developed in sections 3 and 4.

Hilbert series for Slodowy intersections can also be constructed by purely group theoretic 
methods, using localisation formulae related to the Hall Littlewood polynomials. Several such 
formulae appear in the Literature [17,20,21]; their use requires careful attention to notational 
and other conventions. Building on the Nilpotent Orbit Normalisation formula [21], we set out a 
Slodowy intersection formula (“SI formula”) for calculating the HS of any Sσ,ρ that intersects a 
normal nilpotent orbit Oσ .

In section 3, we build on [22] and map out the quiver theories for Higgs and Coulomb branch 
constructions of A series Slodowy intersections. These multi-flavoured linear unitary quivers 
can equally well be described as Nakajima or Dynkin type. We develop the methods of [23] to 
give a precise way of relating these quivers by an algebra of quiver subtractions that draws on 
the concept of balance [5], and is faithful to both Higgs and Coulomb branch dimensions. This 
systematises previous analyses in the Literature of A series intersections, in preparation for the 
subsequent BCD series analysis.

We use Higgs branch Weyl integration methods, the Coulomb branch unitary monopole for-
mula and the SI formula to calculate the HS and HWGs of A series quiver theories up to rank 4. 
As is known, these obey the rules of 3d mirror symmetry.

In section 4, we map out quiver theories for Higgs branch and certain Coulomb branch con-
structions of BCD series Slodowy intersections. Both multi-flavoured linear ortho-symplectic 
and Dynkin quiver types are relevant. We show how the algebra of quiver subtractions extends to 
ortho-symplectic quivers, and is faithful to Higgs branch dimensions.

We use Higgs branch Weyl integration methods and the SI formula to calculate the HS and 
HWGs of BCD series quiver theories up to rank 4. The results from the Higgs branch and 
localisation methods are identical for normal Slodowy intersections. For non-normal Slodowy 
intersections Sσ,ρ , where Oσ is a “very even” orbit of D2n, we show how the union of the 
normal components generated by the SI formula matches the non-normal Slodowy intersection 
given by Higgs branch methods.

We discuss the Coulomb branches of ortho-symplectic quivers for Slodowy intersections. 
These encounter similar problematic issues to those discussed in [12,24]. As a consequence, 
the patterns of 3d mirror symmetry do not extend faithfully to T ρ

σ (G) theories for the Slodowy 
intersections of BCD groups.

In section 5, we summarise key findings and identify avenues for further work, for example 
by treating Slodowy intersections as building blocks for larger theories.

Appendix A summarises the key notation and conventions used by the Plethystics Program. 
Appendix B gives the details of the SI formula and its relationship to Hall Littlewood polyno-
mials. Context permitting, we may refer to the closures of nilpotent orbits simply as “nilpotent 
orbits”, or “orbits”, to Slodowy slices as “slices”, and to Slodowy intersections as “intersections”.

2. Slodowy intersections

2.1. Relationship to slodowy slices and nilpotent orbits

Throughout this text we assume a degree of familiarity with the concepts of nilpotent orbit 
and Slodowy slice. The reader is referred to [1] for a general grounding, or to [11,12] for a more 
specific introduction to our approach. The key properties of nilpotent orbits of Classical algebras 
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up to rank 5, including their Characteristics [14], dimensions and the partitions of key irreps, are 
tabulated in [11].2

A nilpotent orbit Oρ of the Lie algebra g of a group G, is an equivalence class of nilpotent 
matrices that are conjugate under the action of G. By the Jacobson Morozov theorem, these 
nilpotent orbits are in one to one correspondence with equivalence classes of embeddings of 
su(2) into g. Each such embedding is described by a homomorphism ρ, and this can be labelled 
either by the partition of a representation of G (often taken as the fundamental or vector), or 
by a Characteristic, which uses Dynkin labels to specify the mapping of the roots (and hence 
weights) of g onto su(2). An orbit Oρ has a closure Oρ , defined as its union with (relevant) 
lower dimensioned orbits.

The closure of the maximal nilpotent orbit Omax , or nilcone N , has the Hilbert series gen-
erated by symmetrising the character of the adjoint representation, modulo Casimir relations, 
graded by an R-charge (or su(2) highest weight) fugacity t2:

N ≡ Omax = PE
[
χG

adjoint , t
2
]
/PE

[∑r

i=1
t2di

]
, (2.1)

where {d1, . . . , dr} are the degrees of symmetric Casimirs of G. The nilcone has dimension 
|N | = |g| − rank[g]. Other key orbits include the sub-regular, minimal and trivial, the latter 
having dimension zero.

Nilpotent orbits can be arranged as a poset, or Hasse diagram, according to the inclusion 
relations of their closures:

N≡Omax ⊃ Osub−reg . . . ⊃ Omin ⊃ Otrivial ≡ {0}. (2.2)

Each orbit Oρ has a transverse space termed a Slodowy slice, Sρ ≡O⊥
ρ . This transverse space 

intersects with the closures Oσ of those orbits ranking higher in the Hasse diagram, generating a 
set of Slodowy intersections Sσ,ρ , each defined by a pair of orbits of G:

Sσ,ρ ≡ Oσ ∩ Sρ. (2.3)

Necessarily, SN ,trivial = N = Omax . The intersection with the nilcone SN ,ρ differs from the 
slice Sρ only by the Casimir relations, and so, context permitting, we also refer to SN ,ρ as a 
Slodowy slice.

The number of non-trivial intersections rises rapidly with the number n of nilpotent orbits of 
G, being bounded by the binomial coefficient nC2 (with saturation if the Hasse diagram of orbits 
of G is linear).

2.2. Symmetry groups and dimensions

The dimension of each Slodowy intersection follows from the difference in dimensions of its 
defining pair of orbits:∣∣Sσ,ρ

∣∣= |Oσ | − ∣∣Oρ

∣∣ . (2.4)

The dimension of an orbit Oρ is related to the partition of the adjoint of G via its Characteristic 
q ≡ [q1, . . . , qr ], where qi ∈ {0, 1, 2}. A Characteristic provides a map between the simple root 
and weight fugacities z ≡ {z1, . . . , zr} and x ≡ {x1, . . . , xr} of G and those of SU(2), say {z} and 
{t}, respectively:

2 In these tables Characteristics are referred to as “root maps”.
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ρ : {z1, . . . , zr } → {zq1/2, . . . , zqr /2},
ρ : {x1, . . . , xr} → {tω1, . . . , tωr }. (2.5)

The charges are related by the Cartan matrix A of G: q = A · (ω1, . . . ,ωr). Under the map ρ, the 
adjoint of G decomposes to irreps of SU(2) with multiplicities an:

ρ : χG[adjoint](x) →
⊕
[n]

an(ρ)χ
SU(2)
[n] (t). (2.6)

Conventionally, these decompositions are expressed in condensed partition notation 
(
. . . ,

(n + 1)an, . . . , 1a0
)
, replacing SU(2) Dynkin labels by irrep dimensions and (non-zero) mul-

tiplicities by exponents. The dimension of Oρ is then found by subtracting the number of SU(2)

irreps in the adjoint partition from the dimension of G:

|Oρ | = |G| −
∑
n

an(ρ). (2.7)

The dimension of an intersection Sσ,ρ follows via (2.4) and (2.7) from the multiplicities in the 
adjoint partitions of the relevant pair of orbits:∣∣Sσ,ρ

∣∣=∑
n

an(ρ) −
∑
m

am(σ). (2.8)

Whereas nilpotent orbits have a symmetry group G, the intersections Sσ,ρ have a symme-
try group F(ρ) ⊆ G, where F(ρ) need not be semi-simple, and may contain Abelian or finite 
subgroups. Note that intersections Sσ,ρ are not generally nilpotent.

Now, refine the branching (2.6), by introducing irreps χF[m] of F(ρ) with dimensions |χF[m]|
and multiplicities a[n],[m], such that:

an =
∑
[m]

a[n],[m]|χF[m]|,

χG[adjoint] =
⊕

[n],[m]
a[n],[m]

(
χ

SU(2)
[n] ⊗ χF[m]

)
.

(2.9)

Due to the regular nature of the branching G → SU(2) ⊗F(ρ), the algebra g contains both su(2)
and f as sub-algebras.3 Hence, a[2],[singlet] = 1 and a[0],[adjoint] = 1. Consequently, the identity 
of F(ρ) can often be determined by matching |F | to the coefficient a0, and by applying the 
constraint that rank[F ] ≤ rank[G]. The structure of F(ρ) is also provided by quiver theories, 
as explained in sections 3 and 4.

It is useful to introduce weight space fugacities y ≡ {y1, . . . , yrank[F ]
}

and to refine (2.5), by 
mapping the fugacities of G to (monomials in) fugacities for SU(2) ⊗ F :

ρ : xi → xi(y, t) = tωi

rank[F ]∏
j=1

y
ωij

j , (2.10)

where the ωij are integers. Often, alternative sets of charges ωij are equivalent under conjugation 
by the Weyl group of G. All the basic irreps of G (those whose Dynkin labels contain a single 
1) project to irreps of SU(2) ⊗ F under a valid fugacity map.

3 f is the commutant, or centraliser, of su(2) inside g [25].
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For example, the homomorphism ρ with Characteristic [020], which generates the 8 dimen-
sional nilpotent orbit of A3, also induces the following maps:

ρ : {z1, z2, z3} → {1, z,1},
ρ : {x1, x2, x3} → {t, t2, t},
ρ : [1,0,0] → 2[1]SU(2) ⇔ χ

A3
f und. → (22),

ρ : [1,0,1] → 4[2]SU(2) ⊕ 3[0]SU(2) ⇔ χ
A3[adjoint] → (34,13).

(2.11)

Noting the F(ρ) = A1 symmetry implied by the multiplicity 3 of the [0]SU(2) singlet in the 
adjoint map, the weight map can be refined by introducing the A1 fugacity x:

ρ : {x1, x2, x3} → {xt, t2, t/x},
ρ : [1,0,0] → [1]SU(2)[1]A,

ρ : [1,0,1] → [2]SU(2)[2]A ⊕ [2]SU(2) ⊕ [2]A.

(2.12)

A degree of trial and error may be required to find a valid weight map containing the fugacities 
for F(ρ); this complication is a byproduct of the conjugation deployed by Dynkin [14], when 
defining a Characteristic to contain only the integers {0, 1, 2}.

2.3. Hilbert series

The Hilbert series for a Slodowy slice SN ,ρ can be found directly from the adjoint branching 
of G in (2.6) or (2.9) [12]. The HS of this transverse space is obtained by (i) replacing the SU(2)

characters by their highest weights, χSU(2)
[n] → tn, (ii) symmetrising the representations of F(ρ)

under a grading by t2, and (iii) taking a quotient by the Casimirs of G. This leads to the refined 
and unrefined HS:

g
SN ,ρ
HS (y, t) = PE

⎡
⎣ ⊕

[n],[m]
an,m χF[m](y)tn+2 −

r∑
i=1

t2di

⎤
⎦ ,

g
SN ,ρ

HS (1, t) = PE

[∑
n

ant
n+2 −

r∑
i=1

t2di

]
.

(2.13)

In order to generalise (2.13) to the Hilbert series corresponding to a Slodowy intersection Sσ,ρ , 

we need to restrict the representation content in g
SN ,ρ

HS by the orbit Oσ . This is achieved by 
applying a quotient

g
Sσ,ρ

HS (y, t) = g
SN ,ρ

HS (y, t)
g
Oσ

HS (x, t)

gNHS(x, t)

∣∣∣∣∣∣
x→x(y,t)

(2.14)

Note that the fugacity map (2.10) associated with ρ is applied after taking the quotient Oσ /N , 
to avoid divergences. We can motivate (2.14) by considering the limiting cases of nilpotent orbits 
and Slodowy slices:
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g
Oσ

HS ≡ g
Sσ,trivial

HS = g
SN ,trivial

HS

g
Oσ

HS

gNHS

∣∣∣∣∣∣= g
Oσ

HS ,

g
SN ,ρ

HS = g
SN ,ρ

HS

g
Omax

HS

gNHS

∣∣∣∣∣∣= g
SN ,ρ

HS ,

(2.15)

where we have used the identities SN ,trivial =N = Omax .

The refined Hilbert series gOσ

HS required by (2.14) can be found by Higgs or Coulomb branch 
methods [11], or, if Oσ is normal, from the Nilpotent Orbit Normalisation formula [21]. The 
latter choice leads to a localisation formula (“SI formula”) for Slodowy intersections, described 

further in Appendix B. This provides a purely group theoretic calculation of g
Sσ,ρ

HS , which has 
been used to validate the quiver constructions herein.

Once the refined Hilbert series for an intersection has been calculated, it can be transformed 
to a Highest Weight Generating function:

g
Sσ,ρ

HWG(m, t) =
∮
F

dμF (y) gF
χ

(
y∗,m

)
g
Sσ,ρ

HS (y, t) , (2.16)

where dμF (y) is a Haar measure for F , and gF
χ (y,m) is a generating function for the characters 

of F (see [19]). Alternatively, the HS can be simplified to unrefined form g
Sσ,ρ

HS (t), by setting 
{∀i : yi → 1}.

2.4. Kraft Procesi transitions

An intersection Sρ′,ρ between a pair of orbits (ρ′, ρ) that are adjacent in a Hasse diagram 
is often termed a Kraft-Procesi transition [8]. For Classical groups, such transitions are either 
minimal nilpotent orbits, or two (complex) dimensional singularities C2/�, where � is a finite 
group of ADE type. We follow convention and label the minimal nilpotent orbit of G of rank r
by gr , and a finite group singularity of ADE type by Gr .

Thus, the set of non-trivial Slodowy intersections for G is bounded by a set of nilpotent orbits, 
a set of Slodowy slices, and Kraft-Procesi transitions. These can conveniently be considered as 
an upper triangular schema: {Sσ,ρ : N ≥ σ > ρ ≥ {0}}.
2.5. Barbasch-Vogan map and duality

Importantly, while nilpotent orbits of An correspond to partitions of n + 1, denoted P(n + 1), 
not all partitions P(2n + 1), P(2n) or P(2n) biject to orbits of Bn, Cn or Dn. Those that do 
are termed B , C or D partitions, denoted PB/C/D .4 Thus, while the Lusztig-Spaltenstein map 
(transposition of partitions), being an involutive automorphism, provides a basis for dualities be-
tween A series orbits, the more sophisticated Barbasch-Vogan map [26] is required to formulate 
BCD dualities. The Barbasch-Vogan map, dBV (ρ), of a partition ρ depends on G, as defined in 
Table 1.

Here N → N + (−)1 indicates incrementing (decrementing) a partition; if λ ≡ (λ1, . . . , λk) is 
a partition, then (λ)N→N+1 ≡ (λ1 + 1, . . . , λk) and (λ)N→N−1 ≡ (λ1, . . . , λk − 1). The notation 

4 In a B or D (resp. C) partition, any even (resp. odd) number appears an even number of times.
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Table 1
Barbasch-Vogan map.

G ρ Transformation dBV (ρ)

An ρ ∈P(n + 1) dBV (ρ) ≡ ρT dBV (ρ) ∈ P(n + 1)

Bn ρ ∈PB(2n + 1) dBV (ρ) ≡
((

ρT
)
N−>N−1

)
C

dBV (ρ) ∈ PC(2n)

Cn ρ ∈PC(2n) dBV (ρ) ≡
((

ρT
)
N−>N+1

)
B

dBV (ρ) ∈ PB(2n + 1)

Dn ρ ∈PD(2n) dBV (ρ) ≡
(
ρT
)
D

dBV (ρ) ∈ PD(2n)

(λ)B/C/D indicates collapse of λ, if necessary, to the largest B , C or D partition, respectively, 
that is dominated by λ. This can be carried out by moving a box in the Young’s diagram for λ, 
all as described more fully in [27].

