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Abstract

In this work, we investigate the possible dramatic effects of Rashba or Dresselhaus spin—orbit coupling
(SOC) on the fermionic Hubbard model in a two-dimensional square lattice. In the strong coupling
limit, it leads to the rotated antiferromagnetic Heisenberg model which is a new class of quantum spin
model. For a special equivalent class, we identify a new spin—orbital entangled commensurate ground
(Y-y) state subject to strong quantum fluctuations at T = 0. We evaluate the quantum fluctuations by
the spin wave expansion up to order 1,/52. In some SOC parameter regimes, the Y-y state supports a
massive relativistic incommensurate magnon (C-IC) with its two gap minima positions continuously
tuned by the SOC parameters. The C-IC magnons dominate all the low temperature thermodynamic
quantities and also lead to the separation of the peak positions between the longitudinal and the
transverse spin structure factors. In the weak coupling limit, any weak repulsive interaction also leads
to aweak Y-y state. There is only a crossover from the weak to the strong coupling. High temperature
expansions of the specific heats in both weak and strong coupling are presented. The dramatic roles to
be played by these C-IC magnons at generic SOC parameters or under various external probes are
hinted at. Experimental applications to both layered noncentrosymmetric materials and cold atoms
are discussed.

1. Introduction

Itis well known that it is the strong electron correlations [ 1-6] which lead to many important phenomena such
as antiferromagnetism, the spin density wave, charge density wave, putative spin liquids with topological orders,
unconventional superconductivity, etc. Rashba or Dresselhaus spin—orbit coupling (SOC) [7] is ubiquitous in
various two-dimensional (2D) or layered insulators, semiconductor systems, metals and superconductors
without inversion symmetry [8—14]. Due to their tunability and controllability, strongly correlated Fermi gases
on optical lattices have been attempted with some success to quantum simulate some of these phenomena

[15, 16]. There are very recent notable experimental advances in generating 2D Rashba or Dresselhaus SOC or
any of their linear combinations for cold atoms in both continuum and optical lattices [17-20]. It therefore
becomes topical and important to investigate the combined effects of strong correlations and Rashba SOC in
various lattice systems.

In this paper, we address this outstanding problem. Specifically, we investigate the system of interacting
fermions at half filling hopping in a 2D square lattice subject to any combinations of Rashba or Dresselhaus SOC.
In the strong coupling limit, we reach a novel quantum spin model named the rotated antiferromagnetic
Heisenberg model (RAFHM) which is a new class of quantum spin model. For a special combination of Rashba

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) The Y-y ground state in a square lattice in the original basis. One only needs to introduce two Holstein—Primakoff (HP)
bosons corresponding to the A, B sublattice structure. (b1) The (7, 0) sublattice structure of the Hamiltonian equation (2) in the U(1)
basis. (b2) The Y-(m, 7) Néel state in the U(1) basis. Due to the incompatibility of the two sublattice structures in (b), one needs to
introduce four HP bosons corresponding to the four sublattice structures A, B, C, D to perform the spin wave expansion to any
order. Due to the four sublattice structures, the RBZ is four times smaller than the full BZ.

or Dresselhaus SOC, we identify a new spin—orbital entangled commensurate ground state called the Y-y state’
subject to quantum fluctuationsat T = 0. We evaluate the quantum fluctuations by spin wave expansions up to
1/5? order (which is also called the 1/S correction to the linear spin wave expansion (LSWE) in the previous
literature on Heisenberg models). It supports a massive relativistic commensurate magnon C-Cg in one SOC
parameter regime and an incommensurate magnon C-IC in the other regime (see footnote 6). The two gap
minima positions of the C-IC magnons are continuously tuned by the SOC strength. At low temperatures, these
magnons dominate all the physical quantities such as the specific heat, magnetization, (0, 7) and (7, 0)
susceptibilities, Wilson ratio and also various spin correlation functions. At T' = 0, the longitudinal spin
structure factor shows a sharp peakat k = 0 in the reduced Brillouin zone (RBZ) reflecting the ground state.
However, the transverse spin structure factor displays non-trivial features reflecting the magnon excitations
above the ground state. The C-Cg leads to a pinned central Lorentzian peak at k = 0 in the transverse spin
structure factor. However, the C-IC splits it into two Lorentzian peaks located at its two gap minima, while
changing its structure at k = 0 into a saddle point one. In the weak coupling limit, any weak repulsive
interaction leads to a weak Y-y state which also hosts low energy fermionic excitations. There is a crossover from
weak to strong coupling where the fermionic excitation energies increase. The electronic and spin Wilson loops
can be determined by measuring specific heats in the high temperature expansion in the weak and strong
coupling limit, respectively. The C-IC encodes short-range incommensurate seeds embedded in an
commensurate ground state at T = 0, which justifies its name (see footnote 6). The crucial roles to be played by
these seeds at generic SOC parameters (o, 3) and under various external probes are outlined in the conclusion
section. Experimental realizations and detections in both layered noncentrosymmetric materials and cold atom
systems are discussed.

2. The interacting fermionic model, the quantum spin model in the strong coupling limit
and exact symmetry analysis

The tight-binding Hamiltonian of spin 1/2 fermions at half filling hopping in a 2D square optical lattice subject
to any combination of Rashba and Dresselhaus SOC s:

1

= _tZ(Cm Uaa Cio' + h.c.) + UZ(HQ — %)(”il — —) (1)

2

where tis the hopping amplitude along the nearest neighbors (ij), the non-Abelian gauge fields Uy, ; = €'*%,
Uii+j = €% are put on the two links in figure 1(a) which is the lattice regularization of the linear combination

> Here we still use the same notation used in [25]. In the Y- (0, ) called Y-y state, the first letter indicates the spin polarization, the second
letter indicates the orbital order. In the C-C, magnons, the first letter indicates that the ground state is commensurate, the second letter
indicates that the excitation is also commensurate with its minimum at k = 0. In the C-IC magnons, the first letter indicates the ground
state is still commensurate, the second letter indicates the excitation is incommensurate with its minimum at incommensurate momenta
k= (0, ikf ). By the SOC in equation (2) which, in fact, is a spin only model, we mean the spin-bond coupling in the same sense as in the
Kitaev honeycomb lattice model, namley, the spin—spin exchange interaction is bond-dependent in the form of the two SO(3) rotation
matrices R(X, 2c), R(¥, 2/3) in equation (2). For example, the celebrated Kitaev model has three bond-dependant spin—spin interactions.

