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Abstract
Review of localization in geometry: equivariant cohomology, characteristic 
classes, Atiyah–Bott–Berline–Vergne formula, Atiyah–Singer equivariant 
index formula, Mathai–Quillen formalism, and application to path integrals.

Keywords: localization, geometry, equivariant cohomology

The foundations of equivariant de Rham theory have been laid in two papers by Henri Cartan 
[2] [3]. The book by Guillemin and Sternberg [4] covers Cartan’s papers and treats equivari-
ant de Rham theory from the perspective of supersymmetry. See also the book by Berline–
Getzler–Vergne [5], the lectures by Szabo [6] and by Cordes–Moore–Ramgoolam [7], and 
Vergne’s review [8].

1.  Equivariant cohomology

Let G be a compact connected Lie group. Let X be a G-manifold, which means that there is a 
defined action G × X → X of the group G on the manifold X.

If G acts freely on X (all stabilizers are trivial) then the space X/G is an ordinary mani-
fold on which the usual cohomology theory H•(X/G) is defined. If the G action on X is 
free, the G-equivariant cohomology groups H•

G(X) are defined to be the ordinary cohomology 
H•(X/G).

If the G action on X is not free, the naive definition of the equivariant cohomology H•
G(X) 

fails because X/G is not an ordinary manifold. If non-trivial stabilizers exist, the corresponding 
points on X/G are not ordinary points but fractional or stacky points.
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A proper topological definion of the G-equivariant cohomology HG(X) sets

H•
G(X) = H•(X ×G EG) = H•((X × EG)/G))� (1.1)

where the space EG, called universal bundle [9, 10] is a (non-unique) topological space asso-
ciated to G with the following properties1

	(1)	The space EG is contractible
	(2)	The group G acts freely on EG.

Because of the property (1) the cohomology theory of X is isomorphic to the cohomology 
theory of X × EG , and because of the property (2) the group G acts freely on X × EG  and 
hence the quotient space (X ×G EG) has a well-defined ordinary cohomology theory.

2.  Classifying space and characteristic classes

If X is a point pt, the ordinary cohomology theory H•( pt) is elementary

Hn( pt,R) =

{
R, n = 0
0, n > 0

� (2.1)

but the equivariant cohomology H•
G( pt) is less trivial. Indeed,

H•
G( pt) = H•(EG/G) = H•(BG)� (2.2)

where the quotient space BG  =  EG/G is called classifying space.
The terminology universal bundle EG and classifying space BG comes from the fact that 

any smooth principal G-bundle on a manifold X can be induced by a pullback f  * of the uni-
versal principal G-bundle EG → BG  using a suitable smooth map f : X → BG. Moreover, 
for two maps f , g : X → BG, the G-bundles obtained by the pullbacks f  *EG and g*EG are 
isomorphic if and only if f, g are homotopic.

The cohomology groups of BG are used to construct characteristic classes of principal 
G-bundles.

Let g = Lie(G) be the real Lie algebra of a compact connected Lie group G. Let R[g] be the 
space of real valued polynomial functions on g, and let R[g]G be the subspace of AdG  invariant 
polynomials on g.

For a principal G-bundle over a base manifold X the Chern–Weil morphism

R[g]G → H•(X,R)
p �→ p(FA)

� (2.3)

sends an adjoint invariant polynomial p on the Lie algebra g to a cohomology class [p(FA)] in 
H•(X) where FA = ∇2

A is the curvature 2-form of any connection ∇A on the G-bundle. The 
cohomology class [p(FA)] does not depend on the choice of the connection A and is called the 
characteristic class of the G-bundle associated to the polynomial p ∈ R[g]G.

The main theorem of Chern–Weil theory is that the ring of characteristic classes R[g]G is 
isomorphic to the cohomology ring H•(BG) of the classifying space BG: the Chern–Weil 
morphism (2.3) is an isomorphism

R[g]G ∼→ H•(BG,R)� (2.4)

1 See dicussion at http://mathoverflow.net/questions/201209.
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For the circle group G = S1 � U(1) the universal bundle ES1 and classifying space BS1 can 
be modelled as the inductive limit of

ES1 � S2n+1, BS1 � CPn at n → ∞� (2.5)

Then the Chern–Weil isomorphism is explicitly

C[g]G � H•(CP∞,C) � C[ε]� (2.6)

where ε ∈ g∨ is a linear function on g = Lie(S1) and C[ε] denotes the free polynomial ring on 
one generator ε. This ε ∈ H2(CP∞,C) is negative of the first Chern class c1 of the tautological 
line bundle γ = OCP∞(−1)

−c1(γ) = ε =
1

2π
√
−1

tr1FA(γ)� (2.7)

where tr1 denotes the trace of the curvature two-form FA = dA + A ∧ A in the fundamental 
complex 1-dimensional representation in which the Lie algebra of g = Lie(S1) is represented 
by 

√
−1R. The cohomological degree of ε is

deg ε = degFA(γ) = 2� (2.8)

Generally, for a compact connected Lie group G we reduce the Chern–Weil theory to the 
maximal torus T ⊂ G and identify

C[g]G � C[t]WG� (2.9)

where t is the Cartan Lie algebra t = Lie(T) and WG is the Weyl group of G.
For example, if G  =  U(n) the Weyl group WU(n) is the permutation group of n eigenvalues 

ε1, . . . εn. Therefore

H•(BU(n),C) = C[g]U(n) � C[ε1, . . . , εn]
WU(n) � C[c1, . . . , cn]� (2.10)

where (c1, . . . , cn) are elementary symmetrical monomials called Chern classes

ck = (−1)k
∑

i1�···�ik

εi1 . . . εik� (2.11)

The classifying space for G  =  U(n) is

BU(n) = lim
k→∞

Grn(Ck+n)� (2.12)

where Grn(V) denotes the space of n-planes in the vector space V.
To summarize, if G is a connected compact Lie group with Lie algebra g = Lie(G), maxi-

mal torus T and its Lie algebra t = Lie(T), and Weyl group WG, then it holds that

H•
G( pt,R) � H•(BG,R) � R[g]G � R[t]WG� (2.13)

3.  Weil algebra

The cohomology H•(BG,R) of the classifying space BG can also be realized in the Weil 
algebra

Wg := R[g[1]⊕ g[2]] = Λg∨ ⊗ Sg∨� (3.1)

J. Phys. A: Math. Theor. 50 (2017) 443002
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Here g[1] denotes a shift of degree so that elements of g[1] are Grassmann. The space of poly-
nomial functions R[g[1]] on g[1] is the anti-symmetric algebra Λg∨ of g∨, and the space of 
polynomial functions R[g[2]] on g[2] is the symmetric algebra Sg∨ of g∨.

The elements c ∈ g[1] have degree 1 and represent the connection 1-form on the universal 
bundle. The elements φ ∈ g[2] have degree 2 and represent the curvature 2-form on the univer-
sal bundle. An odd differential on functions on g[1]⊕ g[2] can be described as an odd vector 
field δ such that δ2 = 0. The odd vector field δ of degree 1 representing de Rham differential 
on the universal bundle is

δc = φ− 1
2
[c, c]

δφ = −[c,φ]
� (3.2)

as follows from the standard relations between the connection A and the curvature FA

dA = FA − 1
2
[A, A]

dFA = −[A, FA]
� (3.3)

This definition implies δ2 = 0. Indeed,

δ2c = δφ− [δc, c] = −[c,φ]− [φ− 1
2
[c, c], c] = 0

δ2φ = −[δc,φ] + [c, δφ] = −[φ− 1
2
[c, c],φ]− [c, [c,φ]] = 0

�
(3.4)

Given a basis Tα of the Lie algebra g with structure constants [Tβ , Tγ ] = fαβγTα the differ
ential δ has the form

δcα = φα − 1
2

fαβγcβcγ

δφα = −fαβγcβφγ
� (3.5)

The differential δ can be decomposed into the sum of two differentials

δ = δK + δBRST� (3.6)

with

δKc = φ, δBRSTc = −1
2
[c, c]

δKφ = 0, δBRSTφ = −[c,φ]
�

(3.7)

The differential δBRST is the BRST differential (Chevalley–Eilenberg differential for Lie 
algebra cohomology with coefficients in the Lie algebra module Sg∨). The differential δK is 
the Koszul differential (de Rham differential on Ω•(Πg)).

The field theory interpretation of the Weil algebra and the differential (3.6) was given in 
[11] and [12].

The Weil algebra Wg = R[g[1]⊕ g[2]] is an extension of the Chevalley–Eilenberg algebra 
CEg = R[g[1]] = Λg∨ by the algebra R[g[2]] = Sg∨ of symmetric polynomials on g

CEg ← Wg ← Sg∨� (3.8)

which is quasi-isomorphic to the algebra of differential forms on the universal bundle

G → EG → BG� (3.9)

J. Phys. A: Math. Theor. 50 (2017) 443002
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The duality between the Weil algebra Wg and the de Rham algebra Ω•(EG) of differential 
forms on EG is provided by the Weil homomorphism

Wg → Ω•(EG)� (3.10)

after a choice of a connection 1-form A ∈ Ω1(EG)⊗ g and its field strength FA ∈ Ω2(EG)⊗ g 
on the universal bundle EG → BG .

Indeed, the connection 1-form A ∈ Ω1(EG)⊗ g and field strength F ∈ Ω2(EG)⊗ g define 
maps g∨ → Ω1(EG) and g∨ → Ω2(EG)

cα �→ Aα

φα �→ Fα� (3.11)

The cohomology of the Weil algebra is trivial

Hn(Wg, δ,R) =

{
R if n = 0
0 if n > 0

� (3.12)

corresponding to the trivial cohomology of Ω•(EG).
To define the G-equivariant cohomology we need to consider the action of G on EG. To 

compute H•
G( pt) = H•(BG), consider Ω•(BG) = Ω•(EG/G).