A partition collapse loses information and, consequently, the Barbasch-Vogan map is many to 
one for some BCD orbits. Those orbits/partitions for which dBV is an involution, d2

BV = 1, are 
termed “special”, including all A series orbits.

We can use the Barbasch-Vogan map to define the “Special dual” of a Slodowy inter-
section, by exchanging a pair of special orbits of G and taking dBV duals of their funda-
mental/vector partitions. The Special dual intersection to Sσ,ρ is thus S∨

σ,ρ ≡ SdBV (ρ),dBV (σ ). 
Notably, the Special dual is a form of GNO duality [28] and switches between B and C parti-
tions.

3. A series quivers and Hilbert series

3.1. Quiver types

Quivers for the closures of A series nilpotent orbits Oρ , or Slodowy slices SN ,ρ , whether 
constructed on the Higgs or Coulomb branch, are either single-flavour linear quivers LA,5 or 
multi-flavour balanced quivers BA [12]. In both cases, the unitary gauge nodes form an A series 
Dynkin diagram. The two types are related by 3d mirror symmetry.

The constructions for Slodowy intersections Sσ,ρ draw upon the more general multi-flavour 
A series Dynkin quiver [29], which subsumes both these types. These quivers MA(N, Nf) can be 
drawn, as in Fig. 1, as a sequence of k unitary gauge nodes, with ranks N ≡ {N1, . . . , Nk}, with 
each gauge node connected to a unitary flavour node, with ranks Nf ≡ {Nf1 , . . . , Nfk

}, where 
∀(i) : Nf i

≥ 0.
Fig. 1 embraces many different quivers. In order to delineate those associated with Slodowy 

intersections it is helpful to deploy the concept of balance [5]. A balance vector B ≡ {B1, . . . , Bk}
for a quiver of type MA(N, Nf) can be defined as:

B = Nf − A · N, (3.1)

where A is the Cartan matrix for Ak . Following [5], we work here with quivers that are “good” 
and do not have nodes with negative balance, so B ≥ 0 (defined as ∀(i) : Bi ≥ 0). We shall show 

5 Quivers LA(λ) consist of a single SU(N0) flavour node connected to a linear chain of U(Ni) gauge nodes, where 
the decrements between nodes, λi = Ni−1 − Ni , constitute a partition of N0, λ ≡ {λ1, . . . , λk}, where λi ≥ λi+1 and ∑k λi = N0.
i=1
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Fig. 1. A Series Multi-flavour Dynkin Quiver. The unitary gauge nodes (blue/round) with fundamental dimension Ni

are linked by conjugate pairs of bifundamental fields to adjacent gauge nodes and to unitary flavour nodes (red/square) 
with fundamental dimension Nfi

. The Ni are typically non-zero and at least one of the Nfi
should be non-zero. (For 

interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

how any good quiver MA(N, Nf) can be defined by a pair of partitions (σ,ρ) and denote such a 
quiver MA (σ,ρ).

We define MA (ρ,0) ≡ LA(ρT ), where ρ is a partition. It follows from ρT
i ≥ ρT

i+1 that the 
quiver MA (ρ,0) has a balance vector that has no negative components. The partition data fixes 
the flavour and gauge nodes of this quiver LA(ρT ) → MA(N, Nf). Its Higgs branch is the closure 
of an A series nilpotent orbit Oρ , while its Coulomb branch is a Slodowy slice SN ,ρT [12]:

Ōρ =H[MA (ρ,0)],
SN ,ρT = C[MA (ρ,0)]. (3.2)

A complete set of quivers, whose Higgs branches are A series Slodowy intersections, Sσ,ρ can 
be found by carrying out quiver subtractions, as suggested by the dimensional relations (2.4). 
Various approaches to A series quiver subtractions have been elaborated [22,23]. The method 
described here draws explicitly on the concept of balance, which also serves to organise the 
resulting quivers. Thus, we claim:

Sσ,ρ =H[MA (σ,ρ)], (3.3)

where

MA (σ,ρ) ≡MA (σ,0) �MA (ρ,0) , (3.4)

and the operation � of quiver subtraction is as defined below.
Recall, the (complex) dimension of the Higgs branch of a quiver MA (N,Nf), is found by 

summing the dimensions of the conjugate pairs of bifundamental fields, and subtracting the gauge 
group dimensions twice (once for the Weyl integration and once for the adjoint relations)6:

|H[MA (N,Nf)]| = 2N · Nf − N · A · N. (3.5)

Now consider two quivers MA (Na,Nfa) and MA (Nb,Nfb), with Higgs branches of dimension 
|Ha| and |Hb|, respectively. We have:

|Ha| = 2Na · Nfa. − Na · A · Na

|Hb| = 2Nb · Nfb − Nb · A · Nb
(3.6)

If we make the assumption that the two quivers have the same balance, Ba = Bb, then Nfb can 
be eliminated using (3.1), and (3.6) yields:

� ≡ |Ha| − |Hb| = 2 (Na − Nb) · Nfa − (Na − Nb) · A · (Na − Nb) . (3.7)

6 This dimension formula, expressed in [29] in terms of real dimensions, is valid for “good quivers”, since these do not 
suffer from “incomplete Higgsing”, (which would otherwise invalidate the HyperKähler quotient).
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Fig. 2. Quivers for A1 Slodowy Intersections. The Higgs branch of this unitary quiver is the nilcone SA[2],A[0] . Rows 
(columns) are labelled by Characteristics of Oρ (Oσ ).

Fig. 3. Quivers for A2 Slodowy Intersections. The Higgs branches of these unitary quivers are Slodowy intersections 
Sσ,ρ . Rows (columns) are labelled by Characteristics of Oρ (Oσ ).

Thus, � matches the dimension of a third quiver MA(Na − Nb, Nfa), and this suggests a rule for 
subtracting two quivers with the same flavours Nfa:

MA (Na,Nfa) �MA(Na − Nb,Nfa) =MA (Nb,Nfb) ,

where

Nfb = Nfa − A · (Na − Nb).

(3.8)

Redefining the gauge vector, Nb → Na − Nb, (3.8) transforms to:

MA (Na,Nfa) �MA (Nb,Nfa) =MA (Na − Nb,Nfb) ,

where

Nfb = Nfa − A · Nb.

(3.9)

Naturally, the gauge ranks in the vector Na − Nb must be non-negative for the quiver subtraction 
to be valid. Note that nodes of zero gauge rank do not contribute to the dimension formula (3.5).

Now, the quivers MA (λ,0), where λ is a partition of the fundamental of An, all share the 
same flavour node vector Nf = {n + 1, 0, . . . , 0}. Consequently, by allowing σ and ρ to range 
over the partitions of n + 1, and by using (3.3), (3.4) and (3.9), we can obtain a full set of quiver 
candidates MA(σ, ρ), that have dimensions consistent with Higgs branch constructions of An

intersections Sσ,ρ .
These sets of quivers for the Sσ,ρ of An up to rank 4 are shown in Figs. 2 through 5. They 

are arranged as matrices, with rows and columns labelled by the Characteristics of Oρ and Oσ , 
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Fig. 4. Quivers for A3 Slodowy Intersections. The Higgs branches of these unitary quivers are Slodowy intersections 
Sσ,ρ . Rows (columns) are labelled by Characteristics of Oρ (Oσ ).

Fig. 5. Quivers for A4 Slodowy Intersections. The Higgs branches of these unitary quivers are Slodowy intersections 
Sσ,ρ . Rows (columns) are labelled by Characteristics of Oρ (Oσ ).
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respectively. Fundamental partitions and dimensions of Oσ are also shown, as well as the balance 
vector B, which is constant (by construction) for each column, and the Dynkin diagram symmetry 

- see below. Trivial self-intersections, with g
Sρ,ρ

HS = 1, are denoted {}. The Kraft-Procesi transition 
for each row is labelled by its minimal singularity, as described in 2.4. Empty entries indicate the 
absence of any intersection.7 Gauge nodes of zero rank are truncated.

The matrices are all of upper triangular form. Each top row contains quivers LA(σT ) whose 
Higgs branches are closures of nilpotent orbits Oσ . Each rightmost column contains balanced 
quivers BA(ρ), with B = 0, whose Higgs branches are Slodowy slices SN ,ρ . The first non-empty 
entries above the diagonal are Kraft-Procesi transitions. More general intersections appear from 
A3 upwards. Any two quivers Sσ1,ρ and Sσ2,ρ in the same row, where σ1 > σ2, are related by 
quiver subtraction to a third quiver Sσ1,σ2 in a row below. All the quivers have non-negative 
balance, B ≥ 0.

The intersections Sσ,ρ in each row transform in the same group F(ρ) as the slice SN ,ρ , 
although when F(ρ) is a product group, lower dimensioned intersections (such as Kraft-Procesi 
transitions), may transform trivially under some component(s) of F(ρ).

While each Slodowy intersection of An is constructed from a pair of partitions of n + 1, it 
can also be identified as a partition of n′ + 1 through the summation, n′ + 1 =∑k

i=1 iNfi
, and 

hence constructed from a pair of partitions of n′ + 1.8 If the intersection transforms trivially 
under some component of F(ρ), then n′ < n and the intersection of An also appears amongst the 
intersections of An′ ⊂ An.

Significantly, for any intersection, the gauge nodes with Bi = 0 form the Dynkin diagram of 
a semi-simple group, while gauge nodes with Bi > 0 contribute Abelian U(1) factors. These 
Dynkin diagrams determine the global symmetry F(ρ) that appears on the Coulomb branch of a 
quiver.

Corresponding tables can easily be constructed of the 3d mirror quivers whose Coulomb
branches are A series Slodowy intersections, by using the Special duality map from Table 1, 
(σ, ρ) →(ρT , σT ). In Figs. 2 through 5, the nilpotent orbits in the top row have been ordered 

such that transposition acts as an order reversing involution on the set of fundamental partitions. 
(This is always possible for the A series due to the bijection between partitions of n +1 and orbits 
of An.) Under this convention, Special duality is realised by matrix reflection in the (lower-left 
to top-right) diagonal of pairs of partitions that are BV self-dual: (ρT , σT ) = (σ, ρ).

Recall, the complex dimension of the Coulomb branch of a unitary quiver is given by twice 
the sum of the ranks of the gauge nodes:

|C[MA (N,Nf)]| = 2
k∑

i=1

Ni. (3.10)

Since, under quiver subtraction (3.9), the ranks of gauge nodes are related by Na � Nb =
Na − Nb, it follows from (3.10) that the dimensions of the Coulomb branches of the quivers 
MA (N,Nf) form a self-consistent set. Moreover, (3.2) entails that C[MA(ρT , 0)] = SN ,ρ , so 
it also follows that the Coulomb branch dimensions of the quivers MA(ρT , σT ), obtained by 
quiver subtraction, match those of the Sσ,ρ calculated on the Higgs branch.

7 These appear above the diagonal from A5 upwards, due to non-linear Hasse diagrams.
8 The partitions can be found from any given MA (N,Nf) with B > 0 by considering two linear quivers LA with 

N ′ = n′ + 1 and using (3.9).
0



14 A. Hanany, R. Kalveks / Nuclear Physics B 952 (2020) 114939
Table 2
A1, A2 and A3 Slodowy Intersections. Only HWGs that are complete intersections are shown.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS PL[HWG]

[0] [2] 2 A1
1−t4

(1−t2)3 m2t2

[00] [11] 4 A2
1+4t2+t4

(1−t2)4 m1m2t2

[22] 6 (1−t4)(1−t6)

(1−t2)8 m1m2t2 + m1m2t4 + m3
1t6 +

m3
2t6 − m3

1m3
2t12

[11] [22] 2 U(1) 1−t6

(1−t2)(1−t3)2 t2 + (q + 1/q)t3 − t6

[000] [101] 6 A3
(1+t2)(1+8t2+t4)

(1−t2)6 m1m3t2

[020] 8 (1+t2)2(1+5t2+t4)

(1−t2)8 m1m3t2 + m2
2t4

[202] 10 (1+t2)(1+4t2+10t4+4t6+t8)

(1−t2)10 m1m3t2 + m2
2t4 + m1m3t4 + m2

1m2t6

+ m2m2
3t6 − m2

1m2
2m2

3t12

[222] 12 (1−t4)(1−t6)(1−t8)

(1−t2)15 . . .

[101] [020] 2 A1 ⊗ U(1) 1−t4

(1−t2)3 m2t2

[202] 4 1+2t2+2t3+2t4+t6

(1−t2)2(1−t3)2 t2 + m2t2 + m(q + 1/q)t3 − m2t6

[222] 6 (1−t6)(1−t8)

(1−t2)4(1−t3)4 . . .

[020] [202] 2 A1
1−t4

(1−t2)3 m2t2

[222] 4 (1−t6)(1−t8)

(1−t2)3(1−t4)3 m2t2 + t4 + m2t4 + m2t6 − m4t12

[202] [222] 2 U(1) 1−t8

(1−t2)(1−t4)2 t2 + (q + 1/q)t4 − t8

3.2. Hilbert series

Hilbert series for A type Slodowy intersections Sσ,ρ can be calculated from the quivers 
MA (σ,ρ) using the Higgs branch formula described in [12] (in section 3.2 thereof).

The results, labelled by pairs of Characteristics (σ, ρ), are summarised in Tables 2 and 3. 
These set out, for each non-trivial Slodowy intersection, its dimension, its symmetry group 
F(ρ) ⊆ An, its unrefined Hilbert series, and the HWG (expressed as a PL) that decodes its HS 
into irreps of F(ρ) [19]. Refined HS and HWGs lacking finite PLs are not tabulated (due to space 

constraints). Trivial self-intersections, g
Sρ,ρ

HS = 1, are omitted.
The HS are consistent both with the dimension formulae given above, and with established 

results in the Literature for A series orbits, Slodowy slices and KP transitions. Equivalent results 
are obtained on the Coulomb branch, applying the unitary monopole formula, described in [30]
or [12] (in section 3.3 thereof), to the quivers MA

(
ρT ,σT

)
, or alternatively by using the SI 

formula (2.14). As a further non-trivial check, the HS for the different intersections Sσ,ρ within 
each slice (fixed by ρ) obey inclusion relations that match those of the poset of orbits Oσ in the 
parent group Hasse diagram [8].

Several observations can be made about the Hilbert series of A type Slodowy intersections 
Sσ,ρ and their HWGs:
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Table 3
A4 Slodowy Intersections. Only HWGs that are complete intersections are shown.

PL[HWG]

m1m4t2

m1m4t2 + m2m3t4

m1m4t2 + (m2m3 + m1m4)t4+
(m2

1m3 + m2m2
4)t6 − m2

1m2m3m2
4t12

. . .

. . .

. . .

m1m2t2

t2 + m1m2t2 + (m1q + m2/q)t3 − m1m2t6

. . .

t8)
. . .

. . .

m2t2

t2 + m2t2 + m(q + 1/q)t3 − m2t6

. . .

