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Abstract. Wormhole solutions in classical general relativity are unstable and hence non 

traversable. Morris and Thorne discovered a traversable wormhole solution that required the 

energy momentum tensor of matter sources to violate various energy conditions and are out of 

the purview of the standard model of particle physics. The search for traversable wormhole 

solutions in modified theories of gravity has been of significant interest in the decades after 

Morris and Thorne first published their results as such violations may be avoided in such theories. 

This work comprehensively reviews traversable wormhole solutions in higher dimensional 

extensions of general relativity that satisfy the various energy conditions with an in depth look 

at the matter sources and the various constraints on the parameters of the theories to make the 

energy momentum of the matter sources respect the energy conditions.  

1. Introduction 

Wormhole solutions to the Einstein’s field equations (EFE) have been studied since the early days 

of the general theory of relativity (GTR). They are essentially shortcuts through space-time that 

can connect vast distances in our universe or possibly connect our universe to another. Visser 

defines wormholes as any compact region of space-time with a topologically simple boundary but 

a topologically non trivial interior [1]. The earliest examination of such a solution was done by 

Flamm in 1916 [2]. Einstein and Rosen in their seminal 1935 work [3] tried to develop a unified 

theory of electromagnetism and gravity and therein were the first to interpret such a solution as 

two asymptotically flat regions of space-time connected by a tube or ‘bridge’. Their solution 

however was geodesically incomplete due to the presence of a physical singularity. It was also 

shown in [4] that the Einstein-Rose bridge is not equivalent to the concept of a dynamic non-

traversable wormhole solution. Ellis was the first to describe a geodesically complete static, 

spherically symmetric, horizonless space-time manifold connecting two asymptotically flat 

regions of space-time [5]. These solutions are referred to in literature as Einstein-Rosen bridges 

or Lorentzian wormholes. Wheeler for the first time used the term wormhole in [6] to desrcibe 

such solutions. Such wormholes are non-traversable as they are unstable and their throats ‘pinch 

off’ far too quickly for light that falls in one exterior region to emerge in the other exterior region 

[7]. Morris and Thorne in their seminal 1987 paper described the first traversable wormhole metric 

[8]. Their line element in Schwarzschild coordinates is given by: 
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 ��� = ���(�)� � − "�#
$%&(')

'
− *�[�+� + sin�+�-�] (1) 

where, Φ(*) determines the gravitational redshift and is called the redshift function. /(*) determines 

the spatial shape of the wormhole and is called the wormhole shape function. In the following discussion, 

we will see following the treatment of Morris and Thorne, how this metric is interpreted as a wormhole 

and how the constraints on the metric functions imposed via the EFEs constraints on the matter threading 

the wormhole. To interpret that the metric (1) indeed describes a wormhole, one takes the help of 
geometrical embedding diagrams. It is useful to consider a three dimensional space at a fixed time with 

spherical symmetry which can be obtained by setting  = 012� 32  and + = 4/2 in (1). We wish to 

visualize this equatorial (+ = 4/2) slice as removed from the space-time of (1) and embedded in 

Euclidean space. We consider cylindrical coordinates (7, *, -) in this embedding Euclidean space which 

is axially symmetric and thus can be defined by some function 7 = 7(*). The line element on that 

surface will be:  

 ��� = 91 + ;"<
"�>

�? �*� + *��-� (2) 

This surface can be interpreted as the equatorial slice of the solution (1) if we identify the coordinates (*, -) of the embedding space and the wormhole space-time as the same and with the requirement:  

 
"<
"� = ±; �

@(�) − 1>%A
#
 (3) 

This surface has been visualized for arbitrary values of the parameters in figure 2. Equation (3) shows 

how the function /(*) shapes the wormhole’s spatial geometry, and hence the name shape function.  

      The field equations derived from the metric (1) can be suitably rearranged to obtain expressions 

for the mass energy density B , radial tension per unit area C  and the lateral pressure D . These 

expressions are:  

                                     B = /′/[84G0%�*�] (4) 

                   C = [//* − 2(* − /)Φ′]/[84G0%H*�] (5) 

                      D = (*/2)[(B0� − C)Φ′ − C′] − C (6) 

Here, prime denotes derivative with respect to the * coordinate. Every wormhole has some minimum 

radius * = /I  at which the expression (3) is divergent, meaning /(*) = * and that the embedding 

surface becomes vertical. This region is called the wormhole throat and the minimum radius * = /I =/ is called the throat radius. Another dimensionless function is defined to study the tension at the throat 

region as J ≡ L%MN#
|MN#| . The usefulness of J will be apparent from the upcoming discussion. As is apparent 

from (1), the * coordinate is singular at the throat and hence the proper radial distance:  

 O(*) = ±∫@Q
� "�

[$%@(�)]A# (7) 

must be well behaved or finite all throughout the space-time. This implies 1 − @
� ≥ 0 throughout the 

space-time. Far from the throat, the space-time becomes asymptotically flat in both radial directions. 

This requirement implies that the embedding surface flares out at the throat. Mathematically, this means 

that at the throat:  

 
"#�
"<# = @%@T�

�@# > 0 (8) 

Using equation (8) and the definition of J,we can rewrite equation (8) as:  
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 JI = LQ%MQN#
|MQN#| > 0 (9) 

Here, the subscript ‘1’ denotes values of the parameters at the throat. Equations (8) and (9) are known 

as the flaring out conditions as obtained by Morris and Thorne.  
      The condition for traversability demands that the throat possess no horizon. Horizons in 

spherically symmetric space-times are identified by physically non singular surfaces at VWW = −��� →0. This implies the constraint that Φ(*) must be everywhere finite. These constraints on the metric 

functions impose in turn via the EFEs, constraints on the mass-energy density, radial tension and the 

lateral pressure of the matter that threads the geometry. In the context of GTR and other field theories, 
the energy conditions are sets of inequalities or relations that the matter energy momentum tensor (EMT) 

is required to respect so that the energy density of the matter fields is measured to be positive by any 

observer traversing a time-like curve. The physical and effective interpretation of some relevant energy 
conditions in GTR has been summarized in table 1, for a diagonal EMT with the timelike-timelike 

component interpreted as the ordinary mass-energy density and the three space-like components as the 

three pressures. The constraints on the metric parameters of the Morris-Thorne wormhole discussed 

above, demand an abnormally high tension at the throat where it is required that CW > BW0�.   

