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“The old man stopped and turned. Andy stopped. The deep-brown eyes looked at Andy
and the thin corded lips moved. What happened then Andy was never able either to
explain or to forget. For the eyes spread out until there was no Chinaman. And then
it was one eye – one huge brown eye as big as a church door. Andy looked through the
shiny transparent brown door and through it he saw a lonely country-side, flat for miles
but ending against a row of fantastic mountains shaped like cows’ and dogs’ heads and
tents and mushrooms. There was low coarse grass on the plain and here and there a little
mound. And a small animal like a woodchuck sat on each mound. And the loneliness
– the desolate cold aloneness of the landscape made Andy whimper because there wasn’t
anybody at all in the world and he was left. Andy shut his eyes so he wouldn’t have to see
it any more and when he opened them, he was in Cannery Row and the old Chinaman
was just flap-flapping between Western Biological and the Hediondo Cannery. Andy was
the only boy who ever did that and he never did it again.”

— John Steinbeck, Cannery Row (1945).
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Abstract
Physics Beyond the Standard Model

by Jackson D. CLARKE

In this THESIS we present a collection of original bodies of work pertaining
to a number of theoretical/phenomenological questions of the Standard Model,
as studied from a “bottom-up” perspective.

In CHAPTER 2: HIGGS SECTOR we consider the implications of extending the
Standard Model Higgs sector by a very light (100 MeV< ms < mh/2) real singlet
scalar field. We identify the regions of parameter space which experiments at the
Large Hadron Collider are uniquely sensitive to. There is a strong focus on low
background displaced decay signatures.

In CHAPTER 3: NATURALNESS we show how a Higgs mass sensitivity mea-
sure can be rigorously derived from Bayesian probability theory. We use this
measure to constrain the masses of various fermionic and scalar gauge multi-
plets, obtaining naturalness bounds of O(1–100) TeV.

In CHAPTER 4: NEUTRINO MASS we write down the minimal UV comple-
tions for all the Standard Model dimension 7 operators which might be responsi-
ble for the radiative generation of Majorana neutrino masses. A detailed collider
study of a one-loop realisation is performed.

In CHAPTER 5: BARYON ASYMMETRY OF THE UNIVERSE we present a proof
that the three-flavour Type I seesaw model cannot provide an explanation for
neutrino masses and the baryon asymmetry of the Universe via hierarchical lep-
togenesis without introducing a Higgs naturalness problem. We then describe a
minimal extension (the “ν2HDM”) which can avoid this conclusion.

In CHAPTER 6: STRONG CP PROBLEM we describe a very minimal model (the
“νDFSZ”) which can explain neutrino masses, the baryon asymmetry of the Uni-
verse, the strong CP problem, and dark matter, without introducing a natural-
ness problem for the Higgs. This model serves as an existence proof that weakly
coupled high scale physics can naturally explain phenomenological shortcom-
ings of the Standard Model.

Lastly, in CHAPTER 7: DARK MATTER we consider the implications of a class
of self-interacting “plasma dark matter” models for direct detection experiments.
A number of qualitatively unique signatures (when compared to single compo-
nent collisionless dark matter) are identified. We emphasise the prediction for a
signal which modulates with sidereal day.
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Preface

This THESIS comprises eight Chapters based on publications and preprints
mostly written in collaboration.

CHAPTER 1 is an original introduction and literature review.
CHAPTER 2 is based on the publications “Phenomenology of a very light

scalar (100 MeV < mh < 10 GeV) mixing with the SM Higgs,” written in collab-
oration with Robert Foot and Raymond R. Volkas [1], and “Constraining portals
with displaced Higgs decay searches at the LHC,” which was single authored [4].
The original motivation for pursuing the phenomenology of very light scalars
arose from the previous work of Foot and Volkas in scale invariant models. The
calculations, analyses, and technical writing are primarily my own.

CHAPTER 3 is based on the preprint “Naturalness made easy: two-loop nat-
uralness bounds on minimal SM extensions,” written in collaboration with Peter
Cox [11]. The original concept was my own, and while the bulk of the techni-
cal writing is also my own, the ideas presented within are the result of a series
of spirited conversations over which we collaboratively developed our under-
standing. The numerical calculations were performed in collaboration.

CHAPTER 4 is based on the publication “Testing Radiative Neutrino Mass
Models at the LHC,” written in collaboration with Yi Cai, Michael A. Schmidt,
and Raymond R. Volkas [2]. The UV completions of Section 4.1 were determined
by collaborators. Subsection 4.2.5, making up the majority of Section 4.2 and of
the Chapter, is largely my own work; otherwise the work in that Section was
mostly completed by collaborators.

CHAPTER 5 is based on the publications “Electroweak naturalness in the
three-flavor type I seesaw model and implications for leptogenesis,” and “Nat-
ural leptogenesis and neutrino masses with two Higgs doublets,” each written
in collaboration with Robert Foot and Raymond R. Volkas [3, 5]. The original
motivation for these papers stemmed from the observation of Foot and Volkas
that nobody had carried out a three-flavour naturalness analysis in the Type I
seesaw model. After confirming that, as the one-flavour case suggested, neu-
trino masses and hierarchical leptogenesis are inconsistent with naturalness in
the three-flavour scenario, a collaborative discussion exploring possible solu-
tions resulted in the “ν2HDM” concept. The calculations, analyses, and technical
writing are largely my own.
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CHAPTER 6 is based on the publication “Technically natural non-
supersymmetric model of neutrino masses, baryogenesis, the strong CP prob-
lem, and dark matter,” written in collaboration with Raymond R. Volkas [7]. The
inspiration for this paper arose from a long term desire of Volkas to write down
a technically natural solution to the major phenomenological problems of the
Standard Model. We realised that the “νDFSZ” model (originally written down
by Volkas and collaborators in a 1988 publication) could, in a certain region of
parameter space corresponding to a low scale ν2HDM, solve the eponymous
problems. The calculations, analyses, and technical writing in this Chapter are
largely my own.

CHAPTER 7 is based on the publication “Plasma dark matter direct detec-
tion,” written in collaboration with Robert Foot [8]. This work was the end re-
sult of collaborative discussions concerning a question Foot has considered for
several years: how does plasma dark matter interact with captured dark matter
within the Earth? The plasma dark matter conditions in Section 7.1, and the de-
tails of captured dark matter in Section 7.2.1, were derived by Foot. The analogy
of the solar wind interaction with planetary bodies is my own, and the magne-
tohydrodynamic simulations and subsequent results are my own. Otherwise the
technical writing was a collaborative effort.

CHAPTER 8 is an original conclusion based on the conclusions contained
within the aforementioned collaborative works.

All work was supported in part by the Australian Research Council.
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1 Introduction

1.1 Physics beyond the Standard Model

The Standard Model (SM) has proven extremely successful in describing particle
physics phenomenology at energy scales . TeV. Still, a number of theoretical
and phenomenological questions remain. In this THESIS we present a collection
of original pieces of work pertaining to six major questions; they are summarised
presently.

HIGGS SECTOR

What is the nature of electroweak symmetry breaking? Are
there scalars beyond the Higgs?

NATURALNESS

Is the Higgs mass “natural”? That is, is it insensitive to the
fine details of the high scale physics?

NEUTRINO MASS

What is the mechanism by which neutrinos gain mass?

BARYON ASYMMETRY OF THE UNIVERSE

How did the Universe end up with more baryons than
antibaryons?

STRONG CP PROBLEM

Why is the neutron electric dipole moment so small?

DARK MATTER

What is the nature of the non-luminous, gravitationally
interacting matter which permeates our Universe?

Each of these questions either demand or non-trivially constrain particle physics
beyond the SM (BSM). We now describe them in more detail.

1.1.1 Higgs sector

Symmetry has been, and still remains, an extremely important principle for the
theoretical formulation of fundamental interactions in particle physics. It was
known since the late 1920s that the electromagnetic force could be described by
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a theory with U(1)Q gauge symmetry [12]. However, it was not until the late
1960s that a consistent gauge theory for the weak interactions was constructed.
A puzzle from the gauge symmetric perspective was the short-range of the weak
force, which implies massive vector boson mediators not invariant under gauge
symmetry. An important insight turned out to be that fundamental symmetries
of nature may not be manifest at low energy. The Goldstone theorem of 1961
[13, 14] appeared to be an impedement for the formulation of a broken symme-
try explanation for the weak interactions: the theorem states that if a continu-
ous symmetry is not realised at low energy, then there exist massless spin-zero
“Goldstone bosons” corresponding to the broken generators of the symmetry.
No massless spin-zero bosons are known to exist. A few years later, several sci-
entists [15–18] pointed out that the Goldstone theorem need not hold in gauge
theories. Instead, when a gauge symmetry is spontaneously broken by the low
energy vacuum state of a scalar field, the would-be Goldstone bosons become
longitudinal modes of the hitherto massless gauge bosons, imparting them with
a mass. This has become known as the Higgs mechanism (or the BEH or BE-
HGHK mechanism).

What turned out to be the successful theory of electroweak interactions was
proposed by Weinberg and Salam in 1967 [19, 20]. It is based on the gauge group
SU(2)L × U(1)Y (first written down by Glashow [21]) spontaneously broken to
U(1)Q by the vacuum state of a complex SU(2)L doublet scalar field: the SM
Higgs doublet. In the unitary gauge the Higgs doublet can be written

Φ =
1√
2

(
0

v + h

)
, (1.1)

where v ≡
√

2〈Φ〉 ≈ 246 GeV is the vacuum expectation value (vev) and h is a
real scalar field. The gauge boson mass terms arise from the kinetic term (DµΦ)2:

1

2
(0 , v)

(
1

2
g τiW

i
µ +

1

2
g′Bµ

)2
(

0

v

)
, (1.2)

where τi are the generators of the SU(2)L symmetry. Diagonalising the resulting
mass matrix gives

m2
W =

1

4
g2v2, W±µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
,

m2
Z =

1

4

(
g2 + g′2

)
v2, Zµ =

−g′Bµ + gW 3
µ√

g2 + g′2
,

m2
A = 0, Aµ =

gBµ + g′W 3
µ√

g2 + g′2
. (1.3)

Three of the Higgs doublet degrees of freedom are “eaten” to give mass to the
W± and Z bosons, while a massless gauge boson (the photon), and a massive
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scalar spin-zero boson h (the SM Higgs boson) remain.1 Left-handed leptons
appear in SU(2)L doublets, whilst right-handed counterparts are SU(2)L sin-
glets, consistent with maximal parity violation first observed in beta decay ex-
periments of the 1950s [22, 23]. The Higgs doublet then allows gauge invariant
“Yukawa” terms to be written down which result in fermion mass terms in the
vacuum. For example, the Yukawa term

−ye (νL , eL) Φ eR +H.c. (1.4)

leads to an electron mass which is proportional to the Yukawa coupling: me =

ye〈Φ〉.
The SM Higgs mechanism is extremely predictive; tree-level Higgs couplings

to gauge bosons and to fermions (and loop-induced couplings to photons and
gluons) are completely specified once gauge couplings and fermion masses are
known, whilst the vev is given by the W and Z boson masses. By early 2010,
when the Large Hadron Collider (LHC) first began collisions, the mass (and the
existence!) of the Higgs was unknown. The Large Electron-Positron (LEP) col-
lider had excluded mh < 114 GeV [24], and experiments at the Tevatron pp̄ col-
lider had excluded 145 < mh/GeV < 180 [25]. There are theoretical reasons
to expect a light Higgs mass, in particular with mh . TeV, e.g. to cure unitar-
ity problems in WW scattering. Thus the LHC experiments were designed to
be essentially guaranteed to discover the SM Higgs, something like it, or some-
thing very surprising. As it turned out, a scalar boson very much resembling
the SM Higgs was discovered. We will comment on this shortly. Beforehand,
since collider phenomenology forms a major part of this THESIS (in particular
CHAPTERS 2 and 4), we will use this opportunity to briefly describe the detector
apparatuses of ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon
Solenoid), and the event simulation chain necessary for statistical inference.

The LHC is a pp collider operating at unprecedented centre-of-mass colli-
sion energies. Collisions took place at 7 TeV during 2010–11, and 8 TeV during
2012–13, delivering≈ 5 fb−1 and≈ 21 fb−1 of integrated luminosity to the multi-
purpose ATLAS/CMS detectors during these runs, respectively.2 The detectors
broadly consist of: an inner detector region for the tracking of charged particles
and primary pp collision vertexing; calorimeters for high resolution measure-
ment of charged and neutral particle energy; a muon spectrometer for the track-
ing and energy measurement of muons; and a multi-level trigger system which
selects < 0.001% of all event data for storage and subsequent high-level analysis.
A transverse slice of the CMS detector is shown in Figure 1.1.

1To be clear, we will try to call the recently discovered boson, which may or may not coincide
with that which enters the SM, the Higgs boson (or simply the Higgs), to be differentiated from
the SM Higgs boson (or simply the SM Higgs).

2Since late 2015, data taking at 13 TeV has begun.
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FIGURE 1.1: Transverse slice of the barrel region of the CMS de-
tector.

Monte Carlo event generators are necessary to simulate the expected back-
ground and signal processes for statistical inference. It is a non-trivial property
of asymptotically free QCD that this event generation can be “factorised” as a
low multiplicity underlying perturbative parton process matched to a high mul-
tiplicity initial/final state shower of soft, collinear gluons and photons. Below
the QCD scale colour radiation then forms hadrons in a non-perturbative process
which can be modelled phenomenologically. These “truth-level” event simula-
tions of parton collisions must then be overlayed with beam remnants, radiation
from the incoming protons, possible multi-parton interactions, and additional
pp collisions from that beam crossing (pile-up) and neighbouring crossings (out-
of-time pile-up). The resulting complex event is then passed through a detector
simulation to replicate the detector response. This mess of activity can be boiled
down to a relatively small number of reconstructed objects for analysis: hadronic
jets, photons, electrons, muons, and missing transverse momentum. It is an un-
enviable task, largely beyond the scope of the typical phenomenologist, to clas-
sify the systematic uncertainties involved in each of these steps. Instead, phe-
nomenologists use publicly available parton-level event generators (e.g. MAD-
GRAPH/MADEVENT [26]) and showerers/hadronisers (e.g. PYTHIA [27, 28]),
together with rudimentary fast detector simulations (e.g. DELPHES [29]), largely
to demonstrate the feasibility of searches for BSM physics. The rest is left to the
experimentalists.

The discovery of the Higgs boson by both the ATLAS and CMS Collabora-
tions was announced in July 2012, after ≈ 6 fb−1 of integrated luminosity was
gathered at 8 TeV collision energy. An excess of events with > 5σ combined lo-
cal significance was observed in the h → γγ and h → ZZ(∗) → 4l channels at
mh ≈ 126 GeV [30, 31]. The ATLAS discovery plots are reproduced (for admira-
tion) in Figure 1.2. Henceforth, one of the primary goals of the LHC programme
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FIGURE 1.2: Higgs boson discovery plots from the ATLAS Col-
laboration [30].

is to study the properties of the newly discovered state in great detail. So far the
state is fully consistent with the SM Higgs [32]. In particular: its mass has been
precisely measured as mh = 125.09± 0.24 GeV [33]; decays to γγ, ZZ, WW , and
ττ are discovered, with evidence for bb̄ decay; production via gluon fusion and
vector boson fusion are discovered, with evidence for Zh+Wh (V h) and tt̄h pro-
duction; inferred couplings to the Z and W bosons, and to t, b, and τ fermions
are consistent with the SM; and a spin-parity of 0+ is highly favoured.

Still, plenty of room remains for new physics in the Higgs sector. Exotic decay
modes at the Br(h→ unobserved) . 20% level are still allowed for an otherwise
SM Higgs [34, 35]. As well, by the end of its lifetime, the LHC experiments are
expected to measure Higgs couplings to fermions and vector bosons down to
the per cent level, and discovery of the self-coupling is plausible. Such mea-
surements will be important in ascertaining whether the Higgs is truly the fun-
damental scalar predicted by the SM. Of interest for this THESIS is whether the
Higgs is the only scalar involved in electroweak symmetry breaking. In particu-
lar, we consider Higgs sector extensions by: a real singlet scalar in CHAPTER 2;
a second Higgs doublet in CHAPTER 5; and a second Higgs doublet plus a com-
plex singlet in CHAPTER 6. Each of these scalars gains a vev and therefore enters
at some level to the details of electroweak symmetry breaking. Furthermore, in
CHAPTERS 3 and 4, we consider additional fundamental scalars of various gauge
charges which are not involved in electroweak symmetry breaking.

1.1.2 Naturalness

The SM Higgs potential is

VSM = µ2Φ†Φ + λ(Φ†Φ)2, (1.5)

where Φ is the SM Higgs doublet. Famously, with µ2 < 0 and λ > 0, this
potential results in the spontaneous breaking of electroweak symmetry [16–
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18]. The electroweak scale is set by the Higgs vacuum expectation value (vev)
〈Φ〉 =

√
−µ2/λ ' 174 GeV, with the recent discovery of the Higgs boson reveal-

ing that µ2 ' −(88 GeV)2 at low energy [30, 31].
Much of modern high energy physics has been motivated by concern over the

“naturalness” of the electroweak scale, in particular in the presence of gravity
or other (hypothetical) high scale physics scenarios. In this subsection we will
introduce and discuss the concept of Higgs mass naturalness. Actually, a proper
discussion requires careful treatment, since the literature on the topic is plagued
with oversimplifications, hand-waving, a lack of distinction between physical
and unphysical quantities, as well as imprecise and inconsistent definitions. We
henceforth adopt the following definitions for use in this THESIS:

• A parameter in a quantum field theory is unnatural if it is very sensitive to
the input parameters of the theory.

• A small parameter (or a collection of parameters) in a quantum field the-
ory is technically natural if the limit whereby it is taken to zero reinstates
a symmetry. This requires that quantum corrections to the parameter be
proportional to that parameter.

• The happenstance that all dimensionless parameters in a quantum field
theory are O(1) is also often called “natural.” We do not ascribe this con-
cept any name, nor do we make use of it in the following.

• A quantum field theory has a hierarchy problem if there exists an unex-
plained hierarchy between mass scales.

• The hierarchy problem specifically refers to the unexplained hierarchy be-
tween the electroweak scale and the apparent scale of gravity, the Planck
scale ΛPl ∼ 1019 GeV.

With those definitions clearly set out, we will proceed to discuss Higgs mass
naturalness in three distinct regimes: in the SM as an effective field theory (EFT);
in the SM with gravity; and in the SM with perturbative new physics.

First, a brief excursion is required to explain what in a quantum field the-
ory is of physical relevance. The parameters (and the normalisation of the fields
themselves) which enter the Lagrangian of a quantum field theory are so-called
bare quantities. When we try to perform calculations with these bare quanti-
ties, specifically quantum loop calculations, we inevitably run into divergences;
simple processes return apparent infinities. Understanding and taming these di-
vergences was an important problem of early quantum field theory. The key
insight turned out to be the following: the bare quantities are themselves not
measurable. What is measured are instead physical observables, e.g. scattering
cross-sections or decay rates, which are manifestly free from infinities. In or-
der to proceed, from a calculational perspective, a regularisation procedure must
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be implemented to capture the divergences arising in the bare quantity calcula-
tions. Calculation results can then be made consistent with the finite physical
observables by appending divergent counterterms to the bare quantities, which
cancel with the divergences arising in the calculations. The cancellation between
divergences can be interpreted as an unphysical intermediate artifact of the cal-
culation procedure. Indeed, if the calculation results are expressed in terms of
only observable quantities, the divergences do not appear. Once parameters are
regularised (under some scheme) and rewritten in terms of physical observables,
they are said to be renormalised. An interesting implication of this procedure is
that the renormalised parameters become functions of energy scale. The equa-
tions which relate the renormalised parameter values at different energy scales
are the differential renormalisation group equations (RGEs).

Now, the SM parameter µ2 in Equation (1.5) is an unmeasurable bare quan-
tity which, like all bare quantities appearing in the Lagrangian, should be renor-
malised in order to understand its physical implications. In a cutoff regularisa-
tion scheme, the dominant one-loop quantum correction to µ2 arises from the top
quark,

δµ2 ∼ 1

(4π)2
y2
tΛ

2, (1.6)

where Λ is the cutoff renormalisation scale. This potentially large quantum con-
tribution must be cancelled against a bare µ2 contribution in order to realise the
observed µ2(mZ) ' −m2

h/2. It is possible to interpret this as an "unnaturally"
large cancellation. However, the viewpoint we will take throughout this THE-
SIS is that this is just the regularisation and renormalisation procedure, i.e. we
assign the cancellation of the cutoff contribution no physical significance. Once
the µ2 parameter has been renormalised, the physical effect of the top quark is to
(dominantly) contribute to the µ2 RGE,

dµ2

d logµR
' 1

(4π)2
6y2
t µ

2, (1.7)

where µR is the renormalisation scale. Note that the RGE for µ2 is multiplica-
tive in µ2.3 This implies that, since µ2(mZ) ' −(88 GeV)2, µ2(µR) remains
∼ −(100 GeV)2 even up to ΛPl, by which point the SM EFT will be invalidated
by gravitational effects. This implies that the SM EFT is natural, since the low
scale Higgs mass is not especially sensitive to the high scale input parameter
µ2(ΛPl) ∼ −(100 GeV)2. Furthermore, the SM EFT appears to be completely
valid and consistent up to ΛPl: the electroweak vacuum remains sufficiently sta-
ble, and no dynamical scales are generated.

So where is the problem? In SM with gravity we can distinguish two distinct

3In fact, this might have been guessed, since µ2 is the only explicit scale in the SM.
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Φ
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FIGURE 1.3: Loop quantum correction to µ2 from a right-handed
gauge singlet fermion.

concerns. The first is a hierarchy problem: what physics could set the bound-
ary condition µ2(ΛPl) ≪ Λ2

Pl? The second is a question of naturalness: is that
boundary condition natural? i.e. is it sensitive to changes in the input parameters
of the high scale theory? Now, it could be the case that quantum gravitational
effects at the Planck scale set the boundary condition, and that this boundary
condition is unnatural. However, this cannot be rigorously computed in the ab-
sence of a cogent theory of quantum gravity. Thus, we can say that the SM plus
gravity suffers a hierarchy problem, but it is not possible to say that it has a def-
inite naturalness problem. This might sound somewhat pedantic, but it is an
important distinction, since it is possible to have a hierarchy without having a
naturalness problem (as we will demonstrate soon). The issue with gravity is
just that we cannot calculate anything to be sure. In a perturbative quantum
field theory, we can calculate corrections to µ2 and quantify the resulting natu-
ralness problem which might arise, irrespective of the situation with gravity. Let
us explore a simple example.

Consider adding a massive right-handed gauge singlet fermion N to the SM,
and coupling it to the Higgs via the term ylLΦ̃N , where lL = (νL, eL)T and Φ̃ =

iτ2Φ∗. The one-loop RGE for µ2 gains a term

dµ2

d logµR
⊃ − 1

(4π)2
4y2M2

N (1.8)

from the loop diagram of Figure 1.3. Roughly, one expects a naturalness prob-
lem to arise when the quantum corrections are large compared to µ2(mZ), i.e.
dµ2/d logµR � µ2(mZ); in such a case, µ2(µR) will evolve to very large values,
and µ2(mZ) will become extremely sensitive to variations around the necessary
boundary condition at high scale. Intuitive naturalness criteria are then: bound
the RGE contribution itself; or quantify and bound the sensitivity of µ2(mZ) to
the high scale input µ2(Λh), where Λh is some high scale. That is:

∣∣∣∣
1

µ2(mZ)

dµ2

d logµR

∣∣∣∣ < ∆max; or
∣∣∣∣
∂ logµ2(mZ)

∂ logµ2(Λh)

∣∣∣∣ < ∆max. (1.9)

Such criteria should not be taken too seriously (and nature may just be fine-tuned
after all), but they can certainly serve as guiding principles which capture our
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subjective sense of physical naturalness (of mass parameters).4 Most importantly
they are calculable in any perturbative model. Taking ∆max = 10, Λh = ΛPl, and
ignoring the RG evolution of new parameters or additional contributions to the
µ2 RGE, the criteria of Equation (1.9) result in the bounds yMN . 1700 GeV or
yMN . 320 GeV, respectively. Notice that MN can be large as long as y is suffi-
ciently small. Indeed, this is because the limit y → 0 decouples N from the SM,
which returns the sensible result: there is no Higgs naturalness problem from a
particle which does not couple to the Higgs field. One might get uncomfortable
about a small coupling in the theory. However the limit y → 0 is technically
natural; the decoupling limit reinstates an enhanced Poincaré symmetry [36, 37]
under which independent spacetime transformations can be performed on two
decoupled actions.

The example we just considered is in fact a rather interesting one. As we
will discuss in more detail in Sections 1.1.3 and 1.1.4, it turns out that such
heavy fermionic singlets are capable of generating neutrino masses and the
observed baryon asymmetry of the Universe. The neutrino mass is given by
mν = y2〈Φ〉2/MN , with mν ∼ 0.05 eV. This additional constraint implies a natu-
ralness bound of MN . 107 GeV (or y . 10−4).5

The point of this example was to emphasise that the existence of a very mas-
sive particle does not imply a naturalness problem for the Higgs mass. Instead,
the particle should fulfil a sensible naturalness criterion which is necessarily a
function of how strongly the particle couples to the Higgs field. For some well-
motivated BSM particles, the coupling strength is fixed (or there is at least a
lower limit), implying an upper mass limit arising from naturalness. For ex-
ample, particles with SM gauge charges will always couple to the Higgs field at
loop-level. We will examine this case in detail in CHAPTER 3. Another example
are grand unified models featuring vector fields of mass ∼ 1015 GeV which cou-
ple to the Higgs with gauge strength. Alone, this leads to a severe naturalness
problem. Perhaps the most economic way to cure this problem lies in supersym-
metry (SUSY). In a supersymmetric theory, every particle has a supersymmet-
ric partner, and contributions to the RGEs of mass parameters exactly cancel at
all loop levels. Of course, SUSY is broken at low scale. The Higgs mass is not
protected from corrections below the SUSY breaking scale; this implies that the
breaking scale must be (roughly) at the TeV scale. Otherwise, strongly coupled
heavy supersymmetric particles (in particular the stops) will, rather ironically,

4They may also seem arbitrary, which is a fair assessment. In CHAPTER 3 we will show how
similar criteria can be rigorously derived from Bayesian logic.

5In the low energy theory, the neutrino masses arise from the dimension 5 operator
1
Λ

(lL)cΦΦT lL with Λ ∼ 1015 GeV. Matching to the parameters of the high scale theory gives
1/Λ ≡ y2/MN . Thus, in this simple example, a dimensional argument implies an apparent very
large scale ∼ 1015 GeV in the theory, which could just be due to the appearance of a technically
natural small coupling, and even the existence of a large scale ∼ 107 GeV in the renormalisable
theory calculably does not introduce a naturalness problem. The reader can draw their own par-
allels with the Planck scale and gravity.
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induce their own naturalness problem. Alas, experiments have thus far seen no
evidence of SUSY up to the TeV scale, threatening this paradigm. SUSY is cer-
tainly an interesting possibility, but we will have very little to say about it in this
THESIS.

1.1.3 Neutrino mass

In the SM, working in the lepton mass eigenbasis, neutrinos are always produced
via the weak interactions as flavour eigenstates |να〉with α = {e, µ, τ}. Consider
the possibility that, like the quark sector, these flavour eigenstates are non-trivial
unitary superpositions of mass eigenstates |νi〉,

|να〉 =
∑

i

U∗αi|νi〉, (1.10)

where U is the Pontecorvo-Maki–Nakagawa–Sakata (PMNS) matrix [38, 39]. The
mass eigenstates each evolve (in their own frame) according to the Schrödinger
equation, i.e. |νi(τi)〉 = e−imiτi |νi(0)〉 in vacuum. In the lab frame (miτi = Et −
|~p|L), and in the limit E � mi (or |~p| ' E −m2

i /2E), we can write

|νi(t)〉 ' e−iE(t−L)e−im
2
i
L

2E |νi(0)〉. (1.11)

Importantly, we see that each of the mass eigenstate components comprising a
propagating flavour eigenstate evolves differently, according to the square of its
mass. The probability that a flavour eigenstate |να〉 is observed as flavour eigen-
state |νβ〉 after propagating a distance L is then given by

|〈νβ|να〉|2 ' δαβ − 4
∑

i>j

Re
[
Uβi U

∗
αi U

∗
βj Uαj

]
sin2

(
∆m2

ij

L

4E

)

− 2
∑

i>j

Im
[
Uβi U

∗
αi U

∗
βj Uαj

]
sin

(
∆m2

ij

L

2E

)
(1.12)

where ∆m2
ij ≡ m2

i −m2
j . This is the phenomenon of neutrino oscillation in vac-

uum (see e.g. Ref. [40] for a review). Plainly, neutrino flavour oscillates if and
only if (at least one of the) neutrinos have mass. A positive measurement of neu-
trino oscillation therefore implies neutrino mass, and precision measurements
can probe ∆m2

ij and certain aspects of the matrix U .
Neutrino oscillation is now experimentally well established. The atmo-

spheric muon-neutrino deficit (with respect to the prediction from cosmic ray in-
duced production), first observed by the water Cherenkov Kamiokande [41–43]
and Irvine-Michigan-Brookhaven [44, 45] experiments, was resolved by muon-
neutrino oscillation. In 1998 the Super-Kamiokande experiment reported an up-
down asymmetry in the νe-νµ flux ratio, consistent with νµ disappearance via
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νµ ↔ ντ oscillation [46]. As well, the solar electron-neutrino deficit (with re-
spect to the standard solar model prediction), first observed by the chlorine-
based Homestake experiment [47] in 1967, was eventually resolved by electron-
neutrino oscillation in matter [48, 49] and in vacuum. An unambiguous explana-
tion involved a number of experiments from the late 1980s through to the early
2000s. The Kamiokande [50, 51] experiment, and the gallium-based GALLEX
[52] and SAGE [53] experiments, confirmed the deficit in high energy solar boron
electron-neutrinos and lower energy solar beryllium electron-neutrinos, respec-
tively. In 2001, the Sudbury Neutrino Observatory [54, 55] measured the total
solar boron neutrino flux, consistent with the solar model together with electron-
neutrino disappearance via oscillation.

Many subsequent experiments, including nuclear reactor experiments (e.g.
KamLAND [56]) and neutrino beam experiments (e.g. K2K [57], MINOS [58]),
have further probed the phenomenon of neutrino oscillation, measuring prop-
erties of the PMNS matrix and the mass squared differences ∆m2

ij . We will not
detail the PMNS matrix here, except to say that it is of a qualitatively different
form compared to its quark analogue, the Cabibbo-Kobayashi–Maskawa (CKM)
matrix [59, 60]. The ∆m2

ij are [61],

∆m2
21 ' +

[
8.66× 10−3 eV

]2
,

∆m2
3l ' ±

[
4.96× 10−2 eV

]2
. (1.13)

There are two mass-ordering possibilities: ∆m2
3l = ∆m2

31 > 0 with m1 < m2 <

m3, known as normal ordering; and ∆m2
3l = ∆m2

32 < 0 with m3 < m1 < m2,
known as inverted ordering. The absolute mass scale is still unknown, al-
though there exist a number of constraints: time-of-flight measurements of neu-
trinos from supernova SN1987a [62–64] constrain

(∑ |U2
ei|m2

i

)1/2
. 5.8 eV [65,

66]; kinematic measurements of tritium beta decay constrain
(∑ |U2

ei|m2
i

)1/2
.

2 eV [67, 68]; cosmology constrains
∑
mi < 0.17 eV [69], depending on vari-

ous cosmological assumptions; and neutrinoless double beta decay constrains
|∑i U

2
eimi| . 0.1 eV [70] if neutrinos are Majorana particles (to be discussed

soon). These measurements reveal that the neutrino mass scale is extremely
small compared to that of the other fermions (cf. me ' 0.511 MeV). In fact, it
is still phenomenologically possible that one of the neutrinos is massless.

The origin of the neutrino masses and mixings remains an outstanding prob-
lem of particle physics. Their unusually small mass, together with the quali-
tatively different form of the PMNS matrix in comparison to the CKM matrix,
suggest that the neutrino mass generation mechanism is different to that of the
charged fermions. It is possible that the explanation is related to the fact that
νL is the only SM fermion field from which one can construct a gauge invariant
Majorana mass term ∼ (νL)cνL. This Majorana neutrino possibility is the one
considered in this THESIS, specifically in CHAPTERS 4 and 5.
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M

FIGURE 1.4: Neutrino mass from the Weinberg operator (upper),
and two UV completions (lower): the Type I seesaw model, and

the radiative Ma model.

How might Majorana neutrino masses be generated? A sensible way to ap-
proach this question is to begin by constructing gauge invariant operators out of
the SM fields which violate lepton number by two units. One may then search
for “UV completions” for these operators, i.e. higher scale renormalisable mod-
els which generate them as low energy effective operators. We will explore this
programme in CHAPTER 4. For now let us consider the simplest such operator,
arising at dimension five: the Weinberg operator [71]

1

Λ
(lL)cΦΦT lL, (1.14)

where Φ is the Higgs field. This results in a Majorana neutrino massmν = 〈Φ〉2/Λ
upon electroweak symmetry breaking, as shown in Figure 1.4. An interesting
possibility is that Λ ≫ 〈Φ〉 would explain the smallness of the neutrino masses.
One would like to identify Λ with some parameters in a higher scale renormal-
isable model. Let us now consider two well known possibilities, of particular
interest for this THESIS.

Perhaps the most elegant neutrino mass mechanism involves adding to the
SM three heavy right-handed neutrinos: the Type I seesaw model [72–74].6

Gauge invariance allows two additional renormalisable terms in the Yukawa La-
grangian,

−∆LY = (yν)ijliLΦ̃νjR +
1

2
Mi(νiR)cνiR +H.c., (1.15)

6The Type I seesaw model is one of only three possible single-field tree-level UV completions of
the Weinberg operator; the other two are the Type II [75] and Type III [76] seesaw models, though
they were each discovered independently, quite apart from this reasoning.
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whereMi are the right-handed neutrino masses. Equation (1.15) can be rewritten

−∆LY =
1

2

(
νL , (νR)c

)( 0 yν〈Φ〉
yTν 〈Φ〉 DM

)(
(νL)c

νR

)
+H.c., (1.16)

where DM = diag(M1,M2,M3). If the eigenvalues of yν〈Φ〉 are much smaller
than the Mi, the neutrinos are essentially Majorana with masses given by the
eigenvalues of the neutrino mass matrix

mν = 〈Φ〉2yνD−1
M yTν , (1.17)

suppressed by the presumably large right-handed neutrino mass scale; the as-
sociated Feynman diagram is shown in Figure 1.4. Indeed, for yν ∼ 1 and
mν ∼ 0.1 eV, one expects Mi ∼ 1015 GeV.7 Unfortunately, the minimal Type I
seesaw model is eminently untestable.

Another possibility is that neutrinos gain a “radiative” mass at loop-level (e.g.
Refs. [77–81]). In CHAPTER 5 we will encounter the one-loop Ma model [82], a
radiative UV completion of the Weinberg operator. The Ma model requires right-
handed neutrinos and a second Higgs doublet Φ2 which does not gain a vev. The
Lagrangian must contain

−∆LY = (yν)ijliLΦ̃2ν
j
R +

1

2
Mi(νiR)cνiR + h.c.,

V2HDM ⊃
λ5

2

[(
Φ†Φ2

)2
+
(

Φ†2Φ
)2
]
. (1.18)

The neutrino mass is generated radiatively via the diagram shown in Figure 1.4.
The masses mR and mI of the real

√
2 Re(Φ2) and imaginary

√
2 Im(Φ2) compo-

nents of the second doublet are split according to m2
R−m2

I = 2λ5〈Φ〉2. If we take
this splitting to be small compared to m2

0 ≡ (m2
R+m2

I)/2, then the neutrino mass
matrix is given by

(mν)ij =
λ5〈Φ〉2

8π2

∑

k

(yν)ikMk(y
T
ν )kj

M2
k −m2

0

[
M2
k

M2
k −m2

0

log
M2
k

m2
0

− 1

]
. (1.19)

One observes some similarities with Equation (1.17), particularly in the limit
Mk � m0. However, in addition to suppression by a potentially large mass
scale, the neutrino mass is also suppressed by a loop factor, and an unknown
coupling λ5 (which in fact may be taken to be small in a technically natural way).
Thus the smallness of the neutrino masses may be explained by a combination
of factors. An interesting additional property of the Ma model is that it provides
a dark matter candidate, with the symmetry preventing Φ2 from gaining a vev

7It is of some interest that this scale is of the same order as the grand unification scale, es-
cpecially since a right-handed neutrino together with one generation of SM fermion fields fill a
complete representation of the SO(10) gauge group, within which the SM gauge group may be
embedded.



14 Chapter 1. Introduction

implying a stable particle. For that reason it is also known as the “scotogenic”
model, meaning “dark-generated.”

1.1.4 Baryon asymmetry of the Universe

The non-observation of any astrophysical signature of matter–antimatter annihi-
lations in diffuse (or otherwise) microwave, x-ray, or γ-ray photons, implies that
the observable Universe is made up almost entirely of matter and not antimatter
[83]. This is known as the baryon asymmetry of the Universe (BAU).

The baryon density is often expressed in terms of the baryon-to-photon num-
ber ratio η = nb/nγ . This quantity is measured in two different ways. First,
η is an unknown input which enters the prediction of big bang nucleosyn-
thesis (BBN) for the primordial abundances of helium-4, helium-3, deuterium,
and lithium-7; measurements of these abundances are in good agreement with
BBN and η = (5.6 ± 0.9) × 10−10 [84, 85]. Second, η enters in the prediction
for the relative heights of peaks in the cosmic microwave background (CMB)
power spectrum due to baryon acoustic oscillations; measurements indicate
η = (6.19 ± 0.14) × 10−10 [86]. These phenomena occur at very different tem-
peratures (0.1 . T/MeV . 10 and T ∼ 0.3 eV, respectively) and can be consid-
ered as essentially independent determinations of η. Thus their agreement is a
remarkable success of standard big bang cosmology. The value η ∼ 10−10 should
be compared with the expected baryon–antibaryon abundance if the Universe
were exactly baryon–antibaryon symmetric; in that case, baryon–antibaryon an-
nihilations freeze out at T ≈ 20 MeV with η ∼ 10−19 [87]. The implication is
that a baryon–antibaryon asymmetry must have been present well above this
temperature. It is usually assumed that this asymmetry was somehow gener-
ated dynamically from an initially baryon symmetric8 state: this idea is known
as baryogenesis.

The necessary conditions for successful baryogenesis are the Sakharov con-
ditions [88]. They comprise: (1) baryon number violation, so that the initial
state can evolve from B = 0; (2) C and CP violation, so that interactions in-
volving particles and antiparticles differ; and (3) departure from thermal equi-
librium, since otherwise (assuming CPT invariance) we have d〈B〉/dt = 0. In
fact, the SM and standard cosmology fulfil the Sakharov conditions. The latter
two conditions are trivially met: CP violation appears in the CKM matrix, and
the expansion of the Universe (and electroweak symmetry breaking) provides
the necessary departure from equilibrium. For the first condition, despite the
fact that baryon number is a very well conserved quantity in the SM at low en-
ergy, non-perturbative SM “sphaleron” transitions at high temperatures violate
baryon number [89, 90]. The theoretical details of the mechanism are somewhat
involved, and not important for our purposes (see e.g. Ref. [91] for a summary).

8In standard inflationary scenarios this condition is set at the time of reheating, irrespective of
any asymmetry before inflation.
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FIGURE 1.5: Feynman diagrams for decay of the lightest right-
handed neutrino.

The important point is that the induced ∆B = ∆L = 3 transitions,

vacuum ←→
∑

i=1,2,3

QLiQLiQLilLi, (1.20)

preservingB−Lwhile violatingB+L, are efficient at temperatures T � 100 GeV
and (extremely) inefficient below. However, it turns out that these three effects
are not strong enough for successful SM baryogenesis; they result in η ∼ 10−20

[92]. Therefore, explaining the BAU via baryogenesis requires BSM physics. In
particular, the B + L violation of sphaleron transitions suggests an intriguing
possibility: to generate an asymmetry in the lepton sector which is (partly) trans-
ferred to the baryon sector via sphalerons. This idea is known as baryogenesis via
leptogenesis or simply leptogenesis. It is the leptogenesis possibility which is con-
sidered in this THESIS, namely in CHAPTERS 5 and 6.

The paradigm example of leptogenesis [93] is within the Type I seesaw model
described by Equation (1.15). In the standard scenario the lepton asymmetry
is produced via the out-of-equilibrium decays of the lightest right-handed neu-
trino, assumed to be in thermal equilibrium in the early Universe. In the hierar-
chical limit MN1 � MN2 � MN3 , and ignoring subdominant details introduced
by ∆L = 1 scatterings and possible lepton flavour effects, the baryon asymmetry
is largely determined by the interplay of decays and inverse decays at T ∼MN1 .
Leptogenesis is possible if the rates for these processes are sufficiently out-of-
equilibrium. This is captured by the decay parameter,

K =
ΓD

H|T=MN1

≡ m̃1

m∗
, (1.21)

where ΓD ≡ Γ(N1 → lΦ) + Γ(N1 → l̄Φ̄) is the decay width of N1, H is the
expansion rate of the Universe, m̃1 is the “effective neutrino mass,” andm∗ is the
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“equilibrium neutrino mass,“

ΓD =
1

8π
(y†νyν)11MN1 , m̃1 = 〈Φ〉2 (y†νyν)11

MN1

,

H ' 1.66
√
g∗

T 2

MPl
, m∗ ' 1.1× 10−3 eV, (1.22)

with g∗ ' 106.75 the effective number of degrees of freedom in the SM at a tem-
perature MN1 & T � 100 GeV. The CP asymmetry in the decays which leads
to the lepton asymmetry, ε1 ≡

[
Γ(N1 → lΦ)− Γ(N1 → l̄Φ̄)

]
/ΓD, is captured by

|Mtree +Mloops|2 cross-terms once the one-loop amplitudes of Figure 1.5 Feyn-
man diagrams are included:

|ε1| '
3

16π

MN1

〈Φ〉2
Im [(y∗νmνyν)11]

(y†νyν)11

, (1.23)

where mν is given by Equation (1.15). It is useful to re-express the yν matrix in
the Casas-Ibarra [94] form,

yν =
1

〈Φ〉U
†D

1
2
mRD

1
2
M , (1.24)

where R is a (possibly complex) orthogonal (RRT = RTR = I) matrix. Then

|ε1| '
3

16π

MN1

〈Φ〉2
Im
[
(R†D2

mR
∗)11

]

(R†DmR)11
.

3

16π

MN1

〈Φ〉2m3, (1.25)

where the final inequality follows from orthogonality properties of R, and m3 >

matm ' 0.05 eV is the heaviest neutrino mass.
The resulting baryon asymmetry, once the full thermodynamic system is

evolved to low temperatures in the presence of sphaleron transitions, is given
by

η ' 10−2|ε1|κf , (1.26)

where κf ≤ 1 is an efficiency factor capturing the conversion efficiency of
CP asymmetry into baryon asymmetry; for a thermal initial abundance, κf '
(0.5/K)1.1 (κf ' 1) for K > 0.5 (K < 0.5) (see Ref. [95] for better approxima-
tions). Taking m3 ≈ 0.05 eV and η ≈ 6 × 10−10, Equations (1.25) and (1.26)
imply a lower bound on the lightest right-handed neutrino mass for successful
leptogenesis: MN1 & 6 × 108 GeV. This is known as the Davidson-Ibarra bound
[96]. Thorough numerical calculations including scattering contributions, ther-
mal effects, and relaxing the initial thermal abundance, result in three bounds
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depending on initial conditions [97]:

MN1 &





2× 109 GeV for zero initial N1 abundance,

5× 108 GeV for thermal initial N1 abundance,

2× 107 GeV for dominant initial N1 abundance.

(1.27)

Naturally, since the conception of this idea, alternative leptogenesis scenar-
ios within the Type I seesaw model have been explored. For example, one can
imagine scenarios whereby the CP asymmetry is instead dominantly produced
in decays of N2 or N3. Lepton flavour effects in the thermal bath, which become
important when T . 109 GeV, are usually invoked to enable this to occur. The
general picture (and the leptogenesis scale) is not much changed in such incarna-
tions. Another alternative realisation is resonant leptogenesis [98], which occurs
when the right-handed neutrinos are approximately degenerate in mass; in this
case the CP asymmetry produced in the decays can be greatly enhanced and
leptogenesis can take place at the TeV scale. In this THESIS we will consider only
the hierarchical leptogenesis scenario.

1.1.5 Strong CP problem

The QCD Lagrangian,

LQCD = −1

4
GµνGµν −

∑

i

qi (−iγµDµ +mi) qi, (1.28)

where Gµν is the gluon field strength tensor, has an axial symmetry

qi → eiγ5αi (1.29)

in the massless limit mi → 0. This suggests that, for the u, d quarks with
mu,d � ΛQCD, there should exist a corresponding approximately conserved axial
current Jµ5 . However, this current is anomolous: a loop of quarks coupling to glu-
ons induces a non-zero divergence, ∂µJ

µ
5 ∝ αs

8πG
µνG̃µν , where G̃µν ≡ 1

2εµναβG
αβ

is the dual gluon field strength tensor. This is dubbed the chiral anomaly [99–
101]. It turns out that GµνG̃µν can be rewritten as a total divergence proportional
to the gluon field Aα [102]. Then the action,

∫
d4x∂µJ

µ
5 , when rewritten as a

surface integral at spatial infinity, vanishes under the naive boundary condition
Aα = 0, suggesting that no physical effect arises from the anomaly. It was ’t Hooft
who showed that, in fact, for non-abelian gauge groups, many topologically in-
equivalent degenerate vacua exist such that any pure gauge transformation of
Aα = 0 is an equally suitable boundary condition at spatial infinity [89].9 The
surface integral is non-vanishing for a subset of these vacua.