2
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kio; + k,o, of the Rashba and Dresselhaus SOC in a continuum momentum space [8, 11]. ot = 43 stands for
the isotropic Rashba (Dresselhaus) case. U > 0 is the Hubbard onsite interaction.
In the strong coupling limit U/t >> 1, to the order O(t2/U), we obtain the effective spin 1/2 RAFHM:

Hier = IS IS/ R (R, 20) S5 + SR (9, 20)SL5] @

with the antiferromagnetic exchange interaction J = 4t2/U > 0, a, b = 1, 2, 3 are the three components of
the spin operator, the R(%, 2a), R(y, 23) are the two SO(3) rotation matrices around the X and Y'spin axis by
angle 2¢, 23 putting on the two bonds along X, 7, respectively.

Here, we plan to study the quantum or topological phenomena in the RAFHM at generic («, 3). However, it
is a very difficult task, so we take a ‘divide and conquer’ strategy. First, we identify a solvable line (v = 7/2, 3)
and explore new and rich quantum phenomena along the line. Then starting from the results achieved from the
solvable line, we will investigate the quantum phenomena at the generic («, 3) including the Rashba or
Dresselhaus SOC point o« = £ (3. In this paper, we will focus on the first task. The second task will be outlined in
the conclusion section and presented in detail elsewhere. In the past, this type of ‘divide and conquer’ approach
has been very successful in solving many quantum spin models. For example, in the single (multi-) channel
Kondo model, one solves the Thouless (Emery—Kivelson) line [21, 22], then do perturbations away from it. In
the quantum-dimer model, one solves the Rohksa—Kivelson (RK) point which shows spin liquid physics [23],
then one can study the effects of various perturbations away from it [24]. Recently, this ‘divide and conquer’
strategy was quite successfully applied to study the rotated ferromagnetic Heisenberg model (RFHM) along the
solvable line firstin [25], then at the generic SOC parameter in [26].

The general approach to investigate an interesting model is to first present an exact symmetry analysis which
will lead to some non-trivial exact results which will put constraints on any specific calculations such as the
systematic spin wave calculations in terms of 1 /S to be performed in this paper. Ata generic (o, (3), the
fermionic model equation (1) has time reversal symmetry 7: k — —k, S — —S§, translational symmetry and
three spin—orbital coupled Z, symmetries: (1) P symmetry: $* — S, k, — —k,, & — =8, §* — —§7.

(2) P, symmetry: 8 — &, ky — —ky, ¥ — =85, 8 — —§%.(3) P, symmetry: k, — —k,, $* — —§%,

k, — —k,, 8" — =8, § — §* whichisalso equivalent to a joint 7 rotation of both the spin and the orbital
around the Z axis. At the Rashba or Dresselhaus point & = £ /3, the P, symmetry is enlarged to the spin—orbital
coupled symmetry C; x C, whichisajoint /2 rotation of both the spin and the orbital around the Z axis.
Alongtheline (a« = 7/2, [3), thereis also an enlarged spin—orbital coupled U (1), symmetry

[Hf, >i(— 1)ixc§0>’ai] = 0. Of course, at the two Abelian points, the U (1), symmetry is enlarged to the SU(2)
symmetry in the corresponding rotated basis.

The RAFHM equation (2) inherits all the symmetries of the fermionic model equation (1). Along the line
(a = /2, (), in addition to the spin—orbital coupled U (1)so. symmetry [H, > ;(— 1)ixc§0>’ai] = 0, italso has
an extra mirror M symmetry: under the local rotation S; = R (&, m)R(J, m1,)S;, then followed by a time
reversal transformation, 8 — 7/2 — (. Atthe middle point § = 7 /4, the Hamiltonian is invariant under such
amirror transformation.

The gauge invariant fermionic Wilson loop around an elementary square is the same as the bosonic case [25]
W; = 2 — 4sin® a sin* 3 which stands for the non-Abelian flux through the square. The R-matrix Wilson loop
Wparound a fundamental square is defined as Wy = Tr[RR, R, IR; N = (Wf)2 — 1which can be used to
characterize the equivalent class and frustrations in the RAFHM equation (2) The Wy = 3 (Wi < 3)stands for
the Abelian (non-Abelian) points. The relations between two sets of Wilson loops are in two-to-one relation due
to the coset SU(2) /Z, = SO(3).

Atthe two ends of theline 3 = 0 and § = 7/2, we get the antiferromagnetic Heisenberg model in the
rotated basis H = ]Zij S - §j where §; = R(%, 7iy)S;and H = ]Zij §i . §j where §i = R(X, mig) R(¥, 7iy)S;,
respectively. So the Hamiltonian has SU(2) symmetry in the rotated basis SU(2) or S?J(Z), respectively.
Transferring back to the original basis, the SU(2) symmetry is generated by >, S*, >~,(— 1)k S, >~ 1)ixS7 at
B = 0andby > (—1)»S}, S ,(—1)xS/, S.(— 1)y S7 at 3 = 7/2, respectively. Both contain the conserved
quantity >°,(—1)*S/". In fact, as mentioned above [25], the spin—orbital coupled U (1)so symmetry
[Hyip >oi(— 18] = 0 extends along the wholeline (¢ = 7/2, 3) connecting the two Abelian points. In
section 5, we will also perform spin wave calculations in the rotated basis SU(2).

As expected, the RAFHM with ] > 0 should display dramatically different physics to the RFHM model with
J < Ostudiedin [25]. In the classical limit S — o0, one can show that the ground state is the Y-y state in
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Figure 2. (a) The minima position k = (0, :tkf) of the relativistic magnons in the RBZ. (b) The energy gap (or mass) A((3) at the
minima in (a) with the two magnon velocities 1 > v,. The equality holdsat 3 = 0, 7/4, 7 /2. Near 3, i = 1, 2, v, hasa cusp, while
v~ |8 = Bil'/2. The LSWE (1/S order) results are the purple line and 1/S corrections to LSWE the green line. The 1/S corrections
are found to be small (see appendix B).

figure 1(a) which still respects both the U (1), symmetry and the M symmetry”. Note that the M symmetry
will be used to classify the symmetry of the minimum positions and the magnon gap in figure 2. The Y-y state
also keeps the P, and 7P, and 7P, symmetries.

3. The C-Cj and C-IC magnons above the Y-y state

Based on the Y-y state in figure 1(a), we introduce the Holstein—Primakoff (HP) bosons a and b for the
sublattices A and B, respectively. The Hamiltonian equation (2) can be written in a systematic 1 /S expansion in
terms of the HP bosons [27-30]:

7_(spin = HO + ZIS(HZ + H4 + ) (3)

where Hy = —2NJS? is the classical ground state energy. H, represents linear spin wave theory, H, represents
the 1/8 correction to linear spin wave theory [29] and so on. In the rest of the paper, we will use 2JS to be the
energy unit.