 

Table 1: Energy Conditions in GTR 

Energy Condition    Physical    Effective  

Null (NEC)   YZ\^Z^\ ≥ 0   B + D ≥ 0  

Weak (WEC)   YZ\_Z_\ ≥ 0   B ≥ 0  

Strong (SEC)   ;YZ\ − $
�YVZ\> _Z_\ ≥ 0   B + 3D ≥ 0  

  

   

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Embedding diagram for a Morris-Thorne wormhole 

This means an observer moving through the throat with arbitrarily high velocities, observes a negative 

density of mass energy which is unphysical. This is the violation of the weak energy condition (WEC) B = YZ\_Z_\ ≥ 0, where X is any time-like vector field and YZ\  is the energy momentum tensor 

(EMT) of the matter source. A more fundamental (weakest) energy condition is the null energy condition 

(NEC) given by YZ\^Z^\ ≥ 0 (^ is any null-like vector field)which is also violated. Such energy 

condition violating matter is referred to as ‘exotic’ matter. Supplemented by additional constraints, the 

NEC/WEC leads to the other pointwise and averaged energy conditions such as the srong and the 

dominant and hence a violation of the WEC usually implies the violation of all the energy conditions in 

general relativity. For a detailed review of energy conditions refer to [9]. Though quantum field 
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theory allows the existence of arbitrarily negative energy states such as in the Casimir effect, no 

known material or particle/field in the standard model has this property τ > ρ. Moreover, the 

existence of such material on a macroscopic scale is highly debatable as of now. Many solutions 
around this problem have been devised such as limiting the amount of exotic matter to arbitrarily 

small regions, demanding finite radial cut off of the stress energy etc. Traversable wormhole 

geometries with minimal use of exotic material have also been constructed in thin-shell [10], 
rotating [11] and dynamic systems [12, 13]. 

      Thus, spherically symmetric traversable wormhole solutions in classical general relativity 

require exotic matter to exist. The same is true for non static, non spherical traversable wormholes 

[8]. However, in modified theories of gravity, as the structure of the field equations are different 

from those in classical general relativity, a violation of the null convergence condition Rµν kµkν≥  

0 (which all Lorentzian wormholes violate) does not necessarily lead to a violation of the null energy 

condition (NEC) and hence spherically symmetric wormhole solutions have been extensively 

studied in theories such as f (R) gravity [14, 15]. Modified theories of gravity with extra physical 

dimensions (compactified or large) are very useful in unification and also in other aspects of particle 

physics, cosmology and astrophysics. For example, the RS1 model attempts to address the hierarchy 

problem by attributing the huge difference in energy scales to the warping of extra physical 

dimensions. A single brane RS model with one compact extra dimension also provides a possible 

solution to the cosmological constant problem by attributing the effective cosmological constant on 

the brane to depend exponentially on the size of the extra dimension [16]. More recently, in [17], 

the authors have tried to explain the initial singularity of the big bang by considering a holographic 

origin in which the universe emerges as a spherical 3-brane out of the formation of a 5D 

Schwarzschild black hole. Many more examples of how extra dimensional theories deal with 

various cosmological and astrophysical problems exist which for the sake of conciseness, we will 

not get into here. Traversable wormhole solutions can be obtained in many such theories with matter 

sources that do not necessarily violate the WEC or the NEC. This is not a strict requirement imposed 

while obtaining solutions from such theories, but on the other hand are inherent from the structure 

of the field equations. Such modified theories of gravity as we will see, have been developed from 

both classical and quantum mechanical motivations. This work reviews and generalizes the most 

important conditions in various higher dimensional gravity theories which are imposed on the 

matter energy momentum tensor to make it respect the energy conditions. The violations however 

may arise from the higher order curvature terms or from effective energy momentum tensor 

components as we will see in detail in the coming sections. This review is organized in the following 

way: In section 1, we have begun by introducing the traversable wormhole solution of Morris and 

Thorne. In section 2 we briefly review wormhole solutions in some extended/modified theories of 

gravity with a look at the matter content and energy condition violations in each theory. In section 

3 we present a general introduction of modified theories of gravity with extra physical dimensions 

and then proceed to review in detail some wormhole solutions widely studied in the context of 

modified theories of gravity with extra physical dimensions and finally in section 4 we conclude 

with discussions and remarks. We hereafter use natural system of units where the constants such as 

G,c etc. have been set to unity. 

2. Wormholes in modified theories of gravity 

Since the century after it was first put forward, Einstein’s GTR has been well tested upto extreme 

precisions in various astrophysical and cosmological scenarios [18 - 22]. Though GTR provides a 

suitable theoretical explanation of dark matter and dark energy via the λ-CDM model and the 

cosmological constant, respectively, there are observational discrepancies with the theory.One 

motivation of modified gravity theories is to deal with such discrepancies. [23-25] and references 

therein may provide a suitable introduction to the reader regarding how modified gravity
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µν 

approaches these issues. Also, after the advent of quantum mechanics it was also necessary to 

formulate a quantum theory of gravitation in order to unite it with the other fundamental forces. 