For any principal G-bundle π : P → P/G  the differential forms on P in the image of the 
pullback π∗ of the space of differential forms on P/G are called basic

Ω•(P)basic = π∗Ω•(P/G)� (3.13)

Let Lα be the Lie derivative in the direction of a vector field vα generated by a basis ele-
ment Tα ∈ g, and iα be the contraction with vα.

An element ω ∈ Ω•(P)basic can be characterized by two conditions

	(1)	ω is invariant on P with respect to the G-action: Lαω = 0
	(2)	ω is horizontal on P with respect to the G-action: iαω = 0.

In the Weil model the contraction operation iα is realized as

iαcβ = δβα

iαφβ = 0
� (3.14)

and the Lie derivative Lα is defined by the usual relation

Lα = δiα + iαδ.� (3.15)

From the definition of Ω•(P)basic for the case of P  =  EG we obtain

H•
G( pt) = H•(BG,R) = H•(Ω•(EG)basic,R) = H•(Wg, δ,R)basic = (Sg∨)G

�
(3.16)

4.  Weil model and Cartan model of equivariant cohomology

The isomorphism

H(BG,R) = H(EG,R)basic = H(Wg, δ,R)basic� (4.1)

suggests to replace the topological model for G-equivariant cohomologies

HG(X,R) = H((X × EG)/G,R)� (4.2)

J. Phys. A: Math. Theor. 50 (2017) 443002
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of a real manifold X by the Cartan model

HG(X,R) = H((Ω•(X)⊗ Sg∨)G,R)� (4.3)

or by the equivalent algebraic Weil model

HG(X,R) = H((Ω•(X)⊗Wg)basic,R)� (4.4)

4.1.  Cartan model

Here (Ω•(X)⊗ Sg∨)G denotes the G-invariant subspace in (Ω•(X)⊗ Sg∨) under the G-action 
induced from G-action on X and adjoint G-action on g.

It is convenient to think about (Ω•(X)⊗ Sg∨) as the space

Ω•,0
C∞,poly(X × g)� (4.5)

of smooth differential forms on X × g of degree 0 along g and polynomial along g.
In (Ta) basis on g, an element φ ∈ g is represented as φ = φαTα. Then (φα) is the dual 

basis of g∨. Equivalently φα is a linear coordinate on g.
The commutative ring R[g] of polynomial functions on the vector space underlying g is 

naturally represented in the coordinates as the ring of polynomials in generators {φα}

R[g] = R[φ1, . . . ,φrk g]� (4.6)

Hence, the space (4.5) can be equivalently presented as

Ω•,0
C∞,poly(X × g) = Ω•(X)⊗ R[g]� (4.7)

Given an action of the group G on any manifold M

ρg : m �→ g · m� (4.8)

the induced action on the space of differential forms Ω•(M) comes from the pullback by the 
map ρg−1

ρg : ω �→ ρ∗g−1ω, ω ∈ Ω•(M)� (4.9)

In particular, if M = g and ω ∈ g∨ is a linear function on g, then (4.9) is the co-adjoint action 
on g∨.

The invariant subspace (Ω•(X)⊗ R[g])G forms a complex with respect to the Cartan 
differential

dG = d ⊗ 1 + iα ⊗ φα� (4.10)

where d : Ω•(X) → Ω•+1(X) is the de Rham differential, and iα : Ω•(X) → Ω•−1(X) is the 
operation of contraction of the vector field on X generated by Tα ∈ g with differential forms 
in Ω•(X).

The Cartan model of the G-equivariant cohomology HG(X ) is

HG(X) = H
(
(Ω•(X)⊗ R[g])G, dG

)
� (4.11)

To check that d2
G = 0 on (Ω•(X)⊗ R[g])G we compute d2

G  on Ω•(X)⊗ R[g] and find

d2
G = Lα ⊗ φα� (4.12)

J. Phys. A: Math. Theor. 50 (2017) 443002
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where Lα : Ω•(X) → Ω•(X) is the Lie derivative on X

Lα = diα + iαd� (4.13)

along vector field generated by Tα.
The infinitesimal action by a Lie algebra generator Ta on an element ω ∈ Ω•(X)⊗ R[g] is

Tαω = (Lα ⊗ 1 + 1 ⊗ Lα)ω� (4.14)

where Lα ⊗ 1 is the geometrical Lie derivative by the vector field generated by Tα on Ω•(X) 
and 1 ⊗ Lα is the coadjoint action on R[g]

Lα = −f γαβφ
β ∂

∂φγ� (4.15)

If ω is a G-invariant element, ω ∈ (Ω•(X)⊗ R[g])G, then

(Lα ⊗ 1 + 1 ⊗ Lα)ω = 0� (4.16)

Therefore, if ω ∈ (Ω•(X)⊗ R[g])G it holds that

d2
Gω = −(1 ⊗ φαLα)ω = φαf γαβφ

β ∂ω

∂φγ
= 0� (4.17)

by the antisymmetry of the structure constants f γαβ = −f γβα. Therefore d2
G = 0 on 

(Ω•(X)⊗ R[g])G.
The grading on Ω•(X)⊗ R[g] is defined by the assignment

deg d = 1 deg iα = −1 deg φα = 2� (4.18)

which implies

deg dG = 1� (4.19)

Let

Ωn
G(X) = ⊕k(Ω

n−2k ⊗ R[g]k)G� (4.20)

be the subspace in (Ω(X)⊗ R[g])G  of degree n according to the grading (4.18).
Then

· · · dG→ Ωn
G(X)

dG→ Ωn+1
G (X) dG→ . . .� (4.21)

is a differential complex. The equivariant cohomology groups H•
G(X) in the Cartan model are 

defined as the cohomology of the complex (4.21)

H•
G(X) ≡ Ker dG/ Im dG� (4.22)

In particular, if X  =  pt is a point then

H•
G( pt) = R[g]G� (4.23)

in agreement with (3.16).
If xµ are coordinates on X, and ψµ = dxµ are Grassman coordinates on the fibers of ΠTX , 

we can represent the Cartan differential (4.10) in the notations more common in quantum field 
theory traditions

δxµ = ψµ

δψµ = φαvµα
δφ = 0� (4.24)

J. Phys. A: Math. Theor. 50 (2017) 443002



Topical Review

8

where vµ are components of the vector field on X generated by a basis element Tα for the 
G-action on X. In quantum field theory, the coordinates xµ are typically coordinates on the 
infinite-dimensional space of bosonic fields, and ψµ are typically coordinates on the infinite-
dimensional space of fermionic fields.

4.2.  Weil model

The differential in the Weil model can be presented in coordinate notations similar to (4.24) 
as follows

δxµ = ψµ + cαvµα δcα = φα − 1
2

fαβγcβcγ

δψµ = φαvµα + ∂νvµαcαψν δφα = −fαβγcβφγ
�

(4.25)

In physical applications, typically c is the BRST ghost field for gauge symmetry, and Weil 
differential is the sum of a supersymmetry transformation and BRST transformation, for 
example see [13].

5.  Equivariant characteristic classes in the Cartan model

For a reference see [14] and [15].
Let G and T be compact connected Lie groups. We consider a T-equivariant G-principal 

bundle π : P → X . This means that equivariant T-actions are defined on P and on X compat-
ible with the G-bundle structure of π : P → X . One can take that G acts from the right and T 
acts from the left.

The compatibility means that T-actions on the total space P and base space X

	 •	commute with the projection map π : P → X
	 •	commute with the G action on the fibers of π : P → X.

Let DA  =  d  +  A be a T-invariant connection on a T-equivariant G-bundle P. Here we think 
about connection A is a g-valued G-equivariant 1-form on the total space of P which evalu-
ates to the Lie algebra generators on the fundamental vertical vector fields on P. Moreover, a 
T-invariant connection on G-bundle always can be constructed starting from any connection 
on G-bundle and using the averaging procedure with respect to the compact Lie group T.

Then we define the T-equivariant connection

DA,T = DA + εα ⊗ ivα� (5.1)

and the T-equivariant curvature

FA,T = (DA,T)
2 − εα ⊗ Lvα� (5.2)

where εα are coordinates on the Lie algebra t (like the coordinates φα on the Lie algebra g 
used in the previous section to define the Cartan model of G-equivariant cohomology). The 
curvature is in fact an element of Ω2

T(X)⊗ g

FA,T = FA − εα ⊗ Lvα + [εα ⊗ iα, 1 ⊗ DA] = FA + εαiαA� (5.3)

Let XT be the T-fixed point set in X. If the equivariant curvature FA,T is evaluated on XT, 
only the vertical component of iα contributes to the formula (5.3) and vα pairs with the vertical 
component of the connection A on the G-fiber of P over XT. By definition of the connection 
1-form A on G-bundle P, the vertical component of A is g−1dg for g ∈ G. The T-action on 
G-fibers over XT induces a homomorphism

J. Phys. A: Math. Theor. 50 (2017) 443002
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ρx : t → g for x ∈ XT� (5.4)

Let Tα be elements of a basis of t. Then the equivariant curvature FA,T on XT evaluates to

FA + εαρx(Tα)� (5.5)

An ordinary characteristic class for a principal G-bundle on X is [ p(FA)] ∈ H2d(X) for a 
G-invariant degree d polynomial p ∈ R[g]G. Here FA is the curvature of any connection A on 
the G-bundle.