9This important paper by ’t Hooft was cited previously for the introduction of non-perturbative
electroweak sphaleron solutions.
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The net effect is that gauge invariance and renormalisability insist that a
physical CP -violating term

θ̄
αs
8π
GµνG̃µν (1.30)

appear in the QCD Lagrangian. Chiral transformations of the form Equa-
tion (1.29) transform θ̄ → θ̄ − 2αi. Explicitly separating the effect of chi-
ral transformations involved in diagonalising the quark mass matrix Mq gives
θ̄ = θ0 + Arg [det(Mq)]. A priori, θ̄ is expected to be O(1). However, no CP

violation arising from the QCD sector has ever been observed, and bounds on
the neutron electric dipole moment constrain θ̄ . 10−10 [103]. The strong CP

problem is: why is θ̄ ≈ 0?
A possible resolution to the strong CP problem is that a chiral symmetry

exists so that θ̄ can be rotated away. This would be the case if there existed a
massless quark; however, this is not realised in the SM. Instead, as proposed
by Peccei and Quinn in 1977, a global chiral U(1)PQ symmetry could exist in
the fundamental Lagrangian [104]. This symmetry is necessarily broken at low
scale, which implies a (pseudo-)goldstone boson a: the “axion.” If the sum of
the uR and dR charges under U(1)PQ is non-zero, then a interacts with the chiral
anomaly and an extra term appears in the Lagrangian:

θ̄
αs
8π
GµνG̃µν + ξ

a

fa

αs
8π
GµνG̃µν , (1.31)

where fa is the U(1)PQ symmetry breaking scale and ξ 6= 0. The chiral anomaly
also induces a non-trival potential for a, and it turns out that the minimum of this
potential occurs at 〈a〉 = −fa

ξ θ̄. Therefore, remarkably, a acquires a vev which
exactly cancels the θ̄ term, solving the strong CP problem dynamically.

A U(1)PQ symmetry is not realised in the SM. Thus the PQ solution to the
strong CP problem requires BSM physics. The minimal way to appropriately
augment the SM is to add a second Higgs doublet coupling to the down-type
quarks [104, 105],

−LY = yuQLΦuR + ydQLΦ̃2dR + . . . . (1.32)

This model, with fa ∼ v, was quickly excluded by laboratory experiments.
Indeed, these experiments together with stellar energy loss constrains fa &

4× 108 GeV [106]. Thus the U(1)PQ breaking scale must be very high, implying
an extremely weakly coupled “invisible axion,” named as such since the axion
inherits tiny v/fa suppressed couplings nucleons, photons, and electrons.

In CHAPTER 6 we will construct a variant of the Dine–Fischler–Srednicki-
Zhitnitsky (DFSZ) invisible axion model [107, 108]. The DFSZ model adds a
complex scalar singlet to the minimal two-Higgs-doublet solution, which gains
a U(1)PQ breaking vev of & 109 GeV. As it turns out, invisible axions can also
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provide a solution to the dark matter problem, to be discussed presently.

1.1.6 Dark matter

There is overwhelming observational evidence, arising at disparate scales and
at various epochs, for a non-luminous, gravitationally interacting “dark matter”
(DM) permeating our Universe. Still, the fundamental nature of DM remains an
open question.

Large scale observations, i.e. at scales greater than that of a typical galaxy,
are well explained by collisionless “cold DM” (CDM), i.e. DM which is non-
relativistic at the time when the cosmic horizon contained of order one galac-
tic mass. First, the power spectrum of temperature anisotropies in the cosmic
microwave background [109, 110] reveals acoustic oscillations consistent with
a significant additional component of purely gravitationally interacting matter.
Second, N -body CDM simulations [111, 112] are in good agreement with the
observed statistical properties of large scale structure [113–116]. Putting these
evidences together under the assumption of the ΛCDM cosmological model, the
energy density budget of the Universe today can be determined: Ωb ' 0.05,
ΩDM ' 0.27, and ΩΛ ' 0.69, distributed between baryonic matter, DM, and dark
energy, respectively. Third, weak gravitational lensing measurements, in partic-
ular of galaxy cluster collisions [117], directly indicate a significant gravitational
component distinct from the baryonic gas.

At smaller scales the collisionless CDM paradigm has some shortcomings.
Galaxy rotation curves reveal star velocities which scale as v2(r) ∼ constant at
large radius (as opposed to the r−1 relationship expected from the visible matter)
[118, 119]. Measurements are consistent with an approximately uniformly dis-
tibuted extended halo of DM with a cored central profile forming the dominant
mass component of these galaxies. This is at odds with the pure CDM prediction
for a cusped profile [120]. There are also discrepancies between the observed dis-
tribution of Milky Way satellite galaxies and that predicted by CDM simulations:
the so-called “missing satellite” and “too big to fail” problems [121, 122]. Still, it
could be that baryonic effects alone, once properly taken into account, are able to
solve these problems (see e.g. Ref. [123]).

The possibility remains that DM interacts only gravitationally. Indeed, clus-
ter collisions and extended galaxy halos appear largely consistent with a dis-
sipationless and collisionless DM [124, 125]. On the other hand, dissipational
and/or self-interacting DM can help to explain small scale discrepancies. Dissi-
pational DM can explain correlations between the shape of rotation curves and
the baryonic properties of galaxies [126]. Self-interacting DM (particularly with
light mediators) can provide a simple resolution to the core-cusp problem. It has
also been suggested that the Abell 520 [127, 128] and Abel 3827 [129] cluster col-
lisions show some evidence for a non-vanishing DM self-interaction. None of
these hints are definitive; it is plainly difficult to draw strong conclusions from
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necessarily simplified numerical simulations together with a finite catalogue of
astrophysical observations. Thus collisionless, dissipationless, cold DM remains
the benchmark for DM.

Perhaps the most studied DM candidate is the weakly interacting massive
particle (WIMP), hypothesised to have fallen out of equilibrium with the thermal
bath in the early Universe. This “freeze out”occurred when the WIMP annihila-
tion rate fell below the expansion rate of the Universe. Under this paradigm, the
energy density stored in DM mass density is given approximately by

ΩDM

0.2
∼ 10−8 GeV−2

σ
, (1.33)

if the freezeout temperature is taken to be Tf ∼ mDM/20. Much has been made of
the “WIMP miracle” that this cross-section happens to coincide with weak scale
parameters:

σ

10−8 GeV−2 ∼
(
g2

0.1

)2( TeV
mDM

)2

. (1.34)

If DM interacts via the weak force in such a way then there is a realistic hope
that it might be detected in terrestrial experiments. Another well-motivated
DM candidate is the axion, whose existence is implied by the PQ solution to
the strong CP problem discussed in Section 1.1.5. The typical axion associated
with DM is extremely light (∼ µeV). Instead of a mass density, the observed ΩDM

is explained by energy stored in the coherent oscillations of the classical non-
relativistic axion field. This field has not yet decayed due to its tiny couplings
to standard matter. We will discuss the axionic DM scenario in more detail in
CHAPTER 6.

These single-component, collisionless DM scenarios are certainly well-
motivated. However, there is no a priori reason that DM could not con-
sist of a more complex, multi-component sector, and/or with appreciable self-
interactions. In fact, a multi-component self-interacting sector is the generic pre-
diction of asymmetric DM scenarios [130] in which the DM abundance is set by
a small particle–antiparticle asymmetry while the symmetric component is effi-
ciently annihilated away. In this scenario it is rather natural to consider the DM
as contained within a hidden sector with its own gauge interactions. The hidden
sector DM might then interact with standard matter through “portals” arising
from gauge kinetic mixing or scalar quartic mixing terms in the Lagrangian [131–
133]. We will study these portal possibilities in CHAPTERS 2 and 7.

The identification of DM is clearly of primary importance to our fundamental
understanding of the Universe. Fortunately, its nature can be probed in terres-
trial experiments. There are three generic possibilities: production via SM+SM
→ DM+DM, e.g. at the LHC; observation of DM+DM→ SM+SM annihilation in
galaxies; and direct detection via DM+SM→ DM+SM scattering. In CHAPTER 7
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we will be interested in the latter, therefore let us spend the remainder of this
subsection introducing the fundamentals of direct detection.

In order to make predictions (or inferences) for direct detection experiments,
we require a model of the DM distribution within our galaxy, and in particular in
the vicinity of the Earth. In the “standard halo model,” the velocity distribution
of the (single-component) DM in the halo frame is everywhere locally described
by an isotropic Maxwell-Boltzmann distribution with an escape velocity cutoff:

fDM(v) ∝ exp

(
−|v|

2

v2
0

)
×Θ(vesc − |v|), (1.35)

where v0 = (2T/m)1/2 = vrot, and Θ is the step function, as motivated by the
virial theorem and N -body simulations. The velocity parameters, usually taken
as vrot ≈ 220 km/s and vesc ≈ 550 km/s, along with a local DM density of
ρDM ≈ 0.3 GeV/cm3, completes this description of the DM distribution in the
halo frame [134]. Due to the movement of the solar system through the halo, and
the movement of the Earth around the Sun, in the Earth frame this distribution
is boosted by a time-varying bulk velocity

|vwind| ≈
[
232 + 15 cos

(
2π

(t− tyr0 )

Tyr

)]
km/s, (1.36)

where tyr0 ≈ 153 days (June 2nd); this is termed the “DM wind.” We note that the
standard halo model description is obviously a simplification and may not pro-
vide an adequate description even under the CDM paradigm. For example, re-
cent CDM simulations including baryonic matter suggest significant departures
from this model in Milky-Way-like simulated galaxies at solar radius [135–137].
Furthermore, as we will emphasise in CHAPTER 7, in multi-component scenar-
ios the standard halo model is in general not at all applicable. This should be
kept in mind when interpreting null results from direct detection experiments,
which are often presented as exclusion regions in parameter space assuming the
standard halo model.

From the local description of the DM distribution (Equations (1.35) and (1.36)
in the standard halo model), and the differential scattering rate dσ/dER of a given
DM candidate with the target material, one can make predictions for the total
scattering rate in direct detection experiments. If any possible spatial depen-
dence and the rotational velocity of the Earth are ignored,

dR

dER
(ER, t) = NT

ρDM

mDM

∫

|v|>vmin

dσ

dER
(ER, |v|) fDM(v, t) |v| d3v , (1.37)

where vmin(ER) is the minimum DM velocity for a recoil energy ER.
Currently, there is a huge experimental effort aimed at directly detecting DM

via keV recoil scatterings off a target material (see e.g. Ref. [138] for a review).
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We will be interested in experiments which detect scatterings via the scintilla-
tion photons resulting from the de-excitation of an excited target nucleus, or via
the direct ionisation of the target atoms themselves. These experiments include
those with liquid xenon (e.g. XENON100 [139], XMASS [140], LUX [141]) and
scintillator crystal (e.g. DAMA/LIBRA [142]) target materials. Two major direct
detection methods are currently sensitive. First, a pure sensitivity search above
background for a signal with a differential event rate matching that expected
of DM. The liquid xenon experiments have set particularly stringent bounds on
spin-independent DM-nucleon scattering for mDM & 1 GeV using this method.
Second, the annual modulation signal due to the velocity modulation in Equa-
tion (1.36) can in principle be used to discriminate signal and background. The
DAMA and DAMA/LIBRA experiments have long claimed significant obser-
vation of DM scattering via this signature [143, 144]. The claimed signal could
come from nuclear or electron scattering, since the experiment cannot discrimi-
nate between the two, although an interpretation in terms of nuclear scattering is
disfavoured by results from the xenon experiments. Even so, the signal could in
principle arise from some unknown seasonally modulating terrestrial effect, such
is the ambiguity in the annual modulation signature. Recently, the XENON100
and XMASS xenon experiments have also searched for the annual modulation
signature, with some hints of a positive signal [145, 146]. In CHAPTER 7 we de-
scribe an interesting class of models which might be able to accommodate the
DAMA signal via electron recoils, and which makes the distinctive prediction
for an additional sidereally modulating signal.

1.2 THESIS Outline

In Section 1.1 we introduced six major unanswered theoreti-
cal/phenomenological questions of the SM. Each of these questions non-trivially
constrain and/or demand BSM particle physics. For example, measurements of
the newly discovered Higgs boson require that electroweak symmetry breaking
is largely SM-like, and naturalness requires that no (trivial) heavy physics which
strongly couples to the Higgs boson should exist. Solutions to the phenomeno-
logical problems of neutrino masses, the BAU, the strong CP problem, and dark
matter seem to demand new fields (with particular properties) in addition to the
SM content. In this THESIS we present a collection of original bodies of work
which follow the “bottom-up” philosophy in studying these six questions: we
explore the phenomenological implications of minimal extensions to the already
existing SM framework, constrained to explain the aforementioned problems
and/or to satisfy theoretical/experimental bounds.

In CHAPTER 2: HIGGS SECTOR we study the simplest extension of the SM
scalar sector by a real singlet scalar field. We examine the existing constraints
when the additional mass eigenstate is very light, 100 MeV < ms < mh/2, and
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identify regions of parameter space which experiments at the LHC are uniquely
sensitive to. In particular the opportunity to search for low background dis-
placed decay signatures is explored.

In CHAPTER 3: NATURALNESS we will attempt a balanced discussion of the
Higgs mass naturalness problem that might be introduced when perturbative
new physics is added to the SM. As in Section 1.1.2 we distinguish this poten-
tial problem from any hierarchy problem, or the potential naturalness problem
induced by gravity. We derive a Higgs mass sensitivity measure from Bayesian
probability theory and use it to constrain the masses of various fermionic and
scalar gauge multiplets.

In CHAPTER 4: NEUTRINO MASS we outline a systematic search strategy for
TeV scale radiative Majorana neutrino mass mechanisms at the LHC. A detailed
collider study of a one-loop realisation is performed.

In CHAPTER 5: BARYON ASYMMETRY OF THE UNIVERSE we reconsider the
three-flavour Type I seesaw model for neutrino masses and the generation of the
BAU via hierarchical leptogenesis. We present a proof that the minimal scenario
cannot provide a natural explanation, and list the simplest ways to avoid this
conclusion which already exist in the literature. We then describe a new solution
which can be accommodated with the addition of a second Higgs doublet.

In CHAPTER 6: STRONG CP PROBLEM we describe a very minimal model
which solves the strongCP problem and explains neutrino masses, the BAU, and
dark matter, without introducing a naturalness problem. This model serves as
an existence proof that weakly coupled high scale physics can naturally explain
phenomenological shortcomings of the SM, and rounds out a model building
programme which began in CHAPTER 5.

Lastly, in CHAPTER 7: DARK MATTER we consider a scenario in which the
DM exists mostly in the form of a plasma in spiral galaxies like the Milky Way,
and describe the unique phenomenological implications for direct detection. The
unique prediction for a signal which modulates with sidereal day is emphasised.

We conclude in CHAPTER 8.
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2 Higgs Sector

This Chapter is based on the publications “Phenomenology of a very light scalar

(100 MeV < mh < 10 GeV) mixing with the SM Higgs,” written in collaboration

with Robert Foot and Raymond R. Volkas [1], and “Constraining portals with dis-

placed Higgs decay searches at the LHC,” which was single authored [4].

Measurements following up on the newly discovered [30, 31] Higgs boson,
h, at mh ≈ 125 GeV, have revealed a CP-even scalar particle fully consistent with
a SM Higgs [33, 147]. This appears to confirm the basic picture of electroweak
symmetry breaking. That is, SU(2) × U(1) gauge symmetry is spontaneously
broken by the non-trivial vacuum of an elementary scalar field. This raises an
obvious question: is the Higgs the only scalar?

In this Chapter we investigate the phenomenological implications of extend-
ing the SM by a very light real singlet scalar s, with mass 100 MeV < ms <

mh/2 GeV, which mixes with the SM Higgs. We point out apparently unresolved
uncertainties in the branching ratios and lifetime of s in a crucial region of pa-
rameter space for LHC phenomenology. Bounds from LEP, meson decays, and
fixed target experiments are reviewed. We then examine prospects at the LHC,
grouped by production mechanism:

• Production at parton-level via those mechanisms made familiar by the SM
Higgs, i.e. gluon fusion, vector boson fusion, V s and tt̄s. We demonstrate
that searches for subdominant V s production have the best sensitivity at
the LHC for ms & mB and that future bounds in this region could conceiv-
ably compete with those of LEP.

• Production via meson decay, which is the dominant production mechanism
at the LHC for ms . mB . We calculate the differential pT spectrum of s
scalars originating from B mesons and predict up to thousands of moder-
ate (triggerable) pT displaced dimuons at ATLAS/CMS and at LHCb.

• Production via Higgs decay h → ss. We examine the region of parameter
space where s is long-lived (cτs & 1 mm). Here, the LHC experiments
are particularly sensitive via searches for the low background signature of
back-to-back pairs of displaced narrow hadronic jets and/or lepton jets.
We demonstrate that it is possible to reinterpret existing searches using a
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Monte Carlo method utilising efficiency tables. We emphasise the impor-
tance for LHC collaborations to include a complete set of multidimensional
efficiency tables in future displaced work.

2.1 A very light real singlet scalar

2.1.1 Motivation

In general, if the SM is extended by a real singlet scalar S, then the SM Higgs
doublet state φ′0 ≡ φ− 〈φ〉 and S′ ≡ S − 〈S〉 will mix to form mass eigenstates h
and s,

(
h

s

)
=

(
cos ρ − sin ρ

sin ρ cos ρ

)(
φ′0
S′

)
, (2.1)

where ρ is a mixing angle and h is to be identified with the observed SM-like
Higgs state. Such a setup is of phenomenological interest as a benchmark simply
because it is the minimal extension to the SM scalar sector. We will study the di-
verse phenomenological implications of a very light s, with a mass in the region
100 MeV < ms < mh/2.

In addition to the minimality consideration, a very light s is motivated
by various BSM scenarios. For example: (1) Realistic perturbative Coleman-
Weinberg [148] models with classical scale invariance broken radiatively and
spontaneously generally feature at least one additional (real) singlet scalar [e.g.
149–157]. If scale invariance is broken at the electroweak scale, by the vev 〈S〉,
then a GeV scale s (the pseudo-Goldstone boson of spontaneously broken scale
invariance) is predicted [158, 159]. (2) The Bezrukov & Gorbunov [160, 161] class
of inflationary models feature a light scalar. (3) More generally, some hidden
sector (which may or may not contain dark matter) might exist which couples
to the singlet scalar. In this case a “Higgs portal” quartic interaction term then
facilitates interactions involving the two sectors. Depending on the mass of the
hidden states, invisible decays of s and/or h could be allowed, and this could
serve as a probe of the hidden sector.

To make some explicit connection to the theory space, we will consider two
benchmark scenarios throughout our discussion.

• The Foot & Kobakhidze [159] benchmark, motivated by a scale invariant
model in which the cosmological constant (a finite and calculable param-
eter in these models [162]) is set to be small, consistent with observations.
This in turn implies that the effective couplings Hss and Hsss are very
small and the mass of s and the angle ρ are correlated:

sin ρ ∼ 4× 10−2
( ms

GeV

)
. (2.2)
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• The Bezrukov & Gorbunov [160, 161] benchmark, motivated by cosmolog-
ical inflation. In this set of models, constraints from primordial density
perturbations imply the relation

1× 10−4

(
GeV
ms

)
. sin ρ . 1× 10−3

(
GeV
ms

)
. (2.3)

Plainly, this defines a band in the (ms, sin ρ) parameter space.

2.1.2 Model

Extending the SM by an extra real singlet scalar field S, the SM potential can be
written generally as

V = +µ2φ†φ+ λφ†φφ†φ+ ζφ†φS2 + ξφ†φS + µ2
sS

2 + λsS
4 + αS + βS3 , (2.4)

where φ is the Higgs field. The limits α, β, ξ → 0 and ζ, ξ → 0 are technically
natural. Once φ develops a non-zero vev, the cubic term ξφ†φS induces mixing
as in Equation (2.1). If µ2

s > 0, then to first order in α, β, ξ, and ζ, the mixing ρ
and the effective hss coupling κ are given by

tan ρ =
ξv

|m2
h −m2

s|
, κ = ζv, (2.5)

where v ≈ 246 GeV. Terms odd in S can be forbidden by demanding some sym-
metry, for example Z2 (S → −S), or classical scale invariance. Then s = S is
stable and a dark matter candidate [163] unless µ2

s < 0 and an effective cubic
term is generated by S acquiring a non-zero vev 〈S〉 = vs. In this case, at tree-
level and to leading order in ζ,

tan ρ =
ζvvs

|m2
h − 2m2

s|
= ζv

ms√
λs|m2

h − 2m2
s|
, κ = ζv

m2
h + 4m2

s

m2
h − 2m2

s

. (2.6)

This is the simplest “Higgs portal” model [132, 133].
The decay width of the Higgs to light scalars is

Γ(h→ ss) =
κ2

32πmh

√
1− 4m2

s

m2
h

. (2.7)

In the simplest Higgs portal model this width is a function of ms, ρ, and λs;
the perturbativity requirement λs < 4π implies ρ2 & 2 × 10−9

(
ms

GeV

)2 Br(h→ss)
0.1 .

However, no such connection exists in the general case of Equation (2.5), and the
mass ms and mixing ρ can be considered completely independently of Br(h →
ss).

Our approach in this Chapter is to explore generally the (ms, sin ρ) parameter
space. The very light scalar s decays only to SM particles with a vertex factor



28 Chapter 2. Higgs Sector

sin ρ compared to the SM Higgs. The production cross section (in all channels
we consider) is proportional to sin2 ρ, the branching fractions are independent of
sin2 ρ, and the lifetime is inversely proportional to sin2 ρ,

cτs =
cτSM

sin2 ρ
, (2.8)

where cτSM is the mean decay length of a scalar of mass ms with exactly SM
Higgs couplings, i.e. s when sin2 ρ = 1. Evidently s becomes long-lived as
sin2 ρ → 0. We also note that, in extended models where s decays also into
invisible exotic states, one may repeat our analysis in the following way: the
production cross section is unaffected, the branching fraction to SM final states
is altered by a generally mass-dependent quantity BSM ≡ Br(h → XSM ) ≤ 1,
and the lifetime becomes shorter by a factor BSM . The branching to invisible
states must be taken into account for the invisible searches considered. We take
BSM = 1 and comment on the BSM < 1 case when appropriate.

2.2 Bounds

2.2.1 Branchings and lifetime

Before discussing bounds we must determine the branching fractions and life-
time for s as a function of ms. For sin2 ρ = 1, s is a hypothetical SM Higgs boson
of mass ms. We may therefore appeal to the literature on the SM Higgs before it
was ruled out below 2mb [164].

The decay width to leptons is given by

Γ(s→ l+l−) = sin2 ρ× m2
lms

8πv2
β3
l , (2.9)

where βl =
(
1− 4m2

l /m
2
s

) 1
2 , and v ≈ 246 GeV. For ms < 2mµ ≈ 210 MeV, s de-

cays almost entirely to e+e−. Above 2mµ the decay to µ+µ− takes over until the
2mπ ≈ 280 MeV threshold, where the ratio Rπµ = Γ(s → ππ)/Γ(s → µµ) was
historically the subject of much debate [164–171]. In Figure 2.1 we reproduce a se-
lection of results to illustrate the large uncertainty in this mass range attributable
to resonant ππ enhancements. We note that Ref. [171] is the most recent paper,
that we are aware of, that is dedicated to the subject. Above the 2mK ≈ 1 GeV
threshold the decay to KK must be taken into account, and has been by a selec-
tion of these authors [169–171]. Above the 2mη ≈ 1.1 GeV threshold we know
of no reliable prediction. Somewhere above 2 GeV, where the energy involved in
the decay is much larger than the typical quark binding energy, the perturbative
spectator approach may be utilised (we call the strange quark qs here to avoid
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FIGURE 2.1: Branching fraction for a light scalar s decaying into
muons and its mean decay length for sin2 ρ = 1 (see Equa-
tion (2.8)) as predicted by a number of models (see text) [164, 165,
168, 170, 171]. The Duchovni et al. prediction is an application of

the Raby & West result [167].

confusion with s) [164]:

Γµµ : Γqsq̄s : Γcc̄ : Γττ : Γgg ≈ m2
µβ

3
µ : 3m2

qsβ
3
K : 3m2

cβ
3
D

: m2
τβ

3
τ :

αs(ms)
2m2

s

9π2

∣∣∣∣∣
∑

q

I

(
m2
q

m2
s

)∣∣∣∣∣

2

, (2.10)

where

I(z) = 3

[
2z + 2z(1− 4z)

(
sin−1 1√

4z

)2
]
. (2.11)

In Figure 2.1 we plot this result alongside that given in the classic text “The Higgs
Hunter’s Guide” [164].1

1Ref. [164] set mu = md = 40 MeV, mqs = 450 MeV, and αs = 0.15π in order to match the
result of Ref. [165] at ms ≈ 1.5 GeV; this is no longer well-motivated. We use mqs = 100 MeV and
run αs according to Figure 17 of Ref. [172]
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FIGURE 2.2: Branching fractions (solid, left axis) and mean decay
length (dashed, right axis) for the very light scalar s, adopting the
most recent calculation [171] forRπµ below 1.4 GeV and smoothly
interpolating to the spectator result above 2 GeV. Here X = (ee,
µµ, light hadrons, ττ , bb) in solid (black, blue, purple, green, red).

For definiteness we henceforth adopt the most recent calculation [171] below
1.4 GeV and smoothly interpolate to the spectator result above 2 GeV, with the
result shown graphically in Figure 2.2. We acknowledge the apparently unre-
solved large uncertainties between 2mπ < ms . 4 GeV. It would be interesting
to know whether a more sophisticated approach is now possible which would
provide new insight. A new result would be useful since, in this region, the
mean decay length plays an important role in LHC phenomenology.

We will now determine the experimentally excluded regions in (ms, sin ρ)

parameter space arising from collider, B factory, and beam dump experiments.
The results are summarised in Figure 2.4, presented at the end of this subsection.
The reader should keep in mind that this Figure assumes the aforementioned
branching fractions and lifetimes in the uncertain region 2mπ < ms . 4 GeV;
exclusion regions which are independent of these assumptions can be found in
Ref. [1].

2.2.2 LEP

Constraints from the LEP collider experiment arise from the Bjorken process
e+e− → Z → Z∗s.

Below ms = 2mµ, the unboosted mean decay length of s is ∼ 1 cm / sin2 ρ.
With a typical momentum of ∼ 8 GeV [173] at this mass scale, s escapes the LEP
detector and the appropriate bound to apply is that for an invisibly decaying
scalar. The 95% C.L. bound is sin ρ . 5 × 10−2 [174, 175]. The limits given in
Refs. [174–177] would also apply to scalars with BSM < 1 for ms > 2mµ.
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Somewhere not far above ms = 2mµ, prompt searches become relevant.2 The
best constraints are from the LEP1 searches of ALEPH and L3 [174, 175]. The
95% C.L. bounds are reproduce in Figure 2.4 as green dashed and green solid
lines, respectively. For ms & 30 GeV, the combined LEP analysis sets the best
limit [24]. These bounds are the best available for ms > (mB −mK) ≈ 4.8 GeV,
and are enough to exclude the Foot & Kobakhidze benchmark for ms & mB .

We would like to add a short note on these results. L3 considered only
hadronic s decays in the sZ∗ → sνν, se+e−, sµ+µ− channels for ms > 4 GeV.
ALEPH used sZ∗ → sνν, with s→ hadronic or s→ two/four charged prongs in the
region 2mµ < ms < 2mb. Figure 5.5 in the Ref. [178] shows that, for ms > 5 GeV,
the efficiency of the charged prong search falls and the hadronic search domi-
nates. Therefore, in this region, the LEP limits are unique in that the limit is set
by the hadronic decay of s. This is attributable to the comparatively low hadronic
background at an e+e− collider and the fact that the hadrons appear as a monojet
due to the boost of swhenms . 15 GeV. The LEP limits forms < 2mb could have
been significantly improved beyond LEP1. The L3 search analysed 114 pb−1 of
data, while the full LEP dataset is ∼ 3000 pb−1. As well, with

√
s > (mZ + ms),

production of a realZs pair becomes significant and background falls away [179].
Instead, analyses focused on the search for the SM Higgs above the bb̄ threshold
[24]. We can only surmise that, without motivation, this area of parameter space
was overlooked.

2.2.3 Meson decays

The effective q̄sds (b̄qss) vertex contributing to kaon (B meson) decay is obtained
by integrating out the top-W loop from the diagram shown in Figure 2.3. This
effective vertex leads to the decays K → πs → πµ+µ− and B → Ks → Kµ+µ−,
with branchings [180, 181]

Br(K+ → π+s) ≈ sin2 ρ× 0.002
2|~ps|
mK

, (2.12)

Br(B+ → K+s) ≈ sin2 ρ× 0.5
2|~ps|
mB
F2
K(ms), (2.13)

where |~ps| is given by two-body kinematics and the form factor F2
K(ms) =(

1−m2
s/38 GeV2

)−1 [182].
In applying experimental constraints from these decays one must properly

take into account the lifetime of s; either s decays “promptly enough” so that the
muons are reconstructed with the associated meson, or it does not and the exper-
iment sees missing momentum. In the following, we take into account lifetime
by requiring s to decay within a certain (experiment-dependent) distance of the
meson decay. For simplicity, and because we only expect a small correction, we

2We do not labour on exactly when this occurs, since we find that meson decays set the best
limits for ms < (mB −mK).
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FIGURE 2.3: Kaon, B meson, and radiative Υ decays involving s.

do not impose any angular constraints. We stress that, where lifetime has an ef-
fect, these can only be considered as rough estimates. As discussed in Section 2.2,
there is large uncertainty in the lifetime of s above the ππ threshold. We find that
the dependence of the following bounds on s lifetime above this threshold is
small, and negligible for ms > 400 MeV with the existing experimental reach.

Kaon decays

The NA48/2 collaboration has measured Br(K± → π±µ+µ−) = (9.62± 0.25)×
10−8 [183], in good agreement with the theoretical predictions (8.7± 2.8)× 10−8

and (12 ± 3) × 10−8 [184, 185]. To derive limits on sin2 ρ we assume that a
πµµ vertex is reconstructed if the s → µ+µ− decay occurs within the longitu-
dinal vertex resolution, σz ≈ 100 cm [186], of the kaon decay, and not recon-
structed otherwise. A conservative limit on additive new physics is obtained
by taking the difference between the low end of SM theoretical predictions,
Br(K± → π±µ+µ−)theory & 6× 10−8, and the experimental measurement:

Br(K → πs)×Br(s→ µ+µ−)×
(

1− exp

[ −σz
γβcτ

])
. 4× 10−8, (2.14)

where the bracketed term is the probability that a particle with lifetime τ , speed
βc and boost γ decays within a distance σz , with γβ ≈ 120 inherited from the
kaon with momentum 60 GeV. Note that both Br(K → πs) and cτ depend on
sin ρ, so that this inequality may be used to constrain sin ρ. The obtained con-
straint is given by the solid orange curve in Figure 2.4.

The E949 collaboration has published a 90% C.L. upper limit on the two-body
decay Br(K± → π±X) × Br(X → invisible) that is better than 10−9 between
170 MeV and 240 MeV [187]. The limit was derived assuming the decay of X
was detected and vetoed with 100% efficiency if X decayed within the outer
radius of the barrel veto, lBV ≈ 145 cm [188]. We therefore impose the following:

Br(K → πs)×
∫ π

0

sin θdθ

2
exp

[−lBV
sin θ

1

γβcτ

]
< E949 limit, (2.15)
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where γβ ∼ 1 is determined using two-body kinematics assuming a stationary
kaon. This bound applies where s escapes the detector (it also applies to invisibly
decaying scalars if BSM < 1), resulting in the exclusion region depicted by the
orange dashed line in Figure 2.4. Notice that, for ms > 2mµ, this constraint
results in a non-trivial excluded region in (ms, sin ρ) parameter space. This is
because the invisible yield falls with decreasing sin ρ, thereby making the total
cross section smaller, or with increasing sin ρ, thereby making the decay more
prompt.

B meson decays

The LHCb collaboration has measured Br(B+ → K+µ+µ−) = (4.36 ± 0.15 ±
0.18)×10−7 [189], the most accurate measurement to date and in good agreement
with the theoretical prediction of (3.5± 1.2)× 10−7 [190]. However, here we will
use the results from B-factories [191–194], since the nature of an e+e− collider
makes it easier to predict the boost factor, and it is convenient to use the same
experiment to constrain both the prompt and long-lived case:

Br(B+ → K+µ+µ−) =





(5.3+0.8
−0.7 ± 0.3)× 10−7 (Belle)

(4.1+1.6
−1.5 ± 0.2)× 10−7 (BaBar)

,

≈ (5.0± 0.8)× 10−7 (combined) (2.16)

Br(B+ → K+νν̄) <





1.4× 10−5 (Belle)

1.3× 10−5 (BaBar)
, (2.17)

where the combined visible decay bound is obtained by first adding statistical
and systematic uncertainties for each measurement in quadrature and then com-
bining the measurements in the usual way assuming they are independent un-
biased estimators of Br(B+ → K+µ+µ−). A conservative limit on additive new
physics is obtained by taking the difference between the low end of SM theoret-
ical predictions, Br(B+ → K+µ+µ−)theory & 2.3 × 10−7, and the experimental
measurement:

Br(B → Ks)×Br(s→ µ+µ−)

×
∫ π

0

sin θdθ

2

(
1− exp

[−lxy
sin θ

1

γβcτ

])
. 3× 10−7, (2.18)

Br(B → Ks)

×
∫ π

0

sin θdθ

2
exp

[−lxy
sin θ

1

γβcτ

]
< 1.4× 10−5, (2.19)

where we follow Ref. [181] in taking lxy ≈ 25 cm as the maximum reconstructed
transverse decay distance from the beampipe, and γβ ≈ mB/(2ms) is dominated
by the energy inherited from the B decay in the region ms < 400 MeV. The
resulting bounds are shown in red in Figure 2.4. We do not set limits in the
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invariant mass regions surrounding J/ψ and ψ′ since the experiments vetoed
such muons to remove B → J/ψX,ψ′X → µ+µ−X background.

The visible B meson decay bound is stronger than the kaon bound since
K → πs is CKM-suppressed compared to B → Ks. In the invisible case this
suppression is overcome by the O(10−4) stronger bound resulting from a dedi-
cated two-body kaon decay search. These bounds are enough to exclude the Foot
& Kobakhidze benchmark for 100 MeV < ms < (mB −mK) ≈ 4.8 GeV. Indeed,
for this benchmark to be viable, it must be that ms � 100 MeV.

Visible decay bounds could be stronger if dedicated searches in the dimuon
invariant mass spectrum were performed. Such a search was carried out in
the B0 → K∗0X, (K∗0 → K+π−, X → µ+µ−) channel at Belle in the region
212 MeV< mX < 300 MeV [195]. No excess was found and an upper limit on the
branching ratio ofO(10−8) was set. Using this upper limit and the expression for
Br(B → K∗s) in Ref. [181] we derive a limit similarly to Equation (2.18). This
limit is given by the maroon line in Figure 2.4.

In our Ref. [1], we noted that both the B-factories and LHCb could con-
ceivably improve on these B decay bounds by exploiting s lifetime for back-
ground rejection when sin ρ . 10−3. The mean decay length for s in the region
above the ππ threshold ranges between 10−9 cm / sin2 ρ and 10−5 cm / sin2 ρ

(see Figure 2.2). These mean decay lengths are to be compared with those for B
mesons, cτB ≈ 5 × 10−2 cm, for which LHCb for example is designed to mea-
sure a displaced vertex. The lifetime of s must be treated carefully at LHCb
due to the large boost factors expected. We encouraged, as did Refs. [161, 181,
196] for the B-factories and Ref. [197] for LHCb, dedicated displaced searches.
We also estimated the reach of these kind of searches at the LHC, to be pre-
sented in Section 2.4. Encouragingly, after our Ref. [1] was published, both
BaBar and LHCb performed such dedicated searches for the displaced decays
of very light scalars produced in B decays [198, 199]. The regions of parameter
space excluded by these searches are shown in Figure 2.4: the BaBar limit (grey)
is reinterpreted from Figure 3 of Ref. [198] (1 cm ≤ cτs ≤ 100 cm) assuming
Br(B → sXs) ≈ 5.6 sin2 ρ

(
1−m2

s/m
2
B

)2 [166]; and the LHCb limit (magenta)
is reinterpreted from Figure 4 of Ref. [199] assuming the branching expression
found in Ref. [181]. It is clear from the improvement in the bound that exploiting
the displaced phenomenology in this region of parameter space is indeed a very
powerful technique.

Upsilon decays

Limits also arise from the radiative Υ(nS) → γs decay shown in Figure 2.3.
The BaBar collaboration has searched in this channel for light bosons decay-
ing to µ+µ−, τ+τ−, hadrons, or escaping invisibly [200–203]. We reproduce the
limits from dimuon and ditau decays [200, 201] in Figure 2.4 in solid purple
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and dashed purple, respectively, assuming the QCD correction factor FQCD dis-
cussed therein is equal to unity. Ref. [204] discusses limits in light of CLEO data;
for massesms < 2mτ , scalar decays to pions and kaons can be more constraining
than decays to muons (see Figure 14 therein), though one must keep in mind the
significant uncertainties in branching fractions. In any case, B meson decays are
easily more constraining for ms . (mB − mK) ≈ 4.8 GeV. For ms & 4.8 GeV,
ditau limits give the best meson decay bound on sin ρ since Br(s → τ+τ−) is
about m2

τ/m
2
µ ≈ 290 times larger than Br(s→ µ+µ−). Even so, these bounds do

not yet challenge the LEP limit of sin ρ . 10−1.

2.2.4 Fixed Target

Our scalar s can be produced either directly (through gluon fusion) or indirectly
(via meson decays) in fixed target experiments. The dominant process depends
on the centre of mass energy

√
s and ms. Meson decays dominate in the experi-

ment we will consider below.
Two important regions of parameter space may be identified for indirect pro-

duction: below the kaon threshold, ms < (mK − mπ) ≈ 360 MeV, where kaon
decays dominate, and below the B meson threshold, 360 MeV . ms . mB ,
where B meson decays dominate. We note that there is a small region where η
decays can be important, but D meson decays are sufficiently CKM-suppressed
to ignore. Some discussion and analysis may be found in Ref. [160].

As an example, following Ref. [160], we look at the bounds set by the
CHARM Collaboration [205]. In this experiment, a 400 GeV proton beam was
dumped into a thick copper target (

√
s ≈

√
2Epmp ≈ 27.4 GeV) and the decay

of a long-lived axion to photons, electrons, or muons was searched for in a 35 m
long decay region placed 480 m from the target. Zero decays were observed.

The total number of scalars intersecting the solid angle covered by the detec-
tor, Ns, is related to the number of decays in the decay region, Ndec, by

Ndec ≈ Ns ×
[
Br(s→ e+e−) +Br(s→ µ+µ−)

]

×
[
− exp

( −L2

γβcτ

)
+ exp

( −L1

γβcτ

)]
, (2.20)

where γβms ∼ 10 GeV, L1 = L2 − 35 m = 480 m, and Ns ≈ 2.9 × 1017 × σs/σπ0

is normalised to the neutral pion yield [205]. We adopt σπ0 ≈ σppMpp/3, where
Mpp is the average hadron multiplicity and σpp is the proton-proton cross section
[160]. The s production cross section is dominated by kaon decays:

σs ≈ σppMpp




χs × 1
2Br(K

+ → π+s)

+χs × 1
4Br(KL → π0s)

+χb ×Br(B → s+X)


 , (2.21)
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where χs = 1/7, χb = 3 × 10−8, Br(KL → π0s) = Br(K+ → π+s) ×
Γ(K+)/Γ(KL), and [166]

Br(B → s+X) ≈ sin2 ρ× 0.26

(
mt

mW

)4(
1− m2

s

m2
B

)2

. (2.22)

Since the CHARM experiment observed zero decays, we may constrain Ndec

at 90% C.L. to be less than 2.3 (the solution of 0.1 = λke−λ/k!|k=0). Our result
is shown in Figure 2.4 by the blue curve, with the enclosed region being ex-
cluded. Observe that scalar masses 100 MeV < ms < 280 MeV are ruled out
for the Bezrukov & Gorbunov model by this analysis; the K → π + invisible

and CHARM bounds also extend this exclusion substantially below 100 MeV,
although it is not shown in Figure 2.4.

The reach of the CHARM experiment is testament to the enormous produc-
tion cross section of mesons in hadron collisions, as well as the exploitation of
the long s lifetime to remove all background. These two points, as we will see,
are important for LHC phenomenology when ms . mB .

Other beam dump experiments exist which may complement the CHARM
bound due to, in particular, differing beam energy and detector position (for a
partial list see Refs. [206–210]). These include fixed target neutrino experiments,
which have recently been considered as possibilities to probe GeV scale portals
(see e.g. Refs. [211–214]). It is beyond the scope of this study to analyse these
experiments in detail. However, we note that it does not appear that any of
these experiments has probed the area above the eta meson threshold for s, be-
cause of insufficient direct or indirect production at given

√
s (see Figure 30 of

Ref. [215] for B meson production rates) and/or the distance to the detector be-
ing too great. Ideally, high luminosity (and acceptance) fixed target experiments
with energy

√
s & 20 GeV and a detector placed at a distance O(1–10 m) would

be needed to probe parameter space below theB decay bound forms & 360 MeV.
Just such an experiment — the SHIP experiment — is proposed for implementa-
tion at the CERN Super Proton Synchroton [216], with the physics case made in
Ref. [217].

2.3 Production at parton-level

For ms & mB , s is dominantly produced in the ways made familiar by the SM
Higgs: gluon fusion, vector boson fusion, V s, and tt̄s. Table 2.1 shows the
production cross sections for an example scalar of mass 5 GeV and sin2 ρ =

1. Cross sections were obtained using the HIGGSEFFECTIVE model in MAD-
GRAPH/MADEVENT5 V1.5.9 [26] equipped with CTEQ6L1 parton distribution
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Parton-level σ(pp→ s+X) (pb) αideal
process

√
s = 7 TeV

√
s = 13 TeV

√
s = 7 TeV

gg → s ∼ 770 ∼ 1300 ∼ 5× 10−4

Ws 170 360 1.7× 10−3

Zs 70 150 2.3× 10−3

tt̄s 5.5 27 2.4× 10−2

qq′s 0.87 1.9 1.3× 10−1

TABLE 2.1: Cross sections contributing to s production at the
LHC for ms = 5 GeV and sin2 ρ = 1. Also shown is the accep-

tance factor αideal for a CMS dimuon search (see text).

functions [218], except in the case of gluon fusion where we used [164]

dσ

dy
(pp→ h) =

π2

8m3
h

Γ(h→ gg)× gp
(
mhe

y

√
s
,m2

h

)
× gp

(
mhe

−y
√
s

,m2
h

)
, (2.23)

where gp(x,Q2) is the gluon distribution function in the proton evaluated at mo-
mentum fraction x and scale Q2, and we integrated over all possible rapidities y
using CTEQ5M parton distribution functions [219].3 Table 2.1 reveals that gluon
fusion is dominant, but V s production is comparable. Such associated produc-
tion is important from an experimental point of view; trigger limitations and
backgrounds affect the gluon fusion channel much more than for V s or tt̄s. In
the next two subsections we will demonstrate that the V s channel is in fact the
most sensitive search channel at the LHC for ms & mB .

2.3.1 Inclusive dimuon search

Both ATLAS and CMS have performed a search for a light pseudoscalar, a,
produced via gluon fusion and decaying to two muons [220, 221]. The CMS
search analysed the mass range between 5.5 and 8.8 GeV and between 11.5 and
14 GeV, avoiding the Υ resonances. They provide a 95% C.L. upper limit on
σ(pp→ a)×Br(a→ µ+µ−). The production cross section of s through the gluon
fusion mechanism is given by Equation (2.23). To constrain s we assume that the
acceptance in the CMS analysis is the same for our scalar as for the pseudoscalar,
and consider only the dominant production of s by gluon fusion. We then apply
the σ(pp → a) × Br(a → µ+µ−) limit, evaluating Equation (2.23) by integrating
over all possible rapidities using CTEQ5M parton distribution functions [219].
The result is a limit of sin2 ρ × Br(h → µ+µ−) . 5 × 10−3, which is comparable
to the limit from Υ→ γs→ γµ+µ− decays, but far from that of LEP.

The 1.3 fb−1 of data analysed by CMS was collected with the opposite-sign
dimuon trigger, requiring pµµT > 6 GeV, and mµµ > 5.5 GeV with a prescale
factor of 2. These low pT , low invariant mass dimuons are evidently plentiful
at the LHC. Thus, as the luminosity and centre-of-mass energy are increased the

3MADGRAPH/MADEVENT5 returns a value for gluon fusion of 670 pb in the
√
s = 7 TeV case,

but breaks at
√
s = 13 TeV.
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trigger thresholds and/or the prescale factor must increase. In short, we are
background-restricted and trigger-restricted in the region that maximises signal.

So what happens if we demand high dimuon pT , so as to minimise back-
ground and avoid trigger-dependence? CMS have performed a search for light
resonances in the dimuon spectrum with 35 pb−1 of data collected at

√
s = 7 TeV

[222]. Atms = 5 GeV, they set a 95% C.L. limit on αideal×σ(pp→ s+X)×Br(s→
µ+µ−) < 0.1 pb, where αideal is an acceptance factor calculated in your favourite
event generator by requiring

pµT > 15 GeV, pµµT > 80 GeV, |ηµ| < 0.9. (2.24)

Using MADGRAPH/MADEVENT5 we found αideal ≈ 1.1× 10−3 for ms = 5 GeV;
it is broken down by channel in Table 2.1. For the gluon fusion channel we sim-
ulated gg → gs at parton-level, the hard gluon being necessary to give s nec-
essary pT . Interestingly, every channel contributes comparable amounts to the
result of αideal × σ(pp → s + X) ≈ 1 × sin2 ρ pb. From this we can constrain
sin2 ρ × Br(s → µ+µ−) . 0.1 for ms = 5 GeV. Assuming that the bound will
scale as ∼ 1/

√
N , with 100 times more data — comparable in size to the CMS

pseudoscalar search — we expect a bound of O(10−2). Therefore we have not
gained anything on the pseudoscalar search bound by requiring high dimuon
pT . This is not surprising, since both the background and the dominant gluon
fusion production mechanism have muons recoiling only against initial-state ra-
diation, so that acceptance falls quickly with pµµT ; this is reflected by the small
value of αideal for gluon fusion in Table 2.1.

This leads us to consider instead triggering on associated activity so that
some background is removed and we may probe lower pT muons from the s
decay. In the next section, we demonstrate that bounds using the Ws channel,
triggering on a high pT lepton from the W decay, are potentially stronger than
the bounds obtained from an inclusive dimuon search.

2.3.2 Associated search

There are three associated search possibilities: Ws, Zs, and tt̄s. In this section
we consider the Ws → Wµ+µ− channel. Because it is in general difficult (and
not just for us) to model the combinatoric background, we appeal to the results
of experiment. ATLAS has performed a search in 4.6 fb−1 of

√
s = 7 TeV data for

J/ψ mesons produced in association with a W boson, where both decay muon-
ically [223]. The search amounts to a measurement of the “bump size” in the
dimuon invariant mass spectrum around the J/ψ mass of 3.1 GeV; they search
in the region 2.5 GeV < mµµ < 3.5 GeV. If s exists in this region we would expect
to see a bump above the combinatoric background. We aim to estimate the reach
of a Ws→ (µν)(µ+µ−) search using the background distribution therein.
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FIGURE 2.5: The obtained and expected 90% C.L. upper limit on
sin2 ρ × Br(s → µ+µ−) from the Ws channel using 4.6 fb−1 of√
s = 7 TeV data from ATLAS. Variance of the expected limit is

statistical only. Also shown is an approximation of the expected
limit using the 8 TeV dataset (see text) and the limit from Υ →

γs→ γµ+µ− decays.