The earliest of such attempts to develop a unified theory of gravitation and electromagnetism can 

be traced back to the work of Einstein & Rosen and Kaluza & Klein [26, 3]. In GTR, the 

gravitational field is assumed to be mediated by a second rank tensor field. This is entirely 

geometric in nature. In the context of quantum field theory, gravitation mediated by the massless 

spin-2 graviton. Apart from the coupling of the matter fields of GTR, it is plausible to assume 

couplings of other fields in the field equations of gravitation; the effects of which must in some 

way vanish at length scales comparable to the solar system where GTR has been well tested. One 

fundamental approach is to consider the weak coupling of a scalar field to the gravitational sector 

of the field equations. These are known as scalar tensor theories. Another approach is to take into 

consideration higher dimensions. 

       In this section, we present an overview from literature of wormhole solutions widely studied 

in modified theories of gravity without considering extra dimensional effects and in section 3 we 

discuss wormhole solutions in higher dimensional gravity theories. A detailed account of modified 

theories of gravity is out of the scope of this article and we refer the reader to [27] for a detailed 

review of the subject. 

       In classical GTR, as mentioned before, wormhole solutions violate the null convergence  

condition and in return, the NEC. This actually is inherent from the fact that a wormhole must 

defocus a set of congruent null geodesics. Positivity of Tµν kµkν ensures that the geodesic 

congruences focus within a finite value of the affine parameter. However, in modified theories of 

gravity, the Einstein’s field equations are written with an effective energy momentum tensor    

T eff . 

  

 GZ\ = aZ\ − $
� VZ\a = YZ\bcc  (10) 

This effective EMT contains the matter energy momentum tensor YZ\  and the higher order curvature 

terms arising in different such theories. In such cases, it is possible to impose that while the respective 

generalized NEC YZ\bcc^Z^\ ≥ 0 is violated, the matter EMT YZ\  satisfies the NEC. An example is 

d(a) gravity where d(a) is some function of the Ricci scalar and the considerations on d(a) gives a 

family of different theories. GTR is received back when d(a) = a. The action of this theory is defined 
as:  

 e = ∫ �Hfg−V h $
�j# d(a) + ℒl(VZ\, m)o (11) 

Here, m collectively denotes all the mater fields and p is the gravitational coupling constant. The 

condition for the violation of the generalized WEC in d(a) theories is given by [14, 15]:  

 
$
c' YZ\^Z^\ < − $

j#c' ^Z^\∇Z∇\dt  (12) 

Here, d� ≡ �d/�a. Depending on the form of d(a) taken into consideration, this inequality can be 

fulfilled even if the term YZ\^Z^\ > 0. The constraint YZ\^Z^\ ≥ 0 is imposed when d(a) > 0. 

Similar results can be obtained in d(a, ℒl) which generalizes d(a) theories with curvature-matter 

coupled models [28].  

      Another extended theory of gravitation that has been extensively studied is d(a, Y) gravity where Y is the trace of the energy momentum tensor [29]. The action of this theory has the form:  

 e = ∫ �Hfg−V[d(a, Y) + ℒl] (13) 

It has been shown that static, spherically symmetric wormhole solutions with anisotropic matter sources 

that respect the NEC can be obtained in this theory for d(a, Y) = a + 2d(Y), d(Y)  being some 
arbitrary function of the trace of the EMT [30]. Other static, spherically symmetric wormhole solutions 
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in this formalism have also been constructed in [31-33].  

      Traversable wormhole solutions have also been constructed in hybrid metric Palatani gravity [34], 

that obey the NEC. The general form of the action for this theory is given by:  

 e = $
�j# ∫ �Hfg−V[a + d(ℛ)] + ∫ �Hfg−Vℒl (14) 

Here, ℛ = VZ\ℛZ\  is the Palatani curvature. This theory can be suitably transformed into a scalar-

tensor theory with the introduction of an auxiliary scalar field v, thus redefining the action as:  

 e = $
�j# ∫ �Hfg−V[a + vℛ − w(v)] + ∫ �Hfg−Vℒl (15) 

The constraint on the matter source at the wormhole throat (* = / = /I) in this formalism assuming 

that the matter stress energy satisfies the NEC and that 1 + v > 0 is given by:  

                         0 < YZ\^Z^\|�x@Q < $
j h^Z^\∇Z∇\v − y

�z ^Z^\{Zv{\vo}�x@Q
 (16) 

Two traversable wormhole solutions (in the Morris-Thorne background) have been obtained in [35] with 

suitable choices of the metric functions and the scalar field, the first of which is not asymptotically flat. 
Traversable wormhole solutions that obey the NEC everywhere in a generalized hybrid metric Palatani 

formalism have been obtained in [36]. 

      Asymptotically flat and anti-de sitter (AdS) wormhole space-times without exotic matter have also 

been obtained in Einstein-Cartan gravity [37]. The action for this theory is given by:  

 e = ∫ �Hfg−V ~%$
�j (a� + 2Λ) + ℒl� (17) 

Here, a�  is the Ricci scalar constructed from the asymmetric Christoffel connections of the Einstein-

Cartan manifold. A detailed review of the Einstein-Cartan theory can be found in [38]. Λ  is the 

cosmological constant. Wormhole solutions in this theory have been studied with a Wyssenhoff fluid 

[39,40] as the modified source, the spin tensor of which is given by:  

 C�Z\ = eZ\��  (18) 

 ��  being the four velocity of the fluid element and the second rank anti-symmetric tensor eZ\  is 

known as the spin density tensor. At the macroscopic scale, the square of this tensor given by e� =$
� �eZ\eZ\� has contribution to the total effective energy momentum tensor.  

