Proceedings of the secoud workshop on

“Quantum field Theory under the Influence
of External Conditions”

held at University of Leipzig,
September 14 to September 20, 1992

Naturwissenschaftlich-Theoretisches Zentrum
| Universitdt Leipzig







Preface

The second workshop on
Quantum Field Theory under the Influence of External Conditions

was held at the University of Leipzig, September 14 to September 20, 1992. This
workshop was sponsored by the Deutsche Forschungsgemeinschaft (DFG), the Naturwis-
senschaftlich-Theoretisches Zentrum (NTZ) of the University of Leipzig and sup-
ported by the Interdisciplinary Seminar (INTSEM) of the University.

The aim of this workshop was to discuss current research problems as well as to
offer young scientists an introduction into this field and to encourage them to join
the Graduiertenkolleg on

Quantum Field Theory and its Application
in Elementary Particle and Solid State Physics

to be founded at the University of Leipzig.

Main emphasis has been placed on Quantum Electrodynamics in the presence of
conducting surfaces, of external fields or a gravitational background:. Investigations-
of the vacuum state have been presented from various perspectives, and applications
of different methods (in particular, the zeta function method) played a major role.
Besides QED also other important field theories, mainly Quantum Chromodynamics
and the Standard Model in general, in special background fields were discussed.

These proceedings contain the main part of the contributions of the workshop.
For some contributions which covered issues under current investigation or which are
published elsewhere, an abstract stands only. Therefore, we included the complete
progreuﬁ into this collection, as well as the addresses of the speakers, so that the
interested reader could easily ask the authors for further information.

I would like to thank all those who contributed to imnake the workshop as succesful
as it was. This concerns all participants, the session leaders and the speakers. It was
a good idea of M. Bordag to collect the available talks for proceedings. Especially,
I thank A. Uhlmann and B. Geyer for their support and my coworkers M. Bordag
and K. Scharnhorst who did a lot of administrative and technical work related to
the meeting.

D. Robaschik
October 1992
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Quantum Field Theoryv under the Influence of External Conditions

NEW ASPECTS OF THE CASIMIR. EFFECT:
FLUCTUATIONS AND RADIATIVE REACTION

(pased on a review to appear under the same title in
"Cavity Quantum Electrodynamics™, ed. P. R. Berman
Supplemant: Advances in Atomic, Molecular,

and Optical Physics; Academic Press)

G. Barton

Physics and Astronomy Division
University of Sussex

Brighton BN1 9QH, England

ABSTRACT

- = ¢« The much-diseussed Casimir stresses, ‘exerted on
conducting ("mirror"™) surfaces by the zero-point
electromagnetic fields in adjacent regions of space, are not
constants of the motion, but merely mean values subject to
quantum-gtatistical fluctuamtions, whose so-called correlation
function W ia reported on a single flat mirror. The stress 1is
obgervable only when averaged over finite times T and finitae
surface regions of diameter a. From W we derive integral
representations of the mean-sqQquare deviations of these
averaged stresses, and their very different asymptotic values
whan a<<eT and a>>aT respectively.

Finally, as pointed out by Jaekel and Reynaud and by
Braginsky and Khalili, from W the fluctuation-dissipation
theorem ylelds the damping force on a moving mirror.

Septewben 1942
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Photon Pair Creation By Moving Dielectrics

Gabriel Barton and Claudia Eberlein

University of Sussex
School of Mathematical and Physical Sciences
Brighton BN1 9QH
UK

August, 1992

Abstract

For a scalar fleld in 1+1 dimensions a Hamiltonian formalism is set up to describe a mov-
ing dielectric of constant, but arbitrary refractive index. The velocity-dependent Hamiltonian is

_ found and dealt with in first order of perturbation theory with respect to. the velocity. The tran-

sition amplitude from the vacuum to the two-photon state is calculated in the Heisenberg picture
via a Bogoliubov transfarmation of the photon anaihilation and creation operators, and in the
Schrédinger picture by expanding the wavefunction into the instantaneous set of eigenfunctions of
the parameter-dependent Hamiltonian. The application of the stress-momentum-fiow conservation
law allows one to write down an effective Hamiltonian for an arbitrary arrangement of moving
dielectrics. Transition amplitudes for photon pair creation are given for dielectric half-spaces and
slabs. The total radiated energy and the frictional force corresponding to this energy loss are de-
termined. The dissipative terms agree with established results for the photon creation by perfect
mirrors.

In a consistency check the fluctuation-dissipation theorem is employed to provide the link
between the correlation-function of the fluctuations of the stress on the surface and the motional
force as obtained from the radiated energy. Furthermore, the resonance pattern of the photon
radiation rate by an uniformly oscillating dielectric slab is looked at. Cavities of variable length

are treated in order to provide comparison with previously known results.
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Fluctuations of the Casimir Pressure in Lowest
Order Quantum Electrodynamics

D. Robaschik
Fachbereich Physik der Universitat Leipzig
E.Wieczorek
DESY-IfH Zeuthen

Abstract

_ Using standard gechniques of quantum field theory we-determine the finc-
tions of the Casimir pressure for different models of the plates. For ideally
conducting plates the stress tensor fluctuations on both sides of the plates are
uncorrelated and add up simply to the resulting fluctuation of the Casimir
pressure. In the case of two plates we find a resonance structure of the cor-
relation function. For penetrable plates the Ructuations on both sides of the
plates are correlated and which leads to a reduction of the fluctuations.

1 Introduction

In the following we continue the investigation of the vacuum state in Quantum Field
Theory. In Quantum Mecharics the ground state is equally well investigated com-
pared with other states. The wave functions yields the necessary basic information.
In Quantum Field Theory the situation is quite different. The vacuum state is usu-
ally represented by the formal Fock space vector |0 >, only the Green functions of
the field operators contain further information. Already in free field theory simple
expectation values of the stress tensor or energy densities lead to divergent quanti-
ties. because this appears to be unphysical in most applications these infinitties are
subtracted by the normal ordering procedure.

But this is not the vight way. At least in part these infinities are direct con-
sequences of the quantization procedure. For example the infinities of the ground
state energy of QED could be understood as the added up zero point energies of the
harmonic oszillators describing all the field modes. So possible infinities should be
handeld carefully and one should look for physically interesting finite parts of it.

A wellknown nontrivial example is the Casimir pressure. Another interesting
quantity is the fluctuation of the electromagnetic field strength (considered in Quan-
tumn Optics).
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In the last time G.Barton (1] has raised the question of the fluctuations of
the Casmir pressure. He pointed out that the infinities appearing by a direct
calculation of the mean squared deviation makes sense physically. In a second
step he started the treatment of these phenomena using correlation functions [1]
(2] [3). This allows a discussion of the expected fluctuations of observables in
dependence of the measuring procedure. G. Barton investigated the fluctuation
of the Casmir pressure first. He evaluated the matrix elements of products of
operators by introducing complete sets of intermediat states.

Here we prefer another method. We write down explicitely the complete ex-
pression for the product of the two operators considered and apply then standard
Quantum Field Theoretic methods. These methods allow a simultaneous treat-
ment of different interesting cases for which the Green functions are explicitely
known.

As physical situation we consider QED with one or two parallel conducting
pla- tes [4]. We start with the treatment of ideal conductors characterized by
vanishing the tangential component of the electric field strenght E, and the normal
component of the magnetic field strenght B, on the plates. Comparing the pressure
Hluctuations of the free field in the free space or the space with one canducting plate
(no Casimir pressure) the resulting fluctuations are enhanced by a factor two, for
the Casmir pressure results a factor four. In the case of two mirrors we observe
a resonance structure of the correlation functions . Such resonances appear if
the distances between the considered points correspond to a classical light signal
n-times reflected at the plates.

As next we study what happens when we consider more realistic plates. Real
plates are simulated in different ways. The most simple possiblities are a freqency
cut-offs or exponential damping factors which make the plate transparent for high
frequencies. In this manner the boundary conditious for the electromagnetic field
are changed. Another possiblitiy is to apply boundary conditions (known from
delta-functions) which contain the ideal plates as limiting case (5], {6]. As already
expected by G.Barton for non-ideal plates the fluctuations of both sides of the
plates are correlated and lead to a reduction of the fluctuations.

2 Field theoretic description of fluctuations
In general the fluctuation of an observable T in the vacuum state is defined by

(AT =< O|(T - T)}|0 >=< 0|T?|0 > — < O|T|0 >? (2.1)

T =< 0|T|0 >

where T is usually

T = /f(.r)T(.x:)daa (2.2)
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Here T(x) is the local field theoretic observable and f(z) describes the measur-
ing procedure. Therefore the essential information for the fluctuation is contained
in the expectation values

W(z,z') = <0|T(z)T(z")|0 > - < 0|T(z)|0 >< 0|T(z')|0 >
= <|T(z)T(z")} >’ (2.3)
In our case we have to consider the 33-component of the energy momentum tensor

T3 in Quantum Electrodynamics. From this quantity the Casimir pressure on a
plate located at z3 = a can be obtained as the difference of T33 across the plates

p(z) = Tsa(za = a + €) — Taa(z3 = a — ¢) (2.4)
For the energy momentum tensor we use the structure
T, = FJF,, ~ 1/49,,Fo F°7 (2.5)

with the field strength
F,, =d,4, — 0,4,
which leads in point splitting technique to

.1 X
Ty = L—‘_‘}; 5{01:-41(3)6;‘41(3}) - azA:(m)agAg(y)}‘ (2:6)
Here and in the following we use the notation
ﬂg_bg_ = aobo - albl — a;bz + 0363
ab = agby ~ ar1by — azb,
FY = 88y = 070Y + 0504 (2.7)

Taking into account (2.3) and (2.4) the product T33(z,y)T33(z’,y’) appears as a
product of four field operators

< 0}Tss(z, v)Tas(2',y')|0 >'= %{3‘_"3*"_"'gﬂgwAr(z)Aa(y)Af'(I’)Aa»(y')
+0;005,0% Ar(2) Ao (v) Ar (') Ag (v}
—{0%0510%gar Ar(2) Ao (y) Ar(z ) Ao (y)
— 0 0E0 gorer Ay (1) Ag(y) Ar () Aa (V). (2.8)
Because ‘we restrict the cousideration to free field theory the Wick theorem can
be applied immediately
< 0] A(2)A( AR ) AW > = (2.9)
+ < OlA(2)A(y)|0 > < 0jA(2")A(Yy)HI0 >
+ < 0l A(2)A(2")]0 > < 0)A(y)AY')[0 >
+ < 0]A(x) A0 >< 0] A(y)A(=)|0 > .
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Therefore the correlation function is reduced to a sum of products of elementary
Wightman functions. Due to the subtracted structure of the correlation function
< 0|T33(z, y)T3a(z’,y’)|0 >’ the first term of the r.h.s. of eq.(2.9) drops out and
the point splitting can be removed in principle. In view of an later application
to QED including ideally conducting plates perpendicular to the z3-axis we write
down the gegneral structure of the corresponding Wightman functions

<OJAL(D)A W0 > = §JWD-(x -9)

1 .
+'{(guV" #&)D (z, y) (2'10)

D~ denotes the free space function and D~ an additional function which is nec-
essary to satisfy the boundary conditions (4]. According to the symmetry of the
situation we have translation invariance in the Z-subspace only which allows the
representations

dp ]

D™ (z - y) TR YD) (2.11)
_ dp = - )

D (2,y) = (—,)ﬂi))—se‘p("”)d(a:a,yg,p). (2.12)

Inserting equs.(2.9),(2.10),(2.11) and (2.12) into the correlation functions for
the stress tensor we obtain

< OIT33($)T33(I')IO >'=
_ / B[
(2m)*J (2n)
{+(5 )[( P + O3 8%)(—pF + 05 0Y))
[d(I mp)d(y,y’ p) + d(z, &' pYd(y, ¥, p) + d(z, z'p)d(y. v/, F')|

(a5 + B0 + 3505 1+ P

+(p* - ("—;,@)—)((13')2 - Q}’;—)Q)

~((=pF + B308) + (=5 + 25 05 Npp' )1 ~ ;ij;%bmx. ¥p)dly.y' F)
L LA W

NG - 2508 5" = PEL o By, 5 emyrmy

The fluctuation of the Casimir pressure on a plate located at z3 = a can be reduced
to the correlation function (2.13} due to the relation {2.4). One obtains
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< Olp()P(2")]0 > lsymyoza =< O1Taa(2)Taa(2)10 > [ymrgmate +
< OTas(2)Toa(2 )0 > lsymsgmare  (2.13)

for ideally conducting plates. The reason for the absence of crossing terms orig-
inates from the fact, that physical modes cannot propagate across the plates for
ideal conductors.

3 Wightman functions in the presence of plates

In principle, the Wightman functions could be obtained directly from the repre-
sentations of the fields in terms of eigenmodes obeying the boundary conditions.
It is however more appropriate to start from the expressions for the propagators
D¢ (or T-Products) which are well-known in the case of one or two plates. This
procedure exploits the relation

D(z,y) — D*(z,y) = D™ (z,y) — D*(z,y). (3.1)

The Wightman function D~ is that part in D — D°* which allows an analytic
continuation zp = zg — Yo — 2o — 19,(n > 0) and correspondingly carries a ©(—pg)
in its Fourier representaion. For completeness let us begin with the free photon
propagator. The corresponding Wightman function Dj is well-known

Dg (2)

. dp .. A
J / (2:)36“"9(—1)0)5(1)’)

47?((zq — t€)? — 72|

J L~ 2 ; .
= [ GO0 g™ + &) (3.2)

with T = \/p?. For the QED with mirrors the photon propagator has the structure

'Di(2,y) = (Yo — (1= 1/a)D(z —y)

+(g 9.0 D 3.3
(G — éxay) (z,y). (3.3)
In the case of one plate at x3 = 0 the boundary dependent term D, reads
— d.. |~. -"l iy T
Diy(z,y) = / (2:)35 P~(E)(Gr(l al+lyal) (3.4)

with T' = /p? + ie . Following the procedure (3.1) we obtain

!

-2

= dp " 2 . :
Di(z,4) = [ G5 53¢ O p) O g e THlHl o =lhitlad) - (3.5)
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In the case of two plates located at z3 = 0 and 23 = d the second part of the
propagator has the form [4]

_ 1
Dite) = [ ™ P
1(2,9) (277)3 91‘ )3 sm(Td)
[eTl=sttlio=dl) o pil(les~di+hnal)
—e'Tzaltlval=d) _  iF(les=d|+{v —di-d)), (3.6)

This propagator is valid for all x. Here it is appropriate to consider the corre-
sponding Wightman function separately in the exterior regions z3 < 0 or z3 > 0
\and in the inner region 0 < z3 < d. For z3 < 0 one immediately obtains an
expression which coincides with Dy (eq.3.5). For the inner region 0 < z3 < d the
propagator can equivalently be written

_ dp o~ —i
Dx(z,y) (of)a e = {cos T(za — 1o) + (3.7)
m[(?cos I'(xz3 — ya)cosT'd — 2cos (23 + y3 ~— d)]}.

Notice that this expression contains poles at I'd = nx, which have to be correctly
taken into account when applying the construction (3.1). Note that the first term
in eq.(3.7) leads to D; up to a sign:

= _ = _ d_ inz 3 ~
Di(y) = ~Dizv)+ [ g lue™ Zr0(-p)O()
(e =}
sin(ld)  2isin(l=d)
[(2cosT(z3 — ya)cosTd — 2cos T(z3 + y3 — d)). (3.8)

Evaluation of (3.8) leads to two equaivalent representations

P (z, —D 2 / o-ivE g 1rna:3 . TNy ‘
D3 (z,y) = (z,y) + - Z G osin— (3.9)
with po = \/p.? + 2** and
_ - 1 1 1

D'Z (I,y) = "-DO (I) y) - S‘lr(lC{e%((““"VJ) ~1 + e%’.((‘l’l‘}‘ﬂﬂ) — 1

1 1
eFW-zata) _}  J(Z(CHra-w) _

} (3.10)

with ( = \/(zo —in)? ~ z;2. Obviously the sum Dy (z,y) + Dy(2,y) in (3.9)
coincides with the naively constructed Wightman function for a massless scalar
field obeying the Dirichlet boundary condition at 23 =0 and z3 = d
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4 Correlation functions

As a first example we consider the correlation function of the stress tensor for the
free electromagnetic field restricted to 23 = 24§ . The evaluation of (2.13) with
d =0 leads to

< 0|T3(2)T53(2)[0 > |oy=ay =
, / dp dp PP (O po)O(57)O( =) ((F)P))

(27)3J (2n)?
' + (pp)’
r'r
_ 1 dg _i: ~2\5/2
R A R ()
3 1
-] [(z0 — in)? = 22 * (42)

. Without the restriction 23 = 2}, we would have obtained
< O|Ta3(z)Taa(2’)|0 >'=

(4(C* + (z2 = )Y — (¢ = (22 — 2)")7] = :

T [¢? = (23 — 75)7]°
as one of the characteristic functions for the fluctuations of a free electromagnetic
field.

Let us treat now the case of one plate located at z3 = 0. Here we have to

take into account the Wightman function (3.5) in the representation (2.11) for the
evaluation of (2.13). The result is

(4.3)

< 0]Ta(2)Taa(2)|0 >’ Joy=zt=0 =

5/2

.
T 15(2n)? /(-3:)36_'029(‘10)((12)+
6 1

et [(z0 —in)? — 21]4 (4.4)

which coincides with the result of G.Barton (1]. Comparing (4.3) with (4.1) we
notice that the fluctuations near the plate are twice that of a free field. The
unrestricted correlation function would be

< 0'T33($)T33(1‘/)|0 >'=

1 , 2 , !
7l + (s =2 (= (s = )

1
(€7 — (22 + 13)7]61' (49

H[4(CH + (23 + 25)"Y = (P = (23 + 24)H))
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In the case of two plates the correlation functions for the inner and exterior
regions can be treated separately. This is no restriction because in lowest order of
perturbation theory both regions are not correlated. Because the Wightman func-
tions D and Dj for x3 < 0 are identical, the corresponding correlation functions
coincide, too.

The investigation of the inner region is more complicated. Following the stan-
dard procedure, i.e. combining (3.8),(2.11),(2.12) and (2.13) we obtain after a
straightforward calculation

< O'TM(I)TM(I');O >’ |:-J=:$=o+ =

dp dpy ., . - ’ ~f
(2:))3 (2:)3 et(P+P )= )[e(_po)e(pa)@(—po)@((P )2)]
cos['dcos[Vd

FEY + ) g,
1 1 1 1

% sin(T'd) 2isin(I“d)}{‘2i sin(T'd) 2 gin(["-d)} (4.6)
(compare (4.1)). With
cosI'd 1 1 x 1 -
- = e —— — 2 _"\2
r {21' sin(l’'d) 2z sin(I"d)} d |p0|5(p0 \/a’l) + ( d )?)
we get
< 0|Tas(x)Tss(z' 0> luymsscoy =
‘p‘”‘ ‘PP l ¢i(Po+7y)(z0=5y)=i(p+p") 1 (z=2")
™m
[(—)2(— @7

Further evaluation will be much simplified if we exploit the Lorentz invariance
in the (zq, 21, 2,)-subspace. This allows to put z; = 0 and to exploit in addition
rotation invariance in the (p,, p;)-plane. This leads to

< OITQQ(‘T)TQ(I')‘O >/ !1‘3:!4:0*.‘21_:0 =
1

(')71')2')(12 {A2 ) + "12( d) + 2A§(Zo‘d)} (48)
with
d? Pl. - 1 nm ..
A, = wolro-zh) L 1T 1o
1 Z ¥ ~(*)
-12 = Z/dlpl- ~1po{2ro— J.o)})
n=1
= [ dipy .y 1 p?
A = L g (ro—rg) ~ 7L
? ,‘2::.-/(‘277)6 ’ Po 2 (4.9)
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lim Wy(¢,d) = Wi(¢)
mwg((,d) = Wi(¢)

Wit dge, = FEHG)

The function f(ﬁ) is an analytic and integrable function with poles at § = 2n.
Besides the already given physical interpretations we see that the correlations
at (? =~ 0 approximately coincide with those of the one mirror problem. It can be
understood in a simple physical picture: there is not enough time to receive the
reflected signals.
As a simple consequence of the Wightman structure of the correlation functions
(the poles are located in the upper zo-plane) we conclude

/_: dzo /: A=\ Wi((,d) = 0

i.e. the fluctuations of observables measured over an infinite time interval tend to
zero. Agcording to eq:(2.14) the fluctuations of the Casimir pressure are the sum
of the fluctuations on both sides of the plates.

5 Penetrable plates

In this section we restrict the considerations to the case of one plate only. Up
to now we have characterized the plates by the standard boundary conditions of
Electrodynamics E, = B, = 0 This correponds to

Dy +Df =0 (5.1)

at the boundary for the Greens functions of the physical modes. To make the plates
penetrable one has to modify the boundary conditions. In a phenomenological
approach we introduce a special function g{po) into the Fourier representation
(3.4) of the boundary dependent part of the Green function. this obviously does
not violate the field equation but disturbs the boundary condition {5.1) at higher
frequencies. Special choices to be studied are

O(A = |pl)
9(p) = e~ Hlvol

[
mre< 0.

The last function originates from the stucy of 4 -potentials in field equations The
Wightman functions are modified according to the rule

- _ _ dp 1
bi(z.y) = (27)3 —-2T

(g(]3)cif‘(lz.\l+lyai) + g'(13)6~"rtltal+lya|))_ (5‘2)

e¥0(—pu)O (5’
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and po = \/p] + ()
Taking into acount the analytic properties of the Wightman functions zg — zp—
i1, (n > 0) the integrations and summations can be carried out without problems.

The final result can be written in terms of the variable { = \/(zo —in)? — (2,

-
M) = S(Epes e

i (e'F —1)3
2 1
MGd = ey (% —1)
2 n T
+(z’<)’(3)(e-‘”-‘ -1y
26 x +e“f
- 1 1 1 ey
AlGd = Gy (6% ~1) (z()’(d)(e'% —1)? (410
so that
WQ(C,C[) =< OIng(J,)ng(II)lO >’ |::3=:3=0., =
1 2
(%)gw{ H¢, dY + AN(C,d) + 245(¢, d)}. (4.11)

This result generalizes the correponding investigation of G.Barton. It is very
interesting that the correlation function W5((, d) contains infinitely many multiple
poles at

(€)? = (zo — 25)" — (21 — )" = 4n’d’.

In a physical interpretation these values of (% correpond to pairs of events
(zo,z1,z3 = 0) and (z, &'y, 75 = 0) connected by n-times reflected light-signals.
This implies a resonance behaviour of the fluctuations for such distances ¢? For
the limiting case d — oo the results for one mirror can be recovered.

2d
Al Du—x = ;F
R 6d
A, d)u—s = —
2d

A D)g—ee = —7;—(:_‘[ (4.12)

The correlation function W; has the following scaling and limiting poperties (W,
denotes the correlation function corresponding to one plate)

1 i
Wa(AC, Ad) = sz(c,d)
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In the present case of a penetrable plate it is interesting to concentrate on the
fluctuation of the Casimir pressure. Now the field modes on both sides of the
plates are correlated, at least for high frequencies. Therefore a lowering of the
fluctuations of the Casimir pressure can be expected The final results are

< BP0 > Lymsioo = [ 3se PO (@) (53)

(2
with

f(q'):{ (@i for el <A
(@)Y for gl > A

(cut off case)

(@) ~ (@) gl ™ for  plgol > 1

(exponential damping) and finally .

4 o a’ ~\2
D =530 e for (§)* — oo.

In all three cases the asymptotic behaviour of f(§) is damped in comparison with
the ideal plate behaviour f(§?) ~ (§2)3/*.

For interesting discussions D.R. is indepted to his colleagues K.Scharnhorst,
A.Uhlmann, W.Weller and M.Bordag.
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Solubel Models at Finite Temperature
or

Q(F)T under the Infuence of External Conditions

A. Wipf

Inststut fur Theoretische Physsk
Eidgencssische Technische Hochschule
Honggerberg, Zurich CH-8098, Switzerland

1. Introduction
)

The response of physical systems, classical and quantum ones, to the change of
external conditions is a vast and interesting area in theoretical and experimental
physics: From the point of view of a theoretician these kind of problems can be
(subjectively) divided into 3 classes:

a) Quantum systems in (possibly finite) spaces A with boundary oM
Here one is interésted in the dependence of the ground state |0), excited states or
thermal state when M is changed or an external field is applied. The historical
example being the measured Casimir effect where the ground state energy

Eo(M) = (0|HI0)

depends on the shape of M, since |0) does. This leads then to the Casimir force
acting on the walls enclosing M. Whether this force attracts or repels the walls
depends on the form of OM, the particle species enclosed in M and the imposed
boundary conditions. For example, the electromagnetic vacuum-energy between 2
plates decreases if the plates come closer together (1] or the vacuum-energy inside a
sphere increases if the radius of the sphere decreases [2]. Also, one can find fermionic
boundary conditions such that the Casimir force due to fermions has the opposite
sign to the electromagnetic Casimir force. This cancellation between bosonic and
fermionic Casimir forces typically happens for supersyinmetric systems (with su-

persymmetric boundary conditions) (3]. More generally, ground state expectation

1
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values of other observables besides the energy may also be sensitive to the geometry
of M, to applied external fields or the imposed boundary conditions. For example,
for systems without mass-gap (e.g. Ising model, Higgsmodels or QCD in the chiral
limit) we are interested in whether a symmetry is spontaneously broken or not, or
whether

(O|order parameter|0) (2)

in zero or not. The answer to this (also phenomenologically) important question
depends very much on M and the imposed boundary conditions (see below).

Other interesting questions to ask in this context are (some of them are ad-
dressed at this workshop):

i. How moving boundaries influence a quantum system and how the system reacts
back. The simplest example of this kind are accelerated mirrors leading to
particle production [4].

ii. How a system responds to the application of external gauge- or.gravitational

: fiélds, for example what is the number and distribution of particles produces by
such fields. Also, a quantum system may lose some of its classical symmetries
in the presence of external fields, that is, may be afflicted with anomalies.

iii. In curved spacetime there is the intriguing problem of how to define a vacuum
state and the related one of defining particles. Recently a gauge invariant
normal ordering has been discussed which addresses these problems (5].

iv Also, Minkowski type prescriptions to extract a finite Casimir energy do not
apply to curved spacetimes. A method to find a finite Casimir energy in the
presence of gravity has recently been derived in [6].

v. How do physical walls and the associated bou.t:;dary conditions influence first
quantized matter, e.g. a hydrogen atom. The atom vacuum interaction changes

the transition probabilities of the atomic states quite considerably {7].

b) Quantum systems in finite euclidean space-times M

In a functional approach to quantum field theory it is often convenient to work in
euclidean space time. At finite temperature one is even forced to do that [8]. The
relevant object containing all information of the quantum system is the effective
action (quantum action, free energy) I’ One maybe interested how I' changes if
spacetime M is changed. The problem of these socalled finite size effects are quite

important in quantum field theory [9] and recently there has been some progress,
eg.:

(8]
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i. For massless particles the trace anomaly determines to a great extend the finite
size effects {10).

ii. The effective actions on the spacetime region M and AM (the stretched region)
are the same, if the coupling constants and field are scaled in certain way (11]

TAM, ¢, 9,m] = T[M,VZ,g(}), m(A)). (3)

In the semiclasical approximation the coupling constants and field run ecactly
according to the wellknown 1-loop renormalization flow. This way one gets
for example a Casimir type interpretation for the S-function and anomalous
dimension v in gauge theories.

iii. For M = (0, 8] the effective action

log / D(fields) e~ St (fields) =}"(ﬂ) (4)

B(a)mB(0)
F(a)=mF(0)

is just the free energy at temperature 7 = 1/3. Here the temperature de-
pendence only enters thru the geometry of the euclidean spacetime and the
boundary conditions: the bosonic (fermionic) fields, denoted by B (F'), obey
periodic (antiperiodic) boundary conditions in the imaginary time direction.
We see that in the functional approach to finite temperature field theories the
temperature dependence is just a finite size effect.

c) Topological effects

For compact spacetimes M the configuration space of gauge theories
C = gauge potentials, matter fieds/ gauge transformations

is generically topological non-trivial. As a consequence of this fact we find instantons
or other topological objects with winding numbers [12] (for example, for QCD on
the torus). Recently arguments have been put forward that fields with winding
numbers are not suppressed in QCD if Vm, > 1, where V is the volume of
spacetime and mg the mass of the lightest quark {13]. Due to these topologically
non-trivial configuration the vacuum structure of gauge theories is quite non-trivial.
We may imagine that there are infinitely many vacua j¥,), labelled by an integer
n. None of them is a ‘good’ vacuum (they do not cluster) but the good ones, the

socalled 8-vacua, are superpositions of thew

6) = Zﬂ””’m‘n). (3)
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In standard perturbation theory one only calculates
(¥o|operator|¥p), (6)

hence all operators which transform |¥,) into |¥,,) with n # m have vanishing
vacuum expectation value in perturbation theory. The possibly simplest and most
important such operator is 13, where ¥ denotes a quark field. In the true QCD

vacuum

<0l$¢|9) = FyGx # 0, (7)

where F, is the pion decay constant. As a consequence the axial SU(N) in QCD
with N flavours (and in the chiral limit) is spontaneously broken. The non-zero
expectation value (7) is at the heart of the effective low energy theory of strong
interaction. It implies the existence of pions and the correct low enpergy strong
interaction (via the PC AC-hypothesis).

- .:# o Unfortunately, although several mechanisms leading.to the spontaneous symmetry
breakdown of SU(N)4 in QCD have been proposed {14}, a full understanding of
this important problem is still lacking.

Many of the listed problems (in particular the last ones) are very intricate and we
should not expect to find satisfactory solutions in the near future. So we decided to
study simpler models, complicated enough to ask the interesting questions, yet sim-
ple enough to obtain some answers. Before discussing these models let us summarize
some of the questions we have in mind which should be addressed when studying
such models:

- Role of non-perturbative vacuum structure, e.g. what mechanism leads to chiral
condensates () # 0.

- Finate size effects, temperature dependence. e.g. size and temperature depen-
dence of chiral condensates.

- Dependence of expectation values on imposed boundary conditions.

- Dependence of expectation values on ezternal fields. For example, the ther-
modynamics of black holes relates the (surface) gravity to temperature. So it
has been speculated [15] that in spacetime regions with large curvature QC D
may deconfine and chiral symmetry maybe restored, as it happens for high
temperatures.

- Does the Hawking radiation stay thermal for interacting theories (16].

4
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2. The extended gauged Thirring model in curved space

We have studied a theory containing scalars, pseudoscalars, Dirac fermions and
'photons’ in a classical gravitational field in two spacetime dimensions [17]. The
theory is described by the action

_1 1 :
s_zlﬁz +Sp+Ss

Sp = — / VTP v [V, — iq10, + igan, B8] (8a)

SB =/\/§g‘w[au¢au¢+au/\6uA} +g3/\/§R’\v

where E = 8y A) — 8 Ay is the field strength, the 4's are the 'curved’ gamma matrices
{v*, 7"} =2¢*, (85)
and the covariant derivative contains the gauge potential and the spin connection
V=0, —1ed, +iw,. (8¢c)
a

n
is treated as a classical background field, whereas the scalars A, pseudoscalars ¢,

The gravitation field g,, (or rather the 2-bein e, since the theory contains fermions)
’electrons’ 1 and 'photons’ A, are fully quantized. This theory allows one to address
many of the problems raised above.
For certain values of the coupling constants ¢, ¥, and g3 it reduces to wellknown
soluble models:
- For g3 = 0 and g1 = g2 = ¢ it reduces to the gauged Thirring model, coupled
to gravity

1 1 - 9t ., A
S = §/d21—\/—_g-E2—/\/§[W7 V. + z-)“),,], 7=yt (9)

On the classical level this can be seen at once when eliminating ¢ and A by using
their equations of motion. Quantum mechanically one integrates over these
fields (the functional integrals over ¢ and X are gaussian and can be performed)
and the remaining effective action for the gauge bosons and fermions is just (9).
If we switch off the gravitational and gauge fields, then (9) reduces further to the
well-studied and exactly soluble Thirring imnodel [18]. However, when switching
off the gauge fields the configuration space becomes topologically trivial and
one looses the §-vacuum structure. As a consequence the chiral condensate

() vanishes in the ungauged model.

0
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- For ¢, = g2 = g3 = 0 one finds (up to trivial free bosons which decouple from
the system) the Schusnger model coupled to gravity

1 1 = .
S = §/d2:7_§ E? - /\/g'ww“v,n,b. (10)

If one further assumes 2-dimensional space-time to be euclidean, ¢,, = 8,,,
then one recovers the well-known Schwinger model, or QED,[19].

- If g1 = g2 = 0 then the theory réduces to Q E D, coupled to gravity and and free
bosons coupled to a socalled background charge, a model playing a prominent
role in conformal field theory, The two sectors decouple in this limiting case.

The physical role of the various coupling constants is the following:

Increasing the coupling constant g, decreases the effective electromagnetic inter-
action beween fermions. For example, the chiral condensate depends on ¢, as
~ (1 + g2/47)~¥ and vanishes for large g5 as in the model without gauge fields.

» The ¢onstant g3 amphfies the Hawking radiation. The Hawking radiation of the
model is (3 + 247¢?) times as strong as that of a free massless scalar field.

The constant g; seems to have no direct physical interpretation. However, it is
needed to obtain a local effective theory for the fermions and gauge bosons after
integrating out the (pseudo) scalars.

The general model (8) has recently been solved on the torus (that is the finite
temperature model) and on the sphere and several of the above raised questions
have been iuvestigated [17]. For reasons of time and simplicity [ shall present here
only the results for vanishing coupling constants and on the euclidean torus, i.e.
for the finite temperature Schwinger model {20]. In the last part I comment on
some new results about the multi-flavour Schwinger inodel subject to bag boundary

conditions.

2. The finite temperature Schwinger model

We assuine spacetime to be M = [0, 3] x [0, L], where 8 is the inverse temper-
ature and the finite length L of space is introduces as an infrared cutoff. According
to (4) we need to impose the following boundary conditions in the euclidean time

direction

A, (2% + 32 = A2 Y L e + 3ty =~ ). (1la)
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A priori it is not clear what are the ’correct’ boundary conditions in the spacial
direction z!. Actually there are only three kind of consistent boundary conditions
we can assume for fermions:

i) (quasi) periodic boundary conditions (for which M=torus)

i) bag boundary conditions [21]
1ii) non-local Atiyah-Patodi-Singer boundary conditions [22]
In what follows we shall assume the first kind of boundary conditions and comment
on the results with bag boundary conditions at the end of this contribution.
Actually we can demand periodicity in the spacial direction only up to a non-trivial
gauge transformation. To see that we rewrite the flux as

/E: fA = —/dz‘[A,(o,z‘)—A,(ﬁ,z*)] —/dz“[Ao(zo,L) — Ao(2°,0)] (12)

and observe that the z!-integral vanishes due to the finite temperature boundary
conditions (11a). On the other hand, the flux need not be zero, it is only quantized
in integer multiple of 27

d=¢ / E =2rk, k = integer. (13)

This follows immediately from the index theorem which in the present situation
states that k is the index of the Dirac operator, and hence must be an integer.
From (12) we conclude that A, cannot be periodic in the spacial direction. It can
be periodic only up to a (non-trivial) gauge transformation

Au(e®, 2 + L) = A, (2% 2" )+ 8u0 . (% 2! + L) = e (20, 21), (110)
with a(0,z') — a(8,2!) = ®/¢. Actually one can alwéy choose

a(2,z1) = —g.r“, (11c)

ef

and this choice corresponds to a certain trivialization of the U(1)-bundle over the
torus.

Quantizing the finite temperature model is equivalent to evaluating the gener-
ating functional

1 _) [ p2 . "
27, 7) =,v/“ I E AT g )
_ , (14)
Zp[A,n.0) = /'D'u'fDu"c-f""’wa'w+f wn

7
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All Green functions can be gotten by functional differentiation with respect to the
external current J and the grassmannian sources 1 and 7. We shall determine Z
in two steps: first we shall quantize the fermions with 4, treated as external field.
This is equivalent of evaluating the fermionic generating functional Zg. After having
solved this external field problem we evaluate the remaining functional integral over
the 'photons’ A, to find the complete generating functional Z. Note that as an
intermediate step one quantizes part of the system only. This is how one typically
encounters the external field problem in the euclidean framework.

Using both the index theorem and the supersymmetry of : ) on can show that ¢ ) has
exactly k = ®/2x zero modes. This complicates the evaluation of the grassmannian
functional integral leading to Zr. In any case, a careful treatment [20] leads to

k

zp = [[G¥)Gom) e S 19 det (i), (15a)

1

where the 1, are the orthonormal zeromodes of : D,

Z 1/’:1(3")@0;(@/)

G'(A,z,y) = (156)

Ao #0 4

is the ’excited’ Greenfunction in the given background potential A,, and the primed
determinant

det's)p = H Ay _ (15¢)

Aq#0

is the product of the non-zero eigenvalues of /). This divergent determinant is

calculated with the help of the (-function regularization.
Before doing any explicit calculations we can draw the following conclusions from
(14) and (15a):
1) The fermionic partition Zg[A4,0,0] is only non-zero if the Dirac operator has
no zero modes or equivalently, if & =0

11) The 2-point functions are non-zero only if /) has no or one zero mode or
equivalently if ® =0 or ® = £27. In particular, (9} # 0 only if & = +27.

it1) For the higher order correlators one gets similar selection rules.

8
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Everything said so far holds in arbitrary dimensions with the obvious replace-
ments, e.g £ — Chern density in (13) etc. Let us now assume that spacetime
is 2-dimensional and sketch how one can perform the functional integrals. In 2-
dimensions one decomposes the gauge potential as

A)
er = —%Il + iho —al¢+ 80A

25 (16)
eA, = —L—hg +6o¢+61)\,

that is into an instanton potential (~ @), a harmonic (~ h), a coexact (~ ¢) and
an exact (~ A) piece. In (16) V denotes the volume of spacetime, V = SL. It is
then not difficult to see that the gauge field measure becomes

[> e}

DA = (2r)2det/(~2) Y d*h,DgDA, /¢=/A=0, hee(01],  (17)
where the Jacobian in front of the sum is independent of the fields and hence chancels
in expectation  values against the normalization. The field A is the pure gauge term
and also chancels in expectation values of gauge invariant operators. The ¢ depen-
dence of the zero-modes and primed determinant in (15) can be gotten from the
chiral transformation and the chiral anomaly. Their ®(= 2#%) and k, dependence
can be calculated by explic.it mode analysis and is given by certain Jacobi theta
functions and Dedekinds eta function. The result of all this manipulations yields
for the chiral condensate [20]
_ Wiz o j d*R|64| [ DgeTleF2e0(2)
(Y Pryp) = — 3 eXp(eQV) , : (18a)

Jd2h)|8]? [ Dge-Tl4l

0

where Py = %(1 + vs) are the chiral projectors and

1 . .

T(¢) = 3/¢[A2 -miAlg (18b)
is the induced action with the 'photon' mass m. = ¢//m. The theta and eta
functions in (18a) are

=5 (L +ho)y . h
g, =g L 72 S U]'r = (i
. e, ) [ e = ase
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where 7 = L/f is proportional to the temperature. The ¢-integration is gaussian
and can be performed. The remaining integration over the harmonics is the most
difficult one. Using certain properties of the elliptic functions in the integrand one
finally ends up with the following exact result for the chiral condensate

(G Py = _%e—z;‘—_’colh(Lm,/Q)CF(ﬁm,)e—2H(ﬂm,,r)’ (19a)

where

F@y =Y (= - N +1($,2,,)2)

n>0

1 1 (19b)
H(z,7) = .
(1) S0V A (x/2n)? eV )izt _
In the limit L — oo the temperature dependence simplifies as
n 2 ~r/Bin m
<w¢> _,_Ee /Buey eF(ﬁ ‘s)' (20)
~ and the low and high temperature limits are found to be
- ~mye¥/2n, T >0
() — { e T o oo, (21)

where + is the Euler constant. Note that for low temperature the chiral conden-
sate approaches the constant value of the zero-temperature model which has been
solved some time ago (23]). For high temperature the condensate vanishes expo-
nentially with 7. At T ~ m. the condensate drops sharply from the constant
zero-temperature value to almost zero. The T dependence of the condensate is al-
most the same as for a second order phase transition, but not exactly so, since 1t
vanishes only exponentially for high temperature.

It seems that the above exact result for the temperature dependence of the chiral
condensate in QFED, has not been properly derived before, at least not in the
functional approach. This approach is well suited for quantizing gauge theories
with topologically non-trivial configurations like QC'D. Actually it is believed that
1-flavour QC D behaves very similar to QE D, with regard to the chiral condensate.
Thus the above calculation should shed some light on realistic theories. For example,
it can be seen from the above considerations that the chiral condensate is due to the
presence of fermionic zero modes which are supported by instanton configurations
only. Thus the non-zero condensate is due to the infrared properties of the theory.
Of course, the numerical value of the condensate depends on the ultraviolett sector

of the theory.

10
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Let us now put n heavy (that is static) external charges, described by the charge
density

n

@) = 3 eib(z = ui) (22)

1

into the system. This is eqivalent to changing the action in the functional integral
as

S—85- / jf,, Ag=e % = c_SP(ul) - Plugn), (23a)

where we have introduce the Wilson line operators

i}
P{u) = exp (ie/Ag(:co,u)dIO). (23b)
0

The expectation values

_ (P(u) - P(ua)
GOR

p(ur, ... un) (24)

are then to be interpreted as the finite temperature partition function of the quantum
system containing n heavy external charges at positions u;, divided by the same
expectation value for non-interacting external charges. Hence

F(y) = —Tlog p(u) (25)

is the zero-energy subtracted free energy of n static external charges at positions u;.

The result of the functional integration for this free energy is
Fu)=Y_ F(uiuj) =) Flui—uy), (26a)
1<)
where for large L the pair potential takes the simple Yukawa form

T
()

-

F(u) > e~ lul, (26b)
We see that the interaction between external charges interacting with the thermal
gas of QED; particles falls off exponentially, contrary to external charges in the
vacuum for which the Conlomb force is long range. This socalled charge-shielding
is actually independent of the temperature and is present in the low- and high

temperature phases.

11
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Recently most of the above formulae have been rederived in the bosonised version of
the Schwinger model [24]. Actually the bosonization techniques leads more quickly
to these results. Unfortunately this method does not work in 4 dimensions (although
some progress has been made in 3 dimensions), whereas some of the direct methods
described above should be applicable in one or the other form.

3. Multi-flavour Schwinger model with bag boundary conditions

If we repeat the above calculation for N flavours u,d,‘- -+ we find that (au) =0
for all L and all temperatures, as required by the Mermin-Wagner theorem and
the fact that the boundary conditions do not break the flavour SU(N) explcitly.
The technical reason for that is very simple and the same as in the naive instanton
calculation in QCD. For example, for 2 flavours Zp in (15a) becomes

k k -
2 = [[(5, )5, n) [[(0, 60 ) 5y 66 I 76:77S 96+ der (i p), (27)
1 1

where 7 () is the source for the u (d) 'quarks’. Since (u) is gotten by taking the
derivative with respect to i} and n and then sctting all sources to zero, it follows at
once that the u-condensate vanishes (recall that G, is off-diagonal in a representation
where v5 is diagonal).

To get a better understanding of how the multi-flavour system escapes the chiral
symmetry breaking we must break the symmetry explicitly and study how the sym-
metry is restored when the breaking is removed. The SU(N)4 symmetry can be
broken explicitly by introducing small ’quark’ masses or by assuming symmetry
breaking boundary conditions. We prefer the second alternative since it allows for
an analytic treatment of the problem.

Then we need to impose certain boundary conditions at M. If we assume that the
fermionic boundary conditions are local and that 1)) is selfadjoint (such that the

partition function is real) then only the bag-boundary conditions remain [21]

= 1ysef Ty, 1 on OM; Yu = (1Y) (28)

where n is the outward oriented norinal vector on 9M. Note that there is a 1-
parametric family boundary conditions and it is no coincidence that we named the
corresponding parameter §. Actually the bowndary conditions (28) break the chiral
symmetry as required: if 1» obeys the boundary condition (28) then the transformed
field Uz, U € SU4(N), does not obey thein anyimore.

12




26 Quantum Field Theory under the [nfluence of External Conditions

If M has no holes the configuration space C is trivial and any gauge potential can
be decomposed as

edo = -1+ D) el = Dod+ A\ - (29)
and (17) is replaced by
DA = (27) det(—A)D$DA, dlosm = 0. (30)

Furthermore, it can be shown that 1)) has no zero modes obeying the bag bound-
ary conditions (28) so that for Zp we obtain (15a) but without zero-mode part
and without primes. So the calculation is actua lly simpler as on the torus. The
only problem is to find the fermionic determinant and Green function for the bag
boundary condition. Using the chiral anomaly together with a generalization of the

Feynman-Hellman theorem one can show that [25)

_ f'D¢e‘r[¢}-3W[¢] e—zfﬁiGa i
Z(’?s 77] = f D¢e_]‘[¢]_0pv[d)] ‘

(31a)

where

D(¢) = %/45[& ~NmlAlé and W9 = 2%/5 (310)

Note that # couples to the flux and thus plays (almost) the same role as the 6-
parameter in QCD. Now we choose for M a ball with radius R. Then we can
find the explicit form of the Green function G4 (by using conformal techniques) and
finally obtain for the chiral condensate

7\2

_ 1 - ol .
(aPyu) = :F‘Z—w[l — ﬁ;] LAY ‘[;—;\/ﬁm.,]w e?/N. (32)

Note that for one flavour, N = 1, this result is consistent with the zero temperature

result (21), since for R — oo
- m
Pyw) — 200, 3
(BP) — 712 (33)
More interestingly, for several flavours the condensate vanishes as
(pPyd) —s const R¥ ! (34)

for large radii R of the euclidean spacetime. We see that for B — 20 the conden-
sate vanishes, but rather reluctantly. This is reminiscent of spontaneous symmetry

breaking characterizing similar theories in higler dimensions.

13
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Actually, if one introduces small fermion masses a similar statement holds [24].
If 1 is the mass of the lightest particle in the theory, then the condensate vanishes
as pu'~YN_ We see that the chirality breaking radius R plays indeed the same
role as small quark masses and that the size of spacetime should be identified with
the Compton wavelength of the lightes particle in the massive multi-flavour model.
Finally note that the asymptotics for the chiral condensate for large R or small y4
is essentially nonperturbative in nature.

To learn more about the dependence on the imposed boundary conditions we
reconsidered finite temperature QE D,, but now subject to bag boundary conditions
[25]. That is we assumed M = [0, ] x [0, L], imposed the boundary conditions (11a)
in the euclidean time direction and the bag boundary condition (28) in the spacial
direction. In this case the result for the chiral condensate depends on the order of
limits L — oo and T — O:

FmyeY/4rn N=1

0 N>1 (35a)

i Yim (4§ Peth) = {
but
lim lim ($Psyp) =0 all N. (35b)

f—o0 L—oo
Clearly such a behaviour can only occur for systems with long range order (see (26}
for similar properties in spin-models). For example, for scalar theory with global
continuous symmetry one has {27]

lim lm # limm lim (36)

j—~0V—oc V—o0 j—0

in the broken phase.
What have we learned from the above discussions (and the ones for the more
general model (8) which I could not present here):

- Boundary effect are very important for gauge theories

- We better choose boundary conditions such that clustering holds. For example,
the finite temperature bag boundary conditiotts are not of this type.

- Bag boundary conditions can probably play the same role as small quark
masses.

- 4 dimensional realistic theories are not solvable by any known method. Thus
one has to retreat to lattice simulations and/or try to find the dominant con-
figuations. Starting fromn the Schwinger model some progress has been made
which maybe relevant for QC D [2§].

14
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Simple models may still provide some insights which could help us to understand
the structure of more realistic theories, like the properties of the QCD vacuum.

The main problem is to find the right questions to ask
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Abstract
Topological as well as nontopological vortices are obtained in an Abelian Chern-Simons
(CS) model which includes both the CS term and an anomalous magnetic contribution.
We show that nontopological solitons satisfy a set of Bogomol’nyi-type equations for a

"‘T,|¢|2 potential, when m and the topological mass are equal.

I. INTRODUCTION

Vortex solutions in 2 + 1 dimensions have recently received a lot of attention, one of
the reasons for this is that charged vortices are in fact anyons.

It has been known for a long time that the Ginzburg-Landau model of superconduc-
tivity admits topological solitons of the vortex type (1}. This is also true for its relativistic
generalization, t.e. the abelian Higgs model {2]. Characteristically, these vortices carry
magnetic lux but are electrically neutral. Furthermore, when the parameters are chosen
to make the vector and scalar masses equal, minimum energy vortex configurations arise
that satisfy first order differential equations [3-4]. In this limit, known as the Bogomol’nyi

limit, the vortices become non-interacting [5).
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Vortex solutions also exist in 241 dimensions when a Chern-Simon term is added to the
lagrangian of an abelian [6] or non-abelian [7] Higgs model. These CS vortices are different
from the Nielsen-Olesen vortices in that they carry electric charge as well as magnetic flux.
More recently topological and non-topological solitons have been studied in the Chern-
Simons Higgs theory whitout the Maxwell term and the corresponding Bogomol’nyi limit
were derived for an specific sixth-order Higgs potential [8-9].

In this work we consider a generalization of the abelian CS Higgs model, in which
we add an extra non minimal contribution to the covariant derivative. The extra term
couples the scalar field directly to the electromagnetic field tensor. The added term can
be interpretated as an anomalous magnetic moment. Vortex solutions are obtained for
this model in a particular limit in which the gauge field equations reduce to a set of
first order differential equations. As we sall see, Bogomol’'nyi equations are obtained for
nontopological solitons, if the potential is chosen as V(|¢]) = Z-|¢|2 with m = x (x
. is the topological mass).. These solitons carry finite energy, magnetic flux and angular

momentum.