By combining a unitary transformation, followed by a Bogoliubov transformation (see appendix A), one can
diagonalize H,:

Hy =D (Wi + wi —2) + 2 (wrafax + wiB] B (4)
k k

where the LSWE spectrum wiy = /1 — (y{)? and 2" = cos 23 cosk, £ \/cosz ki + sin®*2( sin*k,. When
B < /4w < wi,when 3> 7/4,wi > wi,at B = /4, wy = w.So w and wy arerelated by M
symmetry. In the following, for notational simplicity, we call the lower branch wj, the energy is measured in the
unit of 4J8S.

Alongtheline (&« = 7/2, 0 < 8 < 7/2), the position of the minima of the lower branch wj is given in
equation (A.5) and shown in figure 2(a). One can see thatwhen 0 < 3 < fiand 5, = 7/2 — B < B < 7/2,
the Y-y ground state supports the C-Cy, when 3; < 3 < 3,, itsupports the C-IC magnons. The low energy
excitation can be obtained from the expansion around the minima k = kq + qas:

w, = \/AZ(B) +viql + Vyzqy2 (5)
where the mass A at the minima and the two velocities are given in equation (A.7) and shown in figure 2(b).

®In appendix A of [25], we showed that the exact ground state along (o« = 7/2, () in the RFHM is the Y-x state (see footnote 6). Applying
(—1)**7 to the Y-x state leads to the Y-y state which is only the classical ground state of the RAFHM along the same line. More
straightforwardly, from the RAFHM model equation (2) along the line, one can see only the Y-y state can minimize the bond energies along
both X and y bonds. This is also the reason why this line is special, because it is the only line which supports a collinear state in the 2D SOC
parameter space [26]. See also the caption of figure 8 for another intuitive explanation why the Y-y state is the classical ground state along
theline.
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Figure 3. (a) The ground-state energy and (b) the magnetization as a function of gauge field parameter 0 < 3 < 7 /2 along the line.
Shown are the classical results in blue color (flat line on top) which are independent of 3, LSWE (1/S order) by the purplelineand 1/S
corrections to LSWE by the green line. There are always 1/S corrections to the ground state energy in (a). In (b), it vanishes at the two
Abelian points § = 0, wandalsoat 5 = 7/4.The 1/S corrections are found to be small in both quantities. This fact shows that the
LSWE is quite accurate even for the smallest s = 1/2 which hosts the largest quantum fluctuations.

Thus, they are relativistic gapped particles with a gap A and two velocities v, > v, where the equality holds at
B=0,n/4, n/2near B, i =1,2,v, ~ |3 — /2. 1n sharp contrast, the C-IC magnons in the REHM [25]
are non-relativistic gapped particles with a gap A and two effective masses m,, > m.

At the two Abelian points 3 = 0, /2, the system has SU(2) symmetry in the rotated basis SU(2) with
Si = R, miy)R(J, 7i))S;and SU(2) and SU(2) with S; = R(&, mi,)R(J, 7i,)S, respectively (figure 8), and
equation (4) reduces to the antiferromagnetic spin wave wy ~ k at the minima (0, 0) and (7, 0), respectively.

We also obtain the ground-state energy and the magnetization at T = 0 from the LSWE:

Egs = 2NJS? 4+ 2JS> (wf + wy — 2)
k
1 1 1
M=S——>|—+—-2 6
2N;(wt wi ) ©

which are drawn in figure 3.

4. Thermodynamic quantities at low temperatures

Atlow temperatures, one can drop the higher energy mode of the wj and evaluate the specific heat and the
staggered magnetization of the Y-y state in figure 4 due to the relativistic magnons:

N T?
—— e MTM(T) ~ M — e AT 7)
2mvew, T 27V,

Cn(T) ~

where M is the zero temperature staggered magnetization listed in equation (6).
By coupling to the conserved quantity —H;",(— 1) S/ and to the order parameter —H,>_(—1)S/,
respectively, one can also evaluate the (7, 0) and (0, 7) staggered susceptibilities:

! ie‘A/T 8)

e /T X(o,w)(T) ~ X(o,w)(T =0) — T A
xVy

(T) ~
Xam0) 27V, vy

1—wp?

where X(0,m) (T=0) =3+ D
From the specific heat C,,,(T) in equation (7) and the conserved (m, 0) staggered susceptibility x, o, (T) in
equation (8), one can form the Wilson ratio:

is the zero temperature (0, 7) staggered susceptibility.

©

w

B TX(,0)(T) B (1)2
- cu(m) \A

which only depends on’ the dimensionless quantity of T/ A(/3).

The physical quantities in equations (7) and (8) depend explicitly on the magnon’s two velocities v, v, and
its gap A shown in figure 2(b). However, the Wilson ratio in equation (9) only depends on the gap A. Itis easy to
see that the longitudinal spin structure factor always has a very sharp peak M2 ¢ at the ordering wavevector

7 At B> B2 from v, ~ |3 — B3'/? and a simple scaling analysis, one can just set v, ~ T'/#inall the physical quantities in equations (7) and
(8). The Wilson ratio stays the same.
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Figure 4. The classical fluctuations dominate in the narrow regime around the finite temperature transition denoted by the two
dashed lines, so it is still in the 2D Ising transition class as that in the RFHM. The quantum fluctuations dominate in the Y-y state below
the dashed line, which is the focus of section 4. The QC1 and QC2 regime where A < T are controlled by the two Abelian points at

B = 0and 3 = 7/2 respectively, are dominated by the quantum antiferromagnetic fluctuations in the SU(2) and SU(2) basis,
respectively. The high temperature expansion in section 7 holds only in the high temperature regime above the blue dashed line.

(0, 7) (whichisat (0, 0) in the RBZ) of the Y-y state in figure 1(a) with the spectral weight equal to the square of
the magnetization. Unfortunately, the positions of the gap minima at (0, kf ) of the C-IC magnons in figure 2(a)
cannot be reflected in all these physical quantities. In the following, we show that they can be precisely mapped
out by the peak positions in the transverse structure factors.

5. Transverse structure factors in the rotated basis SU(2) (also called U(1) basis)

Performing a local gauge transformation ¢; = (io,)’c; on equation (1), one can get rid of the gauge fields on all
the x-links and all the remaining gauge fields on the y-links commute. Similarly, by performing alocal rotation
S, = R(&, m,)S,, in equation (2), one can get rid of the R-matrix on the x-links shown in figure 1(b1). It makes
the U (1)s0c symmetry with the conserved quantity Q. = 3.5/ explicit in the rotated basis SU(2) (also called U
(1) basis), but at the expense of reaching the translational symmetry broken Hamiltonian with the (7, 0)
sublattice structure in figure 1(b1). The Y-y ground state in the original basis in figure 1(a) becomes the Y-(7, 7)
Néel state in the U(1) basis in figure 1(b2). Because of the incompatibility of the two sublattice structures in
figure 1(b), one needs to introduce four HP bosons a, b, ¢, d corresponding to the four sublattice structures

A, B, C, D shown in figure 1(b2) respectively to perform the spin wave expansion to any order.