      In the Morris-Thorne background, at the wormhole throat (* = *W):  

 B + D�|�x@� = �#(@�)��#��[@T(@�)%$]
�@�#  (19) 

which shows that the NEC B + D� ≥ 0 is violated for e�(/W) = 0. Traversable wormhole solutions can 

be then constructed by assuming g2(/′W − 1)/eW < *W and by choosing specific forms of the metric 

functions. Here ′ denotes derivative with respect to *. Traversable wormhole space-times in ECT that 

are asymptotically flat and AdS have also been obtained with canonical scalar fields as sources with 

minimal and non minimal coupling to gravity [41]. Dynamic (evolving) wormhole solutions 

(asymptotically flat and AdS) have also been found in ECT in a cosmological (FRW) background [42].  

 

2.1. Generalization 

Following the treatment of [15], one may generalize the conditions for traversable wormhole solutions 

in modified theories of gravity in the following way. The generalized field equations can be written as:  

 V$(Ψ�)(GZ\ + �Z\) − V�(Ψ�)YZ\ = p�YZ\  (20) 

where V$(Ψ�), (� = 1,2) are multiplicative factors that modify the geometrical sector of the field 

equations and �Z\ is an additional geometric term that includes the additional curvature terms arising 
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in modified theories of gravity. V�(Ψ�) gives the coupling of the curvature invariants Ψ (such as scalar 

fields) with the matter stress energy. The effective stress-energy tensor is given by:  

 YbccZ\ ≡ $��#(��)
�#

�A(��) YZ\ − �Z\/p� (21) 

In order for the matter stress energy to respect the NEC, it is necessary to impose [15]:  

 YZ\�Z�\ = �A(��)
j#��#(��) (GZ\ + �Z\)�Z�\ ≥ 0 (22) 

Using Lorentz transformations, it is possible to show that YZ\�Z�\ ≥ 0; which means that the energy 

density is measured to be positive in all local frames of reference.  

3. Wormholes in higher dimensional gravity theories 

3.1. Modified theories of gravity with extra dimensions 

Space-time in GTR is a (3+1) dimensional Riemannian manifold. Riemannian geometry is not 

restricted to just (3+1) dimensions and hence one has the mathematical ability to probe theories of 

gravitation in higher dimensions.  Even physically, the best candidate for a quantum theory of 

gravity is perhaps superstring theory [43] which has been constructed on a 10 dimensional 

manifold. The phenomenological problem one faces in this approach is that gravity behaves strictly 

like a (3+1) dimensional theory would predict at least until length scales comparable to the solar 

system. Various approaches to account for this problem exist which lead to a host of different 

theories. Compactification is one such approach wherein the extra dimensions are compactified or 

curled up into unobservably small length (energy) scales. The Kaluza-Klein (KK) [26, 44] theory 

put forward by T. Kaluza and O. Klein is the earliest such approach. The KK theory is a unified 

theory of gravitation and electromagnetism on a five dimensional manifold where the extra fifth 

dimension is compactified. An alternate approach is known as the braneworld scenario. In this 

formalism, the extra dimensions can be infinitely large. The standard model particles are restricted 

to a (3+1) dimensional hyper-surface referred to as a brane, embedded in some higher dimensional 

space-time known as the bulk. The warped braneworld picture of Randall and Sundrum [45, 46] is 

a model that describes the universe as a five dimensional bulk anti-de sitter space-time with a (3+1) 

dimensional TeV brane and an extra dimensional Planck brane. The Planck brane can have a finite 

size (RS1 model) or maybe placed infinitely far away (RS2 model). The standard model particles 

are confined on the TeV brane and gravity can live on the Planck brane. A detailed review of the 

RS model can be found in [47]; and [27] has a detailed account of higher dimensional gravity 

theories which some readers may find helpful. In the forthcoming section, we discuss wormhole 

solutions in literature that respect the energy conditions in higher dimensional gravity theories. 

 

3.2. Kaluza-Klein Theory 

As discussed in the section 3.1, the Kaluza-Klein (KK) theory [26, 44] is the earliest precurssor of string 

models. It is a five dimensional extension to general relativity. The primary success of Kaluza’s theory 

was to show that five dimensional gravity contains Einstein’s general relativity as well as Maxwell’s 

theory of electromagnetism and hence it was possible to unify gravitation and electromagnetism on a 

five dimensional manifold. The field equations are derived using a five dimensional form of the Einstein-

Hilbert action:  

 e = ∫ a�g−V��Hf�� (23) 

where � = fH is the fifth coordinate and a� is the 5D Ricci scalar and V� is the five dimensional metric. 

Kaluza initially hypothesized what is referred to in literature as the cylinder condition which means that 
while deriving the field equations, one drops any terms containing derivatives with respect to the fifth 
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coordinate. The reduced field equations in four dimensions is:  

 GZ\ = z#
� ;V���Z��\� − $

HVZ\������> + $
z (∇Z∇\v − VZ\ ◻ v) (24) 

Here, ��� = {�¡� − {�¡�  and the first term inside brackets on the RHS of equation (24) is the 

electromagnetic stress energy tensor. φ is the massless Kaluza-Klein scalar field. Kaluza’s 

initial hypothesis [26] was from an entirely classical point of view. Klein, in 1926 gave the 

quantum interpretation of the theory proposing that the fifth dimension is compactified [44]. 

We refer the reader to [48] for a detailed review of the Kaluza-Klein theory. Static, spherically 
symmetric wormhole solutions in KK theory was first explored in [49, 50]. In 1982, Chodos and 

Detweiler derived the most general time independent, spherically symmetric, static solution to 

the Einstein’s field equations in five dimensions [49]. Their solution, with suitable choice of metric 
parameters, is analogous to the Schwarzschild solution of GTR. In the case when the charge to 

mass ratio of the gravitating body Q/M > 1, the metric describes a wormhole connecting two 

asymptotically flat regions of space-time containing closed time-like curves. Axisymmetric 

wormhole solutions were found by Clément [51, 52].  