. . .

m2t2

t2 + m2t2 + m(q + 1/q)t4 − m2t8

. . .

t2 + (q + 1/q)t3 − t6

t2 + (q + 1/q)t3 + t4 + (q + 1/q)t5 − t8 − t10

t2 + (q + 1/q)t5 − t10
ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0000] [1001] 8 A4
1+16t2+36t4+16t6+t8

(1−t2)8

[0110] 12 1+12t2+53t4+88t6+...pal...+t12

(1−t2)12

[2002] 14 1+9t2+45t4+65t6+...pal...+t12

(1−t4)−1(1−t2)15

[1111] 16 1+6t2+22t4+37t6+...pal...+t12

(1−t4)−2(1−t2)18

[2112] 18 1+4t2+10t4+20t6+...pal...+t12

(1−t4)−1(1−t6)−1(1−t2)20

[2222] 20 (1−t4)(1−t6)(1−t8)(1−t10)

(1−t2)24

[1001] [0110] 4 A2 ⊗ U(1) 1+4t2+t4

(1−t2)4

[2002] 6 1+t+6t2+9t3+15t4+12t5+...pal...+t10

(1−t)−1(1−t2)4(1−t3)3

[1111] 8 1+t+3t2+6t3+9t4+9t5+...pal...+t10

(1−t)−1(1+t2)−1(1−t2)6(1−t3)3

[2112] 10 (1+2t+4t2+5t3+4t4+2t5+t6)(1+t2+t3+4t4+t5+t6+
(1−t)−2(1−t6)−1(1−t2)7(1−t3)6

[2222] 12 (1−t6)(1−t8)(1−t10)

(1−t2)9(1−t3)6

[0110] [2002] 2 A1 ⊗ U(1) 1−t4

(1−t2)3

[1111] 4 1+2t2+2t3+2t4+t6

(1−t2)2(1−t3)2

[2112] 6 1+t2+2t3+2t4+2t5+t6+t8

(1−t6)−1(1−t2)3(1−t3)2(1−t4)2

[2222] 8 (1−t6)(1−t8)(1−t10)

(1−t2)4(1−t3)4(1−t4)3

[2002] [1111] 2 A1 ⊗ U(1) 1−t4

(1−t2)3

[2112] 4 1+2t2+4t4+2t6+t8

(1−t2)2(1−t4)2

[2222] 6 (1−t8)(1−t10)

(1−t2)4(1−t4)4

[1111] [2112] 2 U(1) 1−t6

(1−t2)(1−t3)2

[2222] 4 (1−t8)(1−t10)

(1−t2)(1−t3)2(1−t4)(1−t5)2

[2112] [2222] 2 U(1) 1−t10

(1−t2)(1−t5)2
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MA (σ,ρ)

Higgs Coulomb

T
ρ

σT

Higgs Coulomb

Sσ,ρ 3d Mirror Symmetry SρT ,σT Sσ,ρ 3d Mirror Symmetry SρT ,σT

MA

(
ρT ,σT

)Coulomb Higgs

T σT

ρ

Coulomb Higgs

Fig. 6. A series 3d mirror symmetry. Under Special duality, the nilpotent orbit partitions ρ and σ are dualised under the 
Lusztig-Spaltenstein map, to ρT and σT , and then interchanged S∨

σ,ρ ≡ SρT ,σT . All the constructions yield refined 
Hilbert series.

1. All the unrefined HS are normal and palindromic. If an intersection is a Slodowy slice, (or 
one which matches a Slodowy slice of a lower rank algebra), its unrefined HS is also a 
complete intersection.

2. F(ρ) is a product group with unitary and/or special unitary components. It always has a 
rank one below the sum of unitary flavours 

∑
i Nfi

in the Higgs quiver, due to an overall SU 
condition on the flavour nodes.

3. The adjoint representation of F(ρ) (or its relevant subgroup) always appears at counting 
order t2. Other representations of F(ρ) only appear at higher orders.

4. The Slodowy intersections are series of real representations of F(ρ), so any complex irreps 
of F(ρ) that appear are coupled with their conjugates at each counting order.

5. The same HS may recur for intersections defined by different pairs of partitions, and also 
for different ranks of the ambient group An. The quivers for such intersections match, up 
to outer automorphism. Comparison of the quivers obtained by quiver subtraction thus pro-
vides a quick method (without detailed HS calculations) for finding intersections that are 
isomorphic.

3.3. Relationship to T ρ
σ theories

As discussed in [17], A series Slodowy intersections are related to a class of quiver theories 
known as T ρ

σ theories:

H[T ρ
σ (SU(N))] = SσT ,ρ = C[T σ

ρ (SU(N))]. (3.11)

We therefore have the following correspondence between A series multi-flavour Dynkin quivers 
and T ρ

σ theories:

MA (σ,ρ) ∼= T
ρ

σT (SU(N)). (3.12)

Under our approach, we label the quiver according to the partitions ρ and σ for orbits of the 
ambient group G. The phenomenon of 3d mirror symmetry can thus be understood, as in Fig. 6, 
as a consequence of the composition of the interchange of a pair of nilpotent orbits with the 
Lusztig-Spaltenstein map (i.e. dBV (ρ) for the A type).
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Fig. 7. BCD multi-flavoured quiver types. Ortho-symplectic linear quivers MBCD (N,Nf) have gauge (blue/round) and 
flavour (red/square) nodes, with ranks ri ≥ 0 and fi ≥ 0, linked by bi-vector fields. Br , Cr or Dr means SO/O(2r + 1), 
USp(2r) or SO/O(2r), and BD indicates a node of one of the two series. Dynkin quivers DG (N,Nf) have unitary 
gauge and flavour nodes, with ranks Ni > 0 and Nfi

≥ 0, linked by conjugate pairs of bifundamental fields.

4. BCD series quiver constructions

4.1. Quiver types

Numerous field theories generate subsets of Slodowy intersections Sσ,ρ of BCD algebras, 
(although this is not always recognised). Their constructions include the Higgs and Coulomb 
branches of quivers [11,12,17], as well as plethystic formulae related to Hall Littlewood poly-
nomials [24]. The main quiver types fall into one of two categories, as shown in Fig. 7: 
ortho-symplectic linear quivers, MBCD (N,Nf), which have alternating orthogonal or symplec-
tic gauge and flavour nodes, and quivers DG (N,Nf), with unitary gauge nodes arranged as a 
Dynkin diagram of G. Significantly, not all approaches provide a complete set of constructions 
and there are several subtleties, depending, for example, on whether or not the orbits are normal 
or special.

4.1.1. Ortho-symplectic quivers
The ortho-symplectic quivers combine the multi-flavoured aspect of the A series Dynkin quiv-

ers [29], with alternating orthogonal and symplectic gauge nodes [8]. When working with these 
quivers, it is again helpful to use the concept of balance. Proceeding as before, we use partition 
data ρ to construct vectors (N, Nf) for the vector irrep dimensions of the gauge and flavour 
nodes, and apply (3.1) to calculate a balance vector B. The linear quivers MBCD(ρ, 0) →
MBCD (N,Nf), whose Higgs branches are BCD nilpotent orbits Oρ , each correspond to a (B , 
C or D) partition of a vector irrep, and so B ≥ 0 [11].

Remarkably, a full set of quivers whose Higgs branches are BCD group Slodowy intersec-
tions Sσ,ρ can be obtained by following the dimensional logic of (2.4), thereby extending the 
method of A series quiver subtractions discussed in section 3.1. Thus:
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Sσ,ρ =H[MBCD (σ,ρ)], (4.1)

where

MBCD (σ,ρ) ≡MBCD (σ,0) �MBCD (ρ,0) , (4.2)

and the operation � of quiver subtraction for the BCD series is as defined below.
For ortho-symplectic quivers, the (complex) dimension of the Higgs branch of MBCD (N,Nf)

is found by summing the dimensions of the bi-vector fields and subtracting the gauge group 
dimensions twice.9 This leads to the formula:

|H[MBCD (N,Nf)]| = N · (Nf + K) − 1

2
N · A · N, (4.3)

where K = {K1, . . . , Kk}, Ki = +1 for an orthogonal node or −1 for a symplectic node, and k
is the number of gauge nodes. Note again that nodes with Ni = 0 do not contribute and can be 
dropped from (or added to) a quiver.

Now consider two quivers MBCD (Na,Nfa) and MBCD (Nb,Nfb), with Higgs branches Ha
and Hb, respectively. We have:

|Ha| = Na · (Nfa + Ka) − 1

2
Na · A · Na

|Hb| = Nb · (Nfb + Kb) − 1

2
Nb · A · Nb

(4.4)

If we make the assumption that the two quivers have the same balance, Ba = Bb, and a compatible 
orthosymplectic node pattern, Ka = Kb ≡ K, then Nfb can be eliminated using (3.1), and (4.4)
yields:

� ≡ |Ha| − |Hb|
= (Na − Nb) · (Nfa + K) − 1

2
(Na − Nb) · A · (Na − Nb) .

(4.5)

Like the A series, � matches the dimension of a third quiver MBCD(Na − Nb, Nfa), and this 
suggests a rule for subtracting two ortho-symplectic quivers with the same flavours Nfa and 
compatible node pattern K:

MBCD (Na,Nfa) �MBCD(Na − Nb,Nfa) =MBCD (Nb,Nfb) ,

where

Nfb = Nfa − A · (Na − Nb).

(4.6)

Redefining the gauge vector, Nb → Na − Nb, this transforms to:

MBCD (Na,Nfa) �MBCD (Nb,Nfa) =MBCD (Na − Nb,Nfb) ,

where

Nfb = Nfa − A · Nb.

(4.7)

Naturally, the gauge ranks in the vector Na − Nb must be non-negative for the quiver subtraction 
to be valid. Significantly, the formulae for quiver subtraction, (3.9) and (4.7), are similar for 
unitary and ortho-symplectic quivers.

9 The dimension formula assumes that quivers do not suffer from “incomplete Higgsing”, which would invalidate the 
assumed HyperKähler quotient. Quivers from partitions do not have this problem.
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Fig. 8. O-USp quivers for B1 ∼= C1 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows 
(columns) are labelled by Characteristics of Oρ (Oσ ).

Fig. 9. O-USp quivers for B2 ∼= C2 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows 
(columns) are labelled by Characteristics of Oρ (Oσ ).

Now, if λ is a Bn partition, the quivers MBCD (λ,0), have the same flavour node vector 
Nf = {2n +1, 0, . . . , 0}, and similarly, if λ is a Cn or Dn partition, they share Nf = {2n, 0, . . . , 0}. 
Consequently, by allowing σ and ρ to range over each set of Bn, Cn and Dn partitions in turn, 
and by using (4.1), (4.2) and (4.7), we can obtain a full set of quiver candidates MBCD(σ, ρ) for 
the Higgs branch constructions of B , C and D series Slodowy intersections Sσ,ρ .

These Higgs branch quivers for the Sσ,ρ of B , C and D groups up to rank 4 are shown 
in Figs. 8 through 16. These are arranged as matrices, with rows and columns labelled by the 
Characteristics of Oρ and Oσ , respectively. Vector partitions and dimensions of Oσ are also 
shown, as well as the balance vector B, which by construction is constant down each column. 
Trivial self-intersections are denoted {}. The Kraft-Procesi transition for each row is labelled by 
its minimal singularity, as described in 2.4. Empty entries indicate the absence of an intersection. 
Gauge nodes of dimension zero are truncated.

The matrices are all of upper triangular form. Each top row contains quivers whose Higgs 
branches are closures of nilpotent orbits Sσ,0. Each rightmost column contains quivers whose 
Higgs branches are Slodowy slices SN ,ρ . The Higgs branches of the first non-empty entries 
above each diagonal are Kraft-Procesi transitions. Quivers whose Higgs branches are more gen-
eral intersections Sσ,ρ appear from rank 3 upwards.

The Slodowy intersections Sσ,ρ in each row transform in the same group F(ρ) as the 
slice SN ,ρ , although lower dimensioned intersections (such as Kraft-Procesi transitions), may 
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Fig. 10. O-USp quivers for D2 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows 
(columns) are labelled by Characteristics of Oρ (Oσ ).

Fig. 11. O-USp quivers for B3 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows 
(columns) are labelled by Characteristics of Oρ (Oσ ).

transform trivially under some component(s) of F(ρ).10 Any two quivers MBCD(σ1, ρ) and 
MBCD(σ2, ρ) in the same row, where σ1 > σ2, are related by quiver subtraction to a third quiver 
MBCD(σ1, σ2) in a row below. All the quivers have non-negative balance, B ≥ 0.

While each Slodowy intersection of G(N0) ∈ {Bn, Cn, Dn} is constructed from a pair of parti-
tions of N0 ∈ {2n + 1, 2n, 2n}, respectively, it can also be constructed from a pair of partitions of 
N ′

0, where N ′
0 ≡∑k

i=1 iNfi
, and is thus also related to the ambient group G(N ′

0).
11 If an inter-

10 The non-Abelian components of the centralisers F(ρ) are isomorphic with those tabulated in [25].
11 The partitions can be found from a given MBCD (N,Nf) with B ≥ 0 by considering two linear quivers with flavour 
N ′ and applying (4.7) in reverse.
0
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Fig. 12. O-USp quivers for C3 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows 
(columns) are labelled by Characteristics of Oρ (Oσ ).

Fig. 13. O-USp quivers for D3 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows 
(columns) are labelled by Characteristics of Oρ (Oσ ).
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olumns) are labelled by Characteristics of Oρ (Oσ ).
Fig. 14. O-USp quivers for B4 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows
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Fig. 15. O-USp quivers for C4 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows (c
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(columns) are labelled by Characteristics of Oρ (Oσ ).
Fig. 16. O-USp quivers for D4 Slodowy Intersections. The Higgs branches are Slodowy intersections Sσ,ρ . Rows



A. Hanany, R. Kalveks / Nuclear Physics B 952 (2020) 114939 25
section transforms trivially under some component of F(ρ), then N ′
0 < N0, and it also appears 

amongst the intersections of G(N ′
0) ⊂ G(N0). Notably, G(N ′

0) need not be from the same series 
as G(N0). A similar logic applies to sub-diagrams, which can reappear as intersection diagrams 
for sub-groups of G(N0).

While these matrices of ortho-symplectic quivers, whose Higgs branches are Slodowy inter-
sections, have a similar structure to the A series, being upper triangular and related by quiver 
subtractions, their Coulomb branches do not simply correspond to the (Special duals of) the 
same intersections.

As an example, consider the D4 orbit O[2000] = S[2000],[0000]. The Special dual to this is the 4 
dimensional slice S[2222],[2200]. The quiver whose Higgs branch gives O[2000] is [D4] −C1 −B0. 
However, when evaluated on its Coulomb branch, this quiver has a combined gauge group rank 
of only 1 and therefore gives a 2 dimensional space (that does not match any D4 intersection). 
The quiver requires a gauge node shift to [D4] − C1 − D1 in order to reproduce the (unrefined) 
HS of S[2222],[2200] on its Coulomb branch [12].

Further complications fall into several categories:

1. As noted in section 2.5, the Barbasch-Vogan map only generates vector partitions for special
orbits, and, furthermore, acts to interchange B and C partitions.

2. The dimension of a Coulomb branch equals twice the sum of the gauge node ranks, and is not 
proportional to B series vector dimensions. Thus, rank reduces when a D vector is broken 
into two B vectors, and Coulomb branch ortho-symplectic quiver candidates for Slodowy 
intersections are not generally related by quiver subtractions.

3. When ortho-symplectic quivers are evaluated on the Higgs branch, BD gauge nodes are 
taken as O type, by averaging over the relevant Z2 finite group factors, whereas on the 
Coulomb branch, a careful selection needs to made between various SO/O possibilities 
[31].

For these reasons, there is no straightforward procedure for finding a complete set of ortho-
symplectic quiver candidates for Coulomb branch constructions of the Sσ,ρ . Other complications 
include the failure of the ortho-symplectic monopole formula for quivers with zero conformal di-
mension, and its limitation to unrefined HS [30].

Nonetheless, in [12], quiver candidates for Coulomb branch constructions of Slodowy slices 
SN ,ρ , for special orbits only, were tabulated for BCD groups up to rank 4. These are linear 
ortho-symplectic quivers, containing pure BC, CD or DC chains of nodes with ordered vec-
tor dimensions, but having the same Higgs branches as the quivers for Oρ (in the top rows of 
Figs. 8 through 16). Their quiver subtractions yield some Coulomb branch quiver candidates for 
Slodowy intersections Sσ,ρ (of pairs of special orbits), and some other candidates can be found 
by BD gauge node shifting to Higgs equivalent quivers, using trial and error, and with judicious 
choice of O/SO gauge nodes. We do not tabulate these quivers, but comment that their unrefined
Coulomb branch Hilbert series (where calculable) appear consistent with those presented herein.

