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The SU(3)C ⊗ SU(3)L ⊗ U(1)X gauge model with minimal scalar sector, two Higgs triplets, is
presented in detail. One of the vacuum expectation values u is a source of lepton-number violations
and a reason for mixing among charged gauge bosons—the standard model W± and the bilepton
gauge bosons Y±, as well as among the neutral non-Hermitian bilepton X0 and neutral gauge
bosons—the Z and the new Z′. An exact diagonalization of the neutral gauge boson sector is
derived, and bilepton mass splitting is also given. Because of these mixings, the lepton-number
violating interactions exist in both charged and neutral gauge boson sectors. Constraints on
vacuum expectation values of the model are estimated and u � O(1) GeV, v � vweak = 246 GeV,
and ω � O(1) TeV. In this model, there are three physical scalars, two neutral and one charged, and
eight Goldstone bosons—the needed number for massive gauge bosons. The minimal scalar sector
can provide all fermions including quarks and neutrinos consistent masses in which some of them
require one-loop radiative corrections.
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1. Introduction

In spite of all the successes of the standard model, it is unlikely to be the final theory. It leaves
many striking features of the physics of our world unexplained. In the following, we list
some of them which leads to the model’s extensions. In particular, the models with SU(3)C ⊗
SU(3)L ⊗U(1)X (3-3-1) gauge group are presented.

1.1. Generation problem and 3-3-1 models

In the standard model, the fundamental fermions come in generations. In writing down the
theory, one may start by first introducing just one generation, then one may repeat the same
procedure by introducing copies of the first generation. Why do quarks and leptons come in
repetitive structures (generations)? How many generations are there? How to understand the
interrelation between generations? These are the central issues of the weak interaction physics
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known as the generation problem or the flavor question. Nowhere in physics this question
is replied [1]. One of the most important experimental results in the past few years has been
the determination of the number of these generations within the framework of the standard
model. In the minimal electroweak model, the number of generations is given by the number
of the neutrino species which are all massless, by definition. The number of generations is
then computed from the invisible width of the Z0:

Γinv ≡ ΓZ0 −
(
Γh +

∑
l

Γl

)
, (1.1)

where ΓZ0 denotes the total width, the subscript h refers to hadrons, and Γl (l = e, μ, τ) is
the width of the Z0 decay into an ll pair. If Γν is the theoretical width for just one massless
neutrino, the number of generations is Ngen = Nν = Γinv/Γν, and recent results give a value
very close to three Ngen = 2.99 ± 0.03 [2, 3], but we do not understand why the number of
standard model generations is three.

The answer to the generation problem may require a radical change in our approaches.
It could be that the underlying objects are strings and all the low-energy phenomena will
be determined by physics at the Planck scale. Grand unified theories (GUTs) have had a
major impact on both cosmology and astrophysics; for cosmology they led to the inflationary
scenario, while for astrophysics supernova, neutrinos were first observed in proton-decay
detectors. It remains for GUTs to have impact directly on particle physics itself [4]. GUTs
cannot explain the presence of fermion generations. On the other side, supersymmetry
(SUSY) for the time being is an answer in search of question to be replied. It does not explain
the existence of any known particle or symmetry. Some traditional approaches to the problem
such as GUTs, monopoles, and higher dimensions introduce quite speculative pieces of new
physics at high and experimentally inaccessible energies. Some years ago, there were hopes
that the number of generations could be computed from first principles such as geometry of
compactified manifolds, but these hopes did not materialize.

A very interesting alternative to explain the origin of generations comes from
the cancelation of chiral anomalies of a gauge theory in all orders of perturbative
expansion, which derives from the renormalizability condition. This constrains the fermion
representation content. Three perturbative anomalies have been identified [5–10] for chiral
gauge theories in four-dimensional space-time: (i) the triangle chiral gauge anomaly [11, 12]
must be canceled to avoid violations of gauge invariance and the renormalizability of the
theory; (ii) the global nonperturbative SU(2) chiral gauge anomaly, [13] which must be absent
in order for the fermion integral to be defined in a gauge invariant way; and (iii) the mixed
perturbative chiral gauge gravitational anomaly [14–16] which must be canceled in order to
ensure general covariance. The general anomaly-free condition is

Aijk ≡ Tr
[{
Ti, T j

}
Tk
]
=

∑
representations

Tr
[{
TiL, T

j

L

}
TkL −

{
TiR, T

j

R

}
TkR
]
= 0, (1.2)

where Ti is the representation of the gauge algebra on the set of all left-handed fermion and
antifermion fields put in a single column ψ, and “Tr” denotes a sum over these fermion
and antifermion species; TiL,R are the coupling matrices of fermions ψL,R to the current
Jiμ = ψLγμT

i
LψL + ψRγμT

i
RψR, respectively. The i index runs over the dimension of a simple

SU(n) group, i = 1, 2, . . . , n2 − 1, with a rank n − 1, and i = 0 for the Abelian factor.
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First, let us consider the relationship between anomaly cancelation and flavor problem
in the standard model. The individual generations have the following structure under the
SU(3)C ⊗ SU(2)L ⊗U(1)Y (3-2-1) gauge group:

(
νaL, laL

)
∼ (1, 2,−1), laR ∼ (1, 1,−2),

(
uaL, daL

)
∼
(

3, 2,
1
3

)
, uaR ∼

(
3, 1,

4
3

)
, daR ∼

(
3, 1,−2

3

)
.

(1.3)

The values in the parentheses denote quantum numbers based on the (SU(3)C, SU(2)L,
U(1)Y ) symmetry, where the subscripts C, L, and Y , respectively, indicate to the color, left-

handed, and hypercharge. The electric charge operator is defined as Q = T3 + (1/2)Y , where
Ti = (1/2)σi (i = 1, 2, 3) with σi are Pauli matrices. The weak isospin group SU(2)L is a safe
group due to the fact that

Tr
[{
σi, σj

}
σk
]
= 2δijTr

[
σk
]
= 0. (1.4)

However, in the case where at least one of the generators is hypercharge we have

Tr
[
σiYY

]
∝ Tr

[
σi
]
= 0, Tr

[{
σi, σj

}
Y
]
= 2δijTr[Y ]. (1.5)

The anomaly contribution in the last condition is proportional to the sum of all fermionic
discrete hypercharge values on the color, flavor, and weak hypercharge degrees of freedom:

Tr[Y ] =
∑

lepton

(
YL + YR

)
+
∑

quark

(
YL + YR

)
. (1.6)

The Tr [Y ] vanishes for the fermion content in the ath generation because

∑
lepton

(
YL + YR

)
= Y

(
νaL

)
+ Y

(
laL
)
+ Y

(
laR

)
= −4,

∑
quark

(
YL + YR

)
= 3

[
Y
(
uaL

)
+ Y

(
daL

)
+ Y

(
uaR

)
+ Y

(
daR

)]
= +4,

(1.7)

where 3 factors take into account the number of quark colors. In the last case, all the
generators are hypercharge:

Tr
[
Y 3] ∝ Tr

[
Q2T3 −QT2

3
]
, (1.8)

where we used the fact that the electromagnetic vector neutral current vertices do not have
anomalies. For the ath generation, we have

∑
lepton

(
Q2T3 −QT2

3
)
=
[
(0)2

(
1
2

)
− (0)

(
1
2

)2]
+
[
(−1)2

(
− 1

2

)
− (−1)

(
− 1

2

)2]
= −1

4
,

∑
quark

(
Q2T3 −QT2

3
)
=3

[(
2
3

)2(1
2

)
−
(

2
3

)(
1
2

)2]
+ 3

[(
− 1

3

)2(
− 1

2

)
−
(
− 1

3

)(
− 1

2

)2]
= +

1
4
.

(1.9)
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It yields that the anomaly in standard model cancels within each individual generation,
but not by generations. Flavor question and anomaly-free conditions do not seem to have
any connection in the standard model. This leads us to questions when going beyond this
model. Are the anomalies always canceled automatically within each generation of quarks or
leptons? Do the anomaly cancelation conditions have any connection with flavor puzzle?

We wish to show that some very fundamental aspects of the standard model, in
particular the flavor problem, might be understood by embedding the three-generation
version in a Yang-Mills theory with the SU(3)C⊗SU(3)L⊗U(1)X semisimple gauge group with
a corresponding enlargement of the lepton and quark representations [17–25]. In particular,
the number of generations will be related by anomaly cancelation to the number of quark
colors, and one generation of quarks will be treated differently from the two others. In the 3-
2-1 low-energy limit, all three generations appear similarly and cancel anomalies separately.
Let us consider the following 3-3-1 fermion representation content:

ψaL =

⎛
⎝νaL
laL
νcaR

⎞
⎠∼ (1, 3,−1

3

)
, laR ∼ (1, 1,−1), a = 1, 2, 3,

Q1L =

⎛
⎝u1L

d1L

UL

⎞
⎠∼ (3, 3,

1
3

)
, QαL =

⎛
⎝ dαL
−uαL
DαL

⎞
⎠
L

∼
(
3, 3∗, 0

)
, α = 2, 3,

uaR ∼
(

3, 1,
2
3

)
, daR ∼

(
3, 1,−1

3

)
, UR ∼

(
3, 1,

2
3

)
, DαR ∼

(
3, 1,−1

3

)
.

(1.10)

The quantum numbers in the parentheses are based on the (SU(3)C, SU(3)L,U(1)X)
symmetry. The right-handed neutrinos νR and the exotic quarks U and Dα are composed
along with that of the standard model. We call 3-3-1 model with right-handed neutrinos. The
electric charge operator in this case takes a form Q = T3 − (1/

√
3)T8 +X with Ti = 1/2λi (i =

1, 2, . . . , 8) and X standing for SU(3)L and U(1)X charges, respectively. Electric charges of the
exotic quarks are the same as of the usual quarks, that is, qU = 2/3 and qDα = −1/3.

The SU(3)L group is not safe in the sense of the standard model SU(2)L with the
vanishing Tr[{σi, σj}, σk] = 0. The SU(3)L generators proportional to the Gell-Mann matrices
close among them the Lie algebra structure:

[
λi, λj

]
= 2if ijkλk,

{
λi, λj

}
=

4
3
δij + 2dijkλk, (1.11)

where the structure constant fijk is totally antisymmetric, and dijk is totally symmetric under
exchange of the indices. We can normalize the λ-matrices such that Tr[λiλj] = 2δij . Therefore,
fijk and dijk are calculated by

fijk =
1
4i

Tr
[[
λi, λj

]
λk
]
, dijk =

1
4

Tr
[{
λi, λj

}
λk
]
. (1.12)

The anomaly is proportional to dijk in general, and of course such coefficients vanish in the
case of the SU(2)L generators.

In the 3-3-1 model, there are six triangle anomalies which are potentially troublesome.
In a self-explanatory notation, these are (3C)

3, (3C)
2X, (3L)

3, (3L)
2X, X3, and (graviton)2X.

The quantum chromodynamics anomaly (3C)
3 is absent because the theory mentioned is
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vectorlike (i.e., TiL = U−1TiRU with some unitary matrix U), and hence the condition Aijk = 0
is automatically satisfied. For any D fermion representation, it satisfies the condition A(D) =
−A(D∗), where A(D∗) is the anomaly of the conjugate representation of D [26]. The pure
SU(3)L anomaly (3L)

3, therefore, vanishes because there is an equal number of triplets 3L
and antitriplets 3∗L in the given fermion content. The remaining anomaly-free conditions are
explicitly written as follows.

(1) Tr[SU(3)C]
2[U(1)X] = 0:

3
∑

generation

XL
q −

∑
generation

∑
singlet

XR
q = 0; (1.13)

(2) Tr[SU(3)L]
2[U(1)X] = 0:

∑
generation

XL
l + 3

∑
generation

XL
q = 0; (1.14)

(3) Tr[U(1)X]
3 = 0:

3
∑

generation

(
XL
l

)3 + 9
∑

generation

(
XL
q

)3 − 3
∑

generation

∑
singlet

(
XR
q

)3 −
∑

generation

∑
singlet

(
XR
l

)3 = 0; (1.15)

(4) Tr[graviton]2[U(1)X] = 0:

3
∑

generation

XL
l + 9

∑
generation

XL
q − 3

∑
generation

∑
singlet

XR
q −

∑
generation

∑
singlet

XR
l = 0, (1.16)

where XL
l
, XL

q , X
R
l

, and XR
q indicate to the U(1)X charges of the left-handed lepton, quark

triplets or antitriplets, the right-handed lepton, and quark singlets, respectively. It is worth
noting that some 3 factors in the conditions (2), (3), and (4) take into account the number
of quark colors. With the fermion content as given, it is easily checked that all the above
anomaly-free conditions are satisfied. For example, let us take condition (2). We first calculate
the 32

LX anomaly for the first generation: −1/3 + 3 × (1/3) = 2/3. The anomaly of the
second or the third generation is −1/3 + 3 × 0 = −1/3. It is especially interesting that this
anomaly cancelation takes place between generations, unlike those of the standard model.
Each individual generation possesses nonvanishing (3L)

3, (3L)
2X, X3, and (gravion)2X

anomalies. Only with a matching of the number of generations with the number of quark
colors does the overall anomaly vanish.

Next, let us introduce an alternative fermion content, where the three known left-
handed lepton components for each generation are associated to three SU(3)L triplets such
that (νaL, laL, lcaR)

T ∼ (1, 3, 0) (called minimal 3-3-1 model). Canceling the pure SU(3)L
anomaly requires that there are the same number of triplets and antitriplets, thus Q1L =
(u1L, d1L, JL)

T ∼ (3, 3, 2/3), QαL = (dαL,−uαL, JαL)T ∼ (3, 3∗,−1/3). The respective right-
handed fields are singlets: uaR ∼ (3, 1, 2/3) and daR ∼ (3, 1,−1/3) for the ordinary quarks;
JR ∼ (3, 1, 5/3) and JαR ∼ (3, 1,−4/3) for the exotic quarks. Similarly, to the previous 3-3-1
model, the (3L)

3, (3L)
2X, X3 anomalies vanish only if three generations of quarks and leptons

take into account.
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In a general case, we can verify that the number of generations must be multiple
of the quark-color number in order to cancel the anomalies. On the other hand, if we
suppose that the exotic quarks also contribute to the running of the coupling constants,
the asymptotic-freedom principle requires that the number of quark generations is no more
than five. It follows that the number of generations is just three. This provides a first
step toward answering the flavor question. The asymmetric treatment of one generation of
quarks breaks generation universality. This might provide an explanation of why the top
quark is uncharacteristically heavy [27, 28]. An interesting alternative feature is that the
electric charge quantization in nature might also be explained in this framework [23, 29–
32]. Just enlarging SU(2)L to SU(3)L, we have thus presented the simplest gauge extension
of the standard model for the flavor question. The new models get five additional gauge
bosons contained in a gauge adjoint octet: 8 = 3 + (2 + 2) + 1 under SU(2)L. The 1 is a
neutral Z′ and the two doublets are readily identifiable from the leptonic contents as non-
Hermitian bilepton gauge bosons (X,Y )T and (X∗, Y ∗). From the renormalization group
analysis of the coupling constants [17, 33], the SU(3)L breaking scale is estimated to be
lower than some TeV in the minimal 3-3-1 model. This is due to the fact that the squared
sine of the Weinberg angle θW gets an upper bound, sin2θW < 1/4. There is no “grand
desert” in this model in comparison to GUTs. In contrast, the energy scale in the 3-3-1
model with right-handed neutrinos is very high, even larger than the Planck scale because
of sin2θW < 3/4. This version might allow the existence of a “desert.” Anyway, the new
physics in these models expected arise at not too high energies. The new particles such as the
bilepton gauge bosons Z′ and exotic quarks would be determinable in the next generation of
collides.

1.2. Proposal of minimal Higgs sector

As mentioned above, there are two main versions of 3-3-1 models—the minimal model and
the model with right-handed neutrinos, which have been subjects studied extensively over
the last decade. In the minimal 3-3-1 model [17–19], the scalar sector is quite complicated
and contains three scalar triplets and one scalar sextet. In the 3-3-1 model with right-handed
neutrinos [20–22, 34, 35], the scalar sector requires three Higgs triplets. It is interesting to
note that two Higgs triplets of this model have the same U(1)X charges with two neutral
components at their top and bottom. Allowing these neutral components vacuum expectation
values (VEVs), we can reduce number of Higgs triplets to be two. Note that the mentioned
model contains very important advantage, namely, there is no new parameter, but it contains
very simple Higgs sector, therefore, the significant number of free parameters is reduced.
To mark the minimal content of the Higgs sector, this version that includes right-handed
neutrinos is going to be called the economical 3-3-1 model [36–42]. The interested reader can
find the supersymmetric version in [43–46].

This kind of model was proposed in [36] but has not got enough attention. In [37],
phenomenology of this model was presented without mixing between charged gauge bosons
as well as neutral ones. The mass spectrum of the mentioned scalar sector has also been
presented in [36], and some couplings of the two neutral scalar fields with the chargedW and
the neutral Z gauge bosons in the standard model were presented. From explicit expression
for the ZZH vertex, the authors concluded that two VEVs responsible for the second step of
spontaneous symmetry breaking have to be in the same range u ∼ v, or the theory needs an
additional scalar triplet. As we will show in the following, this conclusion is incorrect.
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It is well known that the electroweak symmetry breaking in the standard model is
achieved via the Higgs mechanism. In the Weinberg-Salam model, there is a single complex
scalar doublet, where the Higgs boson H is the physical neutral Higgs scalar which is the
only remaining part of this doublet after spontaneous symmetry breaking. In the extended
models, there are additional charged and neutral scalar Higgs particles. The prospects for
Higgs coupling measurements at the CERN Large Hadron Collider (LHC) have recently been
analyzed in detail in [47]. The experimental detection of the H will be great triumph of the
standard model of electroweak interactions and will mark new stage in high-energy physics.

In extended Higgs models, which would be deduced in the low-energy effective
theory of new physics models, additional Higgs bosons like charged and CP-odd scalar
bosons are predicted. Phenomenology of these extra scalar bosons strongly depends on the
characteristics of each new physics model. By measuring their properties like masses, widths,
production rates, and decay branching ratios, the outline of physics beyond the electroweak
scale can be experimentally determined.

The interesting feature compared with other 3-3-1 models is the Higgs physics. In the
3-3-1 models, the general Higgs sector is very complicated [48–51] and this prevents the
models’ predicability. The scalar sector of the considering model is one of subjects in the
present work. As shown, by couplings of the scalar fields with the ordinary gauge bosons
such as the photon, theW , and the neutralZ gauge bosons, we are able to identify full content
of the Higgs sector in the standard model including the neutral H and the Goldstone bosons
eaten by their associated massive gauge ones. All interactions among Higgs-gauge bosons in
the standard model are recovered.

Production of the Higgs boson in the 3-3-1 model with right-handed neutrinos at LHC
has been considered in [52]. In scalar sector of the considered model, there exists the singly-
charged boson H±2 , which is a subject of intensive current studies [53, 54]. The trilinear
coupling ZW±H∓ which differs at the tree level, from zero only in the models with Higgs
triplets plays a special role on study phenomenology of these exotic representations. We will
pay particular interest on this boson.

At the tree level, the mass matrix for the upquarks has one massless state, and in
the downquark sector there are two massless ones. This calls for radiative corrections. To
solve this problem, the authors in [37] have introduced the third Higgs triplet. In this sense,
the economical 3-3-1 model is not realistic. In the present work, we will show that this is a
mistake! Without the third one, at the one loop level, the fermions in this model, with the
given set of parameters, gain a consistent mass spectrum. A numerical evaluation leads us
to conclusion that in the model under consideration, there are two scales for masses of the
exotic quarks.