Several physical quantities such as the magnitude of the magnetization My (T), specificheat C,,,, the gaps A
and density of state (DOS) are gauge invariant, so are the same in both bases. The (7, 0) and (0, 7)
susceptibilities become the uniform and the (7, ) staggered susceptibilities respectively in the U(1) basis. The
Wilson ratio is also gauge invariant after using the uniform susceptibility in the U(1) basis. However, the spin—
spin correlation functions are gauge dependent [31]°. As shown in this section, it is the spin—spin correlations in
the U(1) basis which can map out the C-Cy and C-IC relativistic magnons most efficiently [25]. Due to the
explicit U(1) symmetries in the U(1) basis, the anomalous structure factors S*+ = S~ = 0, so one needs only
evaluate the normal structure factors S*~. However, due to the four sublattice structure in figure 1(b2), one
needs to evaluate it at four different orbital orders at Q, = (0, 0), Q. = (m, 0), Q, = (0, 7), Q, = (=, 7).
Due to the exact relations among them in the RBZ:

S/ () =87 (k+ Q) =Sq, (k+ Q) = Sg, (k+ Q) (10)
one can combine them into a single structure factor in the EBZ: 0 < ki, k, < 27

T [1 + (=1)°sinf] (1 — 1)

s
s=+ Wi

(1n

Sepz(k) =

As stressed in this work, in contrast to condensed matter systems where only gauge invariant quantities can be measured, both gauge
invariant and non-invariant quantities can be measured in cold atom systems by experimentally generating various non-Abelian gauges
corresponding to the same set of Wilson loops. See also [25].
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2090

Figure 5. Transverse structure factor St (k) at T = 0in the U(1) basis at the extended BZ. When 3 = 0 (Abelian point), 0.057
(C-Cy magnons), there is a central peak at (7, ) in a Lorentzian form. When 3 = 0.207, 7/4 (C-IC magnons), the central
Lorentzian peak splits into two Lorentzian ones peaked around (7, 7 + k}(,) ) whose fine structures are shown in figure 6. The
longitudinal structure factor always shows a sharp peak at the ordering wavevector (, ) in figure 1(b2).

where the denominator is precisely the relativistic magnons spectrum wj, listed below equation (4), the
numerator contains -y; listed below equation (4) and sin 6y is given in the unitary transformation equation (A.2)
in appendix A.

The transverse structure factor equation (11) at several typical Fis shown in figure 5 and its fine structure
near 3 = 7 /4 isshownin figure 6. When 0 < § < fyor 3, < 8 < w/2,C-Cqyleads to a central peak at
k = (7, 7). Atthe Abelian point 5 = 0in figure 5(a), ST () ~ g where k = (7, m) 4+ g.Obviously, the
singularity at (7, 7) is due to the infrared divergence of the Goldstone mode w = ck in equation (11). Ata small
Bin the C-Cy regime in figure 5(b):

_ 1
Sield) ~ = (12)
\/vqu +vya, + A0

where the A(3) ~ /2 3 is the gap opening due to the small 3listed in equation (A.7) and shown in figure 2(b).

In figure 5(c), when ) < 8 < [3,, the C-ICstarts to split the central peak into two peaks located around its
twominima k = (7, 7 + k}(,) ) shown in figure 2(a), the k = (7, 7) becomes a saddle point being maximum
along the k, direction, minimum along the k, direction. In figure 5(d), at 3 = /4, the two peaks are exactly
located at the two minima (7, 7 & g) of the C-1C shown in figure 2(a). Each of the two well separated
Lorentzian peaks is given by:

3/2
Jal+a)/4+1/2

(13)

S&iclg) ~

where A(8 = 7/4) = 1/2isthelargestgap at 3 = /4 shown in figure 2(b). As shown in figure 6, the two
Lorentzian peaks are moving closer when 3 < 7 /4 orapart when 3 > 7/4.So in the C-IC regime, the structure
factor maps out precisely the dispersions of the C-IC relativistic magnons which are completely due to quantum
fluctuations and intrinsically embedded in the quantum Y-y ground stateat T = 0.

Itis constructive to contrast with RFHM where the sublattice structure of the transformed Hamiltonian
(m, 0) is compatible with the classical ferromagnetic state in the U(1) basis [25], so one need only introduce two
HP bosons to perform spin wave expansion. So one only needs to form a uniform S, ~(k) and a (, 0) staggered

7
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Figure 6. Cross section (k, = 7, k,) of the transverse structure factor S*~(k) of the C-IC near 3 = 7 /4 infigure 5. At § = 7/4,
there are two well separated Lorentzian peaks exactlyat (7, 7 + 7/2). When (3 < 7/4, the two Lorentzian peaks move closer to each
other. When 8 > 7/4, they move apart as dictated by the mirror symmetry (not shown for clarity).

transverse structure factor S;" ~(k) in the RBZ listed in equation 31 in [25]. One can also establish the exact
relation S, (k) = S,"“(k + (m, 0)), so one can combine them into a single structure factor in the EBZ. Itisa
Gaussian exponentially suppressed by e =2/, peaked at (0, j:kf ) with a temperature dependent width

0y = Jmy(B) T due to the thermal fluctuations at a finite T. This is because there is no quantum fluctuations at
T = 0. The Y-x state is an exact eigenstate. The C-IC magnons do NOT existat T = 0, so they need to be
thermally excited, so can only be detected at a finite T.

6. Weak coupling Y-y state, low energy fermionic excitations and weak to strong crossover

So far, we have focused on the strong coupling expansion at U > t where the RAFHM equation (2) holds and
the charge degree of freedoms are frozen. It is also important to start from the weak coupling limit U < t where
one needs to also consider charge fluctuations and study how it approaches the strong coupling limit. Using the
identity nj1n;| = %ni — %SIZ to explicitly keep the spin SU(2) symmetry of the Hubbard interaction in

equation (1), one can introduce a magnetic order parameter M, to decouple the interaction term:

N 3
Hu = —ty (¢, U ¢jor + hc) + QZ M; + > M;-S. (14)
() i i

The evolution of the non-interacting Fermi surfaces (FS) along the line (a« = /2, (3) is shown in figure 7(a).
Due to the FS nesting conditions at the half-filling shown in figure 7, any weak interaction will open gaps to the
non-interacting FSwhen 3 = 7 /2. So one can perform a well controlled weak coupling analysis to determine
the spin—orbit orders of the ground state and also the excitation spectra.