4.1.2. Dynkin quivers
A set of Coulomb branch constructions, based on ADE affine Dynkin diagrams, has been 

known since [15] for Slodowy intersections that are minimal nilpotent orbits. This set was ex-
tended, in [32], to include minimal nilpotent orbits of non-simply laced groups by modifications 
to the Coulomb branch unitary monopole formula, and, in [11], to include next to (or near to) 
minimal orbits, by using twisted affine Dynkin diagrams.



26 A. Hanany, R. Kalveks / Nuclear Physics B 952 (2020) 114939
Fig. 17. D4 Slodowy Intersections from Dynkin Quiver Coulomb Branches. Coulomb branches yield Slodowy intersec-
tions Sσ,ρ . Rows (columns) are labelled by Characteristics of Oρ (Oσ ). Only intersections between low dimensioned 
orbits are shown.

Coulomb branch constructions are also available for many BCD series intersections that are 
KP transitions; these are either minimal orbits (as above) or AD singularities (or their unions). 
If the KP transitions are A type singularities, they are sub-regular Slodowy slices for some An, 
and so have Coulomb branch constructions as in section 3.1. Some intersections Sσ,ρ that are 
adjacent to KP transitions are next to (or near to) minimal orbits of F(ρ) and therefore also have 
Coulomb branch constructions.

It was observed in [21] that these Coulomb branch constructions for the BCD series are lim-
ited to balanced Dynkin quivers which have Characteristic height [θ ] = 2, where [θ ] ≡ Nf · a, 
with a given by Coxeter labels. This largely limits the DBCD (N,Nf) that are relevant to inter-
sections to the types noted above.

Although we do not repeat tables of these Dynkin quivers here,12 they generate refined Hilbert 
series from the Coulomb branch unitary monopole formula [12] (section 3.3) and these are con-
sistent with those presented herein.

In the case of the D series, Dynkin quivers DAD (N,Nf), provide Higgs branch constructions 
for intersections close to the sub-regular Slodowy slice, as well as Coulomb branch construc-
tions (as above) for intersections close to the minimal orbit. As an example, Dynkin quivers for 
Coulomb and Higgs branch constructions of the Sσ,ρ of D4 are tabulated in Figs. 17 and 18. The 
matrices are restricted to those intersections amenable to this approach.13

There are several noteworthy features:

1. The simply laced quivers in Figs. 17 and 18 can be related by quiver subtractions, and the 
dimensions of their Higgs branches are given by a generalisation of equation (3.5), in which 
A is taken as the D4 Cartan matrix. The method of quiver subtractions is, however, limited 
to simply laced quivers, and does not therefore embrace the entire set of D4 intersections.

2. The quivers that appear in the Coulomb branch constructions in Fig. 17 contain Dynkin 
diagrams of simple subgroups of F(ρ). All have Characteristic height [θ ] = 2. The Coulomb 

12 Tables of Dynkin quivers DBCD for nilpotent orbits up to rank 4 are given in [11].
13 Some of these quivers were studied in [33], where the Higgs branches of DDn quivers were shown to correspond to 
Slodowy slices of Cn−1 or Dn−1.
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Fig. 18. D4 Slodowy Intersections from Dynkin Quiver Higgs Branches. Higgs branches yield Slodowy intersections 
Sσ,ρ . Rows (columns) are labelled by Characteristics of Oρ (Oσ ). Only intersections between high dimensioned orbits 
are shown.

branches of Dynkin quivers of Dn with [θ ] > 2 do not appear to correspond to Slodowy 
intersections.

3. The positions of the [θ ] = 2 quivers in Figs. 17 and 18 can be related by Special duality, as 
defined in section 2.5. Note that under the dBV map for D4, all the orbits/partitions, with the 
exception of D[1011], are special, with d2

BV = 1:

{[0000] , [0100] , [2000] , [0002] , . . .} ↔
dBV

{[2222] , [2022] , [2200] , [0202] , . . .} ,

{[0200] , [1011]} →
dBV

{[0200] , [0200]} .
(4.8)

4. The Higgs branch constructions in Fig. 18 also contain two quivers with [θ ] = 3, including 
quivers for S[2022],[0200] and S[2222],[0200], the latter being the Special dual S∨[1011],[0000]. 
Constructions for [θ ] > 3 are not known.14

5. There is manifest triality between the quivers for 
{
O[2000],O[0002],O[0020]

}
and likewise 

between their Special duals 
{
SN ,[2200],SN ,[0202],SN ,[0220]

}
. This has the consequence that 

these constructions yield normal HS.

14 Dynkin quivers with height [θ ] = 3 also provide comparable Higgs branch constructions for intersections of D5 and 
D6, and we would conjecture this extends to higher rank.
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4.2. Hilbert series

Hilbert series g
Sσ,ρ

HS (x, t) for BCD type Slodowy intersections Sσ,ρ can be calculated using 
the Higgs branch formula, as described in [12] (section 4.2), from MBCD (σ,ρ) quivers, such as 
those tabulated in Figs. 8 through 16.

The results for BCD groups of rank up to 4 are summarised in Tables 4 through 21. These are 
labelled by pairs of Characteristics (σ, ρ) and set out, for each non-trivial Slodowy intersection, 

its dimension, its symmetry group F(ρ), its unrefined Hilbert series g
Sσ,ρ

HS (t), and the HWG 

g
Sσ,ρ

HWG(m, t) (expressed as a PL) that decodes g
Sσ,ρ

HS (x, t) into irreps of F(ρ). Refined HS and 
HWGs lacking finite PLs are not tabulated (due to space constraints). Non-normal intersections 

are highlighted. Trivial self-intersections, with Hilbert series g
Sρ,ρ

HS = 1, are omitted.

The HS g
Sσ,ρ

HS (y, t) are consistent with the dimension formula (4.3), and also with results in 
the Literature for a variety of closures of BCD series nilpotent orbits, Slodowy slices and KP 
transitions. As a non-trivial check, the HS for the different intersections Sσ,ρ within each slice 
(fixed by ρ) obey inclusion relations that match those of the poset of orbits Oσ in the parent 
group Hasse diagram [8]. Several observations can be made about the Hilbert series of BCD

type Slodowy intersections Sσ,ρ and their HWGs:

1. Whenever Oσ is normal, g
Sσ,ρ

HS (t) is palindromic, whether or not Oρ is normal. We refer to 
these Sσ,ρ as “normal” intersections. For normal intersections, identical Hilbert series can 
be obtained using the SI formula (2.14).

2. Conversely, whenever Oσ is non-normal, then g
Sσ,ρ

HS (t) is non-palindromic, and the Kraft-
Procesi transition from Oσ to the orbit below in the Hasse diagram is always of the form 
A2k−1 ∪ A2k−1, for some k [8]. The structure of the HS of these non-normal intersections 
can be complicated, as discussed further below.

3. For a Slodowy slice, g
SN ,ρ

HS (t) is always a complete intersection. Naturally, this extends to 
the Sσ,ρ whose quivers match those of Slodowy slices.

4. By construction, the product group F(ρ) combines orthogonal and/or symplectic sub-
groups. The adjoint representation of F(ρ) (or its relevant subgroup) always appears at 
counting order t2 in the HS/HWG, while other representations only appear at higher or-

ders. The g
Sσ,ρ

HS (y, t) are series of real representations, so any complex irreps are coupled 
with their conjugates at each counting order.

5. Several Kraft-Procesi transitions have different quivers, which generate the same g
Sσ,ρ

HS (y, t). 
For examples, see a comparison of the B2 ∼= C2 quivers in Fig. 9, or the quivers for 
{a1 ∼= b1 ∼= c1 ∼= A1, b2 ∼= c2,A3}.

6. The same g
Sσ,ρ

HS (y, t) may recur for intersections defined by different pairs of partitions, and 
also for different ambient groups G. Often the quivers for such intersections match (modulo 
outer automorphisms) but, unlike the MA quivers, this is not always the case. The Classi-
cal group isomorphisms, as well as other Higgs branch dualities between ortho-symplectic 
quivers, hinder the identification of all isomorphisms between BCD intersections from the 
MBCD quivers alone; a full enumeration requires the calculation of HS or HWGs.
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PL[HWG]

m2t2

m2
2t2

m2
2t2 + m2

1t4

m2
2t2 + m1t4 + m2

1t4 + m2
2t6 + m1m2

2t8 − m2
1m4

2t16

m2t2

m2t2 + mt3 + t4 + mt5 − m2t10

t2 + (q + 1/q)t4 − t8

m2
1t2

m2
1t2 + m2

2t4

m2
1t2 + m2t4 + m2

2t4 + m2
1t6 + m2

1m2t8 − m4
1m2

2t16

m2t2

m2t2 + mt3 + t4 + mt5 − m2t10

t2 + (q + 1/q)t4 − t8
Table 4
B1 ∼= C1 and B2 ∼= C2 Slodowy Intersections. B2 and C2 intersections are isomorphic, under reversal of Dynkin labels

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0] [2] 2 B1 ∼= C1
1−t4

(1−t2)3

[00] [01] 4 B2
1+6t2+t4

(1−t2)4

[20] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[22] 8 (1−t4)(1−t8)

(1−t2)10

[01] [20] 2 C1 ⊗ B0
1−t4

(1−t2)3

[22] 4 1−t8

(1−t2)3(1−t3)2

[20] [22] 2 D1 ⊗ B0
1−t8

(1−t2)(1−t4)2

[00] [10] 4 C2
1+6t2+t4

(1−t2)4

[02] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[22] 8 (1−t4)(1−t8)

(1−t2)10

[10] [02] 2 C1 ⊗ B0
1−t4

(1−t2)3

[22] 4 1−t8

(1−t2)3(1−t3)2

[02] [22] 2 D1 ⊗ B0
1−t8

(1−t2)(1−t4)2
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tions are not shown. The orbit [101] is non-normal.

PL[HWG]

m2t2

m2t2 + m2
1t4

m2t2 + m2
1t4 + m2

3t4 + m1m2
3t6 − m2

1m4
3t12

m2t2 + m2
1t4 + m2

3t4 + m1m2
3t6 + m2

2t8+
m1m2m2

3t10 − m2
1m2

2m4
3t20

. . .

. . .

m2
B

t2

m2
B

t2 + m2
C

t2 + m2
B

mCt3 − m4
B

m2
C

t6

m2
B

t2 + m2
C

t2 + m2
B

mCt3+
m2

B
mCt5 − m4

B
m2

C
t10

. . .

. . .

m2
1t2 + m2

2t2 − m2
1m2

2t4

m2
1t2 + m2

2t2

m2
1t2 + m2

2t2 + t4 + m1m2t4+
m1m2t6 − m2

1m2
2t12

. . .
Table 5
B3 Slodowy Intersections. Some palindromic Hilbert series terms are abbreviated. HWGs that are not complete inters

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[000] [010] 8 B3
1+13t2+28t4+13t6+t8

(1−t2)8

[200] 10 (1−t4)(1+10t2+20t4+10t6+t8)

(1−t2)11

[101] 12 (1−t4)(1+8t2+36t4+92t6+t8−6t10)

(1−t2)13

[020] 14 (1−t4)(1+6t2+21t4+28t6+21t8+6t10+t12)

(1−t2)15

[220] 16 (1−t4)(1−t8)(1+3t2+6t4+3t6+t8)

(1−t2)18

[222] 18 (1−t4)(1−t8)(1−t12)

(1−t2)21

[010] [200] 2 B1 ⊗ C1
1−t4

(1−t2)3

[101] 4 1−2t+5t2−2t3

(1−t)2(1−t2)2

[020] 6 1+t+3t2+6t3+8t4+6t5+...pal...+t10

(1−t)−1(1−t2)4(1−t3)3

[220] 8 (1+t2+2t3+t4+t6)(1−t8)

(1−t2)5(1−t3)4

[222] 10 (1−t8)(1−t12)

(1−t2)6(1−t3)6

[200] [101] 2 D2 ⊗ B0
1+4t2−t4

(1−t2)2

[020] 4 (1−t4)2

(1−t2)6

[220] 6 (1−t8)(1+3t2+5t4+3t6+t8)

(1−t2)3(1−t4)4

[222] 8 (1−t8)(1−t12)

(1−t2)6(1−t4)4
ec
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PL[HWG]

m2t2

m2t2 + mt3 + t4 + mt5 − m2t10

. . .

t2 + (q + 1/q)t4 − t8

t2 + (q2 +q +1/q +1/q2)t4 + t6 − t8 − t12

t2 + (q + 1/q)t6 − t12
Table 5 (continued)

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[101] [020] 2 C1 ⊗ B0
1−t4

(1−t2)3

[220] 4 1−t8

(1−t2)3(1−t3)2

[222] 6 (1−t8)(1−t12)

(1−t2)3(1−t3)2(1−t4)(1−t5)2

[020] [220] 2 D1 ⊗ B0
1−t8

(1−t2)(1−t4)2

[222] 4 (1−t8)(1−t12)

(1−t2)(1−t4)4(1−t6)

[220] [222] 2 D1 ⊗ B0
1−t12

(1−t2)(1−t6)2
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s are abbreviated. HWGs that are not complete intersec-

PL[HWG]

m2t2

m2t2 + m2
1t4

m2t2 + m2
4t4

m2t2 + m2
1t4 + m2

4t4+
m1m3t6 + m2

3t8−
m2

1m2
3t12

t20

m2t2 + m2
1t4 + m2

4t4+
m1m3t6 + m2

2t8+
m2

3t8 + m1m2m3t10−
m2

1m2
2m2

3t20

t20
. . .

. . .

..pal...+t24
. . .

14−15t16−2t18+t20
. . .

al...+t24
. . .

.+t12)
. . .

. . .
Table 6
B4 Slodowy Intersections from [0000]. These are closures of nilpotent orbits Oσ . Some palindromic Hilbert series te
tions are not shown. The orbit [2101] is non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0000] [0100] 12 B4
1+24t2+129t4+220t6+...pal...+t12

(1−t2)12

[2000] 14 1+21t2+105t4+175t6+...pal...+t12

(1−t4)−1(1−t2)15

[0001] 16 1+20t2+165t4+600t6+924t8+...pal...+t16

(1−t2)16

[1010] 20 1+14t2+106t4+454t6+788t8+...pal...+t16

(1−t4)−2(1−t2)22

[0200] 22 1+13t2+91t4+335t6+737t8+946t10+...pal...+
(1−t4)−1(1−t2)23

[0020] 24 1+10t2+56t4+194t6+438t8+578t10+...pal...+
(1−t4)−2(1−t2)26

[2200] 24 1+10t2+55t4+136t6+190t8+...pal...+t16

(1−t4)−1(1−t8)−1(1−t2)26

[0201] 26 1+9t2+45t4+165t6+441t8+854t10+1050t12+
(1−t4)−1(1−t2)27

[2101] 26 1+7t2+30t4+98t6+259t8+554t10+484t12+7
(1−t4)−3(1−t2)29

[2020] 28 1+6t2+22t4+62t6+138t8+227t10+264t12+..

(1−t4)−2(1−t2)30

[2220] 30 (1−t4)(1−t8)(1−t12)(1+3t2+6t4+10t6+...pa
(1−t2)33

[2222] 32 (1−t4)(1−t8)(1−t12)(1−t16)

(1−t2)36
rm

.

1t

.p

l..
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mplete intersections are not shown. The orbit [2101] is 

PL[HWG]

m2t2

m2
2t2

m2t2 + m2
2t2 + mm1t3

+m2
1t4 − m2m2

1t6)
m2t2 + m2

2t2 + mm1t3

+t4 + m2
1t4 + mm1t5

−m2m2
1t10

...pal...+t16
. . .

l...+t14
. . .

7

. + t22

)
. . .

8t8 + 88t9

5 − t16 − 2t17 + t18

)
. . .