At the tree level, the neutrino spectrum is Dirac particles with one massless and
two degenerate in mass ∼ hνv. This spectrum is not realistic under the data because there
is only one squared-mass splitting. Since the observed neutrino masses are so small, the
Dirac mass is unnatural. One must understand what physics gives hνv � hlv—the mass
of charged leptons. In contrast to the seesaw cases [55–62] in which the problem can be
solved, in this model the neutrinos including the right-handed ones get only small masses
through radiative corrections [42, 49, 63–78]. We will obtain these radiative corrections and
will provide a possible explanation of natural smallness of the neutrino masses. This is not
the result of a seesaw, but it is due to a finite mass renormalization arising from a very
different radiative mechanism. We will show that the neutrinos can get mass not only from
the standard symmetry breakdown, but also from the electroweak SU(3)L ⊗ U(1)X breaking
associated with spontaneous lepton-number breaking (SLB), and even through the explicit
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lepton-number violating processes due to a new physics. The total neutrino mass spectrum
at the one-loop level is neat and can fit the data.

This report is organized as follows. In Section 2, we give a review of the model with
stressing on the gauge bosons, currents, and constraints on the new physics. The Higgs-gauge
interactions and scalar content are considered in Section 3. Section 4 is devoted to fermion
masses. We summarize our results and make conclusions in the last section—Section 5.

2. The economical 3-3-1 model

We first recall the idea of constructing the model. An exact diagonalization of charged and
neutral gauge boson sectors and their masses and mixings are presented. Because of the
mixings, currents in this model have unusual features which are obtained then. Constraints
on the parameters and some phenomena are sketched.

2.1. Particle content

The fermion content which is anomaly free is given by (1.10) like that of the 3-3-1 model with
right-handed neutrinos. However, contrasting with the ordinary model in which the third
generation of quarks should be discriminating [28], in the model under consideration the
first generation has to be different from the two others. This results from the mass patterns
for the quarks which will be derived in Section 4.

The 3-3-1 gauge group is broken spontaneously via two stages. In the first stage, it is
embedded in that of the standard model via a Higgs scalar triplet:

χ =

⎛
⎜⎜⎝
χ0

1

χ−2

χ0
3

⎞
⎟⎟⎠ ∼

(
1, 3,−1

3

)
(2.1)

with the VEV given by

〈χ〉 = 1√
2

⎛
⎝u

0
ω

⎞
⎠ . (2.2)

In the last stage, to embed the standard model gauge symmetry in SU(3)C ⊗ U(1)Q, another
Higgs scalar triplet is needed:

φ =

⎛
⎜⎜⎝
φ+

1

φ0
2

φ+
3

⎞
⎟⎟⎠ ∼

(
1, 3,

2
3

)
(2.3)

with the VEV as follows:

〈φ〉 = 1√
2

⎛
⎝0
v
0

⎞
⎠ . (2.4)
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Table 1: Nonzero lepton number L of the model particles.

Field νaL laL,R νcaR χ0
1 χ−2 φ+

3 UL,R DαL,R

L 1 1 −1 2 2 −2 −2 2

The Yukawa interactions which induce masses for the fermions can be written in the most
general form as follows:

LY = LLNC +LLNV, (2.5)

where LNC and LNV, respectively, indicate to the lepton number conserving and violating
ones as shown below. Here, each part is defined by

LLNC = hUQ1LχUR + hDαβQαLχ
∗DβR + hdaQ1LφdaR + huαaQαLφ

∗uaR

+ hlab ψaLφlbR + hνabεpmn
(
ψ c
aL

)
p

(
ψbL

)
m(φ)n + H.c.,

(2.6)

LLNV = suaQ1LχuaR + sdαaQαLχ
∗daR + sDα Q1LφDαR + sUα QαLφ

∗UR + H.c., (2.7)

where p, m, and n stand for SU(3)L indices.
The VEV ω gives mass for the exotic quarks U and Dα: u gives mass for u1, dα, while

v gives mass for uα, d1, and all ordinary leptons. In Section 4, we will provide more details
on analysis of fermion masses. As mentioned, ω is responsible for the first stage of symmetry
breaking, while the second stage is due to u and v; therefore, the VEVs in this model satisfies
the constraint:

u2, v2 � ω2. (2.8)

The Yukawa couplings in (2.6) possess an extra global symmetry [49, 50] which is not broken
by v, ω, but by u. From these couplings, one can find the following lepton symmetry L
as in Table 1 (only the fields with nonzero L are listed; all other fields have vanishing L).
Here, L is broken by u which is behind L(χ0

1) = 2, that is, u is a kind of the SLB scale
[79–83]. It is interesting that the exotic quarks also carry the lepton number (so-called
leptoquarks); therefore, this L obviously does not commute with the gauge symmetry. One
can then construct a new conserved charge L through L by making a linear combination
L = xT3 + yT8 +LI. Applying L on a lepton triplet, the coefficients will be determined:

L =
4√
3
T8 +LI. (2.9)

Another useful conserved charge Bwhich is exactly not broken by u, v, andω is usual baryon
number: B = BI. Both the charges L and B for the fermion and Higgs multiplets are listed in
Table 2.

Let us note that the Yukawa couplings of (2.7) conserve B, however, violate Lwith ±2
units which implies that these interactions are much smaller than the first ones [41]:

sua, s
d
αa, s

D
α , s

U
α � hU, hDαβ, h

d
a, h

u
αa. (2.10)
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Table 2: B and L charges of the model multiplets.

Multiplet χ φ Q1L QαL uaR daR UR DαR ψaL laR

B-charge 0 0
1
3

1
3

1
3

1
3

1
3

1
3

0 0

L-charge
4
3

−2
3

−2
3

2
3

0 0 −2 2
1
3

1

In previous studies [19, 37, 84–86], the LNV terms of this kind have often been excluded,
commonly by the adoption of an appropriate discrete symmetry. There is no reason within
the 3-3-1 models why such terms should not be present.

In this model, the most general Higgs potential has very simple form:

V (χ, φ) = μ2
1χ
†χ + μ2

2φ
†φ + λ1

(
χ†χ

)2
+ λ2

(
φ†φ

)2
+ λ3

(
χ†χ

)(
φ†φ

)
+ λ4

(
χ†φ

)(
φ†χ

)
.

(2.11)

It is noteworthy that V (χ, φ) does not contain trilinear scalar couplings and conserves
both the mentioned global symmetries; this makes the Higgs potential much simpler and
discriminative from the previous ones of the 3-3-1 models [48–51]. This potential is closer to
that of the standard model. In the next section, we will show that after spontaneous symmetry
breaking, there are eight Goldstone bosons—the needed number for massive gauge ones and
three physical scalar fields (one charged and two neutral). One of two physical neutral scalars
is the standard model Higgs boson.

To break the gauge symmetry spontaneously, the Higgs vacuums are not SU(3)L ⊗
U(1)X singlets. Hence, nonzero values of χ and φ at the minimum value of V (χ, φ) can be
easily obtained by (for details, see Section 3):

χ†χ ≡ u
2 +ω2

2
=
λ3μ

2
2 − 2λ2μ

2
1

4λ1λ2 − λ2
3

, (2.12)

φ†φ ≡ v
2

2
=
λ3μ

2
1 − 2λ1μ

2
2

4λ1λ2 − λ2
3

. (2.13)

It is important noting that any other choice of u, ω for the vacuum value of χ satisfying (2.12)
gives the same physics because it is related to (2.2) by an SU(3)L ⊗ U(1)X transformation.
It is worth noting that the assumed u/= 0 is, therefore, given in a general case. This model,
however, does not lead to the formation of Majoron [79–83, 87].

2.2. Gauge bosons

The covariant derivative of a triplet is given by

Dμ = ∂μ − igTiWiμ − igXT9XBμ ≡ ∂μ − iPμ, (2.14)

where the gauge fields Wi and B transform as the adjoint representations of SU(3)L and
U(1)X , respectively, and the corresponding gauge coupling constants g, gX . Moreover,
T9 = (1/

√
6)diag(1, 1, 1) is fixed so that the relation Tr(TiTj) = (1/2)δij (i, j = 1, 2, . . . , 9)
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is satisfied. The Pμ matrix appeared in the above covariant derivative is rewritten in a
convenient form:

Pμ =
g

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

W3μ +
W8μ√

3
+ t
√

2
3
XBμ

√
2W ′+

μ

√
2X′0μ

√
2W ′−

μ −W3μ +
W8μ√

3
+ t
√

2
3
XBμ

√
2Y ′−μ

√
2X′0∗μ

√
2Y ′+μ −

2W8μ√
3

+ t
√

2
3
XBμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.15)

where t ≡ gX/g. Let us denote the following combinations:

W ′±
μ ≡

W1μ ∓ iW2μ√
2

, Y ′∓μ ≡
W6μ ∓ iW7μ√

2
, X′0μ ≡

W4μ − iW5μ√
2

(2.16)

having defined charges under the generators of the SU(3)L group. For the sake of convenience
in further reading, we note that W4 and W5 are pure real and imaginary parts of X′0μ and X′0∗μ ,
respectively:

W4μ =
1√
2

(
X′0μ +X′0∗μ

)
, W5μ =

i√
2

(
X′0μ −X′0∗μ

)
. (2.17)

The masses of the gauge bosons in this model are followed from

LGB
mass

=
(
Dμ〈φ〉

)†(
Dμ〈φ〉

)
+
(
Dμ〈χ〉

)†(
Dμ〈χ〉

)

=
g2

4
(
u2 + v2)W ′−

μ W
′+μ +

g2

4
(
ω2 + v2)Y ′−μY ′+μ + g2uω

4
(
W ′−

μ Y
′+μ + Y ′−μ W

′+μ)

+
g2v2

8

(
−W3μ +

1√
3
W8μ + t

2
3

√
2
3
Bμ

)2

+
g2u2

8

(
W3μ +

1√
3
W8μ − t

1
3

√
2
3
Bμ

)2

+
g2ω2

8

(
− 2√

3
W8μ − t

1
3

√
2
3
Bμ

)2

+
g2uω

4
√

2

(
W3μ +

1√
3
W8μ − t

1
3

√
2
3
Bμ

)(
X′

0μ +X′0∗μ
)

+
g2uω

4
√

2

(
− 2√

3
W8μ − t

1
3

√
2
3
Bμ

)(
X′

0μ +X′0∗μ
)

+
g2

16
(
u2 +ω2){(X′0μ +X′0∗μ

)2
+
[
i
(
X′0μ −X′0∗μ

)]2
}
.

(2.18)

The combinations W ′ and Y ′ are mixing via

LCG
mass =

g2

4
(
W ′−

μ , Y
′−
μ

)(u2 + v2 uω
uω ω2 + v2

)(
W ′+μ

Y ′+μ

)
. (2.19)
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Diagonalizing this mass matrix, we get physical charged gauge bosons:

Wμ = cos θW ′
μ − sin θ Y ′μ, Yμ = sin θW ′

μ + cos θ Y ′μ, (2.20)

where the mixing angle is defined by

tan θ =
u

ω
. (2.21)

The mass eigenvalues are

M2
W =

g2v2

4
, (2.22)

M2
Y =

g2

4
(
u2 + v2 +ω2). (2.23)

Because of the constraints in (2.8), the following remarks are in order:

(1) θ should be very small, and then Wμ �W ′
μ, Yμ � Y ′μ;

(2) v � vweak = 246 GeV due to identification of W as the W boson in the standard
model.

Next, from (2.18), the W5 gains mass as follows:

M2
W5

=
g2

4
(
ω2 + u2). (2.24)

Finally, there is a mixing among W3, W8, B, W4 components. In the basis of these elements,
the mass matrix is given by

M2 =
g2

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2 + v2 u2 − v2

√
3

− 2t

3
√

6

(
u2 + 2v2) 2uω

u2 − v2

√
3

1
3
(
4ω2 + u2 + v2) √

2t
9

(
2ω2 − u2 + 2v2) − 2√

3
uω

− 2t

3
√

6

(
u2 + 2v2) √2t

9
(
2ω2 − u2 + 2v2) 2t2

27
(ω2 + u2 + 4v2) − 8t

3
√

6
uω

2uω − 2√
3
uω − 8t

3
√

6
uω u2 +ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.25)

Note that the mass Lagrangian in this case has the form

LNG
mass =

1
2
V TM2V, V T ≡

(
W3,W8, B,W4

)
. (2.26)

In the limit u → 0, W4 does not mix with W3, W8, B. In the general case u/= 0, the mass
matrix in (2.25) contains two exact eigenvalues such as

M2
γ = 0, M2

W ′
4
=
g2

4
(
ω2 + u2). (2.27)



P. V. Dong and H. N. Long 13

Thus, the W ′
4 and W5 components have the same mass, and this conclusion contradicts the

previous analysis in [36]. With this result, we should identify the combination of W ′
4 and W5:

√
2X0

μ =W ′
4μ − iW5μ (2.28)

as physical neutral non-Hermitian gauge boson. The subscript 0 denotes neutrality of gauge
boson X. However, in the following, this subscript may be dropped. This boson caries the
lepton number with two units. Hence, it is the bilepton like those in the usual 3-3-1 model
with right-handed neutrinos. From (2.22), (2.23), and (2.27), it follows an interesting relation
between the bilepton masses similar to the law of Pythagoras:

M2
Y =M2

X +M2
W. (2.29)

Thus, the charged bilepton Y is slightly heavier than the neutral one X. Remind that the
similar relation in the 3-3-1 model with right-handed neutrinos is [88]: |M2

Y −M
2
X | ≤ m

2
W .

Now, we turn to the eigenstate question. The eigenstates corresponding to the two
values in (2.27) are determined as follows:

Aμ =
1√

18 + 4t2

⎛
⎜⎜⎝
√

3t
−t

3
√

2
0

⎞
⎟⎟⎠ , W ′

4μ =
1√

1 + 4 tan2 2θ

⎛
⎜⎜⎝

tan 2θ√
3 tan 2θ

0
1

⎞
⎟⎟⎠ . (2.30)

To embed this model in the effective theory at the low energy, we follow an appropriate
method in [89, 90], where the photon field couples with the lepton by strength:

LEM
int = −

√
3gX√

18 + 4t2
lγμlAμ. (2.31)

Therefore, the coefficient of the electromagnetic coupling constant can be identified as
√

3gX√
18 + 4t2

= e. (2.32)

Using continuation of the gauge coupling constant g of SU(3)L at the spontaneous symmetry
breaking point,

g = g
[
SU(2)L

]
=

e

sW
(2.33)

from which it follows

t =
3
√

2sW√
3 − 4s2

W

. (2.34)

The eigenstates are now rewritten as follows:

Aμ = sWW3μ + cW

(
− tW√

3
W8μ +

√
1 −

t2W
3
Bμ

)
,

W ′
4μ =

t2θ√
1 + 4t22θ

W3μ +
√

3t2θ√
1 + 4t22θ

W8μ +
1√

1 + 4t22θ
W4μ,

(2.35)

where we have denoted sW ≡ sin θW, t2θ ≡ tan 2θ and so forth.
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The diagonalization of the mass matrix is done via three steps. In the first step, it is in
the base of (Aμ,Zμ, Z

′
μ,W4μ), where the two remaining gauge vectors are given by

Zμ = cWW3μ − sW

(
− tW√

3
W8μ +

√
1 −

t2W
3
Bμ

)
,

Z′μ =

√
1 −

t2W
3
W8μ +

tW√
3
Bμ.

(2.36)

In this basis, the mass matrix M2 becomes

M′2 =
g2

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0
u2 + v2

c2
W

c2Wu
2 − v2

c2
W

√
3 − 4s2

W

2uω
cW

0
c2Wu

2 − v2

c2
W

√
3 − 4s2

W

v2 + 4c4
Wω

2 + c2
2Wu

2

c2
W

(
3 − 4s2

W

) − 2uω

cW
√

3 − 4s2
W

0
2uω
cW

− 2uω

cW
√

3 − 4s2
W

u2 +ω2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.37)

Also, in the limit u → 0, W4μ does not mix with Zμ, Z
′
μ. The eigenstate W ′

4μ is now defined
by

W ′
4μ =

t2θ

cW
√

1 + 4t22θ
Zμ +

√
4c2

W − 1t2θ

cW
√

1 + 4t22θ

Z′μ +
1√

1 + 4t22θ
W4μ. (2.38)

We turn to the second step. To see explicitly that the following basis is orthogonal and
normalized, let us put

sθ′ ≡
t2θ

cW
√

1 + 4t22θ
, (2.39)

which leads to

W ′
4μ = sθ′Zμ + cθ′

[
tθ′
√

4c2
W − 1Z′μ +

√
1 − t2

θ′

(
4c2

W − 1
)
W4μ

]
. (2.40)

Note that the mixing angle in this step θ′ is the same order as the mixing angle in the charged
gauge boson sector. Taking into account [3] s2

W � 0.231, from (2.39) we get sθ′ � 2.28sθ. It is
now easy to choose two remaining gauge vectors orthogonal to W ′

4μ:

Zμ = cθ′Zμ − sθ′
[
tθ′
√

4c2
W − 1Z′μ +

√
1 − t2θ′

(
4c2

W − 1
)
W4μ

]
,

Z′μ =
√

1 − t2θ′
(
4c2

W − 1
)
Z′μ − tθ′

√
4c2

W − 1W4μ.

(2.41)
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Therefore, in the base of (Aμ,Zμ,Z′μ,W ′
4μ), the mass matrix M′2 has a quasi-diagonal form:

M′′2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 m2
Z m2

ZZ′ 0

0 m2
ZZ′ m2

Z′ 0

0 0 0
g2

4
(
u2 +ω2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.42)

with

m2
Z =

(
1 + 3t22θ

)
u2 +

(
1 + 4t22θ

)
v2 − t22θω

2

4g−2
[
c2
W +

(
3 − 4s2

W

)
t22θ
] ,

m2
ZZ′ =

√
1 + 4t22θ

{[
c2W +

(
3 − 4s2

W

)
t22θ
]
u2 − v2 −

(
3 − 4s2

W

)
t22θω

2}
4g−2

√
3 − 4s2

W

[
c2
W +

(
3 − 4s2

W

)
t22θ
] ,

m2
Z′ =

[
c2

2W +
(
3 − 4s2

2W

)
t22θ
]
u2 + v2 +

[
4c4

W +
(
1 + 4c2

W

)(
3 − 4s2

W

)
t22θ
]
ω2

4g−2
(
3 − 4s2

W

)[
c2
W +

(
3 − 4s2

W

)
t22θ
] .

(2.43)

In the last step, it is trivial to diagonalize the mass matrix in (2.42). The two remaining mass
eigenstates are given by

Z1
μ = cϕZμ − sϕZ′μ, Z2

μ = sϕZμ + cϕZ′μ, (2.44)

where the mixing angle ϕ between Z and Z′ is defined by

t2ϕ =
{[(

3 − 4s2
W

)(
1 + 4t22θ

)]1/2{[
c2W +

(
3 − 4s2

W

)
t22θ
]
u2 − v2 −

(
3 − 4s2

W

)
t22θω

2}}
×
{[

2s4
W − 1 +

(
8s4

W − 2s2
W − 3

)
t22θ
]
u2 −

[
c2W + 2

(
3 − 4s2

W

)
t22θ
]
v2

+
[
2c4

W +
(
8s4

W + 9c2W
)
t22θ
]
ω2}−1

.

