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An exact expression (in terms of Weber-Hermite functions) for the two-neutrino transition (oscillation) 
probability in matter with linearly varying density in the case of finite initial and final densities is obtained 
and its properties are discussed. It takes a simple form when the resonance density differs considerably from 
the initial and final densities. The conditions under which the approximate expression for the probability 
derived in the latter case can be used for description of the neutrino transitions in the interior of the Sun are 
also briefly discussed. 
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In the present talk we shall discuss the problem of analytical description of the neutrino oscillations in 
matter [ 1 -4] with non-adiabatically varying density. A possible solution of this problem for neutrinos 
passing through a resonance layer of matter, wherein the density changes linearly with the distance and only 
two neutrinos take part in the oscillations, has been suggested in Ref. [5] . Subsequently, it was generalized 
for transitions involving three neutrinos in Ref. [6] 'l . The result obtained in [5] is based on the 
Landau-Zener formula [I I ,  1 2] for the probability of the non-adiabatic transition between two states (say, 

Iv,; and Iv,) in the case of interest) of a system whose Hamiltonian coincides in form with the neutrino 
Hamiltonian for linearly changing matter density. There are several circumstances, however, which in our 
opinion make the derivation of this result unsatisfactory. First, the Landau-Zener probability amplitude 
describes the transition between two flavour neutrino states while in Ref. [5] it is used for the description of 
the transition between the neutrino matter eigenstates. Secondly, as can be shown, the transition probability 
amplitude of interest satisfies the Weber differential equation and the Landau-Zener result corresponds to a 
partial solution of the Weber equation satisfying certain initial conditions at time to = - oo; it describes the 
probability of transition at t = + oo. In the problem of interest choosing lo = - oo and t = + oo 
corresponds to assuming infinite matter (electron number) densities in the regions of neutrino prnduction 
and detection (we shall call them initial and final densities, respectively). In most of the physical examples 
of interest, these conditions are not realized (e.g. in the case of solar neutrinos, propagating from the centre 
to the surface of the Sun) and different solutions of the Weber equation have to be used to describe the 
transition between the flavour neutrinos. And, thirdly, the derivation of the neutrino transition 
probabilities used in Refs. [5] and [6] is based on rather qualitative arguments. As a consequence, it does 
not permit to formulate clear quantitative criteria for the conditions and the bounds of validity of the 
results obtained. 

Exact analytical expressions for the probabilities of two-neutrino transitions in matter with linearly 
varying density in the case of finite initial and final densities have been obtained recently in Ref. [ 1 3 ]  (see 
also [ 1 4] )  using the approach of Zener [ 1 2] .  When the initial and final densities are not close in value to the 
resonance density, one can deduce from them approximate expressions for the non-adiabatic transition 
probabilities with any given accuracy and clear quantitative conditions of their applicability. We give an 
example of such an expression derived in [ 1 3] .  The relevance of the results obtained in Ref. [ 13 ]  for the 
description of the propagation of the solar neutrinos in the Sun is also briefly discussed. 

Consider the case of oscillations in matter involving two neutrinos only, say v, and v,. As can be shown 
[ I ,  2, 15 ] ,  the amplitude of the probability Ar (t, to), e e, µ., to find neutrino v1 at time t sai:isfies the 
following system of evolution equations 

Here 

� ( Ae lt ,l�� 
Jt : 

Ar (t ,to) 
' -- 6� fo 42_ Y"f ��'"2.9 

' 

( I )  

(2) 

(3) t1 - t� -= A4� c.o":> t8 - Ji Gr:-Ne (l) 
ml - mT. m1 and m, being the masses of �e neutrinos Vt and v2 with definite mass in vacuum where Ll.m2 = 

(m2 > mt), p is the absolute value of the neutrino momentum, 0 is the neutrino mixing angle in vacuum, 
and No(t) is the electron number density at the point reached by the neutrino at distance r = (t - to) from 
the production point. As usual, the neutrinos Vt .2 are assumed to be stable and relativistic: 

*) Three neutrino oscillations in matter were studied first in Refs. [7, 8 ] .  They were investigated in greater 
detail recently in Refs. [9, 1 0, 6] . 
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We shall suppose that 

(4) 

i.e. that a resonance amplification of the neutrino (but not of the antineutrino) transition probability in 
matter is possible. The resonance density Ni" and the spatial width of the resonance layer dL'" are given 
respectively by [3]: 

N ... � .. =- .:i��co"> ze 
e. zr fi' GF (5) 

6�., � zAJe-u."1 c�ze 1/( \ ( J1t)��J) (6) 

where (dN,/dt)"' = (dN,/dr)"' is the derivative of No(t) at the resonance point. Following Landau and 
Zener, we shall consider the case 

6 - s - ol. t  I -� - (7) 

a being a real constant. For the problem we are trying to solve, this is equivalent to the assumption that the 
point of the neutrino path at which the density is equal to the resonance density is reached at t = 0, No(O) = 

N�es, and that 

It follows then from (3), (7) and (8) that 

oL = - ff G ( JJJe \ 
I= Jt /t:z.e.s. 