In the same way, the T-equivariant characteristic class for a principal G-bundle associ-
ated to a G-invariant degree d polynomial p ∈ R[g]G is [ p(FA,T)] ∈ H2d

T (X). Here FA,T is the 
T-equivariant curvature of any T-equivariant connection A on the G-bundle.

Restricted to T-fixed points XT the T-equivariant characteristic class associated to a poly-
nomial p ∈ R[g]G is

p(FA + εαρ(Tα))� (5.6)

In particular, if V is a representation of G and p = trV exp() is the Chern character of the 
vector bundle V associated to principal G-bundle, then if XT is a point, the T-equivariant Chern 
character induced by p is an ordinary T-character of V induced by a homomorphism T → G  
and the G-module structure on V.

6.  Standard characteristic classes

For a reference see the book by Bott and Tu [16].

6.1.  Euler class

Let G  =  SO(2n) be the special orthogonal group which preserves a Riemannian metric 
g ∈ S2V∨ on an oriented real vector space V of dimRV = 2n.

The Euler characterstic class is defined by the adjoint invariant polynomial

Pf : so(2n,R) → R� (6.1)

of degree n on the Lie algebra so(2n) called Pfaffian and defined as follows. For an ele-
ment x ∈ so(2n) let x′ ∈ V∨ ⊗ V  denote the representation of x on V (fundamental repre-
sentation), so that x′ is an antisymmetric (2n)× (2n) matrix in some orthonormal basis of V. 
Let g · x′ ∈ Λ2V∨ be the two-form associated by g to x′, and let vg ∈ Λ2nV∨ be the standard  
volume form on V associated to the metric g, and v∗g ∈ Λ2nV  be the dual of vg. By definition

Pf(x) =
1
n!
〈v∗g , (g · x′)∧n〉� (6.2)

For example, for the 2 × 2-blocks diagonal matrix x′ in an orthonormal basis on V

Pf




0 ε1 · · · · · · 0 0
−ε1 0 · · · · · · 0 0

0 0 · · · · · · 0 εn

0 0 · · · · · · −εn 0




= ε1 . . . εn
� (6.3)

J. Phys. A: Math. Theor. 50 (2017) 443002
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For an antisymmetric (2n)× (2n) matrix x′, the definition implies that Pf(x) is a degree n 
polynomial of matrix elements of x which satisfies

Pf(x)2 = det x� (6.4)

Let P be an SO(2n) principal bundle P → X .
In the standard normalization the Euler class e(P) is defined in such a way that it takes 

values in H2n(X,Z) and is given by

e(P) =
1

(2π)n [Pf(F)]� (6.5)

For example, the Euler characteristic of an oriented real manifold X of real dimension 2n 
is an integer number given by

e(X) =
∫

X
e(TX) =

1
(2π)n

∫

X
Pf(R)� (6.6)

where R denotes the curvature form of the tangent bundle TX.
In quantum field theories the definition (6.2) of the Pfaffian is usually realized in terms of a 

Gaussian integral over Grassmann (anticommuting) variables θ that satisfy θiθj = −θjθi. The 
definition (6.2) is presented as

Pf(x) =
∫
[dθ2n . . . dθ1] exp(

1
2
θix′ijθj)� (6.7)

By definition, the operation 
∫
[dθ2n . . . dθ1] picks the coefficient of the monomial θ1 . . . θ2n.

6.2.  Euler class of a vector bundle and Mathai–Quillen form

See Mathai–Quillen [17] and Atiyah–Jeffrey [18].
The Euler class of a vector bundle can be presented in a QFT formalism. Let E be an ori-

ented real vector bundle E of rank 2n over a manifold X.
Let xµ be local coordinates on the base X, and let their differentials be denoted ψµ = dxµ.
Let hi be local coordinates on the fibers of E. Let ΠE denote the superspace obtained from 

the total space of the bundle E by inverting the parity of the fibers, so that the coordinates 
in the fibers of ΠE are odd variables χi . Let gij be the matrix of a Riemannian metric on the 
bundle E. Let Ai

µ be the matrix valued 1-form on X representing a connection on the bundle E.
Using the connection A we can define an odd vector field δ on the superspace ΠT(ΠE), 

or, equivalently, a de Rham differential on the space of differential forms Ω•(ΠE). In local 
coordinates (xµ,ψµ) and (χi, hi) the definition of δ is

δxµ = ψµ δχi = hi − Ai
jµψ

µχ j

δψµ = 0 δhi = δ(Ai
jµψ

µχ j)
�

(6.8)

Here hi = Dχi is the covariant de Rham differential of χi , so that under the change of fram-
ing on E given by χi = si

jχ̃
j  the hi transforms in the same way, that is hi = si

jh̃
j.

The odd vector field δ is nilpotent

δ2 = 0� (6.9)

and is called de Rham vector field on ΠT(ΠE).
Consider an element α of Ω•(ΠE) defined by the equation
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α =
1

(2π)2n exp(−tδV)� (6.10)

where t ∈ R>0 and

V =
1
2
(gijχ

ih j)� (6.11)

Notice that since hi has been defined as Dχi the definition (6.10) is coordinate independent.
To expand the definition of α (6.10) we compute

δ(χ, h) = (h − Aχ, h)− (χ, dAχ− A(h − Aχ)) = (h, h)− (χ, FAχ)� (6.12)

where we suppresed the indices i, j, the d denotes the de Rham differential on X and FA the 
curvature 2-form on the connection A

FA = dA + A ∧ A� (6.13)

The Gaussian integration of the form α along the vertical fibers of ΠE gives

1
(2π)2n

∫
[dh][dχ] exp

(
−1

2
δ(χ, h)

)
=

1
(2π)n Pf(FA)� (6.14)

which agrees with definition of the integer valued Euler class (6.5). The form (6.10) used to 
represent the Euler class is called the Gaussian Mathai–Quillen representation of the Thom 
class, defined later in section 8.1.

The Euler class of the vector bundle E is an element of H2n(X,Z). If dimX = 2n, the num-
ber obtained after integration of the fundamental cycle on X

e(E) =
∫

ΠT(ΠE)
α� (6.15)

is an integer Euler characterstic of the vector bundle E.
If E  =  TX the equation (6.15) provides the Euler characteristic of the manifold X in the 

form

e(X) =
1

(2π)dimX

∫

ΠT(ΠTX)
exp(−tδV)

t→0
=

1
(2π)dimX

∫

ΠT(ΠTX)
1� (6.16)

Given a section  s of the vector bundle E, we can deform the form α in the same δ-
cohomology class by taking

Vs =
1
2t

(
χ, h +

√
−1s

)
� (6.17)

After integrating over (h,χ) the resulting differential form on X has a factor

exp

(
− 1

2t
s2
)

� (6.18)

so it is concentrated in a neigborhood of the locus s−1(0) ⊂ X  of zeroes of the section s.
In this way the Poincaré–Hopf theorem is proven: given an oriented vector bundle E on an 

oriented manifold X, with rank E = dimX , the Euler characteristic of E is equal to the number 
of zeroes of a generic section s of E counted with orientation

e(E) =
∑

x∈s−1(0)⊂X

sign det ds|x� (6.19)
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where ds|x : Tx → Ex is the differential of the section s at a zero x ∈ s−1(0). The assumption 
that s is a generic section implies that det ds|x is non-zero.

For a short reference on the Mathai–Quillen formalism see [19].

6.3.  Chern character

Let P be a principal GL(n,C) bundle over a manifold X. The Chern character is an adjoint 
invariant function

ch : gl(n,C) → C� (6.20)

defined as the trace in the fundamental representation of the exponential map

ch : x �→ trex� (6.21)

The exponential map is defined by formal series

trex =

∞∑
n=0

1
n!

trxn
� (6.22)

The eigenvalues of the gl(n,C) matrix x are called Chern roots. In terms of the Chern roots 
xi the Chern character is

ch(x) =
n∑

i=1

exi� (6.23)

6.4.  Chern class

Let P be a principal GL(n,C) bundle over a manifold X. The Chern class ck for k ∈ Z>0 of 
x ∈ gl(n,C) is defined by expansion of the determinant

det(1 + tx) =
n∑

k=0

tncn� (6.24)

In particular

c1(x) = trx, cn(x) = det x� (6.25)

In terms of Chern roots the Chern class ck is defined as the elementary symmetric monomial

ck =
∑

1�i1<i2···<ik�n

xi1 . . . xin� (6.26)

Remark on integrality. Our conventions for characteristic classes of GL(n,C) bundles differ 
by a factor of (−2π

√
−1)k from the frequently used conventions in which Chern classes ck 

take value in H2k(X,Z). In our conventions the characteristic class of degree 2k needs to be 

multiplied by 1
(−2π

√
−1)k  to be integral.

