
SLAC-TN-75-7
March 1975

PDP8 SIKULATOR
K. B, Hallory

PDPSIM is an asserbly-language pragrala mitten for the 360-91
to allow writing and proving an executive program for the
acceleratorqs PDF8*s,(Ref, 1) It alloae$ writing and
debugging the executive, the loader and the interprocessor
link handlers before the first of the 9 PDP-8's was
delivered. It has been updated for use in the triplex
system: and still is used for asseabling and 'debugging the '-
code used online, It is also used for PDP-8 programming
classes.

Some parts of the program are specialized to the developent
of the executive system and the software for SLAC8s I/O
devices for accelerator ,cont.rol. code for additional devices I'
is easily added when required-

The simulator program is in several partq: They include a
control section, an assembler, a section for defining
configurations of several processors uith links and
associated I/O devices, and an execution section [the
simulator itself).

I* COBTROL PROGBAW

The program is directed by control statements identified by
8**o in columns j/2, The ASH, PAL, and L?JAD control
statements have fixed data fields, described below, The
remaining control statements are free-field. The operation
field starts in column 3 and is terminated by the next blank
character. The operation is identified only by the letter in
column 3, {The following character, represented by *$" in
some of the examples below, represents the processor ID in a
anltiprocessor system. Otherwise, the remaining characters
of the operation field are ignored,) Parameters are
recognized as octal numbers or strings depending on the first
character of the parameter, Parameters are delimited by
spaces, Parameters are positional, and extra parameters are
treated as comments,

ASSRKBLE: [fixed field1
**A NN
**ASH NN <comment>
**A <comment>

The first form shows all of the characters tested by the
program, The two characters in columns y/8 are.taken to be
the program name, The prograa NN will be assembled and the
binary output vi.11 be saved in a 'DISK' buffer, If the- naae
field is blank, the binary output will not be saved,

PAGE 2

The source program must follow the control statement, All
statements till the next control statement or end of the
input file are copied onto a utility file by the control
program, and the assembler is then called, ff the source'
deck does not contain a ,EEID statement, the-job ~32.1 be S
terminated. The assembly is done in place in *core*, an&may
be executed without using a LOAD control: statement, If the .,
source contains no ,OBG statement, the assembly wfll be
started at location 0200,

Bultiple sources may be assembled, but each must be preceded
by an ASSEHBLE control statement- The 'core* is not cleared
between assenblies, so that a group of assembled programsmay
be executed without reloading *core*, The symbol table is
cleared after each assembly (but see SYaBOLS below),

Provision has been made for saving the .assembly output fror
one job to another in an external WISP file.

BXECOTE:
**EXE <time>
**ES

The EXECUTE statement is the 'continuer switch, to resume
operation after a pause, If the <time> paraaeter is uritten,
execution will continue for that nunber ef milliseconds and
then pause: If the time parareter is omitted, executionwill
simulate approximately 1 second of CPU time and then pause, .-
Continuation requires another **g control statement. iB
FIBISH:

**I?

This statement terminates the job, It is issued by the
program automatically if a source deck has no ,BIIID statement
or if the end of input file is reached,

GO:
**G$ <4-digit start address> <tiae>
**G 2400

The GO statement specifies the start address and initiates
execution. Location 0000 is used if the start address field,
is blank, The time parameter is the same as in the EXECUTE
statement,

LOAD: (fixed field)
**LOAD <address> 811 BP HQ <..A
**Ia <address> NN
**I.$ <address> PB NP

PAGB 3

The LOAD statement specifies that a particular program NN
shall. be loaded into a specified address in acoren, The
address is specified by an octal nnmbex.following *'+L,
Multiple program .naaes on a load statement will be loaded
into successive pages fn Worem',

PAL: (fixed field)
**P II
**PAL

This coamand produces an assembly using a language resembl%mg
the PAL assembler, It fs otherwise ,the same as the ASSEMBLE
statement,

SYHBOLS:
**s
**SYH .