(2.45)

The physical mass eigenvalues are defined by

M2
Z1 =

[
2g−2(3 − 4s2

W

)]−1
{
c2
W

(
u2 +ω2) + v2

−
√[

c2
W

(
u2 +ω2

)
+ v2

]2 +
(
3 − 4s2

W

)(
3u2ω2 − u2v2 − v2ω2

)}
,

M2
Z2 =

[
2g−2(3 − 4s2

W

)]−1
{
c2
W

(
u2 +ω2) + v2

+
√[

c2
W

(
u2 +ω2

)
+ v2

]2 +
(
3 − 4s2

W

)(
3u2ω2 − u2v2 − v2ω2

)}
.

(2.46)
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Because of the condition (2.8), the angle ϕ has to be very small:

t2ϕ � −

√
3 − 4s2

W

[
v2 +

(
11 − 14s2

W

)
u2]

2c4
Wω

2
. (2.47)

In this approximation, the above physical states have masses:

M2
Z1 �

g2

4c2
W

(
v2 − 3u2), (2.48)

M2
Z2 �

g2c2
Wω

2

3 − 4s2
W

. (2.49)

Consequently, Z1 can be identified as the Z boson in the standard model, and Z2 being the
new neutral (Hermitian) gauge boson. It is important to note that in the limit u → 0 the
mixing angle ϕ between Z and Z′ is always nonvanishing. This differs from the mixing
angle θ between the W boson of the standard model and the singly-charged bilepton Y .
Phenomenology of the mentioned mixing is quite similar to the WL −WR mixing in the left-
right symmetric model based on the SU(2)R ⊗ SU(2)L ⊗U(1)B−L group (the interested reader
can find in [90]).

2.3. Currents

The interaction among fermions with gauge bosons arises in part from

i ψγμD
μψ = kinematic terms +HCC +HNC. (2.50)

2.3.1. Charged currents

Despite neutrality, the gauge bosonsX0, X0∗ belong to this section by their nature. Because of
the mixing among the standard model W boson and the charged bilepton Y as well as among
(X0 +X0∗) with (W3,W8, B), the new interaction terms exist as follows:

HCC =
g
√

2

(
J
μ−
W W+

μ + Jμ−Y Y+
μ + Jμ0∗

X X0
μ + H.c.

)
, (2.51)

where

J
μ−
W = cθ

(
νaLγ

μlaL + uaLγμdaL
)
− sθ

(
ν caLγ

μlaL +ULγ
μd1L + uαLγμDαL

)
, (2.52)

J
μ−
Y = cθ

(
ν caLγ

μlaL +ULγ
μd1L + uαLγμDαL

)
+ sθ

(
νaLγ

μlaL + uaLγμdaL
)
, (2.53)

J
μ0∗
X �

(
1 − t22θ

)(
νaLγ

μν caL + u1Lγ
μUL −DαLγ

μdαL
)

− t22θ
(
ν caLγ

μνaL +ULγ
μu1L − dαLγμDαL

)
+

t2θ√
1 + 4t22θ

×
(
νaγ

μνa + u1Lγ
μu1L −ULγ

μUL − dαLγμdαL +DαLγ
μDαL

)
.

(2.54)
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Comparing with the charged currents in the usual 3-3-1 model with right-handed neutrinos
[34, 35], we get the following discrepancies:

(1) the second term in (2.52),

(2) the second term in (2.53),

(3) the second and the third terms in (2.54).

All above-mentioned interactions are lepton-number violating and weak (proportional to
sin θ or its square sin2θ). However, these couplings lead to lepton-number violations only
in the neutrino sector.

2.3.2. Neutral currents

As before, in this model, a real part of the non-Hermitian neutral X′0 mixes with the real
neutral ones such as Z and Z′. This gives the unusual term as follows:

HNC = eAμJEM
μ +LNC +LNC

unnormal. (2.55)

Despite the mixing among W3, W8, B, W4, the electromagnetic interactions remain the same
as in the standard model and the usual 3-3-1 model with right-handed neutrinos, that is,

JEM
μ =

∑
f

qffγμf, (2.56)

where f runs among all the fermions of the model.
Interactions of the neutral currents with fermions have a common form:

LNC =
g

2cW
fγμ

[
gkV (f) − gkA(f)γ5]fZk

μ, k = 1, 2, (2.57)

where

g1V (f) =
cϕ
{
T3
(
fL
)
− 3t22θX

(
fL
)
+
[(

3 − 8s2
W

)
t22θ − 2s2

W

]
Q(f)

}
√(

1 + 4t22θ
)[

1 +
(
3 − t2W

)
t22θ
]

−
sϕ
[(

4c2
W − 1

)
T3
(
fL
)
+ 3c2

WX
(
fL
)
−
(
3 − 5s2

W

)
Q(f)

]
√(

4c2
W − 1

)[
1 +

(
3 − t2W

)
t22θ
] ,

g1A(f) =
cϕ
[
T3
(
fL
)
− 3t22θ(X −Q)

(
fL
)]

√(
1 + 4t22θ

)[
1 +

(
3 − t2W)t22θ

]

−
sϕ
[(

4c2
W − 1

)
T3
(
fL
)
+ 3c2

W(X −Q)
(
fL
)]

√(
4c2

W − 1
)[

1 +
(
3 − t2W

)
t22θ
] ,

g2V (f) = g1V (f)
(
cϕ −→ sϕ, sϕ −→ −cϕ

)
,

g2A(f) = g1A(f)
(
cϕ −→ sϕ, sϕ −→ −cϕ

)
.

(2.58)
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Table 3: The Z1
μ → ff couplings.

f g1V (f) g1A(f)

νa
cϕ − sϕ

√(
4c2

W − 1
)(

1 + 4t22θ
)

2
√(

1 + 4t22θ
)[

1 +
(
3 − t2W

)
t22θ
] cϕ

√(
4c2

W − 1
)(

1 + 4t22θ
)
+ sϕ

2
√(

4c2
W − 1

)[
1 +

(
3 − t2W

)
t22θ
]

la

(
3 − 4c2

W

)[
cϕ
√(

4c2
W − 1

)(
1 + 4t22θ

)
+ sϕ

]
2
√(

4c2
W − 1

)[
1 +

(
3 − t2W

)
t22θ
] −

cϕ
√(

4c2
W − 1

)(
1 + 4t22θ

)
+ sϕ

2
√(

4c2
W − 1

)[
1 +

(
3 − t2W

)
t22θ
]

u1

cϕ
√

4c2
W−1

[
3
(
1+2t22θ

)
−8s2

W

(
1+4t22θ

)]
−sϕ

(
3+2s2

W

)√
1+4t22θ

6
√(

4c2
W − 1

)(
1 + 4t22θ

)[
1 +
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)
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√
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] −
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+ sϕ
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(
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]
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+ sϕ

]
6
√(

4c2
W − 1

)[
1 +

(
3 − t2W

)
t22θ
] cϕ
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)[
1 +

(
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)
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]
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√
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[(
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)
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√
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(
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)
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√(
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)(
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(
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)
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√
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[
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W

(
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+sϕ
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W

)√
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3
√(

4c2
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)(
1 + 4t22θ

)[
1 +

(
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)
t22θ
] cϕ

√
4c2

W−1t22θ+sϕc
2
W

√
1+4t22θ√(
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)(
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(
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√
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[
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W

(
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)
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−sϕ

(
3−5s2

W

)√
1+4t22θ

3
√(
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)(
1 + 4t22θ
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(
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cϕ
√
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√
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(
3−t2W

)
t22θ
]

Here, T3(fL), X(fL), and Q(f) are, respectively, the third component of the weak isospin, the
U(1)X charge, and the electric charge of the fermion fL. Note that the isospin for the SU(2)L
fermion singlet (in the bottom of triplets) vanishes: T3(fL) = 0. The values of g1V (f), g1A(f)
and g2V (f) are listed in Tables 3 and 4.

Because of the above-mentioned mixing, the lepton-number violating interactions
mediated by neutral gauge bosons Z1 and Z2 exist in the neutrino and the exotic quark sectors:

LNC
unnormal = −

gt2θgkV (ν)
2

(
νaLγ

μν caL + u1Lγ
μUL −DαLγ

μdαL
)
Zk
μ + H.c. (2.59)

Again, these interactions are very weak and proportional to sin θ. From (2.52)–(2.54) and
(2.59), we conclude that all lepton-number violating interactions are expressed in the terms
dependent only in the mixing angle between the charged gauge bosons.
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2.4. Phenomenology

First of all, we should find some constraints on the parameters of the model. There are many
ways to get constraints on the mixing angle θ and the charged bilepton mass MY . Below we
present a simple one. In our model, the W boson has the following normal main decay modes:

W − −→ l ν̃l (l = e, μ, τ),

↘ ucd, ucs, ucb, (u −→ c),
(2.60)

which are the same as in the standard model and in the 3-3-1 model with right-handed
neutrinos. Beside the above MODES, there are additional ones which are lepton-number
violating (ΔL = 2)—the model’s specific feature:

W− −→ l νl (l = e, μ, τ). (2.61)

It is easy to compute the tree-level decay widths as follows [91, 92]:

ΓBorn(W −→ lν̃l
)
=
g2c2

θ

8
MW

6π
(1 − x)

(
1 − x

2
− x

2

2

)
�
c2
θ
αMW

12s2
W

,

ΓBorn(W −→ l νl
)
=
g2s2

θ

8
MW

6π
(1 − x)

(
1 − x

2
− x

2

2

)
�
s2
θ
αMW

12s2
W

, x ≡
m2
l

M2
W

,

∑
color

ΓBorn(W −→ uci dj
)
=

3g2c2
θ

8
MW

6π
∣∣Vij∣∣2[1 − 2

(
x + x

)
+
(
x − x

)2]1/2

×
[

1 − x + x
2
−
(
x − x

)2

2

]
�
c2
θ
αMW

4s2
W

∣∣Vij∣∣2
, x ≡

m2
dj

M2
W

, x ≡
m2
uci

M2
W

.

(2.62)

Quantum chromodynamics radiative corrections modify (2.62) by a multiplicative factor [3,
91, 92]:

δQCQ =
1 + αs

(
MZ

)
π

+
1.409α2

s

π2
−

12.77α3
s

π3
� 1.04, (2.63)

which is estimated from αs(MZ) � 0.12138. All the state masses can be ignored, the predicted
total width for W decay into fermions is

Γtot
W = 1.04

αMW

2s2
W

(
1 − s2

θ

)
+
αMW

4s2
W

. (2.64)

Taking α(MZ) � 1/128, MW = 80.425 GeV, s2
W = 0.2312, and Γtot

W = 2.124 ± 0.041 GeV [3], in
Figure 1, we have plotted Γtot

W as function of sθ. From the figure we get an upper limit:

sin θ ≤ 0.08. (2.65)

It is important to note that this limit value on the LNV parameter u/ω is much larger than
those in [50, 93, 94].
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Figure 1: W width as function of sin θ, and the horizontal lines are an upper and a lower limit.
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Figure 2: Feynman diagram for the wrong muon decay μ− → e−νeν̃μ.

Since one of the VEVs is closely to the those in the standard model: v � vweak =
246 GeV, therefore only two free VEVs exist in the considering model, namely, u and ω. The
bilepton mass limit can be obtained from the “wrong” muon decay:

μ− −→ e−νeν̃μ, (2.66)

mediated at the tree level, by both the standard model W and the singly-charged bilepton
Y (see Figure 2). Remind that in the 3-3-1 model with right-handed neutrinos, at the lowest
order, this decay is mediated only by the singly-charged bilepton Y . In our case, the second
diagram in Figure 2 gives main contribution. Taking into account of the famous experimental
data [3]

Rmuon ≡
Γ
(
μ− −→ e−νeν̃μ

)
Γ
(
μ− −→ e−ν̃eνμ

) < 1.2% 90% CL, (2.67)

we get the constraint: Rmuon �M4
W/M

4
Y . Therefore, it follows that MY ≥ 230 GeV.

However, the stronger bilepton mass bound of 440 GeV has been derived from
consideration of experimental limit on lepton-number violating charged lepton decays [85].

In the case of u → 0, analyzing the Z decay width [37, 95, 96], the Z −Z′ mixing angle
is constrained by −0.0015 ≤ ϕ ≤ 0.001. From atomic parity violation in cesium, bounds for
mass of the new exotic Z′ and the Z − Z′ mixing angles, again in the limit u → 0, are given
[37, 95, 96]:

−0.00156 ≤ ϕ ≤ 0.00105, MZ2 ≥ 2.1 TeV. (2.68)
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Table 4: The Z2
μ → ff couplings.

f g2V (f) g2A(f)

νa
sϕ + cϕ

√(
4c2

W − 1
)(

1 + 4t22θ
)

2
√(

1 + 4t22θ
)[

1 +
(
3 − t2W

)
t22θ
] sϕ

√(
4c2
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)(
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)
− cϕ

2
√(
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)[
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(
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)
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]
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W
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4c2
W − 1

)(
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)
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]
2
√(

4c2
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(
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)
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] −
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√(
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)(
1 + 4t22θ

)
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(
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)
t22θ
]
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√

4c2
W−1

[
3
(
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(
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+cϕ

(
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These values coincide with the bounds in the usual 3-3-1 model with right-handed neutrinos
[97]. The interested reader can find in [40] for the general case u/= 0 of the constraints.

For our purpose, we consider the ρ parameter—one of the most important quantities
of the standard model, having a leading contribution in terms of the T parameter, is very
useful to get the new-physics effects. It is well-known relation between ρ and T parameter:

ρ = 1 + αT. (2.69)

In the usual 3-3-1 model with right-handed neutrinos, T gets contribution from the oblique
correction and the Z − Z′ mixing [88]:

TRHN = TZZ′ + Toblique, (2.70)

where TZZ′ � (tan2 ϕ/α)(M2
Z2
/M2

Z1
− 1) is negligible for MZ′ less than 1 TeV; Toblique depends

on masses of the top quark and the standard model Higgs boson. Again, at the tree level
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Figure 3: Feynman diagram for μ− → e−νeνμ.

and the limit (2.8), from (2.22) and (2.48) we get an expression for the ρ parameter in the
considering model:

ρ =
M2

W

c2
WM

2
Z1

=
v2

v2 − 3u2
� 1 +

3u2

v2
. (2.71)

Note that (2.71) has only one free parameter u, since v is very close to the VEV in the standard
model. Neglecting the contribution from the usual 3-3-1 model with right-handed neutrinos
and taking into account the experimental data [3] ρ = 0.9987 ± 0.0016, we get the constraint
on u parameter by u/v ≤ 0.01 which leads to u ≤ 2.46 GeV. This means that u is much smaller
than v, as expected.

It seems that the ρ parameter, at the tree level, in this model, is favorable to be bigger
than one and this is similar to the case of the models contained heavy Z′ [98].

The interesting new physics compared with other 3-3-1 models is the neutrino physics.
Due to lepton-number violating couplings, we have the following interesting consequences.

(1) Processes with ΔL = ±2

From the charged currents, we have the following lepton-number violating ΔL = ±2 decays
such as

μ− −→ e−νeνμ,

μ− −→ e−ν̃eν̃μ, (μ can be replaced by τ)
(2.72)

in which both the standard model W boson and charged bilepton Y−μ are in intermediate
states (see Figure 3). Here, the main contribution arises from the first diagram. Note that the
wrong muon decay violates only family lepton-number, that is, ΔL = 0, but not lepton number
at all as in (2.72). The decay rates are given by

Rrare ≡
Γ
(
μ− −→ e−νeνμ

)
Γ
(
μ− −→ e−ν̃eνμ

) =
Γ
(
μ− −→ e−ν̃eν̃μ

)
Γ
(
μ− −→ e−ν̃eνμ

) � s2
θ. (2.73)

Taking sθ = 0.08, we get Rrare � 6 × 10−3. This rate is the same as the wrong muon decay one.
Interesting to note that, the family lepton-number violating processes

νiνi −→ νjνj , (i /= j) (2.74)

are mediated not only by the non-Hermitian bilepton X but also by the Hermitian neutral
Z1, Z2 (see Figure 4).

The first diagram in Figure 4 exists also in the 3-3-1 model with right-handed
neutrinos, but the second one does not appear there.
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Figure 4: Feynman diagram for νiνi → νjνj (i /= j = e, μ, τ).

(2) Lepton-number violating kaon decays

Next, let us consider the lepton-number violating decay [3]:

K+ −→ π0 + e+ν̃e < 3 × 10−3 at 90% CL. (2.75)

This decay can be explained in the considering model as the subprocess given below:

s̃ −→ ũ + e+ν̃e. (2.76)

This process is mediated by the standard model W boson and the charged bilepton Y .
Amplitude of the considered process is proportional to sin θ:

M
(
s̃ −→ ũ + e+ν̃e

)
� sin 2θ

2M2
W

(
1 −

M2
W

M2
Y

)
. (2.77)

Next, let us consider the “normal decay” [3]:

K+ −→ π0 + e+νe (4.87 ± 0.06)% (2.78)

with amplitude

M
(
s̃ −→ ũ + e+νe

)
� 1
M2

W

. (2.79)

From (2.77) and (2.79), we get

Rkaon ≡
Γ
(
s̃ −→ ũ + e+ν̃e

)
Γ
(
s̃ −→ ũ + e+νe

) � sin2θ. (2.80)

In the framework of this model, we derive the following decay modes with rates:

Rkaon =
Γ
(
K+ −→ π0 + e+ν̃e

)
Γ
(
K+ −→ π0 + e+νe)

�
Γ
(
K+ −→ π0 + μ+ν̃μ

)
Γ
(
K+ −→ π0 + μ+νμ

) � sin2θ ≤ 6 × 10−3. (2.81)

Note that the similar lepton-number violating processes exist in the SU(2)R⊗SU(2)L⊗U(1)B−L
model (for details, see [90]).
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2.5. Summary

In this section, we have presented the 3-3-1 model with the minimal scalar sector (only two
Higgs triplets). This version belongs to the 3-3-1 model without exotic charges (charges of
the exotic quarks are 2/3 and −1/3). The spontaneous symmetry breakdown is achieved
with only two Higgs triplets. One of the VEVs u is a source of lepton-number violations
and a reason for the mixing between the charged gauge bosons—the standard model W and
the singly-charged bilepton gauge bosons as well as between neutral non-Hermitian X0 and
neutral gauge bosons: the Z and the new exotic Z′. At the tree level, masses of the charged
gauge bosons satisfy the law of Pythagoras M2

Y = M2
X +M2

W and in the limit ω � u, v, the
ρ parameter gets additional contribution dependent only on u/v. Thus, this leads to u � v,
and there are three quite different scales for the VEVs of the model: one is very small u �
O(1)GeV—a lepton-number violating parameter; the second v is close to the standard model
one: v � vweak = 246 GeV; and the last is in the range of new physics scale about O(1)TeV.

In difference with the usual 3-3-1 model with right-handed neutrinos, in this model
the first family of quarks should be distinctive of the two others.

The exact diagonalization of the neutral gauge boson sector is derived. Because of the
parameter u, the lepton-number violation happens only in neutrino but not in charged lepton
sector. It is interesting to note that despite the above-mentioned mixing, the electromagnetic
current remains unchanged. In this model, the lepton-number changing (ΔL = ±2) processes
exist but only in the neutrino sector.