II. THE MODEL

We first define our theory by writing the Lagrangian density

1 v | K uva 1
L= —3FuF* + 2" A,Foa + 5| Dudl’ — V(4), (1)

where the most general renormalizable potential in (2 + 1) dimensions is of the form

V(I8]) = asl8|® + aa|d|* + az]0)* . (2)

Our notation is Fy,, = 0,A, — 0, A, =(0,1,2), guw = diag(+1,~1,-1),A=c=1. The
generalized covariant derivative D, is given by

2
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D¢ = (8, —ieA, — i%e,,,aF""):ﬁ. (3)

The interpretation of ¢ as anomalous magnetic moment follows from the fact that in
(2 + 1) dimensions the Pauli coupling for 2 fermion field () can be written as [10]
-t;a‘“‘t,bF,w = %e“"°$7,¢F,a. Therefore, it is an specific feature of (2 + 1) dimensions
that the Pauli coupling can be incorporated into a generalized covariant derivative, that
can be used without any reference to a spin degree of freedom. In particular, it can be
introduced for scalar fields. Notice that both the CS term and the anomalous magnetic
moment introduce a violation of the time reversal (T) and parity (P) symmetries.

Suppose that the potential given in Eq. (3) is selected to have a symmetry-breaking
minimum at |¢| = v. The spontaneous symmetry breaking can be easily implemented if we
write the scalar field as ¢ = (v +n)e(*®). The mass term for the gauge field is generated by
this mechanism. But we also find that the spontaneous symmetry breaking will generate
.. &= +w(amopg many others) a term of the form (egv?/4)e*** A, F,,. Which can be interpretated
as a C-S term, induced by the spontaneous symmetry breaking mechanism [11].

The equations of motion for the lagrangian in Eq. (1) are

1 av

b = —
2D“D ¢ = 25’ (4a)
€uvad [F* + 29—CJ°] =J, - &F,. (4b)

The last equation has been written in terms of the dual field, F, = %eme"“, and the

conserved current J, is given by

Ju=~216"Du6 - 4(D,9)| (5)

The energy momentum tensor is obtained by varying the curved-space form of the

action with respect to the metric
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2
Tur = (1—%|¢|’) (F“Fu—ggwnw)%(vm(vyds)'—gpv[glvw—vum] +H-c.).

(6)

where V,, = 8, — ieA, includes only the gauge potential contribution.
There is a particular limit in which the gauge field equations (4b) reduces from second
to first order differential equations. To obtain this limit, notice that the solutions of the

first order equations

F, =

Xl

Jus (7)

are also solutions of the gauge field equations (4b) provided that the following relation
holds:

2e
K.——'g—. (8)

Equation (7) coincides with the gauge field equations of the pure CS theory, i. e., 2
theory without the Maxwell term [12]. The Gauss law (zero component of eq. 7) implies
that solutions with charge Q are also tubes of magnetic lux ®, with & = —Q/x. Vortex
solutions for gauge field equations of type {7) have been considered in several papers [8-9),
but in all the previous work, the anomalous magnetic contribution and the Maxwel term
were not explicitely included into the lagrangian. Here Eq. (7) arises when these two
terms are included and the constraint given in Eq. (8) holds. Furthermore, the explicit
expression for J, differs from previous expressions, because according to Eqs. (5) and (3),

J, receives contributions from the anomalous magnetic term.
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IOII. PROPAGATING MODES

The model described in the previous section has in general three propagating modes
in the broken symmetry phase. The Higgs-field has one propagating excitation with mass
m, = \/2a,

In order to describe the particle content of the gauge field degrees of freedom consider
that the vacuum configuration in the broken phase is selected in a gauge such that ¢ = v.

In this case the conserved current reduces to

J, = —ev? [CAF + -gp,‘] . (9)

Consider an plane wave solution for the gauge potential A, = e,e'*'?, where
k¥ = (w,E), and we choose the z axis along the direction of the vector k. Inserting

- this-expression and J, given by Eq. (9) in the field equation (4b) we find

2 2
[e’vzgw +(- 2—49—)(15,‘&, —k-kgu) +i(ev?g + n)e“,\yk)‘} e =0. (10)

From this equation we find the dispertion relation w = 4/ |1-c‘|2 + m% where the two

photon masses are given by

_ (s + ev?g) + \/(k + ev?g)? + 4e?u2(1 — v2g?/4)

mE 2(1 - v2g%/4)

(11)

Therefore, the gauge field acquieres two propagating modes with distinct masses m
and m_ [13]. From Eq. (11) we observe that in order to have two distinct masses it is
requiered to have both spontaneous symmetry breaking ( v is the symmetry-breaking min-
imim) and at least one of the P and T violating terms; z.e. the CS term or the anomalous

magnetic term.
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The two values for the photon mass are related with two different polarizations of the
electromagnetig wave. From Egs. (10) and (11) we find that the electric field (E' = F?)

is determined as

E _ E-'o(:t NZ:E: ’ 1) cik-s ) (12)
Therefore, there are two different ellipitical polarized solutions. The difference of the two

solutions is a consequence of the P, T breaking properties of the x and g terms.

IV. TOPOLOGICAL VORTICES

Looking for rotationally symmetric solutions of vorticity n, we consider the ansatz

Ap) = —é“‘(%p‘") L Al(P) = Thp),

#(5) = ~f(p)e™""". (13)

When this ansatz is substituted into the equations of motion (4), one gets a system of
second order differential equations. Although it is a very complicated system of equations
one can demonstrate, that for an appropiated selection of the potential V(|4]), the system
has both topological and nontopological soliton solutions [14]. We leave the analysis of
these for elsewhere.

In what follows, we restrict ourselves to the pure CS limit. We assume that eq. (8)
holds and that the system is described by the equations of motion (4a) and (7). After a
lengthly calculation it can be shown that for the ansatz {13) the equations of motion (4a)

and (7) reduce to

1 d
=g+ R fPh=0, (14a)

6
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dh
p1= ) + ffa =0, (14)
1d[ df K2 f a? e ov
;2;[95] - (1— f2)2 (&2,,2 _hz) = ?5’}7 (14c)

We assume that the parameters in the potential are selected in such a way that V(j¢|)
has a minimum at [¢| = v. The appropiated boundary conditions at the origin follow from
the requierement that the fields be nonsingular. This implies that a(0) = n and nf(0) = 0.
At infinity, the condition for finite energy implies f(co) = ev/x and a(oo) = 0. We do not
have exact analytical solution for the coupled system of equations (14). However, it is not
difficult to find asymptotic solutions. In fact for large distances the fields approach their

asymptotic values exponentially:

a(p) = kCpK (pp), (15a)
h(p) = CKo(pp), (156)

where Ky and K, are the modified Bessel functions, C is a constant and y = k s=J5;7 is

the vector meson mass. Notice that in the present limit, only one propagating mode for

the gauge field survivies. In the limit < 3> ev this mass reduces to g = °7:7, which is the

result obtained by Hong et.al., and Jackiw and Weinberg (8]. In fact, we only consider the
case in which x > ev, otherwise the energy density is not positive definite. For the smalil

p behavior we obtain

(2a9 /K% ~ h2) fa

£(p) = falrp)l™ + AT (kp)"1*? 1+ O ((xp)ImH4), (16a)
_ hof3 2|ni+2 \2|n|+4
ao(p) =n — m(w) +O0((xp)*1"1¥4), (160)
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h(p) = ha — L2(xp)") 4 O((rp)"2), (16¢)

where f, and ho are constants and a; is the coefficient of the [¢{2 term in the potential.
Some of the physical properties of the vortices can be explicitely calculated. Using
the equations of motion and the boundary conditions for a vortex with winding number n

we find that the magnetic flux is quantized

@-—*/F”dlzz'—'%rn/e, (17)

similarly the electric charge is given by Q = [ Jod?z = —« Q.
The spin (total angular momentum) is obtained from the gauge invariant, symmetric

energy-momentum tensor

L= /d’:(e"izi:ro,) = —m(-':-)z = %. (18)

Notice that the spin is related with the Bohm-Aharanov factor Q&, that will appear when
one vortice goes around another one, according to what is expected from the spin-statistic
relation.

The magnetic'moment that will appear as the linear coupling of the vortex solution

to an external magnetic field is given by

M= / dﬂx(e"fz.-J,.) - 2’;—;‘2 / oh(p)dp . (19)

Notice that the magnetic flux, electric charge and spin can be considered topological
properties of the vortices, in the sense that they only depend on the boundary conditions
and they are not sensitive to the parameter of the model. On the other hand the magnetic
moment depends on the details of the solution, and therefore it is not a topological quantity.

Further properties of the topological vortices and a detailed numerical analysis of the

solutions are discussed in reference [14].
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V. BOGOMOL’NYI LIMIT FOR NONTOPOLOGICAL VORTICES

Let us consider now the possibility of obtaining a Bogomo!'nyi-type limit for the
equations of motion. The energy functional that is obtained from eq. (6) for the ansatz
(13) is

K32 a’ 2 ' e’
E= g [@s]@-mIEY + (S + )+ + (2 Zv] e

where primes denote differentiation with respect to p. This energy functional will be
positive definite for soliton configurations that fulfill the condition maz(f) < 1. We can
rearrange the energy functional ala Bogomol'nyi, to get

/ff‘ [(l;ff:( ¢(1—"_2%)—%)2+2—;(f'ip—(1—f°72;)2+1f(f) 4f += <1>
1)

where the field h has been eliminated by using the equations of motion (14a) and (145).
We consider only those configurations that satisfies the condition maz(f) < 1. Then,
there is a lower bound on the energy E > §|<I>l, provided that the potential is chosen as
V(|¢}) = -";—’]qSI’ with the critical value m = x, i.e. when the scalar and topological masses
are equal. Therefore, in this limit we are necessarily in symmetric phase of the theory.
The lower bound for the energy
E= S8 =20 (22)
€ €

is saturated when the following Bogomol'nyi equations are satisfied [16]:

R

/] 2f2
Ty
9

(23a)
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fa

P o

Notice that, in this Bogomol'nyi limit the T,, and Ty components of the energy-
momentum tensor vanish. In this symmetric phase, topological solitons certainly do not
exist, but the theory allows nontopological solitons [15]. We now analyse these solutions.

Combining eqs. (23a)and (23b), we get

il = 7 [ -7 @

If we consider the case of small f we can approximate (1 — f2)~! ~ 1 in Eq. (24). Then,

Eq. (24) reduces to the rotationally symmetric form of the Liouville’s equation, which has

the following solution

2N{ p\N |, poN]T
p)=—I{—) +(=
/o) Kp (Po) (P)

where N and po are arbitrary constants.
For arbitrary f, we have that at spatially infinity finiteness of the energy implies that
f(oo) = 0, and therefore the value a(oco) = —a is not constrained. The large distance

behavior of the solution yields

C c?

f(p) = (rcp)" - 4(& _ 1)2(:‘0[3)30_2 + O(('cp)—5&+4) ’ (260)
% —~da+4
a(p) = —a + R O({xp) ). (26b)

We have two categories of solutions:

1) n = 0, so that a(0) must vanish in order for the solution be nonsingular, but
f(0) = fo is not so constrained. These are nontopological solitons that are characterized
by the value of the magnetic flux & = %"IQL The large-distance behavior is given by egs.

(26), while as p — 0 we obtain a power-series solution

10
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3 S/4 2

F0) = o= g (o + BT +O (w0, (210
B e :

a(p) = 2(1_)%,)%( p)? + 16(1_f0,).}('¢p) +0((xp)°) . (275)

Acceptable soliton solutions exist for values of f; in the range 0 < f; < 1. The short-
and large-distance behavior of the solutions are related, since o is a function of f3. When
fo € 1 the Liouville’s solution becomes exact, and one finds that o — 2. While, as fo — 1
we find by numerical integration that @ — 1.755. Therefore, the magnetic flux varies
continuously between ¢ = 0.877(4r/e) and ® = 4n/e.

it} n # 0, so f(0) must vanish and a(0) = n. At large distances they behave in the same

- way as the noptopological solitens Eqs. (26). The short-distance behavior is similar to the

vortex solutions, and can be obtained from Eqs. (16) with the substitutions: a; = x?/2 and
ho = 1. Following Jackiw et.al. {9] we refer to these solutions as nontopological vortices.
These vortices are characterized by the value of the magnetic flux ® = le-’!(n + «), which
need not be quantized. For each integer n there will be a continuous set of solutions
corresponding to the range 0 < f, < f7%%, For values such that f, > f'** there are
no real solutions to the field equations (23), because the condition f < 1 is not satisfied
for all p. For f, € 1, f(p) is small for all p and can therefore be approximated by the
solution (25) of the Liouville equation, in particular we can determine the large p behavior
of the solution (Eq. 26) with o —~ n + 2. In fact, this value is an upper bound, since
o < n+2. On the other hand, as f, — f™°* we find that o tends to a minimum value a™*".
Therefore, for each integer n the flux varies continuously between 7in = 2x [n + aﬁ“"]

(4
and ®4* = %‘[n+ 1].
Notice that in the present limit the vortices become noninteracting. This can be easily
understood using Eq. (22). Let us consider two solitons of charges @, and Q, of the same

sign that are far apart. According to Eq. (22) their total energy is E = 2(Q1 + Q2). If

11
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we now consider that the two vortices are superimposed at the same point, due to charge
conservation, the resulting configuration will represent a vortex solution of charge Q; + Q5.
Then according to Eq. (22) the total energy will be again E = £(Q, + Q2). Therefore, we
conclude that the vortices are noninteracting.

The condition m = k represents a transition between a phase in which vortices atract
and a phase in which they repel each other, similar to the transition between type I and
type II superconductors. In fact, what we have demonstrated is that in the present theory
for an scelar field potential of the form V(|¢|) = "‘T’|¢S|2 the atraction between vortices due
to the interaction through the scalar field has the same strength as the repulsion due to
the interaction through the vector field. Therefore when the range of the two interactions
is the same (m = «) the vortices become noninteracting. On the other hand if the range

7.0 of the scalar interaction is smaller than the range of the vector interaction (m > «) the

inter-vortex potential is repulsive; while for m < x the potential is atractive.

VI. CONCLUSIONS

In conclusion , we presented a (2+1) dimensional Abelian Chern-Simons model which
includes and anomalous magnetic coupling between the scalar field and the gauge field. It
was demonstrated that for a particular relation between the CS coupling and the anomalous
magnetic moment (Eq. 8) the gauge field equations reduce from second- to first-order
differential equations, of the pure CS type.

Soliton solutions of the vortex type were found both in the broken and the symmetric
phase of the model. These vortices are characterized by their ”quantum” numbers: electric
charge, magnetic flux and spin, that are of topological origen, and that in the broken phase
are quantized. Furthermore the vortices carry a magnetic moment that depends on the
precise form of the solutions.

A Bogomol’nyi limit was obtained for nontopological solitons , for a ¢2? potential when

12
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the scalar and the topological masses are equal. The flux spectrum consist of bands of
finite width where the value & = 4r(n+1)/e corresponds to an upper bound. Similarly the
energy spectrum consist of bands of finite width. According to Eq. (22) the soliton energy
is proportional to the charge of the vortices, this fact is reminiscent of the Coleman’s Q-ball
solitons (15}

Further properties of topological and nontopological vortices and a detailed numerical
analysis of the solutions are discussed in references (14] and {16]. The stability of the
nontopological solitons and the description of the multisolitonic solutions, besides many

other aspects that deserves further investigation are currently under study.

13
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Abstract

First we consider the finite temperature quantum field theory of a
conformally noninvariant spin-0 gas in an arbitrary ultrastatic space-
‘time M with a nonvanishing background charge. In the Euclidean for-
mulation this means doing quantum field theory in §! x Mg, where
S! represeats the imaginary time compactified to a circle of size 8
(B is the inverse temperature) and Mg is some n — i-dimensional
Riemannian manifold. We are especially interested in the high tem-
perature regime of the theory. Using zeta {unction regularization and
heat kernel techniques we calculate the high temperature expansion
of the grand thermodynamic potential to any power of the inverse
temperature. As an application the phenomenon of Bose Einstein
condensation is considered.

Choosing (mathematically) imaginary background charge one is
effectively doing Alelian gauge ficld theory of a massless gauge field.
In generalization to previous considerations we consider the gauge field
theory in TN x Mg (with arbitrary compactification lenghts of the
toroidal components). Due to the nontrivial topology, the interaction
of the quantum fluctuations with the gauge field generates a gauge
field mass and the dependence on the involved parameters is given.
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1 Introduction

Quantum field theory in partially compactified spacetime plays a fundamen-
tal role in various contexts. Let us just mention

i.) finite temperature quantum field theory in the Euclidean formulation,
where the imaginary time is compactified to a circle of size 8 (£ is the inverse
temperature) (see e.g. [1-5]),

ii.) Casimir energy calculations, where the sign of the energy strongly de-
pends on the number of compactified dimensions (see e.g. [6-17)),

iii.) topological symmetry breaking or restoration and topological mass gen-
eration (see e.g. [18-20| and references therein).

Some of these aspects will be considered in this contribution. First we con-
sider finite temperature quantum field theory of a massive noninteracting
non-conformally invariant spin-0 gas in an arbitrary ultrastatic spacetime,
where the spatial section may has a boundary. We will assume nonvanishing
background charge. This has been introduced first by Haber and Weldon [21},
[22] (see also [23]) in the context of a [rce relativistic bose gas in Minkowski
spacetime. They found, that Bose Linstein condensation may occur at high
temperature, where high means large compared to the mass of the field (we

. ause units A = ¢= k = 1). . This remains true in a-general static spacetime

S! x Mg, where Mg is a n — L-dimensional compact Riemannian manifold,
possibly with a boundary {24}, [25].

To show this we determine the high temperature expansion of the grand
thermodynamic potential of the spin-0 gas. Using zeta function regulariza-
tion and heat kernel techniques, the expansion is given in any power of the
inverse temperature in terms of the Minakshisundaraum-Pleijel coefficients
of the heat kernel [26-34| (for related work see also [35-41)). After some in-
troductory remarks concerning finite temperature quantum field theory in
ultrastatic spacetime, this is done in scction 2. Analogous results may be
found for a spin-3 gas (28], {34]. Furthermore using conformal transforma-
tion techniques [27], [28], [42-48], the result may be generalized to a static
spacetime with boundary [28], (34].

Based on the high temperature expansion of the grand thermodynamic poten-
tial the phenomenon of Bose-Einstein condensation is considered in section
3 (for several interesting references on that subject see [24]). Let us mention
that an interpretation of Bose-Einstein condensation in terms of symmetry
breaking to give a non-constant scalar field vacuum expectation value was
provided very recently by Toms {24], [23].

Choosing imaginary background chavge one is led to Abelian gauge field
theory of a massless gauge ficld. As is well known a quantum field ¢, whose
fluctuations are constrained by boundaiics or by nontrivial spacetime topo-
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logy, when coupled to a massless gauge field A, can give this field A a quantum
mass mr . This quantum mass may be real or imaginary depending on the
nature of spacetime as seen by the constrained field ¢. In generalization
to Actor [18], in section 4 we will choose a massive complex scalar field ¢
defined on TV x M5 with periodic boundary conditions in each of the toroidal
components with compactification lengths L,,..., Ly, minimally coupled to
a constant gauge potential.

In that context it is shown that for a massive field ¢ the topologically gene-
rated mass is always real. But as we will also see in section 5, for a massless
quantum field ¢ the situation changes and generation of imaginary mass is
possible.

2 Finite temperature quantum field theory
in static spacetime

We shall first concern ourselves with the finite-temperature behaviour of a
field theory in the n-dimensional ultrastatic spacetime M

- ds? = —dzl + gas(£)dzdzt, (2.1)

where £ = (z,,...,z,). The action of the field theory we consider is [49], [50],

S =3 [ &2lglté(z) (0 - R - m?) d(a), (22)

with the Laplace-Beltrami operator O of the ultrastatic spacetime. Variation
of equation (2.2) subject to the constraints

b¢(z') = 0, (2.3)
nv'V,éé(z') = 0, (2.4)

where the prime refers to quantities defined on the boundary M, yields the
equation of motion

(0 - ¢R - m?) é(z) = 0. (2.5)

The following discussion will be quite general, so the boundary condition
need not to be specified at this point. But a unique boundary value problem
is for example posed by assuming Dirichlet- or Robin-boundary conditions
for the field.

In a static spacetime the positive frequency part of the field i1s determined
by the timelike Killing vector and the Hamiltonian without normal ordering
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is
A = TE|ala; +blb; +1]
b

= Y Ej[Nej+Noj+1]. (2.6)

Here the a operators annihilate particles, the b operators annihilate antiparti-
cles, N, (respectively N_) are the particle (respectively antiparticle) number
operators and E; are the energy eigenvalues determined by

(A —¢R—m?) ¢;(2) = —E3;(2). (2.7)

The charge number operator is
Q=5 [Nes - No). (28)

J

As usual the particle-antiparticle system in thermal equilibrium at a finite
temperature 7' is described through the grand partition function

2 = Trexp -8 (H - u0)], 2:9)

where p is the chemical potential associated with the conserved charge. For-
mal manipulation yields the thermodynamic potential

Ypu = -3z

- %Z [ln (1 - e'ﬁ[E"‘L“)) +in (1 - e'pw""‘])]
]

+ B (2.10)

Expression (2.10) contains the divergent zero point energy of the field, which
has to be regularized (see the following discussion). From (2.10) we find the
thermal average of the charge density to be

1 1 1
B VELXP{MEJ'-#]}— 1 exp {B[E; +pu} -1

J

. (2.11)

The realization that the particle density in any energy level has to be non-
negative leads to the important conclusion |p| < Ey, where Ey denotes the
smallest energy eigenvalue.
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Having briefly developed the general formalism of the quantum field theory
in an ultrastatic spacetime, the problem now is of course to extract some
information out of equations (2.10) and (2.11). For highly symmetric confi-
gurations the energy eigenvalues of equation (2.7) are known explicitely and
an analysis of equations (2.10) and (2.11) is possible due to that knowledge
[21], [51], [52], [53] . In these considerations generalized Epstein zeta func-
tions

M2, . —
EN"(8;a1,...,aN; €1y -y EN) =

i [al(ﬂl - 01)2 + ...+ aN(ﬂN _ cN)z + M’] -

1
ny \..A,nN={ _‘:n

play an essential role (the range of the summation indices depending on the
boundary conditions imposed on the field) and nowadays a very good know-
ledge of these functions is attained [54], [55], [L8] and references therein (see
also the contributions of Elizalde and of Mostepanenko in this workshop).

But some properties of the field theory may be found without refering to
specific spacetimes and boundary conditions. For motivation let us remind
you of the considerations by Stewardson and Waechter [56],.[57] . They

- showed, that the frequency spectrum of a stretched membrane contains for

example the information about the area, the perimeter and the number of
holes of the membrane.

In the same way, the energy spectrum of the gas (which determines the grand
thermodynamic potential) contains some information about the volume of
the spacetime, the boundary and the curvature tensors of the manifold, or
vice versa the grand thermodynamic potential is determined by specific geo-
metrical properties of the spacetime.

To show this, we will regularize equation (2.10) using the zeta function pre-
scribtion (58], {59). In that scheme, the finite thermodynamic potential is
defined by ‘

w18, = 3 {o(0,8,0)1n X7 = (0,8, )}, (2.12)

where ) is a scaling length, the prime denotes differentiation with respect to
the first argument (this means with respect to s, see equation (2.14)) and
(p(s,B, ) is the zeta function associated with the operator (7 is imaginary
time)

a 2
D:-(—— ) — A+ ER+m? (2.13)
ar
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That means

- 1 = -1
— » ’ — Ut 2.14
(D(slﬂ‘l #) ;Vm I\(s) ;‘/; dtt exp( 4 ) ( )
valid for Rs > %, with
. 2
v;=— (%}I - ) + E’2 J e (2.15)

It may be shown, that definition (2.12) agrees with equation (2.10), once the
zero point energy has been regularized in the way proposed in [9].

In order to analyze the phenomenon of Bose-Einstein condensation we con-
centrate now on the high temperature expansion of the theory. At high
temperature, this means small 8, only small values of the parameter ¢ es-
sentially contribute to the integral (apart from the summation index [ = 0,
which gives only a zero temperature contribution) and the use of the short-
time asymptotic expansion of the integrated proper-time propagator [60],
[61], {62],

K(t) = Zexp(—Eft)

n—i

. 1\ .
S () T oo (2.16)

1=0,2,1,...

[N

yields the expansion we are looking for. Details of the calculation and the
full result may be found at several places [26-28], [33], [34].

Here we will just concentrate on the dominant terms of the result, which for
n > 4 reads

Y[B,p) = —B"r7F x |
{2car (5 ) ¢atn) + 8047 (=) taln = 1)
ctoa[ea () o (G -1)
+} (2.17)

But in principle this expansion is known explicitly up to the order containing
the heat-kernel coefficient C3, which has been determined recently for several
boundary conditions by Branson, Gilkey [63] and Dettki, Wipf [64] (see also
[65], [66], [67]).

It is important to mention, that the expansion in equation (2.17) is only
consistent, if in addition to the flat spacetime condition T > m also T >
lR]% holds, where |R| is the magnitude of a typical curvature of the spacetime
(24].
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3 Bose-Einstein condensation in static space-
time

Using equation (2.17) it is now easy to study the phenomenon of Bose-
Einstein condensation [24], [25].
First one finds

Q =2x"3lp(n - 2)T (%) pB (3.1)

Fixing the total charge, for T' high enough it is always possible to satisfy
equation (3.1) with u? < E3. But as T decreases u must increase until we
reach the temperature at which 4*> = E3. This defines the critical tem-
perature T, at which Bose-Einstein condensation takes place. The critical
temperature T¢ is easily found to be [24]

1Q =
To = (3.2)
2r(n = 2)T (3) Eo
and for T < T¢ the charge density Qo in the ground state is given by [24]
T n-2
Q=Q [1 - (-T;) } . (3.3)

More explicit results for several contributions are attainable and have been
given for example by Toms (24] and in [33].

4 Abelian gauge field theory on TV x Mg

The transition from finite temperature field theory in the Euclidean formu-
lation with nonvanishing background charge to Abelian gauge field theory
on S' x M is formally obtained by the replacement ¢ — iA4 [51]. Due to
the nontrivial topology constant values of the gauge potential A are physical
parameters and the effective potential of the gauge theory will depend on
these parameters !. Because the main results remain valid, we will consider
an Abelian gauge field theory on TV x Mg, with compactification lengths
Ly,...,Ln of the N-dimensional torus and with constant gauge potentials
A,, ..., Ay of the toroidal components.

In generalization to equation (2.12) the effective potential is defined by

VrnVasVers = Ca(0)In A2 — ¢, (0). (4.1)

!To ensure gauge invariance, constant values of A have to be interpreted as § A [68]

6
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Here Vr~ (respectively Vaqs) is the volume of the torus (respectively the
manifold M) and {4(s) is the zeta function associated with the operator

N 2
0o .
with eigenvalues
' 2xl 2 2rl 2
Ve = (-%11 —At) +ot ( ZN" - AN) + E}, (4.3)

ly, ...,In € Z. Using the approach described in section 2 it is again possible
to derive an approximate expression for the effective poteatial (4.1) valid for
small compactification lenghts (for Mg = IR® an exact treatment has been
given in [69]). But we are interested in the topologically generated masses
mr; of the toroidal components A; of the gauge potential, defined as the
coefficients of the quadratic terms in the expansion

Ve/l = ECh,kNAf‘.AﬁqN
1 )
: - = 7 [m’T‘Af +..+ m%NAﬁ,] + 'non quadratic terms: (4.4)-

of the effective potential. Here ¢ is the gauge coupling with dimension
(mass)~ .

The most important property of the masses is the sign of their square. Re-
stricting our attention from the beginning of the calculation on this sign, we
will provide a very elegant way of its determination.

Let us first concentrate on EJ > 0. Introducing dimensionless parameters

W = (M)g AL
YTAL/ WS

the quadratic terms in the gauge potentials A; of the zeta function {4(s) are
easily derived,

HyonlN=—0 J

/ow dt¢*! exp {_ l:(\/w_lh - ‘m)? +...+ (‘/""—NIN - uN)2 + (%[2)2] t}

L 2+ N a
= —5 (-2—7%> Zu?{1+2w.‘a—w—‘}(o(3+1) (45)

t=1
+4non quadratic terms,
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with

Co(8) = }: E[w11’+ +w~1~+(32f‘)] : (4.6)

Hpadn==00 |

As a result, the topologically generated mass may be given in the form

_ 292 L,‘ 2 . 7]
= Trv (22) {‘*2"’:@7,-}"
2
[PP (1) — In (2]1'—") Res (0(1)" (4.7)
1

where PP (respectively Res) denotes the finite part (respectively the residu-
um) of {o(1). So we have already reduced the determination of the topologi-
cally masses to an understanding of the zeta function (o(s), equation (4.6).

To find the essential information about (o(s) relevant for equation (4.7), we
have to construct an analytical continuation of equation (4.6) valid at s = 1.
But this continuation is easily found by employing for ¢ € R,

3 exp(—tn?) = (;)* T exp (—’;"2), (4.8)

n=—oo n==—00

which is due to Jacobi’s relation between theta functions [70].
The result is

s _% \ V-
cw = BB (-8 s
. o N
i mrtzs) ,,,_..,,,z.,-w;(ézx&)

wy WwN wy wN

7 16-5) 2 2 14
—‘+...+pi Ky_, | BiLy [1—‘+...+-’-"L

with the zeta functions {a(s) of the manifold M5 defined by
Cams(s) = D0 EF™, (4.10)
J

valid for Rs > 7. But then, obviously

2g3 L3~V (E LI)
2 = 1 X 4.11
mT, WVMS “ ..... ? —OO; ( )
12 2 %’U'I;}!) 12 2 1%
0 H +..+ X Ke_, | E;L, l—-—+ +—1—]
3w, wy 2 Wy
> 0.
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To show the inequality we use [71)
12\ fo et &
K =5(3) [ @
valid for |arg 2| < £, R2% > 0.
So we found, that the topologically generated mass does not depend on the
scaling length A and that it is exponentially damped if the mass of the field
m — co.

The essential assumption for this result is E3 > 0. Otherwise zero modes are
present in equation (4.6) and m:}j will not be positive definite any longer.

5 Imaginary gauge field mass generation

To proof our last statement let us consider a massless quantum field ¢ and let
us choose Ms = R". Then the relevant operator (4.2) for this configuration
reads

-DA=—§:-—6——iA.‘ 2—A : (5.1)
=1 azi
with eigenvalues
oxl 2 2l LI
Uk = (“lrl - Ax) + ..+ ( LNN - AN) + k2, (5.2)

L, ..,In € Z, k € R" Paying special attention to the summation index
I, = ... = Iny = 0, similar calculations as done in section 4 show, that the
relevant zeta function in the given context is

En(siwn,nwn) = 3" [l + .+ wnii] (5.3)
I,,...,l~=-oo
where the prime means omission of the summation index {; = ... = Iy = 0.

In terms of En, the topologically generated mass reads [69)

i.yn>3
m%.) = gzr-ﬂ%uLl_""N+2I‘ (2-;—N — l) bd (54)
o] n+ N 1 1
LIS N
w; N 2 R wy wn
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ii.) n=2

mi = g (—gl)2 1+2w-—‘2— Ey(0;w wn) + 1 (5.5)
Ti ™ 2xVpw \L, Towy ) TN TR '

ifi.)y n=1

92L2 0 (I )
L e B i,
mT’ 27 L1V~ (1 + 2wj=— dw; En 2101 N (5.6)
iV.) n=>0
2
9°L; o _
m}j = Qﬂnv;w (1 + Qij) En (1w, ...,wN) (5.7)

_ Using equation (5.3), equation (5.4) is always seen to be positive for arbitrary
values of wy,...,wy. So for n > 3 the limit m — 0 is smooth. This fails to
be true for n < 2 and depending on the compactification lengths L,,..., Ly,
real and imaginary mass generation is possible. To exemplify the nema.rks
let us consider the case n = 0, N = 2. Using the resummation formula (4.8),
one may find

S |
mn = 2 J‘{ = 44w} S 1;1,*1@ (2#1112M)}

ha=1

=% ‘/_{‘—+ f;exp 271\/—)-1} (58)

where in the last equality K} (z) = \/7/2z exp(—2) [71] has been used.
But the limiting behaviour

o0

2 exp(2arl\/73§) -1

=1

— 0 for wq = ©

and
f: ! — oo for wy — 0
i exp(2mlfwz) — 1
shows, that at some critical value of \/w; = L,/L;, determined by
had ! 1

= — 5.9
g exp(2nl/w;) -1 24 (5.9)
a transition from real to imaginary mass will take place.
Similar considerations show, that for n = 0,1,2, and arbitrary N in given
ranges of the compactification lenghts L;,..., Ly the generated gauge field
mass is real or imaginary.

10
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6 Conclusions

In this contribution we have studied different aspects of quantum field theory
of a spin-0 field in partially compactified spacetime.

First we studied finite temperature quantum field theory of a conformally
noninvariant spin-0 gas in an arbitrary static spacetime. Using zeta func-
tion regularization and heat kernel techniques a high-temperature expansion
of the thermodynamic potential has been found and used to consider the
phenomenon of Bose-Einstein condensation.

In generalization to finite temperature field theory we then considered an
Abelian gauge field theory in an arbitrary number of compactified dimen-
sions. In this analysis we concentrated only on specific terms in the effective
potential defining the topologically generated mass my; of the gauge field.
We have seen that even in a quite general context it was possible to determine
the sign of mZ,.

It is hoped, that the presented computational approach will be helpful in
considerations of the topological mass generation in non-Abelian gauge field
theories and in the context of symmetry breaking in a selfinteracting scalar

field theory in spacetimes with an arbitrary number of compactified dimen- -

sions.

Along the same lines it is possible to generate gauge field masses by quantum
fluctuation constrained by boundaries with given boundary conditions.
Furthermore, one may deal just as well with a spin- field to analyse the
mentioned problems.

11
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ZETA-FUNCTION REGULARIZATION TECHNIQUES FOR
SERIES SUMMATION AND APPLICATIONS

E. ELIZALDE
Department E.C.M., Faculty of Physics, University of Barcelona
Diagonal 647, E-08028 Barcelona, Spain

Abstract

The zeta-function regularization procedure is one of the most elegant tools of quan-
tum field theory. It comprises a whole set of different techniques, of increasing
diffculty, to treat the several degrees of complexity of the physical problems to be
handled. Here, the question of the regularization of multi-series of the general type

Y lai(ni+ )™+ +an(ny +en) + 7,

R AN
with a;,...,an,01,...,any > 0, ¢1,...,CN arbitrary reals and ¢ > 0, is
addressed. Only the most simple cases have been propetrly studied in the literature
(eg.a = -=an, ¢ =-=¢cy=00r£l1/2, = =ay =2,

¢ = 0, etc.). The zeta function regularization theorem in its most general form leads
to an asymptotic expansion valid for arbitrary a’s and «'s, which is very.convenient
for numerical computations.. In particular, useful expressions can.be derived from
it for the analytical continuation of Riemann, Hurwitz and Epstein zeta functions
and their generaligations, and for their asymptotic expansions —including those of
derivatives and integrals. Physical applications of the zeta-regularization procedure
include the proper definition of the vacuum energy, the Casimir effect, spontaneous
compacification in quantum gravity, stability analysis of strings and membranes,
et¢., and embrace also very recent experiments of solid state and condense matter
physics employing liquid helium.

1. The zeta-function regularization theorem

The method of zeta-function regularization has a rather long history. There are
precedents in the use of Riemann and Epstein zeta functions as summation (i.e., regu-
larization) procedures in the late sixties {1]. However, the zeta-function regularization
method as such was introduced in the middle seventies [2]. The paper of Hawking (of
1977) is considered as the first systematic description of the zeta function procedure
as a useful technique for providing the finite values corresponding to path integrals
over fields in curved backgrounds and for the evaluation of determinants of quadratic
differential operators {3]. This is a basic, multipurpose need in theoretical physics
and in several branches of mathematics (such as analysis and number theory).!

'In words of the great David Bilbert, the most relevant of all the (by now famous) problems that
he proposed was that of proving if the “eztremely important statement by Riemann” (the so called
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In the last 15 years the zeta-regularization procedure has been used more and more
by the leading physicists and mathematicians and we can definitely say, in particular,
that it is now one of the most elegant tools in quantum field theory. At the begining
the method was rather simply minded, but nowadays it comprises a whole set of
different techniques, of increasing difficulty, to treat the several degrees of complexity
of the physical (and corresponding mathematical) problems to be solved.

The list of people who have been dealing with zeta functions at one instance or
other would be just non-ending. Maybe Al Actor is the one who has devoted more
years to this subject (at least among those of the mathematical-physicists squad).
According to Actor himself (5}, a milestone in the field of regularization of discrete
sums of the general type

E [al(n1+c1)°” +~»+a~(n~+c~)"" +c]_‘, (1)

ny,... AN

with a;,...,aN,0n,...,an > 0, ¢;,...,cy arbitrary reals, and ¢ > 0, has been the

proof of the so-called zeta-function regularization theorem. In its final formulation, it

is the result of hard work of A. Actor, H.A. Weldon, A. Romeo and myself [6-8]. The

uses and applications of the theorem in its most general form {8] —for discrete series of

the type (1)— are very far reaching. In particular it leads to asymptotic expansions,

valid for arbitrary a’s and e’s, of the multi-series of this general kind, which. are very

-well suited for numerical. computations. These expansions are unchallenged in its -
usefulness for such purposes.

Let me just recall for comparison, that only the most simple cases of series of that
kind have been properly studied in the literature (e.g., a; = = ay, ¢ = -+ =
en =0o0r £1/2, 0y = - = ay = 2, ¢ = 0, etc.). The zeta function regularization
theorem actually provides a method for the computation of expressions like (1) —
and even more involved ones— for Re(s) big enough, and of their analytic (usually
meromorphic) continuation to other values of s. In the zeta-function procedure they
are given in terms of the ordinary Riemann and Hurwitz zeta-functions.

A very simple case corresponds to the Hamiltonian zeta-function {(s) = ¥; £;°,.
with E; eigenvalues of A [9]. For a system of N non-interacting harmonic oscillators,
one has a; = 1, 7 = 1,2,.., N, and the a; are their eigenfrequencies w;. Another
interesting case is partial toroidal compactification (spacetime TP x Re*!). Then
a; = 2 and, usually, ¢; = 0, £1/2. One is thus led to the Epstein zeta-functions {10}

oo

Zn(s) = ) "‘gj:_m(nf-l-”--i-n%,)",
Yuls) = ...‘,i_w’ [(nl + %)2 +oo ot (nN - -;-ﬂ B (2)

Riemann conjecture) is true (4. It asserts that the real part of all the non-real zeros of the Riemaan
zeta function is the same, and equal to 1/2.
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(the prime means omission of the term ny = ng = ... = ny = 0). Other powers a;
appear when one deals with the spherical compactification (spacetime S? x R?*!) and
with more involved ones arising, e.g., in superstring theory and their membrane and
p-brane generalizations. Hence the general expression (1). The only precedents in the
literature (to my knowledge) of this kind of evaluations have been restricted to few
special cases other than a; =a; = ... = ay and ¢y = ¢ = ... = ¢y = 0. Very famous
is the expression due to Hardy [11] (particular case of our final formula).

An interesting result concerning the interchange of the order of summation of
infinite series appearing in zeta-function regularization is due to Weldon (7]. His
investigation originated in some difficulties which appeared in a paper by Actor [6)
when he tried to obtain the value of the thermodynamical potential corresponding to
a relativistic Bose gas by using the zeta-function regularization procedure. Unfortu-
nately, Weldon’s proof has its own limitations, and the statements in [7] concerning
the extent of its validity are actually not right. This is quite easy to check in some
particular cases, and was stressed in [12).

Let me briefly summarize the proof due to Weldon of the validity of the zeta-
function regularization procedure (7] and point out its shortcomings. Using the same
notation as in (7], let us consider the four series

( 1m+1 oo o
Sp = E oy Y m®f(a), (3)
m—l a=0
Sp = Z_lm,ﬂzomﬂa), @)
o0 ( 1)m+l o0 . a )
Sar = }; — E —1)*m®f(a), (5)
Sup = )3 - 2( 1)oms (6)

where f(a) > 0 for positive integer a. They are assumed to be convergent, as they
stand. The idea of the zeta-function regularization procedure begins with the in-
terchange of the order of the summation of the two infinite series involved in each
case. As was proven in {7}, provided that f(a) can be defined in the complex a-plane,
satisfying:

(1) f(a) is regular for Rea > 0,

and, in the case of (3) and (4),

(2a) am®f(a) — 0, as |a] — oo, for Rea > 0 and fixed m,

and, in the case of (5) and (6),

(2b) am® f(a)e~"I™ al 0, as |a| = oo, for Rea > 0 and fixed m,

it turns out that in the fermionic cases, (3) and (5), one can naively interchange the
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order of the summations, to get

sp=§on(s+1—a)f(a), Sar =S ~-1Pn(s+1-a)f(@),  (7)

while in the bosonic cases, (4) and (6), one obtains the additional contributions

So = D((s+1-a)fa) =~ etglra) (), s ¢ N,
S5 = (s +1=a)f(&) +2/(s) = 1), s €N, (8)
and ‘
Sus = 2(—1)“C(s+1—a)f(a)—frcsC(ﬂ)f(s),si‘N. 9)
Sap = Yo(-1)%(s + 1= a)f(a) + (~1'lyf(s) = (s)] s €,

respectively. Here ((s) and n(s) are the Riemann ordinary and alternating zeta
functions:

= Sm Res> 1, n(s) = 3 (=1 m, Res >0, n(s) = (1-2)((s),

m=)
(10)
~ is Euler-Mascheroni’s constant, and f’(s) means derivative of f with respect to s.
The proof of the preceding theorem proceeds by integration in the complex a-
plane. One writes (3) to (6) under the form of contour integrals

co l)m+l
Sk = :L; — f ~m®f(a)ctg(wa), (11)
=1 da
Sp = :; mm $, 5rm"f(a)ctg(a), (12)
oo m+1
S = % U 4 2 e fa) esclra), (13)
S = i ! ég-m“f(a) csc(ma) (14)
AB = oomstlJe 24 ’
where C is the closed contour defined by the straight line Rea = —aq —for fixed ag

such that 0 < ap < 1-— and by the <emicircumference at infinity on the right. The
contribution from the semicircumference is zero in every case, due to the asymptotic
behaviour of f(e) and, as long as Res > —1, the integral extended to the line Rea =
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—ap can be interchanged with the remaining sum over m. The final step is to close
the contour C again with the semicircumference at infinity. In the cases (12) and
(14) there comes then an additional contribution from the pole of the zeta function
((s+1~a) at a = s. On the contrary, in the cases (11) and (13) the alternating zeta
function n(s + 1 — a) has no pole in the region enclosed by C. All the steps in this
procedure are simple and one obtains eqs. (7) to (9).

However it was further explicitly stated by Weldon in [7) that the results for the
alternating fermionic and for the alternating bosonic cases, S r and S4 5, respectively,
could be naively extended to the following types of series

S4F = i m,)ff f_::( 1)*m"f(a), SYg = E e 2(—1)°m”“f(a), (15)

with N eny positive integer. By going over the same proof once more, he just obtained
a trivial modification of the above results. That this generalization of (9) and for any
positive integer N is not right is very easy to check. In particular, it was noticed
by Actor in [12]. As an easy example let me study the simplest case after the (only
correct) one N = 1 (explicitly considered in (7]), i.e. N = 2. Let

oo oo 00 2a
5= 2..: z_: m}'H Zﬂ(—l)ﬂ n;! ’ - ()

=~1

., wheee the last operation copsists in making the analytic continuation of the resulting
" series to 8 = —1. The function f(a) is here f(a) = F(—a1+_1) and all the hypotheses of
the theorem are fulfilled. Use of Weldon’s formula gives

5= 5 El (20 - B (1)

which is false, though numerically almost undetectable, because

ﬁ?,_ b 0.3862269, A= \/;2_ L_ S =-9.17 x 1075, (18)
Going on to N = 2,3,4,..., it is not difficult to see that, if V is constrained to be a
positive integer, Weldon’s formula is true only for N =1 (eqs. (8) and (9)).

As we managed to demonstrate (8], the step which fails to be correct in Weldon'’s
proof for general N is the last one, namely, even if the asymptotic behaviour (2b) of
the function f(a) allows us to supress the contribution from the curved contour in the
second step, this will be no longer true when we try to close again the circuit C in the
last step. There is in fact a contribution coming from the integral of ((s+1— Na) f(e)
over the semicircumference at tnfinity (due to the asymptotic behaviour of the zeta-
function). And this is so whatever it be the value we choose for s. The study
of the asymptotic behaviour of {(s + 1 — Na) immediately distinguishes the case
N <1 from N > 1. [t is, however, misleading in some sense, because the fact that

S =0.3863186,
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the zeta-function diverges for ¥ > 1 does not necessarily mean that the contour
actually provides a non-zero contribution invalidating Weldon’s proof (that had been
conjectured by Actor, at a first instance). Things must be done with very great care
due to the presence of highly oscillating factors.

Let me restrict the argument to the case f(a) = !—.r.-‘ﬁ This is enough for many
applications and the generalization to other cases proceeds by analogy. In this case,
the fact that the poles of I' are the non-positive integers and a suitable application of
the zeta function reflection formula allow us to write the additional contribution as
a contour integral over a curved path in the complex left half-plane. Besides, we use
the relation

r(-;-) ¢(2) =/0°°d: £#/3-18,(t), Rez >0, (19)
where -
Salt) = 3 e, (20)

and owing to the behaviour of the complex function I'(2) which has simple poles at
z=-nforn=0,1,2,..., with residues

(
Res,=_nI'(2) = sy (21)
and with the aid of
[(2)[(1 — z) = 7 csc(xrz), (22)
we can write o | e o
ste) = —1ye R, 23
AB mz=1m'+l‘§)( )F(G-I'l)’ o€ ( )
- A | d
S(c) = _i -xa 4
AB mzl:l matl Jg me I‘(a), (2 )

where now the contour C consists of the line Rea = ag, with ap fixed, 0 < ap < 1,
and of the semicircumference at infinity on the left. For s = —1,

Sie=-0= % T = T e = 50) (25)

By correctly making the last step in the above proof, we end up with

@ =5 v ran 4 i (-2) - aly, 2

SAB‘;) 7 ((s+1 ora)-‘raf‘ a) AB, agN‘ (26)
(@) _ s~ (Z1)° _ Y PE+D) ] @ s
SAB - ‘;o ﬂ! ((S'l'l Qa)"'( l) [P(i‘*‘l) aF’(é-]—l) AAB’ o € N‘

(27)
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where A 5 is the contribution of the curved part K of the contour C:

AR = /K 27‘:c(s+1+aa)r(a). (28)

This contribution is not zero for any value of s. We can check that it actually provides
the term missing from (17). Before proceeding to the actual calculation of (28), one
can, as an illustrating exercise, reclose the contour on the right instead of the left,
and check that the same series is obtained.

Coming back to eq. (28) and doing the same for s = —1 and a = 2, we must use
first the reflection formula
r(2) ) == (R55) ¢ - 2) (29)

what yields

Alp(s=-1)= /x 2:1;?/009& 17071285y (x%t) = —/wSy(r?), (30)

that is .
S (1) = —5 7t —2\/-7E+\/7?52("'2)- (31)
This result happens to be just a particular case of the famous theta function identity
1
9 — ,—1/3 r:’/re ( z ) 2
(z,7) =7 i (32)

0 being the elliptic function

9(2,1’) -— Z e—«n27+‘21m1’ z € C,T € R+. (33)
Notice that Sy(nt) = 3 (8(0,t) — 1). Eq. (30) is an ezact expression. Once more, we
observe that the contribution of the contour provides, in fact, the missing term.
Let us now again consider (21) for general @ and, s = —1. Eqs. (19) and (20)
read, in this case,

I(z)¢(az) = /0°° dt 1515, (1), (34)

Sa(t) being the function given in (25). No simple reflection formula like (29) exists
for o # 2 . We have, instead,

2Nl —az) . 7az
(o) = e (1 - az), (35)
and we get
Se=S()=3 e =3 a((—aa + r <a> Ao, (36)

m=1} a=0
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being the contribution of the contour

da
A, = i (aa)l(a). (37)

After some work, we obtain

om et [Cad s (B

where the function p.(a) comes from the asymptotic behaviour of the integrand (37)
for la] = o0,

pa(@) = exp { [(2 —a)+ (—;— - é)] In(-a) + (e —2)a
+ (% - l) x|Im a| + sign(Im a) = (% - 1) |Re a]}. (39)

It is immediate that, for @ = 2,
907(4) = 1, (40)
so (38) is in agreement with (30). Note also that for & < 2 we have

¢afa) = 0, la| — co. (41)

For the sake of completeness, we quote also the following result. When, putting
wa(a) =1 in (38), the rematning integral is finite and yields (see the proof for o = 2

above) . o - .
e a(%-n"\/—;a (3] (42)

Collecting everything together, we have proven the following

Theorem (zeta function regularization theorem).
Under the hypothesis above, (1), (2a), (2b), we have that:
i ) For ~oo < a < 2, the contribution of the semicircumference at infinity ts zero, i.e.

A, =0, a<?. (43)
i) For & = 2, the contribution of the semicircumference at infinity is given by
Ay = —/7Sy(n?). (44)

The result for @ € 1 was known already and constitutes Weldon’s proof of zeta-
function regularization. The result for o = 2 shows, on the contrary, that the state-
ments in {7] about the validity of the proof for any positive integer o were false, the
reason being that the semiciccumference at infinity does not provide a zero contri-
bution. It was precisely the last step of the proof in (7] that was wrong. The fact
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that the numerical value of A, is so small (it can be thought of as an infinitesimal
correction, see (44)) as compared with the rest of the terms in eqs. (26) and (27)
gives sense to the whole procedure of zeta-function regularization. However, this is
strictly true only for small a.
i) For large o, A,, is given by

oee=(-2) 25 [(2)]

We observe that, for large o, A, ceases to be an infinitesimal contribution. Actually,

Ay, = 0, a<?

A, = 9.17x107% A(=0.04 Ag=0.07;

A, — 013, a > oo, (46)
which represent, respectively, contributions of the 0%, 0.02%, 11%, 19%, and 36% on
the whole value of S,(1).

