SLAC-TN-75-7
March 1975

PDP8 SINMULATOR
K. B. Nallory

PDPSIM is an assembly-language program written for the 360-91
to allow writing and proving an executive program for the
accelerator's PDP-8's. {Ref. 1) It allowed writing and
debugging the executive, the loader and the interprocessor
link handlers before the first of the 9 PDP-8's was
delivered. It has been updated for use in the triplex
system; and still is used for assembling and debugging the
code used online. It is also used for PDP-8 programming
classes.

Some parts of the program are specialized to the developazent
of the executive system and the software for SLAC's I/0
devices for accelerator control. Code for additional devices
is easily added when required.

The simulator program is in several parts: They include a
control section, an assembler, a section for defining
configurations of several processors with links and
associated I/0 devices, and an execution section (the
simulator itself).

I. CONTROL PROGRAM

The progran is directed by control statements identified by
**%% in columns 1/2. The ASN, PAL, and LOAD control
statements have fixed data fields, described below. The
remaining control statements are free-field. The operation
field starts in column 3 and is terminated by the next blank
character. The operation is idemtified only by the letter inm
column 3. (The following character, represented by ®$" in
some of the examples below, represents the processor ID in a
rultiprocessor system. Othervise, the remaining characters
of the operation field are ignored.) Parameters are
recognized as octal numbers or strings depending on the first
character of the parameter. Parameters are delimited by
spaces. Parameters are positional, and extra parameters are
treated as cosments.

ASSEMBLE: {fixed field)

*%k] NN
¥%ASH NN <comnmentd>
*x7 <{comnment>

The first form shows all of the characters tested by the
program. The two characters ian columns 7/8 are taken to be.
the program name. The program NN will be assembled and the
binary output will be saved im a *'DISK' buffer. If the nane
field is blank, the binary output will not be saved.

PAGE 2

The source program rust follow the contrel statement. 2All
statelents till the next comtrol statement or end of the
input file are copied onto a utility file by the control
program, and the assembler is them called. If the source.
deck does not contain a .END statement, the job will be
terminated. The assembly is dome in place in *core’, and may
be executed without using a LOAD control statement. If the
source contains no .ORG statement, the assenbly will be
started at location 0200.

Munlesinla cnnrrace nav ha accoeoamhlaAd l\ni- carh must ha nracadad
[¥3 uJ.L.Lt’«LU WAL Wkl O IIQ! 24 - QAoOoTEBVUATCALy LA S 2 IR e 22 AT aadd e s
by an ASSEMBLE control statement. The 'core' is not cleared

between assemblies, so that a group of assembled programs may
be executed without reloading 'core'. The symbol table is
cleared after each assembly (but see SYMBOLS below).

Provision has been made for saving the sembly output from
one job to another in an extermal "DISK"™ file.
EXECUOTE:

**xEXE <Jtimed>

*%E$

The EXECUTE statement is the 'continue® switch, to resume
operation after a pause. If the <timse> parameter is written, .
execution will continue for that number of milliseconds and
then pause: If the time parameter is omitted, execution will
simulate approximately 1 second of CPU time and then pause.
Continuation requires another **E control statement. .
FINISH:
kP

This statement terminates the job. It is issued by the
program automatically if a source deck has no .ERD statement
or if the end of input file is reached.

GO:
**G$ <4-digit start address> <timed>
L d 2400

The GO statement specifies the start address and initiates
execution. Location 0000 is used if the start address field
is blank. The time parameter is the same as in the EXECUTE
statement. , : : S :

LOAD: (fixed field)

**LOAD <address> NN NP NQO <...>
**], <address> NN :

**L3 <address> NN NP

PAGE 3

The LOAD statement specifies that a particumlar program NK
shall be loaded into a specified address in "core". The
address is specified by an octal number following **L.
Multiple program names om a load statenent uill be 1oaded
into successive pages in ¥core".

PAL: (fixed field)
**p NN
**PAL

This command produces an assembly using a language reseabling
the PAL asseabler. It is otherwise the same as the ASSEMBLE -
Statement. . .

SYMBOLS:
*%S

*EkSYM

This command allows extension of the permanent symbol table
of the assembler. It is followed by a source deck of symbol
definitions ('tag= val' statements) and a .END statement. A
standard assembly is performed, but the symbols are retained
for the rest of the job. The source should contain no
literais or labeled statements.