It is worth mentioning on the advantage of the considered model: the new mixing
angle between the charged gauge bosons θ is connected with one of the VEVs u—the
parameter of lepton-number violations. There is no new parameter, but it contains very
simple Higgs sector, hence the significant number of free parameters is reduced.

The model contains of new kinds of interactions in the neutrino sector. Hence, neutrino
physics in this model is very rich. We will turn to further studies on neutrino masses and
mixing in Section 4.

3. Higgs-gauge boson interactions

We first obtain the scalar fields and mass spectra. The couplings of the scalar fields with the
ordinary gauge bosons are presented then. Cross section for the production of the charged
Higgs boson at LHC is calculated.

3.1. Higgs potential

The Higgs potential in the model under consideration is given by (2.11). Let us first shift the
Higgs fields into physical ones:

χ =

⎛
⎜⎜⎜⎝
χP0

1 +
u√
2

χ−2
χP0

3 +
ω√

2

⎞
⎟⎟⎟⎠ , φ =

⎛
⎜⎜⎝

φ+
1

φP0
2 +

v√
2

φ+
3

⎞
⎟⎟⎠ . (3.1)
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The subscript P denotes physical fields as in the usual treatment. However, in the following,
this subscript will be dropped. By substitution of (3.1) into (2.11), the potential becomes

V (χ, φ) = μ2
1

[(
χ0∗

1 +
u√
2

)(
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2
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(3.2)

From the above expression, we get constraint equations at the tree level:

μ2
1 + λ1

(
u2 +ω2) + λ3

v2

2
= 0,

μ2
2 + λ2v

2 + λ3

(
u2 +ω2)

2
= 0.

(3.3)

The nonzero values of χ and φ at the potential minimum as mentioned can be easily derived
from these equations to yield the given (2.12) and (2.13).

Since u is a parameter of lepton-number violation, therefore the terms linear in u
violate the latter. Applying the constraint (3.3), we get the minimum value, mass terms,
lepton-number conserving, and violating interactions as follows:

V (χ, φ) = Vmin + VN
mass + V

C
mass + VLNC + VLNV, (3.4)

where

Vmin = −λ2

4
v4 − 1

4
(
u2 +ω2)[λ1

(
u2 +ω2) + λ3v

2],
VN

mass = λ1
(
uS1 +ωS3

)2 + λ2v
2S2

2 + λ3v
(
uS1 +ωS3

)
S2,

(3.5)

V C
mass =

λ4

2
(
uφ+

1 + vχ+
2 +ωφ+

3
)(
uφ−1 + vχ−2 +ωφ−3

)
, (3.6)
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VLNC = λ1
(
χ†χ

)2 + λ2
(
φ†φ

)2 + λ3
(
χ†χ

)(
φ†φ

)
+ λ4

(
χ†φ

)(
φ†χ

)
+ 2λ1ωS3

(
χ†χ

)
+ 2λ2vS2

(
φ†φ

)
+ λ3vS2

(
χ†χ

)
+ λ3ωS3

(
φ†φ

)
+
λ4√

2

(
vχ−2 +ωφ−3

)(
χ†φ

)
+
λ4√

2

(
vχ+

2 +ωφ+
3
)(
φ†χ

)
,

(3.7)

VLNV = 2λ1uS1
(
χ†χ

)
+ λ3uS1

(
φ†φ

)
+
λ4√

2
u
[
φ−1
(
χ†φ

)
+ φ+

1

(
φ†χ

)]
. (3.8)

In the above equations, we have dropped the subscript P and used χ = (χ0
1, χ

−
2 , χ

0
3)
T , φ =

(φ+
1 , φ

0
2, φ

+
3 )

T . Moreover, we have expanded the neutral Higgs fields as

χ0
1 =

S1 + iA1√
2

, χ0
3 =

S3 + iA3√
2

, φ0
2 =

S2 + iA2√
2

. (3.9)

In the literature, the real parts (Si, i = 1, 2, 3) are also called CP-even scalar and the imaginary
part (Ai, i = 1, 2, 3)—CP-odd scalar. In this paper, for short, we call them scalar and
pseudoscalar field, respectively. As expected, the lepton-number violating part VLNC is linear
in u and trilinear in scalar fields. These couplings will be also a source for lepton-number
violations such as the mass spectra of quarks including exotic ones as well as neutrino
Majorana masses, but given at higher-order corrections.

In the pseudoscalar sector, all the fields are Goldstone bosons: G1 = A1, G2 = A2, and
G3 = A3 (cf. (3.5)). The scalar fields S1, S2, and S3 gain masses via (3.5), thus we get one
Goldstone boson G4 and two neutral physical fields—the standard model H0 and the new
H0

1 with masses:

m2
H0 = λ2v

2 + λ1
(
u2 +ω2) −√[

λ2v2 − λ1
(
u2 +ω2

)]2 + λ2
3v

2
(
u2 +ω2

)
�

4λ1λ2 − λ2
3

2λ1
v2,

(3.10)

M2
H0

1
= λ2v

2 + λ1
(
u2 +ω2) +√[

λ2v2 − λ1
(
u2 +ω2

)]2 + λ2
3v

2
(
u2 +ω2

)
� 2λ1ω

2. (3.11)

In term of original fields, the Goldstone and Higgs fields are given by

G4 =
1√

1 + t2
θ

(
S1 − tθS3

)
,

H0 = cζS2 −
sζ√

1 + t2
θ

(
tθS1 + S3

)
,

H0
1 = sζS2 +

cζ√
1 + t2θ

(
tθS1 + S3

)
,

(3.12)

where

t2ζ ≡
λ3MWMX

λ1M
2
X − λ2M

2
W

. (3.13)
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From (3.11), it follows that mass of the new Higgs boson MH0
1

is related to mass of the
bilepton gauge X0 (or Y± via the law of Pythagoras) through

M2
H0

1
=

8λ1

g2
M2

X

[
1 +O

(
M2

W

M2
X

)]
=

2λ1s
2
W

πα
M2

X

[
1 +O

(
M2

W

M2
X

)]
≈ 18.8λ1M

2
X. (3.14)

Here, we have used α = 1/128 and s2
W = 0.231.

In the charged Higgs sector, the mass terms for (φ1, χ2, φ3) are given by (3.6), thus
there are two Goldstone bosons and one physical scalar field:

H+
2 ≡

1√
u2 + v2 +ω2

(
uφ+

1 + vχ+
2 +ωφ+

3
)

(3.15)

with mass

M2
H+

2
=
λ4

2
(
u2 + v2 +ω2) = 2λ4

M2
Y

g2
=
s2
Wλ4

2πα
M2

Y � 4.7λ4M
2
Y . (3.16)

The two remaining Goldstone bosons are

G+
5 =

1√
1 + t2

θ

(
φ+

1 − tθφ
+
3
)
,

G+
6 =

1√(
1 + t2

θ

)(
u2 + v2 +ω2

)[v(tθφ+
1 + φ+

3
)
−ω

(
1 + t2θ

)
χ+

2
]
.

(3.17)

Thus, all the pseudoscalars are eigenstates and massless (Goldstone). Other fields are related
to the scalars in the weak basis by the linear transformations:

⎛
⎝H0

H0
1

G4

⎞
⎠ =

⎛
⎝−sζsθ cζ −sζcθ

cζsθ sζ cζcθ
cθ 0 −sθ

⎞
⎠

⎛
⎝S1

S2

S3

⎞
⎠ ,

⎛
⎝H+

2
G+

5
G+

6

⎞
⎠ =

1√
ω2 + c2

θ
v2

⎛
⎜⎜⎜⎜⎝

ωsθ vcθ ωcθ

cθ
√
ω2 + c2

θ
v2 0 −sθ

√
ω2 + c2

θ
v2

vs2θ

2
−ω vc2

θ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
φ+

1

χ+
2

φ+
3

⎞
⎟⎟⎠ .

(3.18)

With the two Higgs triplets of the model, there are twelve real scalar components. Eight of the
gauge symmetries of SU(3)L ⊗ U(1)X are spontaneously broken, which eliminates just eight
Goldstone bosons associated with these fields. It leaves over just four massive scalar particles
as obtained (one charged and two natural). There is no Majoron field in this model which
contrasts to the 3-3-1 model with right-handed neutrinos [99, 100]. Let us remind the reader
that among the Goldstone bosons there are four fields carrying the lepton number, but they
can be gauged away by an unitary transformation [87].

From (3.10) and (3.11), we come to the previous result in [36]:

λ1 > 0, λ2 > 0, 4λ1λ2 > λ
2
3. (3.19)
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Equation (3.16) shows that the mass of the charged Higgs bosonH±2 is proportional to those of
the charged bilepton Y through a coefficient of Higgs self-interaction λ4 > 0. Analogously, this
happens for the standard-model-like Higgs bosonH0 (MH0 ∼MW) and the newH0

1 (MH0
1
∼

MX). Combining (3.19) with the constraint (3.3), we get a consequence: λ3 is negative (λ3 <
0). Let us remind the reader that the couplings λ4,1,2 are fixed by the Higgs boson masses and
λ3, where λ3 defines the splitting Δm2

H � −[λ
2
3/(2λ1)]v2 from the standard model prediction.

To finish this section, let us comment on our physical Higgs bosons. In the effective
approximation w � v, u, from (3.18), it follows that

H0 ∼ S2, H0
1 ∼ S3, G4 ∼ S1,

H+
2 ∼ φ+

3 , G+
5 ∼ φ+

1 , G+
6 ∼ χ+

2 .
(3.20)

This means that, in the effective approximation, the charged boson H−2 is a scalar bilepton
(with lepton number L = 2), while the neutral scalar bosons H0 and H0

1 do not carry lepton
number (with L = 0).

3.2. Higgs-standard model gauge couplings

There are a total of 9 gauge bosons in the SU(3)L⊗U(1)X group and 8 of them are massive. As
shown in the previous section, we have got just 8 massless Goldstone bosons—the justified
number for the model. One of the neutral scalars is identified with the standard model Higgs
boson; therefore, its couplings to ordinary gauge bosons such as the photon, the Z, and the
W± bosons have to have, in the effective limit, usual known forms. To search Higgs bosons
at future high-energy colliders, one needs their couplings with ordinary particles, specially
with the gauge bosons in the standard model.

The interactions among the gauge bosons and the Higgs bosons arise in part from∑
Y=χ, φ

(
DμY

)†(
DμY

)
. (3.21)

In the following, the summation over Y is default and only the terms giving interested
couplings are explicitly displayed. The covariant derivative is given by (2.14):

Dμ = ∂μ − iPμ ≡ ∂μ − iPNC
μ − iPCC

μ , (3.22)

where the matrices PNC
μ and PCC

μ are written as

PNC
μ =

g

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W3μ +
W8μ√

3
+ t
√

2
3
XBμ 0 yμ

0 −W3μ +
W8μ√

3
+ t
√

2
3
XBμ 0

yμ 0 −
2W8μ√

3
+ t
√

2
3
XBμ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3.23)

PCC
μ =

g
√

2

⎛
⎜⎜⎜⎝

0 cθW
+
μ + sθY+

μ X0
μ

cθW
−
μ + sθY−μ 0 cθY

−
μ − sθW−

μ

X0∗
μ cθY

+
μ − sθW+

μ 0

⎞
⎟⎟⎟⎠ . (3.24)
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Table 5: Trilinear coupling constants of W+W− with neutral Higgs bosons.

Vertex Coupling

W+W−H
g2

2
vcζ

W+W−H0
1

g2

2
vsζ

Let us recall that t = gX/g = 3
√

2sW/
√

3 − 4s2
W, tan θ = u/ω, and W±

μ , Y
±
μ , and X0

μ are the
physical fields. The existence of yμ is a consequence of mixing among the real part (X0∗

μ +X0
μ)

with W3μ, W8μ, and Bμ; and its expression is determined from the mixing matrix U given in
Appendix A.1:

yμ ≡ U42Zμ +U43Z
′
μ +

(
U44 − 1

)(X0∗
μ +X0

μ

)
√

2
, (3.25)

where

U42 = −tθ′
(
cϕ

√
1 − 4s2

θ′
c2
W − sϕ

√
4c2

W − 1
)
,

U43 = −tθ′
(
sϕ

√
1 − 4s2

θ′
c2
W + cϕ

√
4c2

W − 1
)
,

U44 =
√

1 − 4s2
θ′c

2
W.

(3.26)

First, we consider the relevant couplings of the standard model W boson with the Higgs and
Goldstone bosons. The trilinear couplings of the pairW+W− with the neutral scalars are given
by

(
PCC
μ 〈χ〉

)†(PCCμχ
)
+
(
PCC
μ 〈φ〉

)†(PCCμφ
)
+ H.c. =

g2v

2
W+

μW
−μS2. (3.27)

Because of S2 is a combination of only H and H0
1 , therefore, there are two couplings which

are given in Table 5.
Couplings of the single W with two Higgs bosons exist in

i
(
Y †PCC

μ ∂μY − ∂μY †PCC
μ Y

)
=
ig
√

2
W−

μ

[
Y ∗2
(
cθ∂

μY1 − sθ∂μY3
)
− ∂μY ∗2

(
cθY1 − sθY3

)]
+ H.c.

=
ig
√

2
W−

μ

[
χ+

2
(
cθ∂

μχ0
1 − sθ∂

μχ0
3

)
− ∂μχ+

2
(
cθχ

0
1 − sθχ

0
3

)
+ φ0∗

2

(
cθ∂

μφ+
1 − sθ∂

μφ+
3
)
− ∂μφ0∗

2

(
cθφ

+
1 − sθφ

+
3
)]

+ H.c.
(3.28)

The resulting couplings of the single W boson with two scalar fields are listed in Table 6,

where we have used a notation A
↔
∂μ B = A(∂μB) − (∂μA)B. Vanishing couplings are

V
(
W−H+

2H
0) = V(W−H+

2H
0
1

)
= V

(
W−H0G+

6
)

= V
(
W−H0

1G
+
6
)
= V

(
W−H+

2G2
)
= V

(
W−G+

6G2
)
= 0.

(3.29)
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Quartic couplings of W+W− with two scalar fields arise in part from

(
PCC
μ Y

)+(PCCμY
)
=
g2

2
W+

μW
−μ[χ+

2χ
−
2 + c2

θχ
0∗
1 χ

0
1 + s

2
θχ

0∗
3 χ

0
3 − cθsθ

(
χ0∗

1 χ
0
3 + χ

0
1χ

0∗
3

)
+ φ0∗

2 φ
0
2 + c

2
θφ
−
1φ

+
1 + s2

θφ
−
3φ

+
3 − cθsθ

(
φ+

1φ
−
3 + φ−1φ

+
3
)]
.

(3.30)

With the help of (A.3) and (A.4), we get the interested couplings of W+W− with two scalars
which are listed in Table 7. Our calculation give following vanishing couplings:

V
(
W+W−H+

2G
−
5

)
= V

(
W+W−G+

5G
−
6

)
= V

(
W+W−H0G0

4

)
= V

(
W+W−H0

1G
0
4

)
= 0. (3.31)

Now, we turn to the couplings of neutral gauge bosons with Higgs bosons. In this case, the
interested couplings exist in

i
(
Y †PNC

μ ∂μY − ∂μY †PNC
μ Y

)
= −

ig

2

{
W

μ

3

(
∂μχ

0∗
1 χ

0
1 − ∂μχ

+
2χ
−
2 + ∂μφ−1φ

+
1 − ∂μφ

0∗
2 φ

0
2

)
+
W

μ

8√
3

(
∂μχ

0∗
1 χ

0
1 + ∂μχ

+
2χ
−
2 + ∂μφ−1φ

+
1 + ∂μφ0∗

2 φ
0
2 − 2∂μχ0∗

3 χ
0
3 − 2∂μφ−3φ

+
3

)
+ t
√

2
3
Bμ
[
− 1

3
(
∂μχ

0∗
1 χ

0
1 + ∂μχ

+
2χ
−
2 + ∂μχ0∗

3 χ
0
3

)
+

2
3
(
∂μφ

−
1φ

+
1 + ∂μφ0∗

2 φ
0
2 + ∂μφ

−
3φ

+
3

)]

+ yμ
(
∂μχ

0∗
1 χ

0
3 + ∂μχ

0∗
3 χ

0
1 + ∂μφ

−
1φ

+
3 + ∂μφ−3φ

+
1

)}
+ H.c.

(3.32)

It can be checked that, as expected, the photon Aμ does not interact with neutral Higgs
bosons. Other vanishing couplings are

V
(
AH+

2G
−
5

)
= V

(
AH+

2G
−
6

)
= V

(
AG+

6G
−
5

)
= 0,

V
(
AAH0) = V(AAH0

1

)
= V

(
AAG4

)
= 0,

V
(
AZH0) = V(AZH0

1

)
= V

(
AZG4

)
= 0,

V
(
AZ′H0) = V(AZ′H0

1

)
= V

(
AZ′G4

)
= 0.

(3.33)

The nonzero electromagnetic couplings are listed in Table 8. It should be noticed that the
electromagnetic interaction is diagonal, that is, the nonzero couplings in this model always
have a form:

ieqHA
μH∗

↔
∂μ H. (3.34)

For the Z bosons, the following observation is useful:

W
μ

3 = U12Z
μ + · · · , W

μ

8 = U22Z
μ + · · · ,

Bμ = U32Z
μ + · · · , yμ = U42Z

μ + · · · .
(3.35)

Here,

U12 = cϕcθ′cW,

U22 =
cϕ
(
s2
W − 3c2

Ws
2
θ′

)
− sϕ

√(
1 − 4s2

θ′c
2
W

)(
4c2

W − 1
)

√
3cWcθ′

,

U32 = −
tW
(
cϕ
√

4c2
W − 1 + sϕ

√
1 − 4s2

θ′
c2
W

)
√

3cθ′

(3.36)
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Table 6: Trilinear coupling constants of W− with two Higgs bosons.

Vertex Coupling Vertex Coupling

Wμ−H+
2

↔
∂μ G4

igvcθ

2
√
ω2 + c2

θ
v2

Wμ−G+
6

↔
∂μ G1

gcθω

2
√
ω2 + c2

θ
v2

Wμ−G+
5

↔
∂μ H −

igcζ

2
Wμ−G+

5

↔
∂μ G2 −

g

2

Wμ−G+
6

↔
∂μ G4

igω

2
√
ω2 + c2

θ
v2

Wμ−G+
5

↔
∂μ H

0
1 −

ig

2
sζ

Wμ−H+
2

↔
∂μ G1 −

gvc2
θ

2
√
ω2 + c2

θ
v2

Wμ−G+
6

↔
∂μ G

0
3 −

gsθω

2
√
ω2 + c2

θ
v2

Wμ−H+
2

↔
∂μ G3

gvs2θ

4
√
ω2 + c2

θ
v2

are elements in the mixing matrix of the neutral gauge bosons given in Appendix A.1. From
(3.32) and (3.35), it follows that the trilinear couplings of the single Z with charged Higgs
bosons exist in part from the Lagrangian terms:

−
ig

2
Zμ

[(
U12 −

U22√
3
+
t

3

√
2
3
U32

)
∂μχ

−
2χ

+
2 +

(
U12 +

U22√
3
+

2t
3

√
2
3
U32

)
∂μφ

−
1φ

+
1

+

(
− 2√

3
U22 +

2t
3

√
2
3
U32

)
∂μφ

−
3φ

+
3 +U42

(
∂μφ

−
1φ

+
3 + ∂μφ−3φ

+
1

)]
+ H.c.

(3.37)

From (3.37), we get trilinear couplings of the Z with the charged Higgs bosons which are
listed in Table 9. The limit sign (→) in the Tables is the effective one.