From the FS geometry in figure 7(a), there can only be four possible orbital orders
Q; = (0, 0), Q, = (7, 0), Q3 = (0, m), Q4 = (7, 7). Substituting the order parameter M; = Me'?% where
Q=Q;,i=1,2,34and M = (X, Y, Z) into equation (14) leads to the mean field Hamiltonian:

2
HMF = H() + 3N8|5[| and

_ 1 ¥ ¥ ’I;( M“U“ Ck
HO B E;(Ck Ck+Q)(MaO'a ,17(+Q Ck+Q (15)

where Ty = —4t[cos § cosk, — 0¥ sink, — o7 sin 3 sin k, ] is the kinetic part of H, encoding the SOC
parameters (o = 7/2, ).

For Q; = (0, 7), diagonalizingthe4 X 4 matrix in equation (15) leads to four fermionic energy levels
+¢, £6.Itisan insulating state with P-H symmetry. Due to the lack of spin SU(2) symmetry, the minimization
procedures are much more involved than those with the symmetry. We also take the ‘divide and conquer’

8
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Figure 7. (a) The FS evolves along theline (o« = 7/2, f)at § = 0, 7/5, 2w/5, w/2. At 3 = 7/2, there are four Dirac fermions
located at K; = (0, 0), K; = (7, 0), K3 = (7, m) and K4 = (7, 0) labeled as 1, 2, 3, 4 with the topological winding numbers £1.
There are FS nesting away from 3 = /2. Purple (green) is particle (hole) surface. (b) The ground-state energy as a function of
magnetic orientation M = (X, Y, Z) atthe orbital order Q = (0, 7) with the parameter U = 0.2, § = m/6. The position on the
sphere indicates the spin orientation. Red (purple) color means higher (lower) energy. The figure shows that the Y spin-orientation is
the ground state at the orbital order Q = (0, ). In fact, the Y-y state is the global ground state when considering all the other possible
orbital orderings.

strategy: first fixing the spin orientation and finding the optimal magnitude and energy in the subspace, then
determining the optimal orientation and magnitude. The results for the general spin orientation

M = (X, Y, Z)areshownin figure 7(b). The global ground state has (0, Y, 0) spin orientation; it is nothing but
the Y-y state which respects the U (1)50 symmetry. It also supports two branches of gapped fermionic excitations
listed in equation (D.1). By repeating the calculations for Q4 = (m, 7), we find the lowest spin-orientation is
X-(m, m)which breaks the U (1)5o symmetry. By applying the U (1), symmetry operator, one can see X- (7, )
is degenerate with Z-(0, 7) which, of course, has higher energy than the U (1), symmetric Y-y state as shown in
figure 7(b).

For Q, = (m, 0) or (0, 0), itis the magnetic ordering in the P-P channel or hole-hole (H-H) channel, so
breaks P-H symmetry. Both need a finite U. > 0 to reach a metallic state with only partial fillings of all four
fermionicbands ¢;, i = 1, 2, 3, 4. Ithas much higher energies than those insulating states in the P-H channel.
So we conclude that the Y-y state is indeed the global ground state at weak coupling.

As shown in figure 8, due to the SU(2) and S%J(Z) symmetry at the two Abelian points 3 = 0, /2
respectively, the Y-y state is degenerate with the other two states. However, away from them, the FS nesting
conditions in figure 7 at half-filling favors the Y-y state which also supports the low energy fermionic excitations
in equation (D.1). So the specific heat in equation (7) will also receive the contributions from the fermionic part.

Following the procedures in [50], splitting the magnetic fluctuations into one longitudinal and two
transverse components and performing Gaussian fluctuations above the Y-y state, we can also identify the C-C,
and C-IC magnons from the poles of the dynamic transverse spin structure factor S*—(k, w). Of course, at the
two Abelian points, the C-C, reduce to the two gapless Goldstone modes. They should smoothly crossover to
those in figure 2 achieved by the LSWE in the strong coupling regime shown in figure 7(b). Note that the weak
Y-y state still respects the spin—orbital coupled U (1)s, symmetry [Hy, >=.(— 1)k cf 0%c;] = 0. However, the
mirror symmetry valid in the strong coupling limit does not hold anymore in the weak coupling limit. So there is
acrossover from weak to strong coupling where all the physical quantities evolve from having M asymmetry to
owning M symmetry with respect to 3 = /4. The next order terms ~¢*/U? in the strong coupling expansion
which include a ring exchange term around a fundamental square and do not have such a mirror symmetry.
They may be needed to describe the crossover in figure 8. The crossover driven by U > 0 is dual to the BCS to
BEC crossover driven by U < 01in SOC coupled Fermi systems discussed in [51].
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Figure 8. Atany weak U > 0, the Y-y state emerges as the ground state at any non-Abelian point 0 < § < /2. Atthe Abelian point
[ = 0,any U > 0 leads to an antiferromagnetic state in the SU (2) basis, three of which are listed on the 3 = 0 axis. At the Abelian
point 8 = 7/2 with the Abelian ﬂux 0 = m,itisasemi-metal with N = 4 Dirac fermions, a finite critical U, is needed to get to an
antiferromagnetic state in the SU(2) basis, three of which are also listed on the 3 = /2 axis. One can see that only the Y-y state
appears in both axes. Atany point away from the two Abelian axes, it picks up the Y-y state as the ground state along the line (see also
footnote 7) as indicated by the dashed line. There are both low energy fermionic excitations and C-Cy, C-IC relativistic magnon
excitations in the weak coupling. However, there is no mirror symmetry anymore in the weak Y-y state. There is only a crossover from
the weak to the strong coupling at any non-Abelian points.

7. High temperature expansions, electronic and spin Wilson loops at weak and strong
coupling

In the classical fluctuation regime shown in figure 4, the Y-y state to the paramagnet transition in the RAFHM is
in the same universality class as that from the Y-x state to the paramagnet transition in the RFHM in [25] which
was shown to be in the 2D Ising universality class [49]. In the high temperature regime in figure 4, from the high
temperature expansionsinthe 7, ~ J < T < U limit, one can easily establish the relation between the free
energy of RAFHM and that of the RFHM in [25]:

Fikrun U1 = Flifau[—J1. (16)

Of course, the above relation breaks down in the symmetry breaking low temperature phases. Taking equation
181in [25] and changing J to —J leads to a high temperature expansion of the RAFHM:

2 3 . 4
= 3(L) (2] + () -
8\T 16\T 128 T

where Wy = 2 cos43 + 1isthe Wilson loop around the fundamental square given in section 2. The discussions
below equation (18) in [25] also apply here.

In the weak coupling U < ¢ < T limit, following the method in [8], we perform the high temperature
expansion in the limit T >> ¢ directly on the fermionic model equation (1) to evaluate its specific heat:

c _ At tt

f(T)/N_F (16+2Wf)F+m (18)
which establishes its connection with the electronic Wilson loops Wy given in section 1. Note that equation (1) is
invariant under t — —t, so there is no odd power of the t/ T term in the expansion, in contrast to equation (17)
which has odd power of terms. The term in the (¢/T)* power proportional to the electronic Wilson loop Wy
comes from the fermion hopping around a closed plaquette in the square lattice. Because U < t, the interaction
effects may be dropped in equation (18), so it is essentially a free fermion hopping in a non-Abelain gauge
potential. And so the crossover driven by the interaction U at the low temperature Y-y state in figure 7 can also be
partially seen by looking at the specific heat crossover from equation (18) to equation (17) in the high

temperature paramagnet state.