We generate Ws (W → µν, s → µ+µ−) parton-level events in
√
s = 7 TeV pp

collisions for a scalar of mass 2.7 GeV with SM Higgs couplings using the HIG-
GSEFFECTIVE model in MADGRAPH/MADEVENT5. We performed the following
cuts to match those in Ref. [223]:

|ηµ| < 2.4, p
µ[1]
T > 25 GeV,

∆Rµµ > 0.3, p
µ[2]
T > 4 GeV,

/ET > 20 GeV, p
µ[3]
T >





3.5 GeV if |ηµ[3]| < 1.3

2.5 GeV if |ηµ[3]| > 1.3
, (2.25)

where the muons are ordered by pT . We subsequently performed the following
intermediate state cuts (which made little difference):

8.5 GeV < psT < 30 GeV, |ηs| < 2.1. (2.26)

The results allow us to estimate the number of signal events in 4.6 fb−1 of data
as ≈ 1× 104 × sin2 ρ×Br(s→ µ+µ−).

We take the combinatoric background and the number of observed events
from Figure 2 of Ref. [223], restricting ourselves to the regions 2.50 GeV <

mµµ < 2.94 GeV and 3.28 GeV < mµµ < 3.50 GeV to avoid the J/ψ peak, since
the peak is fitted to the data in this region. The signal is modelled as a gaussian
with width 50 MeV and mean ms.

Let µb and µs be the vectors representing the expected number of background
events and the expected number of signal events in k bins. Let y be the data
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vector. If we normalise µs to one event, then λµs represents a signal bump with
λ expected total events. The likelihood of the data is

L(y|λ) =

k∏

j=1

(µbj + λµsj)
yj exp

[
−(µbj + λµsj)

]
. (2.27)

Bayes’ theorem relates this likelihood to our degree of belief in λ:

p(λ|y) ∝ L(y|λ)π(λ), (2.28)

where π is the prior distribution for λ. If we take a flat prior,

π(λ) =





1 λ ≥ 0,

0 otherwise,
(2.29)

then the 90% C.L. upper limit on λ, λUL, is found by solving

0.90 =

∫ λUL
0 L(y|λ)∫∞
0 L(y|λ)

. (2.30)

Given the result for the number of signal events, the 90% C.L. upper limit on
sin2 ρ × Br(h → µ+µ−) is then ≈ 10−4λUL. We have performed this analysis for
a signal centred on each of 36 mh values spread 20 MeV apart.

The obtained upper limit is given by the red line in Figure 2.5. An expected
(±1σ/ ± 2σ stat.) limit was derived by performing the above analysis on 103

pseudodatasets generated assuming the background only hypothesis, ordering
them by the obtained λUL, and taking entry 500 (841

159/
977
023), shown by the dashed

line and bands in Figure 2.5. We also show the expected limit for the case with
five times the data, which serves as an approximation for the reach of the 8 TeV
dataset. One can see that the limit of O(10−3) is better than that set by radiative
upsilon decays. A similar limit would be expected for ms > mB , potentially
setting the best LHC limit on sin2 ρ× Br(s → µ+µ−) in that region. However, it
would still be an order of magnitude weaker than the LEP limit on sin ρ.

We note that the expected sensitivity of a Zs search, where both the Z and s

decay muonically, is expected to be higher because the extra lepton would help
to remove combinatoric background. In the future, a search for the production of
prompt J/ψ mesons in association with a Z boson may allow the above analysis
to be reperformed. The reach of the 13 TeV run is not clear because we do not
know the combinatoric background, but one could speculate that more data and
higher sensitivity in the Zs channel may be enough to compete with LEP bounds
of O(10−5).
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2.4 Production via meson decay

For ms . mB , the dominant s production mechanism at the LHC is indirect pro-
duction via the decay of mesons. The BB̄ cross section in 7 TeV (8/13 TeV) pp
collisions has been calculated as≈ 2.5×1011 fb (≈ 3/10×1011 fb) [215]. Then, for
example, using Equation (2.22), at sin ρ = 10−3 and

√
s = 7/8 TeV the s produc-

tion cross section is ∼ 106 fb, to be compared with ∼ 1 fb through gluon fusion.
This is also an area of parameter space where s lifetime becomes non-negligible.
In the following subsection we determine the differential pT spectrum for scalars
originating from B mesons at ATLAS/CMS and LHCb. We then show that up
to thousands of moderate (triggerable) pT displaced decays could have already
been produced at the LHC by very light scalars which are not yet excluded.4

2.4.1 Production via B decays

We developed an in-house simulation to calculate the differential cross section
dσs/dpT for scalars from B decays, given dσB/dpT and dσB/dyB for B mesons in
√
s = 7 TeV pp collisions at ATLAS/CMS and at LHCb. It works in the follow-

ing way: within loops over pBT and yB , there is a loop simulating Ndec isotropic
B decays to s, which are then boosted from the B frame to the lab frame given
pBT and yB , rejected to a rejection bin in a histogram if they fall outside the an-
gular acceptance, or else psT is measured and we add f(pBT )f(yB)/Ndec to the
appropriate psT bin in a histogram, where f(pBT ) and f(yB) define the discrete
probability distributions for the transverse momentum and rapidity of the B

mesons. The histogram (which should now have unit area) is then normalised
to Br(B → s + X) ×

∫
dσB
dpBT

dpBT . We infer f(pBT ) from the fixed-order-next-to-
leading-logarithm (FONLL) predictions in Refs. [224–226]; this amounts to creat-
ing a probability density function by normalising dσB/dpBT to unity over a chosen
pT range and then discretising to allow for numerical integration. The dσB/dpBT
distributions used are reproduced in Figure 2.6. We interpolate f(yB) for AT-
LAS/CMS from the FONLL prediction in Figure 6 of Ref. [225], and for LHCb
from the experimental measurements in Figure 4 of Ref. [226]. We make the ap-
proximations that f(yB) is independent of pBT , |~ps| in the B frame is equal to that
from B → Ks decay, and the decay of the B meson is prompt.

Our results for a selection of ms are shown in Figure 2.6. Note that we have
only considered B+ decays; results for B− would be identical, and for B0 or B0

would be very similar, so that the total s cross section from B meson decay gains
a factor ≈ 4. For larger ms the pT tail falls more slowly because s is produced
at lower velocity in the B frame and therefore tends to follow the direction of

4We note that for ms < mK we also expect production via kaon decays. We ignore this area
since, in our benchmark model, it has been explored by CHARM (see Section 2.2.4). Below the
CHARM limit the lifetime becomes long enough so that the majority of moderate pT scalars would
escape the detector. The situation may be different in models with BSM < 1, since the lifetime
becomes shorter, though one must take into account non-negligible kaon lifetime.
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FIGURE 2.6: The differential cross section of s produced in B+

decays in
√
s = 7 TeV pp collisions for sin ρ = 1 and ms =

0.5, 2.0, 4.0 GeV descending. The mother B+ mesons are con-
strained in transverse momentum and rapidity as indicated.

the B meson; the overall cross section also falls due to kinematic suppression in
Br(B → s+X).

With the information that is available to us, we are limited to usingB mesons
within a certain pT range and within rapidities that would be accepted at AT-
LAS/CMS or at LHCb. These limitations are written in the inset of Figure 2.6.
Consequently, values of dσ/dpT in the LHCb case for pT . mB are an underes-
timate, since smaller rapidity B mesons will contribute. Otherwise we believe
our results are a very good approximation. They could be improved by loop-
ing over the entire range of allowed B momentum and rapidity if the complete
d2σB/dp

B
T dyB distribution were available.

The point to be gleaned from the distributions in Figure 2.6 is that, in unex-
plored parameter space with sin ρ . 10−3 (recall that production will scale with
sin2 ρ), there are still a large number of moderate (triggerable) pT scalars being
produced via B decays at ATLAS/CMS and at LHCb. While inclusive searches
for such light s scalars are limited by huge backgrounds (see e.g. Ref. [222] for
µ+µ− background), we contend that searches for low background displaced de-
cays might be a viable way forward, especially seeing that B-factory bounds
are already pushing the boundary of non-negligible s lifetime. For ms between
360 MeV and 5 GeV, cτ ranges between 10−9 cm / sin2 ρ and 10−5 cm / sin2 ρ, to
be compared with ≈ 5× 10−2 cm for B mesons (which produce measurably dis-
placed vertices at the LHC). Therefore, we expect a substantial region of param-
eter space with sin ρ . 10−3 for which this production mechanism will result in a
large number of displaced decays. It is this possibility that we pursue presently.
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2.4.2 Displaced decays

At the time that our Ref. [1] was published, the only existing search for long-lived
exotic light particles at the LHC was an ATLAS search for approximately back-
to-back collimated dimuons appearing outside the inner detector but within
the muon spectrometer, i.e. with transverse distance from the beamline 1 m .

Lxy . 7 m [227]. In that search the prompt muon background was heavily sup-
pressed (there is almost zero background) by requiring a lack of tracks in the
inner detector within a cone surrounding the direction of the muon jet; no events
are observed in 1.9 fb−1 of

√
s = 7 TeV pp collision data. There was no exist-

ing displaced exotica search by LHCb. The LHCb detector is designed to be able
to efficiently identify displaced decays of B mesons, thus LHCb should be par-
ticularly sensitive to decays of s within their vertex locater (which extends 1 m
beyond the interaction point and has excellent reconstruction capabilities), espe-
cially if its origin can be traced to a B± decay vertex. In this subsection we will
estimate the expected number of moderate (triggerable) pT displaced dimuons
arising via pp → B + X → s + X → (µ+µ−)displaced + X and occurring within
the ATLAS/CMS or LHCb detector volume. We assume s production only via B
meson decays, with the independent possibility of h → ss production treated in
Section 2.5.

Making the approximation p ≈ E (β ≈ 1), the probability that a particle of
mass m will decay within absolute (transverse) distance L1 < L < L2 (L1 <

Lxy < L2) is given by

Pdec(p(T )) ≈ − exp

( −mL2

p(T ) × cτ

)
+ exp

( −mL1

p(T ) × cτ

)
, (2.31)

where the bracketing indicates the absolute (transverse) case. Note here that
cτ is inversely proportional to sin2 ρ as in Equation (2.8). For ATLAS/CMS we
require the decay of s to occur within transverse distance 1 m < Lxy < 7 m,
with |ηs| < 1.3, and psT > 8 GeV. For LHCb we require the decay of s within
1 mm < L < 10 cm, with 2.0 < ηs < 4.5, and psT > 4 GeV. The cross section
of displaced s decays can be obtained from results like those in Figure 2.6 by
integrating over the differential distributions. For example, for ATLAS/CMS we
perform the numerical integral

σdisplaceds ≈ sin2 ρ×
∫

8 GeV
Pdec(pT )

dσh
dpT

dpT , (2.32)

and multiply by 4×Br(B → s+X)×Br(s→ µ+µ−) to account for production
viaB0,B0,B+, andB− decays. For LHCb we perform a similar integral but with
pT → p, and multiplying by 2×Br(B+ → K+s)×Br(s→ µ+µ−) to account for
production only via B±.

In Figure 2.7 we show contours of the number of expected displaced dimuon
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FIGURE 2.7: Contours (0.1, 1, 10, 100, 1000) representing the ex-
pected number of moderate pT displaced dimuons produced via
pp → B → s + X → (µ+µ−)displaced + X and occurring within
the detector volumes of (top) ATLAS and (bottom) LHCb. Kine-
matic requirements and integrated luminosities are as indicated.
Efficiency factors have not been considered. Shown in colour are
the excluded regions fromB decays and the CHARM experiment
(see Section 2.2.3 and Figure 2.4). Also shown is the Bezrukov &

Gorbunov benchmark (grey dotted).
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events in 20 fb−1 (3 fb−1) of
√
s = 7 TeV pp collision data for ATLAS/CMS

(LHCb); this plot serves to indicate the approximate reach of the 8 TeV dataset.5

Note that as sin ρ gets smaller, the tuning of the mean decay length to maximise
Pdec plays off against the falling cross section to create a window in unexplored
parameter space where the number of displaced decays can be significant. The
ATLAS/CMS detector is in principle capable of probing longer lifetimes since the
lab-frame displacement can be larger, and the boost factors (momenta) are much
smaller than for a forward detector. Also notice that the area of parameter space
which ATLAS/CMS and LHCb are sensitive to coincides with the Bezrukov &
Gorbunov benchmark, meaning that the model might be extensively probed.

Of course, we have only estimated the number of truth-level decays in these
detectors. A dedicated study incorporating proper acceptance, trigger efficiency,
reconstruction efficiency, and backgrounds is desirable to say more about the
reach of the LHC. The greatest unknown for us is the trigger efficiency for these
exotic events, particularly at ATLAS/CMS, where muons detected by the muon
spectrometer are often required to pass quality criteria by matching to an inner
detector track. It may be that dedicated triggers are necessary to capture these
displaced events. We also note that at ATLAS/CMS the reconstruction efficiency
falls with muon impact parameter, which is generally non-zero for displaced de-
cays. Still, since we typically haveE � ms, the collimated muons will point back
along the s direction to the B decay point so that we don’t expect reconstruction
efficiency to be significantly impacted. SM backgrounds can only arise from neu-
tral particles with lifetimes in the range cτ ∼ 1–100 cm. Of note are K0

S mesons
(cτK0

S
≈ 2.7 cm) decaying to pions which may fake muons with mµµ ≈ 500 MeV

either through decays-in-flight or punching through the calorimeters; such back-
ground appears to be well modelled by Monte-Carlo [228]. Neutral strange
baryons Ξ0 and Λ0 with masses 1.3 GeV and 1.1 GeV respectively are the only
other neutral SM particles with lifetimes in this range; it is not obvious how their
decays could fake a µ+µ− vertex. Therefore, at least for ms & 500 MeV, the back-
ground is expected to be very low so that even a few events, particularly since
they will occur at the same dimuon invariant mass, may be significant.6 At AT-
LAS/CMS, the SM background might also be suppressed by requiring s to decay
outside the hadronic calorimeter, 3 m . Lxy . 7 m. In this regime one could also
consider complementary signatures of decays to charged objects such as hadrons
or τ+τ− that might be picked up by the muon spectrometer. Whether these kind
of events can be triggered on is an interesting and open question for us. Further
analysis is beyond the scope of this study.

5For the LHCb results we observe that the bound from the subsequently performed search
agrees well with our 10 event contour, confirming that our estimate was a good one.

6Since publication of our Ref. [1], LHCb has performed a search for displaced dimuons inB0 →
K∗0(µ+µ−) [199]. Indeed, for sufficiently long lifetime, the backgrounds are essentially nil.
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2.5 Production via Higgs decay

As we noted in the Section 1.1.1, one of the primary goals of the LHC programme
is to study the properties of h in great detail. So far the state is consistent with a
SM Higgs. Still, plenty of room remains for new physics, particularly in its de-
cays; Br(h→ unobserved) . 20% is still allowed for an otherwise SM Higgs [34,
35]. The real singlet scalar model predicts the possibility of h → ss decays. As
such, regions of (ms, sin ρ) parameter space can be excluded under the assump-
tion of some value for Br(h→ ss).

If s decays “promptly enough,” then the most sensitive h → ss searches lep-
tonic or tauonic final states. Above the ditau threshold ms > 2mτ , the existing
dedicated searches in (ll)(l′l′) (l = e, µ) and (µµ)(ττ) final states [229, 230] are
not yet powerful enough to exclude (ms, sin ρ) parameter space for any assumed
value of Br(h → ss), since the s → µµ branching fraction in this region is just
too small. However, for 2mµ < ms . 2 GeV, recent searches exploiting the
unique signature of collimated dimuons (or muonic lepton jets) have reached
the required level of sensitivity to constrain the real singlet scalar model [231,
232]. The strongest limit arises from a CMS search [232], which for promptly
decaying s in this mass range bounds Br(s → µ+µ−) . 0.015

√
0.2

Br(h→ss) , to be
compared with Br(s → µ+µ−) ∼ O(1–10)% in Figure 2.2. This bound holds for
cτs/ms . 1 mm, then falls precipitously by about two orders of magnitude by
cτs/ms ≈ 1 cm due to the rapid fall in trigger and reconstruction efficiency when
decays become displaced. In this regime, which must be considered separately,
the displaced decays of s produced via h→ ss leads to the spectacular signature
to be studied the remainder of this section: an approximately back-to-back pair
of displaced narrow hadronic jets and/or lepton jets [233, 234].

Null searches for displaced hadronic jet and/or lepton jet pairs have already
been performed by the LHC collaborations [227, 235–244]. The peculiarity of
the signature presents two complementary challenges: how do collaborations
present their results in the most model-independent way possible? and how do
phenomenologists reinterpret the results in the context of their own models? In
this subsection we will describe a simple Monte Carlo method which has impli-
cations for both. The short message is the following: if the relevant efficiency
tables are published, then phenomenologists need only take Monte Carlo events
and fold in these efficiencies to reinterpret searches. No displaced decays need
be simulated since decay probabilities are easily calculated. We will describe this
method by way of example, reinterpreting two ATLAS searches, and present ex-
clusion regions in (ms, sin ρ) parameter space for the real singlet scalar model.

In passing we note that this analysis is relevant to a variety of BSM scenar-
ios in addition to the real singlet scalar extension, including (see our Ref. [4]
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for more details): vector portal models with dark photons [131, 245–249]; right-
handed neutrinos [250–253]; R-parity violating supersymmetry [254–258]; hid-
den valley models predicting hidden cascades, hidden hadrons, or hidden jets
[233, 234, 259–266]; and “neutral naturalness” models [267–269]. The reason this
phenomenology is so generic is because long-lived neutral states decaying to
SM particles arise naturally in models with approximate symmetries. There are
four mechanisms often encountered in the literature: an approximate enhanced
Poincaré symmetry [37], which if exact would completely decouple a hidden
sector; an approximate discrete symmetry, which if exact would produce a stable
lightest particle; a low-energy accidental symmetry, with decays only proceeding
via a heavy off-shell mediator; and small mass-splittings. The first mechanism
is associated with the real singlet scalar model. This variety of models serves
as a reminder that displaced searches would benefit from a model-independent
approach, currently lacking in the existing analyses. Our analysis will provide
some insight as to how to acheive this.

2.5.1 Reinterpreting displaced searches

In the following section we describe a Monte Carlo method for recasting dis-
placed searches by way of example. The important point to be made is that
phenomenologists cannot reliably simulate the detector response to displaced
decays, and are therefore reliant upon efficiency information provided by the
collaborations.7 The recast examples will serve to highlight which efficiency in-
formation is of most interest.

Displaced hadronic jets

The ATLAS Collaboration has presented a search for the displaced hadronic de-
cays of pair-produced long-lived neutral particles in 20.3 fb−1 of data collected
at
√
s = 8 TeV [236, 237]. They considered pair production via the parton pro-

cess gg → Φ → πvπv, where Φ is a scalar particle and πv is a hidden valley
pseudoscalar. The decay of πv is dominated by bb̄ for mπv & 10 GeV (the cc̄
and ττ decays are subdominant, see their Table 1). No excess was observed, and
limits were placed on the branching fraction of Φ as a function of mπv lifetime.
Presently we describe a method to reproduce the result.

Validation samples of gg → h → ss → (bb̄)(bb̄) events in
√
s = 8 TeV pp

collisions were generated using PYTHIA 8.180 [27, 28] with the default tune. We
took mh = 126 GeV and ms = 10, 25, 40 GeV to match the ATLAS benchmarks.8

The cuts used in the ATLAS analysis are listed in the auxiliary Table 6 of
Ref. [237]. We recreate them as follows. The pair produced long-lived particles

7This point was also made (and a similar recast method was used) in Ref. [270].
8The accuracy of the Monte Carlo for an s of mass ms = 10 GeV decaying directly to bb̄ is

questionable, nevertheless it is possible to force PYTHIA to do the decay, and it appears that this is
what was done in the ATLAS analysis.
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are required to have9

ET (s1) > 60 GeV, ET (s2) > 40 GeV, (2.33)

where ET ≡ E sin θ is a proxy for the measured transverse energy of the result-
ing jet, and the s subscript indicates pT -ordering. This is a fine approximation
except for the (non-hadronic) s → ττ decays with ∼ 10% branching. We also
demand ∆R(s1, s2) > 0.4 to ensure well-separated jets; this makes very little im-
pact on the benchmarks considered by ATLAS, but will matter as ms → mh/2.
None of the relevant remaining cuts, such as on isolation and on electromagnetic
fraction, nor the trigger efficiency can be replicated since no public tool exists
to simulate the detector response to displaced decays.10 Therefore the remain-
der of the analysis necessarily involves the folding in of efficiencies provided by
ATLAS.

The CalRatio trigger [273, 274] was used to search for πv decays at or beyond
the edge of the electromagnetic calorimeter. This trigger selects narrow jets with
ET & 35 GeV, log10(EH/EEM ) > 1.2, and a lack of tracks in the inner detector.
The trigger efficiency is given as a function of radial (longitudinal) decay position
for decays in the barrel (endcap) region corresponding to the pseudorapidity
region |η| < 1.5 (1.5 < |η| < 2.5) in Figure 1 of Ref. [236]. Based on these plots
we take the trigger+reconstruction efficiency of the trigger jet to be non-zero and
constant only between 2.0 to 3.5 m in the barrel and 4.0 to 5.5 m in the endcap,
with a respective ratio of 0.20/0.06. The reconstruction efficiency for the non-
trigger jet is not given, but we take it similarly. By construction, the following
quantity is then proportional to the trigger/reconstruction probability for a given
s of lifetime cτ :

ε̂(s, cτ) =





0.20P (s, cτ) if in barrel,

0.06P (s, cτ) if in endcap,
(2.34)

where P is the probability that a state x decays between Lmin and Lmax,

P (x, cτ) = − exp

(
−Lmax
γβcτ

)
+ exp

(
−Lmin
γβcτ

)
, (2.35)

with γ and β the relativistic parameters for x. The timing of the s decay is re-
quired to satisfy ∆t < 5 ns with respect to a β = 1 particle. This corresponds to
requiring an absolute decay distance

Labs <
β

1− β 1.5 m ≡ Lmaxabs . (2.36)

9Selections were made using the MADANALYSIS5 v1.1.10beta SAMPLEANALYZER framework
[271].

10Though some attempts have been made [261, 272].
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Thus after the aforementioned selection cuts, each event is weighted by a factor

W (cτ) = ε̂(s1, cτ)ε̂(s2, cτ), (2.37)

where we take

(Lmin, Lmax) =





(
min

(
2.0 m
sin θ , L

max
abs

)
,min

(
3.5 m
sin θ , L

max
abs

))
if in barrel,

(
min

(
4.2 m
cos θ , L

max
abs

)
,min

(
5.2 m
cos θ , L

max
abs

))
if in endcap,

(2.38)

for each s, where θ is the polar angle from the beam line. After this, the remainder
of the cuts used in the ATLAS analysis should be largely independent of cτ . As
such, penultimately, we rescale the events (with a common number for all cτ and
ms) to fit ATLAS results; the factor turns out to be≈ 6×19.0 pb×20.3 fb−1/Nsim,
where Nsim is the number of simulated events. We ignore for simplicity the
additionalms-dependent . 10% effect related to sub-dominant but non-zero s→
ττ branching.

After these requirements we find good agreement for the ms = 10, 25 GeV
samples, but we overpredict for ms = 40 GeV. This is because as ms approaches
Es (Equation (2.33)), the s decay products spread out and the narrow jet trigger
efficiency decreases. To properly take this into account we require information
on how the efficiency depends on the bb̄ opening angle, or equivalently, in the
limit E2

s � m2
b , the boost. In the absence of such information, and in an attempt

to capture the physics involved, we demand the following (admittedly crude)
bound on the opening angle of the bb̄ pair from the leading s:11

∆R(b, b̄) < 1.5. (2.39)

This cut has been tuned so that our results forms = 40 GeV best agree with those
of ATLAS. Note that the spatial separation of the bb̄ pair as seen by the hadronic
calorimeter is smaller than such a large ∆R would normally suggest, since the
pair appears late.

In Figure 2.8a we compare the number of events predicted by our analysis to
those of ATLAS assuming 100% Higgs branching. Despite the apparent crude-
ness of some of our assumptions, we observe good agreement. The 95% CL limit
of 20 events (inferred from the ATLAS plots) can be used to obtain a limit on the
Higgs exotic branching fraction as a function of cτ . To obtain the exclusion for
alternative masses, PYTHIA signal samples gg → h → ss → (bb̄)(bb̄) of varying
ms were fed through our analysis. In Figure 2.8b we present our results as limits
on Br(h→ ss)×Br(s→ hadronic)2 as a function of ms and cτ . Given the good
match to ATLAS, we are confident that our results for 10 GeV < ms < 40 GeV
are reliable, and for ms > 40 GeV are at least sensible.

11Another option is to reject leading s with boost lower than γcut, forbidding particles which
have the potential to produce opening angles ≈ arccos

[
1− 2/γ2

cut + 8m2
x(γ2

cut − 1)/(m2
sγ

4
cut)

]
,

where mx is the decay product mass.
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FIGURE 2.8: (a) Predicted number of events for the displaced
hadronic jet analysis assuming 100% Higgs branching. Upper:
the results from ATLAS (dashed) and our results (solid) for ms =
10, 25, 40 GeV beginning left-to-right. Lower: the ratio of our re-
sults to those of ATLAS. (b) Excluded parameter region for s as-
suming fixed Br(h → ss) × Br(s → hadronic)2; the contours

mark branchings of 30%, 20%, 10%, 5%, 3%.

We were fortunate in this analysis because the topology of interest was es-
sentially already considered by ATLAS for three benchmark values of ms. This
allowed us to demonstrate the not obvious fact that much of the cτ dependence
is taken into account simply by reweighting events with easily calculated decay
probabilities (Equation (2.35)). In the region where γs ∼ 1 we saw that there was
an additional effect that had to be considered, related to the boost-dependence
of the trigger/reconstruction efficiency. This could have been anticipated, since
any momentum dependence was already integrated out of the efficiency plots
provided by ATLAS. For this reason our analysis as it stands cannot be reliably
reapplied to another model since the overall efficiency will scale non-trivially
with the (correlated) pT distributions of the two long-lived particles. However it
should serve as a conservative estimate for models with more boosted (on aver-
age) long-lived pairs. In the next analysis the pT dependence of the efficiencies
is provided and taken into account.

Displaced lepton jets

In Ref. [239], the ATLAS Collaboration presented the search for a SM-like Higgs
decaying to a long-lived pair of O(100 MeV) dark photons in 20.3 fb−1 of data
collected at

√
s = 8 TeV. The benchmark process considered was

gg → h→ fd1fd1
→ (fd2γd)(fd2

γd), (2.40)

where the fdi are hidden fermions and γd is the long-lived dark photon, inspired
by Falkowski–Ruderman–Volansky–Zupan (FRVZ) models [260, 261]. Each dark
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photon decays at or beyond the outer edge of the electromagnetic calorimeter
to either µµ or ee/ππ, resulting in a muon jet (Type 0) or a narrow jet (Type
2) respectively.12 No excess over the SM expectation was observed and limits
were placed on the exotic branching fraction of the Higgs as a function of γd
lifetime. These limits are clearly model-dependent, and it is not clear how the
phenomenologist might translate them. We describe a simple method below.

A validation sample of FRVZ events was generated in PYTHIA 8.180 [27, 28]
by changing the properties of in-built particles. We took (mh, mfd1

, mfd2
, mγd) =

(125, 5, 2, 0.4) GeV andBr(γd → Type 0) = 0.45 to match the ATLAS benchmark.
The selection criteria (cuts) for the ATLAS analysis are detailed in Table 1 of

Ref. [239]. We recreate the analysis as follows. The dark photons are required to
satisfy

|η(γd)| < 2.5, |∆φ(γd1 , γd2)| > 1, (2.41)

as a proxy for the jet acceptance. The remainder of the analysis necessarily in-
volves the folding in of efficiencies. After each γd decays, the final states are of
Type 0-0, 0-2, or 2-2 in the obvious way. After selection, each event is weighted
by a factor

W (cτ) =
19.2 pb× 20.3 fb−1

Nsim
Preco(γd1 , cτ)Preco(γd2 , cτ)εtrig(γd1 , γd2), (2.42)

where Preco(γd, cτ) is the reconstruction probability13 for a γd of lifetime cτ , and
εtrig(γd1 , γd2) is the trigger efficiency given that the event is reconstructed. Equa-
tion (2.42) assumes that the reconstruction probability for each of the lepton jets
can be considered independently. Both Preco and εtrig depend on the event Type,
and will be described presently.

The reconstruction efficiencies for a γd with transverse momentum pT decay-
ing at a length L, εreco ≡ εreco(pT , L), are provided in the ATLAS auxiliary Tables
1–4 [239] for Type 0 and Type 2 jets decaying in the barrel and endcap regions, as
defined in Table 2.2. We assume εreco = 0 outside of those L, η, pT regions, which
appears to be stricter (and therefore more conservative) than the barrel/endcap
regions used in the full analysis. Since the γd are very boosted, we do not require
a timing veto. The reconstruction probability for each jet is then

Preco(γd, cτ) =
∑

L bins

P (γd, cτ)εreco(p
γd
T , L), (2.43)

12Note that electrons in the hadronic calorimeter will resemble a narrow hadronic jet.
13This term includes additional rejection criteria such as inner detector isolation.
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Type 0 Type 2
Barrel Endcap Barrel Endcap

14 ≤ Lxy/cm ≤ 780 50 ≤ Lz/cm ≤ 1400 150 ≤ Lxy/cm ≤ 410 350 ≤ Lz/cm ≤ 650
|η| < 0.9 1.2 < |η| < 2.5 |η| < 1.0 1.5 < |η| < 2.4

10 ≤ pT /GeV ≤ 100 10 ≤ pT /GeV ≤ 100 20 ≤ pT /GeV ≤ 100 20 ≤ pT /GeV ≤ 100

TABLE 2.2: Definitions of barrel and endcap regions for
εreco(pT , L) as defined by ATLAS.

where P (γd, cτ) is given by Equation (2.35) with

(Lmin, Lmax) =





(
Lminxy-bin
sin θ ,

Lmaxxy-bin
sin θ

)
if in barrel,

(
Lminz-bin
cos θ ,

Lmaxz-bin
cos θ

)
if in endcap.

(2.44)

For any event involving a Type 2 jet, ATLAS used the previously described
CalRatio trigger. ATLAS provides the CalRatio trigger efficiency εcal, defined
as the fraction of jets passing the offline selection which also pass the trig-
ger, separately as a function of pT and η. Type 0-0 events are collected by the
3mu6_MSonly trigger [227, 239], which requires at least three standalone (not
combined with an inner detector track) muons with pT > 6 GeV. The efficiency
of this trigger is dominated by the granularity of the muon spectrometer; to re-
construct three muons at least one of the dark photons must produce a pair of
muons which have a discernible opening angle. ATLAS provides the efficiency
ε2, defined as the fraction of γd passing the offline selection and also producing
two distinguishable muons, separately as a function of pT and η. The efficiency
for detecting at least one muon is quoted as ε≥1 = 0.8 (0.9) in the barrel (end-
cap) region. For our purposes we converted these efficiencies, making the as-
sumption of independence, into functions of two variables, εcal ≡ εcal(pT , η) and
ε2 ≡ ε2(pT , η). For each event, the trigger efficiency given event reconstruction
is taken as

εtrig(γd1 , γd2) =





ε≥1(γd1)ε2(γd2) + ε≥1(γd2)ε2(γd1)

−ε2(γd1)ε2(γd2) if Type 0-0,

εcal(γdType-0) if Type 0-2,

εcal(γd1) + εcal(γd2)− εcal(γd1)εcal(γd2) if Type 2-2,

(2.45)

where, in an obvious notation, ε(γd) ≡ ε(pγdT , η
γd). This is not quite a model-

independent trigger efficiency, since εcal and ε2 are derived from a lepton-jet gun
event sample, in which the γd are generated uniformly in (pT , η), but it serves
as a good approximation for our purposes. After weighting by reconstruction
probabilities, we find that this trigger efficiency for the FRVZ sample rescales the
number of events by an approximately global number, ≈ 0.5 for cτγd = 0.1 cm
and ≈ 0.3 for cτγd = 100 cm.

In Figure 2.9a we compare the number of events predicted by our analysis
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FIGURE 2.9: (a) Predicted number of events in the lepton jet
analysis assuming 100% Higgs branching, mγd = 400 MeV, and
Br(γd → Type 0) = 0.45. Upper: the FRVZ model results
from ATLAS (dashed) and our results (solid) for all event Types
(blue/upper) and excluding Type 2-2 events (red/lower). Also
shown are the number of events expected for the h → γdγd
model in solid black; dotted curves beginning left-to-right show
the break down in terms of Type 0-0, 0-2, 2-2 events respec-
tively. Lower: the ratio of our FRVZ model results to those of
ATLAS. (b) Excluded parameter region for γd assuming fixed
Br(h→ γdγd)×Br(γd → µµ)2. The contours mark branchings of

30%, 20%, 10%, 5%, 3%.

to those of ATLAS as a function of cτ assuming 100% Higgs branching. The
obtained ≈ 330 events at cτ = 4.7 cm is an underprediction compared to the
full simulation results of 600 ± 40, most likely due to the stricter barrel/endcap
regions employed. For alternative lifetimes we cannot come up with a physical
explanation that could account for the shape discrepancy between our curve and
the reweighted result of ATLAS.14

Let us now attempt to reinterpret the ATLAS analysis for h → γdγd decays
predicted by the vector portal model. A signal sample gg → h→ γdγd for mγd =

400 MeV was generated in PYTHIA and fed through our analysis. Figure 2.9a
shows the total number of events predicted as a function of cτ , as well as broken
down by event Type. More events are predicted than in the FRVZ model, and
they peak at a lower cτ , since on average the γd are more boosted. The 95% CL
upper limit of ≈ 120 (≈ 30) on the total (total excluding Type 2-2) number of
events can be inferred from the ATLAS plots. These numbers can be used along
with Figure 2.9a to limit exotic Higgs branching fractions for mγd = 400 MeV.

For alternative masses, since E � m, the properties of the simulated γd will

14It is not without careful consideration that we make this statement. Various possibilities were
excluded, including effects of: the Monte Carlo generator; a bug in the code; applying each ef-
ficiency independently; and the stricter barrel/endcap region used. Instead, what we found was
that the results were surprisingly robust to stricter/looser assumptions. Even a trip to La Sapienza
Università di Roma to discuss with the ATLAS investigators could not resolve this discrepancy.
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FIGURE 2.10: Exclusion plot for the real singlet scalar (Higgs) por-
tal (see text). Incremental shadings mark areas of non-negligible
lifetime. The coloured regions (this analysis) mark the exclusions

assuming Br(h→ ss) = 30%, 20%, 10%, 5%, 3%.

be approximately the same but for the boost γ = E/mγd . If the efficiencies do not
change significantly surrounding mγd = 400 MeV, which according to ATLAS
is at least a good assumption for 0.25 . mγd/GeV . 1.5 [239], then according
to Equation (2.35) the number of events plotted as a function of cτ/mγd remains
invariant. Limits for alternative masses can be derived from the mγd = 400 MeV
results using this observation. In Figure 2.9b we present an example exclusion
plot derived from Figure 2.9a in this way: the limit on Br(h→ γdγd)×Br(γd →
µµ)2 as a function of mγd and cτ . This is also a good approximation for the limit
on Br(h→ ss)×Br(s→ µµ)2.

Exclusion regions

In Figure 2.10 we reinterpret the analyses of Section 3.3 within the real singlet
scalar model.15 The coloured regions mark the exclusion assuming Br(h →
ss) = 30%, 20%, 10%, 5%, 3%. We remind the reader that within the region
2mπ < ms . 4 GeV the branching fractions and lifetimes are known to be un-
certain by up to an order of magnitude. See Section 2.2.3 and Figure 2.4 for a
description of the reproduced exclusion regions.

15An exclusion region also for the vector portal model can be found in our Ref. [4].
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2.5.2 Discussion

Searching for the displaced decays of long-lived neutral states is a sensitive way
to look for exotic Higgs physics. Already, searches at the LHC have probed
branching fractions at the per cent level. The huge variety of BSM scenarios
which predict these signatures demands a model-independent approach. How-
ever, unlike for prompt events, no public tool exists to simulate the detector re-
sponse to displaced decays. Hence phenomenologists wanting to reinterpret dis-
placed searches are reliant upon efficiencies provided by the collaborations. In
general, the reconstruction efficiency for a long-lived particle will depend on its
mass m, transverse momentum pT , lab-frame decay length L, pseudorapidity η,
and its decay mode. Ideally the phenomenologist would know the reconstruc-
tion efficiency as a function of all five of these parameters together,16 and then
the simple Monte Carlo method we have described in Section 3.3, requiring no
simulation of displaced decays, could be used to determine the reconstruction
probability for any event. In the interests of simplicity, the dependence on η is
likely to be weak enough to be split into barrel and endcap regions, and then
the reconstruction efficiencies could be provided as three-dimensional (m, pT , L)

functions for each final state in the barrel/endcap. In certain limits the depen-
dence on one of these variables might even be removed. For example, in the
limit E � m, the efficiency dependence on m for hadronic jets is expected to
be weak. The trigger efficiency, defined as the probability of triggering given
reconstruction, could subsequently be taken into account in a similar way.

2.6 Conclusion

In this Chapter we studied the phenomenological implications of extending the
SM by a real singlet scalar, s, with mass 100 MeV < ms < mh/2, which mixes
with the SM Higgs. We explored (ms, sin ρ) parameter space, where ρ is the mix-
ing angle.

The existing limits, derived in Section 2.2, are summarised in Figure 2.4.
Fixed target experiments, B meson decays, and Z → Z∗h → Z∗ + hadrons

searches at LEP1 set the most stringent limits in the regions ms < (mK − mπ),
2mµ < ms < mB , and mB < ms < mh/2, respectively. These limits are enough
to exclude the scale invariant benchmark model of Foot & Kobakhidze [159] for
light scalar masses 100 MeV < ms < 10 GeV.

We also studied three phenomenologically distinct regions of parameter
space at the LHC. For production at parton-level, we demonstrated that the sub-
dominant V s production channel has the best sensitivity at ATLAS/CMS for
ms & mB . The bound on sin2 ρ × Br(s → µ+µ−) from the Ws channel using

16Although it is only possible to provide a two-dimensional efficiency plot on paper, we see no
reason why collaborations couldn’t provide higher dimensional plots as an online resource.
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4.6 fb−1 of
√
s = 7 TeV data was found to be stronger than those set by up-

silon decays. This bound is still about two orders of magnitude weaker than
that of LEP1, though it is conceivable that future LHC bounds could compete,
with the main uncertainty being knowledge of the combinatoric background at
√
s = 13 TeV.

For ms . mB , s is dominantly produced at the LHC via the decay of
B mesons, with a rate ∼ 106 times larger than gluon fusion. In the region
sin ρ . 10−3, s lifetime is non-negligible. We investigated the possibility of
searching for displaced dimuons at ATLAS/CMS or at LHCb, showing that, in
unexplored parameter space coinciding with the benchmark model of Bezrukov
& Gorbunov [160], more than 103 potentially background free moderate pT dis-
placed decays (before efficiency factors) occur within the detector volumes. This
motivates a search for displaced dimuons at ATLAS/CMS and/or LHCb.

Lastly, we considered the displaced decay regime of when s is pair-produced
via Higgs decays h → ss. We motivated a simple Monte Carlo method to rein-
terpret displaced searches utilising efficiency tables. Although the ideal set of
efficiency tables were not provided for either of the ATLAS displaced searches
considered, we were still able to demonstrate the principles of this Monte Carlo
method, and we used it to constrain (ms, sin ρ) parameter space for Br(h → ss)

at the per cent level. Our hope is that this inspires the following take-home mes-
sage regarding displaced searches: if the relevant multidimensional efficiency
tables are provided, then phenomenologists will be able to reinterpret searches
in the context of their own models.
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3 Naturalness

This Chapter is based on the preprint “Naturalness made easy: two-loop naturalness

bounds on minimal SM extensions,” written in collaboration with Peter Cox [11].

The Standard Model (SM) appears to represent a very good effective field
theory (EFT) for energies at least . TeV. Still, it has several well known theoreti-
cal and phenomenological shortcomings, e.g. neutrino masses, dark matter, and
the baryon asymmetry of the Universe. It is possible to address these shortcom-
ings with minimal extensions of the SM by heavy fermionic and/or scalar gauge
multiplets (GMs). However, the Higgs mass parameter µ2(mZ) ≈ −(88 GeV)2,
appearing in the SM potential µ2H†H+λ(H†H)2, is sensitive to such heavy new
physics; GMs couple (at the very least) at loop level to the SM Higgs, thereby in-
ducing corrections to the Higgs mass and potentially introducing a naturalness
problem.

The subject of naturalness in the modern literature is rife with various (and
often conflicting) definitions. Let us therefore, at the outset, state the definition
used in this Chapter: a parameter in a quantum field theory is “natural” if its mea-
sured value at low scale is (sufficiently) insensitive to details of the physics at high scale.
Plainly, then, to examine naturalness of the Higgs mass parameter we require: (1)
a description of the low scale physics; (2) a description of the high scale physics;
(3) a map which relates them; and (4) a measure which quantifies sensitivity of
µ2(mZ) to the high scale physics.

In this Chapter we confront the question, at what mass does a heavy GM intro-
duce a physical Higgs naturalness problem? Vector-like fermionic and scalar GMs
of various charges are studied. We advocate a renormalisation group (RG) ap-
proach to naturalness. The description of the low (high) scale physics is provided
by the MS Lagrangian parameters of the SM (SM+GM) EFT defined at the scale
mZ (Λh), and the map which relates them is the set of RG equations (RGEs). We
employ a sensitivity measure which can be interpreted as a Bayesian model com-
parison. Bayesian approaches to naturalness have previously been considered in
the literature [275–287]. We propose a particular model comparison, which cap-
tures the “naturalness price” paid for promoting the Higgs mass parameter from
a purely phenomenological input parameter at low scale to a high scale input
parameter of the model. We show that this sensitivity measure then reduces in
a well-motivated limit to a Barbieri–Giudice-like [288, 289] fine-tuning measure.
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Quantifying and bounding this sensitivity results in naturalness bounds on the
masses of the various GMs.

The Chapter is organised as follows. In Section 3.1 we describe an intuitive
and physical concept of naturalness built upon the RGEs, and the sensitivity
measure as a Bayesian model comparison. In Section 3.2 we describe how this
concept is applied to the SM+GM EFTs. Our main result is a list of naturalness
bounds presented in Section 3.3. These results are discussed in Section 3.4, and
we conclude in Section 3.5.

3.1 Physical Naturalness

In this section we describe a physical way to understand the Higgs naturalness
problem, especially pertinent in the context of bottom-up extensions of the SM.
To frame the discussion, let us appeal to an illuminating toy model.

3.1.1 Toy model

Consider a perturbative EFT consisting of the SM plus a heavy particle of mass
M (whose mass is obtained independently of electroweak symmetry breaking).
The µ2 RGE valid at a renormalisation scale µR > M takes the form

d

d logµR
µ2(µR) = C1(µR)µ2(µR) + C2(µR)M2(µR) , (3.1)

where C1(µR) ' 6yt(µR)/(4π)2, with yt the top quark Yukawa coupling. The
quantity C2(µR) might be comprised of SM and/or beyond-SM couplings. The
RGEs allow µ2 (and other low scale parameters) to be extrapolated to a high
scale Λh, at most up to the scale at which the EFT is no longer valid. At Λh,
these renormalised parameters can be interpreted as “input parameters” which
might be derived from even higher scale physics. The input parameters are, by
construction, connected with the low energy parameters via the RGEs. If the
low energy parameters are very sensitive to these input parameters, then this
signifies a naturalness problem.

Let us now, under this paradigm, try to understand when a heavy particle
introduces a Higgs naturalness problem. One can fully solve Equation (3.1) in
the limit where C1, C2, and M2 have no scale dependence. Including a possible
threshold correction, µ2

+(M) = µ2
−(M) − CTM2, when the SM EFT parameters

(−) are matched onto the full EFT parameters (+) at the threshold M , and in the
limit C1 log(Λh/mZ)� 1,

µ2(mZ) ' µ2(Λh)−Θ(Λh −M)

[
C2M

2 log

(
Λh
M

)
− CTM2

]
, (3.2)

where Θ is the step function. It is now easy to see when a naturalness problem
arises. If either of C2M

2 or CTM2 is� µ2(mZ), then the input parameter µ2(Λh)
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must be finely tuned against a very large contribution in order to realise the ob-
served Higgs mass. A small change in µ2(Λh) ruins this cancellation, and thus
the Higgs mass is unnatural, i.e. it is sensitive to details of the high scale physics.
Note that the C2M

2 piece captures a steep µ2(µR) RG trajectory, whereby only a
very particular input µ2(Λh) will lead to the observed low scale µ2(mZ); a small
change in this value leads to significant over- or under-shooting.

In this picture, the Higgs naturalness problem is cast in terms of a potential
sensitivity between measurable parameters (as opposed to a large cancellation be-
tween an unmeasurable bare mass and an unphysical cutoff contribution), con-
nected by fully calculable (in a perturbative theory) RG trajectories and matching
conditions.1

3.1.2 Sensitivity measure

To actually quantify the sensitivity to high scale physics is somewhat arbitrary
and subjective. There are many approaches in the literature. In this Chapter we
will adopt a sensitivity measure which can be interpreted as a Bayesian model
comparison, and which reduces (in the cases we consider) to an intuitively mo-
tivated Barbieri–Giudice-like [288, 289] fine-tuning measure. We provide below
a short description; more details can be found in Appendix A.1.