      An interesting solution is the case of evolving (non static) wormhole solutions that are traversable 

and satisfy the energy conditions in a Kaluza-Klein universe obtained by Kar and Deshdeep [53]. The 

space-time under consideration has a topology a ⊗ £ ⊗ e¤  where ¥  is the dimension, a ⊗ £ 

represents the wormhole space-time and e¤ is an extra dimensional 2-sphere. The metric describing 

such a universe is given by:  

 ��� = −� � + 3�$( ) ¦ "�#
$%&(')

'
+ *��Ω��¨ + 3��( )�Ω�¤ (25) 

Here, 3$( ) and 3�( ) are scale factors associated with the wormhole and the compact ¥-sphere, 

respectively, and Ω�¤  is the metric on the compact ¥-sphere. It is a known result that wormhole 

solutions with an inflationary scale factor in the metric cannot exist for any finite interval of time without 

violating the WEC. With a compact dimension however, an inflationary wormhole can exist for a finite 

interval of time without violating the WEC. The energy condition inequalities B ≥ 0, B + C ≥ 0, B +D ≥ 0, for this ansatz of a Kaluza-Klein metric are:  

 3 ;©̇A
©A>

� + 3¥ ©̇A©̇#
©A©# + ¤(¤%$)

� 9;©̇#
©#>

� + $
©##? + @T

�#©#A ≥ 0 (26) 

  

 −2 ©̈A
©A + 2;©̇A

©A>
� + ¥ ©̇A©̇#

©A©# − ¥ ©̈#
©# + @T�%@

�¬©#A ≥ 0 (27) 

  

 −2 ©̈A
©A + 2;©̇A

©A>
� + ¥ ©̇A©̇#

©A©# − ¥ ©̈#
©# + @T�%@

��¬©#A ≥ 0 (28) 

  

 −¥(¥ − 1) ©̈#
©# − 3 ©̈A

©A + 3 ©̇A©̇#
©A©# − ¥(¥ − 1) 9;©̇#

©#>
� + $

©##? ≥ 0 (29) 

Here, overdot and prime represent derivatives with respect to   and * , respectively. These inequalities 

can be satisfied for /(*) = /I with a perfect fluid matter source and with 0 ≤ 3� ≤ "¤
"�¤%$ (d and D 

are the number of normal and extra dimensions respectively). It is also seen from equations (26)-(29) 

that for � = 4 and ¥ = 2, (26), (28) and (29) are satisfied whereas (27) constraints the value of /(*). 

Such wormholes can therefore survive inflation into the current era, but their sizes will have grown 

infinitely large. Similar results were also obtained for FRW and exponential inflation as well in [53]. 
Static, spherically symmetric wormhole like space-times in KK theory with electric and magnetic fields 

have been found to exist for 0 ≤ �¯¯ < °¯¯, where �¯¯ and °¯¯ are the Kaluza-Klein magnetic and 

electric fields respectively [55]. Dyonic (characterized by two charge parameters: electric and magnetic 
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charge) wormhole solutions similar to the ones obtained by Chodos and Detweiler were disovered by 

Chen [56] wherein it was seen that the metric behaved as a Lorentzian wormhole when the electric 

charge is greater than the magnetic. The particle model of this kind of solutions in the context of 
supergravity, can be interpreted as gravitational flux tubes containing electric and magnetic fields [57]. 

The cross sections of these tubes are of the Planck order and they can be infinitely long when ° = �, ° and � being the electric and magnetic fields, respectively. These flux tubes were called ��O 3 −� *�2V�. Wormhole solutions in 5D KK theory have also been found with the coupling of a massless 

ghost scalar field [58]. The solution can be interpreted as a monopole from the fact that after the 
compactification of the fifth dimension, the radial magnetic field lines pass from one asymptotic region 

to the other and an observer sees a magnetic monopole.  

3.3. Einstein-Gauss-Bonnet (EGB) Theory 

EGB theory is a generalization of GTR to include the Gauss-Bonnet term given by a�²³ = a� −4aZ\aZ\ + aZ\M´aZ\M´. This term is a generalization of the Gauss-Bonnet theorem and is non-trivial 

only in (4+1) D or higher. Lorentzian wormhole solutions in this theory was first obtained in [59]. The 

action for the theory is given by:  

 e = ∫ �Hfg−V[a + µ(a� − 4aZ\aZ\ + aZ\M´aZ\M´)] + ∫ �Hfℒl (30) 

Here, µ is the coupling coefficient of the Gauss-Bonnet combination. The WEC is satisfied for the 
matter sources threading wormhole geometries in this theory when the coupling constant of the Gauss-

Bonnet combination is taken to be negative and is required to satisfy a certain inequality dependent on 

the wormhole shape function, the modulus of the coupling constant, * and the number of space-time 

dimensions. The metric under consideration is of the Morris-Thorne type and is given by:  

 ��� = ���(�)� � − "�#
$%&(')

'
− *��Ω�¤%� (31) 

Here, �Ω�¤%� is the metric on a ¥ − 2 dimensional sphere. From the field equations, the following 

relation is obtained between C and B:  

 C − B = (¥ − 2)[1 + 2µ¶·][¸ − ¹] (32) 

Here, µ¶ = (¥ − 3)(¥ − 4)µ. ¸ and ¹ are parameters occurring in the expressions of the curvature 

two forms obtained from the Cartan structure equations given by:  

                    ¸ = −�T
� (1 − @

�) (33) 

                    ¹ = $
��¬ (/′* − /) (34) 

This relationship between B and C differs from the one in GTR only due to the presence of two extra 

factors (¥ − 2) and [1 + 2µ¶·]. Now at the throat, equation (32) leads to:  

 CI − BI = (¥ − 2) h1 + ��º
@#Qo [¸ − ¹]�x@x@� (35) 

Thus, from the WEC inequality the matter near the throat will be normal or exotic if the quantity (1 +2µ¶//�I) is negative or positive respectively. This leads to constraints on µ  and /I . If µ > 0 the 

quantity (1 + 2µ¶//�I) is always positive and hence the WEC is violated at the throat.For a negative 

value of µ, (1 + 2|µ¶|//�I) can be positive or negative for /I > g2|µ¶| or /I < g2|µ¶| respectively. 