In the effective limit, the ZG5G5 vertex gets an exact expression as in the standard
model. Hence, G5 can be identified with the charged Goldstone boson in the standard model
(GW+).

Now, we search couplings of the single Zμ boson with neutral scalar fields. With the
help of the following equations,

χ0
1

↔
∂μ χ

0∗
1 = iG1

↔
∂μ S1, χ0

3

↔
∂μ χ

0∗
3 = iG3

↔
∂μ S3, φ0

2

↔
∂μ φ

0∗
2 = iG2

↔
∂μ S2,

∂μχ
0∗
1 χ

0
3 + ∂μχ

0∗
3 χ

0
1 =

1
2

[
∂μS1S3 + ∂μS3S1 + ∂μG1G3 + ∂μG3G1 + iG3

↔
∂μ S1 + iG1

↔
∂μ S3

]
,

(3.38)

the necessary parts of Lagrangian are

g

2

[(
U12 +

U22√
3
− t

3

√
2
3
U32

)
G1

↔
∂μ S1 +U42G1

↔
∂μ S3 +

(
− 2√

3
U22 −

t

3

√
2
3
U32

)

×G3

↔
∂μ S3 +U42G3

↔
∂μ S1 +

(
−U12 +

U22√
3
+

2t
3

√
2
3
U32

)
G2

↔
∂μ S2

]
.

(3.39)
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Table 7: Nonzero quartic coupling constants of W+W− with Higgs bosons.

Vertex Coupling Vertex Coupling

W+W−H+
2 H

−
2

g2c2
θ
v2

2
(
ω2 + v2c2

θ

) W+W−G0
1G

0
1

g2c2
θ

2

W+W−G+
5G
−
5

g2

2
W+W−G0

3G
0
3

g2s2
θ

2

W+W−G+
6G
−
6

g2ω2

2
(
ω2 + c2

θ
v2
) W+W−G0

4G
0
4

g2

2

W+W−H+
2 G
−
6 −

g2cθvω

2
(
ω2 + c2

θ
v2
) W+W−HH0

1

g2s2ζ

4

W+W−HH
g2c2

ζ

2
W+W−G0

1G
0
3 −

g2s2θ

4

W+W−H0
1H

0
1

g2s2
ζ

2
W+W−G0

2G
0
2

g2

2

Table 8: Trilinear electromagnetic coupling constants of Aμ with two Higgs bosons.

Vertex AμH−2
↔
∂μ H

+
2 AμG−5

↔
∂μ G

+
5 AμG−6

↔
∂μ G

+
6

Coupling ie ie ie

The resulting couplings are listed in Table 10. we conclude that G2 should be identified to GZ

in the standard model. For the Z′ boson, the following remark is again helpful:

W
μ

3 = U13Z
′μ + · · · , W

μ

8 = U23Z
′μ + · · · ,

Bμ = U33Z
′μ + · · · , yμ = U43Z

′μ + · · · ,
(3.40)

where

U13 = sϕcθ′cW,

U23 =
sϕ
(
s2
W − 3c2

Ws
2
θ′

)
+ cϕ

√(
1 − 4s2

θ′
c2
W

)(
4c2

W − 1
)

√
3cWcθ′

,

U33 = −
tW
(
sϕ
√

4c2
W − 1 − cϕ

√
1 − 4s2

θ′
c2
W

)
√

3cθ′
.

(3.41)

Thus, with the replacement Z → Z′ one just replaces column 2 by 3, for example, trilinear
coupling constants of the Z′μ with two neutral Higgs bosons are given in Table 11.
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Next, we search couplings of two neutral gauge bosons with scalar fields which arise
in part from

Y+PNC
μ PNCμY =

g2

4
{[
Y ∗1
(
A
μ

11A11μ + yμyμ
)
+ Y ∗3

(
A11μy

μ +A33μy
μ)]Y1 +A

μ

22A22μ × Y ∗2Y2

+
[
Y ∗1
(
A11μy

μ +A33μy
μ) + Y ∗3 (Aμ

33A33μ + yμyμ
)]
Y3
}

=
g2

4
{[
χ0∗

1

(
A
μχ

11A
χ

11μ + yμy
μ) + χ0∗

3

(
A
χ

11μy
μ +Aχ

33μy
μ)]χ0

1

+
[
χ0∗

1

(
A
χ

11μy
μ +Aχ

33μy
μ) + χ0∗

3

(
A
μχ

33A
χ

33μ + yμy
μ)]χ0

3

+
[
φ−1
(
A
μφ

11 A
φ

11μ + yμy
μ) + φ−3(Aφ

11μy
μ +Aφ

33μy
μ)]φ+

1

+
[
φ−1
(
A
φ

11μy
μ +Aφ

33μy
μ) + φ−3(Aμφ

33 A
φ

33μ + yμy
μ)]φ+

3

+
(
A
μχ

22A
χ

22μ

)
χ+

2χ
−
2 +

(
A
μφ

22 A
φ

22μ

)
φ0∗

2 φ
0
2

}
.

(3.42)

Here, Aμ

ii (i = 1, 2, 3) is a diagonal element in the matrix (2/g)PNC
μ which is dependent on the

U(1)X charge:

A
μχ

11 =Wμ

3 +
W

μ

8√
3
− t

3

√
2
3
Bμ, A

μφ

11 =Wμ

3 +
W

μ

8√
3
+

2t
3

√
2
3
Bμ,

A
μχ

22 = −Wμ

3 +
W

μ

8√
3
− t

3

√
2
3
Bμ, A

μφ

22 = −Wμ

3 +
W

μ

8√
3
+

2t
3

√
2
3
Bμ,

A
μχ

33 = −2
W

μ

8√
3
− t

3

√
2
3
Bμ, A

μφ

33 = −2
W

μ

8√
3
+

2t
3

√
2
3
Bμ.

(3.43)

Quartic couplings of two Z with neutral scalar fields are given by

g2

4
{[
χ0∗

1

(
A
μχ

11A
χ

11μ + yμy
μ) + χ0∗

3

(
A
χ

11μy
μ +Aχ

33μy
μ)]χ0

1

+
[
χ0∗

1

(
A
χ

11μy
μ +Aχ

33μy
μ) + χ0∗

3

(
A
μχ

33A
χ

33μ + yμy
μ)]χ0

3 +
(
A
μφ

22 A
φ

22μ

)
φ0∗

2 φ
0
2

}
=
g2

4
{(
A
μχ

11A
χ

11μ + yμy
μ)χ0∗

1 χ
0
1 +

(
A
μχ

33A
χ

33μ + yμy
μ)χ0∗

3 χ
0
3

+
(
A
χ

11μy
μ +Aχ

33μy
μ)(χ0∗

1 χ
0
3 + χ

0∗
3 χ

0
1

)
+
(
A
μφ

22 A
φ

22μ

)
φ0∗

2 φ
0
2

}
.

(3.44)

In this case, the couplings are listed in Table 12.
Trilinear couplings of the pair ZZ with one scalar field are obtained via the following

terms:

g2

4
[
vS2A

φ

22μA
μφ

22 + uS1A
χ

11μA
μχ

11 +ωS3A
χ

33μA
μχ

33

+
(
uS1 +ωS3

)
yμy

μ −
(
ωS1 + uS3

)
yμA

φ

22μ

]
.

(3.45)

The obtained couplings are given in Table 13.
Because of (3.40), for the ZZ′ couplings with scalar fields, the above manipulation is

good enough. For example, Table 12 is replaced by Table 14.
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Now, we turn to the interested coupling ZW±H∓2 arisen in part from

Y+PNC
μ PCCμY + H.c.

=
g2

2
√

2

{
W−

μA
μ

22Y
∗
2
(
cθY1 − sθY3

)
+W+

μ

[(
cθA

μ

11 − sθy
μ)Y ∗1 +

(
cθy

μ − sθA
μ

33

)
Y ∗3
]
Y2
}
+ H.c.

(3.46)

For our Higgs triplets, one gets

g2

2
√

2

{
W−

μ

[
A
χμ

22 χ
+
2
(
cθχ

0
1 − sθχ

0
3

)
+Aφμ

22 φ
0∗
2

(
cθφ

+
1 − sθφ

+
3
)]

+W+
μχ
−
2

[(
cθA

χμ

11 − sθy
μ)χ0∗

1 +
(
cθy

μ − sθA
χμ

33

)
χ0∗

3

]
+W+

μφ
0
2

[(
cθA

φμ

11 − sθy
μ)φ−1 +

(
cθy

μ − sθA
φμ

33

)
φ−3
]}

+ H.c.

(3.47)

From (3.47), the trilinear couplings of the W boson with one scalar and one neutral gauge
bosons exist in a part:

g2

4
W+

μ

{
vφ−1

[
cθ

(
2√
3
W

μ

8 +
4t
3

√
2
3
Bμ
)
− sθyμ

]

+ vφ−3

[
cθy

μ − sθ

(
−Wμ

3 −
W

μ

8√
3
+

4t
3

√
2
3
Bμ
)]

+ωχ−2

[
sθ
(
W

μ

3 +
√

3Wμ

8

)
+
c2θ

cθ
yμ
]}

+ H.c.

(3.48)

From the above equation, we get necessary nonzero couplings, which are listed in Table 15.
Vanishing couplings are

V
(
AW+H−2

)
= V

(
AW +G−6

)
= 0. (3.49)

Equation (3.49) is consistent with an evaluation in [53], where authors neglected the
diagrams with the γW±H∓ vertex.

From (3.24), it follows that, to get couplings of the bilepton gauge boson Y+ withZH−2 ,
one just makes in (3.48) the replacement cθ → − sθ, sθ → cθ.

Finally, we can identify the scalar fields in the considered model with that in the
standard model as follows:

H ←→ h, G+
5 ←→ GW+ , G2 ←→ GZ. (3.50)

In the effective limit ω � v, u our Higgs can be represented as

χ =

⎛
⎜⎜⎜⎜⎝

1√
2
u +GX0

GY−

1√
2

(
ω +H0

1 + iGZ′
)

⎞
⎟⎟⎟⎟⎠ , φ =

⎛
⎜⎜⎝

GW+

1√
2

(
v + h + iGZ

)
H+

2

⎞
⎟⎟⎠ , (3.51)
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where G3 ∼ GZ′ , G
−
6 ∼ GY− and

G4 + i G1 ∼
√

2GX0 (3.52)

are the Goldstone boson of the massive gauge bosons Z′, Y−, and X0, respectively. Note that
identification in (3.52) is possible due to the fact that both scalar and pseudoscalar parts of
χ0

1 are massless. In addition, the pseudoscalar part is decoupled from others, while its scalar
part mixes in the same as in the gauge boson sector.

We emphasize again that, in the effective approximation, all Higgs gauge boson
couplings in the standard model are recovered (see Table 16). In contradiction with the
previous analysis in [36], the condition u ∼ v or introduction of the third triplet are not
necessary.

3.3. Production of H±2 via WZ fusion at LHC

The possibility to detect the neutral Higgs boson in the minimal version at e+e− colliders was
considered in [101] and production of the standard model-like neutral Higgs boson at LHC
was considered in [52]. This section is devoted to production of the charged H±2 at the CERN
LHC.

Let us firstly discuss on the mass of this Higgs boson. Equation (3.16) gives us
a connection between its mass and those of the singly-charged bilepton Y through the
coefficient of Higgs self-coupling λ4. Note that in the considered model the neutrino Majorana
masses exist only in the loop levels. To keep these masses in the experimental range, the mass
of MH±2

can be taken in the electroweak scale with λ4 ∼ 0.01 (see the next section). From
(3.16), taking the lower limit for MY to be 1 TeV, the mass of H±2 is in range of 200 GeV.

Taking into account that, in the effective approximation, H−2 is the bilepton, we get the
dominant decay channels as follows:

H−2 −→ lνl, Ũda, Dαũa,

↘ ZW−, Z′W−, XW−, ZY−.
(3.53)

Assuming that masses of the exotic quarks (U,Dα) are larger than MH±2
, we come to the

fact that the hadron modes are absent in decay of the charged Higgs boson. Due to that the
Yukawa couplings ofH±2 l

∓ν are very small, the main decay modes of the are in the second line
of (3.53). Note that the charged Higgs bosons in doublet models such as two-Higgs doublet
model or minimal supersymmetric standard model have both hadronic and leptonic modes
[54]. This is a specific feature of the model under consideration.

Because of the exotic X, Y, Z′ gauge bosons are heavy, the coupling of a singly-
charged Higgs boson (H±2 ) with the weak gauge bosons, H±2W

∓Z, may dominate. Here, it
is of particular importance for the electroweak symmetry breaking. Its magnitude is directly
related to the structure of the extended Higgs sector under global symmetries [102–106]. This
coupling can appear at the tree level in models with scalar triplets, while it is induced at the
loop level in multiscalar doublet models. The coupling, in our model, differs from zero at the
tree level due to the fact that the H±2 belongs to a triplet.

Thus, for the charged Higgs boson H±2 , it is important to study the couplings given by
the interaction Lagrangian:

Lint = fZWHH
±
2W

∓
μZ

μ, (3.54)
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Table 9: Trilinear coupling constants of Zμ with two charged Higgs bosons.

Vertex Coupling

ZμH−2
↔
∂μ H

+
2

ig

2
(
ω2 + v2c2

θ

){(v2c2
θ
+ω2s2

θ

)
U12 +

[
ω2(1 − 3c2

θ

)
− v2c2

θ

]U22√
3

+
(
v2c2

θ
+ 2ω2) t

3

√
2
3
U32 +ω2s2θU42

}
−→ −igsWtW

ZμG−5
↔
∂μ G

+
5

ig

2

[
c2
θ
U12 +

(
1 − 3s2

θ

)U22√
3

+
2t
3

√
2
3
U32 − s2θU42

]
−→

ig

2cW

(
1 − 2s2

W

)

ZμG−6
↔
∂μ G

+
6

ig

2
(
ω2 + c2

θ
v2
){(ω2 + v2s2

θ
c2
θ

)
U12 +

[
v2c2

θ

(
1 − 3c2

θ

)
−ω2]U22√

3

+
t

3

√
2
3
(
ω2 + 2v2c2

θ

)
U32 + 2v2sθc

3
θ
U42

}
−→

ig

2cW

(
1 − 2s2

W

)

ZμH−2
↔
∂μ G

+
5

igω

4
√
ω2 + c2

θ
v2

(
s2θU12 +

√
3s2θU22 + 2c2θU42

)
−→ 0

ZμH−2
↔
∂μ G

+
6

igωvcθ

2
(
ω2 + c2

θ
v2
)[ − c2

θ
U12 +

(
2 − 3c2

θ

)U22√
3

+
t

3

√
2
3
U32 + s2θU42

]
−→ 0

ZμG−5
↔
∂μ G

+
6

igvcθ

4
√
ω2 + c2

θ
v2

(
s2θU12 +

√
3s2θU22 + 2c2θU42

)
−→ 0

where fZWH , at tree level, is given in Table 15. The same as in [53], the dominant rate is due
to the diagram connected with the W and Z bosons. Putting necessary matrix elements in
Table 15 , we get

fZWH = −
g2vωs2θ

4
√
ω2 + c2

θ
v2

cϕ − sϕ
√(

4c2
W − 1

)(
1 + 4t22θ

)
√(

1 + 4t22θ
)[
c2
W +

(
4c2

W − 1
)
t22θ
] . (3.55)

Thus, the form factor, at the tree-level, is obtained by

F ≡
fZWH

gMW
= −

ωs2θ

[
cϕ − sϕ

√(
4c2

W − 1
)(

1 + 4t22θ
)]

2
√(

ω2 + c2
θ
v2
)(

1 + 4t22θ
)[
c2
W +

(
4c2

W − 1
)
t22θ
] . (3.56)

The decay width of H±2 → W±
i Zi, where i = L, T representing, respectively, the longitudinal

and transverse polarizations is given by [53]:

Γ
(
H±2 −→W±

i Zi

)
=MH±2

λ1/2(1, w, z)
16π

∣∣Mii

∣∣2
, (3.57)

where λ(1, w, z) = (1 −w − z)2 − 4wz, w = M2
W/M

2
H±2

and z = M2
Z/M

2
H±2

. The longitudinal
and transverse contributions are given in terms of F by

∣∣MLL

∣∣2 =
g2

4z
(1 −w − z)2|F|2,

∣∣MTT

∣∣2 = 2g2w|F|2. (3.58)
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For the case of MH±2
� MZ, we have |MTT |2/|MLL|2 ∼ 8M2

WM
2
Z/M

4
H±2

which implies that
the decay into a longitudinally polarized weak boson pair dominates that into a transversely
polarized one. The form factor F and mixing angle tϕ are presented in Table 17, where we
have used s2

W = 0.2312, v = 246 GeV, ω = 3 TeV (or MY = 1 TeV) as the typical values to
get five cases corresponding with the sθ values under the constraint (2.65).

Next, let us study the impact of the H±2W
∓Z vertex on the production cross section of

pp → W±∗Z∗X → H±2X which is a pure electroweak process with high pT jets going into
the forward and backward directions from the decay of the produced scalar boson without
color flow in the central region. The hadronic cross section for pp → H±2X via W±Z fusion is
expressed in the effective vector boson approximation [107–109] by

σeff

(
s,M2

H±2

)
� 16π2

λ(1, w, z)M3
H±2

∑
λ=T, L

Γ
(
H±2 −→W±

λ Zλ

)
τ
dL
dτ

∣∣∣∣∣
pp/W±

λ
Zλ

, (3.59)

where τ =M2
H±2
/s, and

dL
dτ

∣∣∣∣
pp/W±

λ
Zλ

=
∑
ij

∫1

τ

dτ ′

τ ′

∫1

τ ′

dx

x
fi(x)fj

(
τ ′

x

)
dL
dξ

∣∣∣∣
qiqj/W

±
λ
Zλ

(3.60)

with τ ′ = ŝ/s and ξ = τ/τ ′. Here, fi(x) is the parton structure function for the ith quark, and

dL
dξ

∣∣∣∣
qiqj/W

±
T ZT

=
c

64π4

1
ξ

ln
(

ŝ

M2
W

)
ln
(

ŝ

M2
Z

)[
(2 + ξ)2 ln

(
1
ξ

)
− 2(1 − ξ)(3 + ξ)

]
,

dL
dξ

∣∣∣∣
qiqj/W

±
LZL

=
c

16π4

1
ξ

[
(1 + ξ) ln

(
1
ξ

)
+ 2(ξ − 1)

]
,

(3.61)

where c = (g4c2
θ
/16c2

W)[g2
1V (qj) + g

2
1A(qj)] with g1V (qj), g1A(qj) for quark qj is given in [38,

Table I]. Using CTEQ6L [110], in Figure 5, we have plotted σeff(s,M2
H±2

) at
√
s = 14 TeV, as a

function of the Higgs boson mass corresponding five cases in Table 17.
Assuming discovery limit of 25 events corresponding to the horizontal line, and taking

the integrated luminosity of 300 fb−1 [111], from the figure, we come to conclusion that, for
sθ = 0.08 (the line on top), the charged Higgs boson H±2 with mass larger than 1700 GeV,
cannot be seen at the LHC. These limiting masses are denoted by Mmax

H±2
and listed in Table 17.

If the mass of the above-mentioned Higgs boson is in range of 200 GeV and sθ = 0.08, the
cross section can exeed 260 fb, that is, 78000 of H±2 can be produced at the integrated LHC
luminosity of 300 fb−1. This production rate is about ten times larger than those in [53]. The
cross sections decrease rapidly as mass of the Higgs boson increases from 200 GeV to 400 GeV.