Assuming a flat prior belief in the high scale input parameters I =

(I1, . . . , In), and a perfectly measured set of m ≤ n independent observables
O = (O1, . . . ,Om), the Bayesian evidence B for a modelM is a function of the
unconstrained input parameters I ′ = (Im+1, . . . , In):

B(M; I ′) ∝ 1√
|JJT |

∣∣∣∣∣Oex
I′

, (3.3)

where J is the m × n matrix defined by Jij = ∂Oi/∂Ij [283]. Let us take, for
modelM, I1 = logµ2(Λh) andO1 = logµ2(mZ). The logarithms here ensure that
our result is independent with respect to units or parameter rescalings (absolute
values are implied for the argument of any log and dimensionful parameters can
be normalised by any unit). Our Higgs mass sensitivity measure arises from a
particular Bayesian model comparison: we compare to a modelM0 in which we
instead take I1 = O1 = logµ2(mZ), i.e. the Higgs mass parameter is considered
as an input parameter at scale mZ . The sensitivity measure can then be written
as a function of the unconstrained parameters,

∆(M; I ′) =
B(M0; I ′)
B(M; I ′) . (3.4)

This measure captures the “naturalness price” paid for promoting the Higgs
mass parameter to a high scale input parameter of the model as opposed to a

1See Refs. [290–299] for similar naturalness philosophies.
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purely phenomenological input parameter at low scale. In our context, a large
value of ∆ essentially tells us that, given a flat prior density in logµ2(Λh), the
observed value µ2(mZ) is unlikely [specifically with respect to a flat probability
density in logµ2(mZ)], i.e. µ2(mZ) is sensitive to the realised input parameters.
In the special case that the low scale observables, except for possibly µ2(mZ),
are approximately insensitive to the unconstrained inputs, B(M0; I ′) becomes
independent of I ′ and Equation (3.4) reduces to

∆(M; I ′) '

√√√√
(
∂ logµ2(mZ)

∂ logµ2(Λh)

)2

+
∑

j≥m+1

(
∂ logµ2(mZ)

∂Ij

)2
∣∣∣∣∣∣Oex
I′

. (3.5)

In the absence of unconstrained inputs (n = m) the summation disappears and
the equality is exact. This is clearly reminiscent of the Barbieri–Giudice fine-
tuning measure. A value of ∆ = 10 can now be interpreted as the onset of strong
Bayesian evidence (for M0 over M) on the Jeffreys scale [300], or a 10% fine-
tuning from the Barbieri–Giudice perspective.

Notice here that we have a sensitivity measure which depends on uncon-
strained inputs. It might be that we want to “project out” some of these nuisance
parameters. In this Chapter we will minimise over them, which picks out a con-
servative best case naturalness scenario in the model. Our SM+GM modelsM
are defined by MS inputs at the high scale Λh, with the renormalised mass param-
eterMk(Λh) ⊂ I ′ [and k = 1 (2) in the fermionic (scalar) case]. We minimise over
all unconstrained parameters apart from Mk(Λh) to obtain a sensitivity measure
which depends only on M and Λh:

∆(M,Λh) = min
I′\{Mk(Λh)}

[
∆(M; I ′)

]
. (3.6)

In practice we minimise over Equation (3.5), which is now valid under the looser
criterion that the low scale observables, except for possibly µ2(mZ), are approxi-
mately insensitive to the unconstrained inputs in the vicinity of the minimum.

This all may sound rather abstract. Let us now check that, in the relevant
cases, the sensitivity measure Equation (3.6) captures the sensitivity we expect in
our toy model when C2M

2, CTM
2 � µ2(mZ).

3.1.3 Fermion-like case

In the minimal fermionic SM+GM there are no new dimensionless parameters;
C2 is fully constrained by experiment so that Oi = {logµ2(mZ), logC1, logC2}
and Ij = {logµ2(Λh), logC1, logC2, logM}. It is easy to show directly from
Equation (3.4) that, even allowing for possibleC1,2 correlation ∂ logC1/∂ logC2 6=
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0,

∆(M,Λh) =

√(
∂ logµ2(mZ)

∂ logµ2(Λh)

)2

+

(
∂ logµ2(mZ)

∂ logM

)2

. (3.7)

This is just a Barbieri–Giudice-like fine-tuning measure comparing percentage
changes in the low scale Higgs mass parameter to those in the input parameters.
In the limit C1 log(Λh/mZ) � 1 and taking Λh > M , we see that ∆(Λh) is made
up of two pieces:

∣∣∣∣
∂ logµ2(mZ)

∂ logµ2(Λh)

∣∣∣∣ =

∣∣∣∣1 +
C2M

2

µ2(mZ)
log

(
Λh
M

)
− CTM

2

µ2(mZ)

∣∣∣∣ ,

k

∣∣∣∣
∂ logµ2(mZ)

∂ logMk

∣∣∣∣ =

∣∣∣∣
C2M

2

µ2(mZ)

[
2 log

(
Λh
M

)
− 1

]
− 2

CTM
2

µ2(mZ)

∣∣∣∣ . (3.8)

The “1” piece is the SM contribution, the log(Λh/M) pieces reflect sensitivity to
the RG trajectory (with slopeC2M

2), theCTM2 piece is due to the finite threshold
correction, and the log-independent C2M

2 piece arises because a variation in
logM results in a shift in the matching scale, which reintroduces a small amount
of RG evolution. Clearly ∆ � 1 if C2M

2 or CTM2 is � µ2(mZ), as expected.
This even holds in the limit where the high scale approaches the heavy particle
mass, Λh →M+.

In the fermionic SM+GM EFT at two-loop order with one-loop matching, we
have

C2 ∼
g4

(4π)4
, CT = 0, (3.9)

where g is a placeholder for a gauge coupling(s). It is interesting to note that in
the limit Λh →M+, Equation (3.7) just becomes

∆(M+) =

√
1 +

(
C2(M)M2

µ2(mZ)

)2

. (3.10)

If we bound this sensitivity measure by ∆max, this is almost equivalent to simply
bounding the contribution to the µ2(µR) RGE in Equation (3.1) at the scale µR =

M , i.e. C2(M)M2 . ∆maxµ
2(mZ). This is not an uncommon practice as a zeroth-

order naturalness bound for M .
There is one case we wish to comment on here: the special case where C2(M)

happens to vanish, somewhat reminiscent of the Veltman condition [301]. In this
case there is plainly no naturalness bound on M from the ∆(M+) measure we
have written above, no matter the size of M . So it appears that there is a fine-
tuning which is not captured by our framework in this limit. Is this indeed the
case? One can show that extending this toy model to include RG evolution of C2
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is not enough to reintroduce the naturalness bound (we will see this in our nu-
merical analysis). Instead, it turns out that this apparent “Veltman throat” is only
a limitation of the order to which we are working. In the fermionic SM+GM EFT
with two-loop matching,CT becomes a non-zero function of the gauge couplings.
In general CT (M) 6= 0 when C2(M) = 0, and thus a sensitivity proportional to
M2 and powers of gauge couplings is recaptured at this special value of M . In
any case, we do not attribute much physical significance to this special case; in
the full model, even if C2(M) = 0, RG effects reinstate C2(µR) 6= 0 at µR > M ,
and the sensitivity of µ2(mZ) to M2 is rapidly recaptured in the realistic case with
Λh > M .

3.1.4 Scalar-like case

Let us first consider the SM plus scalar GM case with only one portal quartic
λH1(H†H)(Φ†Φ) and one self quartic λΦ(Φ†Φ)(Φ†Φ). This occurs whenever the
scalar is an SU(2) singlet. At two-loop with one-loop matching, we have

C2 = CSM2 + 2Q3
λH1

(4π)2
+ . . . , CT = Q3

λH1

(4π)2
, (3.11)

where CSM2 ∼ g4/(4π)4, and (Q1, Q2, Q3) are the (U(1)Y , SU(2), SU(3)) charges
of the GM. Assuming for simplicity no RG evolution of these parameters, we
have Oi = {logµ2(mZ), logC1, logCSM2 } and Ij = {logµ2(Λh), logC1, logCSM2 ,

log λH1, log λΦ, logM2}. The sensitivity measure, assuming C1 and CSM2 are
insensitive to changes in λH1 and λΦ, is given by

∆(M,Λh) = min
λ1




√√√√√

(
∂ logµ2(mZ)
∂ log µ2(Λh)

)2
+
(
∂ log µ2(mZ)
∂ logMk

)2

+
(
∂ logµ2(mZ)
∂ log λ1

)2

∣∣∣∣∣∣∣
λ1


 , (3.12)

where we have ignored the subdominant ∂/∂ log λΦ term for clarity. Before min-
imisation, the contribution of the first two terms under the square root are ex-
actly those in Equation (3.8). Note that the C2M

2 contributions are removed
if λH1 takes the fortuitous value −(4π)2CSM2 /(2Q3), however the CTM2 contri-
butions remain. Conversely, λH1 = 0 removes the threshold correction contri-
butions, leaving non-vanishing C2M

2 contributions. Thus it seems that, even
with the extra freedom granted by λH1, one cannot remove the naturalness prob-
lem. Indeed, the minimisation over λH1 can be performed analytically in this
toy model. The result is rather lengthy, and we do not reproduce it here. It is
anyway not terribly illuminating, since this toy model is too strong of an over-
simplification to reflect the full scalar SM+GM case when Λh � M ; pure gauge
contributions in the λH1(µR) RGE which destabilise any fortuitous cancellation
for C2(µR) = 0 must be taken into account. Nevertheless, the toy model result
can serve as an argument for the existence of a finite naturalness bound even in



3.1. Physical Naturalness 65

the limit Λh →M+, where we obtain

∆(M+) =

√√√√ 1

12

[
10 + 4

CSM2 M2

µ2(mZ)
+

(
CSM2 M2

µ2(mZ)

)2
]
, (3.13)

if C1 log(Λh/mZ) � 1. Again, clearly ∆ � 1 when CSM2 M2 � µ2(mZ), as
expected. If we bound this sensitivity measure by ∆(M+) < ∆max, this is ap-
proximately equivalent to CSM2 (M)M2/

√
12 . ∆maxµ

2(mZ).
The scalar SU(2) doublet or triplet SM+GM EFT case with two portal quartic

couplings is more delicate. At two-loop with one-loop matching we have

C2 = CSM2 + 2Q3Q2
λH1

(4π)2
− 24Q3

λ2
H2

(4π)4
+ . . . , CT = Q3Q2

λH1

(4π)2
, (3.14)

where λH1,2 will be defined in Section 3.2.2. There is now enough freedom for a
minimisation analogous to Equation (3.12) to select λH1,2 such that C2 = 0 and
CT = 0 simultaneously, removing the sensitivity of µ2(mZ) to M2. Still, in the
realistic case including RG effects beyond our toy model, C2 6= 0 and CT 6= 0

will be reinstated at µR > M , and ∆(Λh) with Λh > M will sensibly capture
the µ2(mZ) sensitivity to M2. A question remains as to whether ∆(M+) acts
sensibly in this scenario. Is it possible to choose λH1,2(M) such that C2(M) = 0

and CT (M) = 0 and the relevant terms ∝ M2 in Equation (3.8) vanish? Indeed,
it is possible. However, once RG effects are included, this is not sufficient to
minimise ∆(M+). In particular, dCT /d logµR will generally be non-zero, leading
to an extra term in the ∂/∂ logM2 sensitivity measure:

lim
Λh→M+

∣∣∣∣
∂ logµ2(mZ)

∂ logM2

∣∣∣∣ =
1

2

∣∣∣∣∣
M2

µ2(mZ)

(
C2(M) + 2CT (M) +

dCT
d logµR

∣∣∣∣
µR=M

)∣∣∣∣∣ .

(3.15)

The extra term can be thought of as arising from a shift in the matching scale. If
λH1(M) = 0 is chosen so that CT (M) = 0 in order to minimise the ∂/∂ logµ2(Λh)

sensitivity, the full sensitivity measure is no longer minimised for C2(M) = 0.
Instead, one would like to set [C2(M) + dCT /d logµR|µR=M ] = 0. However,
dCT /d logµR|µR=M is itself a function of λH1,2 (and gauge couplings), thus it
is not guaranteed that this is possible. Indeed, in the cases we explore, it is not;
remarkably, dCT /d logµR|µR=M ⊃ +24Q3λ

2
H2/(4π)4, which cancels the negative

contribution in Equation (3.14) and leaves [C2(M) + dCT /d logµR|µR=M ] posi-
tive for any value of λH2(M) when λH1(M) = 0.2 Our numerical study captures
this, and we always recover a sensible value for ∆(M+).

2The reader might wonder if this is just a convenient happenstance. It is possible. However, we
note that extending to three-loop RGEs with two-loop matching, this objection becomes moot. At
higher loop matching the threshold correction will generally become a function of both λH1 and
λH2. The ∂/∂ logµ2(Λh) sensitivity is minimised for CT (M) = 0. However, ∂/∂ log λH1,2(Λh)
terms also appear in the full sensitivity measure. The simultaneous vanishing of these terms is in
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FIGURE 3.1: ∆(M,Λh) = 10 contours for Λh = M+ (solid), or
ΛPl ∼ 1019 GeV (dashed). Also shown as gray dotted lines are
approximate C2 contours for some benchmark heavy particles.

The results for negative values of C2 are very similar.

Much of the discussion here has only been of technical interest since we have
chosen to project out our unknowns by minimising the sensitivity measure over
them. Clearly the possibility of a miraculous cancellation is not the generic case,
and such cancellations are anyway quickly violated in the realistic scenario with
RG effects and Λh > M . Nevertheless we find it interesting that, in this frame-
work (and even in the limit Λh →M+ limit), there is a certain amount of µ2(mZ)

sensitivity which cannot be made to go away by a judicious choice of quartic
couplings.

3.1.5 Naturalness bounds

Naturalness bounds can be derived simply by bounding the sensitivity measure
Equation (3.6). In Figure 3.1 we show the ∆(Λh) = 10 contours for Λh = M+,
or ΛPl ∼ 1019 GeV in our fermion-like toy model Equation (3.7). Points in pa-
rameter space below these lines can be considered natural, and points above
increasingly unnatural.

Figure 3.1 can be used to estimate naturalness bounds on the masses of
fermionic particles. Consider for example a heavy fermion with a top-like cou-
pling strength such that C2 = 6y2

t /(4π)2; taking y2
t = y2

t (mZ) ≈ 0.96 and reading
across one finds a naturalness bound M . TeV. For a right-handed neutrino in-
volved in a Type I see-saw, C2 = 4y2

ν/(4π)2 with y2
ν ' Mmν/(174 GeV)2; taking

general only guaranteed if λH1(M) = λH2(M) = 0. Plainly this restriction is too severe to absorb
sensitivity arising elsewhere.
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mν = 0.05 eV results in a naturalness bound M . 107 GeV [3, 302].3 The reason
that this naturalness bound is so large is simply because C2 is so small. Indeed,
in the limit C2 → 0 there is no naturalness bound on M . In models with gauge
singlets, C2 → 0 can correspond to a technically natural limit [36, 37] associated
with decoupling of the particle from the SM fields. It makes sense that there is no
Higgs naturalness bound on the mass of such a particle, given that in this limit
the heavy particle can no longer “talk” to the Higgs at all.

The focus of this Chapter will be Higgs naturalness within the EFT of the
SM plus a heavy GM. For fermionic GMs with SU(3), SU(2), or U(1)Y charge
Q3, Q2, or Q1, the leading pure gauge contributions to C2 are −2Q2

1g
4
1/(4π)4,

−1
2Q2(Q2

2 − 1)g4
2/(4π)4, and +48(N2

C − 1)g4
3y

2
t /(4π)6, respectively. Taking g2

1 ≈
0.13, g2

2 ≈ 0.43, and g2
3 ≈ 1.48, these correspond to rough naturalness bounds of

(perhaps surprisingly to some) tens to hundreds of TeV, as sketched in Figure 3.1.
The size of the mass bounds is just a reflection of the smallness of g4/(4π)4.
The main purpose of this Chapter is to derive these bounds more rigorously;
we perform a full two-loop analysis to examine the effects of adding various
(vector-like) fermionic and scalar GMs to the SM. The above naturalness bound
approximations turn out to be quite good for the fermionic GMs, but they sig-
nificantly deviate for scalar gauge multiplets, since these always couple directly
to the Higgs via a quartic term(s). As already indicated, sensitivity to the RG
evolved quartics must be properly taken into account.

3.1.6 Comment on the Planck-weak hierarchy

Before leaving this section, we want to comment on how the Planck-weak hierar-
chy fits into in this picture. From Equations (3.2) and (3.5), one can see that ∆ ' 1

in the pure SM limit, i.e. there is no enhanced sensitivity when the Higgs mass is
promoted to a high scale input parameter. This should come as no surprise, since
the only explicit scale in the SM is µ2 itself: the value µ2(Λh) is multiplicatively
related to the value µ2(mZ) and remains electroweak scale up to high scales.4

Indeed, the effective Higgs potential remains consistent (albeit metastable) even
up to the very highest scale to which the SM can be valid: ΛPl ∼ 1019 GeV. Now,
it could be that gravity introduces large and physical corrections to µ2(µR) [or
some related parameter(s)] at or below this scale. However, without a complete
theory of quantum gravity, we cannot calculate these corrections. This picture
therefore claims that the SM with inputs at ΛPl is natural, in the sense that the
low-energy observable µ2(mZ) is not extremely sensitive to the input µ2(ΛPl). In
such a case, one could sensibly ask: why is µ2(ΛPl) � Λ2

Pl? We do not address

3This is not quite the correct thing to do, since the observable at low scale is mν and not C2

[which was assumed to derive Equation (3.8)]. Rest assured that using the appropriate sensitivity
measure derived from Equation (3.4) only marginally changes this picture.

4 For the SM at two-loop we find µ2(ΛPl) ' −(94 GeV)2 and ∆(ΛPl) ' 1 to one part in 106.
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this problem. By construction our sensitivity measure remains agnostic to this in-
put value by assuming a flat prior in logµ2(ΛPl). Of course, as we have argued,
the presence of a heavy gauge multiplet can introduce a calculable and physical nat-
uralness problem irrespective of the situation with gravity, and this is the problem that
we study. In such models a flat prior belief in logµ2(Λh) devolves to a low scale
posterior belief which favours µ2(mZ) & C2M

2. It could be that gravity behaves
in a similar way, but we cannot yet perform the calculation.

3.2 Method

The main purpose of this Chapter is to derive and present naturalness bounds
on the masses of GMs within SM+GM EFTs valid up to scale Λh. In Section 3.1
we motivated a general procedure for determining these bounds: take the low
energy observables at mZ , evolve them under the RGEs to the scale Λh, then
evaluate and bound the sensitivity measure Equation (3.4). Presently we detail
our method. We use sets of two-loop RGEs generated using a modified version
of PYR@TE [303].

The low scale observables are taken as the logarithms of SM MS Lagrangian
parameters at scale mZ : exp(Oi) = {µ2(mZ), λ(mZ), g1(mZ), g2(mZ), g3(mZ),

yt(mZ), yb(mZ), yτ (mZ)} = {−(88 GeV)2, 0.13, 0.36, 0.66, 1.22, 0.96, 0.017,

0.010}. For simplicity we ignore the Higgs and the top quark thresholds. The
high scale input parameters are taken as the logarithms of the minimal set of
SM+GM MS Lagrangian parameters at scale Λh (to be explicitly listed in the fol-
lowing subsections); by minimal we mean that terms in the SM+GM Lagrangian
which can be set to zero in a technically natural way are not included. The ob-
servables are numerically evolved under the two-loop SM RGEs up to the thresh-
old of the GM, µR = M , where we perform one-loop matching onto the param-
eters of the SM+GM EFT. The mass parameter for the GM is also a renormalised
MS parameter, which we set equal to M at the scale µR = M .5 New parameters
are introduced in the case of a scalar GM; these are left as free parameters which
are numerically minimised over when evaluating the sensitivity measure. The
two-loop SM+GM RGEs are used to evolve all parameters up to the high scale
Λh. The approximation to the full sensitivity measure, Equation (3.5), is then
evaluated numerically by varying the appropriate input parameters around their
values at Λh, evolving all parameters back down to the scale mZ , matching the
SM+GM EFT onto the SM EFT at the matching scale µR given by M(µR) = µR,
and measuring the change in the Higgs mass parameter.

5The bounds we present are therefore bounds on the parameter M (i.e. the MS mass of the GM
at the scale M ), not the pole mass.
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FIGURE 3.2: Corrections to µ2 from a heavy vector-like fermion.

3.2.1 Vector-like fermion

The minimal SM+GM Lagrangian for a vector-like fermion is that of the SM plus

∆L = ψ̄Dνγνψ −Mψ̄ψ. (3.16)

The high scale input parameters of this model are those of the SM plus the renor-
malised parameter M(Λh), i.e. Ij = {µ2(Λh), λ(Λh), g1(Λh), g2(Λh), g3(Λh),

yt(Λh), yb(Λh), yτ (Λh), M(Λh)}. The one-loop matching conditions are trivial,

µ2
+(µR) = µ2

−(µR) , λ+(µR) = λ−(µR) , (3.17)

where the + (−) subscript denotes the SM+GM (SM) EFT parameter.
The µ2(µR) RGE takes the form of Equation (3.1) with C2(µR) a function of

SM parameters. Recall that it is primarily the C2(µR) term which leads to a po-
tential naturalness problem, as argued in Section 3.1.1 for constant C2. In the
vector-like fermionic SM+GM EFT it takes the form

C2 = −2Q3Q2Q
2
1

g4
1

(4π)4
− 1

2
Q3Q2(Q2

2 − 1)
g4

2

(4π)4
+ 96Q2(N2

c − 1)c(rψ)
g4

3y
2
t

(4π)6
,

(3.18)

where c(rψ) = 1
2 (3) for Q3 = 3 (8), and dependence on scale µR is implied.

Representative diagrams leading to these terms are shown in Figure 3.2. Note
that we have added by hand the leading three-loop SU(3) correction, arising
from three diagrams [see Figure 3.2b], since otherwise the two-loop RGEs do
not capture any SU(3) correction beyond multiplicity factors.6 This correction
turns out to be competitive with the two-loop pure gauge corrections at scales
µR . 105 GeV due to the relatively large couplings g3 and yt below this scale. It
is also opposite in sign, thus potentially delaying the growth of µ2(µR) (and the

6This three-loop correction was calculated with the aid of MATAD [304].
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corresponding naturalness problem) if it happens to approximately cancel with
the other gauge contributions.

There are no unconstrained high scale dimensionless inputs to minimise over,
so the sensitivity measure Equation (3.5) is just

∆(M,Λh) =

√(
∂ logµ2(mZ)

∂ logµ2(Λh)

)2

+

(
∂ logµ2(mZ)

∂ logM(Λh)

)2

. (3.19)

Results are obtained by numerically evaluating ∆(M,Λh) at points of interest in
(M,Λh) space.

3.2.2 Complex scalar

The minimal SM+GM Lagrangian for a complex scalar is that of the SM plus

∆L = DνΦ†DνΦ−
(
M2Φ†Φ +

∑
λΦiΦ

†ΦΦ†Φ +
∑

λHjH
†HΦ†Φ

)
, (3.20)

where H is the SM Higgs field, and the sums are over all possible contractions.
Explicitly, we take the following convenient contractions for the portal quartics

∆L ⊃ λH1H
†H Tr(Φ†Φ) + λH2

(
2 Tr(H†ΦΦ†H)−H†H Tr(Φ†Φ)

)
, (3.21)

where the second term is relevant only for Q2 ≥ 2. The high scale input param-
eters of the model are those of the SM plus the extra self and portal quartics and
renormalised mass parameter, i.e. Ij = {µ2(Λh), λ(Λh), g1(Λh), g2(Λh), g3(Λh),

yt(Λh), yb(Λh), yτ (Λh), λΦ1(Λh), . . . , λH1(Λh), . . . ,M2(Λh)}. The one-loop match-
ing conditions are

µ2
+(µR) = µ2

−(µR)−Q3Q2
λH1(µR)

(4π)2
M2(µR)

[
1− log

(
M2(µR)

µ2
R

)]
, (3.22)

λ+(µR) = λ−(µR)− Q3Q2

2

λ2
H1(µR)

(4π)2
log

(
M2(µR)

µ2
R

)
, (3.23)

where the + (−) subscript denotes the SM+GM (SM) EFT parameter and we
have neglected terms suppressed by powers of v2/M2. We will always work in
the limit where Φ does not obtain a vacuum expectation value. This is a well-
motivated simplification, since for masses at the naturalness bounds we will
obtain (typically M > TeV), experimental agreement with the canonical Higgs
mechanism for electroweak symmetry breaking generically constrains any scalar
GM to observe this limit, and of course a coloured scalar multiplet must exactly
satisfy it. Evidently the µ2 term receives a threshold correction when matching
is performed at the scale µR = M(µR).

The µ2(µR) RGE in the SM+GM EFT with a complex scalar takes the form of
Equation (3.1) with C2(µR) a function of both the SM parameters and the extra
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FIGURE 3.3: Corrections to µ2 from a heavy scalar, and related
corrections to λHi.

quartics,

C2 = + 2Q3Q2
λH1

(4π)2
− 4Q3Q2

λ2
H1

(4π)4

+ 5Q3Q2Q
2
1

g4
1

(4π)4
+

5

4
Q3Q2(Q2

2 − 1)
g4

2

(4π)4

+ 16Q3Q2Q
2
1

g2
1λH1

(4π)4
+ 4Q3Q2(Q2

2 − 1)
g2

2λH1

(4π)4

− 24Q3
λ2
H2

(4π)4
+ 64Q2

g2
3λH1

(4π)4
, (3.24)

where the final line λ2
H2 (g2

3λH1) term appears only if Q2 = 2, 3 (Q3 = 3), and de-
pendence on scale µR is implied.7 Representative diagrams which lead to these
terms are shown in Figure 3.3a. Recall that the naturalness problem can be ame-
liorated in the limit C2 → 0. Indeed, it could be the case that at some scale the
λHi conspire to give C2(µR) = 0. However, this will not be stable under RG evo-
lution; the portal quartics receive gauge corrections via the diagrams shown in
Figure 3.3b:

dλH1

d logµR
⊃ 3Q2

1

g4
1

(4π)2
+ 3c2(rΦ)

g4
2

(4π)2
− 32

y2
t g

4
3

(4π)4
, (3.25)

dλH2

d logµR
⊃ 3n2Q1

g2
1g

2
2

(4π)2
. (3.26)

Here, n2 = 1 (2) and the quadratic Casimir c2(rΦ) = 3/4 (2) for Q2 = 2 (3);
and the term proportional to g3 applies to the case Q3 = 3. Note that there
exist corrections with odd power in Q1; this means that (unlike the fermion case)
RG evolution will depend on the sign of the hypercharge, however we do not
observe any noticeable consequences from this effect. Also, in this case, we see

7We encountered difficulties with PYR@TE when generating the two-loop scalar octet RGEs.
Thus, regrettably, they are left out of this study.
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that the two-loop scalar RGEs do capture an SU(3) correction ∼ g4
3y

2
t , through

a two-loop correction to the portal quartics. Thus we do not add by hand the
three-loop g4

3y
2
t term to the µ2 RGE in our scalar SM+GM analysis.

The portal and self quartics are unknown and unconstrained high scale input
parameters which must be projected out to obtain a sensitivity measure which
is a function of (M,Λh). Our measure Equation (3.6) requires them to take on
such values which minimise the Bayes factor, i.e. such values which give a con-
servative “best case scenario” for Higgs mass sensitivity in the given model. In
Equation (3.5), we wrote down an approximation to the full sensitivity measure
Equation (3.4), which is valid when the low scale dimensionless SM observables
are approximately insensitive to the unconstrained inputs in the vicinity of the
minimum. In that case we can evaluate the sensitivity measure Equation (3.5),

∆(M,Λh) = min
λHi



√√√√√√√√
(
∂ logµ2(mZ)

∂ logµ2(Λh)

)2

+

(
∂ logµ2(mZ)

∂ logM2(Λh)

)2

+
∑(

∂ logµ2(mZ)

∂ log λHi(Λh)

)2

+
∑(

∂ logµ2(mZ)

∂ log λΦj(Λh)

)2

∣∣∣∣∣∣∣∣∣∣λΦj(M)=0

λHi


, (3.27)

where λΦj(M) = 0 is minimally consistent with our assumption that Φ attains no
vacuum expectation value.8 We will now make an argument for why we indeed
expect this approximation to be valid in the scalar SM+GM.

Intuitively, since C2M
2 is the primary quantity which leads to a naturalness

problem, to zeroth approximation we expect the minimum to occur where the av-
erage value of C2(µR) over the RG evolution is zero. Consider the case with only
one portal coupling λH1. Then from Equation (3.24) our expectation requires
λH1(µR) to take on values O(g4/(4π)2) (in order to cancel the pure gauge contri-
bution), and for C2(µR) to swap sign along its RG evolution. Indeed, we observe
this to be the case in our numerical study, as we will demonstrate in Section 3.4.
Now, λH1 enters the one-loop dimensionless SM parameter RGEs only for the
Higgs self-quartic λ, as ∼ λ2

H1/(4π)2. Therefore its contribution to the evolution
of λ (and all dimensionless SM parameters) is very small at the minimum, and we
can say that ∂λ(mZ)/∂λH1(Λh) ' 0. As for the new quartic couplings λΦj , they
do not directly enter any of the dimensionless SM parameter two-loop RGEs,
therefore their effect is also very small. Extending to the case with two portal
quartics, Equation (3.24) clearly implies that a contour in (λH1, λH2) space will
satisfy C2(µR) = 0, so our argument for O(g4/(4π)2) quartics no longer holds.
However the ∂/∂ log λHi(Λh) terms in the sensitivity measure Equation (3.27) are
proportional to λHi(Λh), so that the minimum will always prefer smaller values
for these quartics. The dimensionless SM observables will then be insensitive to
variations around λHi(Λh) for the reasons already argued.

8The full sensitivity measure Equation (3.27) should also involve a minimisation over the λΦj .
However, we found that, after demanding λΦj(M) ≥ 0 to ensure no non-trivial vacuum expec-
tation value, the minimum always occurred for λΦj(M) ' 0. Thus in practice, to improve speed
and numerical stability, we set λΦj(M) = 0 when evaluating the sensitivity measure and note that
even varying this up to . 0.5 made little difference to our results. We also note that the λΦj always
evolve to positive values due to pure gauge contributions to their RGEs at one-loop, and therefore
the potential does not become trivially unstable.
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3.3 Results

The naturalness bounds for various vector-like fermionic and scalar GMs, de-
rived according to the method detailed in Section 3.2, are presented in Tables 3.1
and 3.2 for Λh = {M+,ΛPl} and ∆(Λh) = {10, 100, 1000}. Contour plots in
(M,∆) and (M,Λh) parameter space are also provided in Figures 3.4–3.7. These
constitute the main result of this Chapter, and we hope that they will serve
as a useful reference of naturalness benchmarks for phenomenological model
builders.

Before we discuss them in more detail, let us briefly reiterate their meaning.
The scale Λh corresponds to the input scale of MS parameters in the SM+GM
EFT. The quantity ∆(Λh), defined in Equation (3.6), is a sensitivity measure for
the Higgs mass parameter which can be interpreted as a Bayesian evidence on
the Jeffreys scale or (more loosely) to a percentage fine-tuning in the Barbieri–
Giudice sense. A stringent naturalness constraint is then ∆(ΛPl) < 10, which
(loosely) ensures < 10% sensitivity for µ2(mZ) ' −(88 GeV)2 when the MS pa-
rameters are defined at ΛPl. If a phenomenological model can satisfy this con-
straint then we would say it does not induce a Higgs naturalness problem. The
bounds weaken in the limit Λh →M+. Still, rather remarkably, they remain finite
in this limit, as we argued in Section 3.1. The ∆(M+) < 10 bound can therefore
be interpreted as a conservative naturalness constraint on M . It is also of interest
if ∆(ΛPl) is not applicable, e.g. if new physics arises at a scale above M which
markedly affects the µ2(µR) evolution, or if the EFT hits a Landau pole below
ΛPl.

3.4 Discussion

Some aspects of our results can be understood by scaling relations. At fixed Λh,

the bounds in Tables 3.1 and 3.2 scale approximately as
√

∆/CSM2 , as one would
expect from Equation (3.8) for the simple example discussed in Section 3.1.
Where they are violated (particularly for the ∆(Λh) bounds) it is due to some
cancellation between contributions: the contributions arising from SU(3) charge
are opposite in sign to those from SU(2) and U(1)Y charge. The contour plots in
Figures 3.4–3.7 make these cancellations more obvious, and we will discuss them
shortly. Comparing bounds evaluated at disparate Λh is more involved. Indeed,
this is why we have gone to the trouble of a two-loop RGE analysis! Still, some
qualitative observations will be made presently.

For the fermionic GMs in Table 3.1, the rough scaling relation ∼√
1/
√

5 log(ΛPl/M) between bounds evaluated at ∆(M+) and ∆(ΛPl), as ex-
pected from Equation (3.8), is broken by the RG evolution of C2. We observe
that the naturalness bounds at ΛPl are more stringent than this relation would
suggest for ψ(1, 1, Q1), and less stringent for ψ(1, Q2, 0) and ψ(Q3, 1, 0). This is
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Λh = M+ Λh = 1019 GeV
SU(3) SU(2)L U(1)Y ∆ = 10 ∆ = 100 ∆ = 1000 ∆ = 10 ∆ = 100 ∆ = 1000

1 1 ± 1
6

1400 4300 13000 130 420 1300
± 1

3
690 2200 6800 64 210 670

± 2
3

350 1100 3400 32 110 340
±1 230 730 2300 22 72 230
±2 120 370 1200 13 43 140
±3 80 250 790 - - -

2 0 70 230 740 11 35 110
± 1

2
69 220 720 10 34 110

±1 65 210 670 9.7 32 100
±2 54 170 550 - - -

3 0 35 110 370 6.0 20 64
±1 34 110 350 6.1 20 65
±2 31 100 330 - - -

3 1 0 54 190 700 17 56 190
± 1

3
54 200 710 17 60 210

± 2
3

56 210 750 21 77 300
±1 59 220 830 72 140 340
±2 110 800 1600 - - -

2 0 180 350 850 13 37 110
±1 110 250 660 9.0 28 84
±2 57 150 440 - - -

3 0 29 86 260 - - -
±1 27 82 250 - - -
±2 24 72 220 - - -

8 1 0 20 74 270 7.3 25 86
±1 21 77 280 - - -
±2 23 91 360 - - -

2 0 17 67 270 - - -
±1 18 72 310 - - -
±2 21 110 780 - - -

3 0 63 110 270 - - -
±1 50 98 240 - - -
±2 32 72 190 - - -

TABLE 3.1: Naturalness bounds on the mass M (in TeV and to 2
significant figures) of various vector-like fermionic gauge multi-
plets for Λh = {M+, 1019 GeV} and ∆(Λh) = {10, 100, 1000}. The
dashes indicate that a Landau pole arises below 1019 GeV along

the ∆(Λh) = 10 contour.



3.4. Discussion 75

Λh = M+ Λh = 1019 GeV
SU(3) SU(2)L U(1)Y ∆ = 10 ∆ = 100 ∆ = 1000 ∆ = 10 ∆ = 100 ∆ = 1000

1 1 ± 1
6

1300 4100 13000 29 96 310
± 1

3
670 2000 6400 14 47 150

± 2
3

340 1000 3200 6.8 23 75
±1 230 690 2200 4.4 15 48
±2 120 350 1100 2.0 6.5 21
±3 77 240 740 - - -

2 0 67 210 680 2.3 7.7 25
± 1

2
65 210 660 2.1 7.2 24

±1 62 190 620 1.8 6.0 20
±2 52 160 510 1.1 3.6 12

3 0 33 100 340 1.1 3.6 12
±1 32 100 330 0.95 3.2 10
±2 30 94 300 0.45 1.7 6.7

3 1 0 220 820 2900 12 40 130
± 1

3
290 1200 5400 12 38 110

± 2
3

330 880 2500 4.2 14 45
±1 160 470 1400 2.5 8.4 27
±2 71 210 660 0.99 3.2 10

2 ±0 40 130 400 1.3 4.3 14
±1 37 120 370 0.99 3.3 11
±2 31 96 300 - - -

3 ±0 20 62 200 - - -
±1 19 60 190 - - -
±2 18 55 180 - - -

TABLE 3.2: Naturalness bounds on the mass M (in TeV and
to 2 significant figures) of various scalar gauge multiplets for
Λh = {M+, 1019 GeV} and ∆(Λh) = {10, 100, 1000}. The dashes
indicate that a Landau pole arises below 1019 GeV along the

∆(Λh) = 10 contour.
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FIGURE 3.4: Λh = {M+,ΛPl} contours {solid, dashed} in the
vector-like fermionic SM+GM EFT. The “throat” features are an
artifact of the loop level to which we are working [see Sec-

tion 3.1.3].
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FIGURE 3.5: Λh = {M+,ΛPl} contours {solid, dashed} in the
scalar SM+GM EFT.
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FIGURE 3.6: ∆(Λh) = 10 contours in the vector-like fermionic
SM+GM EFT. If a line ends it is because the system hits a Landau

pole.
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FIGURE 3.7: ∆(Λh) = 10 contours in the scalar SM+GM EFT. If a
line ends it is because the system hits a Landau pole.
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FIGURE 3.8: Example running of µ2(µR) in the SM+GM EFT for a
heavy lepton doublet ψ(1, 2,−1/2) and a heavy down-type quark
ψ(3, 1,−1/3) with M = 3, 5, 10, 20, 30 TeV. The dashed line is the

SM-only case.

simply because g4
1(µR) (and therefore C2) grows at higher energy, whereas the

opposite is true for g4
2(µR) and g4

3(µR)y2
t (µR). This effect can be observed in Fig-

ure 3.8, where we show the example RG evolution of µ2(µR) for gauge multiplets
of increasing mass. The naturalness problem which broadly arises from a sensi-
tivity to the high scale input µ2(Λh) is self-evident for large masses.

For the scalar GMs in Table 3.2, there is no obvious scaling relation between
naturalness bounds at different scales. One observation is that, although the
∆(M+) bounds are similar9 to those found in the fermionic GM case, the ∆(ΛPl)

bounds are much more stringent. This is because the sole one-loop term in the µ2

RGE involves the portal quartic λH1, which is itself renormalised by pure gauge
RG terms at one-loop. Thus the scaling relation is expected to more closely re-
semble ∼ 1/ log(ΛPl/M) [rather than ∼

√
1/ log(ΛPl/M)]. What actually hap-

pens is unfortunately quite opaque, since it is hidden by various complexities:
a coupled set of RGEs; a non-trivial sensitivity measure Equation (3.27); and a
minimisation procedure over the λHi. Let us attempt to convey some intuition
for what happens by considering the example of a two Higgs doublet model,
i.e. the SM+Φ(1, 2, 1/2). To this end it is useful to define a reduced sensitivity
measure

∆red(M,Λh) =

∣∣∣∣
∂ logµ2(mZ)

∂ logµ2(Λh)

∣∣∣∣ , (3.28)

which is a subcomponent of the full measure Equation (3.27). This reduced mea-
sure vanishes in the limit µ2(Λh) → 0. As we already argued in Section 3.2.2, it
is always possible to choose the λHi such that C2 swaps sign over its RG evo-
lution and µ2(Λh) = 0. Thus one expects a contour in λHi space along which
∆red(M,Λh) vanishes [5]. In Figure 3.9 we plot ∆red(M,Λh) as a function of
(λH1(M), λH2(M)) for Λh = ΛPl and M = 1 TeV, where such a contour is readily

9 The larger relative difference between the bounds for coloured states may be partly accounted
for by the three-loop g4

3y
2
t term which is not captured in our pure two-loop scalar analysis.
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FIGURE 3.9: Sensitivity measure and RG evolution in the
SM+Φ(1, 2, 1/2) (i.e. the 2HDM). Upper panel: The not-yet-
minimised sensitivity measure for M = 1 TeV as a function of
(λH1(M), λH2(M)) for: (left) ∆red(ΛPl) of Equation (3.28), and
(right) ∆(ΛPl) of Equation (3.27). The dashed line shows the
µ2(ΛPl) = 0 contour and the star denotes the global minimum.
Lower panel: RG evolution of µ2(µR) and C2(µR)M2(µR) for
M = 1, 3, 5, 10 TeV evaluated at the (λH1, λH2) points which min-

imise ∆(ΛPl).

observed. Obviously this contour constitutes a fine-tuning in the λHi, and we
would hope that our full sensitivity measure captures this tuning and restores
a finite naturalness bound. Indeed, it does; also shown in Figure 3.9 is the full
sensitivity measure as a function of (λH1(M), λH2(M)), with a unique minimum
of ∆(ΛPl) ' 2.7 nearby the µ2(Λh) = 0 contour. In the lower panel of Figure 3.9
we also show the running of µ2(µR) and C2(µR)M2(µR) at this minimum (and
for other example masses). It is seen that C2 does switch sign, as expected.

We will now briefly comment on some features in the (M,∆) and (M,Λh)

contour plots of Figures 3.4–3.7. In Figure 3.4 there is a sharp “Veltman throat”
in the ∆(M+) contours for coloured fermions. This occurs when the three-
loop colour contribution cancels with the electroweak contributions such that
C2(M) = 0. It was already noted in Section 3.1.3 that this is only an artifact of
the loop level to which we are working. The ∆(ΛPl) contour for the ψ(3, 1, 1)

GM demonstrates how this feature is effectively removed when Λh > M . In Fig-
ure 3.5 the qualitative form of the contours in the Φ(3, 1, Q1) scalar case is seen
to change as Q1 is increased from 0 to 2. This is due to a transition in dominance
between colour and hypercharge effects, which are opposite in sign.

In Figure 3.6 a cusp feature is observed when Λh is just above M . This
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can be understood from the toy model Equation (3.8): it is the point where
2 log(Λh/M) ' 1 and the ∂/∂ logM2 sensitivity measure is minimised. Also,
the “turn-around” features in the ψ(3, 1, Q1), ψ(8, 1, Q1), and ψ(8, 2, Q1) plots
can again be understood as a balance between the colour and electroweak con-
tributions. In Figure 3.7 a number of cusp features are observed, mostly occuring
at Λh ∼ 20M . These features all have the same origin: they occur for solutions
where µ2(Λh) ≈ 0. For example, in the Φ(1, 2, 1/2) case at Λh = ΛPl we saw that
the λHi took on values such that µ2(ΛPl) < 0 (see Figure 3.9). It turns out that, for
Λh . 20M , the sensitivity measure is minimised for values such that µ2(Λh) > 0.
At the transition point the reduced sensitivity measure Equation (3.28) vanishes,
and hence the full sensitivity measure is somewhat reduced. Note that in the
cases where Φ is coloured the transition occurs later due to the competiting con-
tributions between gauge contributions.

Before concluding we would like to make a few comments about the appli-
cability of these bounds in the context of extended models. First, in deriving
our sensitivity measure we have made the assumption of flat priors on the loga-
rithms of MS input parameters at scale Λh. This makes logical sense in a bottom-
up approach where one would like to remain maximally agnostic to the higher
scale UV theory. However, if one were to derive these priors as posteriors arising
from a flat set of priors in the UV theory, they would almost certainly not be flat.
Hence our results are only broadly applicable if those derived priors are approx-
imately flat. In particular, some might argue that this is unlikely for logµ2(Λh)

in the presence of gravity, but then some might choose to remain agnostic. Sec-
ond, we have assumed no correlations between the high scale MS input param-
eters. Again, this makes sense from an agnostic bottom-up standpoint, but is
not the general expectation if these parameters were derived from some UV the-
ory. Third, one might contend that our bounds (especially the ∆(ΛPl) bounds),
which are only derived in the context of minimal SM+GM extensions, are not
applicable in a realistic model with additional high scale states. This is true in
a quantitative sense: the bounds are sure to change. Nonetheless, this does not
imply that they are not qualitatively useful. It would take very special physics
to ameliorate these bounds by a significant amount. For example, one could try
to introduce new states with particular properties at Λh ∼ M such that loop
contributions approximately cancel at this scale [298]. In the absence of a sym-
metry which introduces the appropriate correlations between parameters at this
scale, and a symmetry which ensures the cancellation remains satisfied under RG
evolution, naturalness bounds similar to those we have derived will be quickly
reintroduced at Λh > M . Actually, such symmetry requirements are just those
provided by supersymmetric theories, and herein lies the connection between
our RG description and the usual naturalness arguments in the context of su-
persymmetry. In any case, the framework we have outlined in Appendix A.1 is
fully generalisable to perturbative models with more states. Naturalness of the



3.5. Conclusion 83

low scale Higgs mass parameter can be quantified by the Bayesian sensitivity
measure Equation (A.7), as long as one is prepared to calculate and solve RGEs
at least at two-loop order with one-loop matching between intermediate physical
scales.

3.5 Conclusion

The aim of this Chapter was to confront the question, at what mass does a heavy
gauge multiplet introduce a physical Higgs naturalness problem? In Section 3.1 we
described a physical way to understand the Higgs naturalness problem which
might be introduced when perturbative heavy new physics is added to the SM.
The description is of particular interest in bottom-up extensions of the SM. The
premise is essentially as follows. In any perturbative EFT, the low scale Higgs
mass parameter µ2(mZ) ' −(88 GeV)2 can be connected by renormalisation
group equations to MS “input” parameters defined at some high scale Λh. If
µ2(mZ) is especially sensitive to these input parameters, then this signifies a
Higgs naturalness problem. In particular, this can occur if a heavy particle of
mass M is added to the SM.

In order to sensibly quantify this potential problem, we derived a sensitiv-
ity measure using Bayesian probabilistic arguments. The measure can be inter-
preted as a Bayesian model comparison [see Equation (3.4)] which captures the
“naturalness price” paid for promoting the Higgs mass parameter to a high scale
input parameter of the model as opposed to a purely phenomenological input
parameter at low scale. It is fully generalisable to any perturbative QFT, with the
details provided in Appendix A.1. The measure reduces in a certain (relevant)
limit to an intuitively motivated Barbieri–Giudice-like fine-tuning measure [see
Equation (3.5)]. The resulting sensitivity measure is generally a function of un-
known high scale inputs. We conservatively projected these out by minimising
over them, thereby obtaining the sensitivity measure Equation (3.6), which is a
function of Λh and the mass M of a heavy new particle.

This sensitivity measure was used to set naturalness bounds on the masses
of various gauge multiplets, using a full two-loop RGE analysis with one-loop
matching. An interesting outcome is that, once RG effects are taken into account
and finite threshold corrections are captured, a naturalness bound on M remains
even in the limit Λh → M+. The resulting bounds are presented in Tables 3.1
and 3.2, and as contours in Figures 3.4–3.7. They form the main result of this
Chapter, and we hope they are of interest to model builders. For Λh = ΛPl we
find “10% fine-tuning” bounds of M < O(1–10) TeV on the masses of various
gauge multiplets, with the bounds on fermionic gauge multiplets significantly
weaker than for scalars. In the limit Λh →M+ the bounds weaken toM < O(10–
100) TeV; these can be considered as conservative naturalness bounds, of interest
if new physics is expected to substantially alter the RG evolution of µ2(µR) above
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the scale M . We also found that the bounds on coloured multiplets are no more
severe than on electroweak multiplets, since they correct the Higgs mass directly
at three-loop order.
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4 Neutrino Mass

This Chapter is based on the publication “Testing Radiative Neutrino Mass Models

at the LHC,” written in collaboration with Yi Cai, Michael A. Schmidt, and Raymond

R. Volkas [2].

In Section 1.1.3 we motivated Majorana neutrino masses and described two
generic generation mechanisms: tree-level seesaw mechanisms, and loop-level
radiative mechanisms. The focus of this Chapter will be radiative mechanisms,
in which the neutrino mass is suppressed by powers of loop factors ∼ 1/(4π)2

in addition to the mass suppression from heavy particles appearing in the loop.
One reason to be interested in such models is that the new physics required might
lie at a nearby scale, and therefore may be searched for at the LHC or in lepton-
flavour-violation (LFV) experiments.