22

)
. . .

+t14

10 . . .

. . .
Table 7
B4 Slodowy Intersections from [0100]. Some palindromic Hilbert series terms are abbreviated. HWGs that are not co
non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0100] [2000] 2 B2 ⊗ C1
1−t4

(1−t2)3

[0001] 4 1+6t2+t4

(1−t2)4

[1010] 8 (1−t4)(1−2t+7t2−2t3+t4)

(1−t)2(1−t2)7

[0200] 10

(
1 + 3t + 11t2 + 30t3 + 69t4 + 123t5 + 204t6

+287t7 + 351t8 + 366t9 + . . .pal . . . + t18

(1−t)−3(1−t2)8(1−t3)5

[0020] 12 1+t+5t2+10t3+20t4+30t5+52t6+60t7+66t8+
(1−t)−1(1−t4)−1(1−t2)9(1−t3)5

[2200] 12 1+2t+7t2+16t3+30t4+40t5+55t6+60t7+...pa
(1−t)−2(1−t8)−1(1−t2)9(1−t3)6

[0201] 14

(
1 + t + 6t2 + 9t3 + 24t4 + 39t5 + 77t6 + 110t

+174t8 + 220t9 + 270t10 + 266t11 + . . .pal . .
(1−t)−1(1−t2)8(1−t3)7

[2101] 14

(
1 + 4t2 + 4t3 + 11t4 + 16t5 + 34t6 + 42t7 + 7
+90t10 + 72t11 + 55t12 + 14t13 + 3t14 − 2t1

(1−t4)−1(1−t2)9(1−t3)6

[2020] 16

(
1 + t + 3t2 + 6t3 + 10t4 + 16t5 + 28t6 + 38t7

+52t8 + 66t9 + 74t10 + 74t11 + . . .pal . . . + t

(1−t)−1(1−t4)−1(1−t2)11(1−t3)7

[2220] 18 1+2t+4t2+6t3+9t4+12t5+16t6+18t7+...pal...
(1−t)−2(1−t8)−1(1−t12)−1(1−t2)12(1−t3)

[2222] 20 (1−t8)(1−t12)(1−t16)

(1−t2)13(1−t3)10
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PL[HWG]

m2m3t2

m2m3t2 + m2
1t4

m2m3t2 + m2
1t4+

m2m3t4 + m1m2
2t6+

m1m2
3t6 − m2

1m2
2m2

3t12

..pal...+t16

4)6

m2m3t2 + t4+
m1t4 + m2

1t4+
m1t6 − m2

1t12

. . .

5t8 + 573t10+
7t18 − 5t20

)
5 . . .

10+...pal...+t20

3 . . .

t6+...pal...+t12)

)6 . . .

. . .
Table 8
B4 Slodowy Intersections from [2000]-[0001]. Some palindromic Hilbert series terms are abbreviated. HWGs that are 
is non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[2000] [1010] 6 D3 ⊗ B0
(1−t4)(1+8t2+t4)

(1−t2)7

[0200] 8 (1−t4)2(1+5t2+t4)

(1−t2)10

[0020] 10 (1−t4)(1+4t2+10t4+4t6+t

(1−t2)11

[2200] 10 1+10t2+40t4+85t6+109t8+
(1−t8)−1(1−t2)5(1−

[0201] 12 (1−t4)2(1+t2+8t4+t6+t8)

(1−t2)14

[2101] 12

(
1 + 8t2 + 37t4 + 127t6 +
632t12 + 413t14 + 130t16

(1−t2)7(1−t

[2020] 14 1+4t2+13t4+31t6+53t8+6
(1−t2)11(1−t

[2220] 16 (1−t8)(1−t12)(1+3t2+6t4+
(1−t2)12(1−t

[2222] 18 (1−t8)(1−t12)(1−t16)

(1−t2)15(1−t4)6
n

8)

.

t

32

+
4)

2t
4)

9
4
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PL[HWG]

m2
1t2

m2
1t2 + m2

2t4

m2
1t2 + m1t3 + m2t4+

m2
2t4 + m1m2t5 − m2

1m2
2t10

m2
1t2 + m2t4 + m2

2t4+
m2

1t6 + m2
1m2t8 − m4

1m2
2t16

−...pal...+t16
. . .

t7+
14

)
. . .

6t7 + 132t8+
. + t24

)
. . .

12

1−t4)4 . . .

. . .
Table 8 (continued)

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0001] [1010] 4 C2 ⊗ B0
1+6t2+t4

(1−t2)4

[0200] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[0020] 8 (1−t4)(1−2t+4t2−2t3+t4)

(1−t)2(1−t2)7

[2200] 8 (1−t4)(1−t8)

(1−t2)10

[0201] 10 1−2t+7t2−8t3+20t4−16t5+36t6−20t7+42t8

(1−t)2(1−t2)4(1−t4)4

[2101] 10

(
1 + 2t + 4t2 + 6t3 + 15t4 + 24t5 + 40t6 + 52
64t8 + 48t9 + 23t10 − 2t11 − 4t12 − 2t13 + t

(1−t)−2(1−t4)−1(1−t2)9(1−t3)4

[2020] 12

(
1 + 2t + 6t2 + 10t3 + 22t4 + 34t5 + 62t6 + 8
162t9 + 209t10 + 220t11 + 242t12 + . . .pal . .

(1−t)−2(1−t2)7(1−t3)4(1−t4)3

[2220] 14 1+2t+3t2+4t3+6t4+8t5+10t6+...pal...+t

(1−t)−2(1−t8)−1(1−t12)−1(1−t2)10(1−t3)4(

[2222] 16 (1−t8)(1−t12)(1−t16)

(1−t2)10(1−t3)4(1−t4)5



36
A

.H
anany,R

.K
alveks

/N
uclear

P
hysics

B
952

(2020)
114939

ot complete intersections are not shown. The orbit [2101]

PL[HWG]

m2t2

t2 + m2t2 +
m(q + 1/q)t3 − m2t6

m2t2 + mt3 + t4 +
mt5 − m2t10

6)
. . .

4t8−2t9

t4)
. . .

8+2t9+t12
. . .

al...+t10)(1−t12)
3)5(1−t4)2(1−t5)2 . . .

2 . . .

m2t2

t2 + (q2 + 1/q2)t4 − t8

t2 + m2t2 +
m2(q + 1/q)t4

− m4t8

. . .

. . .

t12)
. . .

. . .
Table 9
B4 Slodowy Intersections from [1010]-[0200]. Some palindromic Hilbert series terms are abbreviated. HWGs that are 
is non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[1010] [0200] 2 C1 ⊗ D1 ⊗ B0
1−t4

(1−t2)3

[0020] 4 1+2t2+2t3+2t4+t6

(1−t2)2(1−t3)2

[2200] 4 1−t8

(1−t2)3(1−t3)2

[0201] 6 (1−t4)(1−t+t2+2t3+t4−t5+
(1−t)(1−t2)3(1−t3)3

[2101] 6 1−t+3t2+5t4+3t5+7t6+2t7

(1−t)(1−t2)(1−t3)3(1

[2020] 8 1+2t3+3t4+2t5+2t6+2t7+3
(1−t2)4(1−t3)4

[2220] 10 (1+t+t2+2t3+3t4+3t5+..

(1−t)−1(1−t8)−1(1−t2)4(1−
[2222] 12 (1−t8)(1−t12)(1−t16)

(1−t2)4(1−t3)6(1−t4)3(1−t

[0200] [0020] 2 B1 ⊗ D1
1−t4

(1−t2)3

[2200] 2 1−t8

(1−t2)(1−t4)2

[0201] 4 1+2t2+6t4+2t6+t8

(1−t2)2(1−t4)2

[2101] 4 1+t2+7t4−t6

(1−t2)3(1−t4)

[2020] 6 1+t2+6t4+4t6+6t8+t10+t1

(1−t2)3(1−t4)3

[2220] 8 (1−t8)(1+t2+3t4+t6+t8)(1
(1−t2)3(1−t4)6(1−t6)

[2222] 10 (1−t8)(1−t12)(1−t16)

(1−t2)4(1−t4)8(1−t6)
n

t

+
−
t

.p
t

5)

2

−
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omplete intersections are not shown. The orbit [2101] is 

PL[HWG]

m2t2

m2t2

m2t2 + t4 + m4t4 + m4t6 − m8t12

. . .

. . .

m2
1t2 + m2

2t2 − m2
1m2

2t4

m2
1t2 + m2

2t2

t6)
m2

1t2 + m2
2t2 + m1m2t6 +

m1m2t8 − m2
1m2

2t16

. . .

m2t2

m2t2 + t4 + m2t6 + m2t8 − m4t16

. . .

(continued on next page)
Table 10
B4 Slodowy Intersections from [0020]-[2220]. Some palindromic Hilbert series are abbreviated. HWGs that are not c
non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0020] [0201] 2 B1
1−t4

(1−t2)3

[2101] 2 1−t4

(1−t2)3

[2020] 4 1+t2+4t4+t6+t8

(1−t2)2(1−t4)2

[2220] 6 (1−t8)(1−t12)

(1−t2)3(1−t4)5

[2222] 8 (1−t8)(1−t12)(1−t16)

(1−t2)3(1−t4)5(1−t6)3

[2200] [2101] 2 D2 ⊗ B0
1+4t2−t4

(1−t2)2

[2020] 4 (1−t4)2

(1−t2)6

[2220] 6 (1+2t2+t4+t6)(1+t2+2t4+
(1−t12)−1(1−t2)3(1−t6)4

[2222] 8 (1−t12)(1−t16)

(1−t2)6(1−t6)4

[0201] [2020] 2 C1 ⊗ B0
1−t4

(1−t2)3

[2220] 4 (1−t8)(1−t12)

(1−t2)3(1−t6)3

[2222] 6 (1−t12)(1−t16)

(1−t2)3(1−t5)2(1−t6)3
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PL[HWG]

m2t2

m2t2 + t4 + mt5 + mt7 − m2t14

7)2 . . .

2t4 + t6 − t12

3t4 + 2t6 + t8 − t12 − t16

t2 + 2t8 − t16
Table 10 (continued)

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[2101] [2020] 2 C1 ⊗ B0
1−t4

(1−t2)3

[2220] 4 1−t12

(1−t2)3(1−t5)2

[2222] 6 (1−t12)(1−t16)

(1−t2)3(1−t4)(1−t5)2(1−

[2020] [2220] 2 B0 ⊗ B0 ⊗ B0
1−t12

(1−t4)2(1−t6)

[2222] 4 (1−t12)(1−t16)

(1−t4)3(1−t6)2(1−t8)

[2220] [2222] 2 D1 ⊗ B0
1−t16

(1−t2)(1−t8)2
t
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eries terms are abbreviated. HWGs that are not complete 

PL[HWG]

m2
1t2

m2
1t2 + m2

2t4

m2
1t2 + m2

2t4 + m2
3t6

m2
1t2 + m2t4 + m2

2t4 + m1m3t6 + m2
3t6+

m1m2m3t8 − m2
1m2

2m2
3t16

. . .

. . .

. . .
Table 11
C3 Slodowy Intersections from [000]. The intersections are closures of nilpotent orbits Oσ . Some palindromic Hilbert s
intersections are not shown.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[000] [100] 6 C3
(1−t4)(1+14t2+t4)

(1−t2)7

[010] 10 (1−t4)(1+10t2+41t4+10t6+t8)

(1−t2)11

[002] 12 (1−t4)2(1+7t2+15t4+7t6+t8)

(1−t2)14

[020] 14 (1−t4)(1+6t2+21t4+35t6+...pal...+t12)

(1−t2)15

[210] 14 (1−t4)(1+6t2+21t4+56t6+...pal...+t12)

(1−t2)15

[202] 16 (1−t4)2(1+3t2+7t4+13t6+...pal...+t12)

(1−t2)18

[222] 18 (1−t4)(1−t8)(1−t12)

(1−t2)21
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 complete intersections are not shown.

PL[HWG]

m2
1t2

m2
1t2 + m2

2t4

m2
1t2 + m1t3 + m2t4+

m2
2t4 + m1m2t5−

m2
1m2

2t10

2t7+...pal...+t14

)4 . . .

t7+...pal...+t14

−t3)4 . . .

. . .

m2t2

t2 + m2t2 +
m(q + 1/q)t3 − m2t6

. . .

. . .

. . .
Table 12
C3 Slodowy Intersections from [100]-[202]. Some palindromic Hilbert series terms are abbreviated. HWGs that are n
ρ σ

∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[100] [010] 4 C2 ⊗ B0
1+6t2+t4

(1−t2)4

[002] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[020] 8 (1−t4)(1−2t+4t2−2t3+t4)

(1−t)2(1−t2)7

[210] 8 1+2t+7t2+12t3+27t4+42t5+67t6+
(1−t)−2(1−t2)6(1−t

[202] 10 1+2t+4t2+6t3+10t4+14t5+20t6+
(1−t)−2(1−t4)−1(1−t2)9

[222] 12 (1−t8)(1−t12)

(1−t2)10(1−t3)4

[010] [002] 2 C1 ⊗ D1
1−t4

(1−t2)3

[020] 4 1+2t2+2t3+2t4+t6

(1−t2)2(1−t3)2

[210] 4 1−2t+4t2−2t3+t4

(1−t)2(1−t2)(1−t4)

[202] 6 1+t+t2+2t3+4t4+4t5+...pal...+t10

(1−t)−1(1−t2)4(1−t3)3

[222] 8 (1−t8)(1−t12)

(1−t2)4(1−t3)4(1−t4)2
ot

7
3

22
(1



A
.H

anany,R
.K

alveks
/N

uclear
P

hysics
B

952
(2020)

114939
41

ned HS PL[HWG]

3 m2t2

4t4+t6+t8

)2(1−t4)2 m2t2 + t4 + m4t4 +
m4t6 − m8t12

)(1−t12)
3(1−t4)5 . . .

3 m2t2

)(1−t12)
3(1−t6)3 m2t2 + t4 + m2t6 +

m2t8 − m4t16

3 m2t2

t12
3(1−t5)2 m2t2 + t4 + mt5 + mt7 −

m2t14

t12
2(1−t6)

2t4 + t6 − t12
Table 12 (continued)

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefi

[002] [020]/[210] 2 B1
1−t4

(1−t2)

[202] 4 1+t2+
(1−t2

[222] 6 (1−t8

(1−t2)

[020] [202] 2 C1
1−t4

(1−t2)

[222] 4 (1−t8

(1−t2)

[210] [202] 2 C1 ⊗ B0
1−t4

(1−t2)

[222] 4 1−
(1−t2)

[202] [222] 2 B0 ⊗ B0
1−

(1−t4)
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PL[HWG]

m2
1t2

m2
1t2 + m2

2t4

m2
1t2 + m2

2t4 + m2
3t6

m2
1t2 + m2

2t4+
m2

3t6 + m2
4t8

)
. . .

76t14−56t16−29t18+t20
. . .

l...+t20)
. . .

l...+t20)
. . .

.+t20)
. . .

.pal...+t20)
. . .

..pal...+t20)
. . .

al...+t20)
. . .

. . .
Table 13
C4 Slodowy Intersections from [0000]. The intersections are closures of nilpotent orbits Oσ . Some palindromic Hilber
intersections are not shown. The orbit [0200] is non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0000] [1000] 8 C4
1+28t2+70t4+28t6+t8

(1−t2)8

[0100] 14 (1−t4)(1+21t2+204t4+406t6+...pal...+t12)

(1−t2)15

[0010] 18 (1−t4)(1+17t2+126t4+537t6+894t8+...pal...+t1

(1−t2)19

[0002] 20 (1−t4)2(1+14t2+79t4+223t6+317t8+...pal...+t1

(1−t2)22

[2100] 20 (1−t4)2(1+14t2+106t4+574t6+722t8+...pal...+t

(1−t2)22

[0200] 22 1+13t2+91t4+419t6+1346t8+2365t10+1841t12+
(1−t4)−1(1−t2)23

[0110] 24 (1−t4)2(1+10t2+56t4+194t6+405t8+512t10+...