3.4. Summary

In this section, we have considered the scalar sector in the economical 3-3-1 model. The
model contains eight Goldstone bosons—the justified number of the massless ones eaten by
the massive gauge bosons. Couplings of the standard model-like gauge bosons such as of
the photon, the Z, and the new Z′ gauge bosons with physical Higgs ones are also given.
From these couplings, the standard model-like Higgs boson as well as Goldstone ones are
identified. In the effective approximation, full content of scalar sector can be recognized. The
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Figure 5: Hadronic cross section of W±Z fusion process as a function of the charged Higgs boson mass for
five cases of sin θ. Horizontal line is discovery limit (25 events).
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Figure 6: Lepton Yukawa couplings.

CP-odd part of Goldstone associated with the neutral non-Hermitian bilepton gauge bosons
GX0 is decoupled, while its CP-even counterpart has the mixing by the same way in the gauge
boson sector. Despite the mixing among the photon with the non-Hermitian neutral bilepton
X0 as well as with the Z and the Z′ gauge bosons, the electromagnetic couplings remain
unchanged.

It is worth mentioning that masses of all physical Higgs bosons are related to that
of gauge bosons through the coefficients of Higgs self-interactions. All gauge scalar boson
couplings in the standard model are recovered. The coupling of the photon with the Higgs
bosons are diagonal.

It should be mentioned that in [36], to get nonzero coupling ZZh at the tree level, the
authors suggested the following solution: (i) u ∼ v or (ii) by introducing the third Higgs
scalar with VEV (∼ v). This problem does not happen in our consideration.

After all we focused attention to the singly-charged Higgs boson H±2 with mass
proportional to the bilepton mass MY through the coefficient λ4. Mass of the H±2 is estimated
in a range of 200 GeV. This boson, in difference with those arisen in the Higgs doublet models,
does not have the hadronic and leptonic decay modes. The trilinear coupling ZW±H∓2 which
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Table 10: Trilinear coupling constants of Zμ with two neutral Higgs bosons.

Vertex Coupling

ZμG1

↔
∂μ H −

gsζ

2

[(
U12 +

U22√
3
− t

3

√
2
3
U32

)
sθ +U42cθ

]
−→ 0

ZμG2

↔
∂μ H

g

2

(
−U12 +

U22√
3
+

2t
3

√
2
3
U32

)
cζ −→ −

g

2cW

ZμG3

↔
∂μ H

gsζ

2

[(
2√
3
U22 +

t

3

√
2
3
U32

)
cθ −U42sθ

]
−→ 0

ZμG1

↔
∂μ H

0
1

gcζ

2

[(
U12 +

U22√
3
− t

3

√
2
3
U32

)
sθ +U42cθ

]
−→ 0

ZμG2

↔
∂μ H

0
1

g

2

(
−U12 +

U22√
3

+
2t
3

√
2
3
U32

)
sζ −→ 0

ZμG3

↔
∂μ H

0
1 −

gcζ

2

[(
2√
3
U22 +

t

3

√
2
3
U32

)
cθ −U42sθ

]
−→ 0

ZμG1

↔
∂μ G4

g

2

[(
U12 +

U22√
3
− t

3

√
2
3
U32

)
cθ −U42sθ

]
−→

g

2cW

ZμG2

↔
∂μ G4 0

ZμG3

↔
∂μ G4

g

2

[(
2√
3
U22 +

t

3

√
2
3
U32

)
sθ +U42cθ

]
−→ 0

differs, at the tree level, while the similar coupling of the photon γW±H∓2 as expected,
vanishes. In the model under consideration, the charged Higgs boson H±2 with mass larger
than 1700 GeV cannot be seen at the LHC. If the mass of the above-mentioned Higgs boson is
in range of 200 GeV, however, the cross section can exceed 260 fb, that is, 78000 of H±2 can be
produced at the LHC for the luminosity of 300 fb−1. By measuring this process, we can obtain
useful information to determine the structure of the Higgs sector.

4. Fermion masses

We first give some comments on the charged lepton masses and set conventions. The neutrino
and quark masses are correspondingly considered.

4.1. Charged-lepton masses

The charged leptons (l = e, μ, τ) gain masses via the following couplings:

LlY = hlab ψaLφlbR + H.c. (4.1)
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Table 11: Trilinear coupling constants of Z′μ with two neutral Higgs bosons.

Vertex Coupling

Z′μG1

↔
∂μ H −

gsζ

2

[(
U13 +

U23√
3
− t

3

√
2
3
U33

)
sθ +U43cθ

]
−→ 0

Z′μG2

↔
∂μ H

g

2

(
−U13 +

U23√
3
+

2t
3

√
2
3
U33

)
cζ −→

g

2cW
√

4c2
W − 1

Z′μG3

↔
∂μ H

gsζ

2

[(
2√
3
U23 +

t

3

√
2
3
U33

)
cθ −U43sθ

]
−→ 0

Z′μG1

↔
∂μ H

0
1

gcζ

2

[(
U13 +

U23√
3
− t

3

√
2
3
U33

)
sθ +U43cθ

]
−→ 0

Z′μG2

↔
∂μ H

0
1

g

2

(
−U13 +

U23√
3

+
2t
3

√
2
3
U33

)
sζ −→ 0

Z′μG3

↔
∂μ H

0
1 −

gcζ

2

[(
2√
3
U23 +

t

3

√
2
3
U33

)
cθ −U43sθ

]
−→ −

gcW√
4c2

W − 1

Z′μG1

↔
∂μ G4

g

2

[(
U13 +

U23√
3
− t

3

√
2
3
U33

)
cθ −U43sθ

]
−→

gc2W

2cW
√

4c2
W − 1

Z′μG2

↔
∂μ G4 0

Z′μG3

↔
∂μ G4

g

2

[(
2√
3
U23 +

t

3

√
2
3
U33

)
sθ +U43cθ

]
−→ 0

The mass matrix is, therefore, followed by

Ml = −
v√
2

⎛
⎜⎜⎝
hl11 hl12 hl13

hl21 hl22 hl23

hl31 hl32 hl33

⎞
⎟⎟⎠ , (4.2)

which of course is the same as in the standard model and thus gives consistent masses for the
charged leptons [37].

For the sake of simplicity, in the following, we can suppose that the Yukawa coupling
of charged leptons hl is flavor diagonal, thus la (a = 1, 2, 3) are mass eigenstates respective to
the mass eigenvalues ma = −(v/

√
2)hlaa.

For convenience in further reading, we present the Yukawa interactions of (2.6) and
(2.7) in terms by Feynman diagrams in Figures 6, 7, and 8, where the Hermitian adjoint ones
are not displayed. The Higgs boson self-couplings are depicted in Figure 9.

4.2. Neutrino masses

First, we present mass mechanisms for the neutrinos. Next, detailed calculations and analysis
of the neutrino mass spectrum are given. The experimental constraints on the coupling hν are
also considered.
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Figure 7: Relevant lepton-number conserving quark Yukawa couplings.
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Figure 8: Lepton-number violating quark Yukawa couplings.
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Figure 9: Higgs boson self-couplings.



42 Advances in High Energy Physics

Table 12: Quartic coupling constants of ZZ with two scalar bosons.

Vertex Coupling
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Table 13: Trilinear coupling constants of ZZ with one scalar bosons.

Vertex Coupling
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Table 14: Trilinear coupling constants of ZZ′ with one scalar bosons.
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Table 15: Trilinear coupling constants of neutral gauge bosons with W+ and the charged scalar boson.

Vertex Coupling
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Table 16: The standard model coupling constants in the effective limit.

Vertex Coupling Vertex Coupling
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4.2.1. Neutrino mass mechanisms

In the considering model, the possible different mass mechanisms for the neutrinos can
be summarized through the three dominant SU(3)C ⊗ SU(3)L ⊗ U(1)X-invariant effective
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Table 17: Values of F, tϕ, and Mmax
H±2

for given sθ .

sθ 0.08 0.05 0.02 0.009 0.005

tϕ −0.0329698 −0.0156778 −0.00598729 −0.00449063 −0.00422721

F −0.087481 −0.0561693 −0.022803 −0.0102847 −0.00571598

Mmax
H±2

[GeV] 1700 1300 700 420 320

operators as follows [112, 113]:

OLNC
ab = ψ c

aLψbLφ, (4.3)

OLNV
ab =

(
χ∗ ψ c

aL

)(
χ∗ψbL

)
, (4.4)

OSLB
ab =

(
χ∗ ψ c

aL

)(
ψbLφχ

)
, (4.5)

where the Hermitian adjoint operators are not displayed. It is worth noting that they are
also all the performable operators with the mass dimensionality d ≤ 6 responsible for the
neutrino masses. The difference among the mass mechanisms can be verified through the
operators. Both (4.3) and (4.5) conserve L, while (4.4) violates this charge with two units.
Since d(OLNC) = 4 and L〈φ〉 = 0, (4.3) provides only Dirac masses for the neutrinos which
can be obtained at the tree level through the Yukawa couplings in (2.6). Since d(OSLB) = 6 and
(L〈χ〉)p /= 0 for p = 1 vanish for other cases, (4.5) provides both Dirac and Majorana masses
for the neutrinos through radiative corrections mediated by the model particles. The masses
induced by (4.3) are given by the standard SU(2)L ⊗ U(1)Y symmetry breaking via the VEV
v. However, those by (4.5) are obtained from both the stages of SU(3)L ⊗ U(1)X breaking
achieved by the VEVs u, ω, and v.

Note that the LNV interactions in (2.7) are due to quarks. Hence, they do not give
contribution to LNV of the leptons such as of the neutrinos. Except the LNV couplings of
(2.7), all the remaining interactions of the model (lepton Yukawa couplings (2.6), Higgs
self-couplings (2.11), etc.) conserve L. This means that the operator (4.4) of LNV cannot be
mediated by particles of the model; in other words, it must be introduced by hands. As a fact,
the economical 3-3-1 model including the alternative versions [17–22] are only extensions
beyond the standard model in the scales of orders of TeV [40, 114, 115]. Hence, it is expected
that the operator in (4.4) has to be mediated by heavy particles of an underlined new physics
at a scale M much greater than ω which have been followed in various of grand unified
theories (GUTs) [37, 112, 113, 116–125]. Thus, in this model the neutrinos can get mass from
three very different sources widely ranging over the mass scales: u ∼ O(1)GeV, v ≈ 246 GeV,
ω ∼ O(1)TeV, andM ∼ O(1016)GeV.

We remind that, in the former version [20–22], the authors in [126] have considered
operators of the type (4.4), however, under a discrete symmetry [22, 37]. As shown in
Section 4, the current model is realistic, and such a discrete symmetry is not needed because
as a fact that the model will fail if it is enforced. In addition, if such discrete symmetries
are not discarded, the important mass contributions for the neutrinos mediated by model
particles are then suppressed. For example, in this case the remaining operators (4.3) and
(4.5) will be removed. With the only operator (4.4), the three active neutrinos will get effective
zero masses under a type II seesaw [55–62] (see below). However, this operator occupies a
particular importance in this version.
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Alternatively, in such model, the authors in [49] have examined two-loop corrections
to (4.4) by the aid of explicit LNV Higgs self-couplings, and using a fine tuning for the tree-
level Dirac masses of (4.3) down to current values. However, as mentioned, this is not the
case in the considering model because our Higgs potential (2.11) conserves L. We know that
one of the problems of the 3-3-1 model with RH neutrinos is associated with the Dirac mass
term of neutrinos. In the following, we will show that if such a fine tuning is done to get small
values for these terms, then the mass generation of neutrinos mediated by model particles is
not able, or the results will be trivial. This is in contradiction with [49]. In the next, the large
bare Dirac masses for the neutrinos, which are as of charged fermions of a natural result from
standard symmetry breaking, will be studied.

4.2.2. Neutrino mass matrix

The operators OLNC, OSLB, and OLNV (including their Hermitian adjoint) will provide the
masses for the neutrinos: the first responsible for tree-level masses, the second for one-loop
corrections, and the third for contributions of heavy particles.

Tree-Level Dirac Masses

From the Yukawa couplings in (2.6), the tree-level mass Lagrangian for the neutrinos is
obtained by [127, 128]:

LLNC
mass = h

ν
abνaRνbL

〈
φ0

2

〉
− hνabν

c
aLν

c
bR

〈
φ0

2

〉
+ H.c.

= 2
〈
φ0

2

〉
hνabνaRνbL + H.c.

= −
(
MD

)
abνaRνbL + H.c.

= −1
2
(
ν caL, νaR

)( 0
(
MT

D

)
ab(

MD

)
ab 0

)(
νbL
νc
bR

)
+ H.c.

= −1
2
X

c

LMνXL + H.c.,

(4.6)

where hνab = −h
ν
ba is due to Fermi statistics. TheMD is the mass matrix for the Dirac neutrinos:

(
MD

)
ab ≡ −

√
2vhνab =

(
−MT

D

)
ab =

⎛
⎝ 0 −A −B
A 0 −C
B C 0

⎞
⎠ , (4.7)

where

A ≡
√

2hνeμv, B ≡
√

2hνeτv, C ≡
√

2hνμτv. (4.8)

This mass matrix has been rewritten in a general basis XT
L ≡ (νeL, νμL, ντL, νceR, ν

c
μR, ν

c
τR):

Mν ≡
(

0 MT
D

MD 0

)
. (4.9)
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The tree-level neutrino spectrum, therefore, consists of only Dirac fermions. Since hνab is
antisymmetric in a and b, the mass matrix MD gives one neutrino massless and two others
degenerate in mass 0, −mD, mD, where mD ≡ (A2 + B2 + C2)1/2. This mass spectrum is not
realistic under the data; however, it will be severely changed by the quantum corrections; the
most general mass matrix can then be written as follows:

Mν =
(
ML MT

D

MD MR

)
, (4.10)

where ML,R (vanished at the tree level) and MD get possible corrections.
If such a tree-level contribution dominates the resulting mass matrix (after correc-

tions), the model will provide an explanation about a large splitting either Δm2
atm � Δm2

sol
or Δm2

LSND � Δm2
atm, sol [3] (see also [49]). Hence, we need a fine-tuning at the tree level

[49] either mD ∼ (Δm2
atm)

1/2(∼ 5 × 10−2 eV) or mD ∼ (Δm2
LSND)

1/2(∼ eV) [3]. Without loss of
generality, assuming that hνeμ ∼ hνeτ ∼ hνμτ , we get then hν ∼ 10−13 (or 10−12). The coupling hν in
this case is so small and, therefore, this fine tuning is not natural [129, 130]. Indeed, as shown
below, since hν enters the dominant corrections from (4.5) for ML,R, these terms ML,R get
very small values which are not large enough to split the degenerate neutrino masses into a
realistic spectrum. (The largest degenerate splitting in squared mass is still much smaller than
Δm2

sol ∼ 8 × 10−5eV2 [3].) In addition, in this case, the Dirac masses get corrections trivially.
The above problem can be solved just by the LNV operator (4.4), and then the operator

(4.5) obtaining the contributions from particles in the model is suppressed (for details, see
[126]). However, we do not consider the above solution in this work. This implies that the
tree-level Dirac mass term for the neutrinos by its naturalness should be treated as those as of
the usual charged fermions resulted of the standard symmetry breaking, say, hν ∼ he (∼ 10−6)
[129, 130]. It turns out that this term is regarded as a large bare quantity and unphysical.
Under the interactions, they will of course change to physical masses. In the following, we
will obtain such finite renormalizations (for more details, see [131]) in the masses of neutrinos.

One-Loop Level Dirac and Majorana masses

The operator (4.5) and its Hermitian adjoint arise from the radiative corrections mediated by
the model particles and give contributions to Majorana and Dirac mass terms ML, MR, and
MD for the neutrinos. The Yukawa couplings of the leptons in (2.6) and the relevant Higgs
self-couplings in (2.11) are explicitly rewritten as follows:

Llept
Y = 2hνabν

c
aLlbLφ

+
3 − 2hνabνaRlbLφ

+
1 + hlabνaLlbRφ

+
1 + hlabν

c
aRlbRφ

+
3 + hlablaLlbRφ

0
2 + H.c.,

Lrelv
H = λ3φ

−
1φ

+
1

(
χ0∗

1 χ
0
1 + χ

0∗
3 χ

0
3

)
+ λ3φ

−
3φ

+
3
(
χ0∗

1 χ
0
1 + χ

0∗
3 χ

0
3

)
+ λ4φ

−
1φ

+
1χ

0∗
1 χ

0
1 + λ4φ

−
3φ

+
3χ

0∗
3 χ

0
3

+ λ4φ
−
3φ

+
1χ

0∗
1 χ

0
3 + λ4φ

−
1φ

+
3χ

0∗
3 χ

0
1.

(4.11)

The one-loop corrections to the mass matricesML of νL,MR of νR, andMD of ν are, therefore,
given in Figures 10, 11, and 12, respectively.
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Figure 10: The one-loop corrections for the mass matrix ML.
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Figure 11: The one-loop corrections for the mass matrix MR.

Radiative Corrections toML andMR

With the Feynman rules at hand [127, 128], ML is obtained by

−i
(
ML

)
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∫
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(
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) i( − �p +mc

)
p2 −m2

c

(
ihldc

v√
2
PR

)
i
(
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)
.

(4.12)

Because the Yukawa couplings of the charged leptons are flavor diagonal, (4.12) becomes

(
ML

)
ab =

i
√

2λ4uω

v
hνab

[
m2
bI
(
m2
b,m

2
φ3
, m2

φ1

)
−m2

aI
(
m2
a,m

2
φ3
, m2

φ1

)]
, (a, b not summed),

(4.13)

where the integral I(a, b, c) is given in Appendix B.
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In the effective approximation (2.8), identifications are given by φ±3 ∼ H
±
2 and φ±1 ∼ G

±
W

[39], where H±2 and G±W as above mentioned are the charged bilepton Higgs boson and the
Goldstone boson associated with W± boson, respectively. For the masses, we have also m2

φ3
�

m2
H2
(� (λ4/2)ω2) and m2

φ1
� 0. Using (B.5), the integrals are given by

I
(
m2
a,m

2
φ3
, m2

φ1

)
� − i

16π2

1
m2
a −m2

H2

[
1 −

m2
H2

m2
a −m2

H2

ln
m2
a

m2
H2

]
, a = e, μ, τ. (4.14)

Consequently, the mass matrix (4.13) becomes
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m2
a −m2

H2

)+ m2
am

2
H2(

m2
a −m2

H2

)2
ln

m2
a

m2
H2

−
m2
b
m2
H2(

m2
b
−m2

H2

)2
ln

m2
b

m2
H2

]

�
√

2λ4uωh
ν
ab

16π2vm2
H2

[
m2
a

(
1 + ln

m2
a

m2
H2

)
−m2

b

(
1 + ln

m2
b

m2
H2

)]
,

(4.15)

where the last approximation (4.15) is kept in the orders up to O[(m2
a,b
/m2

H2
)2]. Since m2

H2
�

(λ4/2)ω2, it is worth noting that the resulting ML is not explicitly dependent on λ4, however,
proportional to tθ = u/ω (the mixing angle between the W boson and the singly-charged
bilepton gauge boson Y [38]),

√
2vhν

ab
(the tree-level Dirac mass term of neutrinos), and mH2

in the logarithm scale. Here, the VEV v ≈ vweak and the charged-lepton massesma (a = e, μ, τ)
have the well-known values. Let us note that ML is symmetric and has vanishing diagonal
elements.