A challenge is that there are many viable radiative models, and one wishes to
study them in as generic and inclusive a way as possible. One way to approach
this task is to begin with gauge-invariant effective operators that violate lepton-
number by two units (∆L = 2), constructed out of SM fields [305–307]. These
operators, which Babu & Leung [305] systematically classified for mass dimen-
sions 5, 7, 9, and 11, produce vertices that feature in loop-level graphs generating
Majorana masses (and mixing angles and phases). By “opening up” the oper-
ators in all possible ways subject to some minimality assumptions, one may in
principle construct all candidate renormalisable models that yield radiative Ma-
jorana neutrino masses consistent with those assumptions [307].

In this Chapter we first write down the candidate models implied by open-
ing up all of the dimension 7 (D7) operators in the Babu–Leung list, restrict-
ing ourselves to tree-level ultraviolet (UV) completions subject to the following
minimality assumptions: the gauge symmetry is that of the SM only, and ef-
fective operators containing gauge fields are excluded from consideration; the
exotic particles that are integrated out to produce the effective operators are ei-
ther scalars, vector-like fermions, or Majorana fermions. We predict vector-like
quarks, vector-like leptons, scalar leptoquarks, a charged scalar, a scalar doublet,
and a scalar quadruplet, whose properties are constrained by neutrino oscilla-
tion data. As well, a detailed collider study is presented for O3 = LLQd̄H and
O8 = Ld̄ē†ū†H completions with a vector-like quark χ ∼ (3, 2,−5

6) and a lepto-
quark φ ∼ (3̄, 1, 1

3), taking account of LFV constraints in the process. The existing



86 Chapter 4. Neutrino Mass

limits extracted from LHC searches for vector-like fermions and sbottoms/stops
are mχ & 620 GeV and mφ & 600 GeV.

4.1 Minimal UV completions of D7 ∆L = 2 operators

In Weyl-spinor notation, the D7 operators of interest, using the numbering sys-
tem of Babu–Leung [305], are

O2 = LLLēH, O3 = LLQd̄H, O4 = LLQ†ū†H, O8 = Ld̄ē†ū†H, (4.1)

and the Weinberg-like operator

O′1 = LLH̃HHH. (4.2)

The pertinent part of the SM Lagrangian is

LSM,Y = YeLēH̃ + YuQūH + YdQd̄H̃ +H.c. , (4.3)

where H̃ = iτ2H
∗ is the charge conjugate of H . The Weinberg-like operator

O′1 has not been explicitly shown in the list of Babu–Leung [305], but has been
studied in Refs. [308, 309]. Note that this operator always induces the usual
Weinberg operator O1 = LLHH by connecting the two external legs H and H̃

via a Higgs boson to form a Higgs loop. This contribution dominates if the scale
of new physics is large, much above the TeV scale.

We will consider minimal UV completions of these D7 operators using scalars
and fermions, following the programme set out in Ref. [307]. We do not include
models with new gauge bosons. Also, we only consider models which do not
generate the dimension-5 Weinberg operator at tree-level. Hence we remove
models in which one of the three seesaw mechanisms may operate, i.e. mod-
els containing SM singlet fermions, electroweak (EW) triplet scalars with unit
hypercharge, and EW triplet fermions.

We group the completions by topology in Figures 4.1–4.3 and Tables 4.1–4.3,
where quantum numbers are given with respect to SU(3)c × SU(2)L × U(1)Y .
More details can be found in the Appendix of our Ref. [2]. The contents of Ta-
bles 4.1–4.3 constitute a workable list of exotic particles relevant to D7 radiative
neutrino mass models which may be searched for at the LHC or in LFV experi-
ments.

It turns out that the operators O2 and O3b lead to one-loop models, while
the others only admit two-loop models. Generally for models with scalar lepto-
quarks and vector-like fermions, the radiatively generated neutrino mass is pro-
portional to the quark or lepton mass in the loop (we will show this in detail in
Section 4.2). Thus the exotic fermions dominantly mix with the third generation
quarks or leptons, as the third generation masses dominate the neutrino mass



4.1. Minimal UV completions of D7 ∆L = 2 operators 87

FIGURE 4.1: Scalar-
only extension.

Scalar Scalar Operator

(1, 2, 1
2) (1, 1, 1) O2,3,4 [77]

(3, 2, 1
6) (3, 1,−1

3) O3,8 [305, 310]
(3, 2, 1

6) (3, 3,−1
3) O3

TABLE 4.1: Topology
of Figure 4.1.

FIGURE 4.2: Exten-
sion by a scalar and a

fermion.

Dirac fermion Scalar Operator

(1, 2,−3
2) (1, 1, 1) O2

(3, 2,−5
6) (1, 1, 1) O3

(3, 1, 2
3) (1, 1, 1) O3

(3, 1, 2
3) (3, 2, 1

6) O3 [311]
(3, 2,−5

6) (3, 1,−1
3) O3,8

∗

(3, 2,−5
6) (3, 3,−1

3) O3

(3, 3, 2
3) (3, 2, 1

6) O3

(3, 2, 7
6) (1, 1, 1) O4

(3, 1,−1
3) (1, 1, 1) O4

(3, 2, 7
6) (3, 2, 1

6) O8

(1, 2,−1
2) (3, 2, 1

6) O8

TABLE 4.2: Topology
of Figure 4.2. The
completion marked
with a ∗ is studied in
detail in Section 4.2.

FIGURE 4.3: Exten-
sion by a scalar and a

fermion.

Dirac fermion Scalar Operator

(1, 3,−1) (1, 4, 3
2) O′1[312]

TABLE 4.3: Topology
of Figure 4.3.
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matrix unless there is an unnatural flavour structure for the various coupling
constants.

The completions listed in Tables 4.1–4.3 each contain two fields beyond the
SM, including vector-like quarks, vector-like leptons, scalar leptoquarks, charged
scalars, EW scalar doublets and EW scalar quadruplets. In our Ref. [2] we dis-
cussed the pertinent LHC searches and limits for these exotic fields. We will
not reproduce that discussion here. However, we would like to emphasise the
generic predictivity of these minimal UV completions. The exotic particles are
required to not only conform to existing flavour constraints, but also to fit low
energy neutrino measurements. As a result it is common in these neutrino mass
generation models to be able to predict the decay patterns of the exotic particles.
Then for a specific model it is possible to extract the limit based on the decay pat-
terns, either from existing searches, as we shall see in Section 4.2.4, or by carefully
recasting relevant LHC searches, as in Section 4.2.5.

4.2 Detailed study of a specific model

4.2.1 An O3 and O8 completion

In order to demonstrate the LHC reach with regard to minimal UV completions
of D7 ∆L = 2 operators, we study a specific example model (marked in Table 4.2)
with a scalar leptoquark φ and a vector-like quark χ with quantum numbers

φ ∼
(

3̄, 1,
1

3

)
, χ ∼

(
3, 2,−5

6

)
. (4.4)

These particles arise in the minimal UV completions of O3 = LLQd̄H and O8 =

Ld̄ē†ū†H operators, whose SU(2)L structures are

LαLβQγ d̄Hδεαγεβδ, Lαd̄ē†ū†Hβεαβ, (4.5)

respectively. The corresponding neutrino mass diagrams are shown in Figure 4.4.
Their flavour structures are

κO3b
ijklL

α
i L

β
jQ

γ
k d̄lH

δεαγεβδ, κO8
ijklL

α
i d̄j ē

†
kū
†
lH

βεαβ, (4.6)

and the neutrino mass matrix (mν)ij is

κO3b
ijkl(md)kl I, κO8

ijkl(m
†
dmu)jlm`k I, (4.7)

with the loop integral I . Note that the proportionality on the SM mass matrices
introduces a hierarchy.
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FIGURE 4.4: Neutrino mass via theO3b (upper left) andO8 (lower
left) operators, and their respective UV completions in our de-

tailed study (right).

In our specific model, the Yukawa couplings of the new exotic particles are
given by

LY uk = Y LQφ
ij LiQjφ+ Y ēūφ

ij ēiūjφ
† + Y d̄χH

ij d̄iχjH + Y Lχ̄φ
i Liχ̄φ

† +H.c.. (4.8)

Besides the SM gauge symmetry group, we have to demand baryon-number con-
servation, in order to forbid the operators Y QQφ

ij QiQjφ
† and Y d̄ūφ

ij d̄iūjφ, which
induce proton decay in analogy to Ref. [313].

4.2.2 Neutrino mass generation

The neutrino mass receives its dominant contribution from the loop diagrams in
Figure 4.4. The two-loop O8 contribution (as well as the corresponding three-
loop contribution obtained by connecting the two external Higgs lines) is gen-
erally subdominant to the one-loop O3b contribution unless the coupling of the
leptoquark φ to right-handed fermions is much larger, |Y ēūφ

i3 | � |Y
LQφ
j3 |. The

neutrino mass matrix is proportional to the down-type quark mass matrix, dom-
inated by the bottom quark. For simplicity we will assume that the vector-like
quark only mixes with the third generation quarks and set all couplings to the
first two generation quarks to zero. In addition we will focus on the O3 contri-
bution, neglect the O8 contributions, and assume Y ēūφ

ij = 0.
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Decomposing the vector-like quark χ and χ̄ into its components with respect
to SU(2)L, we write

χ =

(
B′

Y

)
, χ̄ =

(
Ȳ

B̄′

)
. (4.9)

Ȳ and Y form a Dirac pair with mass mY = mχ and B̄′ and B′ mix with the
gauge eigenstate of the bottom quark b′,

(
b̄

B̄

)
=

(
c1 s1

−s1 c1

)†(
b̄′

B̄′

)
,

(
b

B

)
=

(
c2 s2

−s2 c2

)†(
b′

B′

)
, (4.10)

forming the mass eigenstates b and B. The physical masses are

m2
b = m2

b′ −m2
bB

m2
χ

m2
χ −m2

b′
, m2

B = m2
χ +m2

bB

m2
b′

m2
χ −m2

b′
. (4.11)

with mbB = Y d̄χH
3 v/

√
2, mb′ = ybv/

√
2 and the mixing angles are given by

s1 =
mbB mχ

m2
χ −m2

b′
, s2 =

mbB mb′

m2
χ −m2

b′
, (4.12)

with c1,2 =
√

1− s2
1,2. After electroweak symmetry breaking, and in the mb �

mB,mφ limit, we calculate the radiatively generated neutrino mass as

(mν)ij =
3

16π2

(
Y LQφ
i3 Y Lχ̄φ

j + (i↔ j)
)
mbB

mbmB

m2
φ −m2

B

ln
m2
B

m2
φ

. (4.13)

This is a rank 2 matrix, thus there is one almost massless neutrino and two mas-
sive neutrinos.

Next we would like to use the low-energy parameters (the PMNS matrix as
well as the neutrino masses) to determine the Yukawa couplings in terms of the
high-scale parameters. The flavour structure of the neutrino mass matrix can be
parameterised by vectors a± and a common factor α,

mν = α(a+a
T
− + a−aT+) , (4.14)

i.e. the neutrino mass matrix is generated by multiplying two different vectors
a± symmetrically. On the other hand it can be written in terms of the low-energy
parameters for normal (NO) as well as inverted (IO) mass ordering,

mNO
ν = m2u

∗
2u
†
2 +m3u

∗
3u
†
3 , mIO

ν = m1u
∗
1u
†
1 +m2u

∗
2u
†
2 , (4.15)
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where mi are the neutrino masses and U = (u1, u2, u3) is the PMNS matrix. We
can rewrite the right-most expression of Equation (4.14) as

α(a+a
T
− + a−aT+) =

α

2

[(
a+

ζ
+ ζa−

)(
a+

ζ
+ ζa−

)T

−
(
a+

ζ
− ζa−

)(
a+

ζ
− ζa−

)T ]
(4.16)

and match it onto Equation (4.15) to obtain the vectors a± in terms of the low-
energy parameters:

aNO
± =

ζ±1

√
2α

(
√
m2u

∗
2 ± i

√
m3u

∗
3) , aIO

± =
ζ±1

√
2α

(
√
m1u

∗
1 ± i

√
m2u

∗
2) . (4.17)

The complex parameter ζ is a free parameter not determined by low-energy
physics. In the following analysis we use the best fit values (v1.2) of the Nu-
FIT collaboration [314]1 assuming normal ordering:

sin2 θ12 = 0.306 , ∆m2
21 = 7.45× 10−5 eV2 ,

sin2 θ13 = 0.0231 , ∆m2
31 = 2.417× 10−3 eV2 , (4.18)

sin2 θ23 = 0.446 .

Furthermore we set the lightest neutrino mass to zero and assume vanishing CP
phases in the PMNS matrix, i.e. δ = ϕ1 = ϕ2 = 0.

4.2.3 Constraints from flavour physics and neutrinoless double-beta
decay

Experimental constraints on flavour violating processes already constrain the pa-
rameter space. Similarly to the two-loop model in Ref. [313], we expect the most
stringent constraints from LFV processes, in particular from the µ → e transi-
tion. We calculated µ → eγ, µ → eee as well as µN → eN conversion in nuclei
and compared the results with the current experimental limits. We use the con-
tributions calculated in Ref. [313] and add the contributions from the additional
coupling of the leptoquark to the vector-like lepton (see the Appendix of Ref. [2]
for details).

As all parameters are fixed by the leptonic mixing and the neutrino masses,
the constraints directly translate to a constraint on the complex rescaling param-
eter ζ, more precisely on |ζ|. The phase of ζ drops out in the flavour physics
amplitudes, at least for the leading contributions, because they are of the form
Y Lχ̄φ∗
i Y Lχ̄φ

j and Y LQφ∗
i Y LQφ

j . We present the constraints on |ζ| while varying
one of the masses mφ,χ in Figure 4.5. The other mass is fixed to 2 TeV. The grey

1The newest best fit values in v1.3 of the NuFIT collaboration are slightly changed. See [315,
316] for other global fits to the neutrino oscillation data.
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FIGURE 4.5: Constraints in (m{φ,χ}, |ζ|) parameter space. The
grey shaded region is excluded by: perturbativity of Yukawa
couplings by requiring max(|Y LQφij |, |Y Lχ̄φij |) < 1 (black solid);
Br(µ→ eγ) < 5.7×10−13 [317] (green dot-dashed); Br(µ→ eee) <
10−12 [318] (blue dotted); and Br(µAu → eAu) < 7 × 10−13 [318]
(red dashed). The magenta dashed line indicates the projected
experimental sensitivity of µTi → eTi conversion in Mu2E at
FNAL and COMET at J-PARC [319–321]. As well, we indicate two
phenomenologically different experimental search regions for the
leptoquark φ: the light blue region (B) has Br(φ → bν) ≈ 100%,

while the light red region (T) has Br(φ→ bν) < 100%.

shaded region is excluded (see the caption for an explanation of the different
exclusion lines). Within the bounds on |ζ| from LFV experiments there are two
regions, separated by a sharp transition, with very different search strategies for
the leptoquark φ. The light blue shaded region (region B) indicates the allowed
region with Br(φ → bν) ≈ 100%. The light red shaded region (region T) has
Br(φ→ bν) < 100%. We discuss both of these regions in Section 4.2.5.

In addition to constraints from flavor violating processes, there are con-
straints from lepton-number violating processes, like neutrinoless double beta
decay. This specific model will lead to additional short-range contributions to
neutrinoless double beta decay via couplings to the first generation of quarks.
As neutrino mass does not depend on the coupling to the first generation of
quarks, this bound can always be satisfied by setting these couplings to zero
without affecting the mechanism of neutrino mass generation. This leaves the
long-range contribution via an exchange of active neutrinos, which is controlled
by the effective mass

〈mee〉 =
∑

U2
eimi . (4.19)

As the minimal framework leads to a strong mass hierarchy, there are currently
no competitive constraints from neutrino-less double beta decay, similarly to the
discussion in Ref. [313].
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FIGURE 4.6: The branching ratio of B → bZ as a function of the
heavy B mass with the observed limit from CMS.

4.2.4 Vector-like quark search

The mass eigenstateB will decay mainly throughB → Zb andB → Hbwhile the
third channel B → W−t is highly suppressed due to the small mixing between
the heavy vector-like quark B and the SM b-quark. The dominant branching
ratios obey the relation

Br(B → Zb)

Br(B → Hb)
=
λ(1, rb, rZ)1/2

λ(1, rb, rH)1/2

1 + r2
Z − 2r2

b − 2r4
Z + r4

b + r2
Zr

2
b

1 + 6r2
b − r2

H + r4
b − r2

br
2
H

, (4.20)

where rb,H,Z = mb,H,Z/mB and

λ(M,m1,m2) = (M2 − (m1 +m2)2)(M2 − (m1 −m2)2) . (4.21)

We can easily read our limit on the mass of B, mB & 620 GeV, from the exclu-
sion curve provided by a dedicated CMS search [322], which is reproduced in
Figure 4.6 as a function of the branching ratios.

4.2.5 Leptoquark searches

In the following subsection we take L ≡ {e, µ, τ} and l ≡ {e, µ}. The scalar lep-
toquark φ can be pair-produced at the LHC via gg fusion and qq̄ annihilation.
The cross section σ(pp → φφ) is determined purely by colour charge and there-
fore depends only on the mass mφ. We use NLO PROSPINO2 [323] cross sections
for the LHC running at

√
s = 8 TeV, which gives σ(pp → φφ) = 82 (23.5) fb for

mφ = 500 (600) GeV. We ignore the t-channel lepton exchange contribution and
single production qg → φL, since these will be suppressed by powers of small
Yukawa couplings.

Upon pair production, the leptoquarks will decay with branching ratios de-
pendent on the parameters Y LQφ

L3 and Y d̄χH
3 relevant to neutrino mass generation.



94 Chapter 4. Neutrino Mass

The partial decay widths are

Γ(φ→ Lt) =
mφ

8π

∣∣∣Y LQφ
L3

∣∣∣
2
f(mφ,mL,mt) , (4.22)

Γ(φ→ νLb) =
mφ

8π

(∣∣∣Y LQφ
L3 c2

∣∣∣
2

+
∣∣∣Y Lχ̄φ
L s1

∣∣∣
2
)
f(mφ,mνL ,mb) (4.23)

− mφ

4π
Re
(
Y LQφ
L3 c2Y

Lχ̄φ
L s∗1

)
f ′(mφ,mνL ,mb) ,

Γ(φ→ νLB) =
mφ

8π

(∣∣∣Y LQφ
L3 s2

∣∣∣
2

+
∣∣∣Y Lχ̄φ
L c1

∣∣∣
2
)
f(mφ,mνL ,mB) (4.24)

+
mφ

4π
Re
(
Y LQφ
L3 s2Y

Lχ̄φ
L c∗1

)
f ′(mφ,mνL ,mB) ,

Γ(φ→ LY ) =
mφ

8π

∣∣∣Y Lχ̄φ
L

∣∣∣
2
f(mφ,mL,mY ) , (4.25)

where b, B are the two heaviest down-type quark mass eigenstates and the func-
tions f , f ′ are defined as

f(M,m1,m2) =

(
M2 −m2

1 −m2
2

)
λ(M,m1,m2)1/2

2M4
, (4.26)

f ′(M,m1,m2) =
m1m2λ(M,m1,m2)1/2

M4
, (4.27)

with λ given in Equation (4.21). The term in the second lines of Equation (4.23)
and Equation (4.24) is neglible because it is suppressed by the neutrino mass.
Note that the phase of ζ drops out in all decay widths. Non-zero couplings that
are not constrained by the neutrino mass generation generally open extra decay
channels. Since we are only interested in the consequences of neutrino mass
generation, all these couplings are taken to be zero.

In the following we will concentrate on the region in parameter space with
mY ,mB � mφ: each leptoquark may decay into either bν or tL, resulting in bνbν,
bνtL or tLtL after pair production. The branching ratios are determined by the
single complex parameter ζ after fitting to low energy parameters as described
in Section 4.2.2. There are two regions of interest:

• Region B where the branching ratio Br(φ→ bν) ≈ 100%, either because the
other channels are kinematically not accessible for mφ . mt or

∣∣Y LQφ
∣∣ �∣∣Y Lχ̄φ

∣∣. It is shaded light blue in Figure 4.5.

• Region T in which all decay channels are open. It is shaded light red in
Figure 4.5.

In region B we have Br(φ → ∑
bνL) ≈ 1, resulting in a bb /ET final state for

which sbottom pair searches can be directly applied [324, 325]. In this case mφ

is constrained to be & 730 GeV at 95% CL. Figure 4.7 shows branching ratios
for region T in the case of normal ordering. The hierarchy between Br(φ→ tµ) ≈
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Br(φ→ tτ ) and Br(φ→ te) is larger for normal compared to inverted mass order-
ing.2 Hence there will be slightly more electrons in final states for the inverted
mass ordering. The relative size of Br(φ → tµ) and Br(φ → tτ ) is controlled by
the atmospheric mixing angle θ23, i.e. for θ23 > π/4, Br(φ → tµ) > Br(φ → tτ)

and we expect the limits to get slightly stronger. In the limit of large mφ it is
apparent that Br(φ→∑

bνL) ≈ Br(φ→∑
tL) ≈ 0.5.

In region T we can now calculate the branching fractions to LHC recon-
structable final states.3 The most frequent final state is bb /ET at about 30%; as
we will see, because Br(φ → ∑

bνL) is always greater than 50%, existing sbot-
tom pair searches alone can provide a bound of mφ > 500 GeV. But can another
final state compete? The next most frequent final state is lbbjj /ET at about 22%;
in this case, searches for top squark pairs in final states with one isolated lepton
are applicable. About 8% of the time a two-lepton final state is produced; again,
searches for top squark pairs are applicable. Three- and four-lepton final states
are also predicted by this model in . 1% of events. For mφ = 600 GeV, where
we will find the existing bound lies, one expects ≈ 500 leptoquark pair events
in the

√
s = 8 TeV dataset. When compared to existing limits, it turns out there

are simply not enough three- or four-lepton events to provide a competitive limit
[327, 328]. However it is possible that, with more data at

√
s = 13 TeV, these final

states can be competitive.
In the following subsections we will cover three final states of interest,

namely bb /ET , l /ET + (b-)jets, and l+l′− /ET + jets. Our aim is to recast LHC stop

2For example, at mφ = 500 GeV, normal ordering gives (0.028, 0.183, 0.226) for Br(φ →
te, tµ, tτ), whilst inverted ordering gives (0.070, 0.165, 0.202).

3We do not attempt to reconstruct τ leptons since this will not improve sensitivity. CMS has
performed a dedicated search for leptoquarks decaying to tτ [326]; the resulting bounds are not
competitive with the bounds found henceforth.
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searches [329, 330] in order to constrain mφ.

Event samples and reconstruction

We generated two hadron-level signal samples4 at mφ = (500, 600) GeV using
PYTHIA 8.180 with default tune [27, 28]; each contained 5 × 106 pair-produced
leptoquark events where at least one leptoquark decays to tL. A validation
set of 107 tt̄ events where at least one t decays leptonically was also gener-
ated using PYTHIA, normalised to the predicted NNLO+NNLL cross section of
235 × [1 − Br(W → hadrons)2] pb = 137 pb [331–336]. Lastly we used MAD-
GRAPH5 V1.5.10 and PYTHIA to generate a validation set of 105 stop pair events,
where the stops each decayed to a top and neutralino, t̃1 → tχ̃0

1; we took
m(t̃1, χ̃

0
1) = (600, 50) GeV.

The event samples were reconstructed after passing through the DELPHES

3.0.12 detector fast-simulation [29], both with and without simulated pileup.
Jets were reconstructed with FASTJET 3.0.6 [337] using the anti-kt clustering al-
gorithm [338] with radius parameter 0.4, and were required to have pT > 20 GeV.
We used a flat b-tag rate of 70%, with a rejection factor of 5 (140) for jets initiated
by charm (light) quarks. Electrons were considered isolated if

∑
pT , the scalar

sum of the pT of inner detector tracks with pT > 1 GeV within a ∆R = 0.2 cone
surrounding the electron candidate, was less than 10% of the electron pT . Muons
were considered isolated if

∑
pT , defined as above, was less than 1.8 GeV. Other-

wise, the default DELPHES ATLAS card was used. In the simulations with pileup
we used a mean pileup µ = 21, and pileup subtraction was performed using de-
fault parameters; the neutral pileup subtraction uses the jet area method [339,
340] with average contamination density ρ calculated using a kt jet clustering al-
gorithm with radius parameter 0.6. We note that this pileup subtraction method
does not match that used in either of the ATLAS analyses. The results simulated
with pileup therefore serve only as an indicator of pileup effects.

Further cuts were made with the aid of the MADANALYSIS5 v1.1.10beta SAM-
PLEANALYZER framework [271]. For preselection we required isolated leptons
and

|ηe| < 2.47, |ηµ| < 2.4, |ηj | < 2.5, plT > 10 GeV. (4.28)

We rejected jets within ∆R = 0.2 of a preselected electron, and leptons within
∆R = 0.4 of remaining jets.

Each of the stop search analyses use variants of mT2, known as the Cam-
bridge mT2 or stransverse mass variable [341, 342], as a powerful discriminant
of signal over background. For events where mother particles are pair produced
and subsequently decay to two visible branches along with invisible momentum,

4We also usedmχ = 2 TeV and s1 = 0.01, but the branching ratios do not depend on the choice
of mχ and s1 as long as mχ > mφ.
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such as in leptonic or semi-leptonic tt̄ decays, mT2 can be constructed to have an
upper limit at the mother particle mass. It is defined as

mT2(~piT , ~p
j
T , /~pT ) = min

~uT+~vT=/~pT

{
max

[
mT (~piT , ~uT ),mT (~pjT , ~vT )

]}
, (4.29)

where /~pT is the missing transverse momentum, ~piT and ~pjT are the transverse
momenta of two visible decay branches, and mT is the usual transverse mass
calculated assuming some mass for the invisible particle associated with that
branch. It can be thought of as the minimum mother particle mass consistent
with pair production, the decay hypothesis, and the observed kinematics. We
calculated mT2 using the publicly available bisection method codes of Refs. [343,
344].

bb/ET

The bb /ET final state arises primarily from the decay φφ → bνbν. There are also
contributions from the other decay chains, where either leptons are missed or
hadronically decaying taus are produced; these contributions will be subleading
and additive, and will generally appear with extra hard jet activity in the event
which may be vetoed in analyses. We will ignore them to obtain a slightly con-
servative limit.

Constraints on the production cross section of sbottom pairs decaying via
b̃1 → bχ̃0

1 have been provided by both ATLAS and CMS [324, 325]. Along the
contour mχ̃0

1
= 0, this provides a limit on the production cross section σ(pp →

φφ) × Br(φ → bν)2, and therefore on Br(φ → bν). These limits are reproduced
in Figure 4.7.5 The existing 95% CL limit from the CMS search for region T is
somewhere between mφ > 520–600 GeV.

l /ET + (b-)jets

The single lepton final state is produced primarily through the mixed decay
φφ → bνtL → ljjbb /ET , where the top decays hadronically. This final state
is the same as for semi-leptonically decaying top pairs, which is the primary
SM background. It can also be given by stop pairs decaying via the chains
t̃1 → bχ̃±1 → bW (∗)χ̃0

1 → blνχ̃0
1 or t̃1 → t(∗)χ̃0

1 → blνχ̃0
1. ATLAS and CMS

have performed searches for stop pairs in the single lepton final state, with no
significant excess observed [329, 345].6 In this section we will recast the ATLAS
analysis.

5The ATLAS limit on Br(φ → bν) can be read off the auxiliary Figure 5. The CMS limit on
σ(pp→ φφ)× Br(φ→ bν)2 can be read off Figure 6 and converted to a limit on Br(φ→ bν) using
the NLO value of σ(pp→ φφ) from PROSPINO2.

6In the time since this analysis was performed, ATLAS submitted a more detailed search in this
channel [346].
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SRtN2 SRtN3 SRbC1 SRbC2 SRbC3

mt̃1 = 600 GeV Aε ATLAS (%) 2.7 2.3 5.7 1.7 0.84
mχ̃0

1
= 50 GeV Aε obtained (%) 2.0 (2.1) 1.4 (1.5) 5.8 (5.6) 1.8 (1.6) 1.0 (0.83)

mφ = 500 GeV N 21 (22) 14 (14) 75 (74) 28 (26) 16 (14)
mφ = 600 GeV N 7.8 (8.3) 5.5 (5.7) 26 (26) 11 (10) 7.0 (6.4)

NP limit 10.7 8.5 83.2 19.5 7.6
Approximate mφ limit (GeV) 567 (574) 553 (556) 490 (489) 537 (532) 589 (579)

TABLE 4.4: Acceptance times efficiency (Aε) and total number of
events (N ) for three event samples without (with) pileup. The
stop pair production sample is compared to the ATLAS result as
a validation of our analysis. The 95% CL limit on new physics
(NP) contributions are given; these limits are quoted ATLAS re-
sults. Lastly we provide an approximate limit on mφ based on

our results.

After preselection we demanded exactly two opposite sign leptons with the
leading lepton having pT > 25 GeV, at least four jets with pT > 80, 60, 40,

25 GeV, and at least one tagged b-jet. We refer to Ref. [329] for the definitions
of the remaining kinematical variables and of the signal regions (SRs) SRtN2-3
and SRbC1-3, designed for t̃1 → tχ̃0

1 and t̃1 → bχ̃±1 topologies respectively (see
their Table 1). Variables amT2 and mτ

T2 are variants of mT2 designed to reject
leptonic and semi-leptonic tt̄ background respectively: amT2 takes for its visible
branches b and (bl), with a missing on-shell W associated with the b branch; mτ

T2

takes l and a jet for its visible branches, assuming massless invisible states. Both
amT2 and mτ

T2 require two jets in the event to be chosen as b-jets, regardless of
whether they are b-tagged. ATLAS are able to choose those jets which have the
highest b-tag weight. However, DELPHES only outputs a boolean variable which
identifies whether a jet is b-tagged or not. We must therefore find a way to choose
two b-jets. We follow Ref. [344]. There are three cases:

• 2 b-tags: Take both as b-jets.

• 1 b-tag: Assume that second b-jet is in the leading two non-b-tagged jets.

• 0 or > 2 b-tags: Ignore b-tagging information and assume that b-jets are in
leading three jets.

Then, to calculate amT2, we take the ji(jkl) permutation over the b-jet candidates
which minimises amT2. For mτ

T2 we assume that the τ -jet is in the leading three
jets. We find the jil combination over the candidate jets which minimises mτ

T2.
These methods are in the spirit of mT2 as the minimum mother particle mass
consistent with the decay hypothesis and observed kinematics. Since the mini-
mum plausible mT2 value is selected, the results after cuts are also conservative.
We compared our obtained amT2 and mτ

T2 distributions for the tt̄ sample at the
preselection stage to Figure 3 in the ATLAS analysis [329] and found good agree-
ment, particularly at large values where cuts are made.
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The N iso-trk cut applied to the SRbC1-3 SRs cannot be replicated after our re-
construction has been performed. Cut-flows published in auxiliary Figures 112–
117 of Ref. [346] suggest that after all other cuts, the N iso-trk requirement reduces
the signal by 15–25%, consistent between the single-muon and single-electron
channel. We therefore conservatively post-scale our results in the SRbC1-3 SRs
by a factor 0.75 to take this into account.

The results of our analysis are shown in Table 4.4. The acceptance times effi-
ciency (Aε) for our stop pair validation sample agree well with ATLAS results in
each of the signal regions; our predicted event rates are likely an underestimate
for the SRtN2-3 SRs. We are confident that the discrepancies can be assigned to
some combination of: different event generators, the third-party detector sim-
ulation, our b-tagging efficiency approximation, the necessary amendments to
amT2 and mτ

T2 calculation methods, and our inability to recreate the pileup sub-
traction procedure. The predicted number of events in the 20.7 fb−1 of data for
each of the signal samples are also given in Table 4.4.

Since the branchings of φ and the distribution shapes do not change signifi-
cantly from masses 500 GeV to 600 GeV, and since log[σ(pp→ φφ)] varies approx-
imately linearly with mass mφ, an approximate limit on mφ can be determined
by taking the published ATLAS new physics (NP) limits and assuming that, in
each SR, the log of the number of accepted events scales linearly with mφ. These
results are also shown in Table 4.4. Since this is only a recast of the ATLAS results,
these limits are not to be taken too seriously; they serve only as an indication of
the present experimental reach.

We note that these limits are found using the sum of single electron and muon
channels. In our model ≈ 75% of accepted events are single muons, whereas
an approximately even share is expected for the background (and stops). We
would likely obtain stronger limits if ATLAS published a NP limit on each lepton
channel separately.

l+l′− /ET + jets

The dilepton final state is produced primarily through the mixed decay φφ →
bνtL→ l+l′−bb /ET . There is also a non-negligible contribution from φφ→ tLtL′,
where the top pair and possible τ lepton(s) decay such that only two leptons are
detected. This final state is the same as for leptonically decaying top pairs or for
stop pairs decaying via the same chains considered in the previous subsection.
ATLAS has performed a search for stop pairs in the dilepton final state, with no
significant excess observed [330]. In this section we will recast the analysis in
order to place a constraint on mφ.

After preselection we demanded exactly two opposite sign leptons with the
leading lepton having pT > 25 GeV. Any lepton pairs with invariant mass less
than 20 GeV were rejected. We then defined three SRs in Table 4.5: L110, L100,
and C1. We use the notation pT [1] (pT [2]) to stand for the leading (subleading)
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L110 L100 C1

m(l+l−)<71
>111 GeV opposite flavour

∆φb < 1.5 meff > 300 GeV
∆φj > 1.0 /ET > 50 GeV

- N(j) ≥ 2 N(j) ≥ 2

- pjT [1] > 100 GeV pjT [1] > 50 GeV
pjT [2] > 50 GeV

mT2 > 110 GeV mT2 > 100 GeV mT2 > 150 GeV

TABLE 4.5: Signal region selections after preselection require-
ments.
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FIGURE 4.8: Distribution of mT2 opposite flavour events for the
three SRs in tt̄ and mφ = 500, 600 GeV event samples descend-
ing, simulated without (solid) and with (dashed) pileup. The
ATLAS data, dominated by tt̄ background for mT2 . 100 GeV,
is overlaid as points. The apparent “excess” of tt̄ events above
mT2 > 100 GeV is only because we have not simulated sublead-
ing backgrounds (only tt̄ is necessary for validation of our analy-
sis). These can be compared with Figures 9, 10, and 3 respectively

of Ref. [330].

pT object. We refer to Ref. [330] for definitions of any unfamiliar variables. The
most important ismT2, which takes leptons for the visible branches and assumes
massless missing particles. It is constructed to have a parton-level kinematic
upper limit at mW for the dominant tt̄ background.

Plots of the number of events expected in 20.3 fb−1 of integrated luminos-
ity for each SR are shown against mT2 for opposite flavour events in Figure 4.8.
These are to be compared with Figures 3, 9, and 10 of the ATLAS analysis [330].
One can see that our analysis does a good job of reproducing the background
distribution in the region mT2 . 100 GeV where tt̄ dominates. We are confident
that the discrepancies can be assigned to some combination of: an overall nor-
malisation factor, the LO tt̄ event generator, the third-party detector simulation,
and our inability to recreate the pileup subtraction procedure. The number of
events in the SRs are broken up by lepton flavour in Table 4.6.

The limits on the number of NP events summed over the lepton channels in
SRs L110 and L100 are provided by ATLAS and reproduced in our Table 4.6. The
limit from the C1 SR was not published, since this SR is subsequently filtered
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L110 L100 C1

mφ (GeV) 500 600 500 600 500 600

e+e− 0.93 (0.86) 0.34 (0.32) 0.79 (0.68) 0.30 (0.27) - -
µ+µ− 3.0 (2.8) 1.0 (0.93) 2.7 (2.3) 0.92 (0.81) - -
µ±e∓ 4.6 (4.2) 1.5 (1.4) 3.9 (3.4) 1.4 (1.2) 7.5 (7.6) 2.8 (2.9)∑
l l

+l′− 8.5 (7.8) 2.9 (2.7) 7.4 (6.3) 2.6 (2.3) - -

NP limit 9.0 5.6 2.3 ∗

Approx. mφ limit (GeV) 495 (487) 527 (512) 621 (622) ∗

TABLE 4.6: Number of events in each SR without (with) pileup.
The 95% CL limit on new physics contributions are also given;
these limits are quoted ATLAS results for L110 and L100, and in-

ferred from a plot for C1 (which is why we mark it with a ∗).

through a multivariate analysis. However, one can read off Figure 3 in Ref. [330]
that three events were observed with 3.6+6.7

−? expected before the multivariate
analysis. It is therefore reasonable to model the probability density function for
the expected number of events as a gamma distribution with shape parameter 1.3
and mean 3.6.7 We performed toy Monte Carlo pseudoexperiments for different
signal+background hypotheses (Hs+b) under this assumption, measuring

CLs =
Pr(n ≤ nobs|Hs+b)

Pr(n ≤ nobs|Hb)
(4.30)

each time. We found CLs = 0.05 for an expected new physics contribution of 2.3
events, corresponding to the observed 95% CL limit on the number of NP events
determined using the CLs method [347], the same as that used in the ATLAS
analysis.

An approximate limit on mφ can be derived in the same way described in the
previous subsection, and the results are shown in Table 4.6. Again, since this is
only a recast of the ATLAS analysis, these limits are not to be taken too seriously;
they serve only as an indication of the present experimental reach.

The best limit is obtained from the C1 SR. There are three principal reasons
for this. (1) The L110 and L100 limits are quoted on the sum over all flavour
channels. In our model we expect greater than half of the events to be in the
opposite-flavour channel. Simply requiring opposite flavour leptons reduces the
background significantly (compare Figures 2 and 3 of Ref. [330]), so that one can
afford to make softer cuts that keep more signal. (2) The L110 and L100 cuts on
∆φb and ∆φj are designed to reject background events with high mT2 arising
from events with large /ET from mismeasured jets. These cuts keep about 50%

of the stop pair signals considered by ATLAS (see auxiliary Figures 24 and 25
of Ref. [330]). We found that only ≈ 35% of events were kept for our model
due to different kinematics. (3) The signal-to-background ratio and the limit is
significantly improved if the cut on mT2 is slightly increased.

7The gamma distribution is the standard conjugate prior for rate parameters. A shape parame-
ter of 1.3 ensures that

∫ 3.6+6.7

3.6
dx f(x; k = 1.3, µ = 3.6) = 34.1%, corresponding to one half of the

68.2% confidence interval.
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Summary

It is clear from these analyses that the existing constraints on the leptoquark from
sbottom and stop searches are comparable, mφ & 600 GeV. Inferred limits could
be even stronger if the collaborations provided limits before combining lepton
flavour channels. But this conclusion can be turned around: if the collaborations
were to see a significant excess in any of the discussed final states, this model
predicts that it should show up in all of them at around the same time, with a
well-predicted, non-universal flavour signature and distinctive kinematics. Sim-
ple SUSY models might find this scenario difficult to accommodate.

4.3 Conclusion

In this Chapter we wrote down the minimal UV completions for all of the D7
∆L = 2 operators which could be responsible for radiatively generating a Ma-
jorana neutrino mass. These completions involve vector-like quarks, vector-
like leptons, scalar leptoquarks, a charged scalar, a scalar doublet, and a scalar
quadruplet. The properties of these particles are generally constrained by low-
energy neutrino oscillation data, making the models predictive.

A detailed study of the collider bounds was presented for O3 = LLQd̄H and
O8 = Ld̄ē†ū†H completions where a leptoquark φ ∼ (3̄, 1, 1

3) and a vector-like
quark χ ∼ (3, 2,−5

6) are introduced. In the detailed study, we constrained the
vector-like quark mass mχ & 620 GeV using a dedicated LHC search. For the
leptoquark φ we recast LHC sbottom/stop searches and explored in the parame-
ter space allowed by the constraints from flavour physics. We found two distinct
areas of parameter space, one where Br(φ → bν) ≈ 100%, and the other where
Br(φ → bν) < 100%. In the first case mφ & 520–600 GeV, and in the second case
we found mφ & 600 GeV using three different final states.

Through this detailed analysis we have shown the powerful discovery
and/or exclusion potential of the LHC for the radiative neutrino mass mod-
els based on ∆L = 2 operators, and advanced a systematic approach to these
searches.
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5 Baryon Asymmetry of the Universe

This Chapter is based on the publications “Electroweak naturalness in the three-

flavor type I seesaw model and implications for leptogenesis,” and “Natural lepto-

genesis and neutrino masses with two Higgs doublets,” each written in collaboration

with Robert Foot and Raymond R. Volkas [3, 5]. See also the conference proceedings

paper “How to avoid unnatural hierarchical thermal leptogenesis” [6].

The SM and the paradigm of electroweak symmetry breaking realised by the
Higgs potential VSM = µ2Φ†Φ + λ

(
Φ†Φ

)2, with µ2(mZ) ≈ −(88 GeV)2, has been
extremely successful in explaining low energy phenomena. However it fails to
explain neutrino masses and the baryon asymmetry of the Universe (BAU). A
straightforward way to explain both, as introduced in Sections 1.1.3 and 1.1.4, is
to add three heavy right-handed neutrinos: the minimal Type I seesaw model
[72–74, 348]. Gauge invariance allows two additional renormalisable terms in
the Yukawa Lagrangian,

−∆LY = (yν)ijliLΦ̃νjR +
1

2
Mi(νiR)cνiR + h.c., (5.1)

where lL = (νL, eL)T , Φ̃ = iτ2Φ∗, and Mi are the right-handed neutrino masses.
After Φ gains a vev 〈Φ〉 = v/

√
2 ≈ 174 GeV the Type I seesaw model provides an

elegant explanation for the smallness of the neutrino masses. If yνv � Mi, the
neutrino mass matrix is given by the seesaw formula

mν =
v2

2
yνD−1

M yTν , (5.2)

where DM ≡ diag(M1,M2,M3), suppressed by the presumably large right-
handed neutrino mass scale. The BAU can be produced via hierarchical ther-
mal leptogenesis [93]: the CP violating out-of-equilibrium decays of the lightest
right-handed neutrino N1 create a lepton asymmetry which is transferred to the
baryon sector by electroweak sphalerons. The Davidson–Ibarra bound [96, 97],
ensuring enough CP violation for successful hierarchical (MN1 �MN2 �MN3)
thermal leptogenesis, is

MN1 & 5× 108 GeV
( v

246 GeV

)2
, (5.3)

where v is the vev that enters the seesaw Equation (5.2).
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FIGURE 5.1: Bounds on hierarchical thermal leptogenesis as a
function of v. Shown is the Davidson-Ibarra bound (purple),
and the Vissani bound (blue). The dashed lines indicate v =

246, 30 GeV.

The ability of the minimal Type I seesaw model to simultaneously explain
neutrino masses and the BAU is certainly intriguing. However, it appears to be
incompatible with a naturalness argument for right-handed neutrinos made by
Vissani [302] (see also Refs. [293, 296, 349–353]). In a one-flavour model, Vissani
essentially bounded directly the induced µ2 RGE term to obtain a naturalness
bound on MN :

∣∣∣∣
dµ2

d logµR

∣∣∣∣ =

∣∣∣∣−
1

4π2
yνM

2
Ny
∗
ν

∣∣∣∣ < 1 TeV2

⇒MN . 3× 107 GeV
( v

246 GeV

) 2
3
, (5.4)

where µR is the renormalisation scale, and the neutrino mass is mν = v2

2
y2
ν

MN
≈

0.05 eV. The incompatibility of leptogenesis and naturalness is exemplified in
Figure 5.1; nowhere at v = 246 GeV is it possible to simultaneously fulfil the
Davidson–Ibarra and Vissani bounds. Thus it appears that the minimal Type I
seesaw model cannot explain both the observed neutrino masses and baryogen-
esis via standard thermal leptogenesis without ceding naturalness.

In Section 5.1 of this Chapter we address the following question: can three-
flavour effects ameliorate this conflict? It is answered in the negative. We present
a three-flavour treatment which generalises the Vissani result to obtain three nat-
uralness bounds:

MN1 . 4× 107 GeV, (5.5)

MN2 . 7× 107 GeV, (5.6)

MN3 . 3× 107 GeV
(

0.05 eV
mmin

) 1
3

, (5.7)
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FIGURE 5.2: Loop diagram leading to δµ2.

where mmin is the lightest neutrino mass. We discuss how these bounds imply
that natural N1-, N2-, or N3-dominated hierarchical thermal leptogenesis is not
possible in a minimal three-flavour Type I seesaw.

In Section 5.2 we address the logical follow-up question: in what minimal
ways can this incompatibility be overcome? We list some solutions already exist-
ing in the liteature. We then focus on an apparently new solution motivated
by the following observation: if v . 30 GeV in Equation (5.2), then Equa-
tions (5.3) and (5.4) become compatible, as is clear from Figure 5.1. Thus we
expect that two-Higgs-doublet models with right-handed neutrinos (ν2HDMs)
and tanβ = v1/v2 & 8, where Φ2 is responsible for a tree-level seesaw, can
naturally accommodate leptogenesis and neutrino masses. Indeed, we discover
viable natural models which predict a SM-like Higgs boson, (maximally) TeV-
scale scalar states, and low to intermediate scale hierarchical leptogenesis with
103 GeV .MN1 . 108 GeV.

5.1 Naturalness in the three-flavour Type I seesaw

5.1.1 Three-flavour Vissani bound

The neutrino mass matrix, entering the Lagrangian as 1
2ν

i
L(mν)ij(ν

j
L)c, is given

in Equation (5.2) and reproduced here: mν = v2

2 yνD−1
M yTν . One can diagonalise

mν with a unitary matrix U ,

Dm ≡ diag(m1,m2,m3) = UmνU
T , (5.8)

where mi are the neutrino masses. Following Casas–Ibarra [94], it is possible to
express yν as

yν =

√
2

v
U †D

1
2
mRD

1
2
M , (5.9)

where R is a (possibly complex) orthogonal (RTR = RRT = I) matrix. R is
physically relevant and measurable in principle (e.g. by studying the production
and decays of the νjR), however measurements to date tell us nothing about it.
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From Figure 5.2, we calculate the correction to µ2 in MS scheme as

δµ2 =
1

(4π)2

[
−4yijν M

2
j

(
log

[
µR
Mj

]
− 1

4

)
yij∗ν +O

(
µ2
)]
, (5.10)

where µR is the renormalisation scale. The RGE for µ2 therefore gains a contri-
bution from all nine diagrams of

dµ2

d logµR
⊃ − 4

(4π)2
Tr
[
yνD2

My
†
ν

]
. (5.11)

Upon substitution of the Casas–Ibarra form, this can be written

dµ2

d logµR
⊃ − 4

(4π)2

2

v2
Tr
[
DmRD3

MR
†
]
. (5.12)

Note that there is no explicit dependence on U , as one could anticipate, since all
of U can be absorbed by lL → UlL, yν → Uyν . One ends up with three corrections
proportional to the cube of each heavy neutrino mass.