6.5. Todd class

Let P be a principal GL(n,C) bundle over a manifold X. The Todd class of x ∈ gl(n,C) is 
defined to be

td(x) = det
x

1 − e−x =

n∏
i=1

xi

1 − e−xi
� (6.27)
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where det is evaluated in the fundamental representation. The ratio evaluates to a series expan-
sion involving Bernoulli numbers Bk

x
1 − e−x =

∞∑
k=0

(−1)k

k!
Bkxk = 1 +

x
2
+

x2

12
− x4

720
+ . . .� (6.28)

6.6. The Â class

Let P be a principal GL(n,C) bundle over a manifold X. The Â class of x ∈ GL(n,C) is 
defined as

Â = det
x

e
x
2 − e−

x
2
=

n∏
i=1

xi

exi/2 − e−xi/2� (6.29)

The Â class is related to the Todd class by

Â(x) = det e−
x
2 tdx� (6.30)

7.  Index formula

For a holomorphic vector bundle E over a complex variety X of dimC X = n the index ind(∂̄, E) 
is defined as p

ind(∂̄, E) =
n∑

k=0

(−1)kdimHk(X, E)� (7.1)

The localization theorem in K-theory gives the index formula of Grothendieck-Riemann–
Roch–Hirzebruch–Atiyah–Singer relating the index to the Todd class

ind(∂̄, E) =
1

(−2π
√
−1)n

∫

X
td(T1,0

X )ch(E)� (7.2)

Similarly, the index of the Dirac operator /D : S+ ⊗ E → S− ⊗ E  from positive chiral 
spinors S+ to negative chiral spinors S−, twisted by a vector bundle E, is defined as

ind( /D, E) = dim ker /D − dim coker /D� (7.3)

and is given by the Atiyah–Singer index formula

ind( /D, E) =
1

(−2π
√
−1)n

∫

X
Â(T1,0

X )ch(E)� (7.4)

Notice that on a Kahler manifold the Dirac complex

/D : S+ → S−� (7.5)

is isomorphic to the Dolbeault complex

· · · → Ω0,p(X) ∂̄→ Ω0,p+1(X) → · · ·� (7.6)

twisted by a square root of the canonical bundle K = Λn(T1,0
X )∨

/D = ∂̄ ⊗ K
1
2� (7.7)
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consistently with the relation (6.30) and the Grothendieck–Riemann–Roch–Hirzebruch–
Atiyah–Singer index formula.

Remark on 2π and 
√
−1  factors. The vector bundle E in the index formula (7.2) can be 

promoted to a complex

→ E• → E•+1 →� (7.8)

In particular, the ∂̄ index of the complex E• = Λ•(T1,0)∨ of (•, 0)-forms on a Kahler 
variety X equals the Euler characteristic of X

e(X) = ind(∂̄,Λ•(T1,0)∨) =

n∑
q=0

n∑
p=0

(−1) p+qdimH p,q(X)� (7.9)

We find

chΛ•(T1,0)∨ =

n∏
i=1

(1 − e−xi)� (7.10)

where xi are Chern roots of the curvature of the n-dimensional complex bundle T1,0
X . Hence, 

the Todd index formula (7.2) gives

e(X) =
1

(2π
√
−1)n

∫
cn(T1,0

X )� (7.11)

The above agrees with the Euler characteristic (6.6) provided it holds that

det(
√
−1xu(n)) = Pf(xso(2n))� (7.12)

where xso(2n) represents the curvature of the 2n-dimensional real tangent bundle TX as 2n × 2n 
antisymmetric matrices, and xu(n) represents the curvature of the complex holomorphic 

n-dimensional tangent bundle T(1,0)
X  as n × n anti-hermitian matrices. That (7.12) holds is 

clear from the 2 × 2 representation of 
√
−1

√
−1 �→

(
0 −1
1 0

)
.� (7.13)

8.  Equivariant integration

See the papers by Atiyah–Bott [20] and Berline–Vergne [21]

8.1. Thom isomorphism and Atiyah–Bott–Berline–Vergne localization

A map

f : F → X� (8.1)

of manifolds induces a natural pushfoward map on the homology

f∗ : H•(F) → H•(X)� (8.2)

and pullback on the cohomology

f ∗ : H•(X) → H•(F)� (8.3)
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In situations where there is a Poincaré duality between homology and cohomology we can 
construct a pushforward operation on the cohomology

f∗ : H•(F) → H•(X)� (8.4)

We can display the pullback and pushforward maps on the diagram

H•(F)
f∗−→

←−
f∗

H•(X)� (8.5)

For example, if F and X are compact oriented manifolds and f : F ↪→ X  is the embedding, 
then for the pushforward map f∗ : H•(F) → H•(X) we find

f∗1 = ΦF� (8.6)

where ΦF is the cohomology class in H•(X) that is Poincaré dual to the manifold F ⊂ X : for 
a form α on X we have

∫

F
f ∗α =

∫

X
ΦF ∧ α� (8.7)

If X is the total space of an oriented orthogonal vector bundle π : X → F over a manifold F 
then ΦF is called the Thom class of the vector bundle X and f∗ : H•(F) → H•(X) is the Thom 
isomorphism: to a form α on F we associate a form ΦF ∧ π∗α on X. An important property of 
the Thom class ΦF of a submanifold F ↪→ X  is

f ∗ΦF = e(νF)� (8.8)

where e(νF) is the Euler class2 of the normal bundle to F in X. Combined with (8.6) the last 
equation gives

f ∗f∗1 = µe(νF)� (8.9)

as a map µe(νF) : H•(F) → H•(F) of multiplication by e(νF)

α �→ e(νF) ∧ α� (8.10)

Now we consider T-equivariant cohomologies for a compact abelian Lie group T acting 
on X. Let F  =  XT be the set of T fixed points in X. Atiyah and Bott [20] have shown, that the 
rank of H•

T(F) (viewed as a module over the coefficient ring H•
T( pt) modulo torsion elements) 

coincides with the rank of H•
T(X). The rank is equal to the number of points in XT.

Moreover, the equivariant Euler class eT(νF) is invertible since at each component x ∈ XT  
it is given by the product of non-zero weights of the T-action on TxX.

The facts that the spaces H•
T(F) and H•

T(X) have the same rank and that the map 
µe(νF) = f ∗f∗ : H•

T(F) → H•
T(F) is invertible imply that the identity map idH•

T (X) on H•
T(X) 

can be represented in the form

idH•
T (X) = f∗µ−1

eT(νF)
f ∗� (8.11)

2 Notice that the definition of the Euler class (8.8) in terms of the Thom class does not require that rank of νF  is 
even neither that F is oriented, but only that νF  is orientable vector bundle over F. In integral cohomology theory 
H•(F,Z) it is possible that Euler class e(νF) is non-trivial for an oriented vector bundle νF  of odd rank, but in this 
case the Euler class has to be a torsion element because e(νF) = −e(νF) by the existence of orientation changing 
isomorphism of νF  (See example at http://math.stackexchange.com/questions/1268751). The Pfaffian construction 
of the Euler class in sections 6.1 and 6.2 automatically produces zero for orientable vector bundles of odd rank  
because it is based on the de Rham cohomology theory with coefficients in R which does not detect torsion elements.

J. Phys. A: Math. Theor. 50 (2017) 443002

http://math.stackexchange.com/questions/1268751


Topical Review

16

Let πX : X → pt  be the map from a manifold X to a point pt. The pushforward operator 
πX
∗ : H•

T(X) → H•
T( pt) corresponds to the integrating the cohomology class over X. The push-

forward is functorial. For maps F
f→ X πX

→ pt we have the composition πX
∗ f∗ = πF

∗  for F πF

→ pt. 
So we arrive at the Atiyah–Bott–Berline–Vergne integration formula

πX
∗ = πF

∗µ
−1
eT(νF)

f ∗� (8.12)

or more explicitly
∫

X
α =

∫

F

f ∗α
eT(νF)

� (8.13)

8.2.  Duistermaat–Heckman localization

A particular example where the Atiyah–Bott–Berline–Vergne localization formula can be 
applied is a symplectic space on which a Lie group T acts in a Hamiltonian way. Namely, 
let (X,ω) be a real symplectic manifold of dimR X = 2n with symplectic form ω and let a 
compact connected Lie group T act on X in Hamiltonian way, which means that there exists a 
function, called moment map or Hamiltonian

µ : X → t∨� (8.14)

such that

dµa = −iaω� (8.15)

in some basis (Ta) of t where ia is the contraction operation with the vector field generated by 
the Ta action on X.

The degree 2 element ωT ∈ Ω•(X)⊗ St∨ defined by the equation

ωT = ω + εaµa� (8.16)

is a dT-closed equivariant differential form:

dTωT = (d + εaia)(ω + εbµb) = εadµa + εaiaω = 0� (8.17)

This implies that the mixed-degree equivariant differential form

α = eωT� (8.18)

is also dT-closed, and we can apply the Atiyah–Bott–Berline–Vergne localization formula to 
the integral

∫

X
exp(ωT) =

1
n!

∫

X
ωn exp(εaµa)� (8.19)

For T  =  SO(2) so that so(2) � R the integral (8.19) is the typical partition function of 
a classical Hamiltonian mechanical system in statistical physics with Hamiltonian function 
µ : X → R and inverse temperature parameter −ε.

Suppose that T  =  SO(2) and that the set of fixed points XT is discrete. Then the Atiyah–
Bott–Berline–Vergne localization formula (8.13) implies

1
n!

∫

X
ωn exp(εaµa) =

∑
x∈XT

exp(εaµa)

eT(νx)
� (8.20)
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where νx  is the normal bundle to a fixed point x ∈ XT  in X and eT(νx) is the T-equivariant 
Euler class of the bundle νx .

The rank of the normal bundle νx  is 2n and its structure group is SO(2n). In the nota-
tions of section  5 we evaluate the T-equivariant Euler class of the principal G-bundle for 
T  =  SO(2) and G  =  SO(2n) by equation  (5.6) for the invariant polynomial on g = so(2n) 
given by p = 1

(2π)n Pf  according to definition (6.5).