The remaining control statements are somewhat pecnliar to. the
development of the DS/8 executive and a nnltiprocessor
systen.

KEYBOARD:
**KRY <string>
**K$ <string>

The KEYBOARD statement allows siwmulation of tty keyboard
input. The characters following the first blank in the line -
are presented one-at-a-time to the device at device address
03. 1 cartiage return is inserted after the last non-blank
character in the string. :

DEBUG:

**¥D$ <debug options>

*%x]) S

**D STREP

**D R :

**D B <address>

**D T <addr1> <addr2>

**D # <addr1> <addr2>

**D) P <addressd> <valued <eae <so?
**D) D <addr1> <addr2>

Debug options are identified by the first character of the
option parameter. Remaining characters in the option parm

PAGE &
are ignored.

STEP: The program—counter valune, the instruction and the
contents of the accumulator are printed for every 1nstruction
executed by the simulator. e

RUN: The "step feature® is turned off.

BREAK: The simulator will pause before executing an
instruction at the specified address. The break allovs
changing step and trace addresses, or dumping core contents.
Execution may be then resumed in response to a **E command.
If no address is provided, the break feature is turned off.

TRACE: The PC, instruction and AC are printed for every
instruction executed in a range of addresses. If the second
address is omitted, only one location will be traced. If no:
address is furnished, the trace is turned off. Trace lines
are marked 'T' to distinguish them from other lines genetated
by the STEP feature.

WATCH: The PC, instruction and AC are printed when a memory-
reference is made to an address or range of addresses, as
above. The lines are identified by 'w?,

PATCH: A value is inserted at the indicated address. HNore
than one address-value pair of parameters msy be written on
one command.

DUMP: An octal dump is produced, covering the address range
specified. Execution may be resumed following a **E cosmmand. .

CONFIGURATION:
**C$ <dewvice parameters>

CONFIGURATION statements are used to define additional
processors and additional I/0 devices. At this date, a
number of options have been written to add additional
teletypes to a processor, to define additional processors, to
connect ‘1inks between processors, etc. :

II. ASSENBLER

The DS/8 assembler has two modes of operation: one resembles
the PAL assembler, the other resemhbles the MACRO assembler
used in the PDP9. The latter mode is the principal mode,
called by the ASM control stateaent. The PAL statenment
introduces minor lamguage modifications discussed in a later
section.

Since the exclamation point does mot exist on IBM's normal
printer train, it has been replaced by the synbol *}°*. The

PAGE 5
symbol '=' is used to represent the backward slash.

Each statement may contain optional label, operator, operand
and comment fields, delimited by spaces. = The label, if
included, must start in column 1. The comment field should
be preceded by a slash. If columa 1 of a statement is a
slash, the entire statement is treated as a comment,

Labels must be identifiers: an identifier consists of 1 to 6
alphanumeric characters with the first character alpha, or of
a dot followed by 1 to 5 alphanumeric characters. -

The operator and operand fields may be expressions. Each is
evaluated and the two expressions are then merged. If the
operator contains a memory-reference instraction (AND, TAD,
IsZ, DCA, JNS or JMP) the value of the operand field must lie
on page zero or on the page currently being assembled. The -
ternms of an expression may be identifiers, numbers, or the
location counter referenmce ('.'). Expressions are evaluated
from left to right. The operators + and.~ are recognized as
arithmetic operations and | as a merge operation. A star is
taken to be an indirect address value to be merged with the
operator.

A value or instruction enclosed in parentheses will be
assembled as a literal value, and the address of the literal.
will be assembled in place of the parenthesis. Spaces may be
imbedded within the parentheses: TAD (JMP X) is a valid
instruction referencing a literal. Literals may not be
nested, but they can be used within definitions.

A label may be defined egual to an identifier, an expression
or an instruction. The form of the definition is
LABEL= <valuned>

In .SIXBT mode, text characters enclosed in quotes will be
assembled, two characters per word, in six-bit ASCIXI. A o
single character or the last of an odd number of characters .
in a gquoted string will be right-justified in a word. A
quoted string of one or two characters may be used as the
argument of a definition or a literal.

The following operation codes are defined to the asseambler:
AND TAD ISZ DCA JNS JMP IOT NOP SKP SHA
SPA SZA SNA SNL SZ1L BLT QSR CLA CLL CHA
CHL RAR RTR RAL BTL JAC BSW . MQL MQA CAN
SWP ACL

The following pseudo~-operatioms are tecognized by the
assenbler:

PAGE 6
-ORG followed by an expraession sets the location counter.