As argued in CHAPTER 3, if the new physics contribution in the µ2(µR) RGE
is much larger than µ2(mZ) then this leads to a naturalness problem, manifesting
as a sensitivity of the Higgs mass parameter to the high scale input parameters
µ2(Λh) and Mj . Naturalness demands that these corrections each be less than
some scale not far above µ2(mZ) ' −(88 GeV)2. Following Vissani, we bound
each of the new contributions by 1 TeV2:

4

(4π)2

2

v2
M3
j

∑

i

mi|Rij |2 < 1 TeV2

⇒Mj . 3× 107 GeV
(

0.05 eV∑
imi|Rij |2

) 1
3

, (5.13)

where Rij are the entries of R. This equation reveals the Vissani result together
with the three-flavour effects. Our results can be easily rescaled for a different
naturalness criterion.

5.1.2 Extremising the bounds

Equation (5.13) results in three upper bounds on the right-handed neutrino
masses. It says nothing about their mass ordering, since one can always append
to R a permutation matrix. However we can always order the bounds by their
size; we will call them Bj and take B1 ≤ B2 ≤ B3.

We are interested in the values of Bj attainable from Equation (5.13). Thus
all we have to do is extremise these bounds over R. We used the mass squared
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FIGURE 5.3: Region of attainable values for the B3 ≥ B2 ≥ B1

(red/blue-hatched/green) right-handed neutrino mass natural-
ness bounds as a function of the lightest neutrino mass, by re-
quiring their contribution to the µ2(µR) RGE be no greater than
1 TeV (Equation (5.13)). The upper (lower) panel is for NO (IO).
The regions assume the orthogonal matrix R is real. Thick solid
lines show the case when R = I (note that the thick blue line is
obscured by the thick green line in the IO case). The case for com-
plexR is similar, except there is no lower limit to theBj (see text).
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differences of NUFIT V2.0 [61],

∆m2
21 = 7.50× 10−5 eV2,

∆m2
3l = ±2.46× 10−3 eV2, (5.14)

where ∆m2
3l = ∆m2

31 > 0 for normal ordering (NO) and ∆m2
3l = ∆m2

32 < 0 for
inverted ordering (IO), and treat the lightest neutrino mass (m1 for NO or m3 for
IO) as unknown. TheBj were numerically extremised over a parameterisation of
R. The results were checked analytically and with scatterplots. Figure 5.3 show
the cases for NO and IO when R is real. The solid lines are for R = I.

The first thing to notice is that as the lightest neutrino mass tends to zero, the
largest bound B3 can potentially evaporate. This only happens in models where
R is of a particular form, e.g. in NO, as is evident from Equation (5.13),

R =




R11 R12 ±1

R21 R22 0

R31 R32 0


 (5.15)

or some column permutation, whereR11 = R12 = 0 ifR is real. This corresponds
to the Poincaré protected decoupling limit yi3ν → 0 and an effective two-flavour
seesaw [354–356]. The maximisation of B2 occurs when B2 = B3 and corre-
sponds in NO to R of the form

R = ±




0 1√
2
− 1√

2

0 1√
2

1√
2

±1 0 0


 , (5.16)

up to column permutations. Similarly the minimisation of B2 occurs when B1 =

B2, and corresponds to

R = ±




0 0 ±1
1√
2
− 1√

2
0

1√
2

1√
2

0


 . (5.17)

The maximisation (minimisation) of B1 (B3) occurs when B1 = B2 = B3. This
corresponds to a conspiratorial form of R.

Even though these arrangements are possible, it is clear from Figure 5.3 that
it is not possible to construct a Type I seesaw model that changes the bounds B1

and B2 by more than a factor of 2 when R is real. Even if one does saturate these
bounds, it is not possible then to place the right-handed neutrino masses at this
bound and maintain a hierarchy which is a key assumption for the Davidson–
Ibarra bound.

In the case of R complex the upper limits of the Bj are the same as the R real
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case. However the lower limits can potentially be much lower. The reason is that
complex R with entries of arbitrarily large magnitude exist. Let us illustrate this
in the two-flavour case. An example is

R =

(
coshx i sinhx

−i sinhx coshx

)
. (5.18)

In this case,

Uyν =

√
2

v

( √
m1M1 coshx −i√m1M2 sinhx

i
√
m2M1 sinhx

√
m2M2 coshx

)
. (5.19)

If coshx � 1, one need only calculate mν to see that the smallness of neutrino
masses is only explained by fortuitous cancellations between entries of yν that
constitute a fine tuning. If we demand that the entries of R have magnitude not
exceeding 1, then the results for complex R are essentially the same as in the real
case. In general, however, allowing complex R can only degrade the attainable
region for the Bj .

5.1.3 Implications for leptogenesis

Corrections to the µ2 parameter in the Type I seesaw model can be expressed in
the concise form of Equation (5.12), as a function of an unknown (but in principle
measurable) orthogonal matrix R. Requiring these corrections to be less than
1 TeV results in three bounds on the right-handed neutrino masses. Figure 5.3
reveals that, no matter what form R takes, there are three generic bounds:

MN1 . 4× 107 GeV, (5.20a)

MN2 . 7× 107 GeV, (5.20b)

MN3 . 3× 107 GeV
(

0.05 eV
mmin

) 1
3

, (5.20c)

where mmin is the lightest neutrino mass. For a given model, however, the
bounds will be more stringent.

Baryogenesis via standard (N1-dominated, hierarchical) leptogenesis re-
quires MN1 & 5× 108 (2× 109) GeV for N1 with thermal (zero) initial abundancy
[97]1, in conflict with Equation (5.20a).

In N2 leptogenesis, it is possible to have MN1 . 107 GeV. There are two sce-
narios. One is in the N1-decoupling limit [359], and the other relies on special
flavour alignments to protect anN2-generated asymmetry fromN1 washout [360,
361]. Both are in conflict with Equation (5.20b), as such a light N2 is unable to
produce the required asymmetry for the usual reasons [96, 97].

1These bounds are unaffected by flavour considerations [357, 358].
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One might think that there is still room left for N3 leptogenesis. This turns
out to not be the case. In order to naturally have MN3 & 109 GeV, one must have
mmin . 10−6 eV and R in a decoupling limit such as Equation (5.15). However
in this limit the CP asymmetry from N3 decays is [359]

ε3 ∼ 10−1
∑

i=1,2

2

v2

mminM
2
i

M3
Im
(
R2

1i

)
, (5.21)

which is far too small.
Thus our results confirm that no minimal Type I seesaw model can ex-

plain the neutrino masses and baryogenesis via hierarchical (N1-, N2-, or N3-
dominated) thermal leptogenesis while remaining completely natural.

5.2 The ν2HDM

5.2.1 How to avoid unnatural hierarchical thermal leptogenesis

An obvious question is: in what minimal ways can we adapt the Type I see-
saw to realise a natural BAU? Figure 5.1 suggests three conspicuous possibilities:
(1) lowering the Davidson–Ibarra bound, e.g. by considering dominant initial
N1 abundancy [97]2, resonant leptogenesis [98], a different baryogenesis mecha-
nism entirely (such as neutrino oscillations [362]), or by introducing new fields
which allow increased CP violation in N1 decays; (2) raising the naturalness
bound, e.g. by partially cancelling right-handed neutrino corrections [352, 363],
or removing it entirely by restoring low-scale supersymmetry; (3) lowering the
(possibly effective) vev entering the seesaw Equation (5.2) so that the bounds of
Equations (5.3) and (5.4) become consistent (v . 30 GeV).

In our Ref. [5] we implemented the latter possibility within a two-Higgs-
doublet model with right-handed neutrinos (ν2HDM). The remainder of this
Chapter is dedicated to describing such models. It is organised as follows. In
Section 5.2.2 we build the ν2HDM models of interest, describe the scalar states,
and briefly review the relevant experimental constraints. In Section 5.2.3 we pay
particular attention to naturalness limits on the extra scalars; we verify that a
natural ν2HDM of any Type is still allowed by experiment. We discuss neutrino
masses in Section 5.2.4 and leptogenesis in Section 5.2.5. The region of parameter
space which naturally achieves hierarchical leptogenesis is identified.

2The bound becomes MN1 & 2× 107 GeV, marginally consistent with the naturalness bound in
Equation (5.7).
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Model uiR diR eiR νiR
Type I Φ1 Φ1 Φ1 Φ2

Type II Φ1 Φ2 Φ2 Φ2

Lepton-specific (LS) Φ1 Φ1 Φ2 Φ2

Flipped Φ1 Φ2 Φ1 Φ2

TABLE 5.1: The four models with no tree-level flavour-changing
neutral currents and allowing for a GeV-scale vev to provide the

seesaw whilst preserving perturbativity of yt.

5.2.2 Model

Lagrangian

The scalar content of the model contains two doublets Φ1,2 each with hyper-
charge +1. For simplicity we consider the softly broken, CP conserving, Z2-
symmetric potential (see e.g. Ref. [364])

V2HDM = m2
11 Φ†1Φ1 +m2

22 Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)

+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)

+
λ5

2

[(
Φ†1Φ2

)2
+
(

Φ†2Φ1

)2
]
, (5.22)

where all the parameters are real. To explain observations, at least one of these
doublets must obtain a non-zero vev. We consider m2

11 < 0 and a CP conserving
vacuum,

〈Φ1〉 =
1√
2

(
0

v1

)
, 〈Φ2〉 =

1√
2

(
0

v2

)
, (5.23)

where v1 > 0, v2 ≥ 0, and v2
1 + v2

2 = v2 ≈ (246 GeV)2.
A general 2HDM will have flavour-changing neutral currents at tree-level.

These can be avoided if right handed fermions of a given type (uiR, d
i
R, e

i
R) cou-

ple to only one of the doublets [365, 366]. Although not strictly necessary, we
will assume that this is realised, and adopt the convention that only Φ1 couples
to the uiR. In a ν2HDM, if we assume this also applies for the νiR, then there
are eight possibilities. As mentioned in the Introduction, the seesaw constraint
Equation (5.2) can be made consistent with naturalness and leptogenesis if the
vev contributing to the seesaw is sufficiently small. Since we would like our
model to remain perturbative, and already yt ≈ 1 for v ≈ 246 GeV, we anticipate
that Φ2 obtains the small vev and thus we couple it to the νiR. Remaining are
four possible ν2HDMs which we refer to by their conventional Types as listed in
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Table 5.1.3 The Yukawa Lagrangian is then given by

−LY = + yuqLΦ̃1uR + ydqLΦIdR

+ yelLΦJeR + yν lLΦ̃2νR

+
1

2
MN (νR)cνR + h.c., (5.24)

where I, J depend on the model Type, and family indices are implied.

Scalar masses and mixings

Consistency with experiments requires the extra scalar states to have masses at
least & 80 GeV. In order to construct models with potentially TeV-scale scalars
with a naturally small v2, we will consider m2

22 > 0 and m2
12/m

2
22 � 1 [367]. This

is technically natural, since in the limit m2
12/m

2
22 → 0 a U(1) or Z2 symmetry is

restored if λ5 = 0 or λ5 6= 0, respectively.
For m2

11 < 0, the vevs are given by

v1 =

√
2

λ1

[
−m2

11 +
1

tan2 β

(
m2

22 +
1

2
λ2v2

2

)]
(5.25)

v2 ≈
1

1 +
v2
1

2m2
22
λ345

m2
12

m2
22

v1, (5.26)

In the limit m2
22 � v2

1(λ3 + λ4), λ2v
2
2 , we have tanβ ≡ v1/v2 ≈ m2

22/m
2
12 and

v1 ≈
√

2
λ1

(
−m2

11 +m2
22/ tan2 β

)
. This implies a relevant condition,

m2
22 .

1

2

(
λ1v

2
1

)
tan2 β, (5.27)

to ensure m2
11 < 0 and avoid a fine-tuning for v. Figure 5.4 illustrates how m2

11

deviates from its standard value of −(88 GeV)2 as m2
22 approaches this bound.

For m2
22 above this bound, m2

11 very quickly grows to values > v2, and v ≈
246 GeV is only explained by a miraculous balance of m2

11 against m2
22/ tan2 β,

which constitutes a fine-tuning. Thus we adopt Equation (5.27) as a consistency
condition. Typically we have m2

22/ tan2 β � |m2
11| so that m2

11 sets the mass of
the Higgs (as does µ2 in the SM).

The charged scalar and pseudoscalar (neutral scalar) mass-squared matrices
are diagonalised by a mixing angle β (α). The neutral mass eigenstates are

h = ρ1 cosα+ ρ2 sinα,

H = ρ2 cosα− ρ1 sinα,

A = η2 sinβ − η1 cosβ, (5.28)

3Type I ν2HDMs with v2 ∼ eV were considered in Refs. [367–370]. We will end up considering
v2 of O(0.1–10) GeV.
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taken from the CMS search [371]. The naturalness bound is only

illustrative, to be covered in Section 5.2.3.

where ρi =
√

2Re(Φ0
i )− vi and ηi =

√
2Im(Φ0

i ). The masses are given by

m2
h = λ1v

2
1 +O

(
m4

12

m4
22

v2
1

)
,

m2
H = m2

22 +
1

2
λ345v

2
1 +O

(
m4

12

m4
22

m2
22

)
,

m2
A = m2

22 +
1

2
(λ345 − 2λ5)v2

1 +O
(
m4

12

m4
22

m2
22

)
,

m2
H± = m2

22 +
1

2
λ3v

2
1 +O

(
m4

12

m4
22

m2
22

)
, (5.29)

i.e. the same as in the inert doublet model [364] up to corrections proportional
to m4

12/m
4
22, which we provide in Appendix B.1. Clearly, if m2

22 � v2, the mass
scale of extra scalar states is ≈ m22.

In the alignment limit cos(α − β) → 0, the couplings of h to SM particles
become SM-like. We calculate

cos2(α− β) ≈ m4
12

m4
22

v4
1

m4
22

(λ1 − λ345)2

(
1− v2

1

2m2
22

(2λ1 − λ345)
)2 (

1 +
v2
1

2m2
22
λ345

)2 , (5.30)

suppressed by the approximate U(1) or Z2 symmetry (m2
12/m

2
22 � 1) as well

as the usual decoupling limit suppression (v2
1/m

2
22 � 1) [372]. Thus the model

naturally accommodates a SM-like neutral scalar state.
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Constraints

With MN > m22 the constraints (and search strategies) for a ν2HDM of given
Type are largely identical to those for a 2HDM of the same Type, for which there
is extensive literature (see references henceforth). The 2HDM potential Equa-
tion (6.4) is subject to a few standard theoretical constraints [364]. The necessary
and sufficient conditions for positivity of the potential in all directions are [373–
375]

λ1,2 ≥ 0,

λ3 ≥ −
√
λ1λ2,

λ3 + λ4 − |λ5| ≥ −
√
λ1λ2. (5.31)

Vacuum stability of the potential minimum is more difficult to evaluate. An in-
equality which ensures a global minimum, missing possible metastable vacua, is
presented in Ref. [376]. Tree-level perturbative unitarity of scalar-scalar scatter-
ing is ensured by bounding the eigenvalues of the scattering matrix [364, 377–
379]. Perturbativity of the λi can also be demanded [380]. At the very least these
bounds should be implemented at the mass scale of the scalar states. In addition
they may be demanded up to some high scale under the renormalisation group
evolution, which results in non-trivial constraints on the parameter space (see
e.g. Refs. [381–383]4). Type II, LS, and Flipped 2HDMs are particularly suscep-
tible to exclusion by such a demand at large tanβ; at one-loop, their Yukawa
couplings hit a Landau pole before MPl ∼ 1018 GeV when v2 . 3.6, 2.3, 3.3 GeV
(tanβ & 68, 110, 75) respectively [384]. These Landau poles merely indicate the
breakdown of perturbativity.

The scalar boson discovered at the LHC is to be identified with the mass
eigenstate h. Its couplings have been measured to be SM-like, which constrains
the ν2HDM to lie in the alignment limit cos(α − β) ≈ 0, particularly at large
tanβ, and for Type II and Flipped 2HDMs.5 As is evident from Equation (5.30),
the alignment limit is automatically preferred in our model due to the approxi-
mate Z2 or U(1) symmetry. Thus we limit the following discussion on additional
experimental limits to those that constrain moderate to large tanβ models very
close to the alignment limit.

In Type II and Flipped 2HDMs, the Φ2 coupling to down-type quarks is tanβ

enhanced. The H± state then contributes significantly to radiative B → Xsγ de-
cay; the experimental measurement [390] combined with a recent next-to-next-
to-leading order SM calculation [391] bounds mH± & 480 GeV at 95% CL for

4Note that some of the bounds derived in these papers do not apply to the softly broken Z2-
symmetric case, and also do not apply to the Z2-symmetric case when one of the vevs vanishes.

5We refer the reader to Refs. [34, 383, 385–389] for allowed parameter space as a function of
cos(α− β) and tanβ in all 2HDM Types.



5.2. The ν2HDM 115

tanβ & 2. This bound along with the consistency condition Equation (5.27) im-
plies v2 . 45 GeV (tanβ & 5.4) for these ν2HDMs. In the Type II 2HDM the
Φ2 coupling to eiR is also tanβ enhanced, and the bound on mH± from B → τν

decays exceeds the radiative bound when tanβ & 60 [364]. These bounds are
depicted in Figure 5.4.

Direct searches at LEP constrain mH± & 80 GeV assuming decay to SM par-
ticles [392]. At the LHC, searches for H/A → ττ [371, 393] are particularly con-
straining in the Type II 2HDM. The 95% CL limit rises approximately linearly
frommA & 300 GeV at tanβ = 10 tomA & 1000 GeV at tanβ = 60. Such searches
can also be mildly constraining for the LS 2HDM at moderate tanβ. Searches for
H± → τν [394, 395] cannot compete with B → Xsγ for Type II/Flipped 2HDMs
or with H/A → ττ for the LS 2HDM. However, for mH± < 160 GeV, significant
parameter space is ruled out in Type I 2HDMs with moderate tanβ.

The (yν)ijliLΦ̃2ν
j
R Yukawa term related to the neutrino masses can induce lep-

ton flavour violating decays; these are suppressed by the small yν and the right-
handed neutrino mass scale MN > m22. The processes of interest are lα → lβγ,
lα → 3lβ , and µ → e conversion in nuclei (see Ref. [396] for expressions). As
well, b → slα l̄β decays are induced in Type II and Flipped ν2HDMs. In practice,
lepton flavour violating measurements constrain linear combinations of (yν)ij bi-
and tri-linears as well as the MNi .

In summary, for moderate to large tanβ and cos(α − β) ≈ 0, experiments
are most constraining for the Type II and Flipped 2HDMs, with m22 & 480 GeV
necessary (implying v2 . 45 GeV). For Type I and LS 2HDMs, even additional
scalars with masses down to 80 GeV may still have evaded detection.

5.2.3 Naturalness

In CHAPTER 3 we laid out our naturalness philosophy. A physical naturalness
problem arises when the Higgs mass parameter µ2(µR) receives large correc-
tions, dµ2/d logµR � µ2(mZ). Indeed, the Vissani bound of Section 5.1 is a di-
rect bound of the µ2 RGE contributions from the heavy right-handed neutrino.
Below we present a discussion and a one-loop RG analysis within the ν2HDM.

In practice, the naturalness considerations can be divided into two distinct
calculations: the influence of m22 on m11, and the influence of MN on m22. These
influences will be considered in turn.6

Corrections tom2
11

If m2
22 � m2

h tan2 β/2, then m2
11 sets the mass of the observed SM-like Higgs via

Equations (5.26) and (5.29). The one-loop RGE for them2
11 parameter is [364] (see

6In the following we ignore the influence of the small yν Yukawas on m2
11, and hence those

results also hold in a general 2HDM.



116 Chapter 5. Baryon Asymmetry of the Universe

Ref. [383] for a recent two-loop calculation)

dm2
11

d lnµR
=

1

(4π)2

[
(4λ3 + 2λ4)m2

22 +O(m2
11)
]
. (5.32)

TheO(m2
11) term contains gauge, λ1, and Yukawa contributions, which, as in the

SM case, do not induce a naturalness problem. However if λ3,4 are non-zero then
a naturalness problem is induced for sufficiently large m2

22; we are interested in
when this generically occurs. Even if λ3,4 = 0 at some scale, they will quickly be
reintroduced by gauge interactions at one-loop. Their one-loop RGEs are given
by

dλ3

d lnµR
=

1

(4π)2

[
3

4

(
g4
Y − 2g2

Y g
2
2 + 3g4

2

)
+ ...

]
,

dλ4

d lnµR
=

1

(4π)2

[
3g2
Y g

2
2 + ...

]
, (5.33)

where g2
2(mZ) ≈ 0.43 and g2

Y (mZ) ≈ 0.13 are the gauge couplings and the el-
lipses contain terms multiplicative in λ3,4, terms proportional to λ2

5, and terms re-
lated to the Yukawas. Let us ignore those effects for now and return to them later.
Note that ignoring the contribution from λ2

5 is equivalent to assuming λ5 . 0.2,
so that its contribution is subdominant to the gauge couplings. Typically, one
would expect

|λ3(µR)| & 1

(4π)2

3

4

(
g4
Y − 2g2

Y g
2
2 + 3g4

2

)
,

|λ4(µR)| & 1

(4π)2
3g2
Y g

2
2, (5.34)

and thus
∣∣∣∣
dm2

11

d lnµR

∣∣∣∣ &
1

(4π)4

(
3g4
Y + 9g4

2

)
m2

22. (5.35)

This lower bound is of the same order as the two-loop pure gauge contribution
[383].

Equation (5.35) represents a conservative bound on the running of the m2
11

parameter above the scale ∼ m22. Naturalness demands that this running not be
significantly larger than the value measured at a low scale, |m11| ≈ 88 GeV. A
very conservative naturalness bound is therefore

1

(4π)4

(
3g4
Y + 9g4

2

)
m2

22 < 1 TeV2, (5.36)

⇒ m22 . 1× 105 GeV. (5.37)
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Alternatively, we can try to bound a quantity which measures the fine-tuning
in m2

11 at some high scale Λh. A typical quantity is [288, 289]

∆ (Λh) =

∣∣∣∣
m2

11(Λh)

m2
11(mZ)

∂m2
11(mZ)

∂m2
11(Λh)

∣∣∣∣ , (5.38)

which compares percentage variations of two (in principle) measurable parame-
ters. Let us now estimate how such a bound might constrain m22.

For simplicity, and anticipating that the m22 scale is not far above the elec-
troweak scale, we will evolve the dimensionless parameters using the (ν)2HDM
RGEs from the mZ scale. First, the one-loop gauge coupling RGEs [364, 397] can
be solved analytically. Upon substitution into the λ3,4 RGEs (Equations (5.33)),
and considering only the pure gauge contribution, the λ3,4 running can be solved
for given initial conditions. For simplicity we take λ3(m22) = λ4(m22) ≡
λ3,4(m22) and consider it a free parameter. Next we solve Equation (5.32) for
m2

11(µR) with the initial condition m2
11(m22) = −(88 GeV)2 (neglecting any RGE

evolution of m2
22). With these simplifications ∂m2

11(mZ)/∂m2
11(Λh) = 1 and the

fine-tuning measure is given simply by ∆(Λh) =
∣∣m2

11(Λh)/(88 GeV)2
∣∣.

Note that in setting the initial condition m2
11(m22) = −(88 GeV)2 we have

implicitly assumed that m2
22 � m2

h tan2 β/2 (see Equation (5.27) and Figure 5.4).
This is conservative for negative m2

11, since |m2
11(m22)| shrinks as m2

22/ tan2 β →
m2
h/2 and the naturalness constraint would become more stringent. In some cir-

cumstances we will obtain naturalness bounds onm2
22 which exceedm2

h tan2 β/2,
which just indicates that the naturalness constraint is weaker than the consis-
tency condition Equation (5.27).

In Figure 5.5 we show ∆ = 10 and ∆ = 100 contours as a function of Λh

and λ3,4(m22). These represent naturalness upper bounds on m22. The cusp-like
structures of apparently low fine-tuning in m2

11 occur when m2
11 runs negative

before turning and passing through m2
11 = 0, which just corresponds to a fine-

tuning in (λ3,4,Λh), as discussed in CHAPTER 3. A stringent naturalness con-
straint is obtained by demanding ∆ < 10 at Λh = MPl; from Figure 5.5, it is clear
that this implies

m22 . few× 103 GeV. (5.39)

Indeed, in our two-loop study of CHAPTER 3 we obtained a similar bound of
M . 2.1 TeV (see Table 3.2) for scalars in a minimal 2HDM (with v2 = 0 and no
Yukawa couplings). If any new physics comes in below MPl then the running of
m2

11 could change, and these bounds do not strictly apply. If that is the case then
it is more appropriate to consider Λh at the scale of the new physics, which weak-
ens the bound, as is clear from Figure 5.5. In the ν2HDM this new physics scale
is the right-handed neutrino scale MN , after which the right-handed neutrinos
can contribute to the running of m2

11 through m2
22 at one-loop.
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We have so far ignored the RGE contributions from possibly large Yukawas.
There are two situations in which the Yukawas play a significant role. The first
is in Type II, LS, and Flipped ν2HDMs with tanβ large enough such that an
early Landau pole is induced (see Section 5.2.2), and the second is in Type II
and Flipped ν2HDMs with moderate to large tanβ when the pure Yukawa term
± 1

(4π)2 12y2
by

2
t induced by a quark box diagram contributes significantly to the

λ3,4 RGEs (Equations (5.33)). In Figure 5.6 we show how the ∆ = 10 con-
tours change as a function of v2 in an example Type II ν2HDM. For this Fig-
ure we have numerically solved the full set of one-loop RGEs [383] including the
top/bottom/tau Yukawas, taking the following values at the scalemZ : g2

s = 1.48,
λ1 = λ2 = 0.26, and yt = 0.96/ sinβ, yb = 0.017/ cosβ, yτ = 0.010/ cosβ.
Comparing to Figure 5.5, it can be seen that the pure Yukawa term has a no-
ticeable effect when v2 . 20 GeV. It is also apparent from Figure 5.6 that nearing
v2 ≈ 3.6 GeV (below which a Landau pole is induced before MPl) can act to de-
grade or improve the naturalness bound. The v2 = 3 GeV bound in Figure 5.6
shows the effect of hitting the Landau pole at ∼ 109 GeV. We note that this only
signals the breakdown of perturbation theory, and of our one-loop RGEs; we
cannot calculate m22(µR) above this scale though it is perfectly possible that the
theory remains natural.

In a repeated full one-loop RGE analysis we found that the Flipped ν2HDM
gave essentially the same results as the Type II ν2HDM in Figure 5.6, and there
was no noticeable Yukawa effect in the LS ν2HDM until the Landau pole was
reached. Thus we find that the stringent naturalness bounds of Equation (5.39)
and Figure 5.5 are applicable at all times in the Type I ν2HDM, for v2 & 2 GeV
in the LS ν2HDM, and for v2 & 20 GeV in the Type II and Flipped ν2HDMs.
Otherwise Yukawa effects must be taken into account. Either way, the important
point is now clear: a TeV scale m22 can be both completely natural and, as was
discussed in the previous subsection, is experimentally allowed in all ν2HDM
Types.

Corrections tom2
22

Let us now consider the influence of the right-handed neutrinos. The one-loop
RGE for m2

22 is [3, 398]

dm2
22

d lnµR
=

1

(4π)2

[
−4Tr[yνD2

My
†
ν ] +O(m2

22)
]
. (5.40)

A conservative naturalness bound is obtained by bounding the running as we
did in Equation (5.37),

1

4π2
Tr[yνD2

My
†
ν ] < Λ2

bound, (5.41)
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where taking Λbound = 1 TeV gives the Vissani bound on MN1 of Equation (5.4)
[3]. However, now we are bounding corrections to m2

22 rather than m2
11, which

may be TeV scale. Thus, depending on the mass of the extra scalars, it is possi-
ble that we can sensibly take Λbound > 1 TeV, in which case the the naturalness
bound is somewhat relaxed; in Figure 5.7 we show a Relaxed Vissani bound for

Λbound = min(10 TeV, 10
√
m2
h tan2 β/2), where we have kept in mind the consis-

tency condition Equation (5.27). The Vissani bound still represents the unnatural
area of parameter space if m22 is closer to 100 GeV.

As before, we could instead bound a quantity which measures the fine-tuning
in m2

22 at some high scale Λh. In this case, the fine-tuning measure of Equa-
tion (5.38) is

∆(Λh) = 1 +
1

4π2

∑
i,j(yν)ijM

2
j (y†ν)ji ln(Mj/Λh)

m2
22(Mj)

. (5.42)

Taking m22(Mj) ∼ 1 TeV and demanding ∆(MPl) < 10 gives a similar bound to
Vissani (Equation (5.41) with Λbound = 1 TeV). Note that there is no naturalness
bound on MN in the yν → 0 limit. This is the technically natural limit corre-
sponding to an enhanced Poincaré symmetry in which νR decouples from the
theory [37].

In summary, there are up to three scales in the ν2HDM: v, m22, and MN . We
have described the conditions under which v2 (or m2

11) is protected from m2
22,

and m2
22 from M2

N . Under such conditions it follows that m2
11 is also protected

from M2
N and the model is entirely natural.

5.2.4 Neutrino masses

If m2
12 = 0 and λ5 = 0 then a U(1) lepton number symmetry can be defined and

neutrinos remain massless. Let us now consider turning each non-zero in turn.

m2
12 > 0, λ5 = 0

If m2
12 > 0 then the U(1) lepton number symmetry is softly broken, i.e. the

breaking does not force us to insert a non-zero λ5 term in order to introduce a
divergent counterterm, and it is consistent to consider m2

12 > 0, λ5 = 0.
In this situation the neutrino mass matrix is given by the seesaw formula,

mν =
v2

2

2
yνD−1

M yTν ≈
1

tan2 β

(
v2

2
yνD−1

M yTν

)
, (5.43)

where tanβ ≈ m2
22/m

2
12 for m2

22 � λ345v
2
1 , and we have bracketed the usual

seesaw formula.
The analogous Davidson–Ibarra and Vissani bounds are given by the stan-

dard Equations (5.3) and (5.4) with the replacement v → v2. These bounds are
depicted in Figure 5.7. If v2 . 30 GeV (tanβ & 8) then both bounds are satisfied.
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FIGURE 5.7: Upper: Bounds on the ν2HDM as a function of v2.
Shown (as labelled) are the Davidson-Ibarra bound, the Vissani
and Relaxed Vissani naturalness bounds, and the areas of param-
eter space with strong ∆L = 2 scattering washout. The Type
II and Flipped ν2HDMs are excluded by B → Xsγ for values
of v2 greater than indicated by the grey dashed line (see Sec-
tion 5.2.2). The grey dotted lines indicate the v2 below which the
Yukawas hit a Landau pole before MN1 in the Type II, Flipped,
and LS ν2HDMs right-to-left. Lower: As in Upper but for the Ma
model. The Vissani and Relaxed Vissani bounds are evaluated
at m22 = 100, 1000 GeV respectively. The Davidson-Ibarra bound
and strong ∆L = 2 washout region are shown form22 = 500 GeV,

though they are only mildly sensitive to m22.
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As well, as discussed in Section 5.2.3, if m22 is TeV scale the Vissani bound can
be relaxed and the required CP asymmetry needed to reproduce the BAU via
leptogenesis may be naturally achieved for v2 . 60 GeV (tanβ & 4). In the Type
I ν2HDM, v2 can be naturally�GeV. Otherwise, requiring a perturbative theory
up toMN1 restricts v2 & 1 GeV (v2 & 2 GeV) for the LS (Type II/Flipped) ν2HDM
in the parameter space region of interest, as depicted in Figure 5.7.

m2
12 = 0, λ5 6= 0

In this situation v2 = 0 and a Z2 symmetry remains unbroken; this is the sce-
nario of Ma [82]. The model yields a radiative neutrino mass and a dark matter
candidate. This is only possible in the Type I ν2HDM, since in any other Type
the unbroken Z2 forbids a Dirac mass term for any charged fermion coupling to
Φ2. Note that the limit λ5 → 0 is technically natural, since in that limit the U(1)

lepton number symmetry is reinstated.
If M2

N � m2
22, v

2 the radiatively induced neutrino mass matrix is

(mν)ij ≈
v2

2

(yν)ik(y
T
ν )kj

Mk

λ5

8π2

(
ln

[
2M2

k

(m2
H +m2

A)

]
− 1

)
. (5.44)

The analogous Davidson-Ibarra and Vissani bounds are given by the stan-
dard Equations (5.3) and (5.4) with the intuitive replacement v2 →
v2 λ5

8π2

(
ln
[
2M2

N1
/(m2

H +m2
A)
]
− 1
)
. This assumes that there is no fine-tuning

in the complex yν parameters to reproduce the observed neutrino masses (see
Appendix B.2 for details). These bounds are depicted in Figure 5.7, where the
Davidson-Ibarra bound has been evaluated at m22 = 500 GeV as an illustrative
example (the bound is only mildly sensitive to m22). We find that the Ma model
with λ5 . 0.5 can naturally achieve the required CP asymmetry to reproduce the
BAU via hierarchical leptogenesis.7

m2
12 > 0, λ5 6= 0

In this case both the tree-level seesaw and the radiative mechanism will con-
tribute to the neutrino mass. Both contributions are calculable, and either might
dominate. Note that it is still technically natural to take λ5 → 0 in this case, since
it restores a softly broken U(1) symmetry. In other words, the λ5 RGEs to all or-
ders will be multiplicative in λ5, indicative of the fact that the soft-breaking term
can only generate finite U(1)-breaking corrections.

7A similar observation was made in a recent paper [353].
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5.2.5 Leptogenesis

The observed BAU is achieved analogously to standard hierarchical thermal lep-
togenesis [93]; the out-of-equilibrium CP violating decays of the lightest right-
handed neutrinoN1 → lΦ2 create a lepton asymmetry which is transferred to the
baryons by the electroweak sphalerons above T ∼ 100 GeV.

The details of the leptogenesis are (as in the Type I seesaw case introduced
in Section 1.1.4) largely defined (in the one-flavour approximation) by the decay
parameter

K =
ΓD

H|T=M1

=
m̃1

m∗
, (5.45)

comparing the rate for decays and inverse decays to the expansion rate at the
time of departure from thermal equilibrium. Here, the rates

ΓD =
1

8π
(y†νyν)11M1, H ≈ 17T 2

MPl
, (5.46)

are typically rescaled and expressed in terms of an effective neutrino mass m̃1

and an equilibrium neutrino mass m∗,

m̃1 =
(y†νyν)11v

2

2M1
, m∗ ≈ 1.1× 10−3 eV

( v

246 GeV

)2
, (5.47)

where v is the vev that enters the seesaw Equation (5.1). In the ν2HDM with
λ5 = 0 (with m2

12 = 0, λ5 6= 0) the analogous definitions make the replacement
v2 → v2

2 (v2 → v2 λ5
8π2

(
ln
[
2M2

N1
/(m2

H +m2
A)
]
− 1
)
). Note that for the scenarios

we are interested in (e.g. v2 � v), m∗ is smaller than its usual value in standard
leptogenesis.

Let us briefly demonstrate that this picture is consistent. A simple ex-
ample configuration which achieves maximal CP violation and saturates the
Davidson–Ibarra bound is (assuming normal ordering) m1 � m̃1 and

R =




√
1−R2

31 0 R31

0 1 0

R31 0 −
√

1−R2
31


 , (5.48)

where R31 ≡ κ exp(iπ/4). Here κ is related to the decay parameter by

κ ≈ 0.15
√
K

tanβ

(
0.05 eV
m3

) 1
2

, (5.49)

and is typically . 10−2 in the parameter range of interest. In the limit m1 = 0,
this corresponds to a Uyν which has one zero row, but is otherwise approxi-
mately diagonal. We note that, in this configuration, m̃1 and the CP asymmetry
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are sufficiently stable under radiative corrections. The point is that, with three-
flavour effects, it is possible to have (y†νyν)11 arbitrarily small (in order thatK ∼ 1

and N1 is sufficiently out of equilibrium) and still achieve maximal CP violation
in its decays.

When only decays and inverse decays are considered, leptogenesis for given
K proceeds exactly as in standard hierarchical thermal leptogenesis (see e.g.
Ref. [95] for a review). In the weak washout regime K � 1, the baryon asym-
metry strongly depends on the initial asymmetry and the initial N1 abundance,
with N1 decays occuring at T �M1. The strong washout regime K � 1 is inde-
pendent of the initial conditions, and the asymmetry is generated as the N1 fall
out of thermal equilibrium.

The 2 ↔ 2 scatterings with ∆L = 1 (see e.g. Ref. [399]) provide a correction
to the simple decays plus inverse decays picture; they act to increase N1 produc-
tion at T > M1 and contribute to washout at T < M1. In standard hierarchical
thermal leptogenesis, the scattering contributions involving the top quark and
the gauge bosons are roughly equal. In the present model the gauge boson con-
tribution is the same as in the standard scenario. However, by construction, the
Φ2 involved here in leptogenesis does not couple directly to the top quark, and
thus the usual s-channel (Nl ↔ tq) and t-channel (Nt ↔ lq,Nq ↔ lt) scattering
contributions do not occur. Instead, at large tanβ they can be replaced by the
analogous contribution from other charged fermions, i.e. the bottom quark in
Type II and Flipped ν2HDMs and/or the tau lepton in Type II and LS ν2HDMs.
A large tau lepton Yukawa will also introduce new s-channel (NΦ2 ↔ τΦ2) and
t-channel (NΦ2 ↔ τΦ2, τN ↔ Φ2Φ̄2) scattering contributions. All of these pro-
cesses are proportional to (y†νyν)11 and hence M1m̃1/v

2, with the appropriate
ν2HDM replacement for v2. Therefore, they scale with the decays and inverse
decays so that they represent only a minor (but obviously important) departure
from the standard leptogenesis scenario.

The 2 ↔ 2 scatterings with ∆L = 2 mediated by the right-handed neu-
trinos (Φ2l ↔ Φ̄2 l̄,Φ2Φ2 ↔ ll) occur as they do in the standard scenario.
These processes are proportional to Tr[(yνyTν )(yνy

T
ν )†] and henceM2

1m
2/v4 where

m2 =
∑
m2
i is the neutrino mass scale & (0.05 eV)2. Comparing this rate to the

decay/scattering rates ∝ M1m̃1/v
2, it is easy to see that after making the ap-

propriate ν2HDM replacement for v2, e.g. v2 → v2
2 � v2, these scatterings will

become comparatively more important than in the standard case. For T .M1/3,
and in the one-flavour approximation, the thermally averaged ∆L = 2 scattering
rate is well approximated by [95]

Γ∆L=2

H
≈ T

2.2× 1013 GeV

(
246 GeV

v

)4( m

0.05 eV

)2

, (5.50)

where the previously described ν2HDM replacements for v2 hold (see Appendix
B.2). The upper (lower) panel of Figure 5.7 shows the region in the λ5 = 0
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(m2
12 = 0, λ5 6= 0) ν2HDM where these scatterings are still in equilibrium at

T . M1/3.8 This is the region where strong ∆L = 2 scatterings can potentially
wash out the generated asymmetry, depending on the details of the leptogene-
sis (e.g. in a weak washout scenario with N1 decays at T � M1 this washout
may be avoided). Demanding that the scatterings fall out of equilibrium be-
fore sphaleron freeze-out at T ∼ 100 GeV provides a lower bound v2 & 0.3 or
λ5 & 10−5; this is represented by the strong ∆L = 2 scattering washout regions
in Figure 5.7. We note that this calculation has been performed in the context of
a perturbative theory. This is reliable for the Type I ν2HDM but not for Type II,
LS, or Flipped ν2HDMs with sufficiently small v2, when perturbativity breaks
down.

Since leptogenesis in this model will be occurring at temperatures below
109 GeV, the Yukawa couplings will be in equilibrium and flavour effects cannot
be ignored (see e.g. Refs. [357, 406–409]). These departures from the standard
scenario deserve further detailed study. Still, we do not expect the picture to be
dramatically changed.

Putting this all together, we can now read off from Figure 5.7 the regions
of parameter space which can achieve natural hierarchical thermal leptogenesis.
For ν2HDMs withm2

12 > 0 and λ5 = 0, we find 103 GeV .MN1 . few×107 GeV
is viable for Type I ν2HDMs, and 104 GeV . MN1 . few× 107 GeV for all other
Types if they are to remain perturbative. For the Ma model with m2

12 = 0 and
λ5 6= 0, we find viable parameter space for 103 GeV . MN1 . 108 GeV and
10−5 . λ5 . 0.5.

Lastly we note that the lightest scalar state in the Ma model is stable.9 It is
therefore possible that this state, if it is neutral, constitutes some or all of the ob-
served dark matter. During the leptogenesis epoch, Φ2 is produced in abundance
in N1 decays. Overproduction of dark matter is of no concern as long as Φ2 ef-
ficiently thermalises at or below the temperatures when N1 decays occur, which
suggests m22 �MN1 . In this case the lightest state is a thermal relic dark matter
candidate.

5.3 Conclusion

The three-flavour Type I seesaw model is a simple way to explain neutrino
masses and the BAU via hierarchical thermal leptogenesis. However, we proved
in Section 5.1 that it cannot do so without introducing a naturalness problem.

8A similar plot to Figure 5.7 Upper appears in Ref. [400] in the context of the Type I ν2HDM
with v2 > 0. We are not aware of any plot similar to Figure 5.7 Lower in the literature, though see
Refs. [401–405] for leptogenesis studies at points in the Ma model parameter space.

9The lifetimes of the heavier scalar states are governed by mass splittings ∆ via Γ ∼
G2
F∆5/(102π3). In the parameter space of interest, one can check that ∆ is typically already large

enough at tree-level so that lifetimes remain well below O(1 s) and therefore do not disturb big
bang nucleosynthesis.
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In Section 5.2 we listed some minimal ways to adapt the model to avoid this
inconsistency: dominiant initial N1 abundancy; resonant leptogenesis; neutrino
oscillations; introducing an independent source of CP violation in N1 decays;
partial loop cancellations; supersymmetry; and reducing the (possibly effective)
vev entering the seesaw. We described viable, natural ν2HDMs which utilise the
latter mechanism. This can be done radiatively, or by having the second Higgs
doublet provide a tree-level seesaw with a small vev v2, kept natural by softly
breaking a U(1) or Z2 symmetry.

The ν2HDMs accommodate a SM-like Higgs and predict the existence of ap-
proximately TeV scale extra scalar states in order to remain natural. We redis-
covered the radiative Ma model as the only possibility when v2 = 0; in that case
we found 103 GeV .MN1 . 108 GeV and 10−5 . λ5 . 0.5 could simultaneously
explain neutrino masses and the BAU via leptogenesis while remaining natural.
The v2 > 0 models require tanβ & 4; we found 103 GeV .MN1 . few×107 GeV
was viable for Type I ν2HDMs, and 104 GeV . MN1 . few × 107 GeV for all
other Types if they are to remain perturbative up to MN . The interesting areas of
parameter space are well summarised in Figure 5.7.
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6 Strong CP Problem

This Chapter is based on the publication “Technically natural non-supersymmetric

model of neutrino masses, baryogenesis, the strong CP problem, and dark matter,”

written in collaboration with Raymond R. Volkas [7].

The theme of this THESIS has been the inability of the SM to explain certain
theoretical and phenomenological questions, such as neutrino masses, the BAU,
the smallness of the neutron electric dipole moment (the strong CP problem),
dark matter, and gravity. Whether nature realises these phenomena in a “nat-
ural” way, i.e. in such a way that µ2 is (sufficiently) insensitive to physically
meaningful quantum corrections, remains an open question. Still, motivated by
aesthetics, the pursuit of a natural “theory of everything” has inspired much of
modern particle physics.

In the same vein, this short Chapter describes a minimal extension of the
SM by three right-handed neutrinos, a scalar doublet, and a scalar singlet, which
serves as an existence proof that weakly coupled high scale physics can naturally
explain phenomenological shortcomings of the SM. The model can be thought of
as an extension of the Dine–Fischler–Srednicki-Zhitnitsky (DFSZ) invisible axion
model [107, 108] by right-handed neutrinos, and is thus henceforth referred to
as the νDFSZ. The νDFSZ can explain neutrino masses, baryogenesis, the strong
CP problem, and dark matter, and remains calculably natural despite a hierarchy
of scales up to∼ 1011 GeV. This is achieved by a seesaw mechanism, intermediate
scale hierarchical leptogenesis (105 GeV . MN . 107 GeV), the Peccei–Quinn
(PQ) mechanism, an invisible axion, and a technically natural decoupling limit,
respectively. Much of the groundwork for the νDFSZ was laid in the ν2HDM of
CHAPTER 5, so the discussion here will be kept brief.

This Chapter is organised as follows. We first detail the νDFSZ, its vacuum,
and its scalar sector (and constraints). We then describe how it provides expla-
nations for the strong CP problem, dark matter, neutrino masses, and the BAU.
Penultimately, we identify the symmetries which protect each scale from quan-
tum corrections, and study an example point in the parameter space.
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6.1 The νDFSZ

6.1.1 Lagrangian

The scalar content of the model is a complex singlet S and two complex doublets
Φ1,2 of hypercharge +1. The potential is1

VνDFSZ =M2
11 Φ†1Φ1 +M2

22 Φ†2Φ2 +M2
SS S

∗S

+
λ1

2

(
Φ†1Φ1

)2
+
λ2

2

(
Φ†2Φ2

)2
+
λS
2

(S∗S)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)

+ λ1S

(
Φ†1Φ1

)
(S∗S) + λ2S

(
Φ†2Φ2

)
(S∗S)

− εΦ†1Φ2S
2 − εΦ†2Φ1S

∗2, (6.1)

where M2
SS ∼ −

(
1011 GeV

)2 ≡ −M2
PQ sets the PQ scale. Additional terms oth-

erwise allowed by gauge symmetry are forbidden by a global U(1)PQ symmetry
to be defined in Section 6.2.1, which is essential in solving the strong CP prob-
lem. The ε terms are necessary2 to assign a PQ charge to S and help to generate
neutrino masses once S obtains a vacuum expectation value (vev).