(1−t2)26

[2010] 24 (1−t4)2(1+10t2+56t4+230t6+701t8+776t10+...

(1−t2)26

[2002] 26 (1−t4)3(1+7t2+30t4+98t6+199t8+230t10+...pa
(1−t2)29

[0202] 28 (1−t4)(1−t8)(1+6t2+21t4+56t6+99t8+117t10+
(1−t2)30

[2210] 28 (1−t4)(1−t8)(1+6t2+21t4+56t6+126t8+252t10+
(1−t2)30

[2202] 30 (1−t4)2(1−t8)(1+3t2+7t4+13t6+22t8+34t10+..

(1−t2)33

[2222] 32 (1−t4)(1−t8)(1−t12)(1−t16)

(1−t2)36
t 

6)

6)

16

4

pa

pa

l..

..

.

.p
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PL[HWG]

m2
1t2

m2
1t2 + m2

2t4

m2
1t2 + m2

2t4 + m2
3t6

49t6 + 1810t7+
l . . . + t20

⎞
⎠

3)6
. . .

+37t8−16t9+t10)
. . .

+t12)
. . .

6t6 + 1124t7 + 2007t8+
2 + . . .pal . . . + t24

⎞
⎠

(1−t3)6
. . .

t6 + 492t7 + 777t8+
+ . . .pal . . . + t24

⎞
⎠

−t3)6
. . .

74t7+
t20

⎞
⎠

t3)6
. . .

112t7+
. . . + t22

⎞
⎠

. . .

26t7+
+ t22

⎞
⎠

3)6
. . .

. . .
Table 14
C4 Slodowy Intersections from [1000]. Some palindromic Hilbert series terms are abbreviated. HWGs that are not co
non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[1000] [0100] 6 C3 ⊗ B0
(1−t4)(1+14t2+t4)

(1−t2)7

[0010] 10 (1−t4)(1+10t2+41t4+10t6+t8)

(1−t2)11

[0002] 12 (1−t4)2(1+7t2+15t4+7t6+t8)

(1−t2)14

[2100] 12

⎛
⎝ 1 + 4t + 20t2 + 60t3 + 191t4 + 480t5 + 10

2641t8 + 3210t9 + 3450t10 + . . .pa

(1−t)−4(1−t4)−1(1−t2)11(1−t

[0200] 14 (1−t4)(1−2t+9t2−10t3+32t4−24t5+72t6−44t7

(1−t)2(1−t2)13

[0110] 16 (1−t4)(1−2t+7t2−6t3+15t4−6t5+17t6−...pal...
(1−t)2(1−t2)15

[2010] 16

⎛
⎝ 1 + 4t + 16t2 + 44t3 + 117t4 + 264t5 + 57

3078t9 + 4113t10 + 4762t11 + 5004t1

(1−t)−4(1−t4)−1(1−t2)15

[2002] 18

⎛
⎝ 1 + 4t + 13t2 + 32t3 + 73t4 + 148t5 + 285

1088t9 + 1376t10 + 1556t11 + 1625t12

(1−t)−4(1−t4)−2(1−t2)18(1

[0202] 20

⎛
⎝ 1 + 2t + 6t2 + 10t3 + 21t4 + 32t5 + 56t6 +

99t8 + 106t9 + 117t10 + . . .pal . . . +
(1−t)−2(1−t4)−1(1−t8)−1(1−t2)18(1−

[2210] 20

⎛
⎝ 1 + 2t + 7t2 + 12t3 + 27t4 + 42t5 + 77t6 +

182t8 + 252t9 + 357t10 + 392t11 + . . .pal

(1−t)−2(1−t8)−1(1−t2)17(1−t3)6

[2202] 22

⎛
⎝ 1 + 2t + 4t2 + 6t3 + 10t4 + 14t5 + 20t6 +

35t8 + 44t9 + 56t10 + 62t11 + . . .pal . . .

(1−t)−2(1−t4)−1(1−t8)−1(1−t2)20(1−t

[2222] 24 (1−t8)(1−t12)(1−t16)

(1−t2)21(1−t3)6
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ot complete intersections are not shown. The orbit [0200]

PL[HWG]

m2
1t2

m2
1t2 + m2

2t4

. . .

1t6 + 81t7+
2 − 4t13

)
. . .

.+t10)
. . .

0t7+162t8+150t9+...pal...+t18

−t3)5(1−t4)
. . .

+58t8+58t9+...pal...+t18

−t3)5 . . .

t7+73t8+74t9+...pal...+t18

2)11(1−t3)7 . . .

t8+...pal...+t16

(1−t4)2 . . .

5t8+18t9+22t10+...pal...+t20

10(1−t3)7(1−t4)
. . .

. . .
Table 15
C4 Slodowy Intersections from [0100]-[0010]. Some palindromic Hilbert series terms are abbreviated. HWGs that are 
is non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0100] [0010] 4 C2 ⊗ D1
1+6t2+t4

(1−t2)4

[0002] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[2100] 6 1−2t+9t2−8t3+9t4−2t5+t6

(1−t)2(1−t2)3(1−t4)

[0200] 8

(
1 + t + 7t2 + 11t3 + 31t4 + 47t5 +

77t8 + 41t9 + 21t10 − 3t11 − 4

(1−t)−1(1−t2)5(1−t3

[0110] 10 (1−t4)2(1+3t2+4t3+7t4+4t5+...pal
(1−t2)8(1−t3)4

[2010] 10 1+t+7t2+10t3+32t4+50t5+102t6+
(1−t)−1(1−t2)5(

[2002] 12 1+t+4t2+7t3+15t4+24t5+40t6+48
(1−t)−1(1−t2)8

[0202] 14 1+3t+6t2+11t3+20t4+33t5+50t6+
(1−t8)−1(1−t)−3(1−

[2210] 14 1−t+4t2−t3+7t4+2t5+14t6+4t7+2
(1−t8)−1(1−t)(1−t2)7(1−t3

[2202] 16 1+t+2t2+3t3+5t4+6t5+9t6+11t7+
(1−t)−1(1−t8)−1(1−t2

[2222] 18 (1−t8)(1−t12)(1−t16)

(1−t2)11(1−t3)8(1−t4)2
n

8

t1

)4

..

12
1

t7

(1

65
t

8
)5

1
)
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PL[HWG]

m2
C

t2

m2
B

t2

m2
B

t2 + m2
C

t2 + m2
B

mCt3 − m4
B

m2
C

t6(
m2

B
t2 + m2

C
t2 + m2

B
mCt3 + t4+

m2
B

mCt5 − m4
B

m2
C

t10

)

. . .

...+t16
. . .

. . .

6
. . .

. . .

. . .
Table 15 (continued)

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0010] [0002] 2 C1 ⊗ B1
1−t4

(1−t2)3

[2100] 2 1−t4

(1−t2)3

[0200] 4 1−2t+5t2−2t3

(1−t)2(1−t2)2

[0110] 6 1+t+3t2+6t3+8t4+6t5+...pal...+t10

(1−t)−1(1−t2)4(1−t3)3

[2010] 6 (1−t6)(1−t+3t2+2t3+3t4−t5+t6)

(1−t)(1−t2)3(1−t3)(1−t4)2

[2002] 8 1+2t+4t2+8t3+17t4+26t5+37t6+40t7+42t8+...pal
(1−t)−2(1−t2)5(1−t3)4(1−t4)

[0202] 10 1+t2+2t3+4t4+2t5+4t6+...pal...+t12

(1−t8)−1(1−t2)5(1−t3)4(1−t4)2

[2210] 10 1+3t2+2t3+7t4+6t5+16t6+14t7+25t8+...pal...+t1

(1−t8)−1(1−t2)3(1−t3)4(1−t4)4

[2202] 12 1+2t3+2t4+3t6+4t7+3t8+...pal...+t16

(1−t8)−1(1−t2)6(1−t3)4(1−t4)3

[2222] 14 (1−t8)(1−t12)(1−t16)

(1−t2)6(1−t3)6(1−t4)5
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Table 16
C4 Slodowy Intersections from [0002]-[0200]. Some palindromic Hilbert series terms are abbreviated. HWGs that are not complete intersections are not shown. The orbit [0200]

PL[HWG]

m2
1t

2 + m2
2t

2 − m2
1m

2
2t

4

m2
1t

2 + m2
2t

2(
m2

1t2 + m2
2t2 + t4 + m2

1m2
2t4+

m2
1m2

2t6 − m4
1m4

2t12

)

. . .

. . .

. . .

. . .

m1
2t2

m1
2t2 + m2

2t4(
m1

2t2 + m2t4 + m2
2t4 + m1

2t6+
m1

2m2t8 − m1
4m2

2t16

)

t7+
t22

⎞
⎠

. . .

+
2

⎞
⎠

. . .

. . .

m2
a t2

m2
bt

2

ma
2t2 + mb

2t2(
m2

at2 + m2
b
t2 + t4 + mambt4+

mambt6 − m2
am2

b
t12

)

. . .

. . .

. . .
is non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0002] [0200] 2 D2
1+4t2−t4

(1−t2)2

[0110]/[2010] 4 (1−t4)2

(1−t2)6

[2002] 6 1+3t2+11t4+10t6+...pal...+t12

(1−t2)3(1−t4)3

[0202] 8 (1−t8)(1+2t2+7t4+6t6+...pal...+t12)

(1−t2)4(1−t4)5

[2210] 8 (1−t8)(1+6t4+t8)

(1−t2)6(1−t4)3

[2202] 10 (1−t8)(1+t2+4t4+4t6+10t8+...pal...+t16)

(1−t2)5(1−t4)6

[2222] 12 (1−t8)(1−t12)(1−t16)

(1−t2)6(1−t4)9

[2100] [2010] 4 C2 ⊗ B0
1+6t2+t4

(1−t2)4

[2002] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[0202] 8 (1−t4)(1−t8)

(1−t2)10

[2210] 8

⎛
⎝ 1 + 2t + 7t2 + 12t3 + 27t4 + 42t5 + 67t6 + 9

127t8 + 142t9 + 167t10 + 172t11 + . . .pal . . .
(1−t)−2(1−t2)6(1−t5)4

[2202] 10

⎛
⎝ 1 + 2t + 4t2 + 6t3 + 10t4 + 14t5 + 20t6 + 26

34t8 + 38t9 + 44t10 + 46t11 + . . .pal . . . +
(1−t)−2(1−t4)−1(1−t2)9(1−t5)4

[2222] 12 (1−t12)(1−t16)

(1−t2)10(1−t5)4

[0200] [0110] 2 C1 ⊗ C1
1−t4

(1−t2)3

[2010] 2 1−t4

(1−t2)3

[2002] 4 (1−t4)2

(1−t2)6

[0202] 6 (1−t8)(1+3t2+5t4+3t6+t8)

(1−t2)3(1−t4)4

[2210] 6 (1−t8)(1+t2+4t4+t6+t8)

(1−t2)5(1−t6)2

[2202] 8 (1−t8)(1+2t2+4t4+7t6+10t8+...pal...+t16)

(1−t2)4(1−t4)3(1−t6)2

[2222] 10 (1−t8)(1−t12)(1−t16)

(1−t2)6(1−t4)4(1−t6)3
2
+

t7

t2
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ot complete intersections are not shown.

PL[HWG]

m2t2

m2t2 + mt3 + t4 + mt5 − m2t10

. . .

. . .

m2t2

m2t2 + mt3 + t4 + mt5 − m2t10

. . .

l...+t16
. . .

. . .

t2 + (q2 + 1/q2)t4 − t8

t2 + (q + 1/q)t4 − t8

. . .(
t2 + (q2 + q + 1 + 1/q + 1/q2)t4+

(q + 1/q)t6 − t12 − t16

)
t2 + (q2 + 1/q2)t4 − t8(

t2 + (q2 + 1/q2)t4 + t6+
(q2 + 1/q2)t8 − t12 − t16

)
m2t2

m2t2 + t4 + mt7 + mt9 − m2t18

t4 + t6 + t8 − t16
Table 17
C4 Slodowy Intersections from [0110]-[2202]. Some palindromic Hilbert series terms are abbreviated. HWGs that are n
ρ σ

∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0110] [2002] 2 C1 ⊗ B0
1−t4

(1−t2)3

[0202]/[2210] 4 1−t8

(1−t2)3(1−t3)2

[2202] 6 (1−t8)(1−t+t3+t5−t7+t8)

(1−t)(1−t2)3(1−t3)(1−t6)2

[2222] 8 (1−t8)(1−t12)(1−t16)

(1−t2)3(1−t3)2(1−t4)(1−t5)2(1−t6)3

[2010] [2002] 2 C1 ⊗ B0 ⊗ B0
1−t4

(1−t2)3

[0202] 4 1−t8

(1−t2)3(1−t3)2

[2210] 4 (1−t6)2

(1−t2)3(1−t3)2(1−t4)

[2202] 6 1+2t+2t2+2t3+4t4+6t5+7t6+8t7+9t8+...pa
(1−t)−2(1−t2)4(1−t3)2(1−t5)2

[2222] 8 (1−t12)(1−t16)

(1−t2)3(1−t3)2(1−t4)2(1−t5)2(1−t6)

[2002] [0202] 2 D1 ⊗ B0
1−t8

(1−t2)(1−t4)2

[2210] 2 1−t8

(1−t2)(1−t4)2

[2202] 4 1−t2+3t4−t6+t8

(1−t2)2(1−t4)2

[2222] 6 (1−t12)(1−t16)

(1−t2)(1−t4)5(1−t6)2

[0202] [2202] 2 D1
1−t8

(1−t2)(1−t4)2

[2222] 4 (1−t12)(1−t16)

(1−t2)(1−t4)2(1−t6)(1−t8)2

[2210] [2202] 2 C1 ⊗ B0
1−t4

(1−t2)3

[2222] 4 1−t16

(1−t2)3(1−t7)2

[2202] [2222] 2 B0 ⊗ B0
1−t16

(1−t4)(1−t6)(1−t8)
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e non-normal.

PL[HWG]

m2
1t2 + m2

2t2 − m2
1m2

2t4

m2
1t2 + m2

2t2

m2t2

m2m3t2

m2m3t2 + m2
1t4

+t8)
m2m3t2 + m2

1t4 + m2m3t4 +
m1m2

2t6 + m1m2
3t6 − m2

1m2
2m2

3t12

. . .

m2t2

t2 + m2t2 + m(q + 1/q)t3 − m2t6

. . .

m2t2

m2t2 + t4 + m2t4 + m2t6 − m4t12

t2 + (q + 1/q)t4 − t8
Table 18
D2 and D3 Slodowy Intersections. HWGs that are not complete intersections are not shown. The orbits [02] and [20]

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[00] [02]/[20] 2 D2
1+4t2−t4

(1−t2)2

[22] 4 (1−t4)2

(1−t2)6

[02]/[20] [22] 2 A1
1−t4

(1−t2)3

[000] [011] 6 D3
(1+t2)(1+8t2+t4)

(1−t2)6

[200] 8 (1+t2)2(1+5t2+t4)

(1−t2)8

[022] 10 (1+t2)(1+4t2+10t4+4
(1−t2)10

[222] 12 (1−t4)(1−t6)(1−t8)

(1−t2)15

[011] [200] 2 A1 ⊗ D1
1−t4

(1−t2)3

[022] 4 1+2t2+2t3+2t4+t6

(1−t2)2(1−t3)2

[222] 6 (1−t6)(1−t8)

(1−t2)4(1−t3)4

[200] [022] 2 A1
1−t4

(1−t2)3

[222] 4 (1−t6)(1−t8)

(1−t2)3(1−t4)3

[022] [222] 2 D1
1−t8

(1−t2)(1−t4)2
ar

t6
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Table 19
D4 Slodowy Intersections from [0000]-[0100]. Some palindromic Hilbert series terms are abbreviated. HWGs that are not complete intersections are not shown. The orbits 

PL[HWG]

m2t2

m2t2 + m2
3t4 + m2

4t4 − m2
3m2

4t8

m2t2 + m2
1t4(

m2t2 + m2
1t4 + m2

3t4 + m2
4t4+

m1m3m4t6 − m2
1m2

3m2
4t12

)
⎛
⎜⎝ m2t2 + m2

1t4 + m2
3t4 + m2

4t4+
m1m3m4t6 + m2

2t8+
m1m2m3m4t10 − m2

1m2
2m2

3m2
4t20

⎞
⎟⎠

. . .