For the corrections to MR, it is easily to check that the relationship (MR)ab = −(ML)ab
is exact at the one-loop level. (This result can be derived from Figure 11 in a general case
without imposing any additional condition on hl, hν, and further.) Combining this result
with (4.15), the mass matrices are explicitly rewritten as follows:

(ML)ab = −(MR)ab �

⎛
⎝0 f r
f 0 t
r t 0

⎞
⎠ , (4.16)

where the elements are obtained by

f ≡
(√

2vhνeμ
){( tθ

8π2v2

)[
m2
e

(
1 + ln

m2
e

m2
H2

)
−m2

μ

(
1 + ln

m2
μ

m2
H2

)]}
,

r ≡
(√

2vhνeτ
){( tθ

8π2v2

)[
m2
e

(
1 + ln

m2
e

m2
H2

)
−m2

τ

(
1 + ln

m2
τ

m2
H2

)]}
,

t ≡
(√

2vhνμτ
){( tθ

8π2v2

)[
m2
μ

(
1 + ln

m2
μ

m2
H2

)
−m2

τ

(
1 + ln

m2
τ

m2
H2

)]}
.

(4.17)
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It can be checked that f , r, t are much smaller than those of MD. To see this, we can take
me � 0.51099 MeV, mμ � 105.65835 MeV, mτ � 1777 MeV, v � 246 GeV, u � 2.46 GeV, ω �
3000 GeV, and mH2 � 700 GeV (λ4 ∼ 0.11) [38–40], which give us then

f �
(√

2vhνeμ
)(

3.18 × 10−11), r �
(√

2vhνeτ
)(

5.93 × 10−9), t �
(√

2vhνμτ
)(

5.90 × 10−9),
(4.18)

where the second factors rescale negligibly with ω ∼ 1–10 TeV and mH2 ∼ 200–2000 GeV. This
thus implies that ∣∣ML,R

∣∣∣∣MD

∣∣ ∼ 10−9, (4.19)

which can be checked with the help of |M| ≡ (M†M)1/2. In other words, the constraint is
given as follows ∣∣ML,R

∣∣� ∣∣MD

∣∣. (4.20)

With the above results at hand, we can then get the masses by studying diagonalization of
the mass matrix (4.10), in which, the submatrices ML,R and MD satisfying the constraint
(4.20) are given by (4.16) and (4.7), respectively. In calculation, let us note that since MD

has one vanishing eigenvalue, Mν does not possess the pseudo-Dirac property in all three
generations [132], despite being very close to those because the remaining eigenvalues do.
As a fact, we will see that Mν contains a combined framework of the seesaw [55–62] and the
pseudo-Dirac [132–142]. To get mass, we can suppose that hν is real and, therefore, the matrix
iMD is Hermitian: (iMD)

† = iMD (4.7). The Hermitianity for ML,R is also followed by (4.16).
Because the dominant matrix isMD (4.20), we first diagonalize it by biunitary transformation
[131]:

νaR = νiR(−iU)†ia, νbL = UbjνjL, (i, j = 1, 2, 3), (4.21)

Mdiag ≡ diag
(
0,−mD,mD

)
= (−iU)†MDU, mD =

√
A2 + B2 + C2, (4.22)

where the matrix U is easily obtained by

U =
1

mD

√
2
(
A2 + C2

)
⎛
⎜⎜⎜⎝

C
√

2
(
A2 + C2

)
iBC −AmD BC − iAmD

−B
√

2
(
A2 + C2

)
i
(
A2 + C2) (

A2 + C2)
A
√

2
(
A2 + C2

)
iAB + CmD AB + iCmD

⎞
⎟⎟⎟⎠ . (4.23)

Resulted by the anti-Hermitianity of MD, it is worth noting that Mν in the case of vanishing
ML,R (4.9) is indeed diagonalized by the following unitary transformation:

V =
1√
2

(
U U
−iU iU

)
. (4.24)

A new basis (ν1, ν2, . . . , ν6)
T
L ≡ V †XT

L , which is different from (νjL, νciR)
T of (4.21), is therefore

performed. The neutrino mass matrix (4.10) in this basis becomes

V †MνV =
(
Mdiag ε
ε −Mdiag

)
, (4.25)

ε ≡ U†MLU, ε
† = ε, (4.26)
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where the elements of ε are obtained by

ε11 = ε22 = ε33 = 0, (4.27)

ε12 = iε∗13 =
{[
ABmD + iC

(
A2 − B2 + C2)]f +

[(
C2 −A2)mD + 2iABC

]
r

+
[
iA
(
A2 − B2 + C2) − BCmD

]
t
}[
m2
D

√
2
(
A2 + C2

)]−1
,

(4.28)

ε23 =
{(
A2 + C2)[(CmD − iAB

)
t −

(
AmD + iBC

)
f
]

−
[
B
(
A2 − C2)mD + iAC

(
A2 + 2B2 + C2)]r}[m2

D

(
A2 + C2)]−1

.
(4.29)

Let us remind the reader that (4.27) is exactly given at the one-loop level ML (4.13) without
imposing any approximation on this mass matrix. Interchanging the positions of component
fields in the basis (ν1, ν2, . . . , ν6)

T
L by a permutation transformation P † ≡ P23P34, that is, νp →

(P †)pqνq (p, q = 1, 2, . . . , 6) with

P † =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (4.30)

the mass matrix (4.25) can be rewritten as follows:

P †
(
V †MνV

)
P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ε12 ε13

0 0 ε12 ε13 0 0
0 ε21 −mD 0 0 ε23

0 ε31 0 mD ε32 0
ε21 0 0 ε23 mD 0
ε31 0 ε32 0 0 −mD

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (4.31)

It is worth noting that in (4.31), all the off-diagonal components |ε| are much smaller than the
eigenvalues | ± mD| due to Condition (4.20). The degenerate eigenvalues 0, −mD, and +mD

(each twice) are now splitting into three pairs with six different values, two light and four
heavy. The two neutrinos of first pair resulted by the 0 splitting have very small masses as
a result of exactly what a seesaw does [55–62], that is, the off-diagonal block contributions
to these masses are suppressed by the large pseudo-Dirac masses of the lower-right block.
The suppression in this case is different from the usual ones [55–62] because it needs only
the pseudo-Dirac particles [132–142] with the masses mD of the electroweak scale instead of
extremely heavy RH Majorana fields, and that the Dirac masses in those mechanisms are now
played by loop-induced f , r, t (4.17) as a result of the SLB u/ω. Therefore, the mass matrix
(4.31) is effectively decomposed into MS for the first pair of light neutrinos (νS) and MP for
the last two pairs of heavy pseudo-Dirac neutrinos (νP):

(
ν1, ν4, ν2, ν3, ν5, ν6

)T
L −→

(
νS, νP

)T
L = V †eff

(
ν1, ν4, ν2, ν3, ν5, ν6

)T
L,

V †eff
(
P †V †MνVP

)
Veff = diag

(
MS,MP

)
,

(4.32)
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Table 18: The values for hν and two largest splittings in squared mass.

Fine tuning hν m2
D (eV2) 4mD |ε23| (eV2)

m2
D ∼ Δm2

atm 8.30 × 10−14 2.50 × 10−3 3.95 × 10−11

m2
D ∼ Δm2

LSND 1.66 × 10−12 1.00 1.58 × 10−8

where Veff, MS, and MP get the approximations:

Veff �
(

1 E
−E+ 1

)
, E ≡

(
0 0 ε12 ε13

ε12 ε13 0 0

)⎛
⎜⎜⎝
−mD 0 0 ε23

0 mD ε32 0
0 ε23 mD 0
ε32 0 0 −mD

⎞
⎟⎟⎠
−1

,

MS � −E

⎛
⎜⎜⎝

0 ε21

0 ε31

ε21 0
ε31 0

⎞
⎟⎟⎠ , MP �

⎛
⎜⎜⎝
−mD 0 0 ε23

0 mD ε32 0
0 ε23 mD 0
ε32 0 0 −mD

⎞
⎟⎟⎠ .

(4.33)

The mass matrices MS and MP, respectively, give exact eigenvalues as follows:

mS± = ±
2Im

(
ε13ε13ε32

)
m2
D − ε

2
23

� ±2Im
(
ε13ε13ε32

m2
D

)
, (4.34)

mP± = −mD ±
∣∣ε23

∣∣, mP′± = mD ±
∣∣ε23

∣∣. (4.35)

In this case, the mixing matrices are collected into (νS±, νP±, νP′±)
T
L = V †± (νS, νP)

T
L, where the V±

is obtained by

V± =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0
1 1 0 0 0 0
0 0 κ −κ 0 0
0 0 0 0 1 1
0 0 0 0 κ −κ
0 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, κ ≡ ε23∣∣ε23

∣∣ = exp
(
i arg ε23

)
. (4.36)

It is to be noted that the degeneration in the Dirac one | ±mD| is now splitting severally.
From (4.35), we see that the four large pseudo-Dirac masses for the neutrinos are

almost degenerate. In addition, the resulting spectrum (4.34), (4.35) yields two largest
squared mass splittings, respectively, proportional to m2

D and 4mD|ε23|. From (4.29) and
(4.18), we can evaluate |ε23| � 3.95 × 10−9 mD � mD (where A ∼ B ∼ C ∼ mD/

√
3 is

understood). Because the splitting 4mD|ε23| is still much smaller than Δm2
sol, this therefore

implies that the fine tuning, as mentioned, is not realistic. (In detail, in Table 18, we give the
numerical values of these fine tunings, where the parameters are given as before (4.18).)

Similarly, for the two small masses, we can also evaluate |mS±| � 4.29 × 10−28 mD. This
shows that the massesmS± are very much smaller than the splitting |ε23|. This also implies that
the two light neutrinos in this case are hidden for any mD value of pseudo-Dirac neutrinos.
Let us see the sources of the problem why these masses are so small: (i) vanishing of all
the elements of left-upper block of (4.31); (ii) in (4.34) the resulting masses are proportional
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to |ε|3/m2
D, but not to |ε|2/mD as expected from (4.31). It turns out that this is due to the

antisymmetric of hν
ab

enforcing on the tree-level Dirac-mass matrix and the degenerate of
MR = −ML of the one-loop level left-handed (LH) and RH Majorana-mass matrices. It can
be easily checked that such degeneration in Majorana masses remains up to higher-order
radiative corrections as a result of treating the LH and RH neutrinos in the same gauge triplets
with the model Higgs content. For example, by the aid of (4.5) the degeneration retains up to
any higher-order loop.

Radiative corrections toMD

As mentioned, the mass matrix MD requires the one-loop corrections as given in Figure 12,
and the contributions are easily obtained as follows:

−i
(
Mrad

D

)
abPL =

∫
d4p

(2π)4

(
− i2hνacPL

) i( �p +mc

)
p2 −m2

c

(
ihlcd

v√
2
PR

)
i
(
�p +md

)
p2 −m2

d

×
(
ihl∗bdPL

) −1(
p2 −m2

φ1

)2

(
iλ3

u2 +ω2

2
+ iλ4

u2

2

)

+
∫

d4p

(2π)4

(
ihl∗acPL

) i( − �p +mc

)
p2 −m2

c

(
ihldc

v√
2
PR

)
i
(
− �p +md

)
p2 −m2

d

×
(
i2hνbdPL

) −1(
p2 −m2

φ3

)2

(
iλ3

u2 +ω2

2
+ iλ4

ω2

2

)
.

(4.37)

We rewrite

(
Mrad

D

)
ab = −

i
√

2hν
ab

v

{[
λ3
(
u2 +ω2) + λ4u

2]m2
bI
(
m2
b,m

2
φ1

)
+
[
λ3
(
u2 +ω2) + λ4ω

2]m2
aI
(
m2
a,m

2
φ3

)}
, (a, b not summed),

(4.38)

where I(a, b) is given in (B.13). With the help of (B.14), the approximation for (4.38) is
obtained by

(
Mrad

D

)
ab � −

hν
ab

8
√

2π2v

{[
λ3
(
u2 +ω2) + λ4u

2] + [λ3
(
u2 +ω2) + λ4ω

2] m2
a

m2
H2

}

= −
√

2hνab

(
λ3ω

2

16π2v

)[
1 +

(
1 +

λ4

λ3

)(
u2

ω2
+
m2
a

m2
H2

)
+O

(
u4

ω4
,
m4
a,b

m4
H2

)]
.

(4.39)

Because of the constraint (2.8), the higher-order corrections O(· · · ) can be neglected; thus
Mrad

D is rewritten as follows:

(
Mrad

D

)
ab = −

√
2hνab

(
λ3ω

2

16π2v

)(
1 + δa

)
, δa ≡

(
1 +

λ4

λ3

)(
u2

ω2
+
m2
a

m2
H2

)
, (4.40)

where δa is of course an infinitesimal coefficient, that is, |δ| � 1. Again, this implies also that
if the fine tuning is done the resulting Dirac-mass matrix get trivially. It is due to the fact that
the contribution of the term associated with δa in (4.40) is then very small and neglected;
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Figure 12: The one-loop corrections for the mass matrix MD.

the remaining term gives an antisymmetric resulting Dirac-mass matrix, that is, therefore,
unrealistic under the data.

With this result, it is worth noting that the scale

∣∣∣∣ λ3ω
2

16π2v

∣∣∣∣ (4.41)

of the radiative Dirac masses (4.40) is in the orders of the scale v of the tree-level Dirac masses
(4.7). Indeed, if one puts |(λ3ω

2)/(16π2v)| = v and takes |λ3| ∼ 0.1–1, then ω ∼ 3–10 TeV as
expected in the constraints [40, 114, 115]. The resulting Dirac-mass matrix which is combined
of (4.7) and (4.40), therefore, gets two typical examples of the bounds: (i) (λ3ω

2)/(16π2v) +
v ∼ O(v); (ii) (λ3ω

2)/(16π2v)+v ∼ O(0). The first case (i) yields that the status on the masses
of neutrinos as given above is remained unchanged and therefore is also trivial as mentioned.
In the last case (ii), the combination of (4.7) and (4.40) gives

(MD)ab =
√

2hνab(vδa). (4.42)

It is interesting that in this case the scale v for the Dirac masses (4.7) gets naturally a large
reduction, and we argue that this is not a fine tuning. Because the large radiative mass term
in (4.40) is canceled by the tree-level Dirac masses, we mean this as a finite renormalization in
the masses of neutrinos. It is also noteworthy that, unlike the case of the tree-level mass term
(4.7), the mass matrix (4.42) is now nonantisymmetric in a and b. Among the three eigenvalues
of this matrix, we can check that one vanishes (since detMD = 0) and two others massive are
now nondegenerate (splitting). Let us recall that in the first case (i) the degeneration of the
two nonzero eigenvalues are, however, retained because the combination of (4.7) and (4.40)
is proportional to hνabv.

In contrast to (4.19), in this case there is no large hierarchy between ML,R and MD.
To see this explicitly, let us take the values of the parameters as given before (4.18), thus
λ3 � −1.06 and the coefficients δa are evaluated by

δe � 6.03 × 10−7, δμ � 6.23 × 10−7, δτ � 6.28 × 10−6. (4.43)

Hence, we get ∣∣ML,R

∣∣∣∣MD

∣∣ ∼ 10−2–10−3. (4.44)
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With the values given in (4.43), the quantities hν and mD can be evaluated through the mass
term (4.42); the neutrino data imply that hν andmD are in the orders of he andme—the Yukawa
coupling and mass of electron, respectively.

Because of the Condition (4.44) and the vanishing of one eigenvalue of MD, we can
repeat the procedure as given above to diagonalize the full matrix Mν with MD given by
(4.42) and ML,R by (4.16). First, we can easily find a mixing matrix V as in (4.24); Second, in
the new basis we obtain the seesaw form as in (4.31); Finally, the resulting mixing matrix and
masses for the neutrinos are derived. It is worth checking that the two largest squared mass
splittings as given before can be approximately applied on this case of (4.44) such as (mD|δ|)2

and 4(mD|δ|)|ε|, and seeing that they fit naturally the data.

Mass contributions from heavy particles

There remain now two questions not yet answered: (i) the degeneration of MR = −ML; (ii)
the hierarchy of ML,R and MD (4.44) can be continuously reduced? As mentioned, we will
prove that the new physics gives us the solution.

The mass Lagrangian for the neutrinos given by the operator (4.4) can be explicitly
written as follows:

LLNV
mass = s

ν
abM

−1(〈χ†〉ψ c
aL

)(〈
χ†
〉
ψbL

)
+ H.c.

= sνabM
−1
(
u√
2
ν caL +

ω√
2
νaR

)(
u√
2
νbL +

ω√
2
νcbR

)
+ H.c.

= −1
2
X

c

LM
new
ν XL + H.c.,

(4.45)

where the mass matrix for the neutrinos is obtained by

Mnew
ν ≡ −

⎛
⎜⎜⎝

u2

Msν
uω

M sν

uω

M sν
ω2

M sν

⎞
⎟⎟⎠ , (4.46)

in which the coupling sν
ab

is symmetric in a and b. For convenience in reading, let us define
the submatrices of (4.46) to be Mnew

L , Mnew
D , and Mnew

R similar to that of (4.10). Because of the
condition u2 � uω � ω2, the corresponding submatrices Mnew

L , Mnew
D , and Mnew

R of (4.46)
get the right hierarchies and the two questions as mentioned are solved simultaneously .

Intriguing comparisons between sν and hν are given in order:

(1) hν conserves the lepton number; sν violates this charge;

(2) hν is antisymmetric and enforcing on the Dirac-mass matrix; sν is symmetric and
breaks this property;

(3) hν preserves the degeneration of MR = −ML; sν breaks the MR = −ML;

(4) a pair of (sν, hν) in the lepton sector will complete the rule played by the quark
couplings (sq, hq) (see below);

(5) hν defines the interactions in the standard model scale v; sν gives those in the GUT
scaleM.
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Let us now take the values M � 1016 GeV, ω � 3000 GeV, u � 2.46 GeV, and sν ∼ O(1)
(perhaps smaller), the submatrices Mnew

L � −6.05 × 10−7sν eV and Mnew
D � −7.38 × 10−4sν eV

can give contributions (to the diagonal components of ML and MD, resp.) but very small. It
is noteworthy that the last one Mnew

R � −0.9sν eV can dominateMR.
To summarize, in this model the neutrino mass matrix is combined by Mν + Mnew

ν ,
where the first term is defined by (4.10) and the last term by (4.46); the submatrices of Mν

are given in (4.16) and (4.42), respectively. Depending on the strength of the new physics
coupling sν, the submatrices of the last term, Mnew

L and Mnew
D , are included or removed.

4.2.3. Some remarks from experimental constraints

Conventional neutrino oscillations are insensitive to the absolute scale of neutrino masses.
Although the latter will be tested directly in high-sensitivity tritium beta decay studies and
neutrinoless double beta decay (0νββ) as well as by its effects on the cosmic microwave
background and the large-scale structure of the Universe [143, 144]. With the present of sterile
neutrinos in this model, the experimental constraints on their masses may be also important
and give us bounds on several parameters such as the coupling hν and δa.

If the liquid scintillator neutrino detector experiment is confirmed, the sterile-neutrino
masses will get some values in range of eV. In this case, the coupling hν is also in orders of he.
The X-ray measurements yield an upper limit of sterile neutrino mass [145]ms < 6.3 keV. For
all the other cosmological constraints, the sterile neutrino masses are in the range [146, 147]
2 keV < ms < 8 keV. In such cases, the coupling hν will get bounds in orders of hμ,τ .