This theorem has been extended to situations of the kind {13]

50 = 3 (m+ o 35 Sl s o (47)

a=0

The supplementary contributions for a > 2 (always with ¢ = 1) have been obtained
in [13]. Write

Sy = i(m +¢)* ! fc 5% (m + ¢)"*T(a), (48)

with C a contour in the complex plane ¢, C = L U K, being L the straight line
Re (@) = @y, 0 < a5 < 1, and K a curved part, the semicircumference at infinity on
the left of this line. For Re (s) big enough,

-2 (a) L g N
oo l)a [(=2)+ Ay s €N,
(a) 1—
g (Grizaagt {( 1‘/0’[ tap 4+1]+A£°)(3) - €N,
(49)
where A(°)(s) is the following integral over the curved part K of the contour C
da
() o) = =
Al (”—/sz' (s + 1 + aa,c)I(a). (50)

Summing up, this is the main content of the zeta-function regularization theorem (for
more details see refs. (8,13) and the papers mentioned therein).

2. Expressions for multi-series involving arbitrary constants and positive
exponents

We shall now make use of the zeta function regularization theotem in order to
obtain expressions for the most general multi-series of the type presented in the
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introduction, which would be impossible to derive by other means (at least with
comparable easiness and universality). The same notation which has commonly been
used in other papers will be employed:

My(s;a@,&¢) = My(s;ay,...,an;a1,...,QN;C1y. .., CN)
= Z ([ay(r1 + &)™ + - + an(nn + en)®™ +¢]7°, (51)
Y yeeny !IN=°

and for the generalized Epstein-like case:

V(8:8,6) = My(siay,...,an;2,...,2;¢1,...,¢N)
= > [a,(nl +a)+ +anv(ny+en) + c]-‘. (52)
n),...ny=0 .

Consider the case of M5. We need the result of the regularization theorem as applied
to the double series

St =Y 2l et acnr, (53)

n=1 k=0

which converges for Re (s) > 0 large enough. We can write

Sa(t8) = > o f ot~ kT (), (54)

n=1

where the contour C consists of the straight line Re (k) = ko, with k; fixed, 0 < k5 < 1,
and the semicircumference at infinity on the left of this line. The regularization

theorem tells me in this case that [13]

Sultys) =3 D" s+ 1~ ak) + ér (—i) e AL (L ), % ¢ N, (55)

= k!

where A,(2, s) is the contribution of the curved part K of the contour C:

— dk k
At s) = /sz' C(s + 1 + ak)D(k)LE. (56)
With this, we obtain
Mi(si68) = g5 3 T (37 (g, )T (s 4 i i)
[‘(s) as

1
aL_’ i) (2)1#'1 r (S - ~") MC/GQ ) N
T (s 3} L (C!l a, [‘(s) t (5 /CY], QZ;CQ)

N He d ¢/a
_ [‘fzs) (%) /K = 2 (s + 1+ ena, el )M (s + a; 1; s e2)T(a)T(s + o),

(57)
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and also
M;{(s;ay;an;¢1) = P(s ,,;,( 1"‘1‘(3+m) ("C*) ((—aym, )
c™? c o '8 — ?.'}T
2" % .
() L s so

It is not difficult to build, from these two expressions, a recurrence leading to the
calculation of Mf, from the knowledge of Mf,_,, and starting with the formula for
M{. At each step, this involves a complex integration over a curved contour at
infinity, a term which is in general very small compared with the rest. Forgetting
about their actual expressions, the recurrence can be solved explicitly, the result
being (13] (corrected)

—.9 N-1 P b 1/ai,
My(s;d;&;¢) = —;P( )
n( C) ['(3) ;CN‘/—?’E a, a;,
o0 N p—l 1
X 3 r (s-I— ST k- )
kyy veeokipg_p oy =0 =1 r=1 X
)
!

e

=1 k]l

+ AER: (59)

M‘c

~

N-’—l P 1
(=~ kj, e5) My/°" (O'N (8 + 2 k-l ) ;1;a~;0~)

!:] r=1

with b;, = a; /an (notice the errata in eqs. (3.22) and (3.23) of my ref. J. Phys.
A[l3])a.nd1$i1<~- <, S N-1,1<j <+ <jN-p-1t £ N -1, being
1,33 J1,- -, JN-p-1 & permutation of 1,2,..., N — 1. The sum on Cy_; , means
sum over the (N;’) choices of the indices ty,...,7, among the 1,2,...,N —1, and the
term Agg includes all the A corrections which appear at each step of the recurrence.

Going down to the particular case (52) things become more concrete. As men-
tioned before, then the expression giving our additional corrections to the series com-
mutation reduces to a theta function identity [13]

Zexp[—a(m+c)2]— z( a™((—2m,¢) 2\/7 \/‘COS(Z’A‘C ( ) (60)

m=0

and this yields the recurrence

1

EY(s;3;9) I(s) 2

1
E ( a"((=2m,c,)l(s + m)ER_\(s + m;aa,...,an;c2y- -, EN)
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l [x T(s—1/2) ‘ |
+ 2 a, r\(s) E'N_x(S—l/2,a;,...,a~,o;,...,c~)

N
+ F( )cos(27rc N Tt E z ny~'/2 [c«l- Y aj(n; + c;)?

ny=1na,..,Ay=0 =2

} ~s/2+1/4

27ny .
X K,12 \/a_l\c-i-Za,'(n,--f-cj)’ , (61)

j=2

where K, is the modified Bessel function of the second kind. The recurrence starts
with

fer iy X (E)I(s+m) (a1 \™ ai-s 7T (s-1)
Filieia) = 6y & (3)" dtame+ S5 2 0

o m!
-+ 1.2\(7;) cos(27rc1)al_‘n_l/‘c"/z'“" Z n;"lﬂk’,_l/g (21!'1111{ ' (62)
ny=1
Then
o , _ e’ & (=)(s+m) (g)’" N
Ez(s)al,az, 01,02) = F(s) "; ) a2 C( 2m,c1)
1/2-s I (8 _ _1_)
EC/C: . 1. a’ﬁ 1 2 C/dq _ 2; 1‘
X 1 (s+ml )0))+ 2 0-1 r\(s) El (8 1/ |02)
27’ _ P
+ FET) cos(2ﬂ'c1)a1 2/2= 1/4 ./2+1/4 z 2 n -1/2 [dg(ng+62)2 + ] 1241/4
ny =1 ny=0

X K, \p (%ﬁz(nz +c)? + c) , (63)

and so on. Expressions for the special case ¢ = 0 are given in ref. [13] (see also egs.
(93) and (94) below).

The very particular case,a; = - =ay=1,¢; = --=¢v=1land oy =- =
an = 2, simplifies considerably. For ¢ = 0, we get

_1\N-1 N=1 . )
En(s) = %—a:—) (-1 () res i) (s=2)+aen  (64)

and, for ¢ # 0,

Ex(s) = ( 2}\,)”1 lr\LNi:‘ 1y (% ) (5 - ') EC( JE) + Agr. (65)

1=

The poles of this last function arise from those of E{(s — 7/2), which are obtained for
the values of s such that s — 7/2 =1/2,-1/2,-3/2,.... They are poles of order one
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at s = N/2,(N - 1)/2,N/2 - 1,..., except for s = 0,-1,—2,..., then the function
is finite (owing to the I'(s) in the denominator). These poles are removed by zeta-
function regularization [14,15].

3. Application: spontaneous compactification in 2D quantum gravity

Let us consider induced 2D gravity, with the action
5= [dzy5 (R—I-R +4) (66)
A )

on the background R! x S'. On such a background -—which is not the solution

of the classical equations of motion— the convenient effective action is always gauge

dependent. However, the S-matrix (the effective action on shell, i.e., at the stationary

points) is independent of the gauge condition choice. Actually, working in the loop

expansion, one is led to an explicit gauge dependence even on shell (perturbatively).

This is why it is preferable to work with the gauge-independent effective action.
Using the standard background field method,

Guo — Guv + Ay, (67)

where g,, is the metric of flat space R! x S! and h,, is the quantum gravitational
_field, choosing the gauge fixing action as

Sor = é / Pz /5 (Ve - BY,h)°, (68)

where o and B are the gauge parameters and h = A%, and defining the configuration-
space metric in accordance with Vilkoviski [17]

1
i = Youasws = 50 (929" + g*°g*™ — ag"*g°?) (69)

where a is a constant parameter, after some work, one obtains the following result
for the one-loop effective action {18)

1

A
1) - - — : 7
I 27rRSA+2 [Tr In (A+4(2—a)) 2Tr lnA} (70)

Here 27 R is the length of the compactified dimension while § = [ dz is the ‘volume’
of the space R'. As we see, the dependence on the gauge parameters o and 8 has
disappeared. However, an explicit dependence on the parameter e remains.

The trace calculations involved in expression (70) for the one-loop effective action
are not easy. Non-trivial commutations of series have to be carried out. Using the
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techniques developed above (already specified to R' x S'), we have

com () = 42 E () o]

NI =00

S L) em 1 ()T = e
- {2r(-) YRR O

ﬁm
(2#) H[(3_2)2_(2J_1)] zn,—k —-ﬁmn}, (1)

X

wherefrom we get

1N
vV = L=2w3A+—Rﬁ——)[1—1n( A )J—l AL

S 32(2-a 4(2 - a) 8V2-a 24R
B \1/ ( - )m i (16n)= (B[ A ) (72)
4r/2R \2 - & & l2V2-.

k o
x T[] [4 - (25 - 1)2] Zn_(k"’:’ﬁ) exp (—KR 5 A - n) )
j=1 n=1 -

This expression can be simplified in terms of the basic variables of the problem:

154(2{-@’ yERﬁ:% 2ﬁa' (73)
Then
V=ﬁ[8r(2—a)y+§(1—ln )——+~2-;1——F<y)], (74)

F(y) being given by

_ Z1_ i 161r —(k+1/‘2) l-l [4* (27 = 1) ] Zn—(k+3/2) ~2amny (75)

n=1\

It is now clear that all the dependence of the action on R, A and a comes through
the specific combination given by the variable y, but for a global factor, /7, and for
the first term, which is just linear in a.

To proceed with the compactification program, one imposes {as is done in multi-

dimensional gravity)
{ V(R,A,a) =0,

.
dV(R,Aa) _ (76)
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The explicit a dependence can be eliminated, and one gets

vz F(y)—yF"(y)—I;—y+% =0. (77)

This transcendent equation involves an asymptotic series, and must be solved aproxi-
mately. Fortunately, the decreasing exponentials come to rescue and, after an explict
calculation one obtains the (expected) result:

1 =0.33. (78)

This is the non-trivial stationary point of the effective action. The trivial one is
reached for

o = 0. (79)
As for the second derivative,
e 1 "
= VE |- P, (50)

where the explicit a-dependence has disappeared. Hence, this derivative has a definite
sign (independent of a) at the stationary point

o*V

Y=

The point is a minimum, obtained for the following combination of parameters

AR? 2\ 2
2—a = (5) ' (82)

4. Application: stability of the rigid membrane

Consider now the following action, which is multiplicatively repormalizable only
in the string case (p = 1),

S = /d”“f /9 (k + —2-1)—2 [A(g)x"r) , (83)

where gog = 0aX'0p X', a=0,1,...,p,1=1,2,...,d, A(g) = g~ /20,929 8y, the
constant k is the analog of the usual string tension, and 1/p? is the coupling constant
corresponding to the rigid term. We take for background the classical solutions of
the field equations (which are the same for the rigid as for the usual p-brane)
Xy=6, X;=0, Xi'=6,..,X"=¢, (84)

c
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with X3 = (X!,..., X4 ?) and (£,...,§) E R=[0,a;] x --- x [0,8,]. We use the
axial gauge
X°=X54, X4t=x4t ., X = X4P, _ (85)

where the Faddeev-Popov ghosts are absent. In the case of the toroidal rigid p-brane,
the boundary conditions are

X401 ) = XH(T b 16p) =0 (86)
and
Xl(£0l0|€2v .- *EP) = Xl(fo)al){h e 16?))

: (87)
Xi(f(hfh' .. )5p—h0) = X‘L(CO)fll e )fp—lvap)‘

On the other hand, for fixed-end boundary conditions the first equation is exactly the
same, while the rest are replaced by the following (of Dirichlet type)

X‘L(EO,OI&ZI'“’(D) = "'=X-L(£0,£1"'-)€p—1s0))
X'L(fo,ahfg,...,fp) = “'=Xl(£0)£1,"'afp—haﬂ)‘ (88)

The effective potential is

.1 n
V== Jim = ln / DXL exp(-5). (89)
Restricting ourselves to the one-loop approximation, we need only take into account
the terms which are quadratic in the quantum fields.

Integrating out X+ and imposing the boundary conditions, one obtains

4 d-p—1 el min} Fzﬂ; 13
Vixed end = & [lai+ —5— [ > ‘( 2 Tt
ny =

=1 “  Inp,.., Nnp= 1 P
o 7r2n¥ 7in? ) 1/2
DY ( g k)|, (90)
ny .o np=

and

. d—p—1 = 4mrnl 4rin2\/?
Vioroidal = * [Tai+ D [ Z ( a2 +ooot a? .
ny,.-..

o 472n? 4712n? 1/2
+ > ( a2‘+-~+—al—’3+kp’) . (91)
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First, we calculate the static potential —that is, the effective potential in the limit
of large spacetime dimensionality. Such calculation gives {19}

1
Sus = KT {(1400) /%1 + 017 = 2 (o0do + pors)

1/2
—_p - 2 2 2,4)\2
4+ 4-p-1 I[E(n%u———k”""R \/kp( -A,)mm+’°“°3‘)
14

2k RpH! 2 4
rn  kpLAoR? wpire)
+ Y |+ — kp2(Do — M)A R? + — ,  (92)
7
where for the fixed-end p—bra.ne n? = "1 -+ n) and T means £ _,, while
for the toroidal p-brane f? = 4(n? + ) and Eﬂ means }0° . Here the
expressions to be regularized mvolve gg=--r=a,=landay == = 2, and
the general formulas of section 2 are considerably simplified.
A very useful and exact recurrent formula is [13] ((61) with ¢y = -+ = eny =1
and c? instead of ¢)
Ei(s;ar,...,an)= ), (ani+ - +anny+c)”’
ny ... AN=1
1., 1 [x D(s-1/2) ..
= -EEN_I(S;GQ,..A,GN)-Q-E Z—(—P(s)/—)EN_l(s—lﬂ;ag,...,aN) (93)
» co k/7 o
+ n —'/2 Z H[ ].) _ J _ 1)2] Z n‘—k 1
r(s) k' 167|'),= ny,s,nNy=L1l '

2
X (an3 4+ annd + )0 2exp [—-—Z—n,(azn"; 4+ -4 aynd 4+ ).
Vv &1

The recurrence starts from expression

el . c—?a \/1!’_ F(S — L/2) —-2¢41 ?'”'C—H-l/z — -1/2
Ei(s;1) = - > + ?_I‘(s_)_c + —ITS)_ nz:}n K,_172(27nc). (94)

In order to deal with the derivative of the function K, above, one can follow two
equivalent procedures: either do first the usual analytic continuation, and then take
s = —1/2 and the derivative afterwards, or else take first the derivative, perform then
the analytic continuation and put s = +1/2 at the end. The result is exactly the
same. [n either way, other non-trivial series commutations have to be performed. We
get, in particular, for ¢ # 0

1
Ei(s) = —LEi(e)+ YT P=1) (s-

1
2 T I(s) E) + Qe (95)
1

WI‘ $ =3
Bi(s) = %Ef(s)——‘g—(rg)—)Ef(s—%)+

n c _
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and similar expressions for ¢ = 0.

For the sake of conciseness, we shall now restrict ourselves to p = 2 —but it is
obvious that we could consider as well any other value of p. We rely on equations
(93) and (94), which specialized to p = 2 yield

o (M) (ﬁ)"‘_L(L L) (B) a1, @
"‘§=1 (al) ¥ e/ 2% 01+aa 8x? a§+a?

3/
2/a1a;

and (this one after additional regularization)

> (ﬂ)z"'(ﬂ)i"‘c’ S PPRU T iy A
a, as - 4 6 172 4 az 41!'02

x exp(=2meas) [1+0(107%)] . (97)

exp (—272) 1+0010-%)], (%)

In both cases we have assumed (it is, of course, no restriction) that a3 < a;. These
expressions are really valuable. They are asymptotic, the last term (already of ex-
ponential kind) being of order 107% with respect to the two first ones, and the not
explicitly written contributions being of order 10~®. To our knowledge, the second
.- expression —which can. be: termed as of inhomogeneous Epstein type— has never
been discussed in the literature [19}.

For fixed-end boundary conditions and not taking into account exponentially-small
terms, we obtain

(d-3)r [1 (1 1) 3¢C8) fay @,
Vye, = S U R - Sy
Je kaiaz + 24 2 \aq + ay 272 \ o} + a?
2
+ Eﬂp - —2k3/’p3alaz] . (98)
T ™

It is straightforward to perform the analysis of extrema of V' [19].

In the case of toroidal boundary conditions, again neglecting exponentially-small
contributions, we get (for a very detailed discussion of the relations between the
different boundary conditions see [20])

d~3 3 1 1 ’
Vior =~ kaya; + ( )W [— C( ) (9‘;‘ + 3—2) ;‘/I:P - G?kaﬁpaala'z - (99)
1

2
2 4 3

The particular extremum for a; = @, = @ is a minimum of V provided that Vko® >
127 (it is a maximum for Vkp® < 127). Consistency with the series expansion implies

2
Vkp > 1p—2’r>> L. (100)
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which can be met typically for values of p ~ 3, k =~ 9, 2xrc ~ 9 —but, of course, as in
the former case, the range of allowed values is much wider.

5. Application to the new experiments involving the Casimir effect

The following references on experimental applications in very recent determina-
tions of the contribution of the Casimir effect to remarkable wetting and nonwetting
patterns of helium 4 adsorbed on alkali metals {21}, to critical fluctuations within
very narrow fluid films confined by rigid walls (for different boundary conditions and
temperatures) [22], and to related cavity effects in laser physics (23], are highly inter-
esting. A more classically minded, historical account of this subject of the Casimir
effect in quantum field theory and condense matter physics can be found in ref. {24)].
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Nonabelian Gauge Fields in the Background
of Magnetic Strings*

E. Wieczorek
DESY-IfH Zeuthen

Quantized nonabelian gauge fields are studied in the external classical back-
ground of a linear magnetic string. The determination of the gauge field
propagator demands a specification of the string by suitable physical limit-
ing procedures.The vacuum energy density is obtained after transforming the
background problem into a Casimir problem.

We consider a quantized nonabelian gauge theory (with gauge group SU(2) for simplic-
ity) in the background of a linear magnetic string where gauge potential and field strength
are given by

Bu(z) = —Beu,z, /1 (1)
Fuy = Beg,6(ri)/ru, (2)
respectively. This background field carries the magnetic flux
/daﬂ,,Fw = 27 0. (3)
Here and in the following we apply the notations z; = (z1,z2) = (rcosyp,rsing),
zy = (23,24)
0 1 0 O
Lo -1 0 0 O
rv 0 0 0O
6 0 0 O

and use euclidean metric as long as we are concerned with the determination of propagators.
The wave equations for a scalar massless matter field transforming according to the fun-
damental representation of SU(2) reads

-D*p =\ (5)

* Talk given at the Workshop ”Quantum Field Theory under the Influence of External
Conditions”, Leipzig (Sept.1992)
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with D, = 9, + i,f-B,.. After a separation of variables ¢ = expikz) exp —ippf(r) the
radial equation
8 13 (p=B), ;2
“Gatie T M=k (©)

remains (with 8’ = +£8/2 ) where, in general, p — ' takes noninteger -values.
In such cases the scalar wave equation in the background of a magnetic string has the
same structure as the corresponding equation for cosmic stings (i.e. in the background of
a conical space-time). The equation for the ghost field

(_Dz)dbd’b = A’aba, (7)
D;b — 8“6“ +gB“6aba

leads after diagonalization to the same radial equation (8 — B'). The propagators for

matter and ghost fields have been obtained from the eigenfunctions of (5) and (7) in
straightforward manner or by a direct method, see [1].

The gauge field propagator
The wave equation for the gauge field
((=D*)*¥6,, + 2gF,,e**®) %y = A ' (8)

or the corresponding radial equation

5 18 (p—p)
Gatie~ =

+ 23/3 §(r) + k) (r) = 0 (9)

lead to a serious problem connected with the localization of F,,.

It is well-known that 2 or 3 dimensional § potentials in wave equations represent an
ill-defined mathematical problem. The rigorous mathematical method to deal with such
an equation would be to take into account the possibility of self-adjoint extensions of the
differential operators under consideration. Let us refer to two instructive examples.

The one-dimensional equation —8%2y = k2¢,z € [0,00) can be supplemented by the
boundary condition ¥'(z) = 6¥(z) at £ = 04 with an arbitrary real parameter 6. The
solution ¥4+ = cos kz+0/ksin kz is a generalization of the usual even solution cos kz. More
familiar is the equation (—82 +2aé(z))y = k%1 which exactly has the same solutions, if we
identify the parameter of s.a.extension 8 with the 6 potential coefficient. Quite different
appears the radial equation for d = 3 : —(8? +2/r8, )¢ = k%y together with the boundary
condition

linz)(rt,b) =6 1in3(zl) + ryp').

It allows solutions ¥ = ’“‘r"' + 0"“’:‘ kr k > 0, which although being singular are nor-
malizeable. In this case, however, § cannot be quantitatively related to a potential 6(Z),
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see[2].
The same situation shows up in the radial equation for a magnetic string. The differential
operator

K = —(8 +1/rd, — v} /r?) (10)

(compare (9)) allows, if 0 < v = |[p — 8| < 1, a s.a.extension defined in terms of the
boundary condition

lim r3(r) = 6 lim 1/r¥ (r¥y(r) — Jim (r"*3(r")) (11)

which leads to solutions
vr(r) = Jy(kr) 4+ 0J_, (kr). (12)

Wave equations with s.a extensions have been studied in conical space-time [3] where the
parameter 6 is considered as to describe in a unspecified manner the coupling of the wave
function to curvature localized at the tip of the cone. For other authors {4] 8 characterizes
inner properties of the magnetic string.

From our point of view it would be inadequate to abandon the relation between the gauge
potential (entering via the parameter ) and the field strength which would be done by
keeping the parameter 0 arbitrary. We therefore prefer to apply a physical regularization
in which the string is treated as a limiting case of a flux tube of finite radius keeping the
flux (3) fixed.

As a special model we have-studied the homogeneous finite flux tube of radius a

— L Zp
9B, = —ﬂewa—z for 0<r<a
_ L Zv
= —Be,, — for r>a (13)

( for details see [1]). Outside the tube the radial solution to (8) has the form (12) where
now, however, 8 is not a number but a function 6 = §(ka) which is determined by matching
¥’/ at r = a. We observe that for the model (13) as well as for the other models studied
by us 8(ka) = 6(£) has the properties

lim 6(6) =0, (149)
Jim 6(6) = (-1

for almost all values of the flux parameter § consistent with the condition 0 < |p— 8| < 1.
There is a finite number of flux parameters §; such that limg—o 8(¢) = oo for = ;.
The values §; as well as the number of such "exceptional” flux parameters depend on the
partial wave number p ,on the sign of the F},, term in (8) and (9) as well as on the special
model for the string [1]. Up to now we have not found a model so that limg_.o 6(§) # 0.
An infinite limit for 6(¢) yields, of course, the solution 3 = J_,(kr) for r > a.

From the property (14) one concludes at once, that the singular part of the outer
solution tends to zero with vanishing tube radius for 2ll fixed values of quasimomentum k.



Quantum Field Theorv under the Influence of External Conditions 83

To decide wether the singular part influences the propagator demands more care: in the
construction of propagators from eigenfunctions

+o0
G(z,z') = (‘271? ;Oexp ip(p — ') /dku exp ik(z — z')) / d""——‘bk,gw';c(f) (15)

the infinite range of k integration forbids a naive application of (14). Let us therefore
discuss the propagator in the outer region r > a,r’ > a. Here the radial eigenfunction is

¢k()—J——J»( )+\/—— (16)

which, together with its part in 0 < r < a, is properly normalized and complete

/D " dkyge(r)pi(r) = é&(r )

Then G receives in the partial wave p the additional term AGP originating from 6J_,

’_ ; 2, OPI(E —Z W pr
AG (2)3expp(<p <,o)/ dkk/d “+k F(kr, kr', ka)
= #exp:p(go —¢ )/0 .dkkKo(kz)F(kr,kr', ka) (17)
with
F= T8 (T oalir') = (v = =)
+ 002 (J (kr)J_,(kr') + (v — —u)) (18)
and

2 =(z-2)j. (19)

A closer inspection of (17) shows the following properties of AG? valid for non-exceptional
values of the flux parameter:

1. AG? tends to zero for a — 0 if z/(r + r') is kept fixed and different from zero.

2. The coefficient of log(z/(r+r')) which is the leading short distance term and the finite

part AGP(z,z) vanish in the limit ¢ — 0.

The second point is important with respect to the evaluation of the vacuum energy density:
it is the short distance limit of propagators which determines this quantity.
A further point to be discussed is the contribution of bound state wave functions to the
propagator. Indeed eq.(9) together with the regularization (13) has bound state solutions

2n?sinvm, 12
i=( — Y Ky(nir/a) for r>a (20)
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corresponding to eigenvalues k = —n?/a?. Here 7; are real numbers to be determined
from the matching condition at r = a. Obviously bound states can occur for the eq.(9)
with the upper sign only. Inserting the eigenfunctions (20) into the construction of the
propagator we remark that this contribution vanishes exponentially in the limit ¢ — 0 for
all fixed r > 0,7’ > 0. The discussion of the gauge propagator leads finally to the following
conclusion:

There are no remnants of the F,, term in (8) for a — 0 as long as the flux parameter is
non-exceptional, or, in other words, the mathematical possibility of self-adjoint extensions
is in general not realized in our model. Consequently, the gauge propagator Gﬁf, is simply
related to the ghost propagator G%® by

G2l = 6., G = 6 (—D*)3. (21)

The vacuum energy in external backgrounds

A rather elegant method to evaluate vacuum energies in 1-loop approximation is provided
by the ¢ function method. Be K the kinetic kernel of a boson field with normalized
eigenfunctions ¥4, corresponding to eigenvalues )g,,. Defining the kernel

[K]—'(q:,y) = ; dqwq—n(%);n:—"(y—)- for Rs > sp (22)

the 1-loop expressions for the vacuum functionals
Z = (DetK)™/? and W= %Tr log K = /d;z:p.,ac
can be determined from the ¢ function of K
(x(s)=TrK™*
- / dz / dyb(z - v)[K] " (z,v) (23)

by the formula 5
1
W=—5-"Cs) at s=0. (24)

For a massive charged scalar field in the background of a magnetic string the kinetic kernel
has a pure continuous spectrum M(g) = ¢? + m?,q € Ry which leads to the {x function

(x(s) = 2V / Fq(g? + m?)~

which is well-defined for s > 2 but independent of the flux parameter and therefore
obviously useless. The appropriate method in such a situation is to enclose the system into
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a box rendering the spectrum at least partly discrete {5]. If in the present case one would
enclose the string into a cylinder of radius R with Dirichlet boundary conditions at r = R
this discretizes the quasimomentum k, according to the equation Jy(kpr) = 0. However,
due to wellknown properties of the zeros of Bessel functions this leads to limp—o W(R) = 0!
We therefore have to make recourse to a direct calculation which relies on the energy-
momentum tensor. Let us start from a Lagrangian for a gauge theory in an external
background restricted to quadratic terms ( this corresponds to 1-loop approximation)

L = -1/2D5%a%D}a*® + gepcaal al F*
+ D7Dy’ - (Dx)"Dx. (25)

Here af‘, 7%, 1%, x denote the gauge field fluctuations, ghost and matter fields, respectively.
As in (8) the background gauge fixing term —1/2(Dja*)s(Dya*)p with a = 1 has been
chosen. From (25) the canonical energy-momentum tensor can be derived by conventional
methods, especially

Too = ~1/2( > 8ialdial + > (Diay)(Dia*).

i=0,3 i=1,2
—gF, b“c"af‘af,
+ Y Bifiadina + ¥ (Dif)a(Din)a
+=0,3 1=1,2
+ Z Oix7rOixr = Z (DEX):(DiX)r) (26)
i=0,8 i=1,2
where special attention has been paid to the ordering of ghost fields. F/” is the external
background field supposed to be time- independent.Furthermore, point splitting technique
is applied in order to express < 0|T;0|0 > in terms of the propagators

< 0|Ta}(2)a;(v)I0 > = Gz, ¥),

< 0T (2)n°(¥)I0 > = — < O[T (y)7°(2)|0 >= —G(y, z)

< OITxr(z)x; (W0 > = Gri(z,y). (27)
One should notice the minus sign in the ghost part ! This method has been tested in the
familiar case of a homogeneous SU(2) color magnetic background. Combining egs.(26),

(27) and the explicitely known structure of the background propagators [6] one obtains,
apart from renormalization terms ~ B?, the wellknown expression

14 1.¢?B* ¢B
vae = (——= +8+ = log —- 2
11 5p2, 9B
= ggn29 Blog 7

see(7). It is instructive to indicate the origin of the single terms in the bracket of (28):
-14/3, 48, and +1/3 correspond to the gauge field contribution with derivatives, the F,,
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part (second line in(26) ) and the ghost contribution, respectively. The same method will
be applied to the vacuum energy density in the background of a magnetic string. Before
doing so the background problem is transformed into a Casimir problem.

Reduction to a Casimir problem

For reasons to become clear later it is convenient to transform the background prob-
lem of an ideal singular magnetic string into a generalized Casimir problem by applying
appropriate gauge transformations for the matter field in fundamental representation

(45) - (=280

and for the ghost and gauge field fluctuations

X; = Rij(z)x; (30)
with
cosfy sinfp O
Ri;=| —sinfy cosfyp 0|, (31)
0 0 1

respectively. Thereby the background field B, is locally transformed away. The trans-
formed fields obey for r > 0 the field equation without a background field

~Ay = Ky

together with boundary conditions (e.g. along the axis ¢ = 7 in the z; plane)

Yi(p =7 +0) = exp(£ifm)Pi(p = 7 - 0) (32)
Xile=m+0)\ _ ( cos2nf sin2xf Xi{p =7 -0)
(Xi(<p—_-1r+0)> - (—sinZﬂ’ﬂ cos21r[3) (x;(<p=1r—0))' (33)

Of course, the boundary conditions (32) and (33) have their origin in the continuity and
uniqueness of the unprimed fields as functions of ¢. It is in this equivalent Casimir formu-
lation, that it becomes obvious immediately, that an increase for # by an integer ( or an
even integer) is irrelevant as long as the F,, term in the original eq.(8) does not matter.
Corresponding with the wave functions the propagators are transformed as follows

+ifA |
+ +

G'*%(z,z') = R*(z)R*(z'\G*¥z, z") (35)



o
-1

Quantum Field Theory under the Influence of fxternal Conditions

The unprimed matter field propagator has the structure

{(sinh(Bo¢/2) + exp(iA) sinh((1 — £o/2)$)}  (36)

+ : Go
Gﬁ/Z = exp(—z(n + I)A)sn‘lh¢

- : G . AN
G52 = exp(inl) —— 5 {(sinh((1 = Bo/2)4) + exp(i) sinh(fo4/2)} (37)
for the flux parameter 8 = 5 + 2n with 0 < By < 1. The variables A and ¢ are defined by
(z -2 ﬁ +r? 402

cosh¢ = v (38)
A=p-y.
Furthermore, Gy denotes the usual massless free propagator
1
Go(z ~2') = (39)

4n%(z — )%

The propagators in adjoint representation (i.e. for ghost and gauge fields, compare (21))
read

G}gl — G22
= sxfh 3 {cos((m + 1)A)sinh By¢ + cos(mA)sinh(1 — So)é} (40)
G21
p
_ _Sinah - {sin((m + 1)A)sinh o + sin(mA) sinh(1 - fo)¢) (41)

for lux parameter § = §y + m and 0 < fo < 1. Applying the gauge transformations (34)
and (35) we obtain

G = Go {eXP(-i( 1 — Bo/2)A)sinh(Bo¢/2) + exp(ifoA/2)sinh(1 — Bo/2)$} (42)

G:572 smh¢ {exp(—ifoA/2)sinh((1 — Bo/2)¢) + exp(i(1 — fo/2)A) sinh Bo¢/2} (43)
Ggl = ng
=3 th{COS((l — Po)A) sinh(Bo @) + cos(ByA) sinh(1 — Fo)A} (44)
ng = Gl2l
=3 h¢{sm(ﬁoA)smh((1 — Bo)¢) — sin{(1 — Bo)A)sinh foé}. (45)
The transformed propagators show the symmetry properties
Giirn =G5 (46)

Gt = G’“ (47)
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not shared with the unprimed propagators. Here one should keep in mind, that for the
gauge propagator the symmetry (47) is not generally valid. For the string models studied
by us exceptional flux parameters §; with the corresponding modifications of the gauge
propegator (compare (17) and (18) in the limit § — oo ) appear only correlated with
special partial waves and there is only a finite number of them. Clearly this restricts, in
the case of the gauge propagator,the symmetry (47) to non-exceptional values of § + n.

Very important is another property: The gauge transformed propagators can be de-
composed

G?}z(z,:') =Go(z-2') + Gfﬁ(z, z') (48)
G (z,z') = Go(z ~ 2')6°* + G3’(2, ") (49)

where Gy is the free Feynman propagator (39) and the G are finite for £ = z.! Such a
decomposition is typical for Casimir problems [8] but in general not valid for propagators
in backgrounds and especially it is not valid for the original propagators (36) - (41).

Let us now determine the vacuum energy density. For this aim the theory has to be
considered in Minkowski space-time which demands the following replacements

2 2
zﬁ =zy +a:§ — —Z; +a:§
Jyv — =Guv

whereas ej—, remains untouched, of course.The calculation is performed most conveniently

»in the gauge transformed theory making use of the advantage, provided by the decompo-
sition (48) and (49), to subtract the usual infinite vacuum energy of free space-time. A
straightforward calculation gives for non-exceptional flux parameters

1 = Ay =
< 0|T00|0 >mateer = (3-8~ + ;;3;,3‘,') (G;/2 + Gp/g) for r=r o=y
__ 1 B Bo Bo Bo
T 3724 2 (1 2 ) 4 (1- 2 ) (50)
1 ~
< 0§T00(0 > ghost = —2(8,0 + -;&,&,JG“ for r=r'p=1¢' (51)

< 0[To0|0 >yar = 4(0-00 + £73¢3¢«)@11 for r=r,p=¢
2 B
= *Wﬂo(l ~ Bo)(1 — —22(1 - Bo)) (52)

if 0< B < 1.
The total vacuum energy density is obtained as the sum of the contributions (50)-(52). A
symmetry

pvac(ry B +2n) = Puac(ra B) (53)

is valid as long as § + n is non-exceptional for all integers n.
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Discussion and Conclusions

In view of the kernel (8) of the gauge field the non-abelian magnetic string has to be
regularized physically, i.e. the string has to be taken as the limit of a flux tube of finite
radius a keeping the flux fixed. Depending on the model chosen and the partial wave
considered there are discrete "exceptional” values of the flux parameter § such that in
the limit a — 0 the radial wave function for the gauge field is singular but normalizeable
at r = 0. The propagators and the vacuum energy density have been determined for
non-exceptional values of § with the symmetry properties (46), (47) and (53). It is to be
expected that the expressions are discontinuous at the exceptional values g = ;.

The vacuum energy density in the non-abelian theory is negative as it is in the abelian
case (same as matter contribution (50)). The absence of the usual sign effect connected
with non-abelian gauge theory can be traced back to vanishing of the field strength F,,
outside the string (compare the discussion following (28)).

Our transformation of a background into a Casimir problem may, to some extent,
answer the question wether the vacuum energy density is a locally determined quantity.
Of course, pyq. is determined by the propagators at coinciding arguments. The propagators
themselves, however, may be essentially be determined by global or topological conditions,
as it is in case of ideal magnetic strings. This remark should throw some doubts onto naive
applications of the local Schwinger -DeWitt expansion for propagators.
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PROPAGATORS IN MAGNETIC STRING BACKGROUND
AND THE PROBLEM OF SELF-ADJOINT EXTENSIONS t

Hans Jirgen KAISER
DESY - IfH Zeuthen
Platanenallee 6, D-O-1615 Zeuthen, Germany

Ghost and gluon propagators of a non-Abelian gauge theory in the back-
ground of a magnetic string are calculated. A simple technique to derive
the ghost propagator is presented which makes use of the fact that the pres-
ence of a magnetic string of strength B shifts the differential operator 3%
to 58; — t4. In the case of a gluon propagator in the magnetic string back-
ground a difficulty arises from the presence of the magnetic field strength
term involving a é function. Here the ambiguities of a self-adjoint extension
of the differential operator must be met. A proper treatment demands the
specification of a limiting process starting from a string of finite thickness
and well-defined structure and leading to the § function string. Without this
additional structure information about the background string the gauge field

propagator is undetermined.

We consider a non-Abelian gauge theory in the background of a classical magnetic field
with the vector potential (for simplicity of notation we take the coupling constant - which
enters only as factor of B or F - equal to 1)

Bi(z) = 6 ehyab A(ra ). (1)
corresponding to the field strength
Fo,(2) = 6 ehy [26(r2 ) + o dB(r. ) dr. ). 2)
We use the notation
r, = (51 , :52), 0 1 0 0
-1 0 0 O
zy = (z3,24), “=| o o 0 o (3)
TLe = |IJ. ', 0 0 0 0

Talk given at the Workshop
"Quantum Field Theory under the Influence of External Conditions”, Leipzig (Sept. 1992)
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In the case of a magnetic string we have
Blri)=p/rL,  2B+ridBldrs = Bé(ri)/rs. (4)
B(z) enters the covariant derivative
D& = §°%9, + e**B:(z). (5)
involved in the ghost and gluon kernels respectively

Kab - _(DZ)GB’

6
Koo = K*6,, —2¢* B§(r.)/rs. )

We take the Euclidean 4-dimensional case and the gauge group SU(2) in adjoint repre-
sentation. We use polar coordinates for (z;,z2) to express the kernels in the form

ab adl 6 9 alé‘bl 5224552 é_z_
Kb = —6°°A + 2¢ 2 " + (6 +6%%6 )1_i ,
? 1 9 1 8 (7
=A ol
A H+32+r¢6r1_ r3 dp?

Kgb = K*%6,, — 26", B6(r.)/rs.

We intend to construct the propagators G*® and G2°. They fulfil
g av

K“(z)G“(z z') = §°°6(z ~ '),
@G (z,2') =86z ~2) - Y xiE@xi(E)" (8)

gzero modes

After diagonalization and separation in zy and z. we find the eigenvalue equations in
T,
o* 1 38 1/ 8
& T o, +E(ﬂ

where the parameter g serves to embrace the various equations involved in the ghost and

: 2
~iﬂ> —M5(L)+k2}¢(h;m)=0 (9)

gluon cases:
ghost: ¢ =0, gluon: g¢g=-1,0, +1. (10)

With
d)P.h. (rJ- ’ ()01—) = e'P¥L RP.’C.L (TJ-) (11)

the radial equation reads

d? 1 d

dr‘i Ty er

=87 = L) 4+ B Rp, () =0, (1)
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For g = 0 the treatment is straightforward:
We take the orthonormal solutions

Ypi(r, @) = \f;—reiwjlp—ﬂl(k’) (13)

of the twodimensional problem and calculate

(An5#0)

oy = 55 Yaleiale)

(14)

by combining the heath kernels of the two twodimensional problems

Gp(z,z') = /:o dtG.(z.,2' )Gy (zy,z, 1),
Gz, ot t) =S Ya(z. ) (za) e, (15)
Gi(zn,zy,t) = Y dh(zn)ph(zi) e
In the case of the magnetic string we obtain

Gy (zg,2),t) = 41 —(z'_‘i)’/‘“

n't
Gu(re,r'e Aps ) = — Z eiPAva / dky by T gk ri ) ppopi(kur’ Je 0,
P — 00
(16)
which leads after & somewhat lengthy calculation to the remarkably simple result
1 sinh(1 — f)® + 'A%+ sinh f&
G "= <fA<1
ﬂ(Z,I ) 4”2(3 ;)2 Sin.h@ b (O—B — )’
(zg —zi )2 +12 4+ (17)
B “ i — imAw_L
cosh® = ST , Ggem =€ Gp
entering the full ghost propagator
Gy (z,2') = (616" + 6°26°)RGp + *° QG + 626" Go. (18)

There exists a very simple derivation of (17) which avoids the construction of eigen-
functions and their tedious use in (14). We look again at the differential operator in
cylindrical coordinates

2 1.8 1[0 2
Dg=A - . 19
. ”aﬁnan*rz(am zﬁ) (19)
It ic obtained from Dy = A by the substitution

o .90
8’791_ 3991.

—iB. (20)
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We know the propagator for 8 = 0

, 1
Go(:c,:c ) = m (21)
How to transform G, into G ?
The claim is that
.. d .
G(...,Ap) = Z c“’A“’/ 2—XC_'(’_'5)XG0(- oy X) (22)
p==—00 CP 4
will do it. Indeed, by partial integration,
0 d i o?
(aA Zﬂ) Gﬂ(~ ’ Z xPA¢/ x i{(p— ﬂ)Xa 2Go( X) (23)

p=—o00

prowded we choose the path C, in a manner to avoid boundary terms. Note in particular
that f . would contribute the boundary terms (1 — exp(27iB))[Go6'(A¢p) +
(Go zﬁG'o)fs(Aw)l

The appropriate choice of the path is (see Fig. 1)

| (24)

{ C forp<pB
0 : Pl forp> f

? C’ ? In application to the magnetic string background

; : we express the free propagator in cylindrical co-

Fig. 1 ordinates
' ' ' q
= == 2
GD(J:)z ) GO(IU)zﬂ:rl)rJ.)A(P) COShQ—COSAl,O ( 5)
where
1 (2o —2j) +r1 +17 _ ,
q= m, cosh® = o1, s Do =pL -yl (26)
Furthermore we select again 0 < # < 1.
The transformation (22), (24) applied to (25) leads to
- q
Ga = ipp —l(p—ﬂ)x
a E_:OO ¢ c 2 cosh® — cos x
. (27)
- dX —i(p-4)x g
ipp e—ilp—
+Zc / ox ¢ cosh® —cos x

We can close the integration path at infinity (Fig. 2) and get
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[ =]
Gs q [e-pa z o= (®+iv)p

sinh ®
- p=0
C oo i
& id & + oB% Zc-@-w»]
p=1 (28)
0- T 27 q o—B%
:f( _id (j.( " sinh & [1 — e~ %y
5 c’ i e—(1-B)8+iyp
oo R ' W]
Fig. 2

and regain (17).
An alternative approach is to interchange in (22) summation and integration. Note that

the sum

NI'G

Ze"’"—‘rr Z 8((,o+21rk)+ % St ) (29)

k=-00

involves besides the & distribution the distribution cot(¢/2) oscillating violently around
cot(¢/2) within the limits 0 and 2 cot(¢/2). Fig. 3 shows approximations to %&(1/2),
ie. 2N sinnz for N = 50,1000, 20000.

e i a
N = 50 N=1000 N=20000

[ 2 04 ]

| . .

0] s0} ~sed

. x x _ x
IV SaRENY v (S v im T wm vy Y"1 A = Py re] V4

Fig. 3a Fig. 3b Fig. 3c

Under an integral with a smooth testfunction we can replace cot with the usual cot

function.
Then the transformation connecting Gg to G reads

d ) 1 i~ -
Gal..10) = [ 32#XGo(. .20 (xble = x) 4 5 - S )
(30)
dx ; 1
X ,iBx _ Y- X
+f, ¢ Gol--esX) (7'5(<P X)=35+3 = cot( ))
Noting that
_ Fix _ *Eip
1Ficot X = T (31)

2 cosy —cose
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we recognize that the contributions from the poles
_ at x = ¢ and xy = 27 — ¢ compensate those from

E 6(¢—x). There remain the contributions from the
o I — poles of Go(. .., x) inside the path E (see Fig. 4)
0 ===@ ........ @m 27|- dX l‘px
Ga(...,p) = - ypls
eiX — gi® (32)
x Gol... x)———.
: CO8S X — COS
Fig. 4
As a check we insert (25) into (32)
Gpg = / é('¢e"‘f”( g e e
E 4m cosh® — cos y cos x — cos¢p
_ iq Res eifx p=iX _ i | (33)
2 X™*® cosh® — cos y cos x — cos ¢
= _ 1 1 [e7P%(e? — ') — P¥(e™® - e'’)]

2sinh @ cosh @ — cos ¢

and reproduce again (17).

Now we pass over to the cases ¢ = £1 where the radial eigenvalue equation (12) contains
a 6 function. Naively one would expect that the §(r) term could change nothing since
Jip—p| starts as (kr)/P=Al and would not feel the § function. But besides Jj,_g we must
accept the normalizable solutions J_),_4),(0 < |p — 8| < 1, i.e. we could choose instead
of the complete system

Jip—p1» (—00 < p < ) (34)
any one of the complete systems {parametrized by O)

Jip-p1 + ©J_(p—pi B
Sisor (0<lp—-p1<1) (35)
le—ﬁll (lp - :Bi > 1)

This amounts to a self-adjoint extension (parametrized by ©) of the differential operator
in (12).

To fix © we consider a special limiting process. We start with a magnetic string of finite
radius a and let a — 0. We consider three models of this sort. In all cases the total flux
1s 27 3.
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Model I
=z« __ | B/a® (r <a) df [ 28/a? (r<a)
“”“{ﬂﬁz (r>a 2ﬁ+2?“{ 0 (r>a. 9
The interior equation
[-;f—z vie- (8- "—) L kz] Rui(r) =0, (r <a) (37)

is of the Laguerre type and has (for p > 0) the regular solution

— A2 2 2)12 2
Riul(r) =rPe Ar’/2e 1F1(9 + % - u4; ypt+1, %T) (38)
whereas the exterior equation

¢ 14 (p- ﬁ)

el b + k%[ Rext(r) =0, (r>a) (39)

i8 of Bessel type and has the general solution
Reyr = J|,-3|(kr) + OPJ..“,._p‘(kf‘). (40)

The matching condition at r = a

-a—ar- In Rint(r)|r=a = '?- In Rex‘(r)lr‘:a

8 ( "2;’,?4—2[5)
;{%“H p+1 1Fl(% azk ,p+1ﬁ)} 1)

_ K Jip-pi-a(ek) — Jp—p1(ak) + ©,(J-jp-p)-1(ak) = J-jp-pi+1(ak))
4a Jio-s)(ak) + ©pJ-1p-p)(ak)

fixes the parameter ©
_ CUip—pi(ak) + §5ip-pi1-1(ak) = Tip—pi41(ak)]
T CU ppepi(ak) + -;—,';[J_,,_m_l(ak) - J-w-mﬂ(ak)r
( +g_ 43 ,p+2yﬁ)
p+1 1Fl (§+g-n4;13p+1)ﬁ)

(42)

P
c=1-2_
B

We are interested in the limit of a very thin string, i.e. ak — 0 where the Bessel function

o=t (2 - () voten] o

behaves as
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and O tends to

- 1 C_\ _ (2k\? C+(3+{p—f))/8
) q—(“k)m I o(-ip - B)) (,3+r,_—;,g) (%) Goprts—Ar1
P
2

)
2 L(lp— L__C \_ (ek\2Ct+(a-]p-B]/B
(p =80 (3 - 5%n) - () RGeS
We recognize that © almost always vanishes for ak — 0 except if the leading term in the
denominator is zero

(44)

1 C
— =0, 45
Bexe IP - Bl ( 0)
0 < [p = Bexc| < 1. (45b)

Inserting C from (42) we can rewrite the condition of (45a) as

(1 + 29)1Fl(% +9,p+ 21ﬁexc) = 2(P + 1)(1 - p/ﬂexc)lFl(%’ +4g,p+ lsﬂexc)' (46)

For f = Bexc the parameter O tends to infinity

© — const. (ak)¥IP—Fexel=1) _, o (47)
P A The Model I has for g = —1 such exceptional
0 2.90433 values of #. They are listed in the table to-
1 0.73768 W ) A )
9 1.54747 gether with the first 8 which satisfy only (45a).
3 2.39087 || B A further set of fexc is obtained by the re-
4 3.25471 placement g — —g, p— —p, B — —f. At
5 | 4.13263 the exceptional values of § where ©, — oo
6 5.02102 |/ the contribution of the p*® partial wave to the
7 5.91755 .
8 6.82070 propagator is changed by the amount
9 7.72933

/ dk. k) KO(’CJ. IT'IJ - I:| l)
0

X [J-p-pi(kari)oppp)(karl) = Jjp-gbors)Jjp-pp(krri)]
(by + b_Y2IP=Al _ (b, — b_)2lp=8I (48)
- (4rov! )P=Blby b ’
by = \/(In —zy )+ (re £7L)%

One could refine the analysis and look for the behaviour of the solutions in the immediate
vicinity of Bexc (where O is finite).
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Model II
Evidently the values B.y. depend on the model. Our second model is a hollow flux tube
< df B
B(r) = {B/r N 26 +r—==6(r - a). (49)

The matching condition is now

akJj(ak) +208T)pi(ak) _  Ji,_g(ak) + OTL;;_p (ak)
Jipi(ak) Jip—s)(ak) + OJT_|,_ 5 (ak)

(50)

We find

6 = - UP—Bl=p=29B)Ji5\J1p—p) + ak[Jipe1Tip—p1 = JipiTip—pis]
(=lp= Bl = P — 298} \p| I -1p—-p) + Bk[Jipj+1T~p—p] = J(pid-lp-p1+1]  (51)
(all J, with argument ak)

p B and get fexc from
0 0 508 — 0
1 | 2/3 } Bexc lp—Bl+p+298=0 (52)
2 4/3 and 0<lp-fl<1
3 2
4 8/3 which is for ¢ = —1 satisfied by the values of 3 listed
in the table.
Model III

We can define a slightly generalized model by combining the two previous ones. Keeping
the total flux at 27 we introduce a free parameter n and write

iry={"P/a"  r<a 5, 9B _ [mBlat | 1=
poy={"ls TS 25402 = [P 4 g0y (s3)
The interior and exterior solutions are those of Model I, only the matching condition is
changed. In performing the limit a — 0 we hold 7 fixed. Now Bex. is dependent on the
parameter 1. For |n| > ak the condition for a Bex. is

1+2¢g 1FB1(3 4+9,p+2,

+29 1 1(%+g p+ ‘6’7)=2.(1_2)+1+”(1_2g—2—p>
p+1 1Fi(3+9,p+1,8n) g " B
supplemented by 0<|p-8l<1.