8.3.  Gaussian integral example

To illustrate the localization formula (8.20) suppose that X = R2n with symplectic form

ω =

n∑
i=1

dxi ∧ dyi� (8.21)

and SO(2) action
(

xi

yi

)
�→

(
coswiθ − sinwiθ

sinwiθ coswiθ

)(
xi

yi

)
� (8.22)

where θ ∈ R/(2πZ) parametrizes SO(2) and (w1, . . . , wn) ∈ Zn with all wi �= 0.
The point 0 ∈ X is the fixed point so that XT  =  {0}, and the normal bundle νx = T0X is an 

SO(2)-module of real dimension 2n and complex dimension n that splits into a direct sum of 
n irreducible SO(2) modules with weights (w1, . . . , wn).

We identify so(2) � R with basis {1} and coordinate function ε ∈ so(2)∨ � R. The SO(2) 
action (8.22) is Hamiltonian with respect to the moment map

µ = µ0 +
1
2

n∑
i=1

wi(x2
i + y2

i )� (8.23)

Assuming that ε < 0 and all wi  >  0 we find by direct Gaussian integration

1
n!

∫

X
ωn exp(εµ) =

(2π)n

(−ε)n
∏n

i=1 wi
exp(εµ0)� (8.24)

and the same result by the localization formula (8.20) because

eT(νx) =
1

(2π)n Pf(ερ(1))� (8.25)

according to the definition of the T-equivariant class (5.6) and the Euler characteristic class 
(6.5), and where ρ : so(2) → so(2n) is the homomorphism in (5.4) with

ρ(1) =




0 −w1 · · · · · · 0 0
w1 0 · · · · · · 0 0
...

...
. . . . . .

...
...

...
...

. . . . . .
...

...
0 0 · · · · · · 0 −wn

0 0 · · · . . . wn 0




� (8.26)

according to (8.22).
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8.4.  Example of a two-sphere

Let (X,ω) be the two-sphere S2 with coordinates (θ,φ) and symplectic structure

ω = sin θdθ ∧ dφ� (8.27)

Let the Hamiltonian function be

µ = − cos θ� (8.28)

so that

ω = dµ ∧ dφ� (8.29)

and the Hamiltonian vector field be v = ∂φ. The differential form

ωT = ω + εµ = sin θdθ ∧ dφ− ε cos θ� (8.30)

is dT-closed for

dT = d + εiφ� (8.31)

Let

α = exp(tωT)� (8.32)

Locally there is a degree 1 form V such that ωT = dTV , for example

V = − cos θdφ� (8.33)

but globally V does not exist. The dT-cohomology class [α] of the form α is non-zero.
The localization formula (8.20) gives

∫

X
exp(ωT) =

2π
−ε

exp(−ε) +
2π
ε

exp(ε)� (8.34)

where the first term is the contribution of the T-fixed point θ = 0 and the second term is the 
contribution of the T-fixed point θ = π.

9.  Equivariant index formula (Dolbeault and Dirac)

Let T be a compact connected Lie group.
Suppose that X is a complex variety of complex dimension n and E is a holomorphic 

T-equivariant vector bundle over X. Then the cohomology groups H•(X, E) form representa-
tion of T. In this case the index of E (7.1) can be refined to an equivariant index or character

indT(∂̄, E) =
n∑

k=0

(−1)kchTHk(X, E)� (9.1)

where chTHi(X, E) is the character of the representation of T on the vector space Hi(X, E). 
More concretely, the equivariant index can be thought of as a gadget that attaches to the 
T-equivariant holomorphic bundle E a complex valued adjoint invariant function

indT(∂̄, E)(t) =
n∑

k=0

(−1)ktrHk(X,E)t� (9.2)

on elements t ∈ T . The sign alternating sum (9.2) is also known as the supertrace

indT(∂̄, E)(t) = strH•(X,E)t� (9.3)
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The index formula (7.2) is replaced by the equivariant index formula in which charac-
teristic classes are promoted to T-equivariant characteristic classes in the Cartan model of 
T-equivariant cohomology with differential dT = d + εαiα as in (4.10)

indT(∂̄, E)(eε
αTα) =

1
(−2π

√
−1)n

∫

X
tdT(TX)chT(E) =

∫

X
eT(TX)

chT(E)
chTΛ•(T∨

X )
�

(9.4)

Here {Tα} is a basis of the Lie algebra t and {εα} are the respective coordinates, so that 
εαTα ∈ t and eε

αTα ∈ T . In the right hand side TX denotes the holomorphic tangent bundle of 
the complex manifold X, and T∨

X  is its dual. The right hand side depends on εa by the definition 
(5.6) of T-equivariant characteristic classes in the Cartan model.

If the set XT of T-fixed points is discrete, then applying the localization formula (8.13) to 
the equivariant index (9.4) we find the equivariant Lefshetz formula

ind(∂̄, E)(t) =
∑
x∈XT

trEx(t)
detT1,0

x X(1 − t−1)� (9.5)

The Euler character is cancelled against the numerator of the Todd character.

9.1.  Example of CP1

Let X be CP1 and let E = O(n) be a complex line bundle of degree n over CP1, and let 
G  =  U(1) equivariantly act on E as follows. Let z be a local coordinate on CP1, and let an 
element t ∈ U(1) ⊂ C× send the point with coordinate z to the point with coordinate tz so that

chT1,0
0 X = t chT1,0

∞ X = t−1� (9.6)

where T1,0
0 X  denotes the fiber of the holomorphic tangent bundle at z  =  0 and similarly T1,0

∞ X  
the fiber at z = ∞. Let the action of U(1) on the fiber of E at z  =  0 be trivial. Then the action 
of U(1) on the fiber of E at z = ∞ is found from the gluing relation

s∞ = z−ns0� (9.7)

to be of weight  −n, so that

chE|z=0 = 1, chE|z=∞ = t−n.� (9.8)

Then

ind(∂̄,O(n),CP1)(t) =
1

1 − t−1 +
t−n

1 − t
=

1 − t−n−1

1 − t−1 =




∑n
k=0 t−k, n ≥ 0

0, n = −1,
−t

∑−n−2
k=0 tk, n < −1

� (9.9)
We can check against the direct computation. Assume n � 0. The kernel of ∂̄ is spanned by 

n  +  1 holomorphic sections of O(n) of the form zk for k = 0, . . . , n, the cokernel is empty by 
Riemann–Roch. The section zk is acted upon by t ∈ T  with weight t−k. Therefore

indT(∂̄,O(n),CP1) =

n∑
k=0

t−k.� (9.10)

Even more explicitly, for illustration, choose a connection 1-form A with constant curva-
ture FA = − 1

2 inω, denoted in the patch around θ = 0 (or z  =  0) by A(0) and in the patch around 
θ = π (or z = ∞) by A(π)
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A(0) = −1
2

in(1 − cos θ)dα A(π) = −1
2

in(−1 − cos θ)dα� (9.11)

The gauge transformation between the two patches

A(0) = A(π) − in dα� (9.12)

is consistent with the defining E bundle transformation rule for the sections s(0), s(π) in the 
patches around θ = 0 and θ = π

s(0) = zns(π) A(0) = A(π) + znd(z−n).� (9.13)

The equivariant curvature FT of the connection A in the bundle E is given by

FT = −1
2

in(ω + ε(1 − cos θ))� (9.14)

as can be verified against the definition (5.3) FT = F + εivA. Notice that to verify the expres-
sion for the equivariant curvature (9.14) in the patch near θ = π one needs to take into account 
contributions from the vertical component g−1dg of the connection A on the total space of the 
principal U(1) bundle and from the T-action on the fiber at θ = π with weight  −n.

Then

ch(E)|θ=0 = exp(FT)|θ=0 = 1

ch(E)|θ=π = exp(FT)|θ=π = exp(−inε) = t−n� (9.15)

for t = exp(iε) in agreement with (9.8).
A similar exercise gives the index for the Dirac operator on S2 twisted by a magnetic field 

of flux n

ind( /D,O(n), S2) =
tn/2 − t−n/2

t
1
2 − t−

1
2

� (9.16)

where now we have chosen the lift of the T-action symmetrically to be of weight n/2 at θ = 0 
and of weight  −n/2 at θ = π, so that (9.14) is changed into

FT = −1
2

in(ω − cos θ))� (9.17)

Also notice that up to an overall multiplication by a power of t related to the choice of lift 
of the T-action to the fibers of the bundle E, the relation (7.7) holds

ind( /D,O(n), S2) = ind(∂̄,O(n − 1),CP1)� (9.18)

because on CP1 the canonical bundle is K = O(−2).

9.2.  Example of CPm

Let X = CPm  be defined by the projective coordinates (x0 : x1 : · · · : xm) and Ln be the line 
bundle Ln = O(n). Let T  =  U(1)(m+1) act on X by

(x0 : x1 : . . . xm) �→ (t−1
0 x0 : t−1

1 x1 : · · · : t−1
m xm)� (9.19)

and by tn
k  on the fiber of the bundle Ln in the patch around the kth fixed point xk = 1, xi�=k = 0. 

We find the index as a sum of contributions from m  +  1 fixed points

indT(D) =

m∑
k=0

tn
k∏

j �=k(1 − (tj/tk))
� (9.20)
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For n � 0 the index is a homogeneous polynomial in C[t0, . . . , tm] of degree n representing the 
character on the space of holomorphic sections of the O(n) bundle over CPm.

indT(D) =




sn(t0, . . . , tm), n � 0
0, −m � n < 0

(−1)mt−1
0 t−1

1 . . . t−1
m s−n−m−1(t−1

0 , . . . , t−1
m ), n � −m − 1

�

(9.21)

where sn(t0, . . . , tm) are complete homogeneous symmetric polynomials. This result can be 
quickly obtained from the contour integral representation of the sum (9.20)

1
2πi

∮

C

dz
z

zn
∏m

j=0(1 − tj/z)
=

m∑
k=0

tn
k∏

j �=k(1 − (tj/tk))
,� (9.22)

If n � −m  we pick the contour of integration C to enclose all residues z  =  tj. The residue at 
z  =  0 is zero and the sum of residues is (9.20). On the other hand, the same contour integral 
is evaluated by the residue at z = ∞ which is computed by expanding all fractions in inverse 
powers of z, and is given by the complete homogeneous polynomial in ti of degree n.