8. Experimental realizations and detections

In condensed matter systems, as said in the introduction, any of the linear superpositions of the Rashba SOC
kyo, + k,0,and Dresselhaus SOC k, 0, — k, 0, always exist in various noncentrosymmetric 2D or layered
materials. In momentum space, such a linear combination ak, o, + Bk, 0, can be written as the kinetic term in
equation (1) in a periodic array of adsorbed ions with the SOC parameter («, 3) where the anisotropy can be
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adjusted by the strains, the shape of the surface or gate electric fields. The interaction strength Uin equation (1)
ranges from weak to strong in different materials [13, 14]. So all the phenomena in figure 8 can be observed in
these materials.

In cold atom systems, in view of recent experimental advances to realize 2D Rashba or Dresselhaus SOC
[17,20], both the original and the U(1) basis can be realized. Both gauge-invariant and non gauge-invariant
quantities can be measured [31]. The gauge invariant quantities such as specific heat C,, [35, 36], the gaps A and
the DOS [37], and the Wilson ratio can be detected by the corresponding experimental tools. The magnetization
M¢q(T), and the (7, 0) and (0, 7) susceptibilities can be detected by the longitudinal atom or light Bragg
spectroscopies [33, 34]. In the U(1) basis in figure 1(b), one needs to measure the transverse structure factor at
the four different ordering wavevectors Q, = (0, 0), Q. = (m, 0), Q, = (0, 7), Q, = (, 7) in equation (10)
by the transverse atom or light Bragg spectroscopies [33, 34] to get the whole transverse structure equation (11)
in the EBZ. Before reaching T < T ~ J, the specific heat measurement [35, 36] at high temperatures to
determine the whole set of fermionic or magnetic Wilson loops order by order in t/T equation (18) or J/T
equation (17) could be performed easily. However, so far, the interaction in these cold atom experiments is still
in the weak coupling limit. So the weak Y-y state, and both its fermionic and magnon excitations in figure 8 can
still be observed by various detection methods [32—36] in the current available weak coupling limit. Because
there is only a crossover from weak to strong coupling, the results on magnons achieved in the strong coupling
limit still hold qualitatively in the weak coupling limit. When the heating issue is completely overcome as the
interaction strength is tuned to the strong coupling limit, the RAFHM equation (2) can be realized and all the
strong coupling results achieved here can be detected quantitatively.

9. Discussions and conclusions

There are previous theoretical works to study strongly correlated spinless bosons in Abelian gauge fields [40—44]
and spinor bosons in non-Abelian gauge fields [25, 45-49]. The topological quantum phase transitions of non-
interacting fermions driven by a Rashba type of SOC are investigated in a honeycomb lattice [31]. Various
itinerant phases and phase transitions of repulsively interacting fermions subject to Weyl type SOCin a 3D
continuum were studied in [50]. The BCS to BEC crossover of attractively interacting fermions tuned by the
strengths of various forms of SOC in 2D and 3D continua were explored in [51]. However, so far, there are very
few works to study the possible dramatic effects of SOC on strongly correlated electron systems on lattice
systems. In this paper, we investigate the system of interacting fermions at half filling hopping in a 2D square
lattice subject to any combinations of Rashba and Dresselhaus SOC described by equation (1). In the strong
coupling limit, we reach a novel quantum spin model, the RAFHM (equation (2)), which is a new class of
quantum spin model. Along the anisotropicline (o« = 7 /2, (), its ground state is a new kind of spin and bond
correlated magnetic state called the Y-y state in figure 1(a) which supports a novel excitation called C-IC
magnons in alarge SOC parameter regime 3, < § < (3, in figure 2(a).

The C-IC magnons in the RAFHM stand for the short-ranged IC seeds embedded in a commensurate long-
range ordered Y-y state. Their parameters such as the minimum positions (0, k), gap and velocities v, v, canbe
precisely measured by the peak positions, width and Lorentzian shape of the transverse structure factorat T' = 0,
respectively. In this sense, they resemble quite closely an elementary particle resonance in scattering cross
sections in particle physics. It remains interesting to see how these seeds respond under various external probes.
To transfer the short-ranged IC order to along-ranged one, one needs to apply an external probe to drag it out
and then drive its condensation. We will study how these magnons respond under a finite (7, 0) longitudinal
field h, which couples to the conserved quantity and still keeps the spin—orbital coupled U(1) symmetry or two
different (7, 0) transverse fields h, and h, which breaks it explicitly.

It may be necessary to point out the RAFHM equation (2) is explicit for spin S = 1/2. However, the RFHM
in[25,26,48,49]is forany spin S = N /2. Asargued in [48], the critical temperature T, /] ~ 2§, so increasing
the spin is a very effective way to raise the critical temperature. It is known that if putting S = 3 /2 fermionson a
lattice without SOC, the resulting spin model in the strong coupling limit at half filling [52] has a higher
symmetry such as SO(5) instead of SU(2), and it has even larger quantum fluctuations due to the enlarged
symmetry. It remains important to achieve any spin-S RAFHM.

As mentioned in the introduction, starting from the results achieved in this paper along the solvable line
(o = 7/2, (), wewill investigate the quantum or topological phenomena at a generic equivalent class (., (3)
including the isotropic Rashba or Dresselhauss lines « = =+ atboth the weak and strong coupling limit. Recently,
the same ‘divide and conquer’ approach has been employed to map out the very rich and novel phenomena of
RFHM in the generic SOC parameter («, 3) in [26]. As shown in this paper, the RAFHM displays quite different
phenomena than those in the RFHM [25] along the solvableline (o« = /2, 3). So we expect that the global phase
diagram of RAFHM equation (2) may also show quite different phenomena than those of REHM in [26]. Expansion
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to the £3/U? order which includes ring exchange terms around a square plaquette may also be necessary to study the
possible phases and phase transitions from the weak to strong coupling limit. The SOC could provide a new
mechanism to lead to spin liquid phases with topological orders even in a bipartite lattice. Possible topological spin
liquid phases in a honeycomb lattice with three SOC parameters (o, 3, 7) need to be explored.
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Appendix

In this appendix, we provide some technical details on the results achieved in the main text. (1) The symmetry and
symmetry breaking analysis of the fermionic and the RAFHM, followed by a specific linear spin wave expansion
(LSWE)at 1/S order. (2) The 1/S correction to the LSWE results. (3) The structure of the quantum Y-y ground state
which encodes the C-IC magnons. (4) The fermionic excitations in the Y-y state at weak coupling U < .