(54)

By changing n (i.e. the composition of the string) we can shift fSey.. The variation of 1
between 0 and 1 varies for example the Bexc belonging to the partial wave p = 1 between
0.667 and 0.738. Fig.5 shows for the partial waves involved a plot of Bexc as function of
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n. By further complicating the structure of the string it should be possible to make any
desired S an Bex in one of the partial waves where 0 < |p — B} < 1.

In conclusion it can be stated that for a non-Abelian gauge theory in the background of
a magnetic string the gauge field propagator is undetermined unless a limiting process is
specified how the é-string is obtained from a string of finite thickness.
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Radiative Corrections for a Non—Abelian
Gauge Theory in a Homogeneous Self-Dual
Background*

U. Muller
Humboldt-Universitat zu Berlin
Invalidenstr. 110, D-O-1040 Berlin, Germany

E. Wieczorek
DESY — IfH Zeuthen
Platanenallee 6, D-O-1615 Zeuthen, Germany

The counter terms for the polarization tensor were determined. It was shown that & mod-
ified Ward-Talahashi identity is valid for an arbitrary vatue of the gauge fixing psrameter -
if all contributions except for some tadpole terms are considered. These tadpole terms are
discussed.

1 Introduction

Here we consider a quantum field theory within a given external field as it is usual in
quantum electrodynamics. There are several motivations for doing that. For example
we can think of the fact that the Salam—-Weinberg theory as a non~Abelian gauge theory
includes quantum electrodynamics. Therefore every external electromagnetic field has to
be considered as a background for a non—-Abelian gauge theory. There are also physically
interesting cases such as magnetic strings for which one wants to determine radiative
corrections. Finally, gluon condensates can be investigated by means of background
fields. This can be done by the calculation of the effective action for such condensates,
at least approximately. In order to determine the 2-loop approximation [1, 2] it is
necessary to find out what divergencies appear and how renormalization shall be done
at the polarization tensor in 1-loop approximation. To get an entry into these problems
it is helpful to investigate at first simple background fields in order to get to know what
mathematical structures and peculiarities arise.
Very simple cases are homogeneous self-dual background fields {3, 4].

*Talk given by U. Miller at the workshop “Quantum Field Theory under the Influence of Externat
Conditions”, Leipzig (Sept. 1992)
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2 Yang-Mills Theory in a Self—Dual Homogeneous
Background: Propagators

Starting from the well-known Yang-Mills Lagrangian we obtain the Lagrangian of a
geuge field in a classical background if we replace the original gauge field by a sum of
this background By and the new gauge field aj. Within this approach the gauge covariant
derivative formed w1th the external field B}

D:b — 6058“ +gfach; (1)

plays a special role. f3%¢ are the structure constants of the gauge group, here SU(2) with
fabe = g2%¢, We will always consider Euclidean space with four dimensions. If we choose
the gauge fixing term according to the-covariant gauge

1 ab 2
Ly = 5~ (D c::) (2)

and introduce the Grassmann valued ghost fields ¢®, ¢® in order to compensate the
longitudinal degreéa of freedom of the gauge field we obtain finally as Lagrangian

c__ uKabab +caKabcb+

Al pyp

+ gfabc (D“c)a b as gfab_cD:dasazac + ngnbcfndca:a:a:az (3)

where K :ﬁ and K are the kinetic kernels of the gauge and the ghost fields respectively,

kit == (90"~ (1- 1) DD )" _2gfueFs,, (4)
K = — (D)™, (5)

FJ, is the field strength tensor of the background in the adjoint represeatation,
F, =08,B; ~9,BS ~ gf***BiB;. (6)

In the derivation of the Lagrangian (3) the assumption was made that the classical
background By fulfils an equation of motion without external currents .

D,F,, =0. | (7)

Otherwise the Lagrangian would contain also a term depending linearly on the gauge
field aj.

In our case we consider the gauge group SU(2) and as background a homogeneous
self-dual field:

] . . -1 0 0 0
Fi, = Bey, 6%, with Egv = 0 0 0 1 (8)
fubc — eabc‘ 0 0 -1 0
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The propagators for the gauge and the ghost fields respectively fulfil the following rela-
tions: B

KpLGi(z,yia) = 6,066z —y) = Y, xa(2) (X5®))° (9)
le;(; %Egel
K*G*(z,y) = 6*§(z — ). (10)

The kinetic kernel of the gauge field K :f, has zero modes, they have to be excluded when
the propagators are constructed.

The calculation of the propagators is possible for arbitrary values of the gauge fixing
parameter a. It can be traced back to the determination of the propagators at a = 1 by
the use of the rather general formula [5, 6]

G2 (z,y;0) = G2 (2, ;1) - (1 - a) / du DHGH (u, 2 )DF G (uyy51) (1)
= G (z,;1) ~ (1 - a) / du D24G4(z, u) D8 G¥<(y, u)
= G% (z,y;1) - (1 — a) D3¢ Dl* / du G%(z,u)G(y, u). (12)

Diagonalizing the kernels for a = 1 [5] and using equation (12) we obtain finally the
following expressions for the propagators (z = z — y) [7}):.

G®(z,y) = #"%(2,y)D(2) + 57" D°(2), (13)
Gy (z,y; @) = 8*%(2,y) D, (2) + #°*(z, ) D, (2) + 6 D, (2) (14)

with the phase factors
9*(z,y) = 6% cos oz, y) + €3 sin oz, y), (15)
$°%(z,y) = —63" sin o(z,y) + €1’ cos oz, y) = £1°8(2,y), (16)

where

Jﬁb — §236%3 59 — gab _ ga3gh?, 69t = a3, (17)
oz9) = Lemzaun. (18)

The translation invariant functions occuring in (13, 14) are

1

D(z) = yr=ye: e=19877 (19)
D%(z) = 4"1722, (20)
DC,(2) = 6,,D°(z) - - 5 2 {(%)2 TuE + apay] A(z), (21)
Do) = D) = 5% [~ + 50, - %‘*—m] A, (22)

(23)

Dzv(z) = 5avD0(Z) - - _20 |: Sur 22“2“J

47272 4Aqm2x
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where
DC(Z) gB 7 {wSh 27 -igBz*cothr _ 26—}@8:’] (24)
1672 sinh? 7
0
6_,_3‘._2_ gBC gBz* /
= ~*d 2
S _ gB T sinh 27 —3gBitcothr _ o ~%gBs’ - D)
Dz} = 1672 /dT Linhz‘re 2 ( 6)
0
" gB2?
__gB ey gBz* ¢BC 9Bz gB 85 e
=—gn° In 7 = cosh " 1e:2¢ Inze *dz, (27)
0
Alz) = (2 ‘1 (D°(z) - D(z)) (28)
gB /) 22
Zy = Eup 2y, C is Euler’s constant, C = 0.5772.. .. (29)

The propagators show a characteristic structure of a sum of three phase factors mnltiplied
by translation invariant functions. This structure gives rise to a modified dimensional

regularization.
3 The Polarization Tensor in 1-Loop Approximation

In functional integral formulation the generating functional of the Green’s functions reads

2[5 = /’Da Dc De exp (-—/L[a.c,é](z)d‘z +aj) . (30)
For shortness we use here and in the following the notation

aj = /a:(z)jf‘(:)d“x. (31)

If we proceed to the generating functional of the connected Green'’s functions In Z|[;] and
then perform a Legendre transform we obtain the effective action

I[A] = —In Z[j) + Aj (32)

where
oy OT'[A] 0y 1 6Z[j]
]“(Z) - 6.42(1‘)’ Ay(z) a( Z[]] Zb]&] (

Then the polarization tensor IT :f,‘(:r.? y) may be defined by the second functional derivative

of the effective action as follows

8§2I[ A
6AL(2)6A3(y) |,

(33)

= Kp8(z —y) — Ii(z,y)- (34)
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The generating functional Z(j] can be expressed by the propagators of the gauge and the
ghost fields if we decompose the Lagrangian (3) according to

L=CLo+ L1 (35)
into a free part
Lo = aKobab + -aKob b (36)
and an interaction part
Cx[a.c c] = gfabc (D c)d ba c gf“‘D:‘asa:af, + 2fobcf¢dcab acadae (37)

The latter can be represented by variational derivatives acting on the generating func-
tional where only £ enters

Zolj,n,7) = /’Da’DcDE exp (— /Co[a, ¢,g(z)d*z + aj + nc+ ﬁé) . (38)

Like the fields ¢* and ¢® the variables ® and 7® are Grassmann valued. The functional
Zo(j,n,7) can be evaluated and we obtain

Z[j] = exp (—/C [;J : 56}(3)41"2) (const exp(gJGf)em(nGn})

The power expansion of the exponential functions leads to a perturbation theoretical
series, where the polarization tensor is represented by the propagators.
The final result in lowest order of perturbation theory is (7]

(39)

n=i=0

D2 (z,y) = —g* f2f4/ DI G (2,y) DI GP(y,z) +  x< 11>y A (40)

+ g2 4 f4I DI DL* G4 (2,4)G2h(2,v) + Gob(2,y)GE5 (2.v)| -

1+ (WA) + (us) + (VA)(ur) ~ 2(vo) - 2(pe) - A (41)
= 2(pe)(v2) ~ Aur)(ve) + dpe)(vo)l| e=x + x by

+92 [fabcfbdeb-“vcf;(z,z) -
— (fedbpbec 4 fabe prey G (2 2)] 6(z — y) + x{_:r; A (42)

+9f°% [D3)(2) - D*g(v)] é(z — y) + P
+9f* 8@ - 6uik(m)D |8z -+ ‘&' B @)
+9f%° [3,(¥)Dy2 — 6uuGa(v)Dy2] 6y — 2) +

X=>’
+gf29 (D g¥(z) — DPg5(y)] 6(z — y) +
+9f° [g8(2)DEL - 6,ugh(2)DE!| (= = v) + B (s4)
+ gfdbc [gz(y)D;‘: - 6#V9f:(y)D§:] Sy — z) X = Y
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with
5(e) = - [ d'yos*/ DI GMy, )68z, v) (45)

gi(z) = /d‘ygf“’D"‘ G (z,¥)G% (v ) +
+G%5(2,¥)Gox (v, ) + G4 (2, 1) G5 (v, v)]. (46)

Up to now no use at all was made of the special form of the background so that this
result is quite general. The notation (af) symbolizes an exchange of « and 8. The
Feynman diagrams are shown next to the corresponding parts of the formula. Later we
will see that the last two contributions, denoted with letter B, have a special structure.
Therefore they are omitted at the moment and are treated in section 5. Hence we look
now at the contributions denoted by the letter A.

If we replace in (40 — 42) the propagators by their explicit representations (13, 14)
we see that the structure of the propagators is reproduced and we obtain

I3l y)(A) = 9%(2,v) L) (2) + 82, A (2) + 6 I (2) (47)
with

Il(z) = {6,.D(z)6.D°(z) +8,D%(2)8,D(2) +

nA #6 Ds Doxzuau

+ {Dfxa,a,u" + D%,8,8,DS, 2

B
+ 9—2—e,wD°AD + (

gB

2) D%,%,%,DS, — 8,D%,8,DS, — (48)
B

_‘8 D 6 Do a DaX VDEG— g Olzl‘a Dno:l '

14+ (vA) + (us) + (V'\)(MN) —2(vo) - 2(#0) ~
= 2ue)(¥) — 2ur)(va) + 4(pe)(vo)]| e=x +

+ [6MHDS::(0) + JJWD:Om(O) - 'DEV(O) - D;ow(o)] 6(Z)}

gB B

o®(z) = { D(2)z,8,D%(z) — —ED( )2,8,D°%(z) +
[ D%,z,0, DC

9B o gB\* o - - 0 s
h _‘2_°#VD ).D o D,‘Az,‘z, —0,D Aa”‘Duo - (49)

gB B

- 8,D3,0, D%, ~ %-8,D\5, D, + 9 D%,5,8,D%,

[T+ (WA) + (ue) + (Vf\)(#ﬂ) — 2(vo) — 2(#0) -
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= 2Ake)(A) = 2Aur)(va) + 4ue)vo)l| e=x +

+ 3D§,(0)5(z)}

2
n8)(z) = —-292{6“D(z)6,D(z) - (325) D(2)%,%,D(z) +

B _gB

+ [szauango 7= =D Az,,@ Df, +

B B\? B
+L5WDS»\D§¢+ (2—) Dn,\zu vD +(g ) Di/\zﬂsz +

2 2 2
B
+D%,8,8,D3, - Duz,‘a DS, + 92 D3,%,8,DS, - (50)
—g-f-sti,\D -9,D%6,D¢, - 2B \Zu0, DS, +
B, B -
92 %,8,D5, + (-"2 ) D3,3,%,DS, — 8,D5,8,D5,
B B\* ..
+ 92 T-DQ5.0.D%, — 75D, E.0, Doy + (32—) Df,\z“z,Dsa] .

AL+ (vA) + (k) + (w\)(;m) - 2(va) = 2(pe) —
= 2(pe)(vX) — 2(ux)(va) + 4(ue)(vo)]| e=x +

+ (8uvDix(0) — D, (0)) 5(1)}

In order to regularize this expression for the polarization tensor dimensional regulariza-
tion is performed on the translation invariant functions H“)(z), H(z)(z) and Hm(z).

4 The Counter Terms for the Polarisation Tensor

The special structure of the polarization tensor (47) gives rise to a modification of di-
mensional regularization in that way that it is applied only to the translation invariant

functions [T\ (z), {2 (z) and T3)(2).
We use the n—dimensional Fourier transform

Falf()(k) = um=* / f)e®rdz,  Frg(k)(e) =

to generalize all distributions into n dimensions

F () = FIUARL)- (52)

4 1s an arbitrary parameter with the dimension of a mass. The product of distributions
1s then defined as follows

(f Oeeg(z) = f () T (2) = FL A - Fot Falol)
A AR) (53)

4—n

7
(2m)n

/g(k)e‘“"d"k (51)
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where

-¢)dg. (54)

(f xg)(k) = f(k) * g(k) =

For the divergent parts of the polarization tensor only the short distance behaviour of
the functions D, D°, DS,, DS, and D3, is important:

na
1
0
D(z) = 4“+oa) D*(2) =
l—a | b, 2z,2,
Di.\(2) = 41!‘222 2 [4#227 4w224]+o(1)’ (8)

0 (1) = 1—al 6. 22,2,
uv 47222 2 47272 4yize

B gBz? l-a l-agBz,z, —Z,z
D3~<’)=—'§755»'1“T(1‘ ) - e o,

Hence it follows that for the calculation of the counter terms we may use the approxi-
mations

D(z) % D°(z), DS, (z) = D5, (2). (56)
Furthermore it can be shown that for our purposes it is possible to set 7]

Fq [—Siglnga; } & 2gB/Te""‘ dr. (57)

With that we find the following representations:

o0
FuDS,) =~ ¢B / (205“, = (2a2k,jc} ~ 202k, k, + as,w)) e dg,

0

o0
DS, = / (b — (1 — a)okyk,)e=* do, (58)
0
FuD%) = /e"”"zda.
1)

Finally we obtain for the counter terms

a __5 ¢ 3
To(z0)(A) = —5 55— 3 (1 + 35 (2 —a)) :
(@ + ) (6 - 0,0.) + SaBen] 6z —1) (59)

This expression can be written as

2
b= (8) = a2y (14 50 - a))

[(60D% = DuD)** + 29§ Fy, | 6z — ) (60)
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and fulfils the modified Ward identity

D;? H’y(x.y)(A) =0 (61)

for all values of the gauge fixing parameter o.

5 Contributions of the Tadpole Terms with Three
Gluon Vertices

Now the two contributions B of the polarization tensor (43, 44) are treated. Since they
have the same structure they can be united as

I3 (x,y)(B) = gf*% [DFgi(z) — DFgs(y)] 6(z —y) +
+0f* [gh(2)D! — 8,,54(z)DS4 ] 6(z — v) +
+ 952 [Go(¥)D;? — 6,30 (y) D3] 6y — 2) (62)
with
gu(z) = gu(2) +§.(z) (95, §; defined in (45, 46))
- gfd‘f/d"uDih G4 (2, u)G% (u, u) + G5 (2, u)GU (u, u} +
Ga(z,u)G5h(u, u) — God(z, u)G* (u,u)]. (63)

From the functional integral representation we obtain the following relation in lowest
order of perturbation theory:

1 6Z[j]
Z(5) ia(@) 1,2,

(ay(2)) = = gu(=)- (64)

Dimensional regularization yields
DA Gk (u,u) = finite, D*GSA (u, u) = finite, DIPG* (u,u) = finite
and

G¥ (u,u) = e4¢DS,(0) + finite terms
9B 1 . 3+« de
T grz2-2 g

+ finite terms.

Further calculation leads to (‘~’ means that finite terms are neglected)

¢’B 1 34«
8722-2 2

ga(z) = — 6%%€ 4, Ox / D°(z — u)d*u. (65)

The integral does not exist, it has to be regularized. Dimensioral regularization does not
work here because (D®)reg(z) ~ |z|>~" and therefore

/(Do),eg(z —u)d"u ~ /II —u|?7"d "y (86)
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diverges for all values of the dimension n, namely for large u. This is not so astonishing
because the type of divergency is an infrared one. If we use other regularizations the
integral can be calculated. Two possibilities are

0/, _ \o—he(u-a)?gs, 1 2 1 1. 1,

/D (z —u)e™? d*u 5% +4a,‘:t:,‘+25 " + O(e) (67)

1 1 R? 1 1

0(.. _ - 2.2 1 a7 1 =
D°(z — u)d*u 8% + %+ i +O(R) (68)

lu—a|<R
These two examples have the general form
1 1

reg/Do(:: —u)du = —§zz + L PuTu +¢ (69)

with constants p, and ¢ which depend on the regularization. Unfortunately the reg-
ularized expression (69) is not umique in the stronger sense that it can obtain a to-
tally different structure as a result of other regularizations. Let us e. g. introduce
a gluon mass m into the gluon propagator in (65). This results in the replacement
D%(z) = (m/4n?V/z?)K,(mVz?) which makes the integral (69) finite and independent
from z. Within the latter regularization the vacuum expectation value (a3(z)) as well
as the contribution (62) to I72%(z,y) would vanish. If on the other hand one chooses
regularizations like (67) or (68) with the general result (69) then one obtains finally

2 2
—a g‘B 1 34a_g5,~ -~ g 1 3+a,,
gulz) ~ ~ 39575 53 6°%(Z, — P,) = 16:23— % 3 Bj(z - p). (70)

If we substitute this expression in equation (62) for the part B of the polarization tensor
we find for the corresponding counter terms

dhr‘l 2 3 + a 1 a c c
M3i(z,v)(B) = 55—z {9/*“ DBz — p) ~ DI Bi(y — p)] Sz —y) +
2

+gfee [35(1 —p)D — 6, BY(z — p)D:‘f] é(z —y) +
+9f%° [Bu(y - P)D§. — bus Ba(y — p)D;2] 6(y — 2). (1)

Since the background field is homogeneous the constant p represents not more than a
gauge transformation. These counter terms do not obey the generalized Ward-Takahashi
identity (61). For the special value & = —3 the divergencies (70) disappear as well as the
counter terms (71).

There is another interesting relation between the structure (62) and a suitable vari-
ation of the kinetic kernel of the gauge field. This kernel depends by the covariant
derivative on the product of the coupling constant g and the background field Bj(z).
The coupling constant has to be renormalized. Let us ask now how counter terms have
to look like in order to renormalize gBj(z). Therefore we consider the variation of the
kinetic kernel if the product ¢B is replaced by the renormalized one (gB)yen = 9B +6(gB)

SK5t(gB)é(z —y) = Kgb(9B + 6(9B))b(z —v) - Kpb(9B)s(z —y).  (72)

The parenthesis after the K “jf, give the respective dependencies of the kinetic kernel. If
we look only at the lowest order of perturbation theory we have to neglect all products
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of §(gB) with itself. Then we obtain a.fter some transformations
SK2t6(z — y) = —gf** [(Dub(9B).(2))° - (Du6(9B)u(v)) ) 6(z ~y) —
—ostte[(1- 1) 6eBY@DL - B(aBIEID | 6z - 3) -

—o5* [(1- 2) seB D52 - bunblaBYIDSE | 80— 2). (1)

In comparison with formula (62) and (71) we can observe that these structures are almost
the same as in (73). They would be identical if @ — oo, i. e. if the kinetic kernel would
not contain the gauge fixing term. In this case we could identify

2
‘ 9° 3+a 1 a
2

This suggests for p = 0 a multiplicative renormalization of the product ¢Bj

o 1 34a ¢° .
(gB#)ren - (1 1672 2 2 !;_) gB#' (75)

But since we have a # oo the counter terms (71) do not have the right structure. There
are two possibilities now. _

On the one hand we can want to keep the multiplicative renormeldization scheme. ~
Then we must demand for the counter terms (71) to be zero. This is the case if a = —3
so that we obtain a restriction for the gauge fixing parameter.

On the other hand we can admit arbitrary values of «. Then the counter terms (71)
bring new terms into the Lagrangian. Since these new structures have the same dimension
as already existing terms of the Lagrangian the renormalizability is guaranteed though
we give up multiplicative renormalization.

There is another argumentation (8] which yields @ = —3. It is also based on mul-
tiplicative renormalization. From the way of the introduction of the external field one
should expect that the background field is renormalized by the same Z factor as the
gauge field. Furthermore the product ¢gBj also enters the covariant derivative in the
gauge fixing term (2) which is independent from the rest of the kinetic kernel for the
gauge field (4). Since the partial derivative 9, cannot be renormalized the same must
be valid for the product gB} in order to keep the covariant derivative unchanged. If we
now assume that the renormalization factors are the same as in a gauge theory without
a background then we have

11 g2 . 1 13-3a ¢
Gren = (1 T 482 m> 9 (Bl e = (1 Y82 8 a2_ n B, (76)

and we obtain (75) again. Because of (9B )ren = gBj we find once more a = -3.

6 Conclusions

The radiative corrections to the polarization tensor IT Zf,(a:, y) have been studied in 1-loop
approximation for arbitrary values of the gauge fixing parameter . The counter terms
have been explicitly calculated using a modified dimensional regularization. Apart from
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the contribution of some gluonic tadpole diagrams the counter terms obey a generalized
Ward-Takahashi identity for arbitrary values of a. The just mentioned tadpole terms,
which are related to the expectation value of the gauge field fluctuation (0|aj(z)|0), are
divergent both ultraviolet and infrared. The latter divergency has been treated by dif-
ferent regularization procedures. If one does not choose a procedure which regularizes
this contribution to zero (as e. g. introducing a gluon mass into the final formulas) the
remaining counter term is proportional to 3 + a. In this case the simple multiplicative
renormalization scheme is lost for all & # —3. At the same time the polarization ten-
sor I135(z,y) needs the counter term (71) and the expectation value (a%(z)) should be
renormalized by the counter term (70).
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QED between parallel mirrors:
light signals faster than c,
or amplified by the vacuum
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Abstract

Because it is scattered by the zero-point oscillations of the quantized fields,
light of frequency w travelling normally to two parallel mirrors experiences
the vacuum between them as a dispersive medium with refractive index n(w).
Our earlier low-frequency result that n(0) < 1 is combined with the Kramers-
Kronig dispersion relation for n and with the classic Sommerfeld-Brillouin
argument to show (under certain physically reasonable assumptions) that ei-
ther n(o0) < 1, in which case the signal velocity ¢/n(co) exceeds c; or that the
imaginary part of n is negative at least for some ranges of frequency, in which
case the vacuum between the fixed mirrors fails to respond to a light probe
like a normal passive medium. Further, the optical theorem suggests that n
exhibits no dispetsion to order e*, i.e. that n{oo) = n(0) up to corrections of
order ¢® at most.
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Quantum Processes in Cosmic-String Spacetimes
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Abstract

The effect of the conical topological structure of cosimic strings on quan-
tum interactions is studied in local terms and illustrated in the case of pair
creation and bremsstrahlung. We find that the influence of the cosmic-
string is localized: Only such processes are significantly affected that take
place at distances fromn where they can ‘sense’ the cosmic string with
their intrinsic quantum extensions. This extcusion is for pair creation the
Compton wavelength of the created particles while for bremsstrahlung it is
the wavelength of the emitted photon, which can be arbitrarily large. This
results to a finite pair creation cross section proportional to the Comp-
ton wavelength, and to the infrared catastrophe for the bremsstrahlung
process. Quantitative results for the pair creation cross section and the
bremsstrahlung energy loss are finally given.

1. Introduction

One of the most important features in the cosmic-string physics is the conical structure
of the spacetime around the cosmic string. The corresponding angle deficit is Ay = 877Gy
where G is the gravitational constant and u is the mass per unit length of the cosmic-
string. Of astrophysical interest are cosmic-strings formed at the grand unification scale
having Gu = 10~%, The spacetime of an infinite straight static cosmic string, taken to lie
along the z axis, is described in the zero thickness approximation by the metriclll

ds? = —dt? + dz? + dr? + b2r2dp’. (1.1)

Here the coordinates are the usual polar coordinates in Minkowski spacetime and b= 1 —
4G u. Note that the only difference with the Minkowski spacetime is in the constant b which
is slightly less than unity. This topological modification, although small, is responsible for
several important physical effects. Indeed, let us remember (see e.g. Refs. 1, 2)
¢ the classical gravitational analog of Aharonov-Bolun effect: test particles moving in
the spacetime (1.1) are deflected off the cosmic-string although they feel no gravita-
tional forces (the curvature is localized along the z axis).
o the characteristic gravitational lensing field.
¢ and the step-like temperature anisotropies in the microwave background produced by
moving strings. All these effects provide a basis for the detection of cosmic strings.
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¢ Also the formation of wakes behind moving cosmic-strings provides a seeding mecha-
nism for the formation of sheet-like large scale structure.

The conical topology can also affect classical and quantum fields.
e A static electric charge feels a repulsive self forcel®! while similarly a massive particle
feels an attractive gravitational forcel*! of second order in G.
e The quantum vacuum is polarized in a very similar way as in the well known Casimir
effect,!S] while free quantum fields scatter in a non trivial way.il
¢ Quantum interactions are modified.

This last effect will be the subject of the present talk. To isolate effects due to the
conical topology we will consider no coupling of external ficlds to the fields that make up the
string core. Consequently, we shall not study the interesting Callan-Rubakov effect which
has been discussed e.g. in Ref. 7. Discussions on Aliaronov-Bohim type of interactions
due to the magnetic flux of the cosmic-string core can be found e.g. in Refs. 8, 9.
For interesting reviews and further references on plysical cffects around cosinic-strings see

Ref. 10.

Starting out, let us look at particular quantum processes as e.g. the quantum elec-
trodynamical (QED) pair creation (PC), and bremsstrahlung (BS). These processes are
not allowed in empty Minkowski spacetime due to momentum conservation constraints.
They could however take place in the presence of a cosmic string because now there is a
breakdown of the translational invariance on the z — y plane, the plane perpendicular to
the cosmic-string.

This argument of momentum non conservation seems strong enough to explain why
such processes are expected to take place in the prescnce of a cosmic string. However, one
should note that it is a non local statement. Therefore it is not so useful in analyzing our
intuitive expectation that the influence of the cosmic string on the quantum processes is a
spatially dependent one (processes close to the string are certainly expected to be modified
more than others far away). The question that now arises is whether we could give within
a S-matrix scheme a local analysis of quantum processes around the cosmic string,

Let us mention some of the difficulties that one faces trying to answer this question.
The usual S-matrix quantities (plain-wave particle states. transition probability ampli-
tudes, ...) are non local. Of course the cross section gives. if it can be defined, a measure
of the range of the influence of the scattering centre. identified w onr case with the cosmic
string. However it is not so useful when it is infinite. Furtherutore. in general it cannot
be defined satisfactorily, as e.g. in the case of the collision of two particles in the presence
of the cosmic string. There. to cach collision cveut should correspond something like a
spatially varying cross section. depending on the distance from thie cosmic string. Such

(3]
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a notion, however, cannot come out from a usual S-matrix scheme. Finally, it should be
mentioned that local information can in principle be obtained using wave-packet states
but one soon runs into technical problems.

So besides the calculation of transition probabilities, cross sections and so on, we are
also interested here in extracting within an S-matrix scheme qualitative or, even better,
quantitative information about the local influence of the cosmic-string. As we shall explain
below, a way to do this is to use angular momentum eigenstates which on the one hand have
interesting local properties and on the other allow for analytic calculations. Calculational
details will not be given here but can be found in the Refs. 11, 12, 13 which are also the
basic references for what follows.

2. Cylindrical modes and their local behavior

Let us consider a Klein-Gordon field with mass M. The field equation in the back-
ground (1.1) can be solved in terms of the cylindrical modes

u) = u"_e( =

\_/1’_2_be_i3,¢ei~zciz¢‘]]{l(<,,.)' (2.1)
j is the collective quantum label j = {x,¢,(} with £ € Z,x € (~00,400) and { € (0,00).
Here «, %,(,Ej = (k2 4+ ¢ + M*)Y? denote respectively the z momentum, z angular
momentum, measure of the z — y momentum and the encrgy. Note that the topological
influence of the cosmic-string on the free fields consists of producing non integer angular
momentum.

Let us now look at the particle density of the u; modes. This is a quantity proportional
to the square of the Bessel function that appears in Eq.{2.1). As it is well known, the Bessel
function J,(z) goes to zero as « z¥ for z < v while for z > v it oscillates with an amplitude
that falls off as 1/,/r and is independent of v. This behavior implies for the u; modes the

existence of a characteristic radial scale r, = ]b%l and the following important properties

o Localized absence for radial distances r < re = ib_‘cl :a quantum particle with j =
{k,¢,(} is not very likely to be found in the cylindrical rvegion r < r,. Note that,
keeping ¢ momentum fixed, we can enlarge the region of localized absence by increasing

the angular momentum label [¢|.

o ¢ - independence for large v : Two modes differing only in their angular momentum
numbers tend to coincide in the average for sufficiently large distances.

Note that 7, is the classical radius of nunimnm approach from the cosmic string for a
particle with angular momentum ﬁ and z — y momentum measure (.



Quantum Field Theory under the Influence of External Conditions 117

3. Three particle interactions at tree level

Having in mind the QED interaction that involves at tree-levcl three-particle processes,
we will consider here for simplicity a structurally similar scalar interaction

Lr=-Apy?, (3.1)

where ¢ is a massless and 1 a massive scalar field with mass M. The coupling constant
A has units of mass and corresponds to the tree-level QED quantity 2Mg, where ¢q is the
electric charge.

The transition amplitude from a one particle state, with quantum numbers j =
{k,£,{} and energy E, to a two particle one, with j, = {x1.&1.(1}, J2 = (K2, £2,62)
and energies Ey, By, is

P x 6(E — Ey - E3)6(k — K1 — Rp)bee, 42, P

= "t I () i (67 (G, (3:2)

Here, besides the easily recognized terms expressing encrgy, z momentum and 2z angular
momentum conservation, we have also the Py term, the importance of which is not imme-
diately evident. It turns out that we can analyze the behavior of Py when [¢] = |¢; £ £5],
a condition that is satisfied in our case because of z-angular momentum conservation. We
find that Py has different angular momentum dependence, depending on whether the z —y
momentum measures ¢, (;, {2 satisfy or not the triangle inequalities. Specifically we have
for the functional form of P;

1) |G -GI<{<OG+( Py o cos(f1{l1| + f2]€2])
(i) (> +¢ Py o exp(—g1¢1| — g2162])
(iii) ¢ <[ — ¢zl Py o exp(—ha |1} = haléa)).

The arguments of cos and exp are linear in (£), £}, ¢, with coefficients fy, f2,91.92, by, he
that are some functions of {,(;, (2. In particular gy, 45, by, he are non negative.

Combining now this behavior of Py with tlie localized abscuce property of the cylin-
drical modes we conclude that:

e Type (i) processes can take place with significant probability all over the space since
the transition probability amplitude 1s not sensitive to whether the involved angular
monientumn numbers, and correspondingly the regions of localized absence, are small
or large.
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¢ On the other hand, processes of type (ii) and (iii) are move likely to take place for
smaller angular momenta and therefore within a finite distance from the cosmic-string.

It is interesting to remark that momentum conserving processes are necessarily of type
(i). This happens because for such processes the momentum vectors in the z —~ y plane
should fit and form a triangle and consequently the corresponding measures should satisfy
the triangle inequalities.

4. Local behavior of pair creation and bremsstrahlung

Now we are ready to discuss the local behavior of the pair creation and bremsstrahlung
processes :

. ¢ Vv . v v é
(PC): [13) — 113, 1:’:), and (BS): [17) — [1¥17)

The parameter space of the quantum numbers (, (3, (2 is restricted for kinematical reasons
namely the demand of energy and z-momentum conservation. It is not very difficult to see
that for PC there exists a mass theshold at { = 2M and that both PC and BS processes
are restricted to be of type (ii) in the classification of the previous section. However, for
BS we find processes that are arbitrarily close to the process with {; = (,{ = 0 which
lies on the border line between type (i) and type (ii, iii) processes. Having in mind the

different local behavior of type (i) and (ii)} processes it is now very interesting to compare
PC and BS.

In momentum space we easily find a difference. Swumming over the final states we
obtain the total probabilities w(x,€,{) and it turns out that for PC the wpg(k,¢,{)=
finite while for BS the wgs(x, £, {)= infinite.

To understand this result we may pass over to the configuration space using the basic
properties of the cylindrical modes. The quantity

bwe = w(k, €, () —w(n. £+ 1,(). (4.1)

can be roughly interpreted as the average probability for an initial particle with quantum
numbers j = {x,£.(} to make the corresponding transition within the cylindrical ring
T € (Te, Tes1 )

For PC we find
dwp X exp(—ar M) (4.2)
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where a is some function of { of the order of unity. The behavior (4.2) implies that the
PC process is well localized within a Compton wavelength 7 < M~! from the cosmic-
string. Thus the total probability, and of course the respective cross section, are finite and
proportional to the Compton wavelength of the created particles.

On the other hand, the BS transition probability in a cylindrical ring of radius r, is

1
bweox 1/ry for 1> i (4.3)

which has a slow falloff rate giving finally a logarithmically divergent total probability
when the contribution of all the rings is taken into account. This infinity is one side of the
well known nfrared catastrophe which is typically expected to accompany bremsstrahlung
processes. The other side, the more familiar one, is most easily seen by looking at the
differential transition probability dwps/dw, where w is the photon’s energy. It has the
characteristic bremsstrahlung low frequency spectrum

dwns 1

which gives again a logarithmic divergence in the total probability.

Concluding we arrive at the following intuitive physical picture for the local behavior
of PC and BS processes. Each individual process has an intrinsic quantum extension
which is of the order of the wavelength ( Compton wavelength ) of tlie massless ( massive
) product particles. The probability for this process is significant only if it takes place at a
point from where it can reach the cosmic string with its extension. Thus the extension of a
PC process is approximately equall to Compton wavelength M ™! of the created particles
and therefore it can take place with significant probability only very close to the cosmic
string at distances r < M~!. On the other hand, the extension of a bremsstrahlung process
can be arbitrarily large since the emitted massless particles have available arbitrarily large
wavelengths. Thus, with ‘softer’ and ‘softer’ photons the cosmic string can be sensed from
any distance. As explained above, the detailed calculation for the local BS transition
probability at large distances shows a 1/7 radial dependence. a falloff rate which finally
leads to the infrared catastrophe.

5. Quantitative results

Here we would like to quote the results for the pair crcation cross section and the
amount of emitted bremsstralilung radiation. As alrcady mentioned above, calculational
details can be found in Refs. 11,12,13. See also Ref. 14 wheve the PC process was treated
for the first time.
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5.1. Pair creation cross section

For an ingoing plane wave massless state with momentum g = {p.,p,,p, = £}, the
PC cross section per unit z-length is

31r 1-b)2
17920 2(%)2 v forl< 2‘5\7 < nz_ll-_b)
opc(p) = (5.1)

1 31 . 1
o2x 9 M> for 387 > =(1=0)

where (* = p2 + p3. Also by q we denote the quantity A/2M which corresponds, as we
mentioned in Sec. 3, to the charge of the created particles.

From Eq.(5.1) we see that the o pc is proportional to the Compton wavelength 1/M of
the created particles. Furtheremore, for energies well above the mass threshold ¢ >» 2M,
the cross section o p¢ increases as ¢? and is proportional to the small quantity (1 ~4)2. This
behavior is however valid up to the characteristic energy scale { = 2M/(n(1 — b)), after
which the opc(p) looses the dependence on ¢ and interestingly enough also the dependence
on the cosmic string strength parameter {1 — b).

5.2. Bremsstrahlung energy loss

For a massive particle state with quantum label j = {x,£,(} and mass M, the total
emitted bremsstrahlung energy per unit time and per unit z length is

1 [ dwgs(s¢()

L, 2 2w .
where T, L are usual time and z length normalization intervals. Note that £.,4 is finite
even though the total amount of emitted soft photons is infinite, a consequence of the

particular 1/w low energy behavior of bremsstralhlung spectrum in Eq.(4.4).

Thanks to the Lorentz boost invariance in the z direction we may restrict ourselves,
without loss of generality, to tlie computation of £,y in a frame where x = 0. We find
that

For 7o = |€}/(b() > M ™!

TUDTY vl

Eaa(0.6.¢) = ﬂ%ﬁﬁf‘uqu v < [7(1 = b)]7! (5.3)
e, if v > [2(1 - b))~

where V = (/(¢2 + M*)!/? is the velocity of the incouling charged particle and v is the
corresponding Lorentz factor y = (1 — V?)~1/2,
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For r, €« M™!

LOMM 3 4y 1,y & [r(1 = )]~
grad(0|£1C) = 2 (54)
LMy, ify»[r(1-b)

Note here the dependence of £;,4 on the velocity of a relativistic charged particle and
the cosmic-string strength parameter (1 —b). &.q is proportional to (1 — b)? and increases
as the third power of the respective Lorentz factor as long v « 1/(n(1 — b)). For larger
velocities £;,4 scales only as o v and is independent of (1 — b). This reminds the energy
behavior of the PC cross section.

In Eqs.(5.3,5.4) we see that the emitted BS energy has an 1/r, dependence when the
charged particle remiains far away from the cosmic-string, at distances 7, Quite larger than
its Compton wavelength M~!. Notice that, according to the discussion of the previous
section, the BS process takes place at such distances thanks to the emitted massless par-
ticle, which can sense the cosmic string from arbitrarily large distances. -However, as the-
particle comes closer at distances comparable to M ™!, the cosmic-string can be directly
sensed by the massive particle. This is reflected in the expressions for ;.4 as a smooth
transition from the 1/r, dependence to an r, independence.

Closing, let us remark that there exists a classical analogue to the quantum BS pro-
cess just considered. It is the radiation from a classical charged particle, with charge g,
freely moving in the cosmic-string spacetime, starting from radial infinity and scattering
off back to radial infinity, having z — y velocity measure ¢ and radins of minimum ap-
proach 7y,;, = 7. This classical problem has been considered in Refs. 15, 16 for scalar,
vector and tensorial moving charges. The respective classical expressions for the total
energy emitted during this motion are, in the scalar case, exactly those given in Eq.(5.3)
above. Consequently, the classical treatment is adequate provided that the charged par-
ticle remains at distances from the cosmic-string that are quite larger than its Compton
wavelength. For smaller distances one must treat the process quantum field theoretically.
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Abstract
This paper is aimed at developing a general framework for the cal-
culation of the creation of pions and photons mutually interacting via
the 70 — 2y model interaction in anisotropically expanding universes
of Bianchi type 1. We give explicit results at least for the interaction -
free contributions to particle creation and particular expansion laws.

1 Introduction: Conformal invariance pro-
perties of field theories and particle crea-
tion effects in isotropic cosmology

It is well known that gravitational fields are capable of producing particles
out of the vacuum. This occurs already for particles which are free of any non-
gravitational interaction with other particles or themselves (see e. g. Parker
1971). Thus the question naturally arises how self - or mutual interactions
change the numbers of created particles in particular in expanding universes
(Birrell and Ford 1979, Birrell et al. 1980).

One typical result is that because of their interaction with other particles
even conformal ones like photons can be produced by conformally fiat expan-
ding untverses (Lotze 1985) while they cannot be created as free particles.

1
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Another one is a spin-statistics effect: In modes with spontaneous creation
the interaction gives rise to an amplification (attenuation) of the creation of
bosons (fermions) (Audretsch and Spangehl 1985, Lotze 1985).

If we turn to anisotropically expanding universes, we have in general

~ three different mechanisms of conformal symmetry breaking: (i) by at least

one particle species being non-conformal, (ii) by the interaction, and (iii) by
the anisotropy of the background. It is the goal of this paper to investigate
the interplay among, and the relative importance of, these three effects. To
be more specific, we investigate the #° — 27 interaction between pions and
photons (Birrell et al. 1980) in anisotropically expanding universes of Bian-
chi type 1.

Before doing so, we compare four particular field theories in order to study
the influence of conformal symmetry breaking on particle creation effects
these theories give rise to. For that purpose we consider these field theories
in the background of a conformally flat universe with isotrpic expansion and
the line element !

ds? = C?*(n)(dz? + dy? + dz2® — dn?). (1.1)
Our first ezample is a self-interacting scalar field with the Lagrangian
1 U . .
L=y=g (5 08,8, + (m* + €R)®?] + A.,@‘) , (1.2)

£ and ) being dimensionless constants. Performing the conformal transfor-
mation

gu = C*(n) Nuv (1.3)
of the metric (1.1) onto the Minkowski-space metric n,, together with
§=1o (1.4)
=5 X

1Notations and conventions: ¢ = A = 1, metric signature (+ + +-); Greek indices run
from 1 to 4, Latin ones from 1 to 3. An overdot denotes the derivative with respect to the
conformal time parameter 1. In the figures a solid line represents a massive and/or non-
conformally coupled scalar particle ((KG): Klein-Gordon) while a broken line denotes a
conformal (m = 0 and £ = 1/6) scalar particle. A photon ({M): Maxwell) is characterized
by a wavy line and electrons and positrons ((D): Dirac) by solid lines with an arrow.
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we end up with

-

L= -;- n*® 8, + CIm2d? + (66 — 1) g 37| + M4 .

Obviously, the conformal invariance is broken by L., that part of the Lag-
rangian which is free of the non-gravitational interaction. As is well known,
this gives rise to free creation of pairs of scalar particles if only they are not
conformal ones (m # 0 and/or € # 1/6; fig. 1la).

Furthermore, because of the self-interaction, pairs and quartets of interacting
particles may come out of the background (fig. 1.b; Birrell and Ford 1979).

a b
Figure 1: Creation of non-conformal pions as free particles (a) and due to

their self-interaction (b). The corresponding processes for conformal particles
are not allowed.

As a second ezample we consider the mutual interaction between Fermi
and Bose fields according to quantum electrodynamics with the Lagrangian

o 1 = - = - - . R
L=V [-1 P = 5 (390, - B35 + 2mBh) + ieali A,
(1.5)

Because of (1.3) the Dirac matrices are to be transformed according to

1

m

=7
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If we transform the bispinor field as

- 1
Y= Ef"b
- and the electromagnetic field quantities as
A=A,
and consequently )
F,.=F,, (1.6)

we get from (1.5) the transformad Lagrangian

1 P _ -
L=-2F"F. -3 (P7*%u = ¥ 7Y + 2mCPY) + ieohpy* Ay

Since the coupling constant €3 ~ 2 is dimensionless conformal invariance is
violated by Ly,.. only, as in the case of the previous example.

Consequently, we expect that not only free electron-positron pairs can be
created from vacuum (fig. 2a) but also photons together with them (fig. 2b;

Lotze 1985, 1992).

a b

Figure 2: Creation of free electron-positron pairs (a) and simultaneous crea-
tion of electron-positron pairs together with photons (b) due to their inter-
action.

The third ezample is the self-interacting electromagnetic field with the
Lagrangian

o B9 4 by (B F5Y2 4 by -f;,pw)ﬁ) Coan

4
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Applying again the conformal transformation (1.3) and transforming the
electromagnetic field strength tensor according to (1.6) leads finally to

1 y 1 2 . v
L=_ZFuuF“ +_C'T[bl(Fqu“ )? + ba( “F F¥)7).

In this case the conformal invariance is broken by the interacting part of the
Lagrangian, L, only. On one hand, this reproduces the well-known result
that photons cannot be produced from vacuum as free particles. On the
other hand, a quartet creation of interacting photons is allowed due to the
self-interaction (fig. 3; Birrell and Ford 1979).

Figure 3: Creation of photon quartets (even in conformally flat space-times!)
due to their self-interaction.

Our fourth example is the 7® — 2y model interaction between scalar and
electromagnetic fields (Schwinger 1951, Birrell et al. 1980) the Lagrangian
of which is
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1. - 1 ~ = <
L = V=g (_ TR F 4 2 [0, + (4 ER)S]

4T 2 (1.8)
+ Bo "FLF*0 ).
The coupling constant B, has the dimension of length. Performing the trans-
formations (1.3), (1.4) and (1.6) we get

L.= — 45 F, F* + % [q"“q‘,«p,u + C*m?®? + (6¢ — l)g <:>’]

oo
+ 560 "FuF*3.

Now the conformal invariance is violated by both Lgee and Lin,. As a
consequence, photons may simultaneously be created not only together with
non-conformal scalar particles (fig. 42) but even together with conformal ones

(m =0 and £ = 1/6; fig. 4b).

a . b

Figure 4: Simultaneous creation of photon pairs and non-conformal (a) or
conformal (b) pions as a consequence of their #° — 27 interaction.

2 The 7% — 2v interaction in Bianchi type I
universes

We want to establish a general scheme for the calculation of the creation of
photons and and pions interacting according to the 7° — 2y model (1.8) in a

6
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spatially flat spacetime
ds? = C,*(n)dz? + C3(n)dy* + C2(n)dz? - C¥(mdn?  (2.1)

- with anisotropic expansion.
In this situation we have two mechanisms of conformal symmetry brea-
king. Conformal symmetry may be violated by

(1) Lg’ff) if m # 0 and/or £ # 1/6 and Ly, since Bo has the dimension of
length (Bo = 1.21-1078cm),

(i1) the anisotropy of the expansion.

Therefore, in general we expect not only the processes of fig. 5 to be
allowed but also those shown in fig. 6.

a b ”

Figure 5: Creation of non-conformal pions (a) and photons ((b), only for
anisotropic expansion) as free particles and their simultaneous creation (c)
due to the 7° — 2 interaction.
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”
~

a b c
Figure 6: The same processes as in fig. 5 but with conformal pions. The

processes (a) and (b) are allowed for anisotropic expansion only.

The Klein-Gordon equation

The solutions of the Klein-Gordon equation
g ® ., + (M +ER)® =0

may be written as
- 1 - - - ‘
d= GrAC /dap [5(7) x(7; 1) 7 + h.c] (2.2)

where x(7;7) is a solution of the equation

X+ Ax+

m3+m%wRMP+Ag—g]x=u (2.3)

Here we introduced )
2 _ Di
v-2(a) .

the "damping parameter”
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and the curvature scalar

i dfa Cel, lg GG
R‘E?c_k(c"‘cc")*czzk:ckzcx (2.6)

The Maxwell equations
The Maxwell equations
F&=0 and “Fr=y
are non-trivial in the metric (2.1) which is no longer conformally flat. In

terms of certain time dependent, orthogonal unit vectors €g and €g they

may be solved for the electric and magnetic fields £ and B in the rather
simple-looking form (Sagnotti and Zwiebach 1981, Lotze 1990)

E = (2#)“3/2/d3; Z [a(z,a)f.(”)-(l-c', n) e + h.c.]

and B = —i2n)-3 / PEY o [a(E,a) Ak, n) e + h.c.]

- NG) R SV
where fY)(E,5) = SFA(—g)Te [uC PO (n)es - okt ()| -

Now the pendant to (2.3) reads

®
F@) _ gﬁ*’) C** + okp (—;—) F) =9 (2.7)

where Q; is defined by (2.4) with k instead of p, and o and B are the "ani-
sotropy parameters” (k,? = k,? + k,?)

C* kikak
@ = U5 e G1-0) (28)
' 2
and f = \/C_g%(c,%,uc,%,’). (2.9)
—§ KL
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The connection between the time dependent unit vectors €9 and €s and time-
independent cartesian basis vectors &) is the same as for spherical coordi-
nates but with time dependent coefficients,

- k C Cs - Cy L
€6 = — —————— | cosdcospéy) + - cosdsinyp €y
Qi BV —g)' /4 | Cs Cs
— %03- Siﬁ J 5(3):' )
- C

€o = W [—Cl sing €y + Cs cos¢€(g)] .

The main advantage of this method of solving Maxwell's equations is that
one gets the polarization degrees of freedom decoupled.

Axisymmetric expansion laws

In what follows we restrict ourselves to axisymmetric expansions (C; = C3)
such that the anisotropy parameters (2.8) and (2.9) substantially simplify to
a =0 and g = C/Cs. As a consequence, F(®) of (2.7) becomes independent
of the polarization ¢.

With this restriction in mind we consider four particular expansion laws
(v: pumber of expanding directions):

(i)  expansion in one direction (v = 1)

Ci=Cy=1, C3=C(p), (2.10)
(ii)  expansion in two directions (v = 2)

C=Ca=C(n), Ci=1, (2.11)
(iii)  isotropic expansion (¥ = 3) as a limiting case

Ci=Cr=Cs=C(n), (2.12)
(iv)  weak anisotropy

Ci¥(n) = C*(m 1+ ki(m)],  |hi(n)| < 1 (2.13)

where hy =ha = h(n)
and, for convenience, 3 h; = 0 (Birrell and Davies 1980). (2.14) .

10
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The first two examples may be looked at as originally isotropic expansions
where one resp. two directions are kept fixed. For these and the isotropic
expansion the parameters (2.4), (2.5) and (2.6) of the Klein-Gordon equation
can be given in terms of the number v of the expanding directions,

020,,2 = vipi?+mps?, (2.15)
A = (v-3) —g— (2.16)
- 2
and R = 2V%+V(V—3)%

where v, = %(4 — v -1)+ %(u —3)(v - 2)C?
and v = (v=2+B~-v)(v-1)C*.
In the isotropic case we get in particular v, = v3 =1,A =0 and the well
known R = 6C/C3.
Equ. (2.7) which is what essentially remains from the Maxwell.equations:- -

simply reads

F+(v-1)AF+CU*F=0

with Q, and A given by (2.15) resp. (2.16) with the only modification that
pL aud py are to be replaced by k, and k;.