By making the change . (t. - i Jt ( �f - f z.) J.t I e . 
and using the second equation of the system ( l )  

(8) 

(9) 

( 10) 

to eliminate Ao(t, to) from the first equation in (!), it is not difficult to convince oneself that the amplitude 
A�(t, to) satisfies the Weber equation [16] :  

Here 

j Jl 2. l I l Jc?. + l� "" 1 - � l J  Arlt,�) 0 .  ( 1 2) 

(13) 
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and 

(14) 

The solutions of Eq. ( 1 2) are called functions of the parabolic cylinder, or Weber-Hermite functions. 
The Weber equation has two linearly independent solutions which can be chosen to be Dn(z) and 
D-n-1( - iz) [ 17 ] ,  where 

( 15)  

Wa,b(z) being the degenerate hypergeometric function. 
Landau and Zener have calculated the probability IA�'>(t + co , to = - co)l2 under the initial 

conditions A�ol(t = - co, to = - co) = 0 and IAo(t = - co, to = - co)I = I .  They have found that 

which in the case of interest is the probability P(v, � v,; t = + co , to = - co) to find neutrino v, at t = + co  

provided that, at to = - co ,  v, has been produced. In Eq. ( 16) ,  as it follows from (14), (2), (5), (6), and (9): 

where 

. 1�� • � "'e... � o\111.� � ... "'l.8 .:JiZ- �L<!.') :.. 
C.O<:. �El Z, 

is the oscillation length at resonance [3]. 
We are seeking a solution of Eq. ( 12) which satisfies the initial conditions t;.' lt01to) =- 0 ,  

I Ae. lto,to\ I = L 

( 17) 

( 18) 

( 19) 

(20) 

for arbitrary t0, i .e. for arbitrary initial density No(to). It follows from the property of the functions Dn(z) 
and D-n- 1( - iz) [ 1 7] 

J - �� D'hlt:'\ J.1 D-�-l. c- �i\ - D_\'\.-� l- � t:)l�D�lc\:- l. e� �  (21 )  

that the solution we  are interested in  (up to a constant phase factor) has the  form [ 13] :  

' r.' - .xn.0 f 1 I A,.. ll,t� -.:. �Y\o e T lD'k. (&,,\ \)_\'1.).:-��\ -\.)_h.-� l- �e�\)�e\1 <22) 

where 

(23) 

Note that the result obtained for IA�'>(t, loll is symmetric with respect to the interchange of t [N,(t)] and to 

[No(to)] :  
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(24) 

The neutrino transition probabilities are determined by: 

\) \:7e-·., Jr ; t ,t o) =- I  A� lt,to\ \t (25) 

P (-Je -.. Je. � t ,t .) = i - \ A� tt.t.\ \ �  (26) 

The solution (22) found for A�->(t, lo) in [ 1 3] is exact. In principle, it can be used to calculate, e.g. 
P(v, --> v,;  t ,  to) for any set of values of the parameters characterizing the problem under discussion [Ll.m2, 8, 
p, Ne(to), Ne(t) and (dN,/dt)",] . 

From the point of view of possible applications of the results (22), e.g. for a description of the 
transitions of the solar ve's in the interior of the Sun, it proves useful to find an approximate expression for 
the average probability P(v, --> v,; t, to) in the case ( l \ "UC,. z 

i. - 1... r:' tJ e I: lo) ) - Ne ') L I t(o) I =:. R: to'> =- ·a Gs; I ( J. IJe. ( Jt l-u!> l >> 
(27) 

[we have used (8), (9) and ( 13) in (27)], i.e. when N,(to) and Ne(t) differ considerably from Ni". We shall 
suppose that Ne(to) � Ni" � Ne(t) and that the density is decreasing along the neutrino path, so that 
(dN,/dt)"' < 0. Then " > 0 [see Eq. (9)] . Using the decomposition of Dn(Z<oil and D-n- 1 ( - iz<oil for " > 0 

and t > 0 (lo < 0) in power series of R(B�. k = 0, 1 ,  2, . . .  [ 17], we get for the average probability to find v, 
at time ! [ 13] :  