. . .

. . .

. . .

m2
1t2 + m2

2t2 − m2
1m2

2t4

m2t2(
m2t2 + m2

1t2 + m2
2t2+

mm1m2t3 − m2m2
1m2

2t6

)
..+t8)

(
m2t2 + m2

1t2 + m2
2t2 + mm1m2t3+

t4 + mm1m2t5 − m2m2
1m2

2t10

)
8+
7

)
. . .

. . .

. . .

. . .
[0002], [0020], [0202] and [0220] are non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0000] [0100] 10 D4
(1−t4)(1+17t2+48t4+17t6+t8)

(1−t2)11

[0002]/[0020] 12 (1−t4)(1+15t2+85t4+162t6+15t8−13t10−t12)

(1−t2)13

[2000] 12 (1−t4)2(1+14t2+36t4+14t6+t8)

(1−t2)14

[1011] 16 1+12t2+77t4+296t6+476t8+...pal...+t16

(1−t2)16

[0200] 18 (1−t4)(1+9t2+45t4+109t6+152t8+...pal...+t16)

(1−t2)19

[0202]/[0220] 20

(
1 + 7t2 + 28t4 + 84t6 + 173t8 + 238t10+

133t12 + 28t14 − 14t16 − 5t18 − t20

)
(1−t4)−1(1−t2)21

[[2200]] 20 (1−t4)(1−t8)(1+6t2+21t4+28t6+...pal...+t12)

(1−t2)22

[2022] 22 (1−t4)3(1+3t2+8t4+16t6+28t8+...pal...+t16)

(1−t2)25

[2222] 24 (1−t4)(1−t8)2(1−t12)

(1−t2)28

[0100] [0002]/[0020] 2 D2 ⊗ C1
1+4t2−t4

(1−t2)2

[2000] 2 1−t4

(1−t2)3

[1011] 6 1−2t+6t2−2t3+t4

(1−t)2(1−t2)4

[0200] 8 (1+3t2+4t3+3t4+t6)(1+2t+3t2+4t3+6t4+...pal.
(1−t)−2(1−t2)6(1−t3)4

[0202]/[0220] 10

(
1 + 4t2 + 3t3 + 10t4 + 12t5 + 23t6 + 22t7 + 35t

29t9 + 24t10 + 9t11 + 10t12 − 3t14 − 2t15 − t1

(1−t2)5(1−t3)5

[[2200]] 10 1+t+3t2+6t3+8t4+6t5+...pal...+t10

(1−t)−1(1−t8)−1(1−t2)7(1−t3)5

[2022] 12 1−t+t2+2t3+6t6+...pal...+t12

(1−t4)−2(1−t)(1−t2)8(1−t3)5

[2222] 14 (1−t8)2(1−t12)

(1−t2)9(1−t3)8
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 that are not complete intersections are not shown. The 

PL[HWG]

m2
1t2

m2
1t2 + m2

2t4

72t10+ )
. . .(

m2
1t2 + m2t4 + m2

2t4 + m2
1t6+

m2
1m2t8 − m4

1m2
2t16

)
t16

. . .

. . .

m2
2t2

m2
2t2 + m1

2t4

. . .(
m2

2t2 + t4 + m1t4 + m2
1t4+

m1t6 − m2
1t12

)
t16

. . .

. . .
Table 20
D4 Slodowy Intersections from [0002]/[0020]-[2000]. Some palindromic Hilbert series terms are abbreviated. HWG
orbits [0002], [0020], [0202] and [0220] are non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[0002]/[0020] [1011] 4 C2
1+6t2+t4

(1−t2)4

[0200] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[0202]/[0220] 8

(
1 + 6t2 + 22t4 + 52t6 + 81t8 +

32t12 + t14 − 4t16 − t1

(1−t2)4(1−t4)4

[2200] 8 (1−t4)(1−t8)

(1−t2)10

[2022] 10 1+3t2+8t4+16t6+22t8+...pal..
(1−t2)7(1−t4)3

[2222] 12 (1−t8)2(1−t12)

(1−t2)10(1−t4)5

[2000] [1011] 4 B2 ⊗ B0
1+6t2+t4

(1−t2)4

[0200] 6 (1−t4)(1+3t2+t4)

(1−t2)7

[0202]/[0220] 8 (1−t4)(1+t2+6t4+t6−t8)

(1−t2)9

[2200] 8 1+6t2+16t4+21t6+...pal...+t12

(1−t8)−1(1−t2)4(1−t4)5

[2022] 10 1+3t2+8t4+16t6+22t8+...pal..
(1−t2)7(1−t4)3

[2222] 12 (1−t8)2(1−t12)

(1−t2)10(1−t4)5
s

8

.+

.+
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re not complete intersections are not shown. The orbits 

PL[HWG]

m2t2

)
. . .

m2t2 + mt3 + t4 + mt5 − m2t10

. . .

t5)2 . . .

. . .

t2 + (q2 + 1/q2)t4 − t8

. . .(
2t2 + (q1 + 1/q1)(q3 + 1/q3)t4+
(q2

3 + 1/q2
3 )t4 + t6 − 2t8 − t12

)
m2t2

m2t2 + t4 + m2t6 + m2t8 − m4t16

m2t2

m2t2 + t4 + m2t6 + m2t8 − m4t16

2t4 + t6 − t12
Table 21
D4 Slodowy Intersections from [1011]-[2022]. Some palindromic Hilbert series terms are abbreviated. HWGs that a
[0002], [0020], [0202] and [0220] are non-normal.

ρ σ
∣∣Sσ,ρ

∣∣ F(ρ) Unrefined HS

[1011] [0200] 2 C1 ⊗ B0
1−t4

(1−t2)3

[0202]/[0220] 4 (1−t4)(1−t+t2+t3+t4−t5

(1−t)(1−t2)2(1−t3)2

[2200] 4 1−t8

(1−t2)3(1−t3)2

[2022] 6 1−t+t2+2t4+...pal...+t8

(1−t)(1−t2)2(1−t3)3

[2222] 8 (1−t8)2(1−t12)

(1−t2)3(1−t3)4(1−t4)2(1−
[0200] [0202]/[0220] 2 D1 ⊗ D1

1+t2+3t4−t6

(1−t2)(1−t4)

[2200] 2 1−t8

(1−t2)(1−t4)2

[2022] 4 1+4t4+t8

(1−t2)2(1−t4)2

[2222] 6 (1−t8)2(1−t12)

(1−t2)2(1−t4)6(1−t6)

[0202]/[0220] [2022] 2 C1
1−t4

(1−t2)3

[2222] 4 (1−t8)(1−t12)

(1−t2)3(1−t6)3

[2200] [2022] 2 B1 ⊗ B0
1−t4

(1−t2)3

[2222] 4 (1−t8)(1−t12)

(1−t2)3(1−t6)3

[2022] [2222] 2 B0 ⊗ B0
1−t12

(1−t4)2(1−t6)
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4.3. Non-normal intersections

The situation surrounding the non-normal intersections requires further comment. These fall 
into one of two categories:

1. Some non-normal Sσ,ρ (calculated on the Higgs branch) are unions of normal components. 
Examples include: σ ∈ {D[02], D[20], D[0020], D[0002], D[0202], D[0220]}. These arise 
whenever σ is one of a spinor pair of orbits associated with a “very even” partition of Deven. 
The following relations are obeyed by the intersections involved, and their HS and HWGs:

SD[20][00] = SD[02][00] = Snorm
D[20][00] + Snorm

D[02][00] − SD[00][00],
SD[0020],ρ = SD[0002],ρ = Snorm

D[0020],ρ + Snorm
D[0002],ρ − SD[0100],ρ,

SD[0220],ρ = SD[0202],ρ = Snorm
D[0220],ρ + Snorm

D[0202],ρ − SD[0200],ρ .

(4.9)

In such cases, Hilbert series for the normal components Snorm
D[...20],ρ and Snorm

D[...02],ρ can be 
found from the SI formula (2.14), or, where available, the Coulomb branch of a Dynkin 
quiver. Alternatively, the D4 intersections are related by triality, so the normal components 
Snorm

σ,ρ can also be found from normal Sσ,ρ by substitutions between the vector and two 
spinors:

Snorm
D[0002],ρ =

n1⇔n4
SD[2000],ρ =

n1⇔n3
Snorm

D[0020],ρ,

Snorm
D[0202],ρ =

n1⇔n4
SD[2200],ρ =

n1⇔n3
Snorm

D[0220],ρ .
(4.10)

Care has to be taken over the interchange under triality of Dynkin labels within Characteris-
tics and CSA coordinates, etc.

2. The remaining non-normal intersections have normal covers that are generated by the SI 
formula (2.14). A normal cover Snorm

σ,ρ has the same dimension as Sσ,ρ , and a palindromic 
Hilbert series, but contains representations (at counting degrees) that fall outside the nilcone 
N of the ambient group G. The cases up to rank 4 comprise B[010], B[2010] and C[0200].

4.4. Relationship to T ρ
σ theories

The analysis of 3d mirror symmetry between BCD Slodowy intersections and the rela-
tionship with T ρ

σ theories is not straightforward. This results from the many complications 
surrounding the Coulomb branches of ortho-symplectic quivers: (i) the Barbasch-Vogan map 
is only involutive for special orbits and exchanges B and C ambient groups, (ii) Coulomb branch 
HS are palindromic and so do not match non-normal Slodowy intersections, (iii) quiver subtrac-
tions alone are insufficient to construct quivers with the desired Coulomb branch HS dimensions, 
requiring augmentation by ad-hoc shifts between B and D nodes, (iv) a careful choice of O vs 
SO gauge groups is required and (v) “bad” quivers with zero conformal dimension are often 
encountered. As a consequence, only a subset of Slodowy intersections have Coulomb branch 
constructions. Furthermore, the results are limited to unrefined HS.

Most of these complications were encountered in the analysis of Slodowy slices [12], 
where it was nonetheless shown how a set of ortho-symplectic quivers, derived from the 
MBCD (dBV (σ ),0) tabulated herein, but with shifted BD nodes taken as SO type, yield 
Coulomb branch constructions of a subset of the slices SN ,σ .
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MBCD (σ,ρ)

Higgs
(O)

Coulomb
(BD/O/SO)

T
ρ
dBV (σ)

Higgs
(O)

Coulomb
(O/SO)

Sσ,ρ 3d Mirror Symmetry S∨
σ,ρ Sσ,ρ 3d Mirror Symmetry S∨

σ,ρ

MBCD

(
dBV (ρ), dBV (σ )

)
Coulomb

(BD/O/SO)
Higgs
(O)

T
dBV (σ)
ρ

Coulomb
(O/SO)

Higgs
(O)

Fig. 19. BCD series 3d mirror symmetry. Under Special duality, the nilpotent orbit partitions ρ and σ of special orbits 
are dualised to dBV (ρ) and dBV (σ) and then interchanged S∨

σ,ρ ≡ SdBV (ρ),dBV (σ ) . The ortho-symplectic Higgs 
branch constructions yield refined Hilbert series. Ortho-symplectic Coulomb branch constructions, where available, yield 
unrefined Hilbert series. BD/O/SO indicates shifting between B and D nodes and selecting O vs SO , as discussed in 
the text.

Generalising from the A series, the phenomenon of (limited) 3d mirror symmetry for the 
BCD series can be understood, as in Fig. 19, as a composition of the interchange of a pair of 
nilpotent orbits with the Barbasch-Vogan map dBV (ρ).

Notably, Special duality, as defined in section 2.5 using dBV , respects the accidental Lie 
algebra isomorphisms (e.g. B2 ∼= C2 and A3 ∼= D3), by assigning consistent Hilbert series to 
intersections defined by isomorphic pairs of Characteristics. Our account of the constructions for 
Sσ,ρ and their Special duals S∨

σ,ρ thus sheds light on the underlying mechanism behind 3d mirror 
symmetry.

Furthermore, the approach based on the Higgs branches of MBCD (σ,ρ) quivers provides a 
complete set of constructions for BCD Slodowy intersections, whereas the constructions avail-
able from T ρ

σ theories are limited (by the BV map) to intersections between special orbits.

5. Discussion and conclusions

Classical slodowy intersections This study has outlined how unitary and ortho-symplectic 
multi-flavoured quivers provide constructions for the complete set of Slodowy intersections Sσ,ρ

of any Classical algebra. The resulting sets of quivers can be arranged as upper triangular ma-
trices, bounded by the closures of nilpotent orbits, Slodowy slices and Kraft-Procesi transitions 
(modulo gaps due to the structure of Hasse diagrams of nilpotent orbits).

The key to these systematic constructions is provided by the Higgs branches of quivers of 
type MA(σ, ρ) or MBCD(σ, ρ). For the A series, the resulting MA(N,Nf) are the same as 
Dynkin quivers DA(N,Nf), and faithful Coulomb branch constructions for the Sσ,ρ are also 
available via the Barbasch-Vogan map and 3d mirror symmetry. For the BCD series, however, 
faithful Coulomb branch constructions are limited to those based on DBCD(N,Nf) of Character-
istic height 2. The intersections obtained on the Coulomb branches of ortho-symplectic quivers 
are limited to the unrefined Hilbert series of a subset of Sσ,ρ of BCD algebras, as discussed in 
section 4. Some D series Slodowy intersections can also be constructed as Higgs branches of 
DD(N,Nf) quivers.

Most of the intersections Sσ,ρ are normal, and have palindromic (unrefined) Hilbert series. 
Whether or not an intersection Sσ,ρ is normal is set by the normality of Oσ , and its global 
symmetry follows from F(ρ) ⊆ G.
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The refined Hilbert series of intersections Sσ,ρ with Oσ normal, can also be constructed di-
rectly using the SI formula (2.14). When Oσ is non-normal, the SI formula yields either a normal 
component (if σ is a very even partition of Deven), or a normal cover, of Sσ,ρ . This behaviour 
is similar to the BCD Coulomb branch constructions (where these are available). In [17] it was 
proposed that a localisation formula based on Hall-Littlewood polynomials be used as a proxy 
for the Coulomb branches of ortho-symplectic quivers, and this approach is supported by the 
findings herein.

Quiver subtractions This study has used rules for quiver subtractions. These are essentially the 
same for both unitary and ortho-symplectic multi-flavoured linear quivers, both of which can be 
defined by pairs of partitions, M(σ, ρ) →M (N,Nf), and can be summarised as:

M(σ,ρ) =M(σ,ρ′) �M(ρ,ρ′), (5.1)

or, applying Special duality and relabelling partitions:

M(σ,ρ) =M(σ ′, ρ) �M(σ ′, σ ). (5.2)

Equations (5.1) and (5.2), together with the procedures described herein, permit us, subject to 
certain conditions, to subtract two good quivers, that have either their first partition or their 
second partition in common, to obtain a quiver for a third intersection, with the partitions (σ, ρ)

tracking balance and flavour symmetries, respectively (on the Higgs branch). Quiver subtraction, 
as described, requires that all the quivers involved are good and that each pair of partitions obeys 
an inclusion relation. This study indicates these rules are consistent for Slodowy intersections 
calculated on the Higgs or Coulomb branches of MA quivers, or on the Higgs branches of 
MBCD quivers.