If n  <  −m we assume that the contour of integration is a small circle around the z  =  0 and 
does not include any of the residues z  =  tj. Summing the residues outside the contour, and 
noting that z = ∞ does not contribute, we get (9.20) with the (−) sign . The residue at z  =  0 
contributes by (9.21).

Also notice that the last line of (9.21) relates3 to the first line by the reflection ti → t−1
i

tn
k∏

j �=k(1 − tj/tk)
=

(−1)m(t−1
k )−n−m−1(

∏
j t−1

j )∏
j�=k(1 − t−1

j /t−1
k )

� (9.23)

which is the consequence of Serre duality on CPm.

10.  Equivariant index and representation theory

The CP1 in example (9.16) can be thought of as a flag manifold SU(2)/U(1), and (9.9) (9.16) 
as characters of SU(2)-modules. For index theory on general flag manifolds GC/BC, that 
is, for Borel-Weyl-Bott theorem4, the shift of the form (9.18) is a shift by the Weyl vector 
ρ =

∑
α>0 α where α are positive roots of g.

The index formula with localization to the fixed points on a flag manifold is equivalent to 
the Weyl character formula.

The generalization of formula (9.16) for a generic flag manifold appearing from a co-
adjoint orbit in g∗ is called Kirillov character formula [22, 23], [24].

Let G be a compact simple Lie group and T ⊂ G its maximal torus. The Kirillov character 
formula equates the T-equivariant index indT( /D) of the Dirac operator on the G-coadjoint 
orbit of the element λ+ ρ ∈ g∨ with the character χλ of the G irreducible representation with 
highest weight λ.

The character χλ is a function g → C determined by the representation of the Lie group G 
with highest weight λ as

χλ : X �→ trλeX , X ∈ g� (10.1)

3 Thanks to Bruno Le Floch for the comment.
4 For a short presentation see the exposition by J. Lurie at http://www.math.harvard.edu/~lurie/papers/bwb.pdf.
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Let Xλ be an orbit of the co-adjoint action by G on g∨. Such an orbit is specified by an ele-
ment λ ∈ t∨/W  where t is the Lie algebra of the maximal torus T ⊂ G and W is the Weyl 
group. The co-adjoint orbit Xλ is a homogeneous symplectic G-manifold with the canonical 
symplectic structure ω defined at point x ∈ X ⊂ g∨ on tangent vectors in g by the formula

ωx(•1, •2) = 〈x, [•1, •2]〉 •1, •2 ∈ g� (10.2)

The converse is also true: any homogeneous symplectic G-manifold is locally isomorphic to a 
coadjoint orbit of G or a central extension of it.

The minimal possible stabilizer of λ is the maximal abelian subgroup T ⊂ G, and the maxi-
mal co-adjoint orbit is G/T. Such an orbit is called a full flag manifold. The real dimension 
of the full flag manifold is 2n = dimG − rkG, and is equal to the number of roots of g. If the 
stabilizer of λ is a larger group H, such that T ⊂ H ⊂ G, the orbit Xλ is called a partial flag 
manifold G/H. A partial flag manifold is a projection from the full flag manifold with fibers 
isomorphic to H/T.

Flag manifolds are equipped with natural complex and Kahler structures. There is an 
explicitly holomorphic realization of a flag manifold as a complex quotient GC/PC where GC 
is the complexification of the compact group G and PC ⊂ GC is a parabolic subgroup. Let 
g = g− ⊕ h⊕ g+ be the standard decomposition of g into the Cartan h algebra and the upper 
triangular g+ and lower triangular g− subspaces.

The minimal parabolic subgroup is known as the Borel subgroup BC, its Lie algebra is 
conjugate to h⊕ g+. Lie algebra of a generic parabolic subgroup PC ⊃ BC is conjugate to the 
direct sum of h⊕ g+ and a proper subspace of g−.

Full flag manifolds with integral symplectic structure are in bijection with irreducible 
G-representations πλ of highest weight λ

Xλ+ρ ↔ πλ� (10.3)

This is known as the Kirillov correspondence in geometric representation theory.
Namely, if λ ∈ g∨ is a weight, the symplectic structure ω is integral and there exists a line 

bundle L → Xλ with a unitary connection of curvature ω. The line bundle L → Xλ is acted 
upon by the maximal torus T ⊂ G and we can study the T-equivariant geometric objects. The 
Kirillov–Berline–Getzler–Vergne character formula states that the equivariant index of the 
Dirac operator /D twisted by the line bundle L → Xλ+ρ on the co-adjoint orbit Xλ+ρ is equal 
to the character χλ of the irreducible representation of G with highest weight λ

indT( /D)(Xλ+ρ) = χλ� (10.4)

This formula can be easily proven using equivariant version of the Atiyah–Singer index  
formula (7.4)

indT( /D)(Xλ+ρ) =
1

(−2π
√
−1)n

∫

Xλ+ρ

chT(L)ÂT(TX)� (10.5)

and the Atiyah–Bott–Berline–Vergne formula to localize the integral over Xλ+ρ to the set of 

fixed points XT
λ+ρ.

The localization to XT
λ+ρ yields the Weyl formula for the character. The T-fixed points are 

in the intersection Xλ+ρ ∩ t , and hence, the set of the T-fixed points is the Weyl orbit of λ+ ρ

XT
λ+ρ = Weyl(λ+ ρ)� (10.6)

At each fixed point x = w(λ+ ρ) ∈ XT
λ+ρ the tangent space TXλ+ρ

|p is generated by the 
root system of g. Indeed, the stabilizer of λ+ ρ , where λ is a dominant weight, is the Cartan 
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torus T ⊂ G thus the co-adjoint orbit Xλ+ρ is a full flag manifold. The tangent space at x is a 
complex T-module ⊕α>0Cα with weights α given by the positive roots of g. Consequently, the 
denominator of ÂT  gives the Weyl denominator, the numerator of ÂT  cancels with the Euler 
class eT(TX) in the localization formula, and the restriction to x = w(λ+ ρ) of chT(L) = eFT, 
where FT is T-equivariant curvature of a connection on line bundle L, is ew(λ+ρ) (c.f. example 
(9.17))

1
(−2π

√
−1)n

∫

Xλ+ρ

chT(L)Â(TX) =
∑
w∈W

eiw(λ+ρ)ε

∏
α>0(e

1
2 iαε − e−

1
2 iαε)

� (10.7)

We conclude that the localization of the equivariant index of the Dirac operator on Xλ+ρ 

twisted by the line bundle L to the set of fixed points XT
λ+ρ is precisely the Weyl formula for 

the character.
The Kirillov correspondence between the index of the Dirac operator of L → Xλ+ρ and the 

character is closedly related to the Borel–Weyl–Bott theorem.
Let BC be a Borel subgroup of GC, TC be the maximal torus, λ an integral weight of TC. A 

weight λ defines a one-dimensional representation of BC by pulling back the representation of 
TC = BC/UC where UC is the unipotent radical of BC (the unipotent radical UC is conjugate 
to a subgroup generated by g+). Let Lλ → GC/BC be the associated line bundle, and O(Lλ) 
be the sheaf of regular local sections of Lλ. For w ∈ WeylG define the action of w on a weight 
λ by w ∗ λ := w(λ+ ρ)− ρ.

The Borel–Weyl–Bott theorem is that for any weight λ one has

H•(GC/BC,O(Lλ)) =

{
0 if none of the w ∗ λ are dominant
Rλ at degree l(w) if w ∗ λ is dominant

� (10.8)

where Rλ is the irreducible G-module with highest weight λ, the w is an element of Weyl 
group such that w ∗ λ is dominant weight, and l(w) is the length of w. We remark that if 
there exists w ∈ WeylG such that w ∗ λ is dominant weight, then w is unique. There is no 
w ∈ WeylG such that w ∗ λ is dominant if in the basis of the fundamental weights Λi some of 
the coordinates of λ+ ρ  vanish.

10.1.  Example

For G  =  SU(2) one has GC/BC = CP1, an integral weight of TC is an integer n ∈ Z, and the 
line bundle Ln is the O(n) bundle over CP1. The Weyl weight is ρ = 1.

The weight n � 0 is dominant and H0(CP1,O(n)) is the SL(2,C) module of highest weight 
n (in the basis of fundamental weights of SL(2)).

For weight n  =  −1 the Hi(CP1,O(−1)) is zero for all i as there is no Weyl transformation 
w such that w ∗ n is dominant (equivalently, because ρ+ n = 0).

For weight n � −2 the Z2 reflection w makes w ∗ n = −(n + 1)− 1 = −n − 2 dominant 
and H1(CP1,O(n)) is an irreducible SL(2,C) module of highest weight  −n  −  2.

The relation between the Borel–Weil–Bott theorem for GC/BC and the Dirac complex on 
GC/BC is that the Dirac operator is precisely the Dolbeault operator shifted by the square root 
of the canonical bundle

S+(X)� S−(X) = K
1
2

∑
(−1) pΩ0,p(X)� (10.9)

and consequently
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ind(Xλ+ρ, /D ⊗ Lλ+ρ) = ind(GC/BC, ∂̄ ⊗ Lλ)� (10.10)

The Borel–Bott–Weyl theorem has a generalization for partial flag manifolds. Let PC be a 
parabolic subgroup of GC with BC ⊂ PC and let π : GC/BC → GC/PC denote the canonical 
projection. Let E → GC/PC be a vector bundle associated to an irreducible finite dimensional 
PC module, and let O(E) the the sheaf of local regular sections of E. Then O(E) is isomorphic 
to the direct image sheaf π∗O(L) for a one-dimensional BC-module L and

H•(GC/PC,O(E)) = H•(GC/BC,O(L))� (10.11)

For application of Kirillov theory to Kac-Moody and Virasoro algebra see [25].