Pl .Je-"> ,) e » t ,to� = () 1- lR. � , R,�) + e Uin_o ( { - \i ((: iD (28) 

where P 1 .2(RB, R2) = P1 .2(R2, RB) are polynomials in R0-2 and R-2• In order to give an idea about the 
structure of the terms appearing in the decomposition of interest, we present below the expressions for 
P1.2(RB, R2) calculated in Ref. [ 1 3] up to the third order in the parameters of decomposition Ro-2 and R-2:  

Pt LR: J') =- \) (( ) ��) + � n.� lR:" * R- ")n.: (29) 

where 

? (_\(: ,��) =- ·Yl-,, l�:i. -t !C�) - �'vi..� Ut:4 -t �-�) - zn.':. R:l �-�+ 
+ �OV\.\o LQ..:1o -1. I[ �) + b \'l� R�' �-� (���-t��) - s n. o U\";)'"� R"'") (3 1 )  

Let us  discuss next the results (28)-(3 1 ) .  It follows from Eqs. ( 1 7), ( 5 )  and (27) that 

(32) 

where Bm(l(oJ) is the mixing angle in matter at density N,(lcoil [ 1-3] .  In such a way, the decomposition under 
discussion is, in particular, a decomposition in power series of 1/2 tg2 28m(l<oil. Consequently, Eq. (28) will 
be valid provided 
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� tdi z.e"" lt t�,\ c..� i (33) 

Further, in the leading term of the type n6[ 1/4 tg2 Wm(ttoill' one has k 
additional condition [ 1 3] for the validity of Eq. (28): 

( 1 3 ] .  Therefore, there is an 

'> t'r\_� ( � t { 2.Q� l t(o)\) <� i (34) 

The decomposition we are discussing is valid for any value of n0 ;,: 0 satisfying (32) and (34). 

Next, we shall compare briefly our result (28) for P(v, � v,; t ,  to) with the result derived in [5] : 

+ I - it: � \ \.. I - e 0 Jc.o<.19 .• Jt\eo�2B .... (t.,\ (35) 

Using the relation [3] 

[No(to) > N;", No(t) < N;"J and expressing cos Wm(ttoi) as power series in tg2 Wm(ttoi), it is not difficult to 
show that if (33) is fulfilled, the expression (35) coincides with (28) up to second order in tg2 Wm(ttoi) and 
tg2 28m(t). Terms of the type n6[1/4 tg2 Wm(ttoi)J 3 and R !ili 1/4 tg2 Wm(ltoi) do not appear in the 
decomposition of (35). Consequently, expression (35) will describe the neutrino transition probability 
P(v, � v,; t ,  to) with a rather good accuracy only if, in addition to (33), the conditions (27) and (34) do take 
place [ 1 3] .  

The calculation of  P(v, � v,; t ,  to) suggested in  Ref. [5] implies that the averaged probability 1 0  find v, 

will be given by Eq. (35) if one averages not only over the dimension of the region of neutrino production 
and the position of the detector, but also over the uncertainty in the position of the resonance (or in the 
value of N;"). and the oscillatory terms average out. The analysis performed in [ 13 ]  shows that under the 
conditions discussed the probability to find the neutrino v, would be equal to (28) if the oscillatory terms 
would vanish as a result of the averaging only over the dimension of the region of neutrino production and 
the detector position. 

As can be shown ( 1 3 ] .  for radially propagating neutrinos in the Sun, which pass through one resonance 
layer, the conditions (27) and (33) are fulfilled provided ! <_c._ 1� �Og M t\J 

6'-M coc. 2.9 e \[� (37) 

For a given tg2 28 satisfying (33), the conditions (37) determine through Eq. ( 1 7) the interval of values 
of the quantity no for which Eq. (28) is valid [ 13 ] :  

Ol t..Y t{LG c::'..(. 'Vt. o  � 0 ,4� "- \0!> t�tze (38) 

Since 7r(£:.L"'/L:i') = 4no, Eq. (38) indicates that expression (28) can describe both adiabatic [7r(£:.L'"/L:,:') 

iJ> I] and non-adiabatic [7r(C.L'"/L:,:') $ l] transitions of the solar neutrinos depending on the values of 
p/(£:.m2 cos 28) and tg2 28. For tg2 28 $ 0 .3 the upper bound in Eq. (38) is more restrictive for n0 than the 
bound (34)'l. 

*) For further details, see Ref, ( 13 ]  
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