This command allows extension of the permanent symbol table
of the assembler, It is followed by a source deck of symbol
definitions (*tag= val* statements) and a ,END statement, A
standard assembly is performed, but the qmbols are retained ..
for the rest of the job, The source should contain no
literals or labeled statements,

The remaining control statements are somewhat peculiar to the
development of the DS/8 executive and a multiprocessor
system,

KEYBOARD:
**KEY <string>
**!I$ <string>

The KE'YBOARD statement allows simulation of tty keyboard
input, The characters following the firs* blank in the line'
are presented one-at-a-time to the device at device address
03. A carriage return is inserted after the last non-blank
character in the string,

DEBUG:
**I)$ <debug options>
**I) S
+*D STEP
**D R
*SD 3 <address>
**D T Caddrl> <addr2>
**D 6i <ad&l> Caddr2)
+*D P <address> <value> C,,, ,.,>
**D D <ad&l> Caddr2>

Debug options are identified by the first character of the
option parameter. Remaining chazacters in the option para

PAGE 4

are ignored,

STEP: The program-counter value, the instruction and the
contents of the accumulator are printed for every instruction-
executed by the simulator,

RUN: The "step feature,' is turned off,

BREAK: The simulator will pause before executing an
instruction at the specified address, The break allous
changirag step and trace addresses, or dumping core contents, I.
Execution may be then resumed in response. .to a **E command,
If no address is provided, tie break feature is turned off-

TRACE: The PC, instruction and AC are printed for every
instruction executed in a range of addresses, If the second
address is omitted, only one location will,be traced, If no
address is furnished, the trace is turned off, Trace lines a
are marked 'T1 to distinguish them from other lines generated
by the STEP feature,

PATCH: The PC, instructfon and AC are printed when a memory-
reference fs made to an address or range of addresses, as
abare, The lines are identified by 918,

PATCH: A value is inserted at the indicated address, Blare
than one address-value pair of parameters msy be written on
one command,

DUMP: An octal dump is produced, c0verin.g the address range
specified. Execution may be resumed following a *t+E command-

CONFIGURATIBH:
**c$ <device parameters>

CONFI6URATI08 statements are used to define additional
processors and additional I/(3 devices, At this date, a
number of options have been written to aad additional
teletypes to a processor, to define additional processors, to
connect links between processors, etc.

IL ASSBBBLER

The DS/8 assembler has two modes of operation: one resembles
the PAL assembler, the other resembles the MACRO asse=b,ler
used in the PDP9, The latter mode is the principal mode.
called by the ASH control statenent, The- PAL statement
introduces minor language modifications discnss~a in a later'
sect ion.

Since the exclamation point does not exist on XBB*s norral
printer train, it has been replaced by the symbol '1'. The

PAGE 5

symbol '-' is used to represent the backward slash,

Each statem%nt may contain optional label,,operator, operand
and comm8nt fields, delimited by spaces. The label, if
included, mast start in column 1, The cosment field should '.
be preceded by a slash, If column 1 of a statement is a I
slash, the entire statement is treated as a comment.

Labels must be identifiers: an identificar consists of 1 to 6
alphanumeric characters with the first character alpha, or of
a dot folloued by 1 to 5 alphanumeric characters.

The operator and operand fields say be expressions, Each is
evaluated and the two expressions are then merged. I.f the
operator contains a meaury-reference instruction [AID, TAD,
ISZ, DCA. JMS or JKP) the value of the op%rand $i%ld must lie
on page zero or on the page currently being assembled, The
terms of an expression may be identifiers, nnntbers, or the
location counter reference {*-*)- Expressions are evaluated
from left to right,. The operators + and,:- are recognized as
arithmetic operations and 1 as a merge operation, A star is
taken to be an indirect address value to be merged uith the
operator,

A value or instruction enclosed im parentheses will be
asseBtbled as a literal value* and the address of the literal.
will be assembled in place of the parenthesfs, Spaces may be
imbedded within the parentheses: TAD (JKP X) is a valid
instruction referencing a literal, Literals may not be
nested, but they can be used within deffnitions.

A label may be defined equal to am identifier, an expression
or an instruction, The form of the definition is

LADEL= <valu%>

In .SIXBT mode, text characters enclosed .in quotes vi33 be
assembled, tuo characters per word, in six-bit ASCII. A
single character or the last of an odd number of characters
in a quoted string will be right-jnstified in a vord,. A
qnoted string of one or two characters map be used as the
argument of a definition or a literal,

The follovfng operation codes are defined to the assembler:
AND TAD ISZ DCA JKS JHP IOT HOP SKP SHA
SPA SZA SNA SKI. SZL 3LT OS3 CLA CLL ClllA
CEIL RAR BTB BAL ETL IAC 3Slii WL HQA CAB
SUP AC?,

The following pssudo-operatiams are recognized by the
ass%mbler:

PAGE 6

,ORG followed by au expression sets the location counteS'-

.LIT forces assembly sf literals, Since. literals are
inserted in the module during the second pass, the length of
the literal pool fs not known during pass one, The
programmer must therefore ensure that .LIT is Sallowed bg a
,ORG statement that provides enough space for tbe literals,

,DEC causes the assembler to recognize aoabers as decimal in
lines uhicB follow,

.OCT causes the assembler to recognize numbers as octal in
lines which follow, The assembler is initialized for -0CT
for each asseably,

.