Appendix A. The linear spin wave expansion

Here we present the specific spin wave calculations which can be contrasted with the exact statements made in
section 2. After introducing two HP bosons 4, b corresponding to the two sublattices A, B in figure 1(a), we
obtain the Hamiltonian at the LSWE 1/S order:

1
Hy =2 (ajax + biby) + 3 > lcos ky(a_ax + b-iby) + cos(k, + 20)a_ibxk
k K

+ cos(k, — 28)b_yax + h.c.]. (A.1)

We first perform a unitary transformation:

ax i sinaz—k cosez—k
(bk)zuk( ) Uk = b (A.2)

Ek Ok o Ok
—COS — SIn —
2 2

cosk, sin23 sink,

where sin 6, = , cosby = is identical to that used in the RFHM [25] to cast

\/cosz ky+ sin*23 sin’k,, cos? k, + sin? 23 sin’k,

the Hamiltonian equation (A.1) into a simple form:

) (1 (% ) (1 )b
=>|% “N - k ¢ A3
e ;(dk) ()‘k 1 )(aikJ +;[5k] (/\k+ 1 ) Ejk (A-3)

where \f = =+sgn(cos ky)v; and the 'yki = %[cos 23 cosk, + \/cosz ky + sin*2( sin” k, ] which is also listed
below equation (4).
Then we perform the Bogoliubov transformations:

ax cosh ¢, sinh ¢, (% by cosh ¢ sinh ¢, |( Bk A
a’,)  |sinh ¢, cosha, Uy N P ' ~ |sinh ¢ coshof B, '
where 2¢, = —arcsinh(\ /wy),  2¢, = —arcsinh(\{ /wy) to transform the Hamiltonian equation (A.3) to

the diagonal form equation (4):

Hy =D (wi + wi —2) + 2 (wiafax + wiBL B
k k

where wi = /1 — (fyf)z.
When 8 < 7/4, wi < wi,when 3 > 7/4,wf > wi,at 3 = 7/4, w{ = wj.Inthe main text, for

notational simplicity, we assume wj, is always the lower branch. The minima of the excitation spectrum
k® = (0, k;’ ) can be determined as:

T S (A5)
PE ] darceos[1 + sin?23/tan23], B < B < w/4 '
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where kf B = k;,) (/2 — B), 7/4 < B < w/2whichisshown in figure 2(a). Note that the §; and (3, coincide
with those in RFHM [25].

Expanding around the minima leads to the relativistic form equation (5) where the mass and the two
velocities are given by:

AN =1—(1+cos2B)? /4, vi=cos’B/2, vyz = cos?B(cos?2B + cos283 — 1)/2, 0<B< B,
(A.6)

N = (3 — csc2B) /4, vi=1/(4sin?2P), v)% = (sin*28 + sin?23 — 1) /(4sin*2pB), A< B < w/4
(A7)

which are shown in figure 2(b). It is easy to check thatas 3 — 0, A ~ /23 — 0, 1. — 1/~/2, v, — 1/4/2.S0
the dispersion w, — v|q]is as it should be. Note that the QC regime in figure 4 is defined as 3 < T.

The dispersion relations of both C-Cy and C-IC take the relativistic form with the mass A and two velocities
vyand v,. The anisotropy between the two velocities at 3 = 7 /4 is irrelevant under the renormalization group
(RG), so the relativistic invariance is restored under the RG. In sharp contrast, all the magnons in the RFHM [25]
are non-relativistic gapped particles with a gap A and two effective masses 2, > m,. Note that it is the
Bogoliubov transformation equation (A.4) which leads to quantum fluctuations at T = 0 and makes the
RAFHM dramatically different from the RFHM [25].

Appendix B. 1/S corrections to the linear spin wave results

Normal-ordering H, in the quasi-particle o, (3 basis in equation (4) (namely with respect to the quantum
ground state |Q?) in the next section) results in the three terms:

Ho=HY + HY + HY (B.1)

where H'? is a constant term, H{? is quadratic and H$ is quartic in terms of o, 3. Following [29], it is easy to
see that H{” and H{ contribute to the ground state energy and energy spectrum at the order of 1/S corrections
to the LSWE respectively. While (" only make contributions at a higher order than 1/52, so can be dropped at
the order of 1/S.

The H{Y leads to the 1,/S corrections (in unit 2/S) to the ground state energy listed in equation (6):

N

HO = — (12 + I + 7] (B.2)
8S
where,
k[ . Yo 1 1
I = | —|cosk,sinf] =&+ — L |+ — 4+ — — 2],
o) 4| * k(wk wi wy Wi
&k | iR 11
I.(B)= | —| —cosk)| — + —|+|— + — — 2|cos23|,
(6 472 | y(wk w}f Wy w}f b
[ - +
L(B) = f d—k2 sink, cos@k(’y—k — ’y—i) + (L + % - 2)sin2ﬁ]. (B.3)
4| Wy wy. Wy wy

The numerical result of equation (B.2) for S = 1/2 was drawn in figure 3(a). There is always a 1/S correction to
the ground state energy shown in figure 3(a), but this is found to be small.
The H{” can be written as in the normal ordered form:

1 . .
HP = *EZ[ZUO + I cos2f + Lsin2B)(Af Ay + AJCT, + BBy + B[ D", + h.c.)

+ 2Iycosky(A_Ar + CT A + C/Ax + C/C', + BLyBi + D', By + DBy + D/ D', + h.c)
+ 2(I, cosk, — I;sink,)(A_(Bx + D', A_ + C[Bi + C/ D', + h.c)]
(B.4)
where A, B, C, D are the annihilation operators in terms of o, 3:
Ay = sin(0 /2) cosh ¢ a + cos(0 /2)cosh qb,jﬁk,
By = —cos(0/2) cosh ¢, a + sin(B /2) cosh ¢/ Bk
C_i = sin(fx /2)sinh ¢, a_ + cos(0k /2)sinh ¢, 3,
D_i = —cos(0/2)sinh ¢, o + sin(6/2)sinh ¢ 4.
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Following [29], it is straightforward to evaluate the 1/S correction the spectrum equation (4) obtained at the
LSWE, which, in turn, changes the gap and leads to the shifts of 3, (3,, the minimum positions (0, kf ) of the
C-IC relativistic magnons as shown in figure 2. We also evaluate its contribution to the magnetization shown in
figure 3(b). Theyareallat 3 = /4, in a suitably chosen rotated basis, we find H{? can be written as

HP = Zk(wiai ax + Wi B I( k) which just contributes a multiple factor C’to the LSWE spectrum in
equation (4), so it does not change the magnetization in figure 3(b) at the order of 1/S. Thereisno 1/S correction
to the magnetization at the two Abelian points 3 = 0, /2, consistent with the results achieved for the
antiferromagnetic Heisenberg model [29]. Of course, it does not shift the minima positions (0, k)(,) = +7/2)in
figure 2(a) as dictated by the mirror symmetry. It does lead to a multiple factor to the gap at the order of 1/S
shown in figure 2(b). There are 1 /S corrections at any other 3 shown in figure 3(b), but found to be small even at
S = 1/2. We expect that the magnetization will receive 1 /S? corrections at 3 = 0,  as calculated in [29] and
alsoat 8 = /4.