Thus matter threading the wormhole can be normal at the throat. It is also seen that for ¥ > 5, exotic 

mater can be limited to an arbitrarily small region, in contradiction to 4D GTR.  
     It was not possible however to construct a wormhole with normal matter everywhere. It is useful 

to note here that from the perspective of string theory, µ  can indeed be positive. For example, in 

heterotic string theory, µ  is interpreted as the inverse string tension and is positive-definite. The 

assumption in [59] that wormhole solutions with normal matter everywhere do not exist in EGB theory 
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is based on the positivity of the quantity ¸ − ¹ in equation (32). This positivity is a requirement only 

near the throat and is not valid for the entire space-time. It was shown in [60] that wormhole solutions 

with µ > 0 can exist with normal matter everywhere with the assumption that the space-time has 

symmetries corresponding to the isometries of a (¥ − 2) dimensional maximally symmetric space with 

sectional curvature ^ = −1. Such a solution was not found however for ^ = 1 and µ < 0. A counter 

example of this was explicitly obtained for the first time by Mehdizadeh et. al. in [37] wherein a 

wormhole solution with normal matter everywhere was obtained.  
     Wormhole solutions have also been obtained in dilatonic EGB (EGBd) Theory without the need of 

exotic matter. This theory has in addition to a, the coupling of a scalar field known as the dilaton field 

to the quadratic Gauss-Bonnet term. The action has the form:  

 e = ∫ �Hfg−V ha − $
� {Zv{Zv + µ�%¼ a�²³o (36) 

where ½  is the coupling parameter. Various solutions to the field equations of EGBd theory were 

explored in [61]. Blackholes and cosmological solutions were obtained along with a special solution that 

necessarily exhibited properties of a wormhole space-time but with a pathology of the V�� term. This 

was avoided with a suitable coordinate transformation in [62], and it was shown that the solution indeed 

represented a wormhole. Such a wormhole in EGBd theory can be constructed in four dimensions 

without the need of any form of exotic matter. A spherically symmetric, static wormhole in this theory 

is given by the line element:  

 ��� = −��\(¾)� � + d(O)�O� + (O� + *I�)�Ω� (37) 

Here, the Schwarzschild coordinate * has been redefined in terms of a new coordinate O as * = O� +*I� , *I  being the throat radius. The metric functions as well as the dilaton field are finite at the 

asymptotic limit in this form. Also, the curvature invariants including a�²³ remain finite at the throat O = 0 indicating the absence of a singularity. It was shown in [63] that this metric represents a stable 

static, spherically symmetric wormhole solution that does not require exotic matter everywhere in 4D. 

However, the NEC is violated in regions near the throat and is satisfied asymptotically with a positive 
dilaton field. The violation of the WEC is attributed to the effective EMT generated by the Gauss-Bonnet 

term. Wormhole solutions in EGB theory have also been explored in [64, 65]. Thin shell wormhole 

solutions in EGB theory that under suitable parameterizations can be supported by non-exotic matter 

sources have been obtained in [66].  

3.4. Braneworld Scenario & Kanno-Soda effective theory 

As discussed briefly in section 3.1, the braneworld scenario proposes that the observable universe is a 

(3+1) dimensional brane embedded in a higher dimensional bulk. The field equations in this scenario 

can be described on the brane by modified Einstein’s field equations of five dimensional gravity with 

the help of Gauss-Codazzi equations [67]. The reduced field equations when there is no on brane matter 
is given by:  

 

 GZ\ = −°Z\  (38) 

Here, °Z\ is called the traceless tidal energy momentum tensor and it connects gravity on the brane 

with the bulk geometry. This tensor is actually the projection of the five dimensional Weyl tensor on the 

brane. Because of its geometric origins, °Z\ need not respect the energy conditions that are imposed 

upon the energy momentum tensor of ordinary matter. Therefore, in the braneworld scenario, °Z\  can 

serve as a matter source supporting wormhole geometries. This possibility of wormholes in a braneworld 

was first explored by Bronnikov and Kim [68]. Static, spherically symmetric wormhole solutions were 

found for a = 0, a being the four dimensional Ricci tensor. The a = 0 equation is an immediate 

consequence of the fact that °Z\ is traceless. Lobo [69] obtained a general class of wormhole solutions 

in the braneworld scenario from the context of a braneworld observer when a ≠ 0). Static, spherically 
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symmetric wormhole solutions were found to exist in which the on brane matter energy momentum 

tensor satisfied the NEC. The violations were attributed to the effective energy momentum tensor. It 

was also shown that in addition to non local effects of the Weyl tensor on the bulk, as was the case in 
Bronnikov and Kimâ€™s work, local high-energy bulk effects could leave a NEC violating signature 

on the brane. Thus, traversable wormhole geometries could arise naturally in the braneworld scenario. 

This approach to finding braneworld wormhole solutions is advantageous in the sense that one can 
consider the zero Weyl tensor case and incorporate local bulk effects by generalizing the energy 

momentum tensor to incorporate an anisotropic pressure contribution to the brane. Asymptotically flat 

and static, spherically symmetric wormhole solutions were found in the context of the Randall-Sundrum 

model by Parsaei and Riazi [70]. The work explored the consequences of the conservation of the energy 

momentum tensor and the traceless property of the projection of the Weyl tensor on the brane. The 

solutions were found to satisfy the NEC for on brane observers.  