-ASCII causes the assembler to assemble one 8-bit character
per word in strings,

,SIXET causes the asseubler to pack strings into ,two sir-bit
(truncated) ASCII characters per word, Each assembly is '.
initialized in .SIXBT mode,

.END @arks the logical end of a source program.

IIa, PAL

The following modifications are made to emulate the PAL
assembler:

Labels must be .followed irmediatelp by a comma. The
operation field nttay start in column 1, An instruction say
have any number of operands separated by spaces, vhicb vi11 .
be merged with the operator, The comment field must be.
preceded by a slash.

The indirect address is represented by the character *I*
following a memory-reference %nstrnction, (For exalrple, 3RP
I LBB 1% Do not usi '1' as an identifier.

The symbols)*a and '1' are mot recognized.

The logical end of a source program is indicated by 'SW in
column 1 of the last statement,

III, EXECOTION

The execution prograze siuulates all CPU functions of a PDP-8,
but the I/o instructions have been specialized for the needs,
of the executive development, The follouing Ijo colnmands
hare been ispleaented:

PAGE 7

ION= IOT 1
IOP= IQT 2

Teletyped:
KS?= IOT 31
KCF= fOT 32
KRS= IOT 34

IOT 35
KRB= IOT 36

TSF= IOT 41
TCF= IOT 42
TLS= IOT 46

Real-time clock:
SCP= IOT 141
CCP= XOT 142
CLON= IOT 145

Link interface:
STP- IQT 401
CTF= XOT 402
TAC= IOT 404
SRF= YOT 411
CBP= IOT 412
RCB= XOT 414

Turn interrupt on.,
Turn interrupt off

Skip on keyboard flag
Clear keyboar-d flag
Keyboard read, .static
Enable TT? interrupt
Clear flag and AC, and read

keyboard buffer
Skip on TTT flag
Clear TTT flag
Print char and clear TTY flag

Skip on clock flag,
Clear clock .flag
Enable 360 PPS clock

Skip on transmit flag
Clear transmit flag
Transmit a character
Skip on receive flag
Clear receive flag
Bead character boffer

The following I/O instructions are specialized for debugging
in the Simulator system, They have no equivalent in a real
operational system.

.STP= IOT 24 SET STEP MODE
This instruction is the equivalent of the 'STEP* witch on
the computer console. The contents of the PC, the AC, and
the next instruction value in core are printed for every
fetch cycle. If this instruction is executed again, the
program halts,

rRUU= IOT 22 CLEAR STEP KODE
This instrucction is the *RUR* position and nullifies the
STEP instruction,

This instruction always causes the simulator to pause and
wait for an interrupt flag tu be set or for the specified !
execution time to expirs, Its purpose is to avoid executing
thousands of PBH computer cycles uhen the progran is known to
be in a Nwaitn state.

IV, OPZBATION OF PEOGBA!l

Sample JCL and control cards for operation of the program are
shown below:

// JOB ,CLASS=E
// EXK LOBDGO

, PAGE 8

/JSY5LI% DD DSN=~UYL~IC,RRB,PDPGW,DCB~BLKSIZE=~2OO,D~SP=OLD
//DISK DD DUflfiY,DCB=BLISIZE=3432,SP~~~=(3432,la)
J/UTIL DD UIJIT=SYSDA,SPICE=('ZllK1 (l*l).)r

DCB=(RECFIY=PE,LBBCL=8O,T3LKSX~3=3520)
;;SYSIIDBI¶P DD SYSOUT=A
/JSYSIN DD *
**AS5 SA
TLS=6046
TSF=6041 <
<source prograa>
**L 200 SA
**GO 0200 ,.
**PII ,

The program normally aill terrinate after about 4SOO lines of'
print- The noraal corpletion code is 30, If ,the program
abends with code 322 or 722, it is proba$fly dne.to loopfag in
the user program, Please shav re any other absqd, l

KB5.

Reference:
1, TN 75-6: "Sam Howry's DS executive translated fez a

PDP-8". K.B.Mallory