11.  Equivariant index for differential operators

See the book by Atiyah [26].
Let Ek be vector bundles over a manifold X. Let G be a compact Lie group acting on X and 

the bundles Ek. The action of G on a bundle E induces canonically a linear action on the space 
of sections Γ(E). For g ∈ G and a section φ ∈ Γ(E) the action is

(gφ)(x) = gφ(g−1x), x ∈ X� (11.1)

Let Dk be linear differential operators compatible with the G action, and let E be the complex 
(that is Dk+1 ◦ Dk = 0)

E : Γ(E0)
D0→ Γ(E1)

D1→ Γ(E2) → . . .� (11.2)

Assume that complex E is elliptic. Then the cohomology groups Hk(E) are finite dimensional 
spaces. Since Dk are G-equivariant operators, the G-action on Γ(Ek) induces the G-action on 
the cohomology Hk(E). The equivariant index of an elliptic complex E is the virtual character

indG(D) : g → C� (11.3)

defined by

indG(D)(g) =
∑

k

(−1)ktrHk(E)g� (11.4)

11.1.  Atiyah–Singer equivariant index formula for elliptic complexes

If the set X G of G-fixed points is discrete, the Atiyah–Singer equivariant index formula for 
elliptic complex is

indG(D) =
∑
x∈XG

∑
k(−1)kchG(Ek)|x
detTxX(1 − g−1)� (11.5)

For the Dolbeault complex Ek = Ω0,k and Dk = ∂̄ : Ω0,k → Ω0,k+1

→ Ω0,• ∂̄→ Ω0,•+1 →� (11.6)

the index (11.5) agrees with (9.5) because the numerator in (11.5) decomposes as chGEchGΛ
•T∗

0,1 
and the denominator as chGΛ

•T∗
0,1chGΛ

•T∗
1,0 and the factor chGΛ

•T∗
0,1 cancels out.

For example, the equivariant index of ∂̄ : Ω0,0(X) → Ω0,1(X) on X = C〈x〉 under the 
T  =  U(1) action x �→ t−1x where t ∈ T  is the fundamental character is contributed by the 
fixed point x  =  0 as
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indT(C, ∂̄) =
1 − t̄

(1 − t)(1 − t̄)
=

1
1 − t

=

∞∑
k=0

tk
� (11.7)

where the denominator is the determinant of the operator 1  −  t over the two-dimensional 
normal bundle to 0 ∈ C spanned by the vectors ∂x and ∂x̄ with eigenvalues t and t̄ . In the 
numerator, 1 comes from the equivariant Chern character on the fiber of the trivial line bundle 
at x  =  0 and −t̄  comes from the equivariant Chern character on the fiber of the bundle of  
(0, 1) forms dx̄.

We can compare the expansion in power series in tk of the index with the direct computa-
tion. The terms tk for k ∈ Z�0 come from the local T-equivariant holomorphic functions xk 
which span the kernel of ∂̄ on C〈x〉. The cokernel is empty by the Poincaré lemma. Compare 
with (9.10).

Similarly, for the ∂̄ complex on Cr  we obtain

indT(Cr, ∂̄) =

[
r∏

k=1

1
(1 − tk)

]

+

� (11.8)

where []+ means expansion in positive powers of tk.
For application to the localization computation on spheres of even dimension S2r we can 

compute the index of a certain transversally elliptic operator D which naturally interpolates 
between the ∂̄-complex in the neighborhood of one fixed point (north pole) of the r-torus Tr 
action on S2r and the ∂̄-complex in the neighborhood of another fixed point (south pole). The 
index is a sum of two fixed point contributions

indT(S2r, D) =

[
r∏

k=1

1
(1 − tk)

]

+

+

[
r∏

k=1

1
(1 − tk)

]

−

=

[
r∏

k=1

1
(1 − tk)

]

+

+

[
r∏

k=1

(−1)rt−1
1 . . . t−1

r

(1 − t−1
k )

]

−

�

(11.9)

where []+ and []− denotes the expansions in positive and negative powers of tk.

11.2.  Atiyah–Singer index formula for a free action G-manifold

Suppose that a compact Lie group G acts freely on a manifold X and let Y  =  X/G be the quo-
tient, and let

π : X → Y� (11.10)

be the associated G-principal bundle.
Suppose that D is a G × T  equivariant differential operator for a complex (E , D) of vector 

bundles Ek over X as in (11.2). The G × T -equivariance means that the complex E and the 
operator D are pullbacks by π∗ of a T-equivariant complex Ẽ and operator D̃ on the base Y

E = π∗Ẽ , D = π∗D̃� (11.11)

We want to compute the G × T -equivariant index indG×T(D; X) for the complex (E , D) on the 
total space X for a G × T  transversally elliptic operator D using T-equivariant index theory 
on the base Y. We can do that using Fourier–Peter–Weyl theory on G (counting Kaluza–Klein 
modes in G-fibers).
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Let RG be the set of all irreducible representations of G. For each irreducible representation 
α ∈ RG we denote by χα the character of this representation, and by Wα the vector bundle 
over Y associated to the principal G-bundle (11.10). Then, for each irrep α ∈ RG we consider 
a complex Ẽ ⊗ Wα on Y obtained by tensoring Ẽ with the vector bundle Wα over Y. The 
Atiyah–Singer formula is

indG×T(D; X) =
∑
α∈RG

indT(D̃ ⊗ idWα
; Y)χα.� (11.12)

11.2.1.  Example of S2r−1.  We consider an example immediately relevant for localization on 
odd-dimensional spheres S2r−1 which are subject to the equivariant action of the maximal 
torus Tr of the isometry group SO(2r). The sphere π : S2r−1 → CPr−1 is the total space of the 
S1 Hopf fibration over the complex projective space CPr−1.

We will apply the equation (11.12) for a transversally elliptic operator D induced from the 
Dolbeault operator D̃ = ∂̄  on CPr−1 by the pullback π∗.

To compute the index of the operator D = π∗∂̄ on π : S2r−1 → CPr−1 we apply (11.12) 
and use (9.21) and obtain

ind(D, S2r−1) =

∞∑
n=−∞

indT(∂̄,CPr−1,O(n)) =
[

1∏r
k=1(1 − tk)

]

+

+

[
(−1)r−1t−1

1 . . . t−1
r∏r

k=1(1 − t−1
k )

]

−
�

(11.13)
where []+ and []− denotes the expansion in positive and negative powers of tk. See further 
review in contribution [27].

11.3.  General Atiyah–Singer index formula

The Atiyah–Singer index formula for the Dolbeault and Dirac complexes and the equivariant 
index formula (11.5) can be generalized to the generic situation of an equivariant index of the 
transversally elliptic complex (11.2).

Let X be a real manifold. Let π : T∗X → X be the cotangent bundle. Let {E•} be an indexed 
set of vector bundles on X and π∗E• be the vector bundles over T *X defined by the pullback.

The symbol σ(D) of a differential operator D : Γ(E) → Γ(F) (11.2) is a linear operator 
σ(D) : π∗E → π∗F which is defined by taking the highest degree part of the differential oper-

ator and replacing all derivatives ∂
∂xµ by the conjugate coordinates pµ in the fibers of T *X.

For example, for the Laplacian ∆ : Ω0(X,R) → Ω0(X,R) with highest degree part in some 
coordinate system {xµ} given by ∆ = gµν∂µ∂ν where gµν is the inverse Riemannian metric, 
the symbol of ∆ is a Hom(R,R)-valued (i.e. number valued) function on T *X given by

σ(∆) = gµνpµpν� (11.14)

where pµ are conjugate coordinates (momenta) on the fibers of T *X.
A differential operator D : Γ(E) → Γ(F) is elliptic if its symbol σ(D) : π∗E → π∗F is an 

isomorphism of vector bundles π∗E and π∗F  on T *X outside of the zero section X ⊂ T∗X .
If a compact connect Lie group G acts on X and G-action is lifted equivariantly on vec-

tor bundles E, F and differential operator D, one can define a weaker property for D to be 
G-transversally elliptic. For this purpose consider the family T∗

GX  consisting at each point 
x ∈ X  of covectors p ∈ T∗

x X  that are annihilated by all tangent vectors to the G-orbit at x.
A differential operator D : Γ(E) → Γ(F) is G-transversally elliptic if σ(D) : π∗E → π∗F 

is an isomorphism of vector bundles π∗E and π∗F  on T∗
GX  outside of zero section.
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The index of a differential operator D depends only on the topological class of its symbol in 
the topological K-theory of vector bundles on T *X. The Atiyah–Singer formula for the index 
of the complex (11.2) is

indG(D, X) =
1

(2π)dimRX

∫

T∗X
ÂG(π

∗TX)chG(π
∗E•)� (11.15)

Here T *X denotes the total space of the cotangent bundle of X with canonical orientation 
such that dx1 ∧ dp1 ∧ dx2 ∧ dp2 . . . is a positive element of Λtop(T∗X).