Note that (8;, 3,) in figure 2(a) takes the same values as those in the RFHM at the order 1/S. This is because,
as shown in the last section, the two models share the same unitary transformation equation (A.2). However, the
main difference is that the RAFHM also involves a Bogoliubov transformation equation (A.4) which induces
quantum fluctuations at T = 0. In sharp contrast, the Y-x ground state is exact for the RFHM [25], there are no
quantum corrections to any ordersin 1/S at T = 0. So in the RFHM, (3, is exact, and will not receive any
quantum corrections from higher order expansions in 1/S. While, in the RAFHM, £, is not exact, and does
receive quantum corrections from higher order expansionsin 1/S. The contributions at the 1/S order are
shown in figure 2(a) and found to be very small.

Note that the mirror symmetry dictates that (1) the minima positions in figure 2(a) are exactly symmetric
about 8 = 7/4;(2) the minimum position at 3 = 7 /4 is exactly pinned at (0, k;,) = m/2); and (3) the relation
0B, = w/2 — [y isexact. All these three exact statements should receive no corrections to any ordersin 1/8S.
Indeed, we find they receive no correction at the 1/ order.

Appendix C. Quantum corrections to the classical state and the U(1)soc symmetry of the
quantum ground state to the order 1/S

C.1. Quantum corrections to the classical Y-y state
The Y-x state is the exact ground state of the RHFM [25], so there are no quantum fluctuations. However, the Y-y
state in figure 1(a) is only classical, valid only at S = co. Any finite S causes quantum corrections to the classical
ground state. The quantum corrections to Halperin’s (1, 1, 1) state in the bilayer or trilayer quantum Hall state
due to the neutral gapless Goldstone mode were investigated in [38, 39]. In fact, the (1, 1, 1) stateisa
ferromagnetic state which is exact only when distance between the two layers vanishes. At any finite distance, it
suffers quantum fluctuations and should receive quantum corrections. Similar quantum corrections to the
classical Bose—FEinstein condensation (BEC) (¥) = a = 0 in superfluid helium can also be evaluated.

Using the fact that |2) is the vacuum of the quasi-particle operators: oy|Q2) = 5i|Q2) = 0, we find the
quantum fluctuations corrected ground state at the order 1/S:

1 —wp -1 P -1
Q) = Cexp{Z[sinak( Wi + W ](a,jaifk + h,jbjk) + ZSiHZ(%)(“Jk + Wi — ]aljb’fk]}lY—y)

- + —_—
k 27 2% Yk Yk

(C.1)

which establishes the connection between the quantum ground state |(2) and the classical ground state [Y-y).
Obviously, |Y-y) is the vacuum of the original boson operators a and b, while |Q?) is that of the quasi-particle
operators oy and [, which contain all the information of the quantum fluctuation generated C-Cy and C-IC
magnons.

C.2. The U(1)soc symmetry of the quantum ground state
In the classical limit, we know Q.|Y-y) = 0 where Q. = 3=,(—1)"S/ is the conserved quantity along the line.
Here we show that in the strong coupling limit, the quantum fluctuations corrected ground state |2} also
satisfies Q|(2) = O attheorder1/S.

For notational convenience, we apply a global rotation (S, S/, S7) — (S, S/, —S/) torotate $”to S;°,
then the conserved quantity takes the form:

Q=D (=D =3 (=D = => (a{arso, — bibrio) (C2)
i i k

where Q, = (m, 0) is the orbital structure of conserved quantity Q..
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Combining equation (A.2) and equation (A.4) leads to:
a,j = sin(0x /2)&,(T + cos(9k/2)l;kT = sin(@k/Z)(u,faz + via_g) + cos(9k/2)(ukbﬂz + v 30
b = sin(0k/2)b;, — cos(Bx/2)aj = sin(6/2) () B} + v} Bx) — cos(Br /2 (ufal + via k).  (C3)
Using o) = B4€?) = 0 and the bosonic commutation relations of oy, G simplifies it to:
a,j a4 |Q) = [sin(Or /2) ug 042 + cos(6x/2) u,fﬂl] [sin(0k+q,/2)Visq, afkax
+ cos(lrs o, /2)Visq, 5+—k—QX] 1€2)
b beso,|) = [sin(6x /2 uf B} — cos(Ok /2 uf of][sin(Bk+q, /21 o, B o,
— cos(Oha,/ DV .00 _o 1192) (C4)
thus,

QQ) = zk:(cos[(ek + k@) /2uivi g, 0fal o — cos[(Ok + Orso) /2uf V0, BB o,

— sin[(6x + Ok0,) /2 ui vl o, alB o — sinl(0k + Okiq) /21V g, w0l BPIN).  (C.5)
From equation (A.2), one can see 0y + 6i o, = 0, so the above equation is simplified to:

QI =37 ufvivo, e’ o190 = X wviio, BBl o,10)
P k

=2 z(”l?VI?+Qx + uiiq, Vk“)aloakax 1) — > E(“I?V£+Qx + ”I?Jrox Vlg)ﬁlﬂik—Qx|Q>- (C.6)
k k
From equation (A.4), one can see )\kiJer = —Xandwy, o = wit, whichleads to Q.|Q2) = 0 at the order of
1/S. Of course, it should hold exactly, so to any order of 1/S.
Although the classical Y-y state contains no information on the C-Cy, C-IC relativistic magnons, the
quantum ground state |(2) does contain it and can be detected by the transverse structure factor equation (11)
precisely.

Appendix D. The fermionic excitations in the Y-y state at weak coupling U << ¢

The two branches of gapped fermionic excitations in the Y-y state at weak coupling are:

. . . M? : : :
a = 2t\/51n2 ki + cos? 3 cos’k, + sin® 3 sin*k, + o 2\/cos2 0 cos? ky (sin® ky + sin? 3 sin’k,)

. . . M? : : -
6 = 21‘\/sm2 ky + cos? 3 cos*k, + sin? 3 sin*k, + o + 2\/cos2 0 cos? ky (sin® ky + sin? 3 sin’ k)
(D.1)

where M ~ e=3/14Un@] where p,(3) is the DOS at the FS in figure 7(a) with the asymptotic behavior
po(8) ~ Inl/Bwhen 8 — 0and p,(#) — Owhen § — 7 /2".
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