For weak anisotropy (2.13), (2.14) the equations (2.3) and (2.7) may be solved
by perturbative methods.

3 A general scheme for the calculation of
particle creation

Particle number desities

In order to calculate the number density of created particles we again choose
the in state to be the vacuum in the remote past,

[0,in) = [0¥Din) | 0™ in) |

11
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where we have to distinguish between in in and out states for the eletroma-
gnetic field as well. With this in state the particle number density is

_ (in,0| S*NowS |0,in)
- (2m)3 C1C2C5
Number operator and $ matrix are
Noa. = N (K@) + N (M)

out out
and S =T exp {4:/90/d4z V- Eé)&} =1+ oSV +
Inserting these into (3.1) yields
n=ng K 4 Nog M) 4 (nnga) + nl(M))

The notation is chosen in such a way that the sum of the subscripts at each
contribution to n indicates the power of the coupling constant this term is
proportional to.

(3.1)

The pure background effects

The number density of free pion pairs created out of the vacuum is (figs. Sa,
6a)
nogKG)

1 o (KG) /=
(27)3C1C,Cs /dBPN( )(P) ) (3.2)

where N*9(5) = |5(-p)’

denotes the mode dependent number of out pions in the in vacuum. The
Bogoljubov coefficient turns out to be
- V=g . .
,B(P) =1 "Er Ni.nNout(XoutXin - XinXout) .
The corrsponding quantities for the creation of free photons (figs. 5b, 6b)
are

(M) _ 37 Ar(M)
ng (2#)301 — / EEN(Fy (3.3)
NM(E) = ZN‘“’(k,a) = Z 18 (=R
ad PR = s NN [FA:"FJ"’ RUAU

12



Quantum Field Theory under the Influence of External Condilions 135

Simultaneous creation of pions and photons:
The amplification effect

Now we turn to the simultaneous creation of pions and photons due to their
mutual interaction (figs. 5c¢, 6c).
The number density of pions is

-.‘

(KG) _ 3548k 43 —~
nyy (2”)3010203/d pd3k a3k 6(k K +p)x
[1+2N5O(F)] w(k,F,5)

and that of photons

My _ 313713 T,y =
Ry oo = (27r)3010203/d 43k &3k 5(1c__+k +p) X

{ [1 +3 N(M)(k)] + [1 + §1\(04)()2')]} w(k, k7).

A first glance at these results reveals that the spontaneous creation of
pions and photons amplifies their creation stimulated by interaction. This is
because the commuting character of the Bose operators of the Klein-Gordon
and Maxwell fields gives rise to the plus signs in (3.4) and (3.5). Therefore a
sirnple counting of the lines in figs. Sc, 6¢ does not yield the relative number
of photon pairs per one pion.

Moreover, because of the non-vanishing background effect for photons in
anisotropic space-times even the photons are no good indicators of the non-
gravitational interaction. None of the two particle species is a good indicator
because any detected particle could have been produced freely and by mutual
interaction as well.

The particle creation probability occurring in (3.4) and (3.5) is (k1 = k. cos ¢,
ky = k; sin¢)

(3.5)

13
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2 INin(B)? [ Nin(B)? | Nua(5)1?

w(l-c', E"ﬁ) = b om3(kk')? {‘Jl|2°°32($0“f”)

bkl coslip — @),V + kik 2,0
+ 2cos(p — @) Re [J,' (kak; cos(p — '),V + kLk’LJQ(z))]
+ sin’(p — ") kads ~ k3 Ju|* } .
The time integrals read

Ji = /dn 02 Xin P) xn(k 7?) Fm(ka'))

oo 1 B .‘" -'
Ja(l) = /d'I) C—SXin(PJU) Fln(krn) Fh’(k ’77) )

o0

C d e -" \
LP = /dn a—“;x;n(p,n) Fin(kyn) Fin(K',m)

=) 1 . . .
J3 = d77 EXin(p)n) Fm(an) Fm(st) y
oo ) } . 3
I = [ dn g xalin) Falfom) FulFm)

There are no plane-wave exponentials in the integrands because there
are no conformal particles. Moreover, certain powers of the scale factors
C) = C,,C3 and C appear explicitly. In the isotropic limit they all reduce
to 1/C, the conformal factor of the scalar field (cf. (1.4) and (2.2)).

Test of the formalism: Isotropic expansion

We want to test our general scheme for the caculation of particle creation
developed so far by applying it first to isotropic expansion. From (3.4) we
get

14
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N L N 0T C /d3 A3k %k’ 6(k + F' + p) x (36)

(1 +2N%9(5)) w(k, k7).

With isotropic expansion the photons become conformal particles such that
NM)(k) = 0. Therefore (3.5) simply reduces to

nY! = k' + pyw(E, K, p) (3.7)

where now
e\ 2
L ING()P iF
Ts0tr k’ = 2' i ! 2

W0t ( N ,p) ,6 O3 kk kk’ |JI

and -
1 - .
J= [ dp o Xin(P, 1) exp {—#(wp + wp)n} . (3-8)

If we take the scalar particles to be conformal ones too, we simply get
(Nin(P)|? = 1/ 2w, , xm(p,n) = exp(—tw,n) and consequently N(KG)(5) = 0.
Then the only remaining mechanism for conformal symmetry breaking is
that by Li (Birell et al. 1980). Only in that case we get from (3.6) and
(3.7) n¥) = 2n{¥C) as suggested by fig. 6¢c. That there is a non-vanishing
effect at all if both particle specses are conformal, crucially depends on the
expansion of the background. For, if we set C = Cj, = const in (3.8), we get
energy conservation, J ~ é(wx + wp + wp), which together with the momen-
tum conservation expressed by the delta functions in (3.6) and (3.7) would
kinematically forbid the creation process.

The pure background effects: An explicitly solvable
example

We conclude by investigating the pure background effects (3.2) and (3.3).
For all expanding directions in (2.10) - (2.12) we choose the expansion law
C*n) = *9* (b= const > 0,—00 < n < +00).

13
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What we have to do is essentially to solve (4.3) and (4.7). This can be done
in terms of Whittaker functions,

o } = 1" Wailen') (3.9)

The parameters a, x,! and ¢ are given in tabs. 1 and 2 together with the
mode-dependent numbers of created particles.

v| a c K ! NEKG)(F)

2

2 —
IR R S M IR (v
) 2 1 . —7p,?
0 iby/m? + pg? %c— 3 V2(1 +%) exp(W)
2

3| -3 ibm . T exp (—7p?/bm)

Tab. 1: Parameters of the sotutions (3.9) of the Klein-Gordon equation and
the mode-dependent numbers of pion pairs created as free particles in
a metric (2.1) expanding according to (2.10) - (2.12)

v a c K { NM)(E)
—_—

1| —1/2 ibk, ks?/4c 1/4 2exp (—mks®/bk,)

2 0 ibk, k. ?/4c 1/2 2exp (—mk.?/2b|ka|)

3 conformally trivial 0

Tab. 2: Parameters of the solutions (3.9} of the Maxwell equations and the
mode-dependent numbers of photon pairs as free particles in a metric
(2.1) expanding according to (2.10) - (2.12).

Let us comment on the results. For isotropic expansion only the amounts
of the momenta enter the mode-dependent numbers of created articles. In
contrast to this, for anisotropic expansion the momentum components appear

16
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individually in the results. In case of two isotropically expanding directions
the components p; an p; resp. k; and k; do so symmetrically such that the
square of the momentum is replaced by the arithmetic means of p,? and p,?
resp. k,? and k,2. The momentum components p; and k3 corresponding to
that direction in which no expansion takes place appear together with, resp.
instead of, the mass of the particles. For one expanding direction p; and p;3
resp. k; and k3 simply change their roles.
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Abstract

We examine the method of functional integration in quantum field
theory in curved spacetime exploiting tensorial densities of arbitrary
weight as integration variables. Special attention is drawn to the cor-
rect chaice of functional integral measure. After reviewing the method
for free flelds being based on a paper by Toms, we present a survey
on the functional measures for arbitrary scalar, spinorial or vectorial
densities as integration varisbles. Afterwards, we describe the gene-
ralization to interacting flelds, taking a self-interacting scalar fleld as
an example. As a result, we derive the weight-dependent Feynman
graphs.
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1 Introduction

There are two approaches for investigating quantum field theory in curved
spacetime |1, 2] . One approach is based on canonical quantization, the
other one on functional integration. Investigating such processes as particle
creation or scattering under the influence of an external gravitational field
in the first approach one often exploits the method of Bogoljubov transfor-
mation (3, 4], whereas in the second approach in most cases the quantity
of interest is the effective action [5, 6]. Here, we will report on a techaical
detail in the second approach.

If one wants to generalize the functional integral
2= [ dufg)es (1)

to curved (Riemannian or Euclidean) spacetime often people refer to du(¢) as
to ”a suitably choosen measure” which leads to the well-kmown determinant
formula. However, in certain cases, for instance in exploiting the lattice
approximation to the functional integral {7}, for evaluating anomalies [8,
9, 10, 11, 12, 13| etc., one would like to have an explicit expression.for the
measure. Thus, the question arizes, how to generalize the fanctional-integral
and its measure to a curved spacetime.

Naively one would expect the measure to be the same as in flat space,
au =[] d8(a). (2)
]

In this expression the product is to be understood as the limes of the lattice
approximation defining the functional integral. However, as has been shown
by Hawking [14], Fujikawa [8, 9, 10, 11, 12, 13] and De Witt (15) the naive
measure (2) is not generally covariant (which means that the functional
integral defined on the basis of (2) is not a acalar. For obtaining a scalar
the measure (2) has to be modified as follows:

au =T[4 (V5@ () 3

Here and in the following the upper index on the field indicates its weight,
i.e. 9¢(z) is a true scalar field (scalar density of weight zero). Since then,
most authors have implicitely understood the functional integral measure as
defined in (3). But this is a bit strange: Shouldn’t it be poasible to allow for
changes of the integration variable, as they are possible in ordinary integrals?
Perhaps, this would allow transforming the measure to the form

du = [] dé(2), (4)

2
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but with ¢(z) possibly being a scalar density now. Based on a paper by
Toms [16], who considered this question for a free acalar field, we will inve-
stigate this possibility in more detail here. Toms has shown, that it is indeed
possible to make a transformation of the integration variable changing to an
arbitrary scalar density; moreover, he has solved the question what is spe-
cial with the measure choosen by Fujiknwa. Here, we concentrate on the
consideration of higher spin flelds and on the effect, the special choice of
measure has on interacting fields. The result will not be a new calculational
scheme, but merely a kind of consistency check of the formalism of functio-
nal integration. This is part of a review on this topic [17]). As anyone knows,
there is a series of subtleties in the subject of functional integration present
in flat space already, being mainly connected to the question of convergence.
We will not go into the details of these general problems, but will restrict
ourselves to the special problems appearing in passing over to curved space-
time. To allow for considerations in higher dimensional spaces as well as for
dimensional regularization we consider ag N-dimensional spacetime.

2 The Method
The method is heuristic, but resnlts will be checked afterwards by explicit

calculation [16]. It is based on a finite-dimensional analogy. Consider a
n-dimensional real vector space with the inner product

(v,v) = 2 EGuu‘v-". (5)

i=1 j=1

The invariant volume element (measure) has the form

dﬂ[v} =/ det Gy fIdvi. (6)
=1

Oanly in an orthonormal coordinate system the measure takes on the form
dplv] = H dv', (7)
i=1

This consideration can be generalized to the case of an infinite-
dimensional space, where, instead of the vectors vf, there is a scalar field
#(z). The inner product can be taken asg

(6, 9) = / ¥ 2 /=72 O4(2)(z). (8)



Quantum Field Theory under the Influence of External Conditions 143

If the true scalar fields 9¢(z) and ®y(z) are substituted in favour of scalar
densities of weight w being defined as

$(z) = %(z)(~9(z))"" )
then the inner product can be re-written as
b.9)= [a= [ 2% oa,y) d00) (10)
with
Az y) = ()5 *? b(z - v). (1)
From (5) and (10) one can read off the correspondence
Gij & plz,y)- (12)

This suggests defining the measure as

du(g] = T (=9)=/DH/9 ag(a). (13)

Thus, indeed one can take an arbitrary scalar density as integration
variable, but in this case one has to include the pre-factor

H (_g)(WﬁH-U/‘) . (14)

On the other hand, one recovers the choice taken by Fujikawa and Hawking
by taking w = -1/2:

p(z, yiw=-1/2) = 6(3 _y)' (15)

Thus, this choice corresponds to choosing an orthonormal basis in the space
of ecalar functions.

For integrating over the corresponding density the integrand, i.e. the
action

S= % / ¥z /(S9) *4 % (16)
with
=-¢g"V,V, +(R (17)
must be brought into an appropriate form. Introducing scalar densities one
arrives at

s=3 [T (-0 6@ (-9 42). (8




144 Quantum Field Theory under the Influence of External Conditions

At first sight, this has not the form of a scalar product necessary for per-
forming the functional integral, but it can be re-written into this form by
exploiting the covariant derivative of tensorial (scalar) densitiea, to be found
for instance in (18],

Ty = (-9 ((-9)"1T) . (19)

It has the special property, that the scalar density g is covariantly constant
w.r.t. this derivative. This allows re-writing (18) as

s =3 [ V2" (2)86(a) = (6, £9). (20)
Thus, the functional integral writter in general densities becomes

Z= /H(_y)£w/2)+(l/4)d¢(z) e{‘f‘"’("?)'“"”éA&_ (21)

Of course one has to check, that the functional integral defined this way
indeed is independent of w and leads to the well-known determinant formula.
For doing so the measure has to be written as

dp = [L(=0)/P+00a4(z) = [T a (-9 D+ Mg(2)) . (22)

(This is not trivial, becanse one has to evaluate the functional determinant,
which in the case of a scalar field reduces to an infinite constant. From this
point, the further analysis proceeds as usual. The scalar density ¢(z) bas
to be expanded into eigenfunctions of the operator A,

$(z) = Eén,n(z)’ (23)
Af'\ = ’\ﬂfn’ (24)

where the eigenfunctions f, are taken as densities of the same weight as the
scalar fields are. Then, the measure reduces to a product over the numbers
#n (the pre-factor 1//2x¢ being choosen for convenience)

1
du = —— d¢n, 28
# l:lI V2ri ¢ (28)
whereas the action becomes

1
§=3 2 Zﬂ: Anéndn. (26)
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Finally, one obtaines the desired formula
1

As it should be, the result is indeed independent of w and leads to the usual
functional determinant. Of course, this expression is only of formal value
because it is divergent and has to be renormalized.

At the end of this section, we would like to stress the point, that the
measure inself is independent of the weight choosen for defining it, whereas
the explicit form of the measure, expressed through a special deasity of
weight w does depend on w. This can be compared to a vector, being an
invariant object itself but having components, which depend on the choice
of the coordinate system.

3 Functional Measures

The method described above developed by Toms [16] can be applied to other
types of fields as well. In this section we only present the results (explicit
form of the measures based on tensorial densities with arbitrary weight).

Real Scalar Field: ¢ = (—g)~*/? %

du = H(;,)g»/mu/«)“(z) (28)
Charged Scalar Field:

dp = [J(~9)r+/Pdg™(2)dg(2) (29)

Charged Dirac Spinor Field: ¢ = (~g)~*/2 0y
dp = II("D): rn(w+1/2) Hdia(z)d‘ba(:‘) (30)
Here, rn denotes the number of components of a Dirac spinor in N

dimensions, N/
2N/ N even

™= { AN-D/2 N odd, (1)

Real Vector Field: 4, = (—g)~¥/2°4,

dp = [J(~)M e+ N0 [T dA,(z) (32)

6
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There is one point worth mentioning. Contrary to the scalar field, the
explicit structure of the measure for the spinor field does not oaly depend
on the weight, but on the dimension of spacetime too. This fact could not
be recovered by Fujikaws [10}, who set w = —1/2 from the beginning. A
similar N-dependence occurs for the (covariant) vector field too.

4 Interacting flelds

The case of interacting fields is a bit more difficult to handle (sand was
not treated before), because the fields enter the Lagrangian to different
powers. As a result, we will see that contrary to the functional integral
itself propagatoras and vertices will depend on the weight w, Here, we will
testrict ourselves to perturbation theory and to a A@4-theory. The results for
a pure Yang-Mills-theory can be found elsewere [17]. Perturbation theory is
based on the vacuum functional including an external source,

2(J, 9] = / TI(— o)/ g2yl Tom) = oW (33)

Investigations of external field problems are often based on the effective
action I', which is obtained by a Legendre transformation from J to ¢,, in
flat space being defined as

4o(2) =< 0| 6a) 0 >= 5. ()
In a curved spacetime, $. should become a density of the same weight w as
is ¢ itself. Becanse W and J are true scalars and the generalization of the
functional derivative to curved spacetime

SWIT _ o WPIQ) +e °5(%J LA ()]
§J(z) hm (35)

(°6(y, z) is the covariant delta function) leads to a true scalar again, this
can only be achieved by replacing the ordinary functional derivative by a
weighted one,

bo(z) =< 0] $(z) [0 >-;+f[)’—‘ (- )-"’“?,"(L’)]. (36)

On the basis of a similar argument it can be shown, that the 2-point Green
function or propagator has to be generalized to

1 v§*w

G(z,9) =< OITB()(WII0 >= T 35557

(37)
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This definition ensurea that the propagator becomes a deasity of weight w
w.r.t. x and y. Inserting for W only the free functional integral leads to the
free propagator for the scalar field density.

Next, we are interested in vertices, appearing in the expansion of the
effective action,

rigd = 3 / dVz,.. / 4z T(21...20) $o(21)to(zn).  (38)
n=1

The effective action should be a true scalar, as the action itself is. Becanse
¢ is a scalar density of weight w, the four-vertex of the ¢¢-theory, I must
become a density of weight —4w — 4. This is achieved by the definition

t 5 5 ) 5
T (z,2,0) = ( ) 58:(2) 59a() 5:(7) b(o) - P =0 (39)

where the fanctional derivative is the ordinary one in curved spacetime, as
defined in (35).

After these definitions we are in a position to derive the perturbation
expansion from the functional integral, which for the ¢* -theory has the

structure
2001 = [ T (-a)miagg o, (40)

5= [ 4" (3-0)r0gns - G- 4 (—g)"‘*"’w)
(41)
For deriving the perturbation expansion the term ¢* in the perturbation
Lagrangian has to be replaced by derivatives after the current. By taking the
ordinary functional derivatives, this would lead to an additional prefactor
involving powers of (—g). These can be compensated by exploiting the
weighted fonctional derivative once more and performing the substitution

w§
¢(z) — 6 59(2)" (42)
As a result, this leads to
e fo 3o 150])
sexp (¢ fd¥z (J(—9)tW/DgA4 + (~g)+V24T)) . (43)

Integrating over the free part of Z leads to the free propagator via (37),
while the vertex is obtained from (39). This results in
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X

Propegator G(xy)
ByG(z,y) = i *6(z,y) = i (~9)s*/ %(z,y) (~g);™/? for the propagator
and in the vertex

z v
Four-Vertex I'*

iLy(z,9,2,0) =1 '\(-9)3'+2 06(7’ z) 06(”0 y) 06(”| z).

One might worry about the correctness of these results, especially be-
cause of the fact that some of the definitions taken could also be choosen in
a different way. A simple check can be done by considering & vacuam graph
of the theory, for instance the following:

—

Bxampilo Vacuum Graph

Graphs like this without external legs must not depend on the weight choo-
sen for defining the functional integral. In rough outlines this graph contri-
butes to the effective action a term

~ A2 / dzdydzdvdz'dy'ds dv' (—g)3*+2 %5(z, y) %8(z, 2) %8(=,v)
A9 6, 2) (0 =0 8(w) (-a)
A (=) (2, ) (=) ) (o) ()
(=91 %(',y") *8(&', /) °8(\ ) ()

Of course, this expression is highly divergent and has to be renormalized.
Moreover, it will not be possible to evaluate it for a general spacetime.
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Despite these difficulties we go on by integrating over y,z,v and ¢/, 7, v/ to

obtain
3 [dsie-git ()]
[ torer ste, ) 013"

o ( ‘/_‘T)’ (45)
o ¥ [ dadl (=g (02 [ - O8(a, 1) (48)

Obviously, this is independent on the weight w choosen for defining the func-
tional integral. Moreoves, it has the desired structure explicitely indicating
the covariance of the expression.

5 Conclusions

As a result we have shown, that not only the measure, but the whole forma-
lism of functional integration can be consistently formulated for free as well
as for interacting scalar, spinorial and vector fields independently on the
weight choosen for defining the fanctional integral. The formaliam obtained
this way leads to the well known results for the free field case, but to weight
dependent Feynman rules for interacting fields. Pure vacuam graphs con-
tributing to the effective action without external legs are indendent on the
weight; however, graphs with external legs do depend on the weight choosen
because of the weight dependence of the external field.

The formalism has the advantage that one understands the various fac-
tors of —g appearing in the formula; it reduces to the nsual formalism by
considering the special case w = —1/2 corresponding to choosing an ortho-
normal basis in the space of functions. Thus, ap to now this is merely a
consistency check of the formalism. It might find more applications in con-
gidering non-flat functior spaces, which do not allow introducing a global
orthogonal basis as it is the case in the examples considered here.
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Summary.- The energy-density spectrum of vacuum according to an
accelerated observer Inside a prismatic cavity presents )two conspicuous
contributions: A strongly oscillating component associated to
confinement, and a pseudothermal one associated to acceleration. We
propose that some features of hadron production by electron positron
anihilation may be understood in terms of the product of this modified

gluon phase space times the e'e_»qag > hadron matrix element.




t.- Introduction

Over the last two decades QCD has emerged as the standard theory of
hadronic [nteractions. In particular, perturbative QCD has been very
useful in the arnalysis of scattering and bound state problems where the
distances are small and the momentum transfer is large. However, it is
more difficult to have specific predictions In regimes where the momentum
transfer is small and perturbative - QCD is not valid. That is why- it might
be useful to look for predictions which do not depend on the details of
the theory but rather on general features. Within this context, bag
models have been able to predict in reasonable fashion .experimental
quantities such as hadron masses, magnetic moment ratios, etc. In
general, the bag energy inay be written as E=EB+E°. where Ea is the
energy associated to occupied modes in the bag, and Eo the corresponding
vacuum energy. Taking into account results obtained for the vacuum enrgy
between parallel plates, DeGrand et al.ll] obtained their results by
parametrising Eo as —Zo/a, where a is the hadron radius Iand Zo=1.84.
Hovlvever. Milton showed in a more detailed calculation [2] that the finite
contribution to the vacuum energy of non-interacting gluon and quark
fields confined inside a spherical bag is Eco~l/na~ and E°°~-N/48na,
respectively, where N is the number of effective massless quarks.'The
gluon contribution is dominant and this leads to E°~0.3/a. Note that in
this approach the energy changes its sign, and that its value |is
consistent with the equivalent QED result for a spherical cavity
multiplied by eight (the number of gluons), E°~O,36/a. Baacke and
Igarashi [3} calculted the Casimir energy for confined masive quarks. In
the massless limit they obtained Eo°~—N/l44na. about & of Milton's
result. In a similar trend, Ambjorn and Wolframm (4} calculated the

vacuum energy for scalar and vector fields in hyper-parallelipedal
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cavities in arbitrary dimensions. They found that the Casimir energy is
minimised (and frequently becomes negative) when some of the dimensions
are very long compared to the others. They pointed out that this could
provide a mechanism for the spontaneous reduction of the dimensionality
of a field theory. In particular, in three dimensions, the Casimir energy
leads to a force that tends to deform bubbles of fixed volume into long
tubes.

On the other hand, opposed to baé elongations, the color interaction
tries to restore the original bubble configuration by exerting a constant
tension among the bag constituents. This should be manifested, among
other things, as a constant deceleration of the valence quarks inside.
Guided by the results obtained in field theories in non-inertial systems,
Harrington and Tabb (S} proposed that associated to a deceleration -a" -
there exists a fluctuation dissipation mechanism that -induces the
transformation of a Minkowskian vacuum into a heat bath with an effective
temperature T_ given by Ta"=2na"=2nmk-', where m is the reduced
constituent mass of the quark and (21rrk)-l is the siope of the linear
potentiai. They got a value of 108 MeV for Ta, consistent with empirical
‘‘temperatures’’ found in hadronic collision experiments {6), where the
dominant Py dependence in the CM frame is described by E=exp

[-( pT2+ M")i

/T)] , with M the hadron mass. Barshay and Throost (7]
arrived to a similar acceleration temperature by different arguments.
According to previous estimations, the gluon contribution to the
vacuum energy of a bag is dominant. We thus study in this work the vacuum
energy spectral density associated to both gluon confinement and quark
acceleration in the gluon vacuum. For simplicity, we consider an

uniformly decelerating observer immersed in a scalar vacuum confined by a

long prismatic cavity with quadrangular cross section. We then study the
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possible effects of this bag spectrum on the energy spectrum of hadronic

Jets produced in e'e” anihilations.

2.~ Vacuum spectral density.

In a previous paper (8], we calculated the explicit form of the
energy density spectrum of a scalar vacuum as detected by an uniformly
accelerated observer travelling in the axial direction of a prismatic

cavity. The explicit formula for the spectral density is

dE w \ 1
a—;=;[—2 Znera ]{ab*u_F(aa)*'
+% Flad)« ®°Gap , a
W w
where
© -1
_¢ sln (2wa "arcstnh(x))
F (x) —E . (2b)
K n (1 + (nx) %)
and
@® -1
_c Sin (2wx arcsinh(x))
¢ o) ‘} - (2¢)
p (1 + (px) 7)

-@

a and b are the sides of the section of the prism, w is the frequency, «
. . 2.2 .2 2.4 .

is the observer acceleration, p=(@n"+b'm , and n, m are integer
numbers. The first parenthesis is a ‘'Planckian’’ pseudothermal
distribution with an effective temperature given by Ta=a/2n, including
a zero-point term. The second one represents the Casimir energy

associated to each pair of the walls that form the cavity. The last term

im this parenthesis is an “‘interference’’ term between the effects of
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confinement and acceleration. The grapt; of the Casimir and interference
terms F(w) and G(w) divided by the mode density (~ w %) appear in Figs.
la and 1b in terms of adimensional variables w=aw, «=aa , E=a’E,
and PB=b/a. The total spectral density (also divided by the mode
density) without the divergent zero-point term appears in Fig. lc. Figs.
2a-2c represent the same spectrum for a larger frequency range. We see a
strongly oscillating behaviour, with peaks more or less equally spaced.
On the other hand, the Planckian term dies rapidly and influences low
frequency modes only.

As we will show now, acceleration and confinement of the same order
(x1 fermi) seem to be present in the positron-electron annihilation with
hadron production. As it was calculated by Harrington and Tabb, one
derives a - string tension k=mq¢zk from the -slope of the: Regge™
trajectories (1 /2nk~0.8-0.9(GeV/c®)?) and by assuming a mass of
mq=300 MeV for the non-strange constituent quarks, the resulting
acceleration is ak=.6 GeV. An acceleration temperature T¢= ak/[2n)=r
100 MeV is thus obtained. This value implies an ‘acceleration length’
t:-l/ak « 0.3 fermis and an ‘interference parameter’ a ax 10/3. The
interference term is larger when the confinement length (@ or b) and the
‘acceleration length’ are of the same order of magnitude. As mentioned
before, a Planckian distribution with a ‘temperature’ « 100 MeV is
expected after hadronization for loY/ energy gluons. However, ‘thermal
Jjets’ showing an oscitlatory tail like that of the energy spectrum of
Figs. 1-2 might exist for high energy gluons. This effect seems to be

present in the e e’ annihilation experimental data at 29 GeV (9].
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3.-Possible effect on e'e - hadrons.

The e'e = hadrons process can be considered as a virtual time-like
photon decaying into a quark-antiquark pair. The quark and antiquark move
in opposite directions with large momenta, but remain united by the
action of the gluonic string. Assuming a constant tension in the string,
both particle and antiparticle will move with a constant deceleration
within an approximately cylindric hadronic bag or cavity having a
diameter of the order of 1 fermi. The excited, uniformly accelerated
quark and antiquark will emit gluons with a difference of energy E
between excited levels, and in proportion to the energy density of vacuum
(as seen from the confined accelerated system) corresponding to such an
energy E.

In order to analyse this multiproduction process, the matrix

Qw=£ prf: (a,8=1,2,3) (2.1)
=1
is defined for every event {10], where n is the number of secondary
particles in the event and p‘: is the three momentum of the {th particle
in the center of mass system. Diagonalisation of this matrix gives the
three—-eigenvector Ekwith the eigenvalues in the order Q‘>QI>Q3. The
value Ql measures the length along the principal axis of the event E), Q2
corresponds to the ‘width’, Q3 to the ‘height’, and the sphericity o is
defined as a=§(Qz+QJ)=§(l-QI). The region with a>0.25, and

03<O. 10 (a flat disk) is usually considered as the

quark-antiquark-gluon three-jet region. It is also customary to define

(2.2)

S5 —-
"M 3
oL
N>

out

and
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ob. et T (B2 (2.3)
The quantity <p72'>out measures the transversal momentum in the direction
perpendicular to the reaction plane, and "(p:_)(n the transversal momentum
in the reaction plane.

For three-jets qag events, one expects relatively large values of
<p;>h, while <p;)out reflects the low-energy gluon distri‘bution. Two
important features of the 29 GeV distributions are:

i) The <p72_>wt distribution may be fitted by 40 exp(—pT/Ta) with T;-BO
MeV, in good agreement with our previous estimate (see Fig. 3a).

tt) The <|>T?'>~M distribution seems to show small oscillations (see
Fig.3b). These oscillations could arise from the gluon mode distribution
associated . to accelerated sources inside the quasi-cylindrical cavity.
This modified gluon phase. space would multiply the e‘e-eqag —) hadrons
matrix element. In figure 3b, the local minima in the distribution, whose
separation is Ame=A[<pT2)M)§ ~ 0.15 GeV, have been marked by arrows.
The influence of confined giuons may be estimated by taking into account
the contribution to the <pT>Ln distribution of the particles generated by
hard gluons. The corresponding energy difference at neighboring minima
may be evaluated as follows:

a) In three-jets events, it is assumed than each jet is provenient from a
parent quark, an antiquark, and a gluon, respectively. Thus the total

number of particles arising from the gluon may be estimated from
<n >=(<n >+<n d)/n, (2.4)
g ch n J

where <nch> is the mean number of detected charged particles, <n >
n

corresponds to the neutral particles, and n  is the number of jets. By
J
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assuming that the neutral particles are produced with equal probability
than positive and negative ones, we may add a 507 to take them into
account. From the fact that (nch)=13.lto.0520.6 in the experiment [9],
we obtain a total number of 18 particles. Dividing by nJ=3, we find
about 6 particles generated by a gluon.

b) From Eq. (2.3), it turns out that

1
4p, =<Zq> &p

cosd ), (2.5)
gluon 4
(n 2

where quwm is the r.m.s momentum of the gluonic particles. The mean

cose_ factor may be approximated by 1 /2. The resulting momentum
2

difference between neighboring minima is:

<Ap

gluon

> Bp_ - (n >-<cose, " '=1.3 GeV.
tn 9 2

For a comparison of these difference with the oscillations of figure 1,

we take the w separation between local minima. The mean minima spacing is

Aw= Za_!AwaztaAEat 4.1 . We thus obtain

AE~4x4.1x0.6 GeV = 1.2 GeV,

in good agreement with the estimated <qu‘um>,

This comparison shows that even although the theoretical model we
present is too rough and much more precise experimental measurements are
needed to confirm the oscillations of figure 3b, there seems to be

consistency between the model and the available experimental data.
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3.- Discusion and conclusions.

Although the details of the results of QCD, a non abelian pgauge
theory, certainly will differ with respect to our free scalar field
calculations, we hope that the general features associated to confinement
and acceleration will remain. Current calculations [11] show that the
spectral density associated to vector fields in prismatic cavities Is
similar to that encountered for scalar fields.

Of course, real hadrons are confined In an irregular and fluctuating
quasi-cylindrical bag rather than in a prismatic cavity. Nevertheless,
the prismatic approximation is mathematically simple and we expect that
the qualitative results do not differ drastically from the more complex
cylindrical case. The effect of radial oscillations can be estimated by
averaging, in general with different weights, the results of‘ computations
for prismatic cavities with different edge values . When this averaging
is practised for a=0.75 fermis with weight g=0.25, a;l.o fermis
with weight ¢=0.50, and a=1.25 fermis and weight g=0.25, the

process tends to erase all the minima except for the nearest ones.
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Figure 3.

10°

' 10-2 | | | (
_ 0O 0.2 O 0.2 04 0.6 0.8
<P%’ out > [(GeV/c)iJ <p$ - > I:(Ge\//c)zj _

Figure 3. Transversal momentum distribution: a) Distribution off the

cvent-plane; as a flunclion of (p;'}o“l the jel is approximately described
N -p /b
by ;-J AN 40 7Py

[ GeV/e )* with b = 80 McV. b) Distribution in the
d<dp _i)

event ptane; the solid line connects the experimental points and the

arrows mark the place of Lhe possible local minima.
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A RINDLER-DIRAC ELECTRON IN THE ROLE OF A QUANTUM DETECTOR

R. Jauregui

Instituto de Fisica, UNAM
Apdo. Post. 20-364, 01000 México D.F., MEXICO

Abstract

The interaction of a Rindler-Dirac electron with the electromagnetic Minkowski vac-
uum is studied to first order in perturbation theory from the point of view of the changes
that it may induce in the electron quantum numbers. The presence of terms modulated
by a thermal factor is recognized as part of the possible quantum effects. However, we find
that the electron has a very high probability of remaining in its original state with the
simultaneous emission of Minkowski photons. This behaviour resembles the classical first
order result according to which a uniformily accelerated charge does not has a radiation
reaction force. Possible spin flips and cha.ngés in the perpendicular momentum are also

studied.
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INTRODUCTION

Quantum field theory in uniformily accelerated systems contains many of the special
features of curved-space quantum field theory [1,2]. Most of the works published so far
on quantum field theory in accelerated systems deal with scalar fields or massless fermion
fields [3-5], since these are the simplest cases.

From these studies, it is now well established that there are thermal like effects associ-
ated to the vacuum in a uniformily accelerated frame, although their physical interpretation
is not enterely clear. These effects should manifest by the interaction of a detector with
the corresponding quantum field. A detector is a system with internal degrees of free-
dom which may change due to the interaction with the quantized field.The temperature

associated to these effects is
_ fia
"~ 2nkpe

So that it is necessary to have a very large acceleration a to get observable temperatures.
Thus, the most realistic objects for use as accelerated detectors are elementary particles.

In 1983, Bell and Leinaas [6] proposed the use of electrons as detectors of Rindler
photons. They made interesting predictions on the polarization effects that could arise from
the coupling of accelerated electrons with the electromagnetic field. It is the purpose of this
work to perform calculations that take into account the spin 1 nature of the electromagnetic
quantum field and the spinorial character of the electron wavefunction in order to achieve
a better understanding of the efficiency of the electron as a detector.

By an accelerated quantum electron we shall understand a particle represented by a
wavefunction which is a stationary solution of Dirac equation in Rindler coordinates. We
recognize from the begining that an electron in spite of its apparent simplicity is quite a
rich system. The interaction may lead to changes in any of the four quantum numbers:

energy ¢, perpendicular momentum p; and spin s.

2
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Another aim of our calculations is to achieve a better understanding of the radiative
processes of an accelerated quantum particle. In this context, we want to find possible
links between our results and those concerning the radiation of an accelerated charged
classical particle.

The method of the calculation is the standard one. That is, we calculate the response
function per unit proper time of a Rindler-Dirac electron interacting with Minkowski vac-
uum. By meking the integration over the proper time difference two different kind of terms
arise. One is modulated by a thermal-like function and the other is in fact proportional
to a §(¢’ — ¢€) distribution. This result is independent of the specific form of the stationary
electron wavefunctions.

Then we consider the particular case of a Rindler-Dirac electron without external
fields. The general expression for the transition probability is quite complicated. However,
it is possible to obtain a closed expression for spin flip without changes in the perpendicular
momentum. This transition is in fact cormpletely modulated by a thermal like factor but

has extra dependence on the difference of Rindler energies involved in the transition.

BASIC EQUATIONS
RINDLER COORDINATES
Define the Rindler coordinates (7,§) :
t = £€sinh T, z =%€coshr.

The two signs.correspond to the disconnected regions with 22 — ¢2 > 0 : z > 0 (Region I)
and z < 0 (Region II). The two other regions with t2 — 22 > 0 correspond to the future

and past spacetime sectors and the corresponding coordinates are Milne coordinates:
t = £fcosh, z = £fsinhT.

The paths £ = constant are wordlines of constant proper acceleration a = £~!. We shall

work in Region .
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ELECTROMAGNETIC WIGHTMAN FUNCTIONS
In Minkowski coordinates and Feynman gauge, the electromagmetic Wightman func-

tions D (z,z') are given by

D}, (z,2') = nu D*(z,2")

where

D*(z,z') =

(f=tFif (2 -2 —(y -y — (2 — 2)?

So the Wightman functions for the Rindler electromagnetic field in Minkowski vacuum are

’ny(a:, ') = guv(z, 2’ )D¥(2, ')

with
€€'cosh(r—71'y 0 0 —&senh(r—-7")
gan(z,2') = 0 -1 0 0
0 0 -1 0
E'senh(r—71) 0 0 —cosh(r—1')
and

1
"~ 26&'cosh(t — 1 Fie)— (2 + ) —(z2 -2 = (y—y')?

D¥(z,z')

RINDLER-DIRAC SPINORS AND TRANSITION CURRENT (7]

The generally covariant Dirac equation in Rindler metric has the standard form
(¥*D,+im)® =0
where covariant ¥ matrices satisfy the usual relation
{(v*, 7%} = ¢**
so that they can be written in terms of tetrad vectors e# as

7 =exy"

4
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with 4" the standard Dirac matrices in Cartesian coordinates and
ef =(€7,0,0,0)

et =6 1i=1,23

In the following, latin and nummerical indices refer to tetrad components.

The covariant derivative of Dirac-Rindler equation includes the affine connection ',
1
Fy = (— '2'70735 0, 0) 0)
and could include an external electromagnetic field 4,(z, y):
D, =0,+T, —ieA,
The conserved current J* is given by
J* = Q"yo'y"@

The positive energy solutions of Dirac equation in Rindler coordinates (sector 1) have the
form

$ = Ne_i"Kg_;,7o.,a Xk(zs y)

where, in general, for any function of y%4® matrices
F(°Y?) = Pof(1)+ P_f(-1)
1
Py = 5(1 +9%%),

K (z) is the modified Bessel functions, which is regular at £ — oo, and the normalization
factor is

2
N = n—zcosh(ﬂe).

s0 that

/dIdydEQ:kéclkl = 6(6 _— EI){Skkl

b)
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whenever

/d.’t}dyxk’xk‘ = 5“:;

The bispinor X for a free particle (A, = 0) in the spinorial representation is given by

1 kL +mad otk Ty
le(x.y)=§[ 4k R 'y(:l:i'ri)
with
(=)
Yo = —i(ko+iky)
k4_+m
—i(k, —ik
e ()
1

and

ky = (k2 + k2 + m?)5,

METHOD OF CALCULATION
The probability of transition of a Rindler electron in an initial state “a” to a final
state “b” independently of the emited possitive energy Minkowski photon per unit proper

time per unit perpendicular area is given by
F :-—-b =

/Z d(r — 1) /_: d(z — 2") /_: d(y - y") Aw dé§ /0°° d€'¢'joy(2)D}l, (2, 2 )ifa(s")

The transition current is

ja(z) = Bl &y,
By direct substitution of the expressions given above one obtains
Jan(2)8uv (2, 2')j3a(2") =

(€' 500ds — 3Esitayeosh(t = 7') + (€500, — €508 )sink(t — ') = 3558 ~ Y5k,

6
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= (Jaslba — Jasiba)cosh(r = 7') + (j3viba — Jasdba)sinh(r — 7')
2 -2 1 -
—.736.764 - ]:b]bla
Notice that the vectorial character of the electromagnetic field is responsable of the presence

of the hyperbolic sine and cosine factors and gives rise to the presence of two different kinds

of integrals with respect to the proper time difference:

' by 1 ‘/OD ee=)r=g(r — 1)
I[(x I,y y)faf - 2{(1 0 cosh(T—T'—in)—COSh/\—rz

] o i(e—€eY(r~7") (r—r')d !
I2(z—zl|y_yl)£,£,)= / : < (T A )
(4]

26¢’ cosh(t — ' —in) — cosh) ~ r?
— g/\2 _ . \2
A= log(Eyir =1 m>2:é,(y )

The first integral is similar to that appearing when studying the interaction of two scalar

fields and is proportional to a thermal like factor

1 ] 1 sen(2)e — €Oy r)

I _ ! !=
1@ =2 = Vo) = [T et 368 Taomm (072) 4 #3215 4 senh? (/) 7778

with

O, = sinh™ ([senh?()/2) + r?/2)})

The second integral is not divergent and can be worked out as

-4

, Voo g 1 ) e isen{{e — ¢')o)e~
I — — = —— 12 + — —
2(3 I)y yif)f) 2{6'[ 5 (é 6) 2V£ doCOShU—COShA~T2_in

o [coshA + ri]e"“’"
+ 2/0 do ]

cosho — coshA —r? —ip

Let us define

I(z - o',y -y, £.¢) =

1 /°° e"("")("r‘)cosh(r —7)d(r — ')
2(¢’ Jo  cosh(t — 1" —in) — coshA —r?

LN}
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Liz—2\y—v,68) = o /°° e ==V sinh(r — r')d(r — ')

26¢

cosh(tr — 7! —in) — coshA — r?

It results that

I(z — 2",y — ¥, £,€) = 26(w) + (coshA+ )Ly — ',y — ¥/, £,€)

43
while, it can be shown that

1 sinwoe~%do
I(:c—a:,y y ‘E ‘E 66’ (w) / Cosh(g—in)—cosh/\—rz
/ stnweo(coshA + r2)do }
o cosh(c —in) — coshA — r?

1 1 1 2 sinze“”
=@ [P(;) 12w [/o cosz — coshA —r?
cos(w®Oy ,)[e~®rr + [coshA + r?]] ]]
dn[senh?(N/2) +r2/2)5[1 + senh2()\/2) + r2/2]3

Let us focus our attention on the first terms of these equations i.e. the § and principal
value terms. They depend on the spacelike variables just through the 1/£€£’ factor which

.- Lhus, even in the presence of an external

cancels with the /g factors appearing in Ft
magnetic field in the acceleration direction, the space integration of the j° factors is given
directly by the orthonormalization conditions.The net result for a free particle case is that

the contribution of é factor is of the form
b(e — V6P (EL — k)840 G

where G is a divergent factor given by the product of (¢ —¢') due to the continuum normal-
ization, while the contribution of the principal value term is zero. Therefore, contrary to
other detector-quantum field systems [1,4}, the probability of emission of Minkowski pho-
tons without changes in the electron quantum numbers is different from zero to first order
in perturbation theory. This phenomenum is analogous to the approximate classical result

of nonradiative reaction force for uniformily accelerated charges. It is also similar to that

8
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obtained by De Witt (8] who describes a monopole detector which also emits Minkowski
particles when no detector transition occurs. |
Notice that this probability is asociated with the D, ,u,v = 7,£ terms of the photon
Wightman functions. Thus the emited Minkowski photons would be described in terms of
electromagnetic potentials with zeroth or third component different from zero. Classically,
it is known {9] that there is a singularity in the electromagnetic field produced by a classical
uniformily accelerated particle. This singularity manifest like a delta restricted to the null
surface z + t = 0 and it is the "original Lorentz transformed Coulomb field of the charge
'before’ it started its acceleration™. This field has just components F'7t and F*7+ as the

electromagnetic field one expect to be produced from the A; and 4, quantum fields.

The integration over the spacelike variables associated with the I; cannot be written
in closed form in general. However, it has a different behaviour from that expected for the
corresponding integrals appearing in I;. While the former are well defined for any well be-
haved wavefunction, the space integration of I, is well defined just when the wavefunction
is localized in X — Y plane. This could be achieved for instance by the application of a
magnetic field parallel to the acceleration direction. In this case we can make a multipole
expansion and obtain some general results about the response function. The second possi-
bility corresponds to a free Rindler Dirac electron. In that case, a multipole expansion is
not well justified and thus, it is necessary to apply different approximation technics. The
results are quite complicated and will be reported elsewhere. However there is a particular
case of physical interest for which we can give a simple and closed expression. This is
the case of spin flip without change in the perpendicular momentum k, for which the

transition probability is completely given in terms of I; (see the appendix) with the result

N /N 1
F(e,ky,s3,¢ k1,85 = —s3) =

16721 — e 27le=¢t e — ¢] |2+ dle — €'|[2 k5

“1 - k.[.k.{.lz(ﬁ + 6') + [1 + k+k+,2
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where

ks ik,

ky =
* ki +m

Notice that even in this simple case, the dependence on the difference of energies is not
completely contained in the thermal like factor. However, transitions with small changes

in the Rindler energy are the most probable ones. Once again, soft Rindler photons are

dominant.

DISCUSSION

The most important result of this work is the recognition that.a Rindler Dirac free
electron is highly stable and therefore has a high probability of conserving its original
quantum numbers even when it couples to the vacuum electromagnetic field. This behavior
is manifest not only in the presence of a §(e—¢') term, but it already present in the thermal-
like terms. Thus the Minkowski photons emited b& the electron are mainly a superposition
of low frequency Rindler photons.

Although I have reported here mainly the results for a free Dirac-Rindler electron,
some properties of this transition amplitudes, such as the § term, are directly related to
the quantum electromagnetic field. However, for a given detector the importance of each
term may be different. This was illustrated by the calculation of the probability of spin flip
without changes in the perpendicular momentum where just the thermal-like modulated
factor is present.
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APPENDIX

In the free particle case the Rindler-Dirac bispinors are proportional to the matrix

Tt
T*EJ- - (:f:l"ri>
where the + signs determine the sign of spin component S;. When calculating transition
probabilities which involve spin flip it results convinient to define the algebraic coefficients

duv — -r1 - Pa,yo,yu'r—oalzﬁ_r?

oo’ saky

o v
aaE'lP""y v Ta;k_,_'

The explicit values of these coefficients are

dy = d2_ = —d_ = —d%, = |k} — k[’

dify = d = d = dty = (1 Kk
d2 =d* =d% =d¥? =1+ k|

iy =d¥. =di’ =d¥, =K\ — k[’

d?‘_3+ - _d(l?-_ — d&»}_ — _d0_3+ — ka'_ - k+‘2

3o, = doy,
where
ky = ky X1k,
kJ. +m

If the perpendicular momentum does not change during the transition d*”, pu.v = 0,3 is

zero. Thus, they do not contribute to spin flip.

11
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Inertial and accelerated particle detectors
with back-reaction in flat space-time

F. Hinterleitner

Institut fir theoretische Physik der Untversitdt Wien, Boltzmanngasse 5,
A-1090 Wien, Austria

An inertial and a uniformly accelerated harmonic oscillator are coupled to a scalar, massless
field as rodels for particle detectors. The behaviour of these detectors in several Minkowskian and
Rindler quantum states and the back-reaction to the field are investigated. From the Bogolubov
transformation between in- and outgoing particle states it is seen that almost everywhere in space-
time neither the inertial nor the accelerated model gives rise to an energy flux from the detector to
the field or energy absorption from the field by the detector, although the accelerated one behaves
as if it were immersed in a thermal state of the field.

1 Introduction

In the area of quantum field theory in non-inertial frames there has been recently
some revival of the discussion about the radiation of uniformly accelerated objects
{1,2,3]. There seems to be some controversy whether or not uniformly accelerated
model detectors do radiate. As very different tools like the reduction of wave packets,
stochastic techniques, or different notions of particles are involved, an answer to the
question of radiation is non-trivial.

The approach to these problems chosen in this paper is - in principle - very simple,
as only a scalar, massless field in two-dimensional flat space-time and a harmonic
oscillator are employed. The concept of particles is confined to the convential one,
defined by the notion of positive and negative frequency field modes. As frequencies
of field modes can be defined with respect to various (inertial or non-inertial) global
time coordinates - here “global” refers also (and especially) to open submanifolds of
the whole Minkowski space-time - there are different formal concepts of “particles”,
if no further decisions are made, e.g. singling out the quantum field theory basing
on Minkowski modes by virtue of the translation symmetry of its vacuum state, a
symmetry which the other vacua do not possess (4].

An example of a non-inertial frame acdmitting a global space - time decomposition
is provided by the Rindler coordinates in the two domains z < ~|t| and = > |t} of
flat space-time, where ¢ and x are the usual Minkowski coordinates.

"The canonical quantization ol a scalar field in Rindler space-time was first studied
by Fulling [5]; in the Fulling-Rindler quantum field theory the Minkowski vacuum
looks like a thermal state. Detector models of Unurulb and Wald [1.2] which are at
rest in Rindler space - Lthat means, they are uniformlyv accelerated - "measure” a

|
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|

temperature T in Minkowski vacuum, given by the Unruh-Davies formula

kgT = ha (1)

c2r’

where kg is the Boltzmann constant and a is the acceleration of the detector. Thus,
these models confirm the predictions of Fulling-Rindler quantum field theory.

In contrast to these examples, which are calculated in first order perturbation
theory, an exactly soluble model of a detector in two-dimensional space-time will be
considered here, including its back-reaction to the field (eventual bremsstrahlung).
As the two-dimensional model does not allow for transversal motions, the accelera-
tion of the detector is always parallel or antiparallel to the direction of propagation
of the considered field. So restriction to two dimensions has the advantage to make
the physical effects of acceleration easier to calculate and to understand. The crucial
point will be whether or not the (uniformly) accelerated detector itself generates the
particles “seen” in Minkowski vacuum. Padmanabhan argues in this sense, especially
for nonuniformly accelerated detectors [6,7].

In section 2 the detector properties of a harmonic oscillator at rest in two-
dimensional flat space-time are considered. The equations of motion of the cou-
pled system are derived from a Lagrangian and solved; afterwards the system is
quantized.

In section 3 a similar Lagrangian is formulated for the case of a uniformly accel-
erated harmonic oscillator, which behaves in the same way towards the quanta of

the Fulling-Rindler quantum field theory as the inertial one does towards:Minkowski - .

quanta.