Let n = dimRX and let π∗TX be the rank n vector bundle over T *X defined by the pullback 
by π : T∗X → X of the tangent bundle TX over X. The ÂG-character of π∗TX is

ÂG(π
∗TX) = det π∗TX

(
RG

eRG/2 − e−RG/2

)
� (11.16)

where RG denotes the G-equivariant curvature of the bundle π∗TX. Notice that the argument of 
Â is n × n matrix where n = dimRTX  (real dimension of X) while if general index formula is 
specialized to Dirac operator on Kahler manifold X as in (7.4) the argument of the Â-character 
is an n × n matrix where n = dimCT1,0

X  (complex dimension of X).
Even though the integration domain T *X is non-compact the integral (11.16) is well-defined 

if X is compact because of the (G-transversal) ellipticity of the complex π∗E•.
For illustration take the complex to be E0

D→ E1. Since σ(D) : π∗E0 → π∗E1 is an isomor-
phism outside of the zero section we can pick a smooth connection on π∗E0  and π∗E1 such 
that its curvature on E0 is equal to the curvature on E1 away from a compact tubular neigh-
borhood UεX  of X ⊂ T∗X . Then chG(π

∗E•) is explicitly vanishing away from UεX  and the 
integration over T *X reduces to integration over the compact domain UεX .

It is clear that under localization to the fixed point set XG of the G-action on X the general 
formula (11.16) reduces to the fixed point formula (11.5) for discrete XG. If XG is discrete set 
then the set of G-fixed points for G-action on T *X coincides with XG. The numerator in the 
Â-character detπ∗TX RG = PfTT∗X (RG) is the Euler class of the tangent bundle TT∗X to T *X 
which cancels with the denominator in (8.13), while the restriction of the denominator of 
(11.16) to fixed points is equal to (11.5), because det eRG = 1, since RG is a curvature of the 
tangent bundle TX with orthogonal structure group. Finally, the restriction to XG of chGπ

∗E• 
gives the numerator in (11.5).

For more details see for example [28].

12.  Equivariant cohomological field theories

Certain field theories have first been interpreted as cohomological and topological field theo-
ries by Witten, see [29, 30].

Often the path integral for supersymmetric field theories can be represented in the form

Z =

∫

X
α� (12.1)

where X is the superspace (usually of infinite dimension) of all fields of the theory. Moreover, 
the integrand measure α is closed with respect to an odd operator δ which is typically con-
structed as a sum of a supersymmetry algebra generator and a BRST charge

δα = 0� (12.2)
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The integrand is typically a product of an exponentiated action functional S, perhaps with 
insertion of a non-exponentiated observable O

α = e−SO� (12.3)

so that both S and O are δ-closed

δS = 0, δO = 0.� (12.4)

If X is a supermanifold, such as a total space ΠE of a vector bundle E (over a base Y) with 
parity inversed fibers, the equivariant Euler characteristic class (Pfaffian) in the Atiyah–Bott–
Berline–Vergne formula (8.13) is replaced by the graded (super) version of the Pfaffian. The 
weights associated to fermionic components contribute inversely compared to the weights 
associated to bosonic components.

Typically, in quantum field theories the base Y of the bundle E → Y  is the space of fields. 
Certain differential equations (like BPS equations) are represented by a section s : Y → E . 
The zero set s−1(0) ⊂ Y  of the section are the field configurations which solve the equations. 
For example, in topological self-dual Yang–Mills theory (Donaldson–Witten theory) the 
space Y is the infinite-dimensional affine space of all connections on a principal G-bundle 
on a smooth four-manifold M4. In a given framing, connections are represented by adjoint-
valued 1-forms on M4, so Y � Ω1(M4)⊗ adg. A fiber of the vector bundle E at a given con-
nection A on the G-bundle on M4 is the space of adjoint-valued two-forms Ω2+(M4)⊗ adg.  
The section s : Ω1(M4)⊗ adg → Ω2+(M4)⊗ adg is represented by the self-dual part of the 
curvature form

A �→ F+
A� (12.5)

The zeroes s−1(0) of the section s are connections A that are solutions of the equation F+
A = 0. 

The integrand α is the Mathai–Quillen representative of the Thom class for the bundle E → Y  
like in (6.10) and (6.17). The integral over the space of all fields X = ΠE localizes to the 
integral over the zeroes s−1(0) of the section , which in the Donaldson–Witten example is the 
moduli space of self-dual connections, called instanton moduli space.

The functional integral version of the localization formula of Atiyah–Bott–Berline–Vergne 
has the same formal form as the finite-dimensional (8.13)

∫

X
α =

∫

F

f ∗α
e(νF)

� (12.6)

except that in the quantum field theory version the space X is an infinite-dimensional super-
space of fields. Here F denotes the localization locus in the space of fields. Let ΦF ⊂ H•(X) 
be the Poincaré dual class to F, or Thom class of the inclusion f : F ↪→ X , which is image f*1 
under the pushforward morphism

f∗ : H•(F) → H•(X)� (12.7)

Let νF  be the normal bundle to F in X. In quantum field theory language the space F is called 
the moduli space or localization locus, and νF  is the space of linearized fluctuations of fields 
transversal to the localization locus. The pullback f ∗ΦF in H•(F) is equal to the Euler class 
of the normal bundle νF

f ∗ΦF = e(νF)� (12.8)

Let µe(νF) : H•(F) → H•(F) denote multiplication by e(νF), that is

µe(νF) : α �→ e(νF) ∧ α, α ∈ H•(F)� (12.9)
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then definition of the Thom class and Euler class imply that

f ∗f∗ = µe(νF)� (12.10)

The localization (12.6) from X to F exists if the pushforward morphism f* (12.7) and the 
pullback morphism

f ∗ : H•(X) → H•(F)� (12.11)

have inverses. In this case, the equation (12.10) implies equality

idH•(X) = f∗µ−1
e(νF)

f ∗� (12.12)

of maps H•(X) → H•(X). After integration one get the general localization formula (12.6).
In finite-dimensional situation existence of the inverse maps to f* and f  * is equivalent to 

the statement that the morphism µe(νF) is invertible and that the ranks of H•(X) and H•(F) 
are equal.

Two examples of such localization have been considered above:

	 •	(Section 6.2) if X = ΠE is the total space of a vector bundle E → Y  with parity inversed 
fibers, then F ⊂ Y ⊂ X can be taken to be the set of zeroes F  =  s−1(0) of a generic  
section  s : Y → E . In this case the (super) rank of νF  is 0 since νF  splits into rank E  
bosonic subbundle in the horizontal direction and rank E  fermionic subbundle in the 
vertical direction. Therefore the (super) Euler class e(νF) at each point is concentrated in 
degree 0. It gives numerical ±1 factor entering into the localization formula (6.19).

	 •	(Section 8.1) if X is a T-manifold for a compact Lie group T, then F can be taken to 
be F  =  XT, the set of T-fixed points on X. As Atiyah–Bott [20] have shown, the locali-
zation (12.12) holds if Euler class eT(νF) is replaced by the equivariant Euler class 
eT(νF). Even though e(νF) is concentrated in the generically non-zero degree equal to 
the rank(νF) = codim(F, X), it is invertible if treated over the field of fractions of the 
polynomial coefficient ring H•

T( pt) = R[t]T  as dicussed in section 8.1: the equivariant 
Euler class eT(νF) is contributed by 0-form in Ω•(F) multiplied by an element of R[t]T  
equal to the non-zero product of weights of T-action on νF .

The formula (12.6) is more general than these examples. In practice, in quantum field 
theory problems, the localization locus F is found by deforming the form α to

ατ = α exp(−τδV)� (12.13)

Here τ ∈ R is a deformation parameter, and V is a fermionic functional on the space of fields, 
such that δV  has a trivial cohomology class (the cohomology class δV  is automatically trivial 
on effectively compact spaces, but on a non-compact space of fields, which usually appears 
in quantum field theory path integrals, one has to take extra care of the contributions from the 
boundary at infinity to ensure that δV  has trivial cohomology class).

If the even part of the functional δV  is positive definite, then by sending the parameter 
τ → ∞ we can see that the integral

∫

X
α exp(−τδV)� (12.14)

localizes to the locus F ⊂ X  where δV  vanishes. Such a locus F has an invertible Euler class 
of its normal bundle in X and the localization formula (12.6) holds.

In some quantum field theory problems, a compact Lie group G acts on X and δ is isomor-
phic to an equivariant de Rham differential in the Cartan model of G-equivariant cohomology 
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of X, so that an element a of the Lie algebra of G appears as a parameter of the partition  
function Z.

Then the partition function Z(a) can be interpreted as an element of H•
G( pt), and the 

Atiyah–Bott–Berline–Vergne localization formula can be applied to compute Z(a).
There are are two types of equivariant partition functions.
In the partition functions of the first type Z(a), the variable a is a parameter of the quantum 

field theory such as a coupling constant, a background field, a choice of vacuum, an asymptot-
ics of fields or a boundary condition. Such a partition function is typical for a quantum field 
theory on a non-compact space, such as the Nekrasov partition function of equivariant gauge 
theory on R4

ε1,ε2
 [31].

In the partition function of the second type, the variable a is actually a dynamical field of 
the quantum field theory, so that the complete partition function is defined by integration of 
the partial partition function Z̃(a) ∈ H•

G( pt)

Z =

∫

a∈g

µ(a)Z̃(a)� (12.15)

where µ(a) is a certain adjoint invariant volume form on the Lie algebra g. The partition func-
tion Z of second type is typical for quantum field theories on compact space-times reviewed 
in [1], such as the partition function of a supersymmetric gauge theory on S4 [13] reviewed in 
contribution [32], or on spheres of other dimensions, see summary of results in contribution 
[27].
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