«LIT forces assembly of literals. Since. literals are
inserted in the module during the second pass, the length of
the literal pool is not known during pass one. The
programmer must therefore ensure that .1LIT is followed by a
-ORG statement that provides enough space for the literals.

-DEC causes the assembler to recognize numbers as decimal in
lines which follow.

~0OCT causes the assembler to recognize numbers as octal inm
lines which follow. The assembler is initialized for .oCT
for each assenmbly. -

-ASCII causes the assembler to assemble one 8-~bit character
per word in strings. :

« SIXBT causes the assembler to pack strings into two six-bit
(truncated) ASCII characters per word. Each assembly is.
initialized in .SIXBT mode.

- END marks the logical end of a source progran.

ITa. PAL

The following modifications are made to emulate the PAL
assembler:

Labels must be folloved immediately by a comma. The
operation field may start in columm 1. An instruction may

have any number of operands separated by spaces, which will . .

be merged with the operator. The comment field must be .
preceded by a slash.

The indirect address is represented by the character *I°
following a memory-reference instruction. (For example, JWP
I LAB). Do not usi *'I*' as an identifier.

The symbols '*' and '|' are not recognized.

The logical end of a source program is indlcated by *$° 1n
column 1 of the last statement.

III. EXECUTION

The execution program simulates all CPU functions of a PDP~-8,
but the I/0 instructions have been specialized for the needs.
of the executive development. The following I/0 commands
have been jisplemented: :

PAGE 7

ION= I0T 1 Turn interrupt on..
IOF= IoT 2 Turn interrupt off .
Teletype: :
KSP= I0T 31 Skip on keyboard flag
KCF= JoT 32 Clear keyboard flag
KRS= IOT 34 Keyboard read, static
0T 35 Enable TTY interrupt
KRB= IOT 36 - Clear flag and AC, and. read
keyboard buffer
TSF= IOT &1 Skip on TTY flag
TCP= I0T &2 Clear TTY flag
TLS= IOT 46 Print char and clear TTY flaq
Real-time clock:
SCFP= I0T 141 Skip on clock flag-:
CCF= I0T 142 Clear clock flag
CLON= IOT 145 Enable 360 PPS clock
Link interface: :
STF= I0T 401 Skip on transnmit flag
CTF= IOT 402 Clear transait flag
TAC= IOT 404 Transmit a character.
SRF= I0T 311 Skip on receive flag
CRF= TIOT &12 Clear receive flag
RCB= IOT 414 Read character buffer

The following I/0 instructionms are specialized for debugging
in the Simulator systeam. They have no eguivalent in a real
operational system. '

«STP= IOT 24 SET STEP MODE ,
This instruction is the equivalent of the *STEP' switch on
the computer console. The contents of the PC, the AC, and
the next instruction value im core are printed for every
fetch cycle. If this instruction is executed again, the
program halts.

-ROB= I0T 22 CLEAR STEP MODE
This instrucction is the 'RUR' position and nullifies the
'STEP' instruction.

JMP .-1
This instruction always causes the simulator to pause. and
wait for an interrupt flag to be set or for the specified
execution time to expire. Its purpose is to avoid executing -
thousands of IBM computer cycles when the program is known to
be imn a "wait" state.

IV. OPERATION OF PROGRAX

Sample JCL and coantrol cards for operation of the program are
shown below:

/7 JOB JCLASS=E

/7 EXEC LCADGO

PAGE 8
//SYSLIN DD DSN=WYL.IC.KBM.PDPGM,DCB=BLKSIZE=3200,DISP=0OLD
//DISK DD DUMMY,DCB=BLKSIZE=3432,SPACE=(3432,10)
//UTIL DD UNIT=SYSDA,SPACE=(TRK, {(1,1))»
/77 DCB= (RECFA=FB,LRECL=80, BLKSIZE~3520)
//SYSUDUMP DD S5YSOUT=A
//SYSIN DD *
**ASH SA
TLS=6046
TSF=6041
<{source program>
%L, 200 sA
**GO 0200
**FIN

The program normally will terminate after about #4500 lipes of .
print. The normal completion code is 30. If the program v
abends with code 322 or 722, it is probably due to looping in_
the user program. Please shov me any other abend.

KBE.

Reference:
1. TN 75-6: "Sam Howry's DS executive translateﬂ for a
PDP-8", K.B.Mallory :