      An effective scalar tensor theory of gravitation in the context of the warped braneworld picture of 

Randall and Sundrum was developed by Kanno and Soda [71, 72]. The field equations for this theory 

are given by:  

 
GZ\ = jº#

¾�Y@Z\ + jº#($��)
¾z Y©Z\ + $

� À∇Z∇\Ψ − VZ\∇�∇�ΨÁ
− y

��($��) ;∇ZΨ∇\Ψ − $
�VZ\∇�Ψ∇�Ψ>  (39) 

Here, p̅ is the five dimensional gravitational coupling constant. Y@Z\ and Y©Z\ are the EMTs on the 

visible brane and Planck brane respectively. Ψ is the radion field which is a measure of the distance 

between the two branes. One can see that Brans-Dickie [73] scalar tensor theory is obtained if Y©Z\ =
0; the coupling parameter being Ã(Ψ) = − y

��($��). The scalar radion field Ψ is dependent on the 

brane coordinates ‘x’ and is a measure of the distance between the two branes. It is given by:  

 Ψ(x) = ��ÅÆ
Ç − 1 (40) 

The theory, in the context of the RS model assumes a five dimensional bulk with a warped extra 

dimensional brane and two 3-branes at � = 0 and � = O, respectively. �x in equation (40) is the proper 

distance between the branes given by �x = ∫W ¾ �z(È)��. Ricci flat traversable wormhole space-time 

has been obtained in the KS theory by Kar et.al. [74] in the Jordan frame (where there is a coupling of 

the scalar radion field with the Ricci scalar). From equation (39), it can be seen that the effective field 

equations can be expressed as:  

 GZ\ = jº#
¾�Y@Z\ + $

� Y�Z\ (41) 

Y@Z\ being the stress energy on the visible brane and Y�Z\ is the stress energy on the Planck brane. In 

the background of a self dual spherically symmetric, static metric in isotropic coordinates of the form 

[75]:  

 ��� = −Ép + Ê $%Ë
#'

$�Ë
#'
Ì
�
� � + "�

$%Ë
#'

+ *�(�+� + ��2�+�-�) (42) 

Energy condition inequalities can be constructed from the field equations and plots of the LHS of energy 

condition inequalities obtained from the field equations vs. x are plotted to observe the behavior of the 

energy condition inequalities at the throat [74]. Here, f = Í/2* and the wormhole throat occurs at * =Í/2. Hence f = [0,1] with the throat being at f = 1 and infinity at f = 0. In order for the radion 

field Ψ to be a stable one, it is assumed that it is never zero, and that it does not diverge into infinity at 

finite values of the brane coordinates. With these constraints on the radion field and some suitable 

choices of metric parameters, the plots of energy condition inequalities vs. the brane coordinate are 

obtained.   
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Figure 2. Plot of ρ+τ vs x taken from [74] 

The plot for B + C vs. f is shown in figure 2. It can be seen that as f → 1, B + C becomes positive; 

implying the NEC is satisfied at the throat. The matter on the visible brane satisfies the NEC and the 

violations are attributed to the effective radion stress energy. The radion field is an extra dimensional 

entity which generates an effective geometric stress energy that allows for the satisfaction of the NEC 

on the visible brane. A more detailed analysis of the energy condition violations and traversabilty criteria 

for a = 0 wormhole space-times in KS theory has been done in [76] with calculations of gravitational 

redshift and circular orbits. Both stable and unstable circular orbits were found to exist and the wormhole 

solution is traversable for values of the metric parameters satisfying the WEC. Traversable wormholes 

in the braneworld scenario have also been explored in [68-70]  

3.5. Lovelock Gravity 

Lovelock gravity [77, 78] is the most general classical metric theory of gravitation in arbitrary number 

of space-time dimensions. The field equations in Lovelock gravity (upto third order and without a 

cosmological constant) is given by:  

 GZ\($) + ∑yÏx� µ′Ï ;�ÏZ\ − $
�VZ\ℒÏ> = pÐ�YZ\ (43) 

Here, µ′Ïs are the Lovelock coefficients, GZ\($) is the Einstein tensor and the form of �ÏZ\  depends on 

which order of the theory is under consideration. ℒ� is nothing but the Gauss-Bonnet term a�²³ and 

hence it is interesting to note that the EGB theory is a generalizaion of the second order Lovelock theory. 

A detailed overview of Lovelock gravity can be found in [79]. The possibility of obtaining wormhole 
solutions in Lovelock gravity was first explored in [80, 81]. Wormhole solutions in the Lovelock gravity 

theory have a throat size that is constrained by the Lovelock coefficients µ′Ï, the dimensionality of the 

space-time and also on the shape function Φ(*). It was shown in [82] that in third order Lovelock 

gravity, the geometry maybe threaded by normal matter that is confined to a region ranging from the 

wormhole throat to some maximum value of * which is dependent on the Lovelock coefficients and the 

shape function. This result is of significance because it enlarges the region that can contain non-exotic 
matter as the source compared to second order Lovelock gravity. The field equation is given by equation 

(43) with the third order Lovelock Lagrangian [79, 82]. The Morris-Thorne background metric in 2 

dimensions is given by:  

 ��� = −���(�)� � + "�#
$%&(')

'
+ *��+$� + ∑�x$�x� ∏�%$�%$ ��2�+��+�� (44) 

Field equations are derived in this Morris-Thorne background and the following expressions are 

obtained for checking the energy condition inequalities:  
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B(*) = (Ð%�)