In section 4 the behaviour of the uniformly accelerated detector in Minkowski
quantum states is studied. In the vacuum the result of Unruh and Davies (eq. (1))
is reproduced.

At last, in section 3, considerations about the Fulling-Rindler quantum states
are made by a look at the behaviour of the inertial detector in Rindler vacuum.

2 A model of an inertial detector

2.1 Classical treatment

The coupling of the system is supposed to be described by the following Lagrangian:

k=4 [ (2) - (L) +mmae) 1 [(2) 0]

®(t,z) ... scalar field,

Q(t) ... elongation of the harmonic oscillator, some “inner” degree of
freedom,

A ... coupling constant,

p(z) ... interaction density, describes the spatial extension of the de-
tector. It is taken to be an odd function of z to guarantee finite total
energy.

o
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The two-dimensional metric ts

1 0
’7#11:(0 _1)‘

Variation of the action integral [ _L(t)dt yields the coupled equations of motion:

d? =

_%_t_) +W?Q(t) = ,\/:wda: p(z)®(t, z), (3)
2 62

(g;t _ 5_) B(t,z) = Mo(2)Q(Y). (4)

This kind of model and its solution were established by Aichelburg-Beig [8] and
Schwabl-Thirring [9]. The solutions can be given with the aid of retarded or ad-
vanced Green'’s functions of the differential operators on the left hand side of (3)
and (4) in terms of ingoing or outgoing variables, respectively.

As the harmonic oscillator will be used as a model for a detector which is to react
to the influences of the field acting on it, it is reasonable to assume Q' = 0. In
(8] it is shown in detail that in the solution of an analogous 4-dimensional problem,
calculated from initial values of @, @, ®, $ at some time t = 5, Q(t) always vanishes
in the asymptotic limits ¢ — oo if the energy stored in the field at t = ¢, is finite.
This calculation can be adapted to 2 dimensions to give the same result.

For solving (3} and (4) it is convenient to go to Fourier space, where the variables
are defined by

Q(ko) := /mdte‘k“‘Q(t)

— 00

B(ko, k) := / dt dz e -7 (1 )

ph)i= [dmepla),  p(-k) = =plk) = 57 (B)

 ®(ko, k) is given by a solution of the homogenous equation obtaired from (4),
®**(ko, k), plus the retarded solution of the inhomogenous equation. Q(kq) does not
contain a homogenous term, as Q' was assumed to be zero.

A p(k)

B(ko, k) = O (ko, k) + lim 17 s Qo) (5)
. A >

Inserting (6) into (5) yields a Fredholm integral equation of the second kind with a
degenerate kernel,

- A 1 > p(k) p(k')
k) = tn L . ./ . ! )
S(ko, k) = @7 (ko, k) + lim 57— —— (ko + 1¢)? /_&d}” k2 — (ko + ie)? ko £)- ()
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[ts solution can be given in closed form:

in (k) p(- k')‘P‘“(ko k')
B(ko, k) = & (ko, k) +---11m/ p i
27 e—0 k2 — (k0+ze) ~ (ko + 1€)2— f—oo?%'(%(%(e_g)

With the advanced Green’s functions, which are complex conjugate to the re-
tarded ones, one gets the corresponding relations between the interacting system
and the outgoing field.

In view of a later quantization it is convenient to decompose the ingoing field
variables into their respective positive and negative frequency parts:

in = dk in thz=ilk|t ine —tkz4ilk|t
o'"(t,z 2\/_/ \/I_k_{a (k)e™=—itklt 4 gin=(g)e=tketilklt) (9)

For a real, classical field a™(k) and a™*(k) are complex conjugate functions. Insert-
ing
; 3 . .
®" (ko, k) = 24 7 (4™ (K)6(ko — [k]) + a™ (= k)8 (ko + k1))
mto (8) one obtains ®(ko, k) in terms of the ingoing field coefficients.

If p(z) is an odd function, only the parts of the field antisymmetric in the momen-
tum space variable k interact with the detector, because of f:o dk’ p(—K')®™ (ko, k')
in (8). Therefore it is convenient to split the free field coefficients in.the: following
manner:

m/oul(k) \;_[ain/out(k) + ain/out(_k)]‘ (10)

This will simplify the further calculations. ai", 2" will be referred to as symmetric,
respectively antisymmetric (classical) field variables; £ can now be assumed to be
positive. Inserting ®'"(ko, k) into (8) and taking into account this decomposition we

arive at
®(ko, k) = 1/ 2Tﬂ.aaf,“(lc)éS(lco — k) + 4/ g::—sai""(kﬁ(ko + k)+
) Zal (1)6(ko — k) — /2 a ()a(ko + £) +

[ dk p(k)p(—K)ain(k')E(ko — k)
V2orAtl - 11
TV e=0 o VE (k= ki —1c)Dy(ko) (1)
[ dk p(k)pl—k')ain (k)8 ko + K')
—Var A o
), VE K- K+ D (k)

with (K i
2 _ p (2
Da(k) = o — I / A xglklwn. (12)

Now the relations

lim : =P (—i—) Fwd(z), (13)

e—0 j: 2\—
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P denoting the Cauchy principal part and

L

§(k* — k2) = ]

(6(k — ko) + 6(k + ko))

is applied to (11):

B(ks, k) = | T6(ko = k)" (k) + 1/ 28(ko + k)ai (k) +

27 ai"(k)
CEYCUORLAC

—V2r )2 p(k) / j]ika (¥) 76(ko = K) ((';))— (14)

\/z’SDO(k)a(ko + k) DE};)) +

dk’  p(k') nas (k)
+V270%p( k)/ \/_k’+k’2 (lc0+k)D_(kl),

Dq denoting the real part of D,
@ may be obtained from (6) or the original equation (4):

A [ dk p(k) < dk p(k)

_ A ak ingpye-ikl L A ar
UO=~77 J, D, “Vz—r/o VE D (k)

The corresponding expressions in terms of outgoing field coefficients are obtained
by the the exchange D, « D_, which comes from employing the advanced Green’s
functions rather than the retarded ones. Comparation of the retarded and the
advanced solution leads to the relations between in- and outgoing field coefficients,

a(k) = al'(k), (k)= %a:;"(k). (16)

a (k)et. (15)

The transformation of the symmetrized variables is trivial, also the antisymmet-
ric a’s are not mixed with the a*’s, they are only endowed with a phase factor. -
Ingoing waves are are merely phase-shifted and transmitted or scattered back by
the detector.

2.2 Quantization of the system

The solutions (14,17,20) are the basis of quantization. The quantum analogs of the

classical variables a™, a'**, will be denoted by a™, éi"t. They are stated to be
elements of an algebra with the canonical commutation relations:

[éin/out(k),ém/out(kl ] [aln/out'l'(k) m/oud(k }
[a™™/eut k), a™/ouT (k)] = 6(k — &), (17)

The commutation relations for the interacting variables Q(¢) and ®(t,z) and their
time derivatives can be derived from those of the ingoing ones, they turn out to be

-

2
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canonical. If the field variables above are replaced by the symmetric and antisym-
metric ones (10), k¥ can be constrained to values > 0. Then the same commutation
relations as the original ones (17) are valid for a'*(k), a™(k),. ..

The representation space of the field algebra is the conventional Fock space of

the ingoing free field. The ingoing vacuum is defined by
a"(k)]0)" =0 Vk und ™(0]0)" =1 (18)

One can define two orthogonal Fock (sub-)spaces of ingoing states, spanned by
n-particle states which are obtained by application of general symmetrized or anti-

symmetrized creation operators, constructed from &, , respectively ﬁI , to the ingoing
vacuum,

=/0°°d"kf,.(k1,... )""f(kl) ""T(k)|0)"‘ (19)

with the normalization

!
2
'/(; dnk’f"(k],,kn)i = !

(Note that the indices s and a of the states mean symmetric or antisymmetric in the
momentum space-variable k; this should not be confused with bosonic, respectively
fermionic states, all this paper is dealing only with bosonic fields!

‘The operator version of (16) is a “trivial” Bogolubov transformation, from which -

follows ;
|0)™ =]0)™ (20)

Eq. (20) shows that in the asymptotic limit the harmonic oscillator does not
create or absorb particles; nor does it change the magnitude of their momentum, at
most their direction. This is a desirable feature of a detector model.

The total Hamiltonian of the system,

H(t) = /_md:c’H(t,x) = 4% /_eodk{ld)(z,k)ﬁ + K20, k)2 + Ap(k)Q(t)B(L, k)

[e ] (=)

+ap(B)(L QY + 5(Q70) + Q0] = [ dblkl & (k)" (k) + const
(21)

is equal to the Hamiltonian of the ingoing field plus a constant consisting of the (infi-
nite) vacuum energy of the field, the ground state energy of the harmonic oscillator,
and the negative interaction energy (which is finite, if p(z) is odd). Its (stationary)
eigenstates, the physical states of the system, are the normalizeable ingoing states.

2.3 The harmonic oscillator as a particle detector

When used as a particle detector, the harmonic oscillator is coupled to the field.
For a measuring process, it is decoupled at some later instant ¢; afterwards it will
be found in one of its energy eigenstates, which are clearly not eigenstates of the
total Hamiltonian. The probabilities of the different excitation states depend on
the ingoing state of the field and the instant of measurement. According to these

6
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probabilities the energy expectation value of the detector varies with time. The
time-dependent Hamiltonian of the detector is

Hp(t) = 510%(1) + *Q(1)] = ~ .
—o [ k) P i hgain e
+:7/ r( ’*’*)Ff%%éi"(k)é?(k’)a‘“**‘ﬂ
+;\;/ dkdk’ _kk')i’g%)%ég‘f(k)é?f(kl)ei(nk')e 4 By

the first integral has a minus sign, because p(k) is imaginary, and

Bo= 01 H0 01" = - [T il @

p(0) = 0 and lim;_ p(k) = 0 are essential for the integral to converge.
Having one ingoing particle, one gets

2

Aw? | [ dk p(k)

in( 1| Hp(t) ] 1 >in = Fo + o A TD—-Q-(-’S'{(,C)B_“”
207 p(k) _iet|”
oo / dk\/_D+(k) (k)e™** (24)

The vacuum expectation value is enlarged by two positive definite expressions, simi-
lar terms are added in other igoing particle states. From that it can be seen that the
harmonic oscillator has its lowest energy expectation value in the ingoing vacuum, an
essential detector property. If f{k) # 6(k— k') (ingoing momentum eigenstate), then
in the limits t — +oo the additional terms, which are due to temporary absorption
of field quanta, tend to zero.

If one takes an ingoing thermal state with temperature 7', given by a density

operator
or = [[ (1 =) ) e n )™ " (ny |, (25)
k ng
= 1/kpT,
| ng )" ... state with ni ingoing particles with momentum k,

one gets a time-independent energy expectation value

N[k |p(k)p? 1
TI(QTHD(t))= Eo + g-/(; %%(w2+k2)eak_l . (26)
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3 The uniformly accelerated detector

3.1 The classical system

Rindler coordinates 7, { with the distance between infinitesimally seperated points
in two-dimensional space-time given by

ds?® = (¥dr? - d(? (27)

are comoving with uniformly accelerated objects in two-dimensional flat space-time.
The metric is static, the Killing field 8/87 is future-directed in the domain z > [¢].
Here the coordinates transform in the following way:

t = (shr, z = (chr; (= V2t =-#t = arthi. (28)
z

The uniformly accelerated detector is supposed to be at rest in Rindler coordinates
at (o. For its proper time one has ds? = (2dr? = s = (o7, thus the Lagrangian of
the oscillator, harmonic in its proper time, is

La(s) = 2[(‘1%3)) w*o%s)}:%[é ("‘jﬁ’))z—w’o’m]. (29)

The Lagrange density of the massless scalar field can be transformed covariantly to
arbitrary coordinates:

1
Lo(r,() = V9 0,9 0"2, (30)
g = —(? is the determinant of the metric.

In the inertial case the spatial extension of the detector is described by a function
p(z). Supposing that a detector behaves like a rigid body under uniform acceleration,
it will be described by a function p((,{s) in Rindler coordinates. ¢(° denotes one
distinguished point of the detector, the proper time of which is taken as the proper
time of the whole detector. The resulting total Lagrangian is

L= [ {% (Br0)_((20.0Y', u%p«,com(nc)cz(f)}

1|1 /dQ(7)
+5 Lo ( o ) wQQQ(T)}. (31)
and the equations of motion are
9 6 0
d? ®d
Lot )+w’Q(T)= YS! (32)
(g dr 0

Before solving these equations it is of advantage to consxder the mode decomposition
of the field in Rindler coordinates, which is the basis for Fulling-Rindler quantization,

> dx

o b‘l a0t ""‘1' b ~—in )!K'T 33
(7.¢) 7{/ \/IA (~)¢ + b (k)¢ ). (33)

Ve
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The logarithm of ( plays formally the same role as the Minkowski coordinate z in
(9). For this reason, p((, (o) is assumed to be odd in (In { —In (). The spatial Fourier
transform is replaced by the following integral tranformations to the x-space:

prse)i= [T G =5 [ dnCenG) (34

o ¢
It follows that
p(—r, o) = =(3"p(k, (o).

The decomposition of the ingoing field coefficients into interacting (“antisymmetric”)
and undisturbed (“symmetric”) parts corresponds to this property of p:

by (x) b™(x) £ (b (~x)]. (35)

=l
\/'
The frequency of the harmonic oscillator corresponds to its proper time (o7,

therefore @Q(7) must contain the functions exp(tiw(oT).
The functions Dy (12) are changed to

D-_ﬁ(h‘-) — (Cow)2 _ I{2 + (’\fr(-‘)2 '/omdn, ’p("‘"l)lz (’\CO) 'P )l2 (36)

k% — x"? 2|x|

in the accelerated case.

Now all the formal requirements for a solution corresponding to that of the
inertial detector are given (it will be formally very similar to the former one (14,15));
the asymptotic variables obey the equations:

b*(x) = bi"(x), b(x) = B b (). (37)

3.2 Quantization

Quantization is achieved by postulating canonical commutation relations like (17)

for b**(x) and b"! and construction of Fock spaces for the ingoing field. An ingoing
n-quanta Rindler state will be denoted by | n )#. The Fulling-Rindler quanta
defined here are built up from waves of the form ¢*“e~'lI" and play the same role
as Minkowski quanta in the usual quantum field theory with the field coupled to an
inertial detector. In particular one has

|0)7" =10)g. (38)

The Hamiltonian of the harmonic oscillator can again be expressed by the op-
erators of the ingoing field. The resulting statements are analogous to those of the
inertial model: The energy expectation value in some Rindler state of the field is
equal to a constant vacuum expectation value plus a positive definite function of
time, vanishing for 7 — oo. Together with (38), this shows that the uniformly ac-
celerated model detector has the same detector properties for Fulling-Rindler quanta
as the inertial one has for Minkowski quanta.



Quantum Field Theory under the Influence of [External Conditions

4 Minkowski states and the accelerated detector

4.1 Bogolubov transformations

The transformation of the ingoing field operators can be calculated with the aid of
" and its time derivative at the instant ¢ = 7 = 0. On this line one has

0 4]
z=(, -a—‘r=xa.

Therefore b™ can be written in the following manner:

. 1 [®de | L)
bin - & —ix & (0, + .
(k) a/r ) z {\/lld (0, z) = 2 |‘=°}

When & and 9®™/dt are expressed in the form (9) the transformation from
Minkowski to Rindler field operators is as follows:

O(tc

NN / %{a""( )ewwa‘"f(zv)e'vk'*} (39)

k xx : s :
+—eg:)~/3 F(—z'~>/_ ey d_ {an(e)eF (—ky= + & (k)e ¥ (—k)=}

bi"(x) =

The signs of the k’s and «’s coincide, left- (right-) moving Rindler modes consist
only of left- (right-) moving Minkowski modes.

The transformation (39) uses the line ¢t = 0, z > 0. The inverse transformation
from Rindler to Minkowski modes is impossible without including the field outside
the Rindler space considered so far. If the operator coefficients of the field in the

other Rindler space (z < —|t{, here 8/07 is past-directed) are denoted by ¢ and et
1 *® dx
o0 \/ ||

t:hep initial values of the field on the whole line ¢t = 0 can be formulated in terms of
b, bf, ¢ and éf, and

¥(r,¢) = 5 {0 (=0t 4 &) (—() e (a0)

a"(k) =
( k) in —&L g \~iepys “int e A RLA T
vl d \/~{b ()e=F (= k)" T(ix) — b (x)eF (=k)"T(=ix)
—é'“(n)cT(—k)"“‘l’(in)+ &t (e)e™ F (k) T(= M)}
O(k)

K b'"h Fh-%T(ix) — bt (n)e~ T E*T(=ix
%\/_/df (x)eF kT (ix) — b (k)e~F KT (=ix)

& ()™ FETT(in) +¢™ (k)eF K T(-ix)} (41)

10
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4.2 Behaviour of the accelerated detector in Minkowski
vacuum

With the aid of the Bogolubov transformations (39) the Hamiltonian of the detector,
I
Ho(r) = 3 | @) +7Q%0)]. (42)
0

can be expressed by ingoing Minkowski field operators, so that an expectation value
in the Minkowski vacuum | 0 }'" can easily be calculated:

p(K)

"0 Hp(r) [0y = Uk [T 2y B Ak
2 oo
B = U8 728 4 (oo | 2 (43)

The energy (frequency) of a field mode according to the proper time of the detector
being |x}/(o, eq. (43) is the energy expectation value in a thermal Rindler state with
temperature T = (27kp(y)~! (compare (26)). Thus the behaviour of the detector
is in accordance with the well-known fact that the Minkowski vacuum is a thermal
Rindler state with a temperature proportional to the acceleration of the observer
[1,2].

In his work on accelerated particle detectors |7], Padmanabhan suggests that the
excitations in Minkowski vacuum should not be interpreted as absorption of Rindler
quanta but rather as direct effects of the acceleration, which manifest themselves
also by the emission of radiation. In addition to that, Unruh and Wald (2] argue
that in first order perturbation theory the event which looks like the absorption of
a Rindler quantum by & DeWitt detector model {10] for an accelerated observer is
the emission of a Minkowski quantum from the point of view of an inertial observer.

In order to investigate the radiation of the detector the outgoing energy density
of the ingoing vacuum state in the presence of a uniformly accelerated detector will
be calculated. The Bogolubov transformations from the ingoing to the outgoing
Minkowski field operators are obtained by first replacing “in” by “out” in (41).
Then for the b’s the following relation can be derived from (37):

 out _1 D_ ( ) n 1 —-2ix D—(K') rin
5 = 5 (14 5o ) e+ 367 (1 5 ) B

whereas the &’s are transformed trivially. Finally b™ and bint are expressed by a'"
and a! (39); &™ and &int are treated analogously. The result is

(/\(0)2 O(-

) 0 dkl
8 \/_ { [-oo _klx

gy [ DU € (<k) (< k)
( (k/ xsh(am)D(x)

o dx p(x)I? (= k) (= k')-“)
(¥ )/ ssh(ar)D(x)

11

a™(k) = & (k) +
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~1

aint /s *dk i,O(IC)l2 P(—i;c)z ('0'2& (_k)in JARYS
+ETE ./-oo D(k) ) }

(M) O(k) | [=dk

e 8r vk {_/(; VE (44)
ins it oo dmlp(rc)|2 = k-in k! 13 "‘1_ dfC l? k—m Iy i

(a (k)/—oo xsh(xm)D{x) (¥ ,/ rcsh (em)D(x) )

l 0 dk' i) dk lp( |2 F(ilc)2 Cgin enr Jo—in (_kl)-ix
_'w/ -k’ < (k )/ D(x)

camteeny [ 98 lp(k)|? D(ix)? (2 k= (=k')=*\ | |
) [ i ) } |

D(K) = ((Dw)Q _ K? + (’\fro)a/loeo dq 1 p(Q) ’2 _ i(Azc‘:)zIp(x)P,

K? — q?
D(£|x|) = Dx(x).

Although the Bogolubov transformation between the ingoing and the outgoing field
in presence of an accelerated detector does not mix Rindler creation and annihi-
lation operators, it does so with Minkowski operators; therefore the ingoing and
the outgoing vacua do not coincide. It seems that a uniformly accelerated detector
creates particles. The expectation value of the outgoing Hamiltonian in the ingoing
vacuum is to show where to the detector will radiate energy:

" goou\ ? oPeut\ ? "
oul v R oul in _ _ . .
E°*(t,z) = (0| :H™(t,z):|0) 2<0 .(—at)+(az)l 0>,
(435)
where : : means normal ordering in the sense of the outgoing field
algebra, acutt stands left from a°u.
For z # +1t one has _ ‘
O H(t2): [0 )" =0, (46)

for z = £t the momentum space-integrals in (45) diverge. Accordingly, the ingoing
vacuum cannot be represented as a normalizeable outgoing state.

The phase transformation in the domain of dependence of the detector described
by (37) causes a discontinuity of the field at the boundary of this domain; that is
the reason for the singularity of the field energy on the light cone of the coordinate
origin.
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As uniform acceleration lasting infinitely long cannot be realized physically, the
transformation (44) should not be taken too literally in a physical sense. What
remains are predictions for the limit of very long finite time intervals: (46) can be
interpreted in the way that the detector, when accelerated uniformly for a sufficiently
long time, approaches a state of equilibrium with the field vacuum at a higher energy
level than before the acceleration.

Assume, for example, that the acceleration of the detector is given by a step
function,

a(t) = (I—O[O(t — 1) = O(ts — 1)].

The detector moves inertially until the time t;, being at equilibrium with the vac-
uum, respectively with a cloud of virtual particles. If we assume that the influence of
the acceleration on the material of the detector can be described by a transition from
p(z) to some p((), then for some time interval after ¢, the Fulling-Rindler quantum
field theory will become the valid one for the detector. Now it is immersed in a
bath of Rindler quanta and will absorb them, until a new equilibrium at a higher
energy level, corresponding to the temperature T' = (27kg(p)~", is established (or
approximated asymptotically). During this transition the detector may radiate, but
from (46) it follows that it will not radiate when it has reached the new equilibrium.

After the end of the acceleration there is some t > t, when p has changed to
its original form p(z). Then Minkowski quantum field theory is valid again and the
detector will be radiating away its excitation energy by emitting Minkowski quanta
and so approximating the same state as before ¢y. The repeated sudden change of
the state of motion may cause radiation, which is fading in the following periods of
constant acceleration.

5 The Fulling-Rindler vacuum

The energy expectation values of a uniformly accelerated detector can make one
think that the Fulling-Rindler quantum field theory is “the right one” for accelerated
observers. What is the physical significance of it? Its vacuum state (and all its
states with fewer quanta than the Minkowski-vacuum) cannot be realized as a state
of the free field. Accordingly, energy expectation values below ™( 0 | Hp(r) |
0 )", especially the Rindler vacuum expectation value Eq, are not accesible for the
accelerated detector in physical particle states.

The negative energy density of the Rindler vacuum has been calculated in various
manners [4,10,11], it arises also directly from the Bogolubov transformation (41).

According to Gerlach [13] it is the fluctuations of the Minkowski vacuum which
appear to have a thermal spectrum for accelerated observers, and the Rindler vac-
uum could be approximated in parts of the Rindler space-time by freezing out some
vacuum fluctuations in the interior of a large accelerated “refrigerator”. One can
even try to calculate the energy expectation value of an inertial detector in Rindler
vacuum. A detector on a world line (¢, o) is immersed in Rindler vacuum for a time
—zp < t < z5. The decomposition of the field into an undisturbed part and a part
interacting with the detector is somewhat different from the decomposition when

13
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the detector is placed in the spatial coordina.te origin: In analogy to (10,35) one has

Bin (k) = —=[e®0a™ (k) £ e~ 5 (k) (47)

=%

l"l

a" and aﬂJr are expressed in terms of Rindler field operators (41) and inserted
into the detector Hamiltonian (22). The resulting energy expectation value of the
detector is lower than in Minkowski vacuum:

"2(0,0"| Hp(t)]0,0 ). = Fy — __BN’/ dx x
“dk p(k) | e e oK) i ko]
2 ix vk(t ::o) ix tk{t—zg)
{“’ /0 E Dk ¢ ‘“‘D KF e
“dk _p(k) s PE) L in iktraso)|”
2 in |k(¢+xo) ix ik(t42)
tw A kD_(k)k e /de (k)k e 0 . {48)

Far away from the horizons of the Rindler spaces the integrals behave like (t +z)™!.
Consequently, the negative energy contribution goes like 1/23 for large zo > ¢,
according to the negative energy density of the Rindler vacuum [4,10,11]. At large
distances from the horizons the detector behaves asymptotically like in Minkowski
vacuum.

In contrast to an investigation made by Candelas and Sciama {12], here:the de-- -
tector behaves differently in Rindler vacuum and in Minkowski vacuum, even if it is
never accelerated. The expectation value (48) is in accordance with Gerlach’s inter-
pretation of the Rindler vacuum as a state which is gained from ordinary Minkowski
vacuum by removing some vacuum fluctuations [13].

The reasons for the different canonical field quantizations in Rindler and Min-
kowski coordinates are on the one hand the existence of horizons of the Rindler
space, and on the other hand the fact that the Rindler time 7 is no inertial time.
Because of these differences, only measurements by inertial detectors of the type
considered here are actually in accordance with the state of the field in flat space.
Indeed, the effects of the acceleration on the excitation of a detector is far below
measurability. To measure a temperature of 1/ in the vacuum, the acceleration
would have to amount to = 2.5 x 10®°ms~2.
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Abstract
We study the quantum fluctuations of the electromagnetic field
in a medium, and calculate the spectrum of the stress-energy tensor
in a moving frame. The possibility of superluminal motion introduces
some new features which have an origin similar to that of the vacuum

fluctuations in noninertjal systems.




Quantum Field Theory under the Influcnce of External Conditions

Quantum field theory predicts the existence of a 2ero-point
field due to fluctuations even in vacuum state. The spectrum of
these quantum fluctuations is Lorentz invariant, and, therefore, the
zero point field cannot be detected in an inertial frame in free
space. However, the situation Is altogether different when the
Lorentz invariance is broken. This is the case in a noninertial
frame or in the presence of boundaries. For instance, the Casimir
effect [l] can be interpreted as due to the presence of a privileged
frame of reference, that of the boundaries, which breaks the Lorentz
invariance.

A somewhat similar situation happens in the presence of a
dielectric medium. Since the medium defines a preferred reference
frame, the quantum fluctuations of the electromagnetic field should
produce some observable effects. Furthermore, the possibility of
superluminal motion in a medium has some interesting effects which
are related to the Cherenkov radiation and to the so called
anomalous Doppler effect (ADE) (Ginzburg [2]). That there exists a
connection between the Cherenkov radjation and the ADE, on the one
hand, and the radiation in an accelerated frame, on the other hand,
was already pointed out by Ginzburg and Frolov [3].

The aim of the present work 1is to further explore the
phenomenon of quantum fluctuations in moving frames. The general
theory of electromagnetic fluctuations in a frame moving with

respect to a material medium is outlined, and the stress-energy
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tensor is evaluated for the case of uniform motion. Already in this
simple case, some interesting effects appear when the motion is
superluminal.

The present formalism is based on the Green or Wightman
two-point correlation functions of the electromagnetic field in a
medium. These functions can be written in the form (see, e. g.,

Lifshitz and Pitaevski [4]):

CA (Xl). B (x;) > =

(8n2)-! [ dw [ dk e L wAt+ |k Ax
4]

k-t F (A, B) 8(n w ~ k)
(1N

Here, A and B represent any component of the electric or magnetic

field, E‘and Ht' and

- w2 - -2
F (Et' EJ) w ‘SU kt kJ n (2a)
¥ (Et. H_;) - - % (H‘, Et) = E(Jk kk W (2b)
o 2 (a2 - -2
¥F (Ht' HJ) n? (w BU Icl kJ n-?) (2¢)

The above correlation functions involve the electric and magnetic
flelds referred to the rest frame of a homogeneous medium with no
spatial dispersion. It is assumed that the permeability g = 1, and
that the refractive index n = Ve is real and depends on the
frequency w measured in that rest frame.

Now, in general, the energy density u, the Maxweil stress
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tensor o ., and the Poynting vector S in a medium are given by [5):

u=(8n-!(E-D+ B-H) (3)
S=@4n?'ExH (4)
c,=@8m'[(ED+B-HS -2(ED +BH)] (5)

Under a Lorentz transformation, the pairs (E, B) and (D, H)
transform as the components of four-dimensional antisymmetric
tensors. If the standard relations D = €E and B = pH (with arbitrary
€ and pu) are assumed , then a transformation to a frame moving with
velocity ¥V in the direction x, yields the following transformed

energy, stress and flux densities:

a=72[u-V(l+nz)S3+V20'33] (6)
Sy =922 [(L+n2 V) S, -V (u+ 0] (7)
;“=72[6M-V(1+n’-) Sy + V2 u], (8)

where n2 = ey and ¥y = (1 ~ V2 )*. and tildes refer to the moving
frame.

A convenient procedure to calculate the spectrum of the
stress-energy tensor in an arbitrarily moving frame (6] is outlined
in the following. If the world line of the detector is given by the

equation x* = x* {tr), where T is the proper time of the detector,

then one calculates the Green function at two points x* = x¥ (1 % o)

on the world tine, and Fourier transform it with respect to o. In
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this way, one obtalns the spectrum as a function of w, which is
precisely the frequency measured in the rest frame of the detector.
We apply this procedure to the case of a detector moving with

constant velocity. The world line for motion along the x, axis is:
*=(y70,0 yVT) (9)

Let us [{llustrate the method by calculating the spectrum of the
electric field magnitude. Other relevant quantities can be
calculated in an exactly similar way. We start from the correlation
of the electric field in the medium frame:

<E(t+40)-E(t-40)> = (8n2)~! [ dw | dk e—t(w - k-V)yo
[+

x k' (3 w? - k2/n?) 8(nw - k). (10)

Then, the Fourier transform of this expression,

[}
<E?»» = [ doe
w -0

L@ 9 p(zedo). E(T-d0)>, (11)

can be presented in the form

] |
CE? > =fda [ duélw-7w{l-nVplne. (12)

w ° -1
Here we have used spherical coordinates In order to perform the k

integration ( dk = k2 dk du d¢ ), together with the formula

-4

8 (x) = (2w | ay eV (13)
-o
Finally, one finds
m o~
CE2 > =@V)f duwwohnwryV-lw-7uw) (14)
o]

W




Quantum Field Theorv undér the Influence of External Conditions

dependent of the cutoff.

The simplest choice for the refractive index is (2]:

n for w s w
n(w)= ¢ (21)

1 foru>uc,

which reproduces all the qualitative properties of the general case
in which the refractive index is larger than | except for high
frequencies.

Given the step function form of the refractive index, there are
essentially six ranges of values for the frequency @ which must be
taken into account when performing the integrals in Eqs. (15) and

(17). These ranges are:

I: -m<a<—[nV-1)1wc
11:-(ﬁv—1)ywc<2, <0
III:O<;<(1—V)1wC
IV:(l-V)‘ywc<‘(:x<(1+V)1wc
Vi (1+V)7wc<:s<(l+nV)1wc

VI:(l+nV)1wC<::<co.

The functions F (@), G (w) and H (w) are zero in the range I,
and G(w) is also zero in the range IV. The integrals can be
calculated with some simple but tedious algebra. For our purposes,
It is enough to give explicitly the following results. First, the
Poynting flux vanishes identically for w > (1 + nV) 7 W and is
mainly concentrated in the range IV, namely around the value ¥ w .

The exact value in this range of frequencies is
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~

-4 W

w2 (n? -1),
c

As for the energy density and stress, they have the exact values

w?3

u=3633=2n1

Jjust as in vacuum, for frequencies w greater than (1 + nV )1uc.

The fact that the Poynting flux §3 does not vanish for vn > 1
is an indication that there is a vacuum energy flux in a moving
frame, which can be detected in principle. A somewhat similar
situation happens in a rotating frame [6, 7], where this energy flux
can be related to the synchrotron radiation (8) In general, a
possible manifestation of this flux is through its “friction" with a
moving charged particle. This point will be Iinvestigated in the

future.
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QUANTUM ELECTRODYNAMICAL CORRECTIONS IN CRITICAL FIELDS
G. Soft

Gesellschaft fir Schwerionenforschung (GSI), PlanckstraBe 1
Postfack 110 552, D-6100 Darmstadt, West Germany

1. INTRODUCTION

We investigate field-theoretical corrections, such as vacuum polarization and self en-
ergy to study their influence on strongly bound electrons in heavy and superheavy
atoms. In critical fields (Z =~ 170) for spontaneous e*e™ pair creation the coupling
constant of the external field Za exceeds 1 thereby preventing the ordinary perturba-
tive approach of quantum electrodynamical corrections which employs an expansion
in Za. For heavy and superheavy elements radiative corrections have to be treated to
all orders in Zar. The Feynman diagrams for the lowest-order (a) vacuum polarigation
and (b) self energy are displayed in Fig. 1. The dounble lines indicate the exact propa-
gators and wave functions in the Coulomb field of an extended nucleus. Fig. 2 shows
an Za-expansion of the vacuum polarigation graph. The dominant effect is provided
by the Uehling contribution being visualized by the first diagram on the right hand
side. It is linear in the external field and thus of order o(Za).

2. VACUUM POLARIZATION OF ORDER «a(Za)"

The influence of the attractive Uehling potential on electronic binding energies for Z >
100 has been calculated already by Werner and Wheeler {1]. For the critical nuclear
charge number Z_, at which E;, = —mc? the Uehling potential leads to an 1s-energy
shift of AEf,:"") = -11.8 keV [2], which decreases Z., by one third of a unit. The
remaining vacuum-polarication part in lowest order of the fine-structure constant o
but to all ordersin (Za)” with n > 3 is more difficult to elaborate. Pirst evaluations
of this contribution were presented by Gyulassy [3-5] and by Rinker and Wilets [6-
8]. These authors made use of the angular momentum decomposition of the electron
propagator in spherical symmetric potentials that was developed by Wichmann and
Kroll [9].
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a) | " b)

Figure 1: Feynman diagrams for the lowest-order (a) vaceum polarization and (b) self
energy. ' '

From bound state QED [10] the energy shift corresponding to the total vacvum po-
larization is given by

AE = 41riajd(t, - tl)/dz',/da?, Pn(22)7*¢n(23)Dp(22 2y) Tr[v.Sp (24, 21)]
(1)
where the photon propagator is

- —.l(-’—nl)
Dron e = e[ »
and the Peynman propagator for the electron can be represented by - .

_1_/ dz Z ¢n(;-:)fn§£1) e—it(l,-h)

Sp(zam) = 273 Je

1 - = —ix(ty—
= o= c’dz O(Z3, £y, 2)7° e~i0=0), | (3)

It obeys the equation
[7#(i0, — eAu(21)) ~ m] Sp(21,23) = é*(zy — 23) _ (4)

which implies that external field eflects are included to all orders. ¢, denotes the
electron wave function.

The level shift can be expressed as an expectation value of an effective potential U
with

U(:E'g) = 47”_0/& (t; — ¢ )/di, Dg(zy ~ 2;) Trlve Sp(zy,21)]
= “"/d ,T—— [ 42 Trg(d, 51,2). (5)
- 31‘ .
With the vacuum polarization charge density p

o) = 5= [ a=Tro(a ) (6)



Quantum Field Theory under the Influence of External Conditions 203
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Figure 2: Za-expansion of the vacnum polarization diagram.
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Figure 3: Radial vacuzm polarization charge demsity p), - r* of order a(Za)" with
n > 3 for the system Z = 79 with a nuclear radius R = 5.437 {m versus the radial
coordinate r in natural units. The various contributions for x| = 1, 2, 3, 4 and 5
are shown separately by the dashed lines. p|. (- r? is given in urits of the elementary
charge e. The solid line indicates the sum p - r? of the various angnlar momentum
components. a) Linear scale for the range in which the charge density is negative. b)
Logarithmic scale to demonstrate the large distance behaviour of p|, - r?. Here the
vacuum polarization charge density is positive.
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Figure 4: The same as in figure 3 for the almost critical system Z = 170 with a nuclear
radius R = 7.1 fm. '

it simply follows

(7)

The formal expression for p still contains the infinite unrenormalised charge. A reg-
ularigation procedure [5,11] for the total vacuum polarization charge density is to
subtract the Uehling contribution which can then be renormalized separately. Ex-
pansion of the Green function in eigenfunctions of angular momentum yields for the
vacunm polarization charge density of order a(Za)” withn > 3

26? ]omdu\(*f || Re

x=%1

]: dy ¥* V(y) 22: [Fi’(z.y.iu)]’}) +

U(iz) = —C/dil l—_—.e-(—il-l—

Z;3 31[

p(z) = p)z) =

{i G (z, z, iu)+

1=1

= j[f 5l {£3(2) + £(=)} (8)
-m<E<O

This equation includes terms from any bound-state pole on the negative real z axis.
These terms are picked up as residues in the rotation of the contour of integration.
Such terms only appear for superheavy systems where the binding energy of the elec-
tron exceeds the electron test mass. fy(z) and f,(z) denote components of the radial
Dirac wave function, normalized according to :

[Tdz 2 (fi2) + @) = 1 (%)

F3 are components of the free Dirac Green functions {12,13}. According to Wichmann
and Kroll [9] the radial Coulomb Green function components G2 may be represented
by solutions of the radial Dirac equation. Expression (8) has been solved numerically.
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We have examined the vacaum polarization in the field of a high-Z finite size nucleus.
The polarisation charge demnsity in coordinate space of order a(Za)™ with n > 3 is cal-
culated {11,16}. Energy level shifts of K- and L-shell electroas in hydrogen-like systems
are derived. Vacuum polarisation corrections 4o emergy eigenvalues of bound leptons
have been examined extensively in the past. However, the corresponding influence of -
vacuum polarisation effects on electron levels in atoms has not been completely calcu-
lated. One purpose of our work was to carry out a complete calculation of the vacuum
polarization of order a in order to provide improved electron binding energy values
and to investigate more closely radiative corrections for strongly bound electrons in
superheavy systems.

The energy shifts of K- and L-shell electrons in various hydrogen-like systems due to
the vacaum polarization of order a{Za)™ with n > 3 may be deduced from table 1.
The energy correction AE usually is expressed via a function AF with

o(Za)t
x nd

AE = AF me.

n denotes the principal quantum number of the electron state. In table 1 we present
the dimensionless quantities AF.

AF(Za)

System | Rifm] | 1sy/3 | 2412 | 2pyja. | 2py3s2
30Zn 3.955 1 0.0020 | 0.0020 | 0.0000 | 0.0000
uXe 4.826 | 0.0059 | 0.0064 | 0.0004'| 0.0001
12Pb 5.560 | 0.0150 | 0.0185 | 0.0035 | 0.0005
90U 5.751 | 0.0207 | 0.0272 | 0.0068 | 0.0007

10oFm | 5.886 | 0.0269 | 0.0377 | 0.0118 | 0.0010

Z=170| 7.100 | 0.518 | 0.764 3.75 0.017

Table 1: Higher-order vacaum polarisation contributions [11] to the Lamb-shift of K-
and L-shell electrons in various hydrogen-like systems. For the nuclear charge distri-
bution we assumed a homogeneonsly charged spherical shell with a radius R.

For fermium we get a noticeable energy shift of about 9 eV for the K,-line. In
conclusion we have computed the vacuum polarization charge density of arder a( Zax)"
with n > 3 for various hydrogen-like systems of the known periodic table of elements.
Employing the developped computer code more accurate numbers for the electron
Lamb-shift {14,15] in hydrogen-like atoms can be provided.

The computed vacuum polarization charge density for Z = 79 (Au) and for the almost
critical system Z = 170 is depicted in fig. 3 and 4, respectively. The nuclear radius
R is indicated. The various contributions for the angular momentum components |«|
= 1 - 5 are shown separately. The radial distance r is given in units of the electron
Compton wavelength. pi - r? is measured in units of the elementary charge e and
the inverse Compton wavelength. Part a) shows on a linear scale pi - #? in the range
where the charge density is negative. The large distance behaviour of pj,( - r? can be
taken from figs. 3b and 4b. Please note the logarithmic scale. Here the radial charge
density is positive and displays: almost an exposenfial decline.in the depicted range.
Obviously the (x = 1) - contributidn tostha vatusi-paletissiion : chasgé denaity




dominates by about an order of magnitude. A rapid convergence in the x-summation
is indicated. For large distances (2 < r < 7) pj « 7* decreases rapidly with different -
decline constants for the various x-components. For Z = 170 the binding energy of
the strongest-bound electron state amounts to £y, = —1020.895 keV. The eflect of
the higher-order vacuum polarization on & K-shell electron in the superheavy system
Z = 170 results in AE,, ~ 1.46 keV [11,16], which is completely negligible.

3. VACUUM POLARIZATION CORRECTIONS OF HIGHER ORDER IN MUONIC
ATOMS -

We also computed the energy shifts in muonic atoms caused by the vacuum polar-
ization of order a(Za)™ with n > 3. Nuclear size corrections are taken into account.
The calculations are performed for all muonic levels from the 1s,/3-state up to the
5g¢/3-state in various atoms between Z = 70 and Z = 100.

The Bohr radius of a bound particle in an atomic orbit is inversely proportional to its
rest mass m. Thus to tést any deviation from the Coulomb potential at small radial
distances it is favorable to measure precisely transition energies of bound muons or
pions in heavy atoms. In particular high-lying muonic states, e.g. the 5go/2- and the
4 f1/2-state in 5, Pb, are best suited to explore quaxﬁtnm electrodynamical corrections in
strong external fields (8). Despite their small radial expectation values of < r > = 50
fm these states are hardly influenced by the nuclear extension or by intrinsic degrees
of freedom of the nucleus, e.g., nuclear polarisation. In addition electron screening
corrections play a minor role in these exotic atoms. The vacuum polarisation charge
density is concentrated close to the nucleus which can be verified by measuring muonic
transition energies.

Fig. 5 displays radial probability densities |¢r|? in muonic lead. py indicates the
nuclear charge distribution being described by a two-parameter Fermi distribution.
The lallg;mﬁou obviously exhibits a striking overlap' with the nnclear interior. The
binding energy is extremely sensitive concerning any modification of the nuclear charge
distribution. In consequence this state may not be utilized for precision tests of QED.
For cornparison the dashed line shows |¢7|? for a K-shell electron with a radius of about
800 fm. This state has been computed using a Thomas-Fermi potential to account
for electron screening. Please note the logarithmic scale for the radial coordinate r.
Most important for QED tests are the two muonic states in between, the 5go/2- and
the 4fy);-state. The maximum of their radial probability distribution is located at
about 50 fm. The measured transition energy amounts to AE“? = 431.353 keV +14
eV. This accuracy allows for high-precision tests of QED in strong fields.

The varions QED processes in the interaction of a muon with a nucleus are visualized .
in fig. 6. The first graph on the right hand side is the ordinary Coulomb interaction.
The second graph again represents the Uehling part. The last diagram on the right
hand side of the first line as well as the diagrams on the third line are summarized as
Kallén—Sabry contributions. They are of order a?(Za). Their influence on electronic
binding energies will be discussed later. The last diagram in fig. 6 of order a*(Za)?
represents a Delbrick scattering. For a review of the various contributions we refer
to ref. 8. Here we concentrate again on the diagrams in the second line, i.e. on the
vacuum polarization of order a(Za)" with n > 3.
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Figure 5: Radial density distributions [¢r|* for the muomic 1s;3—, 4frs— and
5gs/a—state in muonic lead (Z = 82) as function of the radial coordinate r in units
of fermi. The dashed line plots |r|? {for a K-shell electron. py indicates the nuclear
charge distribution which is described by a two-parameter Fermi distribution.
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. AE (eV)

State mYb uw "Au "Pb “R.Il nU “Cm xooFm
1s,/; || 299.9 [ 354.4 [ 436.0 [ 489.2 [ 562.2 | 692.8 | 792.3 [ 900.7
23,2 || 130.8 | 161.9 | 208.2 | 239.5 | 274.1 | 356.4 | 420.0 | 449.0
2py2 || 194.4 [ 229.1 | 296.8 | 342.3 | 407.3 | 521.7 | 609.3 | 705.7
2py/> § 186.5 [ 230.1 | 284.0 | 328.4 | 392.3 | 504.3 | 590.1 | 684.8
3, | 65.3| 80.4[105.2|122.2|147.3|190.9 227.5 | 268.8
3pys | 87.1|107.6 | 141.1 | 164.1 | 198.0 | 256.4 | 305.1 [ 359.8
3py/; | 85.0 | 106.3 | 137.7 | 160.3 | 193.7 | 250.8 | 298.9 | 352.9
3dss; || 96.8 | 121.9 { 161.2 | 188.8 | 230.4 | 305.3 | 365.6 | 434.3
3ds/; | 94.0 | 118.0 | 155.8 | 182.2 | 221.9 | 293.1 | 350.6 | 416.0
4s,;, || 34.5| 43.6| 56.9| 66.8 | 81.6)107.1 | 129.0 | 154.0
4py | 43.8| 55.7| 73.7| 85.5|104.7|139.4 | 165.1 | 197.2
4pya || 42.9| 54.6 | 72.4 | 83.9|102.9 | 137.3 | 164.6 | 194.3
4dy; | 47.8| 61.2 | B1.9| 96.1 |118.6|159.7 | 192.0 | 230.4
ads;; | 46.7| 59.7| 79.6 | 93.3(115.1)154.8 | 185.7 | 222.8
4fy> | 48.1| 61.6 | B2.6 | 97.5|120.6 | 163.2 | 197.5 | 237.6
4fys | 47.4| 60.7) 81.2| 95.7|118.3 |159.7 | 192.9 | 231.7
S5sy2 | 19.8| 25.0 | 33.4 | 30.0 | 48.1| 64.7| 77.6| 933
Spaz | 24.5| 31.0| 41.6| 49.0| 59.9| 80.7| 97.5| 116.0
Spsya | 24.1| 30.5| 40.9| 48.3| 59.0 | 78.7 | 96.3 | 114.6.
8dy; | 263 33.7| 45.6| 54.0| 66.8| 90.9 | 109.9 | 132.7
Sdy, | 25.8| 33.0 44.5| 52.7| 65.0 | 88.5(107.4| 129.0
5fa | 26.2| 33.7| 45.7| 54.3| 675 | 92.3| 1125 135.9
5fya | 25.8| 33.2| 45.0| 53.4| 66.3 | 90.5|110.2 | 132.9
Sg1j2 | 25.5| 33.0 | 44.9| 53.4 | 66.6 | 91.4 | 111.6 | 135.2
Sgesa | 25.3| 32.7| 44.4| 52.8| 659 | 90.2 | 110.1 | 133.3

Table 2: Energy corrections in urits of eV of muonic bound states cansed by the
vacuum polarigation of order a(Za)" with n > 3. We performed the calculations [17]
for all muonic bound states between the 135/;- and the 5gq/5-state. Muomnic atoms
ranging from 7 Yb up to 10oFm are considered.

Employing first-order perturbation theory,
AE = /“’ (£3(r) + £3(r)) U(r) #* dr (10)
0

we evaluated the energy correction {17] of muons bound in heavy atoms ranging from
20Yb up to ygoFm. In (10) £,(r) and f5(r) derote radial components of the bound-state
wave function of the muon. Table 2 includes the final energy shifts {17} in units of eV
for all muonic levels between the 1s,/,- and the 5go5-state. The corresponding nuclear
radii can be deduced from the table in ref. 14. In muonic lead (Z = 82) we obtained as
transition energy corrections A E(5gs/2 —4f7/2) = 42.9 eV and AE(5g1/, —4fs2) = 44.1
eV which agree within the quoted uncertainties with the corresponding results pub-
lished by Borie and Rinker |8] and by Gyulassy [5] . We also investigated modifications
of binding energies in pionic atoms caused by the higher-order vacuum polarization
potential U(r). Here we have to solve the Klein-Gordon equation incorporating the
nuclear Coulomb potential V() as well as U(r). For pionic xenon (Z = 54) and pionic
lead (Z = 82) we found ultimately AE(5g — 4f) = 10.2 eV and 56.4 eV, respectively.
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In conclusion we have presented energy shifts in-vazious exotic atoms caused by higher-
order vacuum polarigation processes. ’%y compatison with precision experimental data
the tabulated numbers may be utxhzed to test quantum electrodynamics in strong
Coulomb fields.

4. THE INFLUENCE OF VACUUM POLAR.:IZATION CORRECTIONS OF
ORDER o(Za) AND a(Za)® IN HYDROGEN-LIKE URANIUM

Energy shifts of 2 bound electron in hydrogen-like uraninm caused by vacuum polar-
_ ization corrections of order a{ Za) and o Za)® are calculated [18]. It is demonstrated
that the Wichmanp-Kroll correction of order a(Za)® dominates for higher electron
shells compared with the Uehling contribution.

Usually the Uehling potential provides the dominant vacuum polarigation contribution
to the Lamb-shift of inner-shell electrons in ordinary atoms as well as in muonic atoms.
For large radial distances r from the nuclear charge centre this vacunm polarization
potential Vj,(r) of order a(Z«) displays an exponential decline on a length scale being
determined by the electron Compton wavelength (A, =~ 386 {m). Higher-order vacuum
polarisation correchons were originally discnased by Wichmann and Kroll [9] and later
evaluated e.g. in refs. 3 - 8. A striking feature is the asymptotic behaviour of the.
vacuum polarization charge density of order a(Za)®, which displays a r~"-dependence
at large distances (r — o0). The corrapondmg vacuum polarization potential V;;(r)
declines as {19]

rao a(Za)* 32 1
xr  225(2r)

Vis(r) (11)
Thus one may obviously expect that the Wichmanr-Kroll corrections surpass the
Uehling corrections for bound electrons in higher shells. To quantify this insight we
computed the corresponding energy shifts for a bound electron in hydrogen-like ura-
nium. The nucleus was assumed to be point-like. The bound-state wave functions
have been computed according to Rose [20]. The Uehling potential was evaluated
using a representation in terms of modified Bessel functions by Klarsfeld {21]. For the
calculation of the vacuum polarization potential of order a{Za)® we utilised expres-
sions presented by Blomqvist [22]. Some related technical ingredients are discussed in
ref. 14. For radial distances r > 20 )\, we used the asymptotic form (11).