Completeness We have seen in sections 3.1 and 4.1.1 how an ambient group G(N ′
0) of minimal 

dimension can be identified for any M (σ,ρ) quiver from the weighted sum over flavours N ′
0 ≡∑k

i=1 iNfi
. This implies that the Higgs branch of any good unitary or ortho-symplectic quiver 

with B ≥ 0 can be understood as a Slodowy intersection between a pair of Classical nilpotent 
orbits of such G(N ′

0).

Degeneracy The number of distinct algebraic varieties is somewhat less than the number of 
(non-empty and non-trivial) Slodowy intersections Sσ,ρ due to a combination of factors. Firstly, 
there are many recurrences of the quivers M (N,Nf) across different groups, as exemplified in 
the quiver matrices. These recurrences extend beyond Kraft Procesi transitions, to orbits and 
slices, indicating that all the intersections of a group G reappear in certain groups of higher 
dimension. Secondly, due to the accidental Classical group isomorphisms, there are several cases 
where different quivers M (N,Nf) generate isomorphic refined Hilbert series. The identification 
of such degeneracies (by a comparison of refined HS and HWGs) exposes connections between 
superficially different gauge theories.

Further work While the M (σ,ρ) which have linear gauge nodes, only constitute a subset of 
quiver theories, other quivers, such as those with gauge node branches, for example, can be con-
structed as their combinations. Thus, Slodowy intersections provide a rich intermediate set of 
building blocks, whose Higgs and/or Coulomb branch quivers can be glued to construct a wide 
range of theories. Such approaches have been taken in [20,34,35], together with a series of papers 
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on class S theories from [36] through [37]. In these studies, the building blocks have typically 
been (charged) Slodowy slices, glued using a combination of Coulomb and Higgs branch meth-
ods, to yield field theories with Classical or Exceptional symmetries. It may be interesting to 
examine and/or extend these approaches, from the perspective of the family of Slodowy inter-
sections.

Notwithstanding the computational challenges in dealing with high dimensioned algebras, it 
would be interesting to explore the related matter of quiver theories whose Coulomb or Higgs 
branches are Slodowy intersections of Exceptional algebras. Coulomb branch constructions with 
Characteristic height 2 are known for (near to) minimal nilpotent orbits and it can be expected 
that, similar to the D series, Higgs branch constructions based on DE quivers will provide con-
structions for sub-regular slices and nearby intersections. Moreover, even when the ambient 
group G is Exceptional, F(ρ) is not generally so, and this should make several intersections 
of Exceptional groups accessible to constructions from Classical quivers.

It would also be interesting to extend the work in [12,27,31] to give a more systematic account 
of Coulomb branch constructions based on ortho-symplectic quivers for the unrefined Hilbert 
series of BCD Slodowy intersections, for example, by providing definitive algorithms for BD

node shifting and the selection of O/SO gauge nodes.
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Appendix A. Notation and terminology

1. We freely use the terminology and concepts of the Plethystics Program, including the 
Plethystic Exponential (“PE”) and its inverse, the Plethystic Logarithm (“PL”). For our pur-
poses:

PE

[
d∑

i=1

Ai, t

]
≡

d∏
i=1

1

(1 − Ait)

PE

[
d∑

i=1

(−Ai), t

]
≡

d∏
i=1

1

(1 + Ait)
,

PE

[
−

d∑
i=1

Ai, t

]
≡

d∏
i=1

(1 − Ait), (A.1)

PE

[
−

d∑
(−Ai), t

]
≡

d∏
(1 + Ait),
i=1 i=1
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Table 22
Types of Generating Function.

Generating Function Notation Definition

Refined HS (Weight coordinates) gG
HS

(x, t)
∞∑

n=0
an(x)tn

Refined HS (Simple root coordinates) gG
HS

(z, t)
∞∑

n=0
a′
n(z)tn

Unrefined HS gG
HS

(t)
∞∑

n=0
antn ≡

∞∑
n=0

an(1)tn

HWG for Refined HS gG
HWG

(m, t)
∑
[n]

bn(t)mn ∼=∑
[n]

bn(t)χG[n]
Character gG

χ (x,m)
∑
[n]

χG[n](x)mn

PL

⎡
⎢⎢⎢⎣

e∏
j=1

(
1 − Bj

)
d∏

i=1
(1 − Ai)

⎤
⎥⎥⎥⎦=

d∑
i=1

Ai −
e∑

j=1

Bj ,

where Ai and Bj are monomials in weight or root coordinates or fugacities. The reader is 
referred to [38] for further detail.

2. We refer to symmetries either by Lie algebras g, or by Lie groups G. While such references 
are relatively interchangeable for USp groups, with C series Lie algebras, it can be important 
to distinguish between O and SO forms of orthogonal groups, which share the same B or D
series Lie algebra, but whose representations have different characters. We highlight those 
areas where this distinction is important in the text.

3. We denote the characters of irreducible representations (“irreps”) of a group G either by 
XG[n](x), or by [irrep]G, using Dynkin labels [n] ≡ [n1, . . . , nr ]G, where r is the rank of G. 
We often represent singlets by the character 1.

4. We typically label unimodular Cartan subalgebra (“CSA”) coordinates for weights within 
characters by x ≡ (x1 . . . xr ) and simple root coordinates by z ≡ (z1 . . . zr ). The Cartan ma-

trix Aij relates the simple root and CSA coordinates, zi =∏
j

x
Aij

j and xi =∏
j

z
A−1

ij

j . We use 

the CSA coordinate q for U(1) symmetries.
5. We label highest weight (Dynkin label) fugacities within HWGs by m ≡ [m1, . . . ,mr ], de-

ploying additional letter subscripts to distinguish groups, if necessary.
6. We label field (or R-charge) counting variables with t . Under the conventions in this paper, 

the fugacity t corresponds to an R-charge of 1/2 and t2 corresponds to an R-charge of 1.
7. We may refer to series, such as 1 + f + f 2 + . . ., by their generating functions 1/ (1 − f ). 

Different types of generating function are indicated in Table 22; amongst these, the refined 
HS and HWGs faithfully encode the group theoretic information about a moduli space.[19]

8. We classify an unrefined Hilbert series gHS(t) ≡ P(t)/Q(t) as: (a)“freely generated”, if 
P(t) =1 and Q(t) is of the canonical form Q(t) ≡∏

k

(1 − tdk )
nk for some integers nk and dk , 

or (b) a “complete intersection”, if both P(t) and Q(t) can be put into canonical form, such 
that gHS(t) is manifestly a quotient of geometric series, or (c) “(anti-)palindromic”, if P(t)

is (anti-)palindromic. Palindromicity follows from the duality for a normal HS: gHS(t) =
t−|gHS |g (1/t). [39].
HS
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9. We denote the Higgs and Coulomb branches of a quiver M as H[M] and C[M], respec-
tively.

Appendix B. Slodowy intersection formula

The Slodowy intersection formula (B.1) is a localisation formula that yields the Hilbert se-
ries of an intersection Sσ,ρ . It is related to the Hall Littlewood polynomials. As stated below, it 
incorporates weight space charges parameterised by Dynkin labels [n] of G, which permit the 
(Coulomb branch) gluing of intersections.15

g
Sσ,ρ,[n]
HS (y, t) = g

SN ,ρ (y,t)

HS

g
Oσ,[n](x,t)

HS

gNHS(x, t)

∣∣∣∣∣∣
x→x(y,t)

. (B.1)

The key ingredients of (B.1) are:

1. the refined HS for the nilcone N (x, t) of G,
2. the refined HS for the charged nilpotent orbit closure Oσ,[n](x, t) of G,
3. the fugacity map ρ : x → x(y, t), from the CSA fugacities x of G, to the CSA fugacities y of 

F(ρ) and the fugacity t of su(2).

For a normal intersection, g
O norm

σ,[n]
HS (x, t) can be obtained from the charged version of the Nilpotent 

Orbit Normalisation formula [21]:

g
O norm

σ,[n]
HS (x, t) ≡

∑
w∈WG

w ·
⎛
⎜⎝x[n] ∏

α ∈ �̃+
G

(σ)

1

1 − z(x)αt2

∏
β∈�+

G

1

1 − z(x)−β

⎞
⎟⎠. (B.2)

The summation is carried out over the Weyl group WG of G, whose elements w act on the CSA 
fugacities, x → w · x. The subset �̃+

G(σ) contains those roots of G that have a Characteristic 
height [α] ≥ 2, where [α] ≡ α · q(σ ), with q(σ ) being the Characteristic of the nilpotent orbit σ .

The charged formula (B.1) generates some notable limiting cases or series:

1. In the limit {σ → triv., ρ → triv.}, (B.1) reduces to the Weyl Character formula:

g
Striv.,triv.,[n]
HS (y, t) = g

Otriv.,[n]
HS (x, t) = g

Otriv.,[n]
HS (x,0) = χG[n](x). (B.3)

2. In the limit {σ →N , ρ → triv.}, (B.1) reduces to the modified Hall Littlewood formula:

g
SN ,triv.,[n]
HS (y, t) = g

ON ,[n]
HS (x, t) = mHLG[n](x, t). (B.4)

The mHL functions obey the orthogonality,∮
G

dμG
mHL(x, t) mHLG[m](x∗, t) mHLG[n](x, t) = δ[m],[n]NG[n](t), (B.5)

where dμG
mHL(x, t) is the Haar measure for the mHL, and the NG[n] are normalisation factors:

15 In (2.14) the charges [n] are set to [0], since the quivers in this paper are assumed to be free of background fluxes. A 
comparable formula, using somewhat different concepts and notation, appears in [17].
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NG[n](t) ≡ PE

[
rank[G] t2 −

r∑
i=1

t2di ([n])
]

. (B.6)

In (B.6) the di([n]) are the degrees of the symmetric Casimirs of the subgroup(s) of G iden-
tified by the Dynkin diagram formed by the zeros of [n]; non-zero Dynkin labels contribute 
U(1) Casimirs with di = 1.

3. In the limit {σ → N , ρ → triv., [n] → [0]}, (B.1) reduces to the nilcone N of G:

g
SN ,triv.,[0]
HS (y, t) = mHLG

[0](x, t) = gNHS(x, t). (B.7)

4. In the limit {σ → ρ, [n] → [0]}, (B.1) evaluates to a trivial self-intersection:

g
Sρ,ρ,[0]
HS (y, t) = g

SN ,ρ

HS (y, t)
g
Oρ,[0]
HS (x, t)

gNHS(x, t)

∣∣∣∣∣∣
x→x(y,t)

= 1. (B.8)

As discussed in [11,21], any (charged) nilpotent orbit of G can be expanded as a finite sum 
over the basis functions provided by the mHL of G:

g
Oσ,[m]
HS (x, t) =

∑
[n]

a[m],[n](t) mHLG[n](x, t). (B.9)

Inserting (B.4) and (B.9) into (B.1), it follows that this decomposition extends to any (charged) 
Slodowy intersection. Indeed, Sσ,ρ,[m](y, t) can be expanded as a sum of charged Slodowy slices:

g
Sσ,ρ,[m]
HS (y, t) =

∑
[n]

a[m],[n](t)g
SN ,ρ,[n]
HS (y, t), (B.10)

where the polynomial coefficients a[m],[n](t) are inherited from (B.9). Decompositions such as 
(B.10) provide a further set of relationships that can be used to cross-check the Hilbert series for 
Slodowy intersections.

Example: SA[202],A[101] Consider the A3 intersection SA[202],A[101]. We start by evaluating the 
expressions (B.7) and (B.2), for the nilcone N ≡OA[222] and the orbit OA[202], respectively, and 
take their quotient:

gNHS = PE
[
[1,0,1]At2 − t4 − t6 − t8

]
,

g
OA[202]
HS = PE

[
[1,0,1]At2

](
PE

[
−t4 − t6 − t10

]
− PE

[
−2t2 − t4

]
[1,0,1]At6

)
,

g
OA[202]/N
HS = PE

[
t8 − t10

]
− PE

[
−2t2 + t6 + t8

]
[1,0,1]At6.

(B.11)

We now identify the CSA fugacity map for the SU(2) embedding induced by the orbit with 
Characteristic ρ = A[101]:

ρ : {x1, x2, x3} → {q1/2t, yt, t/q1/2}, (B.12)

where the CSA fugacities for SU(2), A1 and U(1) are t , y and q , respectively. As can readily be 
verified, this maps A3 characters to SU(2) ⊗ A1 ⊗ U(1):
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ρ : [1,0,0]A → q1/2[1]SU + q−1/2[1]A,

ρ : [1,0,1]A → [2]SU + [1]SU [1]A(q + 1/q) + [0]SU ([2]A + 1).
(B.13)

Thus, the A3 adjoint decomposes to the SU(2) partition (3, 24, 14), consistent with the tables in 
[11]. Applying the map (B.12) to the nilcone N , using (2.13), we find the slice:

g
SN ,A[101]
HS = PE

[
([2]A + 1)t2 + [1]A(q + 1/q)t3 − t6 − t8

]
. (B.14)

We also apply the map (B.12) to the quotient OA[202]/N :

g
OA[202]/N

∣∣∣
x→x(y,q,t)

HS = PE
[
t6 + t8 − 2t2

]
×
(

1 + 2t2 + 2t4 + t6 + 2t8 + 2t10 + t12−
. . . [1]A(q + 1/q)(t5 + t7) − [2]At6

)
.

(B.15)

Combining (B.14) and (B.15) gives the refined Hilbert series for SA[202],A[101]:

g
SA[202],A[101]
HS (y, q, t) = PE

[
[2]At2 − t2 + [1](q + 1/q)t3

]
×
(

1 + 2t2 + 2t4 + t6 + 2t8 + 2t10 + t12−
. . . [1]A(q + 1/q)(t5 + t7) − [2]At6

)
,

(B.16)

which simplifies to the unrefined form consistent with Table 2:

g
SA[202],A[101]
HS (1,1, t) = PE

[
2t2 + 2t3

]
×
(

1 + 2t2 + 2t3 + 2t4 + t6
)

. (B.17)

Alternatively, we can find the refined Hilbert series for SA[202],A[101], using (B.10) and the 
tables in [11]. Table 4 of [11] shows that:

g
OA[202]
HS = mHL[0,0,0]A − mHL[1,0,1]A t6, (B.18)

and so, applying (B.10), we obtain:

g
SA[202],A[101]
HS (y, t) = g

SN ,A[101],[0,0,0]A
HS (y, t) − g

SN ,A[101],[1,0,1]A
HS (y, t) t6. (B.19)

The first RHS slice in (B.19) was calculated in (B.14). We use (B.1) to find the second (charged) 
slice as:

g
SN ,A[101],[1,0,1]A
HS (y, t) =PE

[
[2]At2 + [1]A(2)t3 − t2

]
×
(

2 + 1/t2 − t4 − t6 + [1]A(q + 1/q)(t + 1/t) + [2]A
)

.

(B.20)

Combining (B.19), (B.14) and (B.20) recovers (B.16).
The HS can be simplified by transforming to an HWG with respect to the A1 fugacities, using 

(2.16). Inserting necessary terms from the Haar measure for A1 and an A1 character generating 
function, and carrying out the contour integration, we have:
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g
SA[202],A[101]
HWG (m,q, t) =

∮
A1

dμA1gA1
χ

(
y∗,m

)
g
SA[202],A[101]
HS (y, q, t) ,

=
∮
A1

dy

y

(
1 − y2

) 1

1 − m/y
g
SA[202],A[101]
HS (y, q, t) ,

. . .

= 1 − m2t6

(1 − t2)(1 − m2t2)(1 − mqt3)(1 − m/qt3)
,

= PE
[
t2 + m2t2 + m(q + 1/q)t3 − m2t6

]
,

(B.21)

as shown in Table 2.
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