��# {− ;1 + ��#@
�¬ + y�¬@#

�Ó > (@%�@Ô)
�

+ @
� h(2 − 3) + (2 − 5) �#@

�¬ + (2 − 7) �¬@#
�Ó o} (45) 

  

 B − C = (Ð%�)
��¬ (/ − */′) ;1 + ��#@

�¬ + y©¬@#
�Ó > (46) 

  

                    B + D = − @%�@T
��¬ ;1 + ×�#@

�¬ + $Ø©¬@#
�Ó > + (47) 

                
@
�¬ h(2 − 3) + (2 − 5) ��#@

�¬ + (2 − 7) y©¬@#
�Ó o 

The equations are written in a system of units such that ��� = 1 and  � ≡ (" − 3)(" − 4) ′�;  % ≡
(" − 3). . . (" − 6) ′%. A positivity of the above equations ensures that the WEC is respected implying 

the matter is non-exotic. Three types of shape functions:   

    • Power Law: &(') = '*+/'+,-  

    • Logarithmic: &(') = 'ln'0/ln'  

    • Hyperbolic: &(') = '0tanh(')/tanh('0)  

were considered and the constraints on the Lovelock coefficients and throat radius were checked for non 
negative values of equations (46) and (47). Equation (47) is positive for the three types of shape 

functions considered in the following manner:   

    • Power law shape function: Positive for ' > '0; provided '0 > '2. '2 is a special constraint 

on the value of '0 which is set by a set of constraint equations arising from the field equations along 

with equations (46) and (47).  

    • Logarithmic shape function: Positive for '0 > 1 ; provided '0 ≥ '̂2 . '̂2  is a special 

constraint on the value of '0 which is set by another set of constraint equations arising from the field 

equations along with equations (46) and (47).  

    • Hyperbolic shape function: Positive for '0 > '̃2, '̃2 being another constraint arising as in 

the previous two cases.  

     The flaring out condition, & − '&′ > 0 implies from equation (46) that the positivity of : − ; 

requires:  

 1 + �?@A
BC + %DCA@

BE < 0 (48) 

It is seen from that for positive values of the Lovelock coefficients, equation (48) is not respected 
implying violation of the WEC. If either or both of the Lovelock coefficients are negative, equation (48) 

is satisfied in the vicinity of the throat for all three types of the shape function considered provided 

'+G� < '0 < '+DH  where '+G�  and '+DH  are dependent on the Lovelock coefficients and the shape 

function via the equation:  

 'I + 2 �'%&(') + 3 %&�(') = 0 (49) 

The value of '+DH for the power law shape function reads:  

                    '+DH = KBLBMN
�/(+O�)

'0; 'O = K− � −Q �� + 3 %N
R
@
 (50) 

This implies that the matter threading the geometry cannot be normal everywhere and is instead bounded 

in a region '+G� < '0 < '+DH near the throat. From the above discussions, it can be seen that in third 

order Lovelock gravity with suitable choice of the metric parameters, the positivity demand of : + S 

imposes a lower bound on the value of '0 which is in contrast to Einstein and Gauss-Bonnet gravity. 

Also, the region containing normal matter is larger than that of EGB gravity. The third order Lovelock 

term with negative Lovelock coefficients increases the throat radius. Equation (48) can be generalized 
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for "TU order Lovelock gravity as:  

 1 + ∑[�,-]/�
WX� S W K ABCN

W,-
< 0 (51) 

Equation (51) is satisfied upto '+DH < ∞. Thus, as higher order Lovelock terms are considered in the 

theory with negative coupling coefficients, the throat radius grows but one cannot have normal matter 

everywhere for a traversable wormhole in Lovelock gravity in the Morris-Thorne background. A plot 

of the energy condition inequalities vs. '  has been shown in figure 3. Traversable wormholes in 

Lovelock gravity that under suitable parametrizations satisfy the energy conditions, in the presence of a 

cosmological constant have been obtained in [83]. It was found that both asymptotically flat and non 

flat solutions exist and that a limited spherically symmetric traversable wormhole with normal matter in 

a 4-dimensional space-time can exist for a negative cosmological constant.   

   

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Plot of ρ-τ, ρ+p, and ρ vs r 

 
 

4 . Discussion and conclusion 

In this article, we have started by introducing the traversable wormhole solution of Morris and Thorne 

and we have also discussed some traversable wormhole solutions in modified gravity theories that 

respect the energy conditions. We then reviewed in detail traversable wormhole solutions in higher 

dimensional gravity theories with an in depth look at the mater sources threading such geometries. It is 
seen that in higher dimensional gravity theories, with suitable parametizations of the metric functions, 

the energy conditions can be satisfied by the four dimensional energy momentum tensor of the matter 

sources while there maybe violations of the generalized energy conditions that can be attributed to the 
higher order curvature terms that generate effective energy momentum tensors having an exotic 

behaviour. It was also seen that the coupling constants mediating the coupling of the higher order 

curvature terms or scalar fields in various higher dimensional theories to the four dimensional gravity 
sector of the field equations also require suitable parametrizations to make the four dimensional energy 

momentum tensor respect the energy condition inequalities. They may also impose constraints on the 

size of the wormholes. Aside from these well cited examples, other traversable wormhole solutions in 

higher dimensional theories have been studied in the context of string theory [84, 85]; superstring theory 

[86] among others. Close examinations of the matter sources therein is an open and yet 

uncomprehensively dealt with issue as is evident from the review of literature carried out during this 

work. Moreover, the solutions discussed herein are spherically symmetric and static or non static. There 

also exists axisymmetric, cylindrically symmetric and Eucledian traversable wormhole solutions in 

various higher dimensional gravity theories respecting some or all of the energy conditions that have 
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not been taken into account here and are the subject of a review to be carried out in the future. 
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