The computed energy shifts in units of eV are given in table 3. The considered electron
levels are signified by the principal quantum number n, the orbital angnlar moméntum
quantum number ! and by the tolal angular momentum quantum nember j. Already
for the 4f-shell the striking long-distance dependence (11) leads to a dominance of
the Wichmann-Kroll correction of order a(Z«)® over the Uehling correction of order
a(Za). However, the tiny absclute valne of the energy shifts represents a severe
challenge for a possible experimental verification of this exciting QED phenomenon.
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nil| j |ABypla(Za)] | AEvrla{Za)’]
1/011/2| -3.800E+01 4.674E+00
2|0|1/2| -1.731E+01 7.748E-01
21172 -2.995E+00 1.894E-01
2(11}3/2 -1.265E-01 2.056E-02
3|0[1/2| -5.130E+00 | 2.272E-01
3(1(1/2| -1.035E+00 8.367E-02
3|1|3/27| -483B02 | 7.521E03
3(2(3/2| -1.436E-03 3.748E-04
3|2(5/2| -2.573E-04 1.416E-04
4(0[1/2] -2117E400 | 9.344E-02
4|1]1/2| -4467E-01 | 2.738E-02
4|1(3/2| -2192E-02 | 3.367E-03
4(2]|3/2 -8.775E-04 2.183E-04
4|2[5/2| -1.603E-04 8.118E-05
4(3|5/2| -1.666E-06 3.507E-06
4(3(7/2| -4.336E-07 | 2.533E-06
5(0[1/2| -1.063E+00 | 4.683E-02
5(1(1/2| -2.287E.01 1.390E-02
5(1(3/2| -1.155E-02 | - 1.763E-03
5(2|3/2| -5.168E-04 1.262E-04
5|2[5/2| -9.538E-05 | -4.683E-05
5|3[5/2 | -1.450E-06 2.521E-06
5|3|7/2| -3.799E-07 1.753E-06
514|7/2 -1.837E-09 1.747E-07.
5|4(9/2| -5.696E-10 1.592E-07

Table 3: Energy shifts AEyp in units 6f eV for electron states vn"_th quuiti/un numbers
n, l and j in hydrogen-like uranium cansed by vacuum polarization corrections of order
a(Za) and o Za). ‘

5. THE VACUUM POLARIZATION POTENTIAL OF ORDER &¢*(Za)

The theoretical values [14,15] for the electron Lamb-shift in hydrogen-like atoms con-
tain uncertainties of various types. The major motivation for our investigations .is
provided by a possible improvement in the accuracy of these theoretical data. Out
investigations dealt with a higher-order vacuum polarisation correction which was
originally investigated by Kallérn and Sabry [23] . These authors studied the vacuum
polarization process of order a’(Za). The corresponding Feynman-diagrams either
contain two electron-positron loops or one additional photon line within the ordinary
electron-positron loop (¢f. fig. 6). The analytical expression for the related vacuum
polarization potential was presented by Blomqvist [22} . It yields

Va(r) = (Za) gir). (12)

For r > 1 the potential gs(r) decreases exponentially [24]. At » = 20 a value of 107
eV is already reached. In first-order perturbation theory the associated energy shifts
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follow from
[T + N Val) s (13)

in which f(r) and g(r) denote the small and large component: of the relativistic radial
wave function, respectively. The energy shift can be represented as

(Za)‘

AEvp = — A va 7‘".62 (14)

The calculated energy shifts of the 1sy/;-, 28y/5-, 2p;/2- and 2py;3-state caused by the
vaceum polarization potential of order a?(Za) can be deduced from table 1 in ref.
24, in which we tabulate the shift AF. As consequence of the attractive interaction
the corresponding energy shifts are negative. In particular, we obtain for hydrogen
AF(1sy/5) = - 0.00232705, AF(2s,)5) = - 0.00232718, AF(2p,/2) = - 3.248:10~% and
AF(2py;3) = - 9.074-107° . The vacuum polarization contribution of order a?(Z«)
to the traditional Lamb-shift E(2s;;;) — E(2py/2) in hydrogen amounts to about 236.7
kHz. For the 1s;/;-state in hydrogen-like uranium we find A E(1s,;3) = 0.75 ¢V, which
already represents a sisable binding energy variation. We note, that the energy shift
of the 2p,/;-state is not negligible compared with that of the 2s,5-state.

Furthermore we estimated the influence of the vacuum polarization potential of order

a?(Za) on the energy eigenvalues of the strongest bound electron states in superheavy
atoms (24]. To simulate nuclear-size corrections we computed the vacaum polarization
potential at about the nuclear radius R and employed this constant value also inside.
the nucleus. For the nuclear charge distribution we assumed a spherical shell. For
the almost critical system Z = 170 with R = 7.1 fm, in which the 1s,/;-state almost
reaches the negative energy continuum, we calculated AE(1sy;,) = - 88.9 eV. This
small value can be completely omitted compared with the huge binding energy of B},
= - 1020.895 keV .

6. SELF ENERGY

Electronic self energy corrections for high-Z systems were first studied in the pionees-
ing work by Brown and co-workers {25-27]. Their method was further refined and
successfully applied in computations of electron energy shifts in high-Z elements by
Desiderio and Johnson [28] as well as by Cheng and Johnson (29]. In our calculations
we employed these methods, which may be slightly simplified by restriction to K-shell -
electrons. The energy shift of a 1s,/5-electron due to the quantum electrodynamical
sel{ energy formally is given by

AE = 41:a/d(t; - t;)/d:;/dtl On(22)7*Sp (21, 21)7" ¢.(23)D (z2 — 2,) (15)

The self-erergy correction to be calculated is represented by the Feynman diagram b)
in fig. 1. Again the double line indicates the exact electron propagator in the Coulomb
field of a nucleus. The next step is to transform propagators and wave {unctions into
momentum space. This admits a decomposition of the self-energy diagram, so enabling
infinite mass terms to be identified and removed, leaving the finite observable part of
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Figure 7: Electron propagator in the external field. Graphical representation of the
integral equation for the Coulomb propagator of the electron and the iterated form.

the self energy. We introduce the following Fourier transformations
$(p) = [d'z4(z) e | (16)
A7) = [d'zap(z)er (17)
Se(pap) = [d'zs [d'a) Sp(zs21) emirmiome) (18)

The full Feynman propagator in momentum space obeys an integral equation. The
result may be represented %taplu'cally, where the double line denotes Sp and a single
line the free propagator S( The decomposition of the Feynman propagator may be
inserted into the self—energy graph. Calculating the various terms is rather lengthy
and not very enlightening. Details of the calculations may be taken from Schliter [30).

The various existing calculations [12-15,28-32] on the self-erergy of K-shell electrons
in high-Z systems may be directly compared for mercury (Z = 80). The self-energy
contribution on the binding energy amounts to about 206 eV. The relative deviation

_between the different calculations was found to be less than 1%. The obtained energy

shifts caused by the self-energy of the strongest bound electron are summarized in fig.
9, where A E is plotted versus the nuclear charge number Z. The apparent discrepancy
between Mohr’s calculation (AE = 2.586 £0.156 keV) and our result (AE = 1.896
keV) for Z = 130 is caused by the neglection of nuclear size effects in ref. {13].

Our most important result was the self-energy shift for 1s-electrons in the superheavy
atom with the critical nuclear charge number Z = 170. Here the nuclear radius was
adjusted so that the K-electron energy eigenvalue differed only by 10! eV from the
borderline of the negative energy continuum. Our numerical calculations (31] for Z =
170 yielded AE,, = 10.989 keV, which still represents only a 1% correction to the total
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Py

Figure 8: Graphical representation of the self energy in fig. 1b. The upper part of fig.
7 has been inserted. The various terms are denoted by X, Y and Z.

K-electron binding energy. The sum of all radiative corrections thus almost cancels
completely at the continnum boundaries. '

We conclude that radiative corrections such as vacuum polarization or self energy may
not prevent the K-shell bmdmg energy ﬁom exceedmg 2me? in superheuy systems
with Z > Z, ~ 170.

7. THE LAMB SHIFT IN HYDROGEN-LIKE ATOMS

With the new GSI - SIS {acility it will be posible to produce hydrogen-like high-2
atoms. As a contnbuuon to precision atomic spectroscopy and as a test of quantum
electrodynamics in strong fields we evaluated higher-order radiative corrections to
the binding energy of inner—shell electrons. In fig. 10 we summarise graphically the
contributions to the 1sy;; Lamb shift [14). This figure illustrates the well-known
fact that the point-nucleus self energy and the Uehling potential yield the dominant
contributions to the Lamb shift for low and intermediate values of Z. The figure also
illustrates the fact that nuclear finite size corrections become as important as the self
energy toward the end of the periodic table.

Fig. 11 displays a comparison of our theoretical results for the total 1s Lamb shift in
hydrogen-like atoms with available experimental data (cf. e.g. refs. 33-55). The same
units as in fig. 10 are employed. The finger points to a very precise measurement
[48] of the 1s Lamb shift in a high-Z system. Employing a recoil-ion technique the -
1s Lamb shift for hydrogen-like argon (Z = 18) could be determined with a relative
accuracy of about 1% in fair agreement with the theoretical predictions [14,15).

The ultimate aim of these QED tests for strong Coulomb fields will be a precise deter-
mination of the 1s Lamb shift in hydrogen-like urarium. Various considered deviations
from ordinary QED corrections e.g. norlinear extensions of the Dirac equation [56]
are éxpected to be most pronounéed in atoms with strong electric fields and high elec--
tron densities. However, it Was'demaunistiated’ |57} that QBD- tests aiming s utmost
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Figure 9: The self-energy shift of K-shell electrons is plotted versus the.nuclear charge
number Z. (o o o) = numerical result of Mohr (13] for 1s-electrons in the Coulomb
field of point-like nuclei; (00O0) = the computed values of Cheng and Johnson [29};
(x x x) = our result {31)].

precision are limited by nuclear polarization corrections which amount for the 1s state
to about 1 eV in 33*U compared with a total Lamb shift of about 450 eV.

The precise knowledge of radiative corrections on electron levels is also of definite
interest in connection with the prospects of an atomic parity violation experiment in
helinm-like uranivm which ultimately could lead to a more accurate determination of
the Weinberg angle. In this system electron wavefunctions display a relatively strong
overlap with the nuclear interior which causes a considerable parity violation effect
{58) on the almost degenetated electron states !S, and 3P, with opposite parity.

Finally we discuss briefly as a side-remark the influence of the vacuum polarization
on nuclear fusion cross sections at astrophysical energies. In heavy-ion scattering
the vacuum polarization potential leads to an additional contribution to the Coulomb
potential which ultimately results in deviations from ordinary Ruthetford or Mott
scattering. Subbarrier fusion is extremely sensitive to any correction of the Coulomb
potential. Due to the exponential dependence of the tunneling probability on the rela-
tive separation between the charge centers tiny changes may cause considerable drifts
of the fusion cross section. This may even modify the element synthesis in the universe.
As example we show in fig. 12 the ratio R(E)} = 0.uwm(E)/0w(E) where 0., refers
to the *O + 'O subbarrier fusion cross section calculated in the standard approach
without consideration of vacuum polarization effects. The latter are included in o,,..
The calculations are performed as outlined in ref. 59. For subbarier energies being
most relevant for the element synthesis in the universe we obtained modifications of
the nuclear fusion cros section in the order of typically 10% - 20%.
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Figure 10: Contributions to the Lamb shift [14] of 1a,/; electrons in hydrogen-like
atoms versus the nuclear charge number Z. The energy shift AF is presented in units
of (a/x) (Za)* /n® mc®. LAMB indicates the sum of all contributions. The dominant
term (SELF) is provided by the point-nucleus self-energy shift. UEHL denotes the
level shift caused by the Uehling potential for point-like nuclei. The energy correction
F.S. results from the finite size of the nucleus. The slight irregularities reflect the
noncontinuous dependence of the nuclear radius R on the charge number Z. The
finite nuclear size correction to the self energy and to the Uebkling potential lead to
energy shifts S-FS and U-FS, respectively. W.K. denotes the Wichmann-Kroll term
and H.O. signifies higher-order corrections incorporating the exchange of two photons.

Most of the contributions as well as the total Lamb shift are repulsive. Attractive
contributions are indicated by a minus sign.
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Figure 11: Comparison of theoretical results for the total 1s Lamb shift with available
experimental data. The finger points to a precise experimental result of ref. 48.
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Figure 12: Influence of the vacuum polarization potentia! on nuclear fusion cross
sections for the system '*O + '¢O. Comparison of the ratio of barrier penetrabilities
(solid line) with the ratio of cross sections R(E) = 0,un(F)/0vc(E) as calculated
within the incoming-wave boundary condition model [59].
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NON-LOCAL EFFECTS OF CLASSICAL ELECTRODYNAMICS
AND THEIR APPLICATION IN QED.
S.L.Lebedev
Chuvash state pedagogical institute
428000 Cheboksary
1. INTRODUCTION.

The definition of the self-field energy of an electron is as much
fundamental problem as ancient one. This communication is devoted to
the determination of the combined influence of the external electromag-
netic field and the boundary on the self-energy of the clessical char-
ge. We use two models-of an ideally oconducting planar surface and of a
plane resonator,-which enable one to find out unambiguously the bounda-
ry effects and to preserve at that time the Lorentz ocovariance with
respect to the boosts parallel to the boundary. From a more general
point of view, those models give an opportunity to construct a relati-
vistic theory of a charge inferecting with a conducting "medium". Con-
trary to the problems of transition and Cherenkov radiations, there is
this oase an infinite self - field energy experiences a finite shift
nontrivially depending on acceleration and relative position of the
oharge and the boundary. Similar shifts take place also for the charge
moving in an inhomogeneous medium or located in the thermal '"bath" or
gravitational field (1-3].

Self-action effects in the olassical electrodynamics of the point
particle are observed locally as a radiation force and non-locally as
a final additions to the mass and magnetic moment of an electron. The
dependenoe of such attributes of the particle on parameters determi-
ning its surroundings, just reveals non-locality of self-field correc-
tions [4]. Finiteness of the velocity of the light means that non-
locality in time is also present: the formation time should pass, ma-
king it possible to observe above-mentioned corrections. During this
time interval a self-field reconstruction takes place, giving a fi-
nite addition to the particle's mass, which does not subsequently de-
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pend on time, if constant fields and the tirajectories parrallel ( in
the "mean") to the boundary are considered (see Sec.3 below).
Following to (5-8] let us define correction to the classical char-
ge action, which stems from the self-action change, caused by the ext-
ernal tield (F) and the boundary (B)':
AW= %2 J J l‘ca(ft) iﬁ('c')Dég)(x.x')dm d't'lzl.B . (1)
Here x=xa(¢) is the world-line of the particle, « is its proper

time and Dig)(x, x') is the causal photon Green funoction ( GF ) incor-
porating the boundary oonditions imposed on the self-field of the cha-
rge. The causality of GF in (1) is relevant, for it makes possible to
interpret exp(iAW) as a oclassical limit of the electron's elastic scat
tering amplitude, so that the ImaW determines the probability of the
radiation and should be positive [5, 9). The real part of AW could be
also caloulated through the retarded (and real) GF. A causal connec-
tion between the reactive change of the self-field of the c¢harge and
its radiation is expressed by means of dispersion relations (DR) bet-
ween real and imaginary parts of AW. In Sec. 2 for the motion parallel
to the boundary we prove the validity of DR on a basis of a rather ge-
neral properties of the world-lines of the particle. This result in a
sense copies the one in [9), where however there was no boundary but
instead nonzero mass ( 4 ) was attributed to "photon". General <fer-

mulae cf Seo.2 are used furinelr i tliree possible particular cases. In
addition to 2 simple analytical expressions, we give a numerical re-
sults for the mass shifts as well. In Sec.3 method is generalized for
the periodic trajectories wich are not parallel to the boundary. The-
rein we discuss a previously established [8) connection between the
mass shift conception and the boundary-induced cyclotron frequency
shift ( CFS ), which was demonstrated as having an appreciable role in
(g-2)-experiments with a single electron, confined in a resonator [10-

" We use a system of units with ¢=1, h=1, and a = e2/4nhc ; COmpO-

nents of 4-vectors are denoted by aa=(5, lag).




22 Quuaﬁmmthﬁﬁﬂm;im&1nukrﬂhb4hﬂuﬂnn:aﬁJQﬂ¢nudj}uuﬁa9n§

-13]. The link is found with the help of an effective Darwin-type la-
grangian incorporating self-interaction and CPS. We give also compari-
son with the known up to now (partiocular) results.The last section con-
cerns CFS in a plane resonator. Some Bpecific features make this second
problem interesting, despite both are rather a qualitative approximat-
ions to the real situation in Penning trap (10}. These are: i)the appe-
arance of resonances, i.e. infinite growth ot CFS {11.13,142] with res-
pect to the magnetic field; ii) the existance of an "antiresonant" po-
ints between plates, where resonances do not occur; iii) some differen-
cies of present results from the previous works on that problem.

2. MASS SHIPT FOR THE MOTION PARALLFL TO THE MIRROR.

2a) GENERAL FORMULAS AND DR
Causal GF in a presence of the conducting plane could be found by
separation of space and Lorentz variables in the form [15]

(B) . (&) '
Da.p (x, x')= °a.pD (x, x'), (2)
where
D(1)= D(2)= D(0)=(i/4w2)[(x—x')—2-(x—x')—2] (3)
and satisfy the Dirichlet boundary condition at x3=0. whereas
D)= (i/8n?) ((x-x) Ph(xx) ) (4)

is the Neumann boundary problem solution. x and x_ in (3) , (4) are
4-vectors of the ocharge and its image correspondingly . The world tra-
jeotory of the charge, moving in a constant electromagnatic field, has

a property of isometry3 (5]
(x(x)-x(1"))?=2(n-1"). (5)
If performing a motion parallel to the plane, the inferval corres-

2 The main result of this paper was critisized (11) as related to the

spin-precession frequency shift. We show, however, its similarity to
ours (63), though the latter relating to CFS.

This term in the problem zt hand was introduced in [16].

(F8)
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ponding to (5) for the image charge [whose world line is ga(x)] is

(x(t)-x(t'))%=t (w1 ' )4RE , (6)

where R is twice the distance from the charge to the plane.
The isometry of world lines entails {5)
AW = -Am-« (7)
(the translational divergence in t being extracted as a factor) . With
the help of (1)-(7) we, finally, obtain

Pt

_ da t'w 2t
Am » g dx [ Y ] . (8)

2 tx) 2 ()R
The main properties of the f(x) obvious from its definition (5),
are: i) f£(x) = £(-x)<0 if x # 0, ii) I'(c—r')='Zia(¢)(x(¢)-x(c'))q £0

it T # T' (causality of world line); iii) being entire function f(x)=

=224 0(x4) when x or P (field) are approaching zero. As a consequen-

ce, the equation

£(1)4R°=0 (9)
has only two (non-multiple) roots Ty L2151, corresponds to retar-
ded proper time interval between the emission of the photon and its
absorption after reflection from the mirror . The real part of am, de-
termined by the +iO-prescription in the denominator in (8), is

o« 1'(1,)
1 Re A m = <0, (10)
2 |r‘(¢+)| |
and could be seen as having a purely geometric nature. It is essential
that extraction of the integral corresponding to third term in a brac-

kets of (8) is possible only for infrared-finite case, i.e. when integ

ral (8) exists as R o &,

Analitical properties of Am(Rz) are easily deduced from the repre-

4 This is not the case for the motion in the electric-type field

(Fﬁv>0). Similar behaviour of Am has been observed at p2‘ 0,(5,9].
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sentation (8): i' am is analytieal function in complex Rz—plane with
the cut along the positive real axis; ii) am (z)' = -Am (z*) (Riemann-
Schwarz symmetry).

Those properties should be accompanied by asymptotic constraints

at z » 0 ¢

—

Am = + 0y z) , ' (11)

2y

N

and at [z]- » :
[am| £ const:-1njz| . (12)
The first constraint (11) could be readily recognised as a Coulomb
asymptotic ( if 2 = R2+i0 ); the second one (12) is infrared behaviour
constraint (in particular ocase of purely electric field both were dis-
cussed in [7])). Making use of Cauchy theorem with a contour depicted
at Pig. 1, after some standard mathematics [17] we obtain

2R ® Imam (u?)du
2 a
Re am_(R°) = , . (13)
a © g (u2_R2 )
5 -2 2 ® ReAm 2 )du
Im am, (R°) = j : (14)
0

where Am, = Am + /2R, -mass shift (8) with the Coloumb term (-« /2R)
subtracted, see (11).
2b) PARTICULAR CASES
Three d1IIerent examples should be discussed: i) the crossed EM -

2 -0 - 2 _ .
field (F =0 va w =0); ii) the purely eleotric field Fuu = 62 >0);
2
)

iii) the purely magnetic field (F“v =- m"<0). Another combinations co-
uld be considered by making use of corresponding Lorenz transformation.

For the crossed field case we have [5]:

&~

2 2 T 2 _ : N2
f(t) = -~ 1 - —~5 + & -(eFvav) , (15)
so that according to (9), (10)
- 172
-4’1[ 6 (v 14R%a%/3 -1)] . (16)

S
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or o a 1.5(1+R232/3)1/2—1’ ('
ReAam™ = - ‘ . 17)

The weak-field (Ra -+ 0) limit of (17) obviously coinsides with (11),
and ultrarelativistie (UR) limit (Ra + » ) is -

For the planar motion in electric field £ (v = ef) or magnetic field n
(® = en) a corresponding -formulee were derived elsewhere [7]: .

) _
oY  ¢ch6-v VT
Ream®l= - 20 p=—t (20)
°m  h6-VE B "
V2 = 2(F. % )%/(2F %)% F2) (21)
10 o wxv/ A
> _
0@ 1-Y.cosb 21T
ReAm™28= - g , 0 = LI (22)
om -V {sin@ m
2 <2 2 D
Vl = 2(vaxv) /(2(vaxv) + va) . (23)

Vfo (21) and Vf (23) are integrals of the motion in electiric and mag-

netic fields respectively. Dimensionless parameter 6 is the root of
corresponding transcendential equation:

son?S =2 P[RR ) (electric tield),  (24)
0?=av? sin? 3+ [BJP(1-2)  (nagnetic tield).  (25)

It is worthy of note that UR asymtotics of ReAm in all cases con-
sidered here coinside® (7]

5 Dr. V I Ritus first obtained formulae (17),(18) (private communicati-
on) and called author's attention to the (wanted) universal character
of the Ream UR-asymptotic: UR particle in its proper reference system
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Rean®la 723% 1R Ylo]1/2 614 (=02 5w ), (26)

and correspondence amongst ( 18 ), (26) and (27) is as following:

a " (28)

Tho _nT'71 '

Boundary-induced mass shift of the charge, moving in electric field,
has remarkable property: it doealnot fall to 2zero in no-boundary limit
R 5 ® (the answer well known from (5, 9]); in that time its manifestly
non-local nature, seeing from (10), becomes hidden.Thie classical mass
ghift determines lowesli-order radiation correotion to the pair produe-
tion rate in QED (21].

2¢) NUMERICAL RESULTS

Mass shifts (20) and (22) are viewed in the units of -0/2R at the
Pigs 2,3 B—1OV2 Most interesting seems an osoillatory behaviour of
ReAm™®€ whioh 1ncreases with the parameters —E%T and V2 growing. The
extreme properties of Ream nag may be of some interest for the accele-
rator physics. Figures 4-6 depict boundary-induced imaginary parts of

an™28 and am! respeotively. It should be stressed, however, that
Im am™2é= Im Amg‘ag(vf, 2 R/m)+ Im Amzag(vf) ,

where the first item is just the boundary contribution whersas ImAmgég
corresponds to no-boundary limit of mass shift (it was derived in [6]).

el' since the 1latter Dbecomes

No such partitioning exists for the Imam
infinite at R - = (see footnote 4 on p.4).

Below we give basic formulae for ImAm, nag, ImAmmag Imam l. which
are a direet consequences of (8) and of the expllolte field-dependent

forme (see [6]) of function f£(T) (5) (wo=&/m71):

"sees" either EM-field as a crossed one (See e.g. [18]).
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1o oS :R.&R ]" 1-V2cos2n o

LR we—Visinzw-(ch/ma

4 2R %, 1-Voos2w {
In amP3é- - [L - dw ,
@ R wm  Lw -Visinw we]
, @ R G Vg-chow 1 VA - ch2w
Im am®*= : J - dw.

l _
2R mm 0 Vewi-shPe W Ve we-shPw(Rw/2y, )’

For convenienoce sake ImAmzag (Pig.6) a8 well as ImAm%ag and Imam®l/4
(Figs.4,5) are presented in the wmits of a/2R (despite ImAmgag does
not really depend on R). A domain of values of 2R/m is chosen to be
qualitatively corresponding to the experiment (see below). Neither
argunents were used to determine a domain of YR/m, but monotonic cha-
racter of ImAmel as a function of YR/m and VE is beyond question.

3.MASS SHIFT AND CPS POR THE MOTION IN A PROXIMITY TO THE MIRROR.

3a) DIMENSIONLESS PARAMETERS.

Let me remind an "experimental" situation, which forms the basis
of full QED caloulations [11,12,19,20] and is governed by interrelati-
ons amongat following parameters:

1/m = b/m¢ - Compton length;

Rg = (t’;"rf)"/2 E(en/hc)'”2 - quantum oyclotron radius determinig the
domain of diffusion of the ground
state6 WF of an electron;

1 and/or R - the size of the resonator and/or.the distance between

centre of the orbit and (one of) the plate.

The main inequalities stemming from the analysis of the real experi-

According to (22) the mean value of oyclotron quantum number <n> is
about 1.2 , 80 that the excitement is small.
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mental conditions {10}, are as following

i RY
— ¢ =L

mt 1
where the first inequality manifests non-relativizm, whereas the second
implies that boundary restriction of the electron field is completely
negligible. Quantum constraints (29) preserve a degree of freedom for

<1, (29)

Z/m7l) gsince, along with (29), two possibilities

q qQ
1 <{R°]2,1 >{R°]2 (30a,b)
ml l ml l

are equally admissible., Ineq. (30b) is realised in ( g-2 )-experiments,
(wcl ~ 25) (13]. QED-results for the rest-energy shift and CFS were ob-
tained for this limiting cases (11,12,19,20] and turned out to be clas-
sical. So, the classical calculation, which embraces the whole domain
of wOR is most likely to be useful in QED.

3b)} EFFECTIVE LAGRANGIAN AND CPFS.

Mass shift conception appears to be applicable, when evaluating the
apparatus-dependent contributions to the mass and magnetic moment of
the electron contined in a resonator ( "Penning trap") (10]. The first
quantitative estimates ¢f this phenomenon were based on a simple models
of (plane, oylindrical, spherical) resonators, within which electron
was supposed to perform a motion in a strong ( ™~ 50 kGs ) homogeneous
magnetic field. It was concluded (10 - 13], that main contribution in
g-2 should stem from the boundary-induced CFS ', determining through
image charges' fields.

At first let us consider a simplest model of one-mirror "resonator"
to demonstrate the mass-shift method (7). Most important seems to be a
distinet behaviour of the rest-energy shift and CFS when field intensi-
ty varying: the former being always Coulomb in nature (and independent

T but not from the spin-precession frequency shift.
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-2 fZeld), but the latter containing Coulombd interaction as well as the
<tardation effects. A further advantage of the method lies in its ap-
::plicability to the whole interval of Rwo , the retarded (Rmc» 1) and
in-retarded (ch« 1) regions included. There is no restriction also on

- - the integral of the cyclotron motion, but below we shall consider

¢ * to be relevant to the experiment {(10].

) As a function of VE ReAm™28 changes the "dispertion law" E( VE )y
z.ere E is electron energy taken at the rest system of the cyclotron
~tis. Indeed, as we shall see from (40), the addition AL = -ReAmmag/‘r1
> tr.e lagrangian of the particle in that frame has a non-relativistic
:rpar.sion

b= 52+ 002 (31)

:3 trat the energy of the particle

2y _ . _ a_.m+ 8m 2
E(Vl) =M -spt = Vl . (32)

zrwin-type expressions like (31), (32) [incorporating interaction of

z& ~harge and its image] entail the CFS
0w, = W, dm/m (33)
10t that 8m in general is not equal to -0/2R J.
—et p will be an angle between cyclotron trajectory plane and the
uncary, disposed at Xy = 0. Supposing the centre of the orbit being
/2 zpart from the boundary, for the intervals (5), (6) we obtain res-

;actively
(x - )% w? (-v%+ V8 sin®w ) = f(w), (34)
Y2 =2 212
(x - x')"= 4o, {Vﬁsmvﬂ»?vl )
- Ru,V sing cosu cosw +(R(1Jo/2)2 - W = J(w,u). (35)

sinew (cos2w + cos2u) -

i:re the notations w = 2(T - T')/2m and u = 2(T + T')/2m have been in-
rodiced. Making use of eqs. (1)-(4) we thus obtain

10
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To T .
AW = [gm]2 | d'cj at' Fiw,u), (36)
-1, -1,
where
o= (em/E)N, No-o, (37)

2T o
AmTeE = %% AW = %%ﬁ J dnj dw F(w,u) . . (38)

o o0
Here the function

~o ~p
1'€W} _ 2 _ 'fwm’u)- fuu(w’u) ] (39)
rw) W 1 (w,u)+10
is periodic with respect to u ,and formula (38) is a direct generaliza
tion of (8) . The real part of Am"28 could be found in a close analogy
to (10),

N?l ’u -N'l(w ’u)
ReAm™28 = jdu e f ki s (40)

| 7! 0w, )]

, being a positive root of the equation f(w,u) = 0, admits of power
expanslon in Vi , as well as the whole integrand of (40) does. Then
term by term integration entails (V <1)

Ren™®8 = 22 7, [1 + (V8/2) (b, + sin’p Aa)]. (41)
A= o( BiN2X o oy o 1 - cos2X (42)
1 5% R
by= coseX + S“gix 3+ ‘2’°52X . X = Ro /2. (43)

4X
The final answer for the Gw obtained with the help of (31)-(33) is as

following:
_-a . 2
Gwc/wc = >hm (A1 + sin @ AB). (44)
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3c) COMPARISON WITH BARLIER RESULTS.

Formula (44, covers all Imown up to now special resulis and asym-
ptotics of CFS in the vicinity of the conducting wall. The work [12]
contains (in our notations) a following expression for CFS:

° "6 = : (1 + cosch)oos w R (45)
Yo o 2Bm o’
which is an equation (44) at woR > 1.The authers of (11] recieved some
more results: the table below is from their Table 1, and may be easily
reconciled with (44).

® = 0 ; ¢ = /2
{ ! i
Rmo> 1 i Rwo< 1 ( ch> 1 i Rmc< {
i i i
dw a 8w a dw a W -a 4
- O <:o:3l7(mo ! wo = ! uJ°= oosRLuci - . >
¢ Rm E e 2Rm O 2Rm | 2Rm (ch)
l ! {
(46a,b,c,d)
- -
T B — B

Note, that (46d) contains a singularity at w,+ 0, corresponding to the
fall of the charge on the boundary when

el _
Ry =mv 7 ./en — R2. (47)

0f course, being (47) fullfilled, one could not neglect the perturbati-
on of the trajectory caused by the mirror.

4. MASS SHIFT AND CFS FOR THE MOTION IN A PLANE RESONATOR.

ia) FORMULAS.
All calculations for the resonator repeat ones for the single mirr-
or. We shall discuss them briefly. GF could be found by the image~char-

12
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= vy R Y ——

ge method [(15] and has the form of (2), where, in place of (3), we have

©
(0) b T N1 4 (1) (2)
D\ (x, x') = 2 (-1) T p''"'=p (48)
o
0 (x,x) = § 1/4¥i) z (49)
o (X=X
Here X(N) corresponds to 4-vector (x’. X, xéN), 1XO)

.
xM= ¥, - — ) s L, (50)

3
2 2
N being integer, and the origine is taken to be at one pf the plate.
With the help of (1), (2) and (48), (49), we arrive at| the patterns

(36), (38) tor the self-action and mass shift, where, however, function

F(w, u) redenoting here as JA(W u), has a more complicated structure®:

'* (w,u, Z -8 (w,u,Z )
Fn, wF(m, )—}“— ) L2 S o

g(w,u, Z ) + 10
No ' + No ! + N' ] - Nl [ -
_ fw(w'u’xh)-fuu(w’u'xh) _ fw(w’u'xh)_fuu(w’u’xk) ] (51)
f(w,u,X;) + 10 w0, X0)+ 10
The following notations have been introduced in (51):
L, = Klw, =2AK ; K —2A(k t) ; t = R21, (52)
gmuZ)=—§[w+v%mwevawsmum2]. (53)

and funotion f W, U, X ) :s just the funotion (35) with Rw /2 = Xg re-
placed by X‘ Note that first item of r.h.s. of (51) tally with (39)
giving a one -mirror mass shift, but the second one is a resonator con-
tribution disappearing at ! - = .

Non-relativistic expansion of Ream™8 ig obtained in similarity to

On deriving (51) we have used partitioning of the sums (48), (49) into
an odd and even summations and some apparent symetry properties 2f the
integrand of (1).

13
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one-mirror case, s¢ that analogue of (41) takes the form

2
\
Re am™&= v (om, - ——;— m ), (54)
where
a
o= —— [xp(t) £ O(1-1) + 2c] (55)

is a well-known Coulomb rest energy shift discovered also in QED calcu-
lations {11, 19, 20] carried out under conditions (29) (€ = 0,577...ic
fuler constant). In accordance with eqs. (31)-(33) 8m in (54) determi-
mines CFS

bm

C

}[(A (2,) + 8infeh, (2,)) 2= — (b

. 2 - 1
+ 8in“@ A (X, )) ——
R ket

S0y ) ¢ ety ) —— 1.
(56)

This combersome expression includes, nevertheless, trivial functions

A1(X) and A3(x), as they were .introduced irn (42), (43). Function

: 2
Ae(x) = ¢os2X - 35]1)2}[ + 3sin®X

. (57)
2X 2x2 -

Because of apparent property
+
A1(XK) + -1 when W, N 0 (58)

we again arrive at coincidence between zero-field limit of 8m(¢=0) and
om, (see (33), (55) and (56)).

4b) COMPARISONS.

When angle =0 and R =1 (1 = 1/2) formula (5€) leads to an ex-
pression kmown from [13] (eq.(3.18)):

14
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Sin?An 1 - co82An

S - ) (_1 )"[ — c082An ] (59)

2An 4n2/\2

Note that ocorrespondences between our notations and those of authers
{13) are as following:

1 =2L, a/m=r (60)

o

2h = w 1 2n§0~21t£, GwcchP(wc). (61)

C

When ¢ = ®/2, R =1 (1 = 1/2) formula (56) yields:

®
0y - G 2 _1_[(_1)n0032nA , _sinZnd | cos2nA-(-1)" ] N
O 2nA (2nr)®
+ 2 § I sin2A(2k-1) . _cos2A(2k-1) ] . (62)
2k ) 20 4A% (2K-1)

Expression (62) contains a familiar from (46d) ( 1/A2 )-singularity

when w, or A is approaching zero.

The Fourier series of (59), (60) could be summed up {23]}. Por CFS
(62) the answer reads:

o, o [ ) 7((3 1
=2 = l— 10g (4cos“A) + J y(3log|taniy] +
c ml 2 0
+ log|2sin2Ay|)dy]. (63)

Both expressions (59) and (62) (or (63)) exhibit a resonance behavi-
our with respect to A stemming from the 1/n - terms in a summands of
(59) and (62). Those resonances were extensively discussed in literatu-

15
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e (11, 13, 14].
Some interesting point for us is comparison of the CFS (63) with

*he anomaly factor correction found in the paper of Bordag (14]. In the
notations of (11, 12] anomaly

8,= = ; (64)

where ws being spin-precession frequency. Boundary-induced contributi-
on to &, (denoting 0a, here) put forward by Bordag was attributed to
&ns/mc, and, by oontrast with another estimates, turned out to be more
than expected [11, 12] by the factor mce/ w,» f:

1
4((3)
da_= —3 41 1og(4cos®h) + S Ny
° ml {T ¢ 641° ¢ -(!
y[8 10g1tan Ay] + t0glstn 207 ]] (65)

The apparent similarity of the results (63) and (65) is likely to
oe instructive for elimination of the discrepancy amongst {11, 12] and
{14]0

4c) "ANTTRESONANT" POINTS.

Formula (56) leads to one important consequence concerning above-
nentioned resonances. For simplicity let us take ¢=0 and put together
the terms responsible for the logarithmic divergenoy of CFS (56). Then,
denoting the resonance contribution as (6w /0,),., (it would be propor-
tional to (1/1)), we have

[ Hg ] § [ - cosdA(k-t) cosdA(k-1+1)
res 22m

w (k-t) K-1+1

+

2c084AK ]
c
(66)
Tith the hel; of evpression 5.4.3.(2) from [24] shift (66) is trans-
formed to

9 f(t)-function is determined through an Euler ¢~function:

16
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8w
[ w"] - & [(ﬁ(t) - B(1-t))costt + —COSHAL o150 4
o “res 2lm t

2A
+2 fdy (1 - cos2ty) ctg y] (0<t<t ) (67)

/2

It is easy to check that resonance points are

2A = ZAr= Nt, N=1#, 2,..., | (68)

and not only A=(2N+1)%/2 as it follows from (59) or (63). This fact is
already known but for the spin-precession frequency shift [11]. The
loss of series 2Ar=2N% in previous works is due to existence of an “"an-
tiresonant" points.

One could easily find from representation (67), that resonance at
2A=NT do not occur for the positions characterizing by

t = M/N, ¥=1,2,..., N-1. (69)

This is rather interesting, that between plates being a resonance con-
dition (68) fullfilled, there would be

7 | | (70)

points with no logarithmic divergency.

5. CONCLUSION.

In coclusion I would like to give some qualitative remarks only.
Sometimes, when deriving CPS and spin-precession frequency shift, one
makes use (or tacitly implies) of substitution

m—m+ om (71)
into expressions
wc = ﬂ_ . p, = eh . (72)
my.c 2me

Bt = 5 forcieti2) - gier2)]

17
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8m iz =ippoted to be Om, or, may be, something else relating to the
rest-cn:rgy zddition. This is not completely true by virtue of diffe-
rent rezsons. Firstly, we have shown Om, differing from om, so that
substitation O m— m+ Bmc ( as regards wo) is only possible under
speci’is conditions (¢ =0, Wy~ 0 in adove). Secondly, neither Gmc, nor
8m are, stristly speaking a (self-)mass correotions because they are
deter-irzd &g such only for a distinguished reference system (in cont-
rast tc Am {7),(38)).4At last should not it be forgotten, that both are
defin=d as a non-local quantities, so charaoterizing rather a "mean"
valuez ¢f the dynamical variables of moving partiocle.

Az rzgands boundary-induoced magnetic moment correction, I'd like to
remini an ezample, where similar to (71) operation holds for cyclotron
frequency, 2ut not for spin-precession one. Magnetio susceptibility of
electrors in a metal has two items: a well-kmown diamagnetic (Landau's)
and pzremagnetic (Pauli's) contributions. The former determining by the
effective mags m, and cyclotron frequency w;=en/m,. but the latter con-
tainirg 2 "dare" electron mass m. It is interesting to note, that here
we also mee% a non-locality though associated with a (Bloch) wave func-
tion <f an =lectron.

I wculd like to thank Professor V.I.Ritus for many stimulating
discussions.
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Abstract

Progress in high precision measurements enforces growing interest on the influence
of boundaries on radiation corrections. In this paper we consider a hydrogen atom
inserted between two conducting plates separated by a distance L and calculate the
distance dependent part of the levelshift. We include all one loop contributions in
the QED perturbation theory and calculate them in a leading order apprximation.
The methods employed are based on the full field theoretical formalism of QED. The
main tool is the photon propagator in the presence of boundary conditions, which
was derived earlier. Explicit numerical results are given for the parameter values
relevant in the current experiment.

1 Introduction

Progress in high precision measurements enforces growing interest on the influence
of boundaries on radiation corrections. After the discussion of apparatus dependent
corrections to the anomalous magnetic moment of the electron several years ago,
the interest is focussed on level shifts of the hydrogen [1]. In this paper we consider
a hydrogen atom inserted in the middle of a cavity formed by two conducting plates
of distance L perpendicular to the axis z3 (intersecting them at z3 = +L/2 ) and
calculate the distance dependent part of the levelshift. Thereby we include all one
loop contributions in the sense of QED perturbation theory and calculate themn in
leading order in the small parameters present here. The starting point is the
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quantization of electrodynamics with conductor boundary conditions
E||=HJ_‘—'80 at Ia=:‘:L/2. (1)

Although this is a quite old topic it still requires some clariﬁcatiohs. The conditions
(1) are defined in terms of the field strengths. The question arises what they do
mean for the electromagnetic potentials A,(z). Consider the decomposition A,(z) =

f.__oe;a. with the photon polarizations

1 ) 0 o 0
t=(i) - (8)w ¢-(3)m 2-(8)%
s s u= ’ [ 8 ’ (T

0 :,’ M s ) M -8i-82 Ns

(8, = 8/0z*, N; are pormalization factors). The amplitudes a, describe the two
transversal photons (s = 1,2), the timelike photon (s = 0), and the longitudinal
photon (s = 3). Application of the boundary conditions (1) yields

1 1
ao + 30831—\,;03 - aoyv-ldl =0,a;,=0, at z3==L/2 (2)

These are two conditions for four photon amplitudes. The usual treatment, which
can be found nearly throughout in literature, is to put a3 = 0 which is equivalent
to VA = 0 and means the use of Coulomb gauge and, after that, to require the
boundary conditions

a0 =0, 8, =0, 856, =0, at z3 = +L/2. (3)

This is, of course, sufficient to fulfill the initial conditions (1), however not nece-
sary. The condition ap = 0 leads to the instantaneous electrostatic interaction with
Dirichlet boundary conditions, the other two conditions determine the boundary
conditions to the radiation field. In the present paper we use the approach proposed
earlier in [2]. There the boundary conditions to the field strength are considered as
constraints to the potentials, i.e. they are taken into account in a ‘minimal’ way.
Then the quantization yields an new, different photon propagator in covariant gauge
which is given in the next section. In the simple case of parallel plates it is possible
to explain this in termini of new photon polarizations {3]

& 97493 1 o 1 ) 1
S=|2], &= 2 |—, ==, E={3|=+. @
u 8o, (3 8508, N1 u z:,, N2 u (1) N3

Expanding the potential in these polarizations A,(z) = Ef=o €,a,, the conditions
(1) become diagonal, i.e. they yield

&1=0, &1=0 at I3=:EL/2, (5)

2
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whereas Go and @3 remain free from conditions. These conditions to the potentials
are necessary and sufficient for (1) and in this sense ‘minimal’.

An essential difference to the conditions (3) is that the electrostatic interaction,
entering the 4 = 0 component of the polarization &} does not decouple from the space
components g = 1,2 and that therefore the corresponding g = v = 0 component of
the propagator is not instantaneous (see formulae (6) below). We remark that, due
to e} = &3, the corresponding amplitudes are the same in both approaches.

A general restriction to the validity of the present calculations is that the electron
wave function should be small at the plates. This is the case for not to high principal
quantum numbers n of the electron state and L » ay (ao - Bobr radius). The
distance scale is determined by the Bohr radius aq, the wavelenght A of transition to
the nearest principal quantum number and the wavelenght A¢, of the fine structure
transitions. For the experiment of actual interest are L ~ lmm and n ~ 30. This
is clearly an intermediate region far from asymptotics (i.e. from L 3 Ag). The
parameters combine into two small constants

@ (d0\? _ L \”
L( L) = 0.974 10 (lmm) Hz (6)

and

-1
%a’ =18.6 (ﬁ) kHz . (7)
Remark, that these relations by means of a = 1/ (agm.) (m. is the electron mass)
may be represented in another form too. Expression (6) is the coefficient in front of
the electrostatic contribution and (7) appears in front of the relativistic correction.
Both contributions depend on the quantum numbers of the considered state of the
electron and, therefore, give a shift of the hydrogen lines. It should be remarked,
that (6) enters the level shift multiplied with a expression proportional to n* and
is of order 1Hz for Rydberg states. The relativistic contribution contains the factor
(7) and is for large n proportional to n. So it goes down to ~ 1 for n ~ 30 (for
L ~ 1lmm). In general, the dependence on the parameters is quite complicated. The
level shifts are calculated numerically and the results are given in several plots.
The level shift of the hydrogen between plates shows a familiar oscillating be-
haviour. The physical reason is that the transitions between two hydrogen states
come in resonance with cavity eigenmodes for special values for the external pa-
rameters (distance L especially). If the oscillations were undamped the frequency
shift could diverge in general. In the present problem the energy shift calculated in
perturbation theory diverges in fact when the cavity eigenmodes coincide with some
hydrogen transition frequencies. However, this divergence is due to the perturba-
tional solution of the Dirac equation used here. When the perturbations becomes
large near a resonance this equation must be solved in an other way. In ref.[4] it was
shown, that in doing so in the resonance case a factor of almost 20 appear. We use

3
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another possibility to handle the ggsonances. In fact, divergences may occur for ideal
oscillators only. Any real cavity has a finit quality Q which removes the divergences
in a natural way. So we introduce the quality factor in the photon propagator. We
do this in the leading order for large Q. The effect of Q is that the energy shift
in the resonance case becomes proportional to log Q. So the quality confines the
energy shift in the resonance case for ¢ < ¢?. A second effect of the quality is that
the contribution from an intermediate state with wavelength A much larger than L
decreases as exp (—L/(AQ)) so that Q dampes the higher order resonances. In all
other contributions Q gives a small correction only and may be neglegted.

In section 2 we introduce the necessary notations and give the field theoretic for-
mulation of the problem of level shifts in a cavity. In section 3 we specify the general
formulas for the one loop correction and calculate the corresponding contributions
to the energy shift AE of a electron state in the discrete part of the spectrum.
Thereby we consider principal quantum numbers n from 1 up to 30 and a distance
L about 1mm. Conclusions are given in the last section. We use nnits K = =1 and
e}/ar = o = 1/137.

2 Basic Notations and Field Theoretical Ap-
proach

In this section we introduce the necessary notations and give the field theoretic
formulation of the problem of level shifts in a cavity.

The first ingredient needed is the photon propagator in the presence of boundary
conditions. We use the representation of the photon propagator DS, (z,y) in the
presence of two parallel plates (perpendicular to the z;-axis intersectmg them at

= +(L/2)) given in ref.|2] and change the notations slightly. This propagator
consists of two parts

‘D, (z,y) = D}, (z —y) + D5, (z,y) (8)
h
where ) d‘k,, e—lkp(f“—v") k“ky
Dy (z~y)= (2‘”4 —k? — s¢ (guu T k2 (- a)) (9)

(p = 0,1,2,3) is the usual free space propagator in covariant gauge. Here ¢ > 0
defines it to be the causal propagator and o is the gauge parameter. The boundary
dependent part reads

L

— &2k, —-ce
wa(:l:,y)=/ ZSIFSIZ(FL Fuso(k,2)Frea(—k,y) (10)
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(a=0,1,2; 0 = £1; s = 1,2) with the function
F“”(k,a:) _Boe-ak.z ( Lry +ae—il‘z;) (11)

and the photon polarization vectors (they are the same as in (4) in momentum space

now)
1 [ sk 3 — - 1
G (h ) kT = (—3‘) ks ' (12

with I' = \/k3 — k7 — k + 1¢ and k, = /k? + k. This representation is valid in
between the mirrors. ]

In order to take into account the real structure of the mirrors we assume that
the cavity has a finite quality (due to imperfect conductivity of the mirrors, for
instance) with a quality factor Q which will be assumed to be large. Than the
cavity eigenmodes decay and the time dependence of the photon wave function is
proportional to exp (—tkoz®(1l — 2:/Q)). This can be incorporated into the mirror
dependent part of the photon propagator by substituting

ko = ko(1 +2i/Q) | (13)

in the integrand of (10).
The proton, located in the origin of coordinates (we use spherical coordinates
(r,0, ¢) for Z), is described by the current

iu(z) = € gu 8%(%) . ' (14)
It produces the potential

Au(z) /d‘y ‘D (2,9) u(¥), (15)

which can be represented in accordance with (8) as a sum of the two parts A,(z) =
A%(z) + Al(z), where

c : = &
- jd‘y D, (z,¥) j.(y) = T 9 (16)
is the pure Coulomb potential of a point like charge and
@) = [ @y Do) i) (1)

can in the simple case of parallel mirrors be viewed as the potential of the image
charges of the proton.
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The electron is described by a 4-component Dlra.c spinor W(z). It satisfies the
generalized Dirac equation

(1700 — m — ev* Ay (z)) U(z) = ] SyE(,y) W), (18)

where ¥(z,y) is the electron self energy operator and m, is the electron mass. The
one loop contribution to I(z,y) takes the form

£(z,y) = —1e’y*S(z, 917" *D(z,v) (19)
where S¢(z,y) is the propagator of the electron in the field A,(z) (15). It obeys the

equation )
(170 — m — ev*A,(2)) S°(z,y) = §'(z ). (20)

By these formulae the problem is completely described. Since we are, of course,
not able to solve them, we are left with perturbation theory. As for the unperturbated
problem we define the electron in the pure Coulomb potential (16). This is just the
Dirac theory of hydrogen. The solution is well-known, see e.g.[3]. The equation can
be written in the form

(18p0 — H) ¥(z) = 0 (21)
with the Hamiltonian
H = -4’80 + 4°m. + €*/(47r) (22)
(s =1,2,3). It has a complete set of eigenfunctions '
H ¥ (Z) = Ew Y@ () , (23)

where the multiindex (n) denotes the relevant quantum numbers. In general, (n)
includes the discrete levels and the continuous states (for both, €lectron and proton)
as well.

The wavefunctions are

_ thg(r) nm(e ¢)
Yiw (2 7 ( Fron(r)0nm (8, ¢))

The upper and the lower components of the 4 component spinor ¥(,)(Z) are the
large and the small 2 component spinors. Therefore G, «(r) is of order one, whereas
F,, «(r) is of order « in the non relativistic limit.
Now, by means of eq. (21) the time dependent wavefunctions are ¥(z) =
"'B(")’o U (Z). Using these formulae we write down a representation for the elec-
tron propagator S§(z,y) of the unperturbed problem. It safisfies equation (20) with
AS(z) (16) instead of A,(z) (15) and reads

. o gty §~ L (E) ¥ (9)
So(a:)y) = / Zpo E(ﬂ) 1_ 36) (24)
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(¢ > 0). The sum in this formulae includes the discrete states and the continuous
states. For the discrete states the formulae given above have to be used, the conti-
nuous states will not be specified here.