The only addition to the SM fermionic content is three right-handed neutri-
nos. The strong CP solution dictates that Φ1 (Φ2) couple to uR (dR), and our
solution for natural neutrino masses and leptogenesis requires that Φ2 couple to
νR. The Yukawa Lagrangian is therefore

−LY = + yuqLΦ̃1uR + ydqLΦ2dR

+ yelLΦJeR + yν lLΦ̃2νR

+
1

2
yN (νR)cSνR +H.c., (6.2)

where family indices are implied, Φ̃i ≡ iτ2Φ∗i , and J = 2 (1) is a Type II (Flipped)
ν-two-Higgs-doublet model (ν2HDM) arrangement. We will work in the basis
where yN is diagonal and real. Again, additional terms are forbidden by the
U(1)PQ symmetry.3

We note here that each of ε → 0, yN → 0, and yν → 0 is a technically natural
limit, since they lead to an extra U(1) symmetry which can be identified with
lepton number. As well, there are two apparent technically natural decoupling
limits associated with enhanced Poincaré symmetries [37]: ε, λ1S , λ2S , yN → 0

1As far as we are aware, the νDFSZ was first discussed in Ref. [36]. See Refs. [410–412] and
references therein for other minimal approaches to connecting the PQ mechanism with neutrino
masses.

2Another option is to have terms −(κΦ†1Φ2S +H.c.) [413].
3In this model the right-handed neutrinos gain mass from the vev of S, but an alternative

scenario with explicit Majorana masses is also possible.
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decouples S, and ε, λ1S , λ2S , yν → 0 decouples the (νR, S) subsystem. These
limits will prove important in protecting the hierarchy of scales in the model.

6.1.2 Vacuum

The scalar fields acquire vevs 〈S〉 ≡ vS/
√

2, 〈Φi〉 ≡
(
0, vi/

√
2
)T

. If vS � vi, then

vS ≈
√
−2M2

SS

λS
∼ 1011 GeV. (6.3)

Expanding around this vev, the right-handed neutrinos acquire Majorana masses
MN = yN 〈S〉 and the scalar potential becomes

Vν2HDM ≈ m2
11 Φ†1Φ1 +m2

22 Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+ ... ,

where m2
ii = M2

ii + λiS〈S〉2 and m2
12 = ε〈S〉2. Up to v/vS corrections, at low

scale the νDFSZ therefore just becomes the ν2HDM discussed in CHAPTER 5,
with an additional very weakly coupled axion. We will adopt the same natural
explanation of neutrino masses and baryogenesis detailed therein. This requires
v2 ∼ O(1–10) GeV achieved with m2

11 < 0, m2
22 > 0, and m2

12/m
2
22 � 1.4 Antici-

pating m2
22 � v2

1(λ3 + λ4), λ2v
2
2 , the Φi vevs can be written

v2 ≡
v1

tanβ
≈ m2

12

m2
22

v1, v1 ≈
√

2

λ1

(
−m2

11 +
m2

22

tan2 β

)
, (6.4)

where
√
v2

1 + v2
2 = v ≈ 246 GeV and we have implicitly defined tanβ. The

consistency condition Equation (5.27) applies in order to avoid a fine-tuning for
v.

Typical values for the mass parameters are m2
11 ≈ −(88 GeV)2, m22 ∼

103 GeV, and m2
22/ tan2 β � |m2

11|. Therefore, for no fine-tuning between M2
ii

and m2
ii, we already expect λ1S . 10−18, λ2S . 10−16, and ε� 10−18.

6.1.3 Scalar sector

The scalar mass eigenstates are, up to v1/m22 andm2
12/m

2
22 corrections (see Equa-

tion (5.29) for expressions), a CP even state (h) with m2
h ≈ λ1v

2
1 , three heavy

scalar states (H,A,H±) with masses ≈ m22, a PQ scale neutral scalar (s) with
m2
s = λSv

2
S , and a very light pseudo-Goldstone boson (the invisible axion).

Owing to the approximate U(1) symmetry due to m2
12/m

2
22 � 1 and

v2/m2
22 � 1, the state h closely resembles the SM Higgs. We refer to Figure 5.4 for

the various constraints on m22. These are the aforementioned consistency con-
dition, measurements of B → Xsγ [390, 391], H/A → ττ LHC searches (for the

4Note that, like ε → 0 in the original Lagrangian, m2
12/m

2
22 → 0 is a technically natural limit

associated with U(1)L [367].
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Field U(1)PQ Value in [Type II, Flipped]

S XS
1
2

Φ1 X1 cos2 β
Φ2 X2 − sin2 β
qL Xq 0
uR Xu cos2 β
dR Xd sin2 β
lL Xl

3
4
− cos2 β

νR Xν − 1
4

eR Xe
[

7
4
, 3

4

]
− 2 cos2 β

TABLE 6.1: Charges of νDFSZ fields under the PQ symmetry.

Type II model) [371, 393], perturbativity up to the Planck scale [384], and natural-
ness [5]. The naturalness bound was derived in Ref. [5] subject to the naturalness
condition we describe in Section 6.3.1, and we refer the reader there for details.

6.2 Strong CP problem, dark matter, neutrino mass, and
the BAU

6.2.1 Strong CP problem

In Section 1.1.5 we described the solution to the strong CP problem by PQ sym-
metry; let us now identify the global U(1)PQ symmetry in the νDFSZ. Defining
the U(1)PQ charge names as in Table 6.1, we can (without loss of generality) set
Xq = 0 andXu+Xd = 1. Equations (6.1) and (6.2) set an additional six constraints
on the charges, which brings the total to eight for nine unknown charges. They
are completely defined by setting X1 = αX2, as long as α 6= 1; it is convention to
choose α = − cot2 β so that the PQ current does not couple to the field eaten by
the Z boson. The resulting charge values are given in Table 6.1. This is enough
to solve the strong CP problem, in the same spirit as the original DFSZ model.

A final comment before moving on. In the SM, if θ̄ is set to zero by hand at
some high scale, renormalisation implies θ̄ . 10−17 [414, 415], well below the
experimental bound. In this sense, in the SM, θ̄ ≈ 0 is already natural. Yet this
explanation remains unsatisfying, since the limit θ̄ → 0 cannot be identified with
a symmetry. The νDFSZ solution requires λiS ≪ 1, and thus one could similarly
ask: why are the λiS ≈ 0? At least, here, this limit is identified with an increased
Poincaré symmetry. As well, in the presence of CP violating new physics (such
as the right-handed neutrinos), this solution guarantees θ̄ ≈ 0.

6.2.2 Dark matter

The νDFSZ axion gains a mass

ma ≈ 60 µeV
(

1011 GeV
fa

)
(6.5)
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due to the chiral anomaly [106, 416], where fa ≈ 〈S〉 is the axion decay constant,
and inherits v/fa suppressed couplings to nucleons, photons, and electrons (for
expressions see e.g. Ref. [106]). Stellar energy loss constrains fa & 4 × 108 GeV
[106].5

The axion provides a cold dark matter candidate via the misalignment mech-
anism [420–422], wherein a significant amount of energy density is stored in co-
herent oscillations of the axion field, [423]

Ωah
2 ∼ 0.02

(
fa

1011 GeV

) 7
6
(

θ2

π2/3

)
, (6.6)

where−π ≤ θ ≤ π is the misalignment angle. The requirement that this quantity
not exceed the measured cold dark matter energy density ΩCDMh

2 ≈ 0.12 [69]
implies

fa . 6× 1011 GeV
(
π2/3

θ2

) 6
7

, (6.7)

with equality reproducing the observed density. If the PQ symmetry is broken af-
ter inflation, then the misalignment angle is the average value taken over many
distinct patches, θ2 ≈ π2/3, and one obtains fa . 6 × 1011 GeV [424].6 Fu-
ture projections of the ADMX and CAPP resonant microwave cavity experiments
promise to probe this interesting region of parameter space [426, 427].

6.2.3 Neutrino mass and the BAU

Neutrino masses and the BAU are reproduced by the same mechanisms as in the
ν2HDM detailed in Sections 5.2.4 and 5.2.5 of CHAPTER 5.

The neutrino mass matrix is given by Equation (5.43), and reproduced here
for convenience:

mν =
v2

2

2
yνD−1

M yTν ≈
1

tan2 β

(
v2

2
yνD−1

M yTν

)
, (6.8)

where the bracketed quantity is the typical Type I seesaw formula.
The BAU is produced analogously to standard hierarchical thermal leptogen-

esis, via the out-of-equilibrium, CP violating decays of the lightest right-handed
neutrino: N1 → lΦ2. As argued in Section 5.2.5, there will be minor changes to
the standard picture from extra ∆L = 1 scatterings mediated by b quarks and
(in Type II) τ leptons. The ∆L = 2 scatterings can constitute a significant de-
parture from the standard case, particularly in K � 1 scenarios dependent on

5In a Type II νDFSZ, red giants and white dwarfs constrain fa & 8× 108 sin2 β GeV (the white
dwarf cooling fit is actually improved for fa ≈ 1× 109 sin2 β) [106, 417–419].

6If inflation occurred after PQ symmetry breaking then a smaller θ can be anthropically chosen,
allowing fa > 1012 GeV [425].
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FIGURE 6.1: Constraints on the right-handed neutrino masses.
The naturalness bound on MN corresponds to the rough bound

Equation (6.13) evaluated at m22 = 1 TeV.

initial conditions. However for the parameter space of interest to us, the gen-
erated asymmetry is safe from strong ∆L = 2 scattering washout, as shown in
Figure 6.1. An additional consideration in the νDFSZ is N1N1 → aa annihila-
tions; an estimate of the rate is ΓN1N1→aa ∼ 10−2M5

N1
/〈S〉4 at T = MN1 , which

implies the out-of-equilibrium condition MN1 . 109 GeV, easily satisfied the pa-
rameter space of interest. As we noted in the ν2HDM picture, these departures
from the standard scenario deserve further detailed study. Still, we do not expect
the picture to be dramatically changed. In particular we expect the Davidson–
Ibarra bound [96, 97] for successful hierarchical thermal leptogenesis, scaled for
the differing vev in Equation (5.43), to approximately hold:

MN1 &
5× 108 GeV

tan2 β
. (6.9)

This bound is depicted in Figure 6.1.

6.3 Naturalness

6.3.1 Our naturalness philosophy

In CHAPTER 3 we explained why the RG formalism is a sensible way to quantify
a physical naturalness problem in any perturbative quantum field theory. If the
µ2(µR) RGE contains no large corrections then a model can be considered natu-
ral: µ2(µR) remains stable under RG evolution up to high scales. Extending this
idea to other mass scales in the model, we can say that a model is natural if all
scales remain stable under RG evolution. In that case, it follows intuitively that
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the low scale observables are not extremely sensitive to variations around their
high scale inputs. In this Section we show that there exists a region of νDFSZ pa-
rameter space where our phenomenological goals can be achieved and the heavy
PQ scale induces no naturalness problem.

6.3.2 Naturalness in the νDFSZ

Defining D ≡ (4π)2 d
d lnµR

and keeping only yt,b,τ,ν Yukawas, the one-loop RGEs
for the [Type II, Flipped] ν2HDM mass parameters can be written [303]

Dm2
12 = m2

12

(
− 3

2
g2

1 −
9

2
g2

2 + 2λ3 + 4λ4 + 2λS + 4λ1S + 4λ2S

+ 3y2
t + 3y2

b + y2
τ + Tr

(
y†νyν

))
, (6.10)

Dm2
11 = m2

11

(
−3

2
g2

1 −
9

2
g2

2 + 6λ1 + 6y2
t +

[
0, 2y2

τ

])

+m2
22 (4λ3 + 2λ4) + 〈S〉2λ1S (4λ1S + 4λS) +M2

SS2λ1S , (6.11)

Dm2
22 = m2

22

(
−3

2
g2

1 −
9

2
g2

2 + 6λ2 + 6y2
b +

[
2y2
τ , 0
]

+ 2Tr
(
y†νyν

))

+m2
11 (4λ3 + 2λ4) + 〈S〉2λ2S (4λ2S + 4λS) +M2

SS2λ2S

− 4Tr
(
yνM

2
Ny
†
ν

)
, (6.12)

where M2
N = y†NyN 〈S〉2 is the (diagonalised) right-handed neutrino mass ma-

trix. The 〈S〉2 and M2
SS terms correspond to the contribution from the heavy real

singlet s in the broken phase. We provide the full list of RGEs in Appendix C.1.
These RGEs make manifest the decoupling limit ε, λ1S , λ2S , Tr(y†νyνy

†
NyN )→

0 which protects the scales from large corrections. First, corrections to m2
12 are

proportional to m2
12, reflecting the fact that ε → 0 reinstates a U(1)L symme-

try. Second, because the parameters λ3,4 are reintroduced by gauge loops, m2
11

can only be protected from m2
22 by having m2

22 not too much larger than m2
11; in

CHAPTER 3 it was shown that m22 . 2.1 TeV can accommodate a 10% fine-
tuning measured at ΛPl. Third, m2

22 is protected from the MN by (roughly)
Tr(y†νyνy

†
NyN )/(4π2) . m2

22/〈S〉2; this translates to the sufficient condition (see
Section 5.1)

MN .
3× 107 GeV

tan
2
3 β

(m22

TeV

) 2
3
, (6.13)

for all the right-handed neutrinos, illustrated in Figure 6.1. Last, the m2
ii are

protected from the PQ scale by (again roughly) λiS . m2
ii/〈S〉2. We note that

there is a lepton box induced correction to λ2S ; this correction is also bounded by
m2
ii/〈S〉2 through Equation (6.13).



136 Chapter 6. Strong CP Problem

6.3.3 Explicit example

As a final demonstration we thought it illustrative to solve the coupled set of
RGEs for an explicit example. We consider tanβ = 30 and neglect running in the
following six quantities:

M2
SS = − (1011 GeV)2, MN1 = 6× 105 GeV,

〈S〉2 = −M2
SS/λS , MN2 = MN3 = 106 GeV,

λS = 0.26, yN = MN/〈S〉. (6.14)

We have taken MN1 at the Davidson–Ibarra bound and MN2,3 below the rough
naturalness bound Equation (6.13). We take yν according to Equations (5.48) and
(5.49) with K = 1, and neglect running here as well. A glance at the RGEs in
Appendix C.1 will convince the reader that neglecting running in these param-
eters is a good approximation. Decoupling of the heavy degrees of freedom at
ms, MNi , and m22 should be accompanied by an associated shift in the λj pa-
rameters, matching to the effective theory below each threshold. However, in
practice, since the λiS , yν are so small and m22 is not too much larger than mZ ,
it makes little numerical difference to implement this shift. Therefore we evolve
the following parameters under the νDFSZ RGEs:7

λ3(m22) = λ4(m22) = 0.02, λ1S(ms) = 10−18,

λ1(mZ) = λ2(mZ) = 0.26 λ2S(ms) = 10−16,

yt(mZ) = 0.96/ sinβ, g2
1(mZ) = 0.13,

yb(mZ) = 0.017/ cosβ, g2
2(mZ) = 0.43,

yτ (mZ) = 0.010/ cosβ, g2
3(mZ) = 1.48.

Their evolution is shown in Figure 6.3.8

To evolve the mass parameters we set m2
11(m22) = −(88 GeV)2 and consider

m22(m22) = 0.6, 0.8, 1.0, 2.0 TeV, with Ni and s decoupled by step functions
at their thresholds. Their RG evolution is shown in Figure 6.2; it is plain that
the mass parameters in this (viable) example remain relatively small up to high
scales, and are therefore natural according to our philosophy.

6.4 Conclusion

We have described an extension of the SM (the “νDFSZ”) by three right-handed
neutrinos, a complex scalar doublet, and a complex scalar singlet. The νDFSZ

7For definiteness we take a Type II arrangement, but the Flipped arrangement gives very simi-
lar results.

8We note that the parameter λ1 tends to run negative, threatening the stability of the elec-
troweak vacuum; nevertheless we expect the problem to be no worse than in the SM, i.e. we
expect a metastable vacuum.
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serves as an existence proof that weakly coupled high-scale physics can explain
phenomenological shortcomings of the SM without introducing a naturalness prob-
lem. The model explains neutrino masses, the BAU, the strong CP problem,
and dark matter, via a seesaw mechanism, hierarchical leptogenesis, the PQ
mechanism, and a DFSZ invisible axion, respectively. It contains four scales:
|m11| ≈ 88 GeV, m22 ∼ 103 GeV, MN ∼ 105–107 GeV, and MPQ ∼ 1011 GeV, each
protected from quantum corrections by a technically natural decoupling limit.
The ∼TeV scale scalars and the invisible axion of the model will be probed in
upcoming experiments.
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7 Dark Matter

This Chapter is based on the publication “Plasma dark matter direct detection,” writ-

ten in collaboration with Robert Foot [8].

In Section 1.1.6 we introduced the overwhelming evidence for dark matter
(DM). Still, its precise nature remains uncertain. Collisionless DM is a simple
and well studied possibility, which works very well on large scales, but has some
shortcomings on galactic scales (e.g. Refs. [120, 121, 428]). On the other hand, it
is possible that DM has a very rich structure. This is especially natural if DM
resides in a hidden sector with its own gauge interactions. In particular, DM
might be multicomponent, charged under an unbroken dark U(1)′ gauge inter-
action, i.e. it interacts with itself via a massless “dark photon”. It has been sug-
gested that such self-interactions may even go some way toward ameliorating
small scale structure problems (cf. Refs. [429–431]). Mirror dark matter (MDM)
is a theoretically constrained example of such a theory [432] and there are many
other scenarios considered in the literature (e.g. Refs. [433–444]). In such a frame-
work, it is possible that the DM in the Universe exists primarily in a plasma state,
as a macroscopically neutral “conductive gas” of ions with dark charge, broadly
analogous to the state of much of the ordinary matter in the Universe. It is this
“plasma dark matter” scenario that is the subject of this Chapter.

One important and distinctive property of a multicomponent plasma DM
halo with light and heavy mass components is the following: energy equipar-
tition implies light component velocities which are much larger than those ex-
pected under single component virialisation, and overall U(1)′ neutrality im-
plies they can even be much larger than the galactic escape velocity. It has been
pointed out [445] that this effect can give rise to observable keV electron recoils in
direct detection experiments. It might even be possible to explain the DAMA an-
nual modulation signal [143, 144, 446–448] in this manner, since the constraints
on electron recoils provided by other experiments are generally much weaker
than those of nuclear recoils. However, a detailed description of the plasma DM
density and velocity distribution in the vicinity of the Earth is required. This
is a highly non-trivial problem. If the dark plasma has interactions with ordi-
nary matter then it will by captured by the Earth, forming an approximate “dark
sphere” within. Understanding the interaction of the dark plasma with this dark
sphere as the Earth moves through the halo is therefore of primary importance.
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FIGURE 7.1: The solar wind interaction with Moon/Venus. These
systems appear to represent useful analogues to the possible
ways in which the dark plasma wind interacts with captured DM

within the Earth.

The aim of this Chapter is to provide a consistent description of this interaction
in order to qualitatively understand the implications for direct detection.

The captured dark sphere within the Earth forms an obstacle to the dark
plasma wind. Two limiting cases can be envisaged: (1) if the captured DM is
largely neutral, i.e. poorly conducting, then the dark plasma wind will be ab-
sorbed by the dark sphere, or; (2) if the captured DM is largely ionised, then the
obstacle forms a conducting sphere which effectively deflects the dark plasma
wind. Interestingly, these limiting cases appear analogous to the solar wind in-
teraction with the Moon and Venus, respectively (e.g. Refs. [449, 450]); this is
sketched in Figure 7.1. The Moon has no magnetic field and no atmosphere, so
that the solar wind is largely absorbed at the lunar surface with very little up-
wind activity. Venus has no magnetic field, but forms an electrically conductive
layer at the edge of its ionosphere, which at first approximation forms an impen-
etrable obstacle to the solar wind. These systems have been studied using mag-
netohydrodynamic (MHD) models, and this would seem to be an appropriate
starting point for studying the dark plasma wind interaction with the captured
DM within the Earth.

This Chapter is set out as follows. In Section 7.1 we provide a brief introduc-
tion to the plasma DM model and identify the parameter space of interest. In Sec-
tion 7.2 we discuss some relevant properties of the dark sphere of DM captured
within the Earth, and the DM plasma wind interaction with this dark sphere,
modelled via magnetohydrodynamics. In Section 7.3 we consider the direct de-
tection of plasma DM, identifying the general sources of event rate modulation,
studying the modulation in a specific example (electron recoils in MDM), and
describing the implications of our results in the light of the current experimental
situation. In Section 7.4 our conclusions are drawn. In particular, the analy-
sis presented here leaves open the intriguing possibility that the DAMA annual
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modulation signal is due primarily to electron recoils (or even a combination of
electron recoils and nuclear recoils). The importance of diurnal modulation (in
addition to annual modulation) as a means of probing this kind of DM is also
emphasised.

7.1 Plasma dark matter

DM might reside in a hidden sector with its own gauge interactions. If the hid-
den sector contains an unbroken U(1)′ gauge interaction, then U(1)′ neutrality
of the Universe implies a multicomponent self-interacting DM sector consisting
of fermions and/or bosons carrying U(1)′ charge. In the following discussion
we consider the minimal two-component case with fermionic DM. The DM con-
sists of a “dark electron” (ed) and a “dark proton” (pd) with masses med ≤ mpd

and U(1)′ charge ratio Z ′ ≡ |Q′(pd)/Q′(ed)|. The fundamental interactions are
described by the hidden sector Lagrangian:

L = LSM (e, µ, u, d,Aµ, ...) + Ldark(ed, pd, Aµd) + Lmix . (7.1)

Self-interactions of the dark electron and dark proton are mediated via the mass-
less dark photon. These self-interactions can be defined in terms of the U(1)′

gauge coupling, g′, or more conveniently by the dark electron fine structure con-
stant, αd ≡ [g′Q′(ed)]2/4π. The dark sector is then fully described by the funda-
mental parameters: med ,mpd , Z

′, αd.
One special case of this picture is a thermal relic DM scenario with particle–

antiparticle DM [433].1 In this case the parameters are constrained: med = mpd ≡
mχ, Z ′ = 1, and αd ≈ 4 × 10−5 (mχ/GeV). We will be more interested in the
general asymmetric DM scenario in which med 6= mpd . A special case of this is
MDM [432], where the hidden sector is exactly isomorphic to the standard model
so that an exact discrete Z2 symmetry swapping each ordinary particle with a
“mirror” particle can be defined [132]. The interactions of the mirror electrons
together with the dominant mass component, assumed to be mirror helium, is
then described by: med = me ' 0.511 MeV, mpd = mHe ' 3.76 GeV, Z ′ = 2 and
αd = α ' 1/137.

The interactions of the dark sector with the standard sector are contained
within the Lmix term in Equation (7.1). The only renormalisable (and non-
gravitational) interaction allowed in the minimal setup is kinetic mixing of the
U(1)Y and U(1)′ gauge bosons [451], which implies also photon - dark photon

1The particle-antiparticle case is also special because such DM can undergo annihilations into
dark photons. DM annihilations are forbidden in the more general case assuming the minimal
particle content (Ad, ed, pd), which can be viewed as a consequence of accidental U(1)′ dark
lepton and dark baryon number global symmetries.
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kinetic mixing:

Lmix =
ε′

2
FµνF ′µν . (7.2)

Here Fµν and F ′µν denote the field strength tensors for the photon and dark pho-
ton respectively and the dimensionless parameter ε′ encodes the strength of the
mixing interaction. The kinetic mixing interaction imbues the dark electron and
dark proton with an ordinary electric charge, proportional to this kinetic mixing
parameter, ε′ [131]. It is convenient to introduce a new parameter, ε, such that the
magnitude of the dark electron’s ordinary electric charge is εe. Now, including
the dark sector parameters, the fundamental physics is fully described by five
parameters: med ,mpd , Z

′, αd, ε.
In this Chapter we are interested in the region of parameter space whereby

the DM in spiral galaxies such as the Milky Way is in the form of a dark plasma.
Typically this requires that the dark atomic binding energy be much smaller than
(or of order) the temperature of the dark electrons (see [452] for more precise
calculations). The binding energy of the hydrogen-like dark atom consisting of a
dark proton and a dark electron is

I =
1

2
Z ′2α2

dµd , (7.3)

where µd = medmpd/(med + mpd) is the reduced mass. The temperature of the
dark electrons is more difficult to determine. Let us assume for now that the
frequency of interactions of the dark electrons and dark protons is sufficiently
great so that they have approximately the same temperature, and that this tem-
perature is approximately the same throughout the halo (we will return to this
condition shortly). The halo temperature can then be estimated from the virial
theorem [453] and also by assuming hydrostatic equilibrium [432]:

T ∼ 1

2
m̄v2

rot , (7.4)

where vrot is the asymptotic value of the rotational velocity of the galaxy (for the
Milky Way, vrot ≈ 220 km/s) and m̄ is the mean mass of the particles in the halo.2

For a fully ionised halo the mean mass can be determined from U(1)′ neutrality:

m̄ =
mpd + Z ′med

Z ′ + 1
. (7.5)

The plasma will be fully ionised if I/T � 1, a condition that reduces to:

I

T
' 0.20 Z ′2(Z ′ + 1)

( αd
10−2

)2 ( µd
MeV

)( GeV

mpd + Z ′med

)(
220 km/s

vrot

)2

� 1 .(7.6)

2Unless otherwise stated we adopt natural units where ~ = c = kB = 1.
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Of course with the dark photon massless this type of DM is dissipative. The
plasma halo can radiatively cool via processes such as dark bremsstrahlung and
potentially collapse onto a disk on a timescale less than the Hubble time. Thus,
there is another condition for such a plasma to exist today, namely that the cool-
ing timescale is longer than the Hubble time, or that a heating mechanism exists.
The cooling timescale is given in e.g. [444] and requiring that this timescale be
longer than the Hubble time for the Milky Way gives the approximate condition

mpd & 20

(
MeV

med

)( αd
10−2

)2
Z ′5/3 GeV . (7.7)

This was derived assuming that cooling is dominated by bremsstrahlung for the
most stringent case of med � mpd . The alternative possibility is that the cool-
ing rate is sufficiently high for the halo to have collapsed but is prevented from
doing so due to heating [126, 444, 452–455]. If ε ∼ 10−9–10−10 then sufficient
heating of the halo can be provided by ordinary core-collapse supernovae [444,
453]. In that scenario, the halo is viewed as a dynamical object which evolves
until an equilibrium configuration is reached where heating and cooling rates
locally balance.

The conditions so far have been derived assuming that interactions were suf-
ficiently rapid so that dark electrons and dark protons have approximately the
same temperature. Let us briefly estimate the parameter space where this as-
sumption is reasonable. If the mean kinetic energy of the dark electrons hap-
pened to be much greater than that of the dark protons, then the two body
Rutherford scattering process (ed + pd ↔ ed + pd) would transfer net energy
from the dark electrons to dark protons. Requiring that the timescale for which
dark electrons are able to transfer all their excess energy to the dark protons is
less than the Hubble time gives:

nednpd

∫
dσ

dER
ERv dER &

Tned
tH

, (7.8)

where T is the temperature of the dark electrons, tH ∼ 14 Gyr is the Hubble
time and dσ/dER is the differential cross section in terms of the recoil energy
ER of the scattered dark proton (approximated as initially at rest relative to the
incoming dark electron of velocity, v). The cross section for this Rutherford
scattering process is given by dσ/dER = 2πZ ′2α2

d/(mpdE
2
Rv

2). Equation (7.8)
can be straightforwardly evaluated with the result depending logarithmically
on the integration limits. The upper integration limit is obtained from kine-
matics: EmaxR = 4Eiµd/[med + mpd ] (where Ei ∼ T is the initial energy of the
dark electron) while the lower integration limit is given in terms of the Debye
shielding length, λD =

√
T/(4παdned), the scale over which the dark proton’s

charge is shielded by the dark electrons. Assuming T given by the estimate,
Equation (7.4), and for typical Milky Way DM densities, ρDM ∼ 0.3 GeV/cm3,
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we find that Equation (7.8) reduces to the condition (for med � mpd):

mpd . 102 (Z ′ + 1)3/7

(
220 km/s

vrot

)6/7(Z ′αd
10−2

)4/7 ( med

MeV

)1/7
GeV . (7.9)

Strictly this derivation assumes the case of negligible dissipation and heating of
the halo during the Hubble timescale, and modification is possible in the alter-
native case.

Equations (7.6), (7.7), and (7.9) give the rough conditions under which the
DM is expected to take the form of a plasma in galaxies with the mean kinetic
energy of the dark electrons comparable to that of the dark protons. It is clear
that there is a significant region of parameter space available. In the limit where
the dark electrons are much lighter than the dark protons, an important feature
emerges: the velocity dispersion of the dark electrons is much greater than that of the
dark protons, and in fact can be even larger than the typical galactic escape velocity. The
dark electrons are prevented from escaping the galaxy due to U(1)′ neutrality;
the plasma is highly conducting, and dark electric forces act to keep the plasma
neutral over length scales larger than the Debye length. This is a distinctive fea-
ture of the plasma DM halo, indeed this behaviour is very different from weakly
interacting massive particle (WIMP) DM or even a collisional gas of light and
heavy neutral components.

Before proceeding further, we conclude this Section with a brief discussion
relating to the bigger picture. Cosmological aspects of plasma DM have been
discussed in the literature in the special case of MDM (e.g. Refs. [432, 456–461]).
There is also a growing literature exploring more generic models with DM fea-
turing unbroken U(1)′ (dark photon) gauge interactions (e.g. Refs. [433–435, 437,
438, 440–444, 462–466]). These studies demonstrate, among other things, that this
type of self-interacting DM can reproduce the success of collisionless cold DM
on very large scales with deviations expected on smaller scales. Indeed, the self-
interactions might be important in addressing long-standing problems on small
scales, including an explanation for cored DM profiles within galaxies. However,
there are also upper bounds on the strength of such self-interactions. In particu-
lar, merging cluster systems have been used as a probe of DM self-interactions,
the Bullet cluster system being one well studied example [124, 467]. Attempt-
ing to evaluate robust bounds on plasma DM from cluster collisions is, unfor-
tunately, non-trivial. Firstly, the plasma DM self-interactions on cluster scales
require careful modelling, as it is the collective plasma effects (i.e. not hard col-
lisions) which potentially dominate [468]. Secondly, the plasma DM distribution
within the cluster is required but is very uncertain. If the DM is sufficiently
“clumpy” then the DM associated with each cluster can pass through each other
essentially unimpeded, thereby consistent with the observations [469]. This de-
pends on the fraction of the DM bound to individual galaxy halos compared to
the diffuse cluster component, which is difficult to determine as it depends on
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the detailed properties of the cluster and its history, as well as the properties of
the dark plasma. In short, despite the fact that such cluster mergers do in princi-
ple constrain the plasma DM parameters, it is not yet possible to write down any
reliable and caveat-free bounds.

7.2 Plasma dark matter and the Earth

7.2.1 Within the Earth

The physical properties of the halo DM in the vicinity of the Earth are influenced
by the way in which the halo DM interacts with the DM bound within the Earth.
It is therefore pertinent to try to understand some of the relevant features of this
“dark sphere” of influence. Some aspects of this problem have already been
discussed for the specific cases of MDM [470] and for more generic dissipative
DM models [471]. The discussion below draws on this work and extends it to
the more general plasma case.

How does DM within the Earth arise? The kinetic mixing induced interaction
with standard matter will occasionally trap some halo DM particles within the
Earth during its formation phase and subsequently. Eventually sufficient DM ac-
cumulates so that further DM capture is primarily facilitated by self-interactions
of halo DM with this captured DM. Once captured, it is expected to quickly ther-
malise with the ordinary matter within the Earth via the kinetic mixing interac-
tions, to a temperature TE ∼ 5000 K (0.4 eV). If mpd �MeV, this is much cooler
than the halo temperature and the dark protons and dark electrons can poten-
tially combine into neutral dark atoms. The dark sphere will be largely neutral
(ionised) if TE � I (TE � I), where I is the dark atomic binding energy given
already in Equation (7.3). This motivates two limiting cases: a neutral “Moon-
like” case in which the dark sphere largely absorbs the dark plasma wind, and;
an ionised “Venus-like” case in which the dark sphere largely deflects the dark
plasma wind by way of a current-carrying sheet at the “dark ionopause” (lo-
cated where the plasma wind and “dark ionosphere” pressures equilibrate). In
addition to its ionisation state, the other defining feature of the dark sphere is its
effective size. Let us define a parameter, RDM , which corresponds to the dark
plasma wind stopping radius for the Moon-like case, and the dark ionopause ra-
dius for the Venus-like case. We will now attempt to estimate RDM in terms of
the fundamental plasma parameters.

If the dark sphere is Moon-like, then the (relatively stationary) dark protons
accumulate at the “geometric” rate

dNpd

dt
≈ πR2

DMvrotnpd . (7.10)
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Dark electrons will be captured at a similar rate: dNed/dt = Z ′dNpd/dt given
the expected approximate U(1)′ charge neutrality of the Earth.3 This represents
an upper bound for the accumulation rate in the Venus-like case, though it might
still be a useful estimate so long as a significant fraction (& 1%) of the halo wind is
stopped within the Earth. Loss rates due to mechanisms such as thermal escape
and dark atmospheric stripping are difficult to evaluate. Naturally, any estimate
of the total amount of DM captured within the Earth is uncertain. Fortunately,
it turns out that RDM depends only weakly on the total number of Earth bound
DM particles.

If we equate the radial temperature profile of the dark sphere gas/plasma
with that of the Earth [472], the dark thermal pressure is given by p(r) =

ρDM (r)TE(r)/m̄. Here m̄ is the mean mass taking into account the ionisation
state of the captured DM at the temperature TE(r). Assuming mpd � med , then
p(r) ' ξρDM (r)TE(r)/mpd where ξ = 1 (ξ = Z ′+1) for the Moon-like (Venus-like)
case. The mass density profile ρDM (r) of the captured DM can then be estimated
from the hydrostatic equilibrium condition (with spherical symmetry assumed):

dp(r)

dr
= −ρDM (r)g(r) , (7.11)

where g(r) ' GN
∫ r

0 ρE4πr′2dr′/r2 is the local gravitational acceleration within
the Earth, almost entirely due to the ordinary matter component. Numerical
work [470, 471] indicates that ρDM (r) falls exponentially, with a scale length in-
versely proportional to the square root ofmpd . This behaviour can be understood
via simple analytical considerations. For radially constant T, ρE , and assuming
mpd � med , the hydrostatic equilibrium condition has the analytic solution:

ρDM (r) = ρDM (0) e−r
2/R2

h , (7.12)

where

Rh =

(
3TEξ

GNρE2πmpd

) 1
2

⇒ RE
Rh

' 1.2

(
5000 K
TE

) 1
2
(

ρE

10 g/cm3

) 1
2
(
mpd/ξ

GeV

) 1
2

. (7.13)

Evidently the DM density profile depends only on the mass and ionisation state
of the DM particles. Here, Rh is the dark sphere scale length, which can be
viewed as a rough estimate for RDM . If mpd & few GeV, then Rh is expected
to be within the Earth. In the alternative case which suggests RE/Rh < 1, the
thermal equilibrium assumption used in this calculation breaks down, and we
would expect thermal escape and dark atmospheric stripping effects to act to

3This corresponds to a captured mass of ∼ 1015(RDM/RE)2 kg if RDM has remained roughly
constant throughout Earth’s history; note that this is much smaller than ME ∼ 1024 kg.
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keep RE/RDM & 1, though it is difficult to say much more than this without
detailed calculations.

For the Venus-like case, Rh can only provide a rough estimate for the loca-
tion of the dark ionopause, as the ram pressure of the dark plasma wind and
the pressure of the captured dark sphere can typically vary by many orders of
magnitude. For the Moon-like case the stopping radius RDM scales with Rh but
also depends on the DM self-interaction cross section and hence on the other fun-
damental parameters. In fact, the RDM value for dark electrons is not the same
as that for dark protons as their self-interaction cross sections are different. For
now, we shall ignore this subtlety and focus on the RDM scale relevant for dark
protons. Explicit calculations [471] that take into account the Earth’s temperature
and density profiles indicate that RDM for dark protons is roughly:

RE
RDM

≈
(

10−2

αd

)0.06 (
mpd/ξ

5 GeV

)0.55 ( 1

Z ′

)0.14

, (7.14)

which is approximately valid for 5 × 10−4 . αd . 5 × 10−2, 5 GeV . mpd/ξ .

300 GeV, 1 . Z ′ . 40. Again, if the plasma parameters suggested RE/RDM < 1,
we expect that dark sphere interactions with the dark plasma wind will keep
RE/RDM & 1.

In the next Section we proceed to describe the interaction of the halo DM
with the dark sphere. We model the halo DM using the MHD equations. Specif-
ically we shall consider single fluid equations describing the system in terms
of the total density, temperature, bulk velocity, and dark magnetic field. Such
a description is only valid over distance scales larger than the Debye length:
λD =

√
T/(4παdned). For the dark plasma near the Earth, i.e. for vrot ≈ 220

km/s and ρDM ≈ 0.3 GeV/cm3,

λD ∼ 0.2 [Z ′(Z ′ + 1)]−1/2

(
mpd + Z ′med

GeV

)(
10−2

αd

) 1
2

km. (7.15)

Requiring λD/RDM � 1 imposes only a very mild restriction on parameter
space.

7.2.2 Near-Earth environment

The interaction of the dark plasma wind with a macroscopic obstacle (length
scale� λD) may be modelled via the magnetohydrodynamic (MHD) equations.
It is a remarkable fact that the MHD equations can be derived as the moment
equations of dark ion distribution functions obeying the kinetic Vlasov equations
for a collisionless plasma; thus, even in the absence of hard collisions, collective
effects of the long-range Coulomb force give rise to a fluid-like behaviour. For a
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perfectly conducting ideal fluid, the MHD equations take the form (in cgs units)

∂ρ

∂t
+∇ · (ρv) = 0,

∂(ρv)

∂t
+∇ ·

[
ρvv + I

(
p+

B2

2

)
−BB

]
= 0,

∂E

∂t
+∇ ·

[(
E + p+

B2

2

)
v −B (v ·B)

]
= 0,

∂B

∂t
+∇ · (vB−Bv) = 0, (7.16)

where ρ is the mass density, p is the thermal pressure, v is the bulk velocity,
B is the (dark) magnetic field (a factor of 1/

√
4π has been absorbed), and E =

ρv2/2+B2/2+p/(γ−1) is the energy density, where we take an ideal gas equation
of state with a ratio of specific heats γ = 5/3.

In practice the MHD equations are solved in a dimensionless form by setting
ρ̃ = ρ/ρ0, L̃ = L/L0, ṽ = v/v0, p̃ = p/(ρ0v

2
0), t̃ = t/(L0/v0), B̃ = B/

√
4πρ0v2

0 . For
the dark plasma wind it is convenient to take ρ0 = 0.3 GeV/cm3, L0 = RDM , and
v0 = cs, where cs is the sound speed in the plasma far from the Earth (r � RE),

cs =

√
γp

ρ
=

√
γT

m̄
∼
√
γ

2
vrot. (7.17)

Once these dark plasma units are set, the (quasi-)stable steady state solutions
we are interested in will only depend on the wind mach number M = v∞/cs
and the magnetic field strength B̃∞ far from the Earth. The quantity v∞ is the
plasma wind speed (as measured in the Earth frame) far from the Earth, which
is a time-dependent quantity due to the Earth’s orbital motion:

v∞ = v� + ∆vE cosω(t− t0) (7.18)

where ω = 2π/year, v� = vrot + 12 km/s (the 12 km/s correction is due to
the Sun’s peculiar velocity) and ∆vE ' 15 km/s results from the Earth’s orbital
motion. Evidently, v∞ varies by ±∆vE during the year with a maximum at t =

t0 ' 153 days (June 2nd).
As suggested by the tilde in Equation (7.17), the local sound speed is not

known precisely [cf. the temperature Equation (7.4)]. It is worth remarking here
that the phenomenology is rather sensitive to the value of cs that is realised.
This is because cs lies very close to the plasma wind speed v∞, so that the Mach
number straddles M ∼ 1 throughout the year. Three distinct regimes can imme-
diately be identified: the supersonic regime cs . v� −∆vE ; the subsonic regime
cs & v� + ∆vE , and; the intermediate regime v� − ∆vE . cs . v� + ∆vE . In
order to explore a representative range of possibilities in these models we choose
to study Mach numbers M ≈ 0.74–1.77 (i.e. cs = 140–290 km/s for vrot = 220

km/s).
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As discussed in the previous Section, if the plasma DM has some interac-
tion(s) with the standard matter then it will be captured within the Earth, form-
ing an approximate “dark sphere” of dark protons and dark electrons which may
or may not have recombined into dark atoms. For simulations we consider two
limiting cases:

1. “Moon-like”: the large majority of the captured dark plasma is in the form
of dark atoms, and therefore cannot carry a significant dark current. In this
case, to first approximation, the dark sphere acts as a perfect absorber of
the dark plasma wind, much like the Moon in the solar wind.

2. “Venus-like”: if a sufficient proportion of the captured dark plasma is
ionised, then an ionospheric surface layer exists on the dark sphere. A
current-carrying sheet then forms at the ionopause and, to first approxima-
tion, the dark sphere acts as a perfect spherical conductor which deflects
all of the dark plasma wind, much like Venus in the solar wind.

We emphasise that these are first approximations of limiting cases. Satellite ex-
periments have shown that MHD simulations employing these approximations
give good descriptions of the Moon [473, 474] and Venus [475–478] solar wind
systems, and we adapt them here as well-motivated paradigm cases in order to
gain useful insight.4

We solve the MHD equations numerically within the PLUTO V4.2 simulation
framework [479] utilising CHOMBO V3.2 [480] for adaptive mesh refinement.5

The coordinate system is defined in the frame of the dark sphere, with the origin
at the dark sphere centre and the z axis pointing in the wind direction. We con-
sider the yz plane (assuming azimuthal symmetry) on a polar 2048×2048 equiv-
alent grid with spatial extent 1 ≤ r̃ ≤ 12 and 0 ≤ θ ≤ π. Simulations were
performed with inflowing dark plasma Mach numbers M = 0.74–1.77 (in steps
of 0.01) and B = 0. These unmagnetised simulations are relevant when the ther-
mal pressure dominates over the magnetic pressure, i.e. when the plasma beta
β = p/(B2/2) � 1. Far from the Earth, β = 2c2

sρ0/(γB
2), implying the rough

requirement B̃∞ � 1. For αd = α this translates to B∞ � 5 [cs/(200 km/s)] nT,
to be compared with typical values within the galactic (intergalactic) medium of
∼ 0.1–10 nT (∼ 0.1 nT). Note that the existence of a significant magnetic field will

4In the Moon-like limiting case, the dark sphere consists predominately of neutral dark atoms,
that is, a poorly conducting medium. Since the dark electron and dark proton stopping distances
within the Earth are in general not equal due to their differing interaction cross sections in the
Earth frame, significant dark charge separation within the Earth is possible and hence current
flows. While dark electric fields are not expected to directly influence the halo DM distribution
at the Earth’s surface (r = RE) where conductivity is expected to be high and effective Debye
screening should occur, there remains the possibility that dark magnetic fields generated due to
the current flows could have important implications for the distribution of halo DM at the Earth’s
surface. Unfortunately, such effects are very difficult to estimate, and no attempt to model them
has been undertaken here.

5We make the relevant code and some example datasets publicly available at http://
github.com/jdclarke5/DarkSphere; see the readme.md file therein for more information.

http://github.com/jdclarke5/DarkSphere
http://github.com/jdclarke5/DarkSphere
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generally break the azimuthal symmetry of the system and potentially change
the phenomenology appreciably. Some tests showed that our results are valid
for the field-aligned case with B̃∞ . 0.6 z, after which we saw a sharp change in
the system’s behaviour. Study of the magnetised case is left for potential future
work.

All simulations are initialised with a flat density and are allowed to evolve
to a steady state. The dark plasma wind inflows at the r̃ = 12 boundary when
θ > π/2, and outflows when θ < π/2. In the Moon-like case we take the r̃ = 1

surface boundary condition as absorbing (vr ≤ 0) for the windward side and
reflective (vr = 0) for the leeward side. This boundary condition was adopted
for Moon simulations in previous works [474, 481]. For the Venus-like case the
r̃ = 1 surface boundary condition is fully reflective (vr = 0). Our simulations
were validated against the Moon and Venus simulations of Refs. [474, 477, 481]
for solar wind parameters (kp ≈ 10 cm−3,M ≈ 7, B̃ ≈ 1).

The solutions for a collection of Mach numbers are shown in Figures 7.2 and
7.3. We show the distributions for the density ρ, temperature T = m̄p/ρ, and
absolute velocity |v|, normalised to their values far from the Earth. The solutions
are characterised by the existence of various shocks (i.e. abrupt discontinuities),
where the local bulk velocity exceeds the local sound speed. There are three
dominant features: the downwind wake region of underdense hot plasma; the
tail shock, which detaches from the sphere just below θ = π/2 and recedes with
increasing Mach number, and; the upwind bow shock, which is only present in
the Venus-like case (there is very little upwind activity in the Moon-like case),
defining the edge of an induced magnetosphere [449, 450].

These distributions illustrate the non-trivial (and time-dependent) dark
plasma environment which surrounds the captured dark sphere and encom-
passes the Earth. It is clear that there are implications for direct detection ex-
periments, and we will discuss these presently.

7.3 Plasma dark matter direct detection

7.3.1 General considerations

Plasma DM can potentially be probed by both nuclear and electron recoils. Kine-
matic considerations suggest that dark electrons scattering off electrons (dark
protons scattering off nuclei) would be of relevance if med ∼ me (mpd ∼ 10–
100 GeV). As already emphasised, plasma DM has the distinctive feature that
the dark electrons and the dark protons have comparable kinetic energies given
by Equation (7.4). Consequently, if the dark proton is sufficiently heavy (& GeV),
electron recoils in the keV range are possible, making DM scattering off electrons
(in addition to nuclear recoils) an important means of probing this type of DM.
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FIGURE 7.2: Moon-like (B = 0): normalised density, temperature,
and absolute velocity solutions for various Mach numbers.
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FIGURE 7.3: Venus-like (B = 0): normalised density, tempera-
ture, and absolute velocity solutions for various Mach numbers.
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The rate of DM interactions in a direct detection experiment depends on both
the properties (density and velocity distribution) of the DM particles and the
interaction cross section. Let us define the dark electron and dark proton ve-
locity probability density functions as fed(v) and fpd(v) in the Earth frame. It
is generally expected that these functions are both space and time dependent.
The time dependence arises from the velocity of the Earth with respect to the
DM halo, vE(t), given by Equation (7.18). To make this dependence explicit we
rewrite fed(v) → fed(v;x,vE(t)) and fpd(v) → fpd(v;x,vE(t)). The local num-
ber densities are also generally space and time dependent: ked → ned(x,vE(t)),
kpd → npd(x,vE(t)). The local differential interaction rate (i.e. at some point, x,
in space near the Earth) for dark electron scattering off electrons is then:

dRe
dER

(x, t) = Nened(x,vE(t))

∫ ∞

|v|>vmin

dσ

dER
fed(v;x,vE(t)) |v| d3v , (7.19)

where ER is the recoil energy of the target particle (electron). Also, Ne is the
number of target electrons in the detector, dσ/dER the relevant cross section, and
the lower velocity limit vmin(ER) is given by the kinematic relation

vmin =

√
meER/2

µ
(7.20)

with µ = memed/(me +med) the reduced mass (the target electrons are approxi-
mated as being at rest). The rate of dark proton - nuclei scattering has a similar
form.