Eq. (18) can be solved in perturbation theory

BB = [ #2E7 Wy(®) Vi () Y@, (25)
where
| V(z,y) = er"nd,(2)8'(z —y) + 1°S(z,y) (26)
collects the perturbations. It divides into
Vu = e’y [ @5 D2, () = ex'r* Alo) (27)
and .
Veerba(z,y) = —1e*7°y* S5(z,¥)7" Di(,y) . - (28)

The boundary dependent contributions to the energy to be calculated in the next
section are correspondingly

AER™ = AEQ) + OESH s - (29)

3 The Calculation of the Energyshift

The perturbation potential Ve, (z) (27), i.e. the electrostatic potential of the mirror
images of the proton, and the corresponding energy shift are part of the electrostatic
contribution which was calculated by several authors (see Barton [4] or Eberlein [5]
for example). In the field theoretical approach it appears as a zero loop contribu-
tion. The calculation is simple and several techniques are possible, especially the
summation over mirror images. We give the calculation here within our formalism.

This can be considered as an instructive introduction to it.
We start with the potential Al(z) (17). Using (10) and (25) we get

1 —ge~ksL

AL(z) = eg”/(zﬂ-y 4k.L81Dh(kJ.L)

-lk,.l:, (eklzg + aek;s,\)

(s = 1,2). Apart from some differences in the notations this is the same represen-
tation as in ref. (5] where the equivalence to the sum over mirror images was shown
explicitely. For the calculation of the energy we substitute V,(z) (2.26a) using (2.27)
into (2.24) and get

Bk, 1—ge kil
(27)2 4k, sinh(ky L

AEG = € /dai‘\I!(,,)(x)e thise (emkams o gebsms) Pi(x)

2
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where the sum over o = 1 is assumed. For small ap/L (a, is the Bohr radius) due to
the absolute convergence of the k-integration it can be approximated by expanding
the exponentials

2 2\
e~hE (e7him 4 getims) = (140) (1 — thez, — (k‘;') ki;’) —(1-0)kizs+...

+

The zero order term in this expansion gives a contribution t6 Ef, which is
independent on (n). The first order terms gives a contribution vanishing after
the k-integration and the second order terms group into the quadrupol operator
Q = 223 — 27 — z3. So we get

&2 (%) 2 3((3)

aEgy = o3 (B %2 [ #2900 (30)

Now we calculate the mirror dependent loop correct.xon to the energy levels
E:‘:)'{omd Consider the perturbation potential Vw(z y) (28). Inserting repr.

(24) for S§(z,y) and repr. (10) for D5, (z,y) we obtain

®© g 1-— ae.rL
loop — 2 __29_ ~1po(z0-y?)
Voound(Z: %) 1e /_ ErE (2, Z 8T sin(T'L)
“F k,z y vao _ky . 31
oo ( )%po Eoy(l— 19" (_ y). (31)
Taking the matrix elements (25) of (31) we get
1 —gett M i (RYMED oy (—F)
oop = (n).{n) (“ )u(n)
AE}n)bwﬂd e’ (21r 8 Z 8T sin(T'L) 2,) ko(1 = 2:/Q) — (Eny — Euy(1 - 1¢))

(32)
with the matrix elements

M('n'; (“,) (k) = /daz‘l'(,,) 7 YHE e —vkeme (e'r“ +oe” ‘r”) ¥ (n 1)( z) (33)

(s=1,2). In formula (32) the quality factor Q of the cavity is mentioned explicitely
in the denominator resulting from the electron propagator.

In order to evaluate eq.(4) it is useful to rotate the ko-integration to the imaginary
axis kg — k¢ = —1ko, i.e. to perform the Wick rotation. There occur additional
contributions from the poles on the right of the imaginary axis, i.e. for ko = E,) —
E(my > 0. They may be interpreted as originating from a on-shell process, where
the electron is in the intermediate state (n') on a lower level (E(y < E(n)) . If one

8
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evaluates the ko-integration as the residuum in this pol then the photon can be seen
. to carry just the difference energy: ko = E(n) — E(a).

Now, the energy shift (32) AE“’”W can be calculated in an approximation with
respect to two small parameters. The first one comes from the mirror distance L.
From dimensional grands it occurs in the combination ag/L (a¢ is the Bohr radius).
The second is the fine structure constant a which enters the electron wave functions.
An expansion with respect to ag/L arises from the expansion of the matrix elements

M) (k) (5) into powers of k. Such a expansion is possible due to the convergence
of the k-integration and by dimensional reasons each power of k gives a power of
ay/L. So we use in (33)

(k') T?ad
2 2

e~ tkis (e + ge™T=) = (1 — thyz' — ) (1+o)+tlzy(l—0)+... ,

where terms up to second order have to be included.
The polarisation vectors &, (12) of the photon propagator, multiplied with the
~-matrices, can be represented by

okyL
ve, == T +—'—(k17 +kav?) |, v“é] "—(k‘ﬂ - ky’) .

The term which containes v, corresponds to the g = 0 component of the electroma-
gnetic potentia.l and gives rise to the electrostatic contribution whereas the terms
with 4! and 4? give rise to the relativistic contribution.

Now we write down the expansion of the matrix elements M('n‘; (n(K) (33) . After
some steps we get for the product of two such matrix elements

Z M3 o (IM s () (=) (34)
=1,2

k2 k 2 ] 2 2 P

= f2m (1 +0)" + (14 o)’ M ((n), (n)) = KL(L = o)’ N3 ((n), (n))

+ (II_C‘Q + 1) (14 a)’N3((n), (n"))

k - - — 1 —
~ T+ 0 by [ £2W() (34 (14 ) + 1753 W (@) +

with the notations

Mi((n),(n")) = 22

t=1

, (35)

/d“a:\]?(n)(a: :,\P(n;)(z)
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, (36)

2
Ny (o), () = [ / PR (2)ao¥ ()

2

Ni((n),(n)) = -Z (37)

t=1

(B — E(n'))

/ «wa(n)(x)v W (2)

]

/dai'\ll(")(z

t=1

The last line is a consequence of

/ LU () (Z) (7 = 1Em),(w)7e) ¥n)(F) =0

and follows from the Dirac equation (23).

The contribution from the last term in rhs. of (34) to the energy shift (32) can be
shown to cancel in (29) the contribution of the electrostatic part (30). The matrix
elements N and N; are of order (ap/L)? and Nj is of order o? (note ap = 1/(am.)).
For large n, N, and N; behave like n*, whereas A; is proportional to 1/n3.

After defining the matrix elements A;, A, and A3 one can combine the k-
integration in (32) into the following functions:

1 —oge™l —kt (1+0)?
Rallop) = / (21r)3 8Fsin(FL) I'? ko—p ’ (38)
_ 1 — oe'TL 2, (1—0)?
RaL,k) = / (21r)3 STom(TL) "k p (39)

_ 1 —oell (k2 (1+0)?
RS(LJ‘) - /(2#)328FSID(FL) ( +1) ko—# ’ (40)

where p stands for the energy difference (E(m) — E(ny(1 —2€)) (1 + 2:/Q). Special
values are

Ri(L,0) = —3¢(3)/ (8xL?), Ry(L,0) = —((3)/ (2xL?), Ra(L,0) = In2/ (4xL) ,

(41)
and for L|u| — oo we note
Tr? 73 -1
~ L ~ — ~

The reason for introducing these functions is, apart from a more compact notation,
that they correspond to the contributions from the different intermediate states E,)
of the electron. The behaviour of the real part of this functions is shown in fig.1 for
a quality factor @ = 100.

10
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So we get for the distance dependent and level dependent part of the levelshift

3
AE™ = AEg + AEge =€) Y Ni((n),(n)) Ri (L, Egn) — Egwy) - (43)

i=1 (n')

This formula is one of the main results in this paper. All quantities entering it are
well defined and can be calculated numerically. The results are represented in the
figures 2 and 3.

The order of magnitude of the terms in (43) is given in the following.

For i = 1,2, because of R;(L,p) = L~3R;(1,Lu) and N; being proportio-
nal to (ao/L)?, the contribution to the energy shift is of order (6) aa3L~3 =
0.974 107%(L/1mm) *Hz. This is at once the order of magnitude of the re-
sult for low n. For Rydberg states it should be multiplied by N; ~ n* (30* =
0.81 10%, M jn=n'=30,x=—1 = 4.8 108 for example) and gives a shift of roughly 1Hz for
a distance of Imm. , _

For ¢ = 3, because of R3(L, u) = L~'R3(1, Lp) and N is proportional to a?, the
conttibution to the energy shift is of order (7) a®/L = 18.6 (L/1mm)~" kHz . For low
n, we have for the argument of the function R3, L (En) — E(n)) 3> 1, especially for
n = 1,n' = 2 we note L (E(y — E(z) = —1.6 10* x (L/1mm). The matrix element
N is of order one (N3(1,2) = 0.62) so that using (42) a contribution of order 1Hz
appears. Especially, the contribution from n’ = 2 to the levelshift of the groundstate
(n=1)is '

e? Y Na(1,2)Rs (L, Ey) — Egz)) = —0.12 Hz (L/1mm)~* .

n'=2

The contribution from all n’ is —0.16 Hz(L/1mm)~2. For high n, N3 behaves like n~2
(3072 = 1.1 107%, M3__oy inzonu—y = 1.42 107* for instance) and the corresponding
contribution goes down to roughly 1Hz.

In the present calculation the contineous intermediate states are neglected. It can
be shown that their contribution is less than 1% in the parameter region considered
here. This is in contrast to the Lamb shift calculation in free space. A heuristic
argument states that the photon spectrum is different: whereas in free space the
integral over the photon momentum converges power like (after substracting the
UV divergences) it goes like exp(—k&L) in between the mirrors as can be shown from
(38)-(40) after Wick rotation.

4 Conclusions

The boundary dependent level shift, derived here, differs in two features from the
known results. Consider the electrostatic part, defined to be the contribution from

11
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the u = v = 0 component of the photon propagator (10) with the polarizations
(12) . It containes the sum over the intermediate electron states (n')(see formulas
(32),(33)), whereas in the quantum mechanical approach of [4] it is

A, = /ds:i:‘\[lf,,)(z)H..(z)‘I'(‘,-)(z) ,

where ¥(,)(z) is the hydrogen wave function and He(2) is the classical Hamiltonian
of the boundary dependent part of the electrostatic energy. As beeing a first order
perturbation it does not contain intermediate electron states. Remark, that a second
order perturbation would contain a sum over different intermediate states, however,
it would contain an additional order of smallness, i.e. a factor e?, too. So we see, that
in the considered order of smallness (i.e. e2a2/L?) field theory and quantum mecha-
nics yield different results. The question, in what case field theory turns to quantum
mechanics in this example, can be partly answered by the following considerations.
Suppose, that the distance L is so small, that L(En) — E»y) <€ 1, i.e. that no
retardation is possible. In that case, using (40), the ko-integration can be done and
the photon propagator becomes the instantaneous electrostatic one. The sum over
the intermediate states (n’) decouple. Using (¥(n) is a complete set of states)

S M) = PruyE Ry, m), (44
S M () = [ e @, (45)
we get "
;ZR.-(L,O)N.- ((n), (n))) = fﬁ% (%‘1)2((3) / PEV:(3) (Z.Q _ %zg) ().
(46)

In the nonrelativistic limit the Dirac spinors ¥(»)(z) can be substituted by the usual
hydrogen wavefunctions |n,!) and we get the same result as in quantum mechanics,
see [4] for instance.

Let’s remark, that the sum over the intermediate states for the electrostatic
contributions is dominated by the nearby terms. This can be seen from the corre-
sponding formulas for the radial matrix elements in the case n > I:

I(n’v”rlnvl — 1)|2
(n,l|r?|n, 1)
where the first term (n/ = n) contributes already 90% in formulas like (44),(45().

Therefore, including the intermediate electron states in the electrostatic interaction
gives no dramatic changes.

9 2
= 5 (1 0(U/m)) . (47)

12
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The second difference to the usual treatment consists in the time dependence of
the electrostatic (i.e. 4 = v = 0) part of the photon propagator used here. It results
in a retardation and an oscillating behaviour of the electrostatic part of the levelshift
like that of the relativistic part (i.e. the i = 3 contribution in formula (3.13) which
corresponds to the retarded contribution in [4]). Its influence is numerically small
as can be seen from fig.2, however present.
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Summary

Manifestaitions of new hypothetical long-range forces, which are
predicted by aodern quantus theories, are exoloried in terrestrial
experiments, aainly, on force seasuresents. The persoective experiaents
for the search of the new hypothetical forces are considered. Up today
restrictions and perspective ones are obtained and suamarized. The

linits on the wsasses of spin-1 antigraviton and dilaton {roa

perspective exoerisents are shown to be gQreater than 1o'zov and

2x10"“eV resoectivelv and the restriction on axion mass can be achieved
8<10°% ev ( @ =10°7)

1 Introduction

Rany weodern quantua theories predict the existence in nature a nusber
ot aew light (or massless) hypothetical particles. Tne consequences of
it can be manifested in astrophysical phenomena (anisotropy of microwave back-
ground, connection between the age and radiation of a star, baryosynthesis etc .)
and in appearing of the additional chanals of elementary particles decays. More-
over, the hypothetical particles predicted by quantum gravity theories can lead
to the shift of ﬁequency of atomic radiation and to additional forces between
macrobodies. It is the latter problems that we shall discuss in the present paper.

Tt should be noted that the search of such forces in terrestrial conditions allows
to obtain the most model independent information about the restrictions on new
force parameters. The experiments which will be considered here are of E5tvos
and Galileo type, Cavendish type, on verification of Casimir effect, measuring the
van der Waals forces, atomic force microscopy etc . As a consequence the nonob-
servation of mentioned manifestations leads to obtaining of the restrictions upon
the parameters of corresponding hypothetical particles.

One of the most interesting particles which leads to additional long-range in-
teraction is spin-1 atigraviton (Scherk 1979, Zachos 1978). It appears in gravita-
tional supermultiplets of all extended broken supergravity schemes and gives rise
to gravity-like forces, but repulsive. The potential of Yukawa type between atoms
arises as a result of the exchange by the particles of that sort

V(r) = aN? - (1)

where A = m~!, m is the mass of exchange particle, r is the distance between
atoms, N is the number of nucleons per one atom, « is a dimensionless interaction
constant.

As has been shown by Scherk (1979) the constant a = 8xGm? ~ 10~%, where
mo was the sum of current quark masses of nucleon.

Another particle resulted in (1) is a pseudo-Goldstone boson which appears due
to scale symmetry breaking. It is a so-called dilaton (Fujii 1972, O’Honlon 1972).
The potential (1) arises because of mixing with graviton. The constant a for
dilaton was shown to be equal to 1Gm}, o~ 2 x 10~?, where G is the gravitational
constant, my is the mass of nucleon.
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One more particle which we.shall consider is axion (see, e.g. Moody and
Wilcsek 1984). Axions appear both in modern unified theories and for solving
the strong CP problem in chromodynamics. This particle can play an important
role in solving the Dark Matter problem. Likewise the particles mentioned above
the axions are able to bring about a long-range interaction of Yukawa type (1).
In the work by Moody and Wilcsek (1984) the constant a and the mass of the
axion were calculated. They turned out to be equal to

2 T
Mﬂ( ) [ zm.m‘ ’ m‘m;‘f'm.sf':: (@)
where M,4 are current masses of u,d quarks m, is the mass of r-meson, f, =~
90MeV is the constant of x-meson decay, Gy is the pion-nucleon o-term =~
60MeV, © is the parameter of CP-violation (| © |< 10-?, Kim (1987)), Fis
the parameter of Peccei-Quinn symmetry bmkmg As was shown in, e.g., the
paper by Turner (1990) the limit on the axion mass m < 10~%¢V followed from
supernova SN1987A. Hence, one can conclude from (2) that F > 101°GeV.
For the case of the exchange of massless particles the effective potential between
atoms has a power law (Feinberg and Sucher 1979, Mostepanenko and Sokolov

1987): - l
= 2 X V" (10"
W === (), (3
where A, is a dimensionless constant, ro = 10~*m.

The potentials of such type appear due to exchange by such particles as arions
(n = 3)(Mostepanenko and Sokolov 1087), goldstinos (n = 7) (Radesk 1084), even
by usual massless neutrinos (n = §) (Feinberg and Sucher 1968) etc . The search
of such particles is a good way for verification of the modern unified and gravity
theories.

The velocity of light ¢ and the Planck constant A will be chosen equal to unity.

2 Up today terrestrial experiments and restric-
tions upon hypothetical interaction |

3.1 Eotvos and Galileo types experiments

In the experiments of these types the possible difference between the gravitational
and inertial masses was measured. In EGtvos type experiments (Stubbs et al 1987,
1989, Braginsky and Panov 1972, Heckel et al 1989) two bodies of approximately
equa.l gravitational masses but of different materials were suspended on a torsion
balance. For the case of being the difference between two types of masses the
turning moment would appear. ‘

In the experiments of Galileo type by Cavasini et al (1986), Niebauer et al
(1987), Kuroda and Mio (1980) the test bodies were falling down and the falling
time for each body was registered. The great attention was attracted to these
experiments after the work of Fishbach et al (1986) in which the violation of the
equivalence principle was announced to be registered in EStvde experiments really.

2




- The typical result of both these experiments is that relative d.;ﬁerence of ac-
celerations a,/a, zmported by the Earth to various substances o
| 1| < 4, o \ (4)
where A ~ 10-% for the typical Edtvce expenments and ~ 1072 for  Galileo
type. |

The existence of new long-range force of (1)-type must result in effective dif-
ference between inertia and gravitational masses. Therefore, following the work
by Mostepanenko and Sokolov (1988), let us show which restrictions upon a, A
(1) are obtained from (4). One has

a._-—Me+aN,f"( A);r',’-‘;(%&),ni,z )

where ¢ is the number of test bodlies, M; is its mass, N; is the number of nucleons

in the body. f(z) = J(z cosh(z) — sinh(z)), RQ,MQ are the radius and the mass
of the Earth.

‘Thence one can write

e (1+5) s () -

o, (445) 1 (3) B - )

The difference |N;/N; — 1| in the experiments of Ebtvos type was ~ 10-2
(the test bodies were of water and cuprum). As to' Galileo type experiment
|Ny/Na = 1| ~ 1073, Therefore one obtains from (6), (4)

a<ce “%9 (N
where [ & 1m is the distance between the Earth and the test body. The. constant
¢ =2 4 X 10~ for E5tvos type experimentsand - for Galileo ones. These
restrictions are shown in Fig.1. The region of allowed values for a, A lies below the
curve 1. . In the same figure the curve 3 represents the restrictions obtained
by .Heckel of &l (1989), where the experiment practically of EGtvde type was
carried out. In difference from other expenment of Eotvos type instead of the
Earth the massive laboratory body was used in these experiments.

If additional long-range force arises due to exchange of spin-1 antigraviton or
dilaton then the following restrictions upon their masses are obtained: m= =
A < 5m and m~! < 0.3m for spin-1 antigraviton and dilaton respectively.

Likewise one can obtain the restrictions upon A, for power law long-range inter-
actions (3). So, from EStvos experiments one has A, < 107%,10~%,10"2 with n =
1,2,3 respectively (Feinberg and Sucher 1979). The modified EGtvds type exper-
iment was made in 1971 by Braginsky and Panov where the Sun was as an attrac-

tive body. Corresponding restrictions were the following: A, < 10~47,10-%,10~7
with n = 1,2,3.
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Pigure 1.

The restrictions on Yukawa parameters @, A obtained by Heckel (1989) — the
curve 2, Niebauer et al (1987) — 1, Stubbs et al (1987), (1989) — 3, Mostepanenko
and Sokolov (1988), (1989) — 4, Hoskins et al (1985) — 5, Chen et ol (1984) —

6, Mitrofanov and Ponomarjova (1988) — 7, Panov and Frontov (1979) — 8,
Kusmm et al (1984) — 9.
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2.2 Cavendish type experiments

The earlest experiments dealt with direct measurement of gravitational force. The
value of gravitational constant G was as a result of these experiments. Nowadays
experiments on G measurement shown the value of G was the same up to ~ 1% for
different type experiments (cf. geophysical experiments by Holding et al (1986),
Stacey et al (1987)). As a consequence the restrictions on a, A were obtained by
Mostepanenko and Sokolov (1988), (1989) (the curve 4 in Fig.1). For dilaton and
spin-1 antigraviton one has A < 0.3m and < 2 x 10~2m respectively.

In modern expemnents of Cavendish type the deviation from Newtonian grav-
itational law is measured by Holding et al (1986), Stacey et al (1987), Hoskins
et al (1985), Chen et al (1984), Mitrofanov and Ponomarjova (1988), Panov and
Frontov (1979). In order to measure the deviation it is not necessary to know
the exact value of G (which is known up to 1%). This fact allows to do these
experiments with great sensitivity to that deviation. Furthermore the interest in
these experiments was stimulated by Long’s communication of 1974 about exper-
imental discovery of deviation from the inverse square law. For the time being
there is no evidence, however, of the exostence of such deviations.

Usually, the characteristic value of the deviation from the inverse square law
is written as follows

e= 7% (°F) ®)
where r is the distance between point-like bodies, F is the force acting between
them.
The typical value of s is £10™* for r ~ 1cm + 1m (e.g., Hoskins et al (1985),
Chen et al (1984)). The ¢ value due to Yukawa type long-range interaction (1) is
given by

g= 2 Do, (9)

The restrictions which are obtained from these equations are shown in the
Fig.1 (the curves 5—8). The allowed region for a, A lies below the corresponding
curves. The difference between the cases of @ > 0 and a < 0 is explained by the
fact that the mean value of ¢ is not equal to sero.

From the Figure it is easy to obtain the following restrictions on the masses of
spin-1 antigraviton m > 6 x 10~%¢V (A < 4 x 10~4m).

By the same way the restrictions upon the constants A, of the power-law
interaction can be derived. The best restrictions upon A, from the experiments
of this type were obtained by Mostepanenko and Sokolov (1990) and turned out
tobe A2 <7x107%, A3 <Tx 107, A¢<1x1073,

2.3 Verification of Casimir effect

In the experiments on verification of the Casimir effect by Derjaguin et al (1968),
Hunklinger et al (1972) the theoretical value of Casimir force Fys ., was compared
with the experimental one F,,,,. There was no difference between them in the
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 region of experimental erron.é. Therefore one can obtain the restriction needed
from obvious inequality Foyq < 6 Fepr
In the experiments mentioned zbove the Casimir force was measured between
a plate and a spherical lens of the radius R (R 33 ¢ which is the distance between
the plate and lens) with £ < 0. 05pm +2um. An approxmate theoretical Casimir
force for this configuration is given by '

F=—-— = (10)
where B is a constant depending on dielectric properties of test bodies.

Hypothet:cal force for such configuration was derived by Kusmin et al (1984)
and by Mostepanenko and Sokolov (1987a,b). ‘The force, for instance, due to the

potential of Yukawa type (1) results in

Fou= an;m4r’A‘R( D/“) “/“x' |

A o8(E_ A B H

1- R+ ( 1+ %+ opy )] o
where n,, 0, are atoms densities of test body materlah H, D are the thickness of
the lena and plate correspondingly.

In the experiments (e.g., by Hunklinger et ol (1979)) the theoretical value of
Casimir force was confirmed with experimental error § ~ 10% for £ ~ 0.8 < 1um.
Thence one has the sought restrictions. Allowed region for a, A lies below the
curve 9 in Fig.1.

Unfortunately, the insufficient accuracy of the expenmentt and an ambiguity
of the data for D and H in publications do not allow to obtain the reliable
restrictions on the masses of dilaton and of spin-1 antigraviton. However, in the
next section it will be shown that well restriction can be obtained in optimised
experiment of such type in the nearest future.

In order to obtain the restrictions upon the power law interaction constants
An it is necessary to derive the expression for corresponding additional force.:
It has been done in the paper by Mostepanenko and Sokolov (1987 a,b) and the
restrictions were found to be A; < 1079, ), < 10737, Ay < 5% 10715, A, < 3x 1073,

‘2.4 Measurements of van der Waals forces between cros-
sed cylinders, the atomic force microscopy and the spec-
troscopy of exotic atoms -

The experiments of these types deal with rather small distances between test
bodies — from 14 to 10004. So-called nonretarded van der Waals forces act
between bodies at such distance. In (Israelachvili and Tabor 1972) the force
between crossed cylinders was measured for the distance between them from 15
to 1300A. The force of the same type was measured in atomic force mlcroocope
(AFM) acting between a tip of AFM and plane sample (Moiseev et al 1989). A
typical distance in this experiment was 4—154.

4
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The concent between experimental and theoretical data in the limits of exper-
imental error allows to obtain the restrictions upon a, A, A, by the same way as in
the previous section. It should be noted that restrictions upon A, turn out badly

to be improved in this way. Therefore the restrictions on Yulawa type interaction

will be considered here.
As was shown by Moiseev et al (1989) the restrictions upon a, A from crossed
cylinders and AFM are as follow

A 10 -
aSmc , 1070"m<A<10™°m (12)

where the constant 4 ~ 1.1 x 10'm~? for crossed cylinders and 4 ~ 2.6 x 10°m™!

for AFM, ¢ is the distance between test bodies, n, 3 are atom densities of test

bodies materials (mica for crossed cylinders and sapfire for AFM).

The restrictions (12) are shown in Fig.2 (curves 1,2) where the limits from
Casimir effect are also represented (the curve 3). As it is seen from the Figure,
the best restrictions upon a with A > 604 are obtained from the verification
of the Casimir effect, with 104 < A < 604 — from crossed cylinders and with
14 < 2 <104 — from AFM.

Another type of experiments which can give the information about new hy-
pothetical forces is the measuring of frequency of transitions in exotic atoms(of
types nucleus-antiproton, meson etc .)(Tausher 1977). The restrictions upon the
power law interactions were obtained by Feinberg and Sucher (1979). The
restrictions on Yukawa type interactions can be derived in the same way. These
restrictions are represented in Fig.2 (the curve 4). It is the best for A < 14.

8 The perspectives for experiments with inter-
acting bodies

8;1 The experiments on Casimir effect veriﬁcation

The increasing of the sensitivity to additional hypothetical force can be achieved in
the experiments of this type by means of changing the configuration of test-bodies,
the distance between them and their density. As was shown by Mostepanenko
and Sokolov (1991a) the configurations of test bodies leading to maximal F 4/ F,
where F is experimental force between test bodies, is *a small ball in the centre
of a thin spherical shell” and "two plane plates®. And the latter configuration
was shown to be more availiable for the experiments under consideration. The
optimal distance between macrobodies turned out to be ~ 60 + 200um. For
such distance it is essential to take into consideration the forces of gravitation
between bodies. Moreover, the Casimir forces become the temperature ones. So,
the experiment on Casimir effect verification turns into the experiment on direct
measurement of the gravitational and temperature Casimir forces between plane
plates. As to materials of test-bodies, the heavy metals were shown to be the
best ones. After all, in order to obtain, e.g., the restrictions upon the power
law interaction constants it is suggested to measure the force ~ 10~!*N/cm?
with the error of §, between plane plates of thickness D ~ 100um with the

7
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Pigure 2.

The restrictions on a, A from atomic force microscopy (1), mélhrements of van
der Waals force between crossed cylinders (2), Casimir effect (3), exotic atoms

(4). |
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distance between them ~ 100um. Then one has (Mostepanenko and Sokolov
1991a) Az < 2 X 107" b, Ay < 3 X 10715k A < 4 X 1078 4. The value of §
is limited by the accuracy of gravitational constant measurement which is ~ 1%.
Therefore, assuming § ~ 1% one has that perspectives for power law interaction
constants A, are: A, < 2x 1072, )3 < 3x 10718 A, < 4 x 10”7, It means that
nowadays restrictions (from Cavendish type experiments) can be strengthened
in 30 times with n = 3 and in 2,500 times with n = 4. The perspectives for
the restrictions on Yukawa long-range interaction in the experiments of the type
under consideration are represented in Fig.3 (allowed region for a, )\ lies below
the curve 2). In the Fig.3 all the best nowadays restrictions are shown (the curve
1). The forbidden region for a, A is hatched.

8.2 The perspectives for Cavendish type experiments

Such perspectives were found by Mostepanenko and Sokolov (1891b,c). Likewise
the previous types of experiments the Cavendish experiment on measuring the
deviation from gravitational law transfers into measurements of the deviation
from total force which can consist both of gravitational and Casimir forces. Then
the generalisation of characteristic value of the deviation from known force law
(8) will be given by

= T (r""zd;r’i‘(r)) , (13)
where Gmym,  Ca
F(r)=  t ot Foas(r) (14)

is a force acting between point-like bidies of m;, m, masses of the same materials
as test-bodies, C,, is a constant of Casimir force (m = 8 for retarded force, m = 7
for temperature and non-retarded ones).

The purpose of the experiment suggested in (Mostepanenko and Sokolov 1991
b, c) was the quest of such configuration of test-bodies that possible deviation
¢ (13) would be maximal. Such a problem was solved as variational task and
showed that optimal configuration is the same as in the previous section, i.e. *a
small ball in the centre of a thin spherical shell® or "two plane plates”. Let us see
the case of two plane plates at first.

Plane plates. In (Mostepanenko and Sokolov 1991b) the optimal parameters of
the plates (the thickness D and the distance between them £) were found, so that
€ (13) were to be maximal. For instance, in the case of power law hypothetical
interaction, the deviation from known force law must be measured inside the
region £ ~ 50 + 500um, D ~ 100um. The corresponding force displacement for
the L-region mentioned above is ~ 1071 + 10~!2N. Putting the sensitivity to such
displacements ~ 2.5 X 107N (Panov and Frontov 1979, Braginsky et al 1981)
and the area of the plates § = 100cm?, one has §e ~ 10~%. It corresponds to
the following restrictions: 1; < 5 x 107%, A3 < 1 x 10718, A, < 4 x 10~7. These
restrictions are practically the same as the perspectives for the experiments on

S
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Pigure 8.

The best up today restrictions on a,A (curve 1) and the perspective ones for
direct force measuring (Mostepanenko and Sokolov 1991a) — 2, for Cavendish
type experiments (Mostepanenko and Sokolov 1991b, ¢} — 3, 4, 5, 6,
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y
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Pigure 4.
The scheme of Cavendish type experiment with optimal configuration of test-

bodies.
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Casimir effects, but the formers are more perspective because the increasing, e. 8-
of the area of plates up to 1000cm? leads to strengthening of the restrictions in
10 times.

For obtaining the restrictions on Yukawa long-range interaction parameters it
was suggested to take plane plates with D = 1ecm, S = 10~2m? and to measure the
deviation from known (for this case, practically gravitational) force law into the
region of £ ~ 102 + 10°um. The modern experimental facilities was shown allow
to achieve the sensitivity to ¢ up to 2 x 10~7 for this configuration. From this
fact and from eq.(15) one can obtain the sought restrictions on a as a function
of A. These restrictions are shown in Fig.3 (the curve 3). Choosing the values
of D = 10cm and of S = 1m? one has the restrictions represented in Fig.3, the
curve 4.

‘A small ball in the ceatre of a thin spherical shell. The calculations for
such configuration were made by Mostepa.nenko and Sokolov (1991c). A scheme
of the experiment suggested is shown in Fig.4. The forces acting between test-
bodies are compared for two pairs of *a small ball in the centre of a thin spherical
shell® by means of the scales (of balance or torsion types). The force for each
pair of test-bodies is given by (for R; we are interested in the Casimir forces are
negligible here)

—R‘§'+F-M(R‘) 8= 1,2, (15)

where m; (M2 are the masses of small balls (of thin spherical ahell), R;, are
the radii of the shells, F 4 id a hypothetical force. For instance, in the case of
Yukawa type hypothehcal interactions (1), one has

Fuu = §Tate (R}'*E)' (16)
Choosing m; = m, one can obtain the equality of gravitational forces acting
between test-bidies for both configurations when the thicknesses of spherical shells
D, = D;. Then the difference between F; (15) which can be registered by the
scales results in the only difference of additional forces Fouq( R;). If the approaching
of the spherical shells to the scales does not violate the state of equilibrium then
in the region under investigation the hypothetical additional force is absent up to
experimental error.

The parameters of the ball and spherical shell were suggested to take as
follows:R, = 1 or 5m,D,» = R,/10,r,2 = R,/10,R; = R, + R,/3. The ma-
terials were supposed to be of metal with density ¢ = 10°kg/m*. As was shown
by Mostepanenko and Sokolov (1991c), the equality of gravitational forces of the
configurations of Fig.4 can be maintained up to AF ~ 1.4 x 10-*2N. Therefore,
unless the equilibrium of the scales violates, then one concludes that AF,,y =
Foii(R;) — Foua(R,) < AF ~ 1.4 x 10712 N. The restrictions on Yukawa potential
parameters a, A obtained from this inequality are shown in Fig.3 (the curve 5 with
R, = 1m and the curve 6 with R, = 5m).

12
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4 Conclusion

In the oresent paper the sanifistations of 'nou hvpothitical
forces, progicted by the sodern quantua theories. in the terrestrial

experiaents are oxploriod. It was shown that the sodern experiaents
considered allowed to obtain new restrictions upon the paraseters of
hypothetical particles such as spin-1 antigraviton, dilaton,

The p;rspictivo oiporioonts» on Casiair force ooaldrinent and
Cavendish-type experisents are considered in the <¢ramemork of the

eodern 6xporioontal facilities. It was deaonstrated that the present

‘restrictions on power law constants -Hn could be strengthened in 70

and 2,500 times with n=3,4 respectively. The liaits on Yukawa constants

o s N _uuro shown in the Fig.3. The iaproving of the restrictions we
have now can achiesve 107 tises. MNMoreover, provided the experiesents
described were fulfiled the restrictions on the asasses of spin-l
antiqravigon and dilaton would be less than 10 2ev and 2x10"2ev
respectively. .

The suggested experisent of Cavendish type (the curve 4 in Fig.3)

allows to achieve the level of axion forcas (2), which is shown in

Fig.3 by dashed line (the parameter ' ) =109). It such forces are not

registered then one will have the following restrictions upon the axion

mass @ < 107%y(10°%/ 0 ).

‘Thus, being compact and coaparatively inexpensive, the terrestrial
experimsents are a good instruesent for verification ot the sodern
quantum theories and for receiving a new inforsation about eleasentary

particles and their interactions.

13
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S Avstract o
A review of recent results of ocaloulations of various
vaoumm effeots, influenced by external gauge fields and finite
temperature , in the Weinberg - Salam model and in QCD is given.
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1. Intmmctlon

The mrluance of extemal electromgnetic field on the QED
processes is extensively studied in literature (see, for example
(1, 2, 3]). New problems arise when one takes into account the
effect of external fields in non-abelian gauge theories. In the
Weinberg-Salam (W-S) model external electromagnetic fields are
introduced in the same way as in QED. In QCD “"external fields"
are understood as certain vacuum gluon condensate fields, imtro-
duced as mean fields, averaged over some model configurations.

© Strong laser fields can  find application in Tuture e te~
colliders, involving real  (beamstrahlung and backscattered la-
ser) or quasircal (brcmotrahlung) photoms in initial state and
hadrons in the final state, Ty-colliders.

Puture colliders such as SSC can be used due to strong
electromagnetic fields between colliding particles to ensure
revealing the nature of electroweak symmetry breaking.

High-energy processes such as deep inelastic scattering or

_e ¢ annihilation in hadrons, spin-flip processes and others are
* influenced by the QCD condensate fields.
: In aatropbyalca the problem of solar neutrino dencit can
find 1ts resolution in possible interaction of the n@euc no-
ment of neutrino with the magnetic rield at the solar surface
(see e.g. [4]).

The bebaviour of symmetries at finite temperatures and
densities is one of the most outstanding and relevant problems in
many current areas of particle physics: e.g. cosmology,
relativistic heavy - ion collisions, and the quark -gluon plasma.

The problem of symmetry breaking and 1its restoration 1is
intrinsically nonperturbative. Most of our knowledge comes from
lattice simulations. On the other hand influence of extermal con-
ditions (temperature, density and gauge fields) 1is also mostly
-nonperturbative.
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The influence of external <fields can be considered by the
method of exact solutions of relativistic equations for some
solvable model field configuratioms (1, 2, 3].

‘2. Ancmalous momsnts of fermions and bosons

Explanation of the solar neutrino puzzle can 1ie in three
possible directions:
1) nonstandard solar neutrino model,
2) MSW effect (Mikheev, Smirnov, Wolfemstein [5]) - matter-emhan-
ced oscillations: coherent forward acattering of v in e - matter
accompenied by an almost complete conversion v, -> 'v, (f # e),
3) flip of the v spin ¥ —>vp In the magnetic field of the
convective zone of the Sun [4]. :

Unfortunately the value of the neutrino magnetic moment in
W-S model with additional right-handed neutrino (m, # O) 18 too
small to be astrophysically important (6]

yo= 3eCp m, /(82172 o) = 3210719 (inlé /1eV),  (@.1)

where pg = 5.8°107%ev 671,

This value was obtained for an electron Dirac neutrino in the
8o called static 1imit, that is for weak fields and low energies.
In connection with astrophysical problems, such as solar neutrino
deficit, it 1s of interest to investigate the dynamical character
of the neutrino magnetic moment, incorporating the dependence of
it on the intensity of the external field P and on the neutrino

energy &
W,=1 (P, g). | (2.2)

This problem for the whole range of energies and electric and
magnetic fleld strengths was solved (see ([T} and references
therein ) by the use of the Dirac-Schwinger equation for the
neutrino wave function
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(1710 - my, M) = § d*2'MC X2 )p(x') '@.3) :

where M(x,x') - the mass operator in an external electromagnetic
field PW" This method was successfully used in ref. (8] for"
investigation of the dynamical nature of the vacuum magnetic -
moment of an electron.

Radiative corrections to the neutrlno mass

(ln—therenomalizedvalueorl ) include twb'tem

iy = by Hpirm, s

amp = d,, (M 0%/m,, . (2.6)

linear in the neutrino spin 4-vector &'. Coefficients w, and d,
can be interpreted as the anomalous magnetic and electric moments -
of neutrino, d,, being proportional to (EH).

For our purposes in this talk it 1is sufficient to present
only two special cases of the general result of ref. [{7]. In the .
weak feald limit He<Hy = mi/e =4.4°10'3, B=0 for the longitudinal
motion, p | H, we have

W= Wy (1 + (479) (BPInA/ (B3AZ)), @.7)
where A=l'2/ne2. My, - the mass of the W-boson.
The magnetic moment increases quadratically with H but with a -
very small coefficient.
In the strong field limit

B - Bg=M,2/e = 1.1-10%4g
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the value of K, goes to infinity

W= (27300, (,2/m,2 ) IntBy/ (By- H)) . (2.8)

This divergence is due to a tachyonic mode in the W-boson energy
- spectrum and a resulting instability of the perturbative W-boson
field vacuum state (see below). | o
The experimental discovery of the W-boson, predicted by the

WS model, was the first triumph of this model. Purther
Investigations of the properties of W-boson are essential to prove
that it is an elementary gauge particle. Specific characteristics
of W as a gauge particle are necessary to guarantee the
reporealizability of the W-S theory. In particnlar mtic»
ratio 7,~2 is characteristic of the gauge nature of the theory and
of the structure of the 3-linear vector vertex. Hence, mesurement
of the T, 15 a test of the gauge nature of the W-boson.

- !me equation for W-particlc, lincarized near the perturbative
vacuum in the magnetic field H

(DY + 15 W + 21, = 0, (2.9
(D, =0, + ieh,, )
can be solved to give the energy spectrum
g2 = B2 + eH(2n-1) + 2, n =0, 1, 2, 3peee  (2.10)
The W in the, ground state n=0, p,=0 has the energy

eo2=i,2-el. | | (2.11)

Yor B-B-M2/e we have e,+0, menifesting the restoration of
gauge symmetry.

In the region H>H,the linear theory of the W-boson is not
valid and we have to find new nonperturbative vacuum for the
W-field. In the region H<H, the linear theory is applicable and we
have to complement eq.(2.9) with the equation

5
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s,/W= (¥ (¢=0, 21) @.12)
for the polarization states of W-boson, where s“ 18 the

spin-operator of the particle. In the rest trane of the W-boson we
have

S M= -1 M/, | | (2.13)
The lepton contribution to polarization operator of the

W-boson was calculated in the 1-loop approximation in (9). Por

ooqm-atively weak fields H « H,=W./e the leptonic contritution
to the vacmm anomalous m@etic moment of the W-boson was found
to be (9}

Ak, = - /(32%2)( 1/3 H1/A -2/A% ), ©(2.14)
2, 2
A 42m2.

The bosonic contribution is of the same order of magnitude. It was
obtained after some controversy in (10]

sk, = Te?/(168°). (2.15)

3. W - condensate in the Weinberg-Salam model.
The effective mass of the W-boson can be defined as follows
2(0) _ .2 _y2 _
When H - H, we have leuz“”-u 0 and ‘gauge symmetry is restored.

For H > H, the effective mass squared is negative, corresponding
to the tachyonic mode in the energy spectrum of the W-boson. When
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B - H, the perturbative vacuum becomes unstable, which manifests
itself in the divergence of the vacuum correction to the mass

Mo 20 (B) = 2 e + AN 2(H) (3.2)

and to the neutrino mass

For the W-boson and charged ¢-scalar contributions we have
(111 |

2= 2/ @2 ML W/ (eB) - 11, (3.4
M 2= &2/ (4xP M2 eap(m,/ (2eH))|BL (-1y2/ (eH)) | In(ME/ (eH) 1).

As was shown earlier (see (2.8)) the spin dependent part of
L the anomalous magnetic moment of the neutrino divergiles
when H - H Por such hge magnetic fields the new, nonperturbati—
ve, vacuum etate - W condensate has to be constructed.

Recently it was conjectured that such W-condensate can be
formed in high enmergy collisions ([12). Transient magnetic fields
of sufficient strength to induce a W condensation will be present
in a large number of high energy collisions. At the moment of
collision for a short time large magnetic fields are formed

B~ B, = (,27e) ~ 1074,

ed.tng the average magnetic field in a neutron star H ~ H,

4°10'% by 11 orders of magnitude. Por this to occure an mpact
parameters of the size r,.1/M, should be attained. This can be
easily done at supercolliders like LHC and SSC. The charged par-
ticles in this collision can be valence quarks of the same charge
inside each of the colliding protons.

The formation of W-condensate may lead to a spatial anysotro-
py in electromagnetic field distribution. lLet us take for simpli-
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city the Georgil-Glashow SU(2) model

Ig g = (172)60,0% +(1/2)0,3° Dy, - pxzxzxz + A(%)%/8, (3.5)

where g -scalar field. The bosonic part of the Lagrangian

Ip = - B,W, 'R + B WP E 4 1B W e G W W -

EECZZINTE R A R R I (3.6)
where P, = 168 —eAu. leads to field equations for W in linear
o B - |
approximation
0" + £.2)W + 1% - D, (D'W) = 0. (3.7)

¥or arbitrary sourceless Maxwell field, OFP“";-O.; we have
nui‘ =0 | (3.8)

and equauon (3.7) goes over to more simple one (2.9).
The ground state n=0, {=-1 18 described by the solution

w =(1+1)e2%02172 | W =(1-1)el% 12172 , - 3.9)

where 0 and Q are oonstant phase and amplitude of the solution.
Por H 3 B, = I'Z/e the one-particle solution of the problem is no
longer valid, and condensate of the W-field is forwed. HNaively,
ignoring the dependence of the condensate on spatial coordinates,
O=const, we find by variation of the energy of the field

8 [ 3z = 85axl 207 (P g2+ 9202”6=e° = 0,

the value
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ea‘f = —8 2= en - ”20 ‘ (3.10)

We can extract Maxwell field mass tem Irom the ‘bosontc
Lagranglan (3.6), which arises due to '—condemate o

Igarwe11 =0 ( Ag° - 45% ).

The conclusion 15 that a W-condemsate 18 formed and a photon
~ acquires & mass -

n,a: conat( H - H, ).

A distinctive teature of this lngge nechanm 18 spatial
anisotropy [131. The extermal magnetic field is not atrected in
contrast to ordinary abeuan case - isotropic leisaner ettect. |

4. QUD -condensate and its rolo m mica -nu'nooumm.

As mnllkmmthemmdstateofoﬂbis cmctenndby
nonegero expectation value of gauge fields forming a vacuum
condensate (14]. The simplest wodel of nonperturbative vacuum 1s a
state with a uniform color magnetic field, considered as a
classical external (background) field.

Although the one-loop energy demsity (etfective potential) of
this “color ferromegnetic state®™ 18 lower than that of
perturbative vacum [15), it has the nongero imeginary part,
indicating that this state is unstable [16]. Various attempts were
made in order to find a stable oonfiguration with lower energy,
such as models with domain-like structure of the magnetic field
{171. _

Statistical properties of oystems Interacting with
non-abelian gauge fields have recently attracted much attention in
comection with the description of the early Universe and in-
vestigations of the behaviour of the hadronic mtter in heavy-lon
collisions.

In the high temperature limit the effective coupling constant
&(T) 18 small due to asymptotic freedom and at certain

9




temperature a deconfinement phase tranaition occurs.

The question of the color ferromagnetic state in QCD at
finite temperature was investigated in ref.{18]. The simple ansate
of Savvidy {15) for the vacum state with the uniform color
magnetic field was used. Calculation of the ome-loop effective
potential showed that the imaginary part is nongero, demonstrating
that the instability of the Savvidy ansatz was not only cured by
the temperature but instead is growing indefinitely with tempera-
ture. Recently in a mmber of pepers (see e.g. {19, 20, 211, deal-
ing with infrared properties of the Yang-Mills theory at high tem-
perature, possibility of formation of a new condensate was
discussed. The two-loop effective potential of gluons at finite
tenperature in the presence of an imgmary chemical potential
was considered. The effective potential has a nontrivial mintmm
at i ~ gI, indicating formation of condensate of the A, fleld.
This background field A = const cannot be gauged away preserving
the periodicity conditiona for the spatial componenis A4 in the
| Euclidean dauge theory with coupact time coordinate x

osxosp.-m'.

In retf.[22] 1t was ehown,itha;t'h_ superposition of a constant

A, and a uniform magnetic color field condensates eliminates the
imaginary part of the effective potential, stabilising the
nonperturbative color ferromagnetic vacuum state in QCD.

In {22] for the euperposit:lon

Aﬁ' = °p2°a Bx, + 8 63 Ay, ( H = const, -1u = A, cona:‘)”
the themdymic potential was calculated in the one-loop
‘approximation

all)= (glv/2xg) = [(dg./2%) 2 Inl(2x1/8 + @A )2 +
gv/emp) T [(dgg/em) § B+ gAy)

+ 2gH(n+1/2 +0 ) + g2l p = 1/T. (4.2)

10



The real part of a!) nas a nontrivial minimm at Bnin

(gﬂ‘m)Vz ~ & (D). | : C (4.3)

s,

The imaginary part is due to the presence in the spectrum of
gluons

en§q=2gu(n+1/2+o)+q32.n=0.1.2.... (4.4)

of the tachyonic mode n=0, o0=-1, %2 =0 -

o = . | - 45
At high temperature T » (gH)!/2 we have

ma®) - -@Even et - @)? 112, (4.6)

When the condensate gA,, which is of the order g>(T)T becomes
sufficiently large

o> BAyg = (gumn)"z (4.7)

the imaginary part disappears
mal) <o, “.8)
This stabilization of the color ferromagnetic vacuum is due to

interaction of gluons with constant condensate A,, appearing as a
consequence of the infra-red behaviour of the theory.

Another possibility of a constant chromomagnetic vacuum is a
non-Abelian configuration of the type
A% = ( /3 )"201" . A2 =0. (4.9)

One-loop thermodynamic potential in high temperature 1limit

11




T » a has a nontrivial minimm at Gpin ~ &, demonstrating a
possibility of formation of a spherically symmetric condensate.

As the immginary part of the thermodynamic potential is rather
small | »

mQ/Re 0. (ot )«
the new vacuum configuration can be considered as qmiatable
f231.

This simple model of a vacuum condensate can be used to
estimate the contribution of the gluwonic condensate +to
characteristics of high energy collisioms.

Consider e'e” ammihilation to hadrons. The method of sum
rules 1s effective in this problem. PFor example vacum
polarigation by heavy C-quark is described by various moments

M, = f (Ry(s)/ 8™ )ds (4.10)
of the polarization operator P(s)
R,(8) = 4x Im P(8)/8 . (4.11)

The polarization operator of the photon in gluonic
condensate field was calculated for the abovementioned model of
vacum (4.9) in ref. (24]. Por its imaginary part we have

In P(t) = 62/(BR2)E((t - £/ /2 (1~ + MB(t-t)) +
+ @/ -032) (¢ - 1)1 20t-t,)1, (4.12)
where the thresholds are

ty = 4(0F + A2 ), 1, = 4(BF 4304 )

and A = @/3)1/2, o 18 the heavy quark mass.

12



To estimate the 1influence of the gluonic condensate
By "r“ 3> on the e'e” amnihilation to hadrons we calculate the
integral (4.10) for n=1 in the sum rules method (the simple case
of spin gero quarks is conaidered)

To" (Rs)/ePyas = 3Q2/mL 175 + @15 ty) - 3(tn 12 +
+2(8p/A) ( 2(tp/A) = 1) In(( A"Z ')/t - M172)). (4.13)

In the weak field 1imit A/llz« 1. after averagmg over different
field configurations

2
AS +1/6 d“,,"pw%

we obtain

a1/82) . a
f(R(8)/8%)ds = 3/(20% WP)( 1 - (29ag%)/ (126m )a“v"rw >).

Por the 8U(2) model (25}

< ‘%"”uvoruva > w 0.07 Gev*
and for the C-quark ( m.=1.26 Gev ) the condemsate correction is
6%, which corresponds to the value obtained in the operator
product expemsion method (14, 26]1. Our result (4.13) gives the
explicit dependence on the condensate field strength, including
the nonperturbative nonanalytic terms, which are not described by
the operator expansion method. The analogous phenomenon of
insufficiency of operator expansion method for the full
description of the external field influenced effects in the deep
inelastic scattering was lately demonstrated in ref.{25].
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