What the detector will actually measure is the rate Equation (7.19) time-
averaged over its position x(t) in space. In the well studied WIMP annual
modulation scenario [482, 483], there is no spatial dependence. The mass (and
number) density is neither space nor time dependent, and is estimated to be
ρ0 ≈ 0.3 GeV/cm3 near the Earth. All of the modulation arises from vE(t), un-
derstood simply as the time variation of a Galilean boost through a Maxwellian
velocity distribution. The plasma DM scenario is distinctly different. Far from
the Earth, and for a fully ionised plasma, the velocity distributions are (ideally)
expected to be described by boosted Maxwellians in the Earth frame with num-
ber densities:

ned =
Z ′ρ0

Z ′med +mpd

, npd =
ned
Z ′

. (7.21)

However, this will not be the case in the vicinity of the Earth, where the detector
is located. As is evident from Figures 7.2 and 7.3, both the number density and
the velocity distributions are expected to display strong and non-trivial space
and time dependence. It is therefore necessary to time-average the rate over the
detector path x(t), and this will introduce an important new source of modula-
tion. We will now describe this detector path.
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FIGURE 7.4: The relevant geometry (r, θ projection) of the dark
halo wind interaction with the dark sphere (of radius RDM )
within the Earth. The variation of the location of an example de-
tector (Gran Sasso) due to the Earth’s daily rotation is indicated.

Consider the spherical coordinate system with its origin at the Earth’s center
and with z axis pointing in the direction of the halo wind as shown in Figure 7.4.
Assuming azimuthal symmetry around the z axis, the position of the detector is
given in polar coordinates by x(t) = (RE , θ(t)), where θ(t) is the angle between
the direction of the halo wind and the zenith at the detector’s location. The time
variation of the angle θ(t) is due to the Earth’s daily rotation and motion around
the sun. This angle has been evaluated previously [470] and is given by

cos θ(t) = − sin θ1(t) cos θlat cos

(
2πt

Tday

)
− cos θ1(t) sin θlat , (7.22)

where Tday = 1 sidereal day, and the phase is such that θ(t) is maximised at t = 0.
Here, θlat is the latitude of the detector’s location, which anticipates the impor-
tant feature that the measured rate and modulation will depend on the latitude of the
detector. The parameter θ1(t) is the angle subtended by the direction of the Earth’s
motion through the halo with respect to the Earth’s spin axis, which varies dur-
ing the year due to the Earth’s motion around the sun:

cos θ1(t) ' cos θ̄1 + y

[
cos θ̄1 cos γ sin

(
2π(t− T1)

year

)

+ sin θtilt sin

(
2π(t− T2)

year

)]
, (7.23)

where θtilt = 23.5◦ is the angle between of the Earth’s spin axis and the normal
of the ecliptic plane, γ = 60◦ is the angle between the normal of the ecliptic plane
and the direction of the halo wind, T1 = t0 + 0.25 years ' 244 days, T2 ' 172



7.3. Plasma dark matter direct detection 155

0 5 10 15 20
0

50

100

150

t @ hoursD

Θ
@°D

FIGURE 7.5: The time variation in sidereal hours of θ(t), the an-
gle between the direction of the halo wind and the zenith at the
detector’s location. The time variation of the angle θ(t) is due
to the Earth’s daily rotation and motion around the sun [Equa-
tions (7.22) and (7.23)]. Shown are results for four detector lo-
cations, for April 25 (solid-curves), October 25 (dashed-curves).
The four detector locations are, from top to bottom: Gran Sasso
(black curves), Kamioka (blue curves), Jin-Ping (red curves), and
Stawell (purple curves). The 90◦ line is also shown, which is the

demarcation between the upwind and downwind regions.

days (northern summer solstice), and y = v⊕/v� ≈ 30/232 ≈ 0.13. Evidently the
angle θ1(t) varies during the year with an average value of θ̄1 ' 43◦, a maximum
of around 49◦ on April 25th (115 days), and a minimum of around 36◦ six months
later (297 days).

In Figure 7.5 we show the time variation of θ for four detector locations of
interest: Gran Sasso [139, 142] or Sanford [141], Kamioka [140], China Jin-Ping
[484], and Stawell [485], which correspond to θlat ≈ 43◦, 36◦, 28◦,−37◦, respec-
tively. Also shown in Figure 7.5 is the θ = 90◦ line which is the demarcation
between the upwind and downwind regions. In this region, the ρ, T, |v| quan-
tities can vary significantly due to the tail shock feature, evident in Figures 7.2
and 7.3. Interestingly the Gran Sasso laboratory spends most of its time in the
near upwind region, while the Kamioka and Jin-Ping laboratories loiter in the
near downwind region. Thus, even the relatively small latitude difference be-
tween these laboratories might be important, leading (potentially) to different
DM interaction rates for detectors at these locations. Note that the Southern
Hemisphere detector traverses a very different path compared to the Northern
Hemisphere detectors, and can potentially probe the downwind wake region for
part of the day.

Let us summarise the origin of modulation signals in plasma DM models:

1. Annual modulation with phase around June 2nd (153 days) due to the vari-
ation of the Earth’s speed relative to the DM halo. This variation not only
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acts to provide a Galilean boost with respect to the halo, as in the well stud-
ied WIMP scenario, but also to change the non-trival density and velocity
distributions in the vicinity of the Earth. In the previous Section we used
MHD simulations to describe some features of these distributions for two
idealised scenarios, as shown in Figures 7.2 and 7.3.6

2. Annual modulation with phase around April 25th (115 days) due to the
variation of the Earth’s spin axis relative to the wind direction. This effect
changes the detector’s daily path through the DM distribution according
to Equation (7.22), and can be the dominant source of annual modulation.

3. Sidereal daily modulation due to the rotation of the Earth with respect to
the direction of the plasma wind and the subsequent time-dependent posi-
tion of the detector throughout the day, again according to Equation (7.22).
This is an extremely distinctive feature which can be probed with direct
detection experiments. It is difficult to conceive any background which
modulates with sidereal day.

The latter two effects are, of course, generic predictions of any spatially depen-
dent near-Earth DM density/velocity distribution. Including, for example, mod-
els with DM subcomponents with sufficient interactions with the ordinary mat-
ter within the Earth to be stopped (or at least impeded) [486–488]. In the plasma
DM case the spatial dependence arises from the complex interaction between the
dark plasma wind with the captured dark sphere within the Earth. In the next
Section we will explore these modulation effects in an example model.

7.3.2 Example: electron recoils in mirror dark matter

So far we have only outlined the origin of direct detection modulation signals in
plasma DM models. In this Section we will explore more explicitly, based on our
MHD simulation results of Section 7.2, the range of possible annual and diurnal
modulations. The aim is to gain insight into where and how direct detection ex-
periments should be searching for plasma DM. To facilitate this we will consider
an explicit example: the MDM model.

The mirror model has fundamental plasma DM parameters med = me '
0.511 MeV, mpd = mHe ' 3.76 GeV, Z ′ = 2, and αd = α ' 1/137. Then, in the
Milky Way, T ∼ 0.35 keV and I/T ∼ 0.16, so that the DM exists primarily in a
plasma state. DM–SM interactions are due to the photon - dark photon kinetic
mixing term Equation (7.2), which induces Coulomb scattering of dark electrons
(dark protons) against electrons (nuclei). At 3.76 GeV, the dark proton is just
light enough so that nuclear recoil rates are strongly kinematically suppressed

6There are additional contributions to the annual modulation with phase June 2nd, which we
haven’t considered, and may be important. Among these are the variation of the physical prop-
erties of the dark sphere: variation of the effective RDM , the surface ionisation fraction, “dark
atmosphere” interactions, etcetera.
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in current experiments.7 Of most interest, therefore, is dark electron - electron
scattering.

Coulomb scattering of dark electrons off electrons (ede → ede) is a spin-
independent process with cross section:

dσ

dER
=

λ

E2
Rv

2
, (7.24)

where

λ ≡ 2πε2α2

me
, (7.25)

and ER is the recoil energy of the scattered electron, approximated as being free
and at rest relative to the incoming dark electron of speed v. Naturally this ap-
proximation can only be valid for the loosely bound atomic electrons, i.e. those
with binding energy much less than ER.

To proceed, we need to determine the local scattering rate as a function of po-
sition in the vicinity of the Earth. To do this we have to evaluate Equation (7.19),
i.e. we have to integrate over the local velocity distribution. Unfortunately our
MHD simulations only tell us the local moments of this distribution. Thus, with-
out making a further assumption, we are stuck. In order to continue, we will as-
sume that the velocity distribution is everywhere locally given by a (boosted) Maxwellian,
i.e.

fed(v) =

(
1

πv2
0

) 3
2

exp

(−(v − vB)2

v2
0

)
, (7.26)

where v0 = (2T/med)
1
2 ≈ 11200 (T/0.35 keV)

1
2 km/s, vB is the bulk velocity

in the Earth (i.e. detector) frame, and the space and time dependence is im-
plied. We do not expect this to be a good assumption in general. Nevertheless, it
will reproduce naive expectations that the scattering rate scales positively with
temperature and bulk velocity. Due in a large part to this assumption we warn
that our results should be interpreted only as qualitative. With this caveat ac-
knowledged, the local differential rate Equation (7.19) can be evaluated for the
(boosted) Maxwellian dark electron velocity distribution:

dRe
dER

=
NT gTnedλ

2E2
R|vB|

[
erf
(
vmin + |vB|

v0

)
− erf

(
vmin − |vB|

v0

)]
. (7.27)

Here NT is the number of target particles (e.g. NaI pairs for DAMA, and Xe

7 The MDM model can have heavier, mirror metal halo (sub)components, of known masses but
uncertain abundances. Several works (e.g. Refs. [489, 490]) have explored the possibility that these
components might lead to observable nuclear recoils in existing experiments. However, these
studies used a very simplified picture for the halo distribution function, i.e. without considering
the modifications due to the interaction of the plasma wind with the dark sphere within the Earth
as discussed here.
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FIGURE 7.6: Rate dependence on temperature for T∞ =
0.17, 0.35, 0.73 keV (or cs = 140, 200, 290 km/s) as blue dashed,
green solid, red dotted, respectively. A low energy threshold of

Et = 2 keV is assumed.

for the xenon experiments), gT is the effective number of “free” electrons (bind-
ing energy . 1 keV) per target particle (gNaI ≈ 54, gXe ≈ 44), and vmin ≈
26500 (ER/2 keV)

1
2 km/s [from Equation (7.20)].8

For electron recoils in the MDM model, |vB| � v0, and in the limit |vB|/v0 →
0 Equation (7.27) can be integrated from a threshold energy, Et, to give:

Re = NT gTnedλ

(
2med

πT

) 1
2

(
e−

Et
T

Et
− Γ

[
0, EtT

]

T

)
, (7.28)

where Γ[0, z] is the upper incomplete Gamma function. Corrections due to non-
zero vB are O(|vB|2/v2

0) and remain below one per cent for all cases considered.
We note here that this rate is dominated by low energy recoils, and is therefore
very sensitive to the lower limit of integration, Et. For Et = 2 keV (DAMA
value), it is also a rather sensitive function of T , since ER > 2 keV requires ved >
26500 km/s, in the tail of the dark electron velocity distribution. In Figure 7.6 we
illustrate this sensitivity for the range of T∞ we consider. These sensitivities are
further reasons to interpret our results only qualitatively.

The local differential rate, Equation (7.27), is a function of the local T , ρ, and
|vB| (the rate depends on ρ via its dependence on ked). In particular these space

8The differential event rate evaluates (for a NaI detector) to:
dR

dER
≈ 0.6

(
ned

0.16 cm−3

)( ε

10−9

)2
(

2 keV
ER

)2 (0.35 keV
T

) 1
2

× exp
[
− 2

0.35

(
ER/2keV
T/0.35keV

− 1

)]
cpd/kg/keV.

This can be compared with the rough limit from DAMA that the differential rate should be less
than about 0.25 cpd/kg/keV at ER ' 2 keV [491]. Evidently ε in the range 10−9 − 10−10 is being
probed in direct detection experiments via electron recoils in the mirror model, which coincides
with the range of interest for small scale structure [432, 444, 453].
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and time dependent quantities were obtained in Section 7.2, as shown in Fig-
ures 7.2 and 7.3. Fixing vrot = 220 km/s to give the time-dependent dark plasma
wind velocity in the Earth frame [Equation (7.18)], the space and time depen-
dence of the differential rate throughout the year will depend only on the plasma
sound speed cs, or equivalently T∞ = 0.35 [cs/(200 km/s)]2 keV. Then for a
given detector latitude θlat and dark sphere size RDM it is possible to determine
the quantities of interest: the rate as a function of time of year averaged over
the day (the annual modulation), and; the rate as a function of time of sidereal
day averaged over the year (the diurnal modulation). This average includes the
variation throughout the year of dark plasma wind Mach number and position
of the detector according to Equations (7.18) and (7.22), respectively.

For the numerical work, we set Et = 2 keV (current DAMA threshold) and
considered an idealised detector with 100% detection efficiency and perfect res-
olution. We give our results in Figures 7.7–7.10 under each of the scenarios pre-
viously considered, i.e. Moon-like/Venus-like dark sphere with unmagnetised
plasma wind. We consider sound speeds cs = 140–290 km/s, encompassing the
supersonic to subsonic dark plasma wind regimes, and θlat = 43◦, 36◦, 28◦,−37◦,
which correspond to detectors at Gran Sasso [139, 142] or Sanford [141], Kamioka
[140], China Jin-Ping [484], and Stawell [485], respectively. We leave the size of
the Earth with respect to the dark sphere, RE/RDM , as a free parameter which
is assumed to remain constant throughout the averaging procedure. Strictly, the
particle physics should dictate the nature and size of the dark sphere. Indeed, for
MDM, the procedure described in Section 7.2 suggests a Moon-like scenario with
RE/RDM ≈ 1–1.5 . Still, it is possible that effects such as surface ionisation and
dark atmospheric stripping significantly change this picture. Thus it is sensible
to consider each scenario and a range of dark sphere radii, and this agnosticism
anyway coincides with our aim to explore the range of modulation possibilities
in plasma DM models in general.

In the next Section we will make some qualitative observations from these
results and deduce the implications for direct detection experiments.

7.3.3 Implications for direct detection

In the previous Section we presented results for the annual and diurnal modu-
lation of electron recoils in the mirror dark mater model. Here we gather some
comments on these results and discuss the current experimental situation.

The behaviour exhibited in Figures 7.7–7.10 is clearly quite diverse, and we
make the following observations:

1. The annual modulation fraction can be large, even > 90%.

2. There are situations where the modulation is approximately sinusoidal, but
this is not the general case. Interplay with various shocks may produce
sharp transitions in the rate.
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FIGURE 7.7: Moon-like (B = 0) annual modulation: Re/R
∞
e

as a function of time of year plotted for example detector loca-
tions [Gran Sasso, Kamioka, Jin-Ping, and Stawell] (columns) and

sound speeds (rows).
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FIGURE 7.8: Venus-like (B = 0) annual modulation: Re/R
∞
e

as a function of time of year plotted for example detector loca-
tions [Gran Sasso, Kamioka, Jin-Ping, and Stawell] (columns) and

sound speeds (rows).
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FIGURE 7.9: Moon-like (B = 0) diurnal modulation: Re/R∞e as
a function of sidereal hours plotted for example detector loca-
tions [Gran Sasso, Kamioka, Jin-Ping, and Stawell] (columns) and

sound speeds (rows).
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FIGURE 7.10: Venus-like (B = 0) diurnal modulation: Re/R∞e
as a function of sidereal hours plotted for example detector loca-
tions [Gran Sasso, Kamioka, Jin-Ping, and Stawell] (columns) and

sound speeds (rows).
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3. The two annual modulation contributions, with phases of 153 days and
115 days, can be seen by eye, e.g. Moon-like cs ≥ 260 km/s (Figure 7.7) or
Venus-like cs ≤ 170 km/s (Figure 7.8). The contributions can be different
sign and either might dominate.

4. The dependence on θlat is obvious. In particular, the Stawell detector gives
very different results since it probes the downwind wake region. Still, even
between Northern Hemisphere detectors, significant changes in the mod-
ulation can be observed. For example, in the Moon-like case with cs in
the intermediate region (cs ≈ 230 km/s) with RE/RDM . 2 we observe a
change in the effective sign between Northern Hemisphere detectors. This
is due to the interplay of the wind speed pushing the tail shock back around
155 days, and the detector moving further into the shock at 115 days.

5. It is possible to see modulation effects in a detector at one latitude which
would escape detection in an identical detector at a different latitude.

6. The diurnal modulation fraction can be large, typically of order the annual
modulation, or larger. It is in general not sinusoidal and can display sharp
transitions.

7. The azimuthal symmetry (in the unmagnetised case) implies that diurnal
modulation is symmetric about t = 12 hours (with our phase convention).
This motivates combining data from 0 ≤ t/hours ≤ 12 with data from
24 ≥ t/hours ≥ 12. As well, the average rate during the middle half of the
day (6–18 hours) often differs markedly from the average rate during than
the other half. This motivates a far/near ratio measurement,

Rfar/near =
R(6 ≤ t/hours ≤ 18)

R(0 ≤ t/hours ≤ 6 ∪ 18 ≤ t/hours ≤ 24)
, (7.29)

looking for deviations from unity.

Nuclear recoils arising from dark proton scattering are, in principle, also very
interesting. Although we haven’t given any results for nuclear recoils, qualita-
tively they are expected to follow a similar pattern to the electron recoil results
of Figures 7.7–7.10. Indeed, the nuclear recoil rate has a similar form to Equa-
tion (7.27), and in particular, the rate depends on the same variables ρ, T, |vB|
(in the single fluid approximation). The principle difference is the nuclear re-
coil kinematics, which depend on the mass of the dark proton. In general we
expect nuclear recoils to show similar sensitivity to variation in ρ, comparable
or smaller sensitivity to variation in T (depending on the mass of the dark pro-
ton), and more sensitivity to variation in |vB| (since |vB|/v0 is larger by a factor√
mpd/med).
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Let us here add somewhat of a disclaimer. We have sketched what we believe
to be a sound general picture of modulation effects in plasma DM models. How-
ever, there is great difficulty involved in modelling the interaction of the dark
plasma wind with the captured dark sphere. We have made a first attempt at a
consistent description using MHD simulations. Obviously there are shortcom-
ings. Notably, we have only studied two idealised dark sphere scenarios in the
special unmagnetised case, and we have also made the questionable assumption
of locally Maxwellian distributions in order to explore the modulation signals
for an example model. Quantitative results for the actual realised case may be
very different. Nonetheless, we believe that the above qualitative observations
should still hold.

We have yet to discuss the current experimental situation with regard to DM
direct detection. A variety of experiments, employing different techniques, are
probing DM interactions with nuclei and electrons. Stringent limits on DM nu-
clear recoils have been found, with XENON100 [492], LUX [493], CRESST-II
[494], and CDMS [495] among the most sensitive. By contrast, a positive hint
for DM interactions has been obtained by the DAMA and DAMA/LIBRA exper-
iments in the Gran Sasso Laboratory (latitude: 43◦ N) [143, 144, 446–448]. The
DAMA experiments were designed to search for DM via the annual modula-
tion signal and indeed such a modulation (with phase: t0 = 144 ± 7 days) was
observed in their measured event rate at around ∼ 9σ C.L.. The DAMA and
DAMA/LIBRA experiments feature a sodium iodine target with sensitivity to
both nuclear and electron recoils in the keV recoil energy range. The stringent
limits on nuclear recoils obtained by other experiments (as mentioned above)
appears to indicate that electron recoils is the most likely DM option.

There are only a few experiments with sufficient sensitivity to probe electron
recoils as the source of the DAMA annual modulation signal. At the present
time, three such experiments have published results: CoGeNT, XENON100, and
XMASS, all of which have some, albeit statistically weak, evidence for an an-
nually modulated event rate. Consider first the CoGeNT experiment. This ex-
periment involves p-type point contact germanium detectors operating in the
Soudan Underground Laboratory (latitude: 48◦ N). Analysis of three years of
data found evidence for an annual modulation at 2.2σ C.L. with phase consistent
with that of DAMA [496]. The XENON100 experiment, located at Gran Sasso,
recently analysed data collected over a 13 month period, observing an annually
modulated electron recoil event rate at 2.8σ C.L. with phase consistent with that
of DAMA [145]. The XENON100 experiment also obtained strong limits on the
average electron recoil event rate, thereby suggesting that DM interactions with
electrons could only be the source of the DAMA annual modulation if the mod-
ulation fraction was large: & 50% [145, 497]. Most recently, the XMASS experi-
ment at Kamioka Observatory (latitude: 36◦ N), also utilising a xenon target, has
searched for DM–electron interactions [146]. Their data shows a possible hint
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FIGURE 7.11: The DAMA [498] measured rate: R − 〈R〉 versus
sidereal time, where the data has been replotted here with 24 ≥

t ≥ 12 hours combined with 0 ≤ t ≤ 12 hours.

of annual modulation with opposite sign to that of DAMA (i.e. approximately
six months out of phase). Naturally it is difficult to directly compare DAMA’s
annual modulation signal with the results of these other experiments, as they
differ in their recoil energy range, energy resolution, and low energy cutoff. The
CoGeNT and XMASS experiments are also at different latitudes.

Of these experiments, only DAMA has given results for their event rate
binned into 24 sideral hours (i.e. diurnal modulation). Taking our phase con-
vention, where t = 0 is the time of day when θ is maximised, and motivated by
azimuthal symmetry, it is sensible to combine the data from 0 ≤ t/hours ≤ 12

with data from 24 ≥ t/hours ≥ 12. We plot the data [498] combined in this way
in Figure 7.11. The figure does show some modest evidence for a rising event
rate toward t = 12 hours. The far/near ratio Equation (7.29) can be evaluated as:

Rfar/near = 1.0072± 0.0031 . (7.30)

That is, Rfar/near is different from unity at approximately 2.3σ C.L..
The current experimental situation is rather intriguing, especially when

viewed in the context of plasma DM. Indeed, plasma DM appears to have the
potential to resolve the diverse results of the different experiments. In particular,
our analysis leaves open the interesting possibility that the DAMA annual mod-
ulation signal might be due to electron recoils (or even a combination of electron
and nuclear recoils). This modulation fraction can be large, thus potentially satis-
fying the constraints on electron recoils from XENON100. Similarly, constraints
on nuclear recoils (such as those in [492–495]) are considerably weakened if the
modulation fraction is large. Also, the results of XMASS might not be inconsis-
tent with DAMA given the difference in latitude between the locations of these
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two experiments.
Clearly further work is required to clarify this situation. More experiments

could analyse their data for possible DM interactions with electrons, in addition
to nuclear recoils. Diurnal modulation in addition to annual modulation should
be searched for. Experiments at different latitudes are important, and more ex-
periments in the Southern Hemisphere would be helpful.

7.4 Conclusion

DM may have non-trivial particle properties leading to all sorts of interesting ef-
fects on small scales. The particular situation studied here is that DM in spiral
galaxies like the Milky Way takes the form of a dark plasma. Hidden sector DM
charged under an unbroken U(1)′ gauge interaction provides a simple and well
defined particle physics model realising this possibility. The assumed U(1)′ neu-
trality of the Universe then implies (at least) two oppositely charged DM com-
ponents with self-interactions mediated via a massless “dark photon” (the U(1)′

gauge boson). We considered the simplest case of two such DM components, the
“dark electron” and the “dark proton”, with med ≤ mpd .

Various astrophysical and cosmological aspects of this type of DM have been
explored in the literature previously, but there have been relatively few attempts
to understand the implications for direct detection experiments. This seems to
be particularly relevant at the present time in view of the rapidly progressing ex-
perimental activity in the field of DM direct detection. Moreover, plasma DM is
quite unique in that it can potentially lead to both nuclear and electron recoils in
the keV energy range; this is because energy equipartition implies a potentially
large dark electron velocity dispersion, and U(1)′ neutrality prevents dark elec-
trons from escaping the galaxy. In fact, previous work has speculated that plasma
DM might possibly be able to explain the DAMA annual modulation signal via
electron recoils, as the constraints on electron recoils from other experiments are
generally much weaker than those for nuclear recoils.

To properly examine this idea, and the implications for direct detection exper-
iments more generally, requires a detailed description of the plasma DM density
and velocity distribution in the vicinity of the Earth. This is a rather complex
problem as any assumed interaction with ordinary matter will inevitably lead to
DM being captured by the Earth, forming an approximate “dark sphere” within.
This dark sphere provides an obstacle to the halo DM wind, the nature of which
depends on whether the captured DM is largely neutral or ionised. We consid-
ered these two limiting cases, referred to as “Moon-like” or “Venus-like,” making
use of analogy with the solar wind interactions with the Moon and Venus. We
studied these limiting cases using single fluid magnetohydrodynamic equations.

We numerically solved the magnetohydrodynamic equations to obtain the
space and time dependent dark plasma density, temperature, and bulk velocity
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in the vicinity of the Earth. We identified two distinct sources of annual modu-
lation: the first arises from the variation of the Earth’s speed relative to the DM
halo, and; the second arises from the variation of the Earth’s spin axis relative
to the wind direction. While both effects are due to the Earth’s orbital motion
around the Sun, their phases are different: June 2nd versus April 25th. In addition,
the variation of the location of a given detector relative to the wind direction due
to the Earth’s daily rotation leads to a diurnal modulation (i.e. with period of one
sidereal day). The latter two modulation effects are a direct consequence of the
spatially dependent near-Earth DM density and velocity distributions, and are
expected to be an important consideration in general self-interacting DM models
capable of giving a direct detection signal. Importantly, they imply latitudinal
dependence of the measured event rate.

In order to make predictions for direct detection experiments, a kinetic de-
scription of the plasma dark electron and dark proton components is required.
This is a challenging and unsolved problem. To make progress, we modelled
the velocity distribution locally in terms of a Maxwellian distribution. Although
this is rather unsatisfactory, it is hoped that such a description will provide use-
ful insight. We considered mirror DM as an example, and evaluated the annual
and diurnal modulations, focusing on the distinctive electron recoil interaction.
Several relevant qualitative observations were made from the results.

Plasma DM is very different from e.g. weakly interacting DM. Large annual
and diurnal modulations can arise. These modulations need not be sinusoidal
and may contain sharp features. Moreover, the spatial dependence of the lo-
cal event rate in the vicinity of the Earth implies that experiments at different
latitudes will not necessarily find the same thing (even qualitatively). This is es-
pecially true for a Southern Hemisphere detector, but is even true for varying
latitudes in the Northern Hemisphere. The analysis presented here leaves open
the interesting possilibility that the DAMA annual modulation signal might be
due primarily to electron recoils (or even a combination of electron and nuclear
recoils). The modulation fraction can be large, thus potentially satisfying con-
straints from other experiments. Furthermore, the results of XMASS might not
be inconsistent with DAMA given the difference in latitude between the loca-
tions of these two experiments. Much more experimental activity is required.
A greater emphasis on electron recoils would be helpful and we encourage all
experiments to present results for diurnal variation.
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8 Conclusion

The Standard Model (SM) is an enigma. On the one hand it has proven to be
an extremely successful effective field theory for describing particle physics phe-
nomenology at energy scales . TeV, and even remains theoretically consistent
when extrapolated to the Planck scale. On the other hand it leaves unanswered
a number of theoretical and phenomenological questions. In this THESIS we
presented a collection of original pieces of work pertaining to six of the major
questions, which were introduced in Section 1.1: the Higgs sector; naturalness;
neutrino masses; the baryon asymmetry of the Universe (BAU); the strong CP
problem; and dark matter (DM). Since the SM is already so successful, a logical
(and tractable) way to study these questions is by so-called “bottom-up” exten-
sions, whereby new physics is minimally added to the SM framework in order
to address and/or to understand the implications of those questions. This was
the general philosophy embraced throughout the THESIS.

In CHAPTER 2: HIGGS SECTOR we explored the phenomenological impli-
cations of extending the SM Higgs sector by a very light real singlet scalar s
(100 MeV < ms < mh/2). Constraints on this scenario from collider, meson
decay, and fixed target experiments were derived; they are summarised in Fig-
ure 2.4. Three distinct regions of parameter space exist for LHC phenomenology.
First, forms & mB , future searches for parton-level production via V s can poten-
tially probe parameter space beyond existing constraints. Second, for ms . mB ,
we found that s production via the decay of B mesons could have resulted in
up to thousands of potentially background free moderate pT displaced dimuons
within the detector volumes of ATLAS/CMS or at LHCb during the 8 TeV run.
This motivates a search for B → s + X → (µ+µ−) + X displaced dimuons at
ATLAS/CMS and/or LHCb. Indeed, as a result of that work, a search was later
performed at LHCb which excludes a large region of previously unexplored pa-
rameter space. Third, when s is long-lived, production via Higgs decays h→ ss

result in a spectacular signature in the LHC detectors. We demonstrated a simple
Monte Carlo method to reinterpret displaced searches utilising efficiency tables,
which we hope goes some way to motivating the LHC Collaborations to publish
relevant multidimensional efficiency tables along with their displaced searches.

In CHAPTER 3: NATURALNESS we considered the question, at what mass
does a heavy gauge multiplet introduce a physical Higgs naturalness problem?
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We motivated a renormalisation group description of naturalnes, of particular in-
terest for bottom-up extensions of the SM. The Higgs mass is interpreted as a de-
rived quantity of high scale MS “input” parameters. If µ2(mZ) is especially sen-
sitive to these input parameters, then this signifies a Higgs naturalness problem.
It was shown how a Higgs sensitivity measure can be rigorously derived using
Bayesian probabilistic arguments. The derived measure captures, in essence, the
“naturalness price” paid for promoting the Higgs mass parameter to a high scale
input parameter of the model. We used this measure to set naturalness bounds
on the masses of various gauge multiplets in a full two-loop RGE analysis with
one-loop matching. The resulting bounds are presented in Tables 3.1 and 3.2, and
as contours in Figures 3.4–3.7; they lie in the range M < O(1–100) TeV, depend-
ing on the gauge multiplet and the naturalness criterion considered. Bounds on
fermionic gauge multiplets are weaker than for scalars, and bounds on coloured
multiplets are no more severe than on electroweak multiplets, since they correct
the Higgs mass directly only at three-loop.

In CHAPTER 4: NEUTRINO MASS we wrote down minimal UV completions
for all of the dimension 7, ∆L = 2 SM operators which could be responsible for
radiatively generating a Majorana neutrino mass. These completions predict a
plethora of particles whose properties are constrained by low-energy neutrino
oscillation data, and form the basis of a systematic approach to testing radiative
neutrino mass models at the LHC. A detailed collider study was presented for
a LLQd̄H completion with a leptoquark φ ∼ (3̄, 1, 1

3) and a vector-like quark
χ ∼ (3, 2,−5

6). The analysis constrained mχ & 620 GeV and mφ & 600 GeV.
In CHAPTER 5: BARYON ASYMMETRY OF THE UNIVERSE we proved that the

three-flavour Type I seesaw model cannot explain neutrino masses and the BAU
via hierarchical leptogenesis without introducing a Higgs naturalness problem.
We then described a model with a second Higgs doublet (the “ν2HDM”) which
can avoid this conclusion. Neutrino masses are generated radiatively, or by a
tree-level seesaw with small vev insertions. The ν2HDM accommodates a SM-
like Higgs, predicts approximately TeV scale scalar states, and low to intermedi-
ate scale leptogenesis (103 GeV . MN1 . few × 107 GeV). The interesting areas
of parameter space are summarised in Figure 5.7.

In CHAPTER 6: STRONG CP PROBLEM we wrote down a simple model (the
“νDFSZ”) which serves as an existence proof that weakly coupled high-scale
physics can explain phenomenological shortcomings of the SM without intro-
ducing a naturalness problem. Neutrino masses, the BAU, the strong CP prob-
lem, and DM are explained via a seesaw mechanism, hierarchical leptogenesis,
the PQ mechanism, and a DFSZ invisible axion, respectively. The νDFSZ con-
tains four scales: |m11| ≈ 88 GeV, m22 ∼ 103 GeV, MN ∼ 105–107 GeV, and
MPQ ∼ 1011 GeV, which are protected from large corrections by a technically
natural decoupling limit. Furthermore there are testable predictions: TeV scale
scalar states, and axionic DM.
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Lastly, in CHAPTER 7: DARK MATTER we considered the implications of the
“plasma dark matter” scenario for direct detection experiments. Plasma DM is
type of hidden sector DM which is minimally composed of a “dark electron,” a
“dark proton,” and a massless “dark photon” which mediates a dark electromag-
netism. An interesting consequence is that, if med � mpd , energy equipartition
and U(1)′ neutrality in the galactic halo imply a much larger dark electron ve-
locity dispersion than in standard single component models. Plainly this has
implications for direct detection experiments. As well, if this DM interacts with
standard matter, then some amount will be captured inside the Earth. There,
since the DM is self-interacting, it will form an obstacle to the DM wind, imply-
ing a spatially dependent near-Earth DM density and velocity distribution. This
has a number of implications for direct detection signals: a new source of annual
modulation (from annual modulation of the Earth rotation axis direction); modu-
lation with sidereal day; and latitudinal dependence. We studied the interaction
of plasma DM with the captured DM in certain limiting cases using numerical
magnetohydrodynamic simulations. The specific example of electron recoils in
mirror DM was then studied under simplifying assumptions. Several qualitative
implications were identified from the results, as summarised in Section 7.3.3. The
analysis leaves open the interesting possilibility that the DAMA annual modu-
lation signal might be due primarily to electron recoils. We hope that, since this
picture can be abstracted to general self-interacting DM scenarios, the analysis
encourages direct detection experiments to search for sidereal modulation.

If an overarching conclusion is to be made from this THESIS, then perhaps it
would be the following. As we have discussed, the SM leaves open a number of
questions. These questions can be answered by physics beyond the SM, featuring
a huge variety of phenomenologically distinct predictions, some within the reach
of existing or soon-to-be existing experiments. Exactly which of these questions
will be resolved first, or even if they will be resolved at all, is not clear. In the
mean time, it is vitally important to probe nature in all the ways it could plausibly
be probed. This requires dilligence from the full spectrum of particle physicists:
theorists, phenomenologists, and experimentalists. After all, nature has only one
manifestation, and it is our job to find out which one that is.
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A Appendix A

A.1 Sensitivity measure as a Bayesian model comparison

In this Appendix we show how a Barbieri–Giudice-like fine-tuning measure for
µ2(mZ) arises in a certain limit of our Bayesian model comparison. Similar con-
nections have been made in earlier works, e.g. Refs. [279, 283].

Bayesian probability allows one to assign a degree of belief to some hypoth-
esis, in our case a particle physics model. The model M consists of a set of
input parameters I and a rule for connecting these to a set of observables O.
Let us assume that there are n fundamental input parameters I = {I1, . . . , In}
and m ≤ n independent observables O = {O1, . . . ,Om}. The rule is just a
map R : I → O from input space to observable space with (I1, . . . , In) 7→
R(I1, . . . , In) = (O1, . . . ,Om). In CHAPTER 3 the models consist of the SM plus
a new gauge multiplet of mass M , with inputs as the logarithms of MS parame-
ters of the full Lagrangian defined at scale Λh, observables as the logarithms of
MS SM Lagrangian parameters at scale mZ , andR given by the RGEs. The loga-
rithms are taken to avoid dependence on units or rescalings of the Lagrangian.1

The Bayesian evidence B forM is the probability that the observables O at-
tain their experimentally observed values Oex, assumingM is true:

B(M) := p(O = Oex|M) =

∫
p(O = Oex|I) p(I) dI , (A.1)

where p(O = Oex|I) is also called the likelihood function L(I), and p(I) is
the prior density for the model parameters. The prior density represents the
degree of belief in the values of the input parameters before any observations
are made. In the absence of any knowledge about the complete UV theory, we
should assume priors which are maximally agnostic. This corresponds to a flat
prior in the n-dimensional input space I. The mapping R can be used to ex-
press some point in input space (I1, . . . , In) in terms of a new set of coordinates
(O, I ′) ≡ (O1, . . . ,Om, Im+1, . . . , In) simply by I 7→ R′(I) ≡ (R(I), I ′). We
assume that this is a one-to-one mapping (indeed, it is for RGEs in the perturba-
tive regime). If we assume perfectly measured observables, then Equation (A.1)

1Absolute values inside the logarithms are implied. The signs of the parameters can be consid-
ered as separate inputs. Explicitly including them with a flat prior probability mass function does
not change the final result, and we ignore them henceforth for clarity.
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becomes

B(M) ∝
∫
δ(O −Oex) p ◦ R′−1(O, I ′)

×
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where the likelihood has become a delta function multiplied by a constant term,
and | ( · ) | ≡ |det[( · )]| is the determinant of the Jacobian associated with the
coordinate transformation. Performing the integration over the observables,
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where p′(I ′) ≡ p ◦ R−1(Oex, I ′). The requirement O = Oex has carved out an
experimentally allowed (n − m) dimensional submanifold within the original
n dimensional input space. We know that, since the original prior was flat in
n dimensions, the prior on the submanifold must be flat with respect to the in-
duced volume element (as opposed to the volume element dIm+1 · · · dIn). We
can rescale the existing volume element to write, equivalently,

B(M) ∝
∫
p′(I ′)
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(A.4)

where the quantity under the square root is the determinant of the induced met-
ric, dΣ is the induced volume element, and the prior p′(I ′) is constant with re-
spect to this volume element. This reduces to

B(M) ∝
∫

p′(I ′)√
|JJT |

dΣ

∣∣∣∣∣
O=Oex

, (A.5)

where J is them×nmatrix defined by Jij = ∂Oi/∂Ij [283]. Additionally, by tak-
ing a delta function prior on I ′we can evaluate (and compare) Bayesian evidence
for the modelM with unconstrained input parameters (Im+1, . . . , In) taking on
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specific values:

B(M; I ′) ∝ 1√
|JJT |

∣∣∣∣∣Oex
I′

. (A.6)

Let us now put this in the context of minimal extensions of the SM by a gauge
multiplet of massM . We take I1 = logµ2(Λh) andO1 = logµ2(mZ). The remain-
ing inputs and observables are logarithms of the MS Lagrangian parameters.
The Bayesian evidence Equation (A.6) is not enough by itself; it can only be in-
terpreted with respect to some reference model. We will, after all, be interested in
the sensitivity of µ2(mZ) to the input parameters, and we have not so far treated
the µ2 parameter in any special way. The reference model we choose to com-
pare to is the modelM0 in which the Higgs mass parameter is instead taken as a
“phenomenological” input parameter at scale mZ , i.e. I1 = O1 = logµ2(mZ). In
M0 we have that J11 = 1 and J1j = 0 for j > 1. The Bayes factor between these
two models is then

K(M; I ′) :=
B(M0; I ′)
B(M; I ′)

∣∣∣∣Oex
I′

. (A.7)

Since the dimensionful parameter µ2(µR) does not enter the (mass independent)
RGEs of the remaining dimensionless observables, we have that Ji1 = ∂Oi/∂I1 =

0 for i > 1. Additionally, in the special case that the dimensionless observables
are approximately insensitive to the unconstrained inputs, i.e. Jij ' 0 for i > 1

and j ≥ m+ 1, Equation (A.6) becomes

B(M; I ′) ∝

∣∣∣∣∣∣∣∣




∂O2
∂I2 · · · ∂O2

∂Im
...

. . .
...

∂Om
∂I2 · · · ∂Om

∂Im




∣∣∣∣∣∣∣∣

−1

√(
∂ log µ2(mZ)

∂I1

)2
+

∑
j≥m+1

(
∂ log µ2(mZ)

∂Ij

)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Oex
I′

. (A.8)

We can see that a Barbieri–Giudice-like fine-tuning measure has appeared in the
denominator. In this case the quantity B(M0; I ′) becomes independent of I ′,
and the Bayes factor Equation (A.7) is

K(M; I ′) =

√√√√
(
∂ logµ2(mZ)

∂ logµ2(Λh)

)2

+
∑

j≥m+1

(
∂ logµ2(mZ)

∂Ij

)2
∣∣∣∣∣∣Oex
I′

. (A.9)

This is reminiscent of the Barbieri–Giudice fine-tuning measure. We observe
the interesting emergence of additional terms quantifying Higgs mass sensitivity
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only to the unconstrained parameters of the model. Conceptually, K is a com-
parison between a flat prior in logµ2(mZ) and the RG devolved (tomZ) flat prior
in logµ2(Λh), in the vicinity µ2(mZ) ' −(88 GeV)2. A Bayes factor of K > 10

corresponds to the onset of strong evidence (on the Jeffreys scale) for M0 over
M.

Lastly, note that the Bayes factor K is still a function of the unknown param-
eters I ′. In order to write down a sensitivity measure for the modelM as a func-
tion of a subset of these unknown parameters (e.g. the gauge multiplet mass M ),
we might want some way of projecting out the nuisance unknowns. One way
is to integrate over some region of I ′, i.e. evaluate Equation (A.5). However, in
CHAPTER 3 we instead choose the following conservative projection:

∆(M) = min
I′

{
K(M; I ′)

}
. (A.10)

This identifies the best case scenario for Higgs mass naturalness inM by finding
the point in I ′ with the lowest Bayes factor.
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B.1 ν2HDM squared scalar masses at O(m4
12/m

4
22)

To order m4
12/m

4
22, the scalar masses Equations (5.29) are given by

m2
h ≈ v2

1


λ1 +

m4
12

m4
22

2λ345 − λ1 − v2
1

2m2
22
λ1λ345

(
1 +

v2
1

2m2
22

(λ345 − 2λ1)
)(

1 +
v2
1

2m2
22
λ345

)2


 ,

m2
H ≈ m2

22

[
1 + λ345

v2
1

2m2
22

+
m4

12

m4
22

1− v2
1

2m2
22

(2λ345 − 3λ2) +
v4
1

4m4
22

(
λ2

345 + 3λ2λ345 − 6λ1λ2

)

(
1 +

v2
1

2m2
22

(λ345 − 2λ1)
)(

1 +
v2
1

2m2
22
λ345

)2

]
,

m2
A ≈ m2

22


1 + (λ345 − 2λ5)

v2
1

2m2
22

+
m4

12

m4
22

1 +
v2
1

2m2
22

(λ345 + λ2 − 2λ5)
(

1 +
v2
1

2m2
22
λ345

)2


 ,

m2
H± ≈ m2

22


1 + λ3

v2
1

2m2
22

+
m4

12

m4
22

1 +
v2
1

2m2
22

(λ2 + λ3)
(

1 +
v2
1

2m2
22
λ345

)2


 . (B.1)

B.2 Bounds for more generalmν

We consider the seesaw Lagrangian as in Eq. 5.1 and a neutrino mass matrix of
the form

mν =
v2

2
yνD−1

M Df(M)y
T
ν , (B.2)

where Dx ≡ diag(x1, x2, x3). Note that in the ν2HDM with λ5 = 0 we have
f(Mj) = v2

2/v
2, and in the Ma model with MN � m22 we have

f(Mj) =
λ5

8π2

(
ln

[
M2
j

(m2
H +m2

A)/2

]
− 1

)
. (B.3)
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Following Casas-Ibarra [94], it is possible to write

yν =

√
2

v
U †D

1
2
mRD

1
2
MD

− 1
2

f(M), (B.4)

where R is a (possibly complex) orthogonal (RRT = RTR = I) matrix. The
Vissani bound on each right-handed neutrino mass becomes [3]

1

4π2

2

v2

M3
j

f(Mj)

∑

i

mi|Rij |2 < 1 TeV2

⇒MN1 . 3× 107 GeV× f(MN1)
1
3 . (B.5)

The CP asymmetry for hierarchical neutrinos [96] becomes

|ε1| =
6

16π

M1

v2

Im[(R†Dm(RD−1
f(M)R

T )DmR∗)11]

(R†DmR)11

.
6

16π

m3MN1

v2

1

min[f(Mj)]
, (B.6)

where the approximate inequality holds for max(|Rij |) ≤ 1. For larger max(|Rij |)
the inequality can be exceeded, but this corresponds to a fine-tuning (see Ref. [3]).
With this caveat, the Davidson-Ibarra bound for min[f(Mi)] = f(MN1) therefore
becomes

MN1 & 5× 108 GeV× f(MN1). (B.7)

The ∆L = 2 scatterings are proportional to [95, 499]

∑

i,j

Re[(y†νyν)ij(y
†
νyν)ij ]

1

MiMj

= Tr[(yνD−1
M yTν )(yνD−1

M yTν )†]

=
4

v4
Tr[Dm(RD−1

f(M)R
T )Dm(RD−1

f(M)R
T )†]

.
4

v4

m2

min[f(Mj)]2
, (B.8)

where the last line is an exact equality for f(M1) = f(M2) = f(M3), an exact
inequality when R is real, and an approximate inequality (as indicated) if R is
complex with max(|Rij |) ≤ 1. Again, for larger max(|Rij |) the inequality can
be exceeded. Then for min[f(Mi)] = f(MN1), the ∆L = 2 scattering Eq. 5.50
becomes

Γ∆L=2

H
.

T

2.2× 1013 GeV
1

f(MN1)2

(
m

0.05 eV

)2

. (B.9)
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C.1 νDFSZ RGEs

Following is the full list of RGEs in the [Type II, Flipped] model, found using
PyR@TE [303]. Underlined are those parameters which, for simplicity, we did
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not evolve in our RGE analysis.

DM2
11 = M2

11

(
6λ1 −

3

2
g2
1 −

9

2
g2
2 + 6y2

t +
[
0, 2y2

τ

])
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22 (4λ3 + 2λ4) +M2
SS2λ1S , (C.1)
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3

2
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9

2
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2 + 6y2
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τ , 0
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(
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SS2λ2S , (C.2)

DM2
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SS

(
4λS + Tr

(
y†NyN

))
+M2

114λ1S +M2
224λ2S , (C.3)

D〈S〉2 = − Tr
(
y†NyN

)
〈S〉2 [i.e. the wave function renormalisation], (C.4)

Dg{1,2,3} = {7,−3,−7}g3
{1,2,3}, (C.5)
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