It is well known that the radiative mass generation can also induce the large lepton
flavor violating processes such as μ → eγ as the similar one-loop effect. The possible one-
loop diagrams for this process are depicted in Figure 13. Suppose that m2

Y ,m
2
H2
� m2

W =
g2v2/4 [38], we get the approximation [148]:

Br(μ −→ eγ) ≡
Γ(μ −→ eγ)

Γ
(
μ −→ eν̃eνμ

) � 3s4
W

8π3α

(
hν∗μτh

ν
eτ

)2
. (4.47)

Since Br(μ → eγ) < 1.2 × 10−11, α = 1/128 and s2
W = 0.2312 [3], the coupling hν is bounded

by hν < 3.47 × 10−3, where hν ≡ hνeτ = hνμτ set is understood. Our above result, hν ∼ he,
satisfies this constraint. It can be shown that the value for hν also satisfies constraints from
such processes as μ → 3e and μe conversion (for more details, see [149]).

4.3. Quark masses

First, we present the general quark mass spectrum. Some details on the one-loop quark
masses are given then.

4.3.1. Quark mass spectra

Note that in [37], the authors have considered the fermion mass spectrum under the Z2

discrete symmetry which discards the LNV interactions. Here, the couplings of (2.7) in such
case are forbidden. Then, it can be checked that some quarks remain massless up to two-loop
level. To solve the mass problem of the quarks, the authors in [37] have shown that one-third
scalar triplet has to be added to the resulting model. In the following, we show that it is not
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Figure 13: One-loop contributions to the lepton flavor violating decay μ → eγ .

necessary. The Z2 is not introduced and thus the third one is not required. The LNV Yukawa
couplings are vital for the economical 3-3-1 model.

The Yukawa couplings in (2.6) and (2.7) give the mass Lagrangian for the upquarks
(quark sector with electric charge qup = 2/3):

Lmass
up =

hU√
2

(
u1Lu +ULω

)
UR +

sua√
2

(
u1Lu +ULω

)
uaR −

v√
2
uαL

(
huαauaR + sUα UR

)
+ H.c.

(4.48)

Consequently, we obtain the mass matrix for the upquarks (u1, u2, u3, U) as follows:

Mup =
1√
2

⎛
⎜⎜⎜⎜⎜⎝

−su1u −su2u −su3u −hUu
hu21v hu22v hu23v sU2 v

hu31v hu32v hu33v sU3 v

−su1ω −su2ω −su3ω −hUω

⎞
⎟⎟⎟⎟⎟⎠ . (4.49)

Because the first and the last rows of the matrix (4.49) are proportional, the tree-level upquark
spectrum contains a massless one!

Similarly, for the downquarks (qdown = −1/3), we get the following mass Lagrangian:

Lmass
down =

hDαβ√
2

(
dαLu +DαLω

)
DβR +

sdαa√
2

(
dαLu +DαLω

)
daR +

v√
2
d1L

(
hdadaR + sDα DαR

)
+ H.c.

(4.50)

Hence, we get mass matrix for the downquarks (d1, d2, d3, D2, D3):

Mdown = − 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hd1v hd2v hd3v sD2 v sD3 v

sd21u sd22u sd23u hD22u hD23u

sd31u sd32u sd33u hD32u hD33u

sd21ω sd22ω sd23ω hD22ω hD23ω

sd31ω sd32ω sd33ω hD32ω hD33ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.51)
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Figure 14: One-loop contributions to the upquark mass matrix (4.49).
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Figure 15: One-loop contributions to the downquark mass matrix (4.51).



60 Advances in High Energy Physics

We see that the second and fourth rows of matrix in (4.51) are proportional, while the third
and the last are the same. Hence, in this case there are two massless eigenstates.

The masslessness of the tree-level quarks in both the sectors calls radiative corrections
(the so-called mass problem of quarks). These corrections start at the one-loop level.
The diagrams in Figure 14 contribute the upquark spectrum, while Figure 15 gives the
downquarks. Let us note the reader that the quarks also get some one-loop contributions
in the case of the Z2 symmetry enforcing [37]. The careful study of this radiative mechanism
shows that the one-loop quark spectrum is consistent.

4.3.2. Typical examples of the one-loop corrections

To provide the quarks masses, in the following we can suppose that the Yukawa couplings
are flavor diagonal. Then, the u2 and u3 states are mass eigenstates corresponding to the mass
eigenvalues:

m2 = hu22
v√
2
, m3 = hu33

v√
2
. (4.52)

The u1 state mixes with the exotic U in terms of one submatrix of the mass matrix (4.48):

MuU = − 1√
2

(
su1u hUu

su1ω hUω

)
. (4.53)

This matrix contains one massless quark ∼ u1, m1 = 0, and the remaining exotic quark ∼ U
with the mass of the scale ω.

Similarly, for the downquarks, the d1 state is a mass eigenstate corresponding to the
eigenvalue:

m′1 = −hd1
v√
2
. (4.54)

The pairs (d2, D2) and (d3, D3) are decoupled, while the quarks of each pair mix via the mass
submatrices, respectively,

Md2D2 = −
1√
2

(
sd22u hD22u

sd22ω hD22ω

)
, (4.55)

Md3D3 = −
1√
2

(
sd33u hD33u

sd33ω hD33ω

)
. (4.56)

These matrices contain the massless quarks ∼ d2 and d3 corresponding to m′2 = 0 and m′3 = 0,
and two exotic quarks ∼ D2 and D3 with the masses of the scale ω.

With the help of the constraint (2.8), we identify m1, m2, and m3, respectively, to
those of the u1 = u, u2 = c, and u3 = t quarks. The downquarks d1, d2, and d3 are,
therefore, corresponding to d, s, and b quarks. Unlike the usual 3-3-1 model with right-
handed neutrinos, where the third family of quarks should be discriminating [28], in the
model under consideration the first family has to be different from the two others.

The mass matrices (4.53), (4.55), and (4.56) remain the tree-level properties for the
quark spectra—one massless in the upquark sector and two in the downquark sector. From
these matrices, it is easily to verify that the conditions in (2.8) and (2.10) are satisfied. First,
we consider radiative corrections to the upquark masses.
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Figure 16: One-loop contribution under Z2 to the upquark mass matrix (4.57).

Upquarks

In the previous studies [19, 37, 84–86], the LNV interactions have often been excluded,
commonly by the adoption of an appropriate discrete symmetry. Let us remind that there
is no reason within the 3-3-1 model to ignore such interactions. The experimental limits on
processes which do not conserve total lepton numbers such as neutrinoless double beta decay
[150, 151] require them to be small.

If the Yukawa Lagrangian is restricted to LLNC [37], then the mass matrix (4.53)
becomes

MuU = − 1√
2

(
0 hUu
0 hUω

)
. (4.57)

In this case, only the element (MuU)12 gets an one-loop correction defined by Figure 16. Other
elements remain unchanged under this one-loop effect.

The Feynman rules gives us

−i
(
MuU

)
12PR =

∫
d4p

(2π)4

(
ihUPR

) i(�p +MU

)
p2 −M2

U

(
− iMUPL

) i(�p +MU

)
p2 −M2

U

(
ihUPR

)

× −1(
p2 −M2

χ1

)(
p2 −M2

χ3

)(i4λ1
)uω

2
.

(4.58)

Thus, we get

(
MuU

)
12 = −2iuωλ1MU

(
hU

)2
∫

d4p

(2π)4

p2(
p2 −M2

U

)2(
p2 −M2

χ3

)(
p2 −M2

χ1

)
≡ −2iuωλ1MU

(
hU

)2
I
(
M2

U,M
2
χ3
,M2

χ1

)
.

(4.59)

The integral I(a, b, c) with a, b � c is given in the B. Following [39], we conclude that in an
effective approximation, M2

U, M
2
χ3
�M2

χ1
. Hence, we have

(
MuU

)
12 � −

λ1tθM
3
U

4π2

[
M2

U −M2
χ3
+M2

χ3
ln
(
M2

χ3
/M2

U

)
(
M2

U −M
2
χ3

)2

]
∼ u ≡ − 1√

2
R
(
MU

)
. (4.60)

The resulting mass matrix is given by

MuU = − 1√
2

(
0 hUu + R
0 hUω

)
. (4.61)
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Figure 17: One-loop contribution to the upquark mass matrix (4.53).

Table 19: Mass for the u quark as function of (su1 , h
U).

hU 2 1.5 1 0.5 0.1
su1 0.0002 0.0003 0.0004 0.001 0.01
mu [MeV] 2.207 2.565 2.246 2.375 2.025

We see that one quark remains massless as the case of the tree-level spectrum. This result
keeps up to two-loop level and can be applied to the downquark sector as well as in the cases
of nondiagonal Yukawa couplings. Therefore, under theZ2, it is not able to provide consistent
masses for the quarks.

If the full Yukawa Lagrangian is used, the LNV couplings must be enough small in
comparison with the usual couplings [see (2.10)]. Combining (2.8) and (2.10), we have

hUω � hUu, su1ω � su1u. (4.62)

In this case, the element (MuU)11 of (4.53) gets the radiative correction depicted in Figure 17.
The resulting mass matrix is obtained by

MuU = − 1√
2

⎛
⎝su1

(
u +

R

hU

)
hUu

su1ω hUω

⎞
⎠ . (4.63)

In contradiction with the first case, the mass of u quark is now nonzero and given by

mu �
su1√
2hU

R. (4.64)

Let us note that the matrix (4.63) gives an eigenvalue in the scale of (1/
√

2)hUω which can
be identified with that of the exotic quark U. In effective approximation [39], the mass for
the Higgs χ3 is defined by M2

χ3
� 2λ1ω

2. Hereafter, for the parameters, we use the following
values λ1 = 2.0, tθ = 0.08 as mentioned, and ω = 10 TeV. The mass value for the u quark is as
function of su1 and hU. Some values of the pair (su1 , h

U) which give consistent masses for the
u quark are listed in Table 19.

Note that the mass values in Table 19 for the u quark are in good consistence with the
data given in [3]: mu ∈ 1.5 ÷ 4 MeV.

Downquarks

For the downquarks, the constraint,

hDααω � hDααu, sdααω � sdααu, (4.65)
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Figure 18: One-loop contributions to the downquark mass matrix (4.55) or (4.56).

should be applied. In this case, three elements (MdαDα)11, (MdαDα)12, and (MdαDα)21 will get
radiative corrections. The relevant diagrams are depicted in Figure 18. It is worth noting that
Diagram 18(c) exists even in the case of the Z2 symmetry. The contributions are given by

(
MdαDα

)
11 = − sdαα√

2hDαα
R
(
MDα

)
,

(
MdαDα

)
21 = −4iλ1

sdαα
hDαα

M3
Dα
I
(
M2

Dα
,M2

χ3
,M2

χ3

)

= −
λ1s

d
ααM

3
Dα

4π2hDαα

[
M2

Dα
+M2

χ3(
M2

Dα
−M2

χ3

)2
−

2M2
Dα
M2

χ3(
M2

Dα
−M2

χ3

)3
ln
M2

Dα

M2
χ3

]

≡ − 1√
2
R′
(
MDα

)
,

(
MdαDα

)
12 = − 1√

2
R
(
MDα

)
.

(4.66)

We see that two last terms are much larger than the first one. This is responsible for the masses
of the quarks d2 and d3. At the one-loop level, the mass matrix for the downquarks is given
by

MdαDα = −
1√
2

⎛
⎜⎝sdαα

(
u +

R

hDαα

)
hDααu + R

sdααω + R′ hDααω

⎞
⎟⎠ . (4.67)

We remind the reader that a matrix (see also [131])(
a c
b D

)
(4.68)
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with D � b, c � a has two eigenvalues:

x1 �
[
a2 − 2bca

D
+
b2c2 −

(
b2 + c2)a2

D2

]1/2

, x2 � D. (4.69)

Therefore, the mass matrix in (4.67) gives an eigenvalue in the scale of D ≡ (1/
√

2)hDααω
which is of the exotic quark D′α. Here, we have another eigenvalue for the mass of d′α:

md′α =
hDααu + R
√

2hDααω

{
R′

2 −
(
sdαα

)2

(
hDαα

)2

[(
sdααω + R′

)2
+
(
hDααu + R

)2]}1/2

. (4.70)

Let us remember that M2
χ3
� 2λ1ω

2 and the parameters λ1 = 2.0, tθ = 0.08 and ω = 10 TeV as
given above are used in this case; mdα is a function of sdαα and hDαα. We take the value hDαα = 2.0
for both the sectors, α = 2 and α = 3. If sd22 = 0.015, we get then the mass of the so-called s
quark:

ms = 99.3 MeV. (4.71)

For the downquark of the third family, we put sd33 = 0.7. Then, the mass of the b quark is
obtained by

mb = 4.4 GeV. (4.72)

We emphasize again that (4.71) and (4.72) are in good consistence with the data given in [3]:
ms ∼ 95 ± 25 MeV and mb ∼ 4.70 ± 0.07 GeV.

4.4. Summary

The basic motivation of this section is to present the answer to one of the most crucial
questions: whether within the framework of the model based on SU(3)C ⊗ SU(3)L ⊗ U(1)X
gauge group contained minimal Higgs sector with right-handed neutrinos, all fermions
including quarks and neutrinos can gain the consistent masses.

In this model, the masses of neutrinos are given by three different sources widely
ranging over the mass scales including the GUT’s and the small VEV u of spontaneous lepton
breaking. At the tree level, there are three Dirac neutrinos: one massless and two degenerate
with the masses in the order of the electron mass. At the one-loop level, a possible framework
for the finite renormalization of the neutrino masses is obtained. The Dirac masses obtain a
large reduction; the Majorana mass types get degenerate in MR = −ML; all these masses are
in the bound of the data. It is emphasized that the above degeneration is a consequence of
the fact that the left-handed and right-handed neutrinos in this model are in the same gauge
triplets. The new physics including the 3-3-1 model is strongly signified. The degenerations
and hierarchies among the mass types are completely removed by heavy particles.

The resulting mass matrix for the neutrinos consists of two parts Mν + Mnew
ν : the

first is mediated by the model particles, and the last is due to the new physics. Upon the
contributions of Mnew

ν , the different realistic mass textures can be produced. For example,
neglecting the last term, the pseudo-Dirac patterns can be obtained. In another scenario, that
the bare coupling hν of Dirac masses gets higher values, for example, in orders of hμ,τ , the
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VEV ω can be picked up to an enough large value (∼ O(104–105)TeV) so that the type II
seesaw spectrum is obtained. Such features deserve further study. We have also shown that
the lepton flavor violating processes such as μ → eγ , μ → 3e, and μe conversion get the
consistent values in the bounds of the current experiments.

In the first section, we have shown that, in the considered model, there are three quite
different scales of vacuum expectation values: ω ∼ O(1)TeV, v ≈ 246 GeV, and u ∼ O(1)GeV.
In this section, we have added a new characteristic property, namely, there are two types
of Yukawa couplings with different strengths: the LNC coupling h’s and the LNV ones s’s
satisfying the condition s � h. With the help of these key properties, the mass spectrum
of quarks is consistent without introducing the third scalar triplet. With the given set of
parameters, the numerical evaluation shows that in this model, masses of the exotic quarks
also have different scales, namely, the U exotic quark (qU = 2/3) gains mass mU ≈ 700 GeV,
while the Dα exotic quarks (qDα = −1/3) have masses in the TeV scale: mDα ∈ 10 ÷ 80 TeV.

Let us summarize our results.

(1) At the tree level.

(a) All charged leptons gain masses similar to that in the standard model.
(b) One neutrino is massless and the other two are degenerate in masses.
(c) Three quarks u1, d2, d3 are massless.
(d) Allexotic quarks gain masses proportional to ω—the VEV of the first step of

symmetry breaking.

(2) At the one-loop level.

(a) All above-mentioned fermions gain masses.
(b) The light quarks gain masses proportional to u—the LNV parameter.
(c) The exotic quark masses are separated: mU ≈ 700 GeV, mDα ∈ 10 ÷ 80 TeV.
(d) There exist two types of Yukawa couplings: the LNC and LNV with quite

different strengths.

With the positive answer, the economical version becomes one of the very attractive models
beyond the standard model.

5. Conclusion

Finally, this is the time to mention some developments of the model as reported on this work
[36–42]. The idea to give VEVs at the top and bottom elements of χ triplet was given in [36].
Some consequences such as the atomic parity violation,Z−Z′ mixing angle andZ′ mass were
studied [37]. However, in the above-mentioned works, the W − Y and W4 − Z − Z′ mixings
were excluded. To solve the difficulties such as the standard model coupling ZZh or quark
masses, the third scalar triplet was introduced. Thus, the scalar sector was no longer minimal
and the economical in this sense was unrealistic!

In the beginning of the last year, there was a new step in development of the model. In
[38], the correct identification of non-Hermitian bilepton gauge boson X0 was established.
The W − Y mixing as well as W4, Z, Z′ one were also entered into couplings among
fermions and gauge bosons. The lepton-number violating interactions exist in both charged
and neutral gauge boson sectors. However, the lepton-number violation happens only in the
neutrino and exotic quarks sectors, but not in the charged lepton sector. The scalar sector
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was studied in [39], and all gauge-Higgs couplings were presented, and all similar ones in
the standard model were recovered. The Higgs sector contains eight Goldstone bosons—the
needed number for massive gauge ones of the model. Interesting to note that the CP -odd
part of Goldstone associated with the neutral non-Hermitian gauge boson GX0 is decoupled,
while its CP -even counterpart has the mixing by the same way in the gauge boson sector.

In [40], the deviation δQW of the weak charge from its standard model prediction due
to the mixing of the W boson with the charged bilepton Y as well as of the Z boson with the
neutral Z′ and the real part of the non-Hermitian neutral bilepton X0 is established.

The model is consistent with the effective theory and new experiments because it can
provide all fermions including the quarks and neutrinos with the consistent masses [41, 42].
The exotic quarks and new bosons get masses in order of TeV. There are two different scales
of exotic quark masses: mU ≈ 700 GeV, mDα ∈ 10 ÷ 80 TeV.

It is worth mentioning on advantage of the model: the new mixing angle between
the charged gauge bosons θ is connected with one of the VEVs u—the parameter of lepton-
number violations. There is no new parameter, but it contains very simple Higgs sector,
hence the significant number of free parameters is reduced. The Higgs self-couplings λ1,2,4

are constrained by the scalar masses, but the remainder λ3 is fixed by the neutrino masses
[42]. This means also that the generation of the neutrino masses leads to a shift in mass of the
Higgs boson from the standard model prediction.

The model is rich in physics because it includes the right-handed neutrinos, exotic
quarks, and new bosons and also gives an possible explanation of the generation question,
electric charge quantization, and current neutrino mass problem. The supersymmetric
version has been considered [43–46]. The new physics is at TeV scale, therefore, the results
can be verified in the next generation of collides such as LHC and ILC.

Appendices

A. Mixing matrices

For convenience in calculating, in this appendix we give the mixing matrices of the gauge
and Higgs sectors.

A.1. Neutral gauge bosons

⎛
⎜⎜⎝
W3

W8

B
W4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sW cϕcθ′cW sϕcθ′cW sθ′cW

−sW√
3

cϕ
(
s2
W − 3c2

Ws
2
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− sϕλκ√
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sϕ
(
s2
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Ws
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)
+ cϕλκ√
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√
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√
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√
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0
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(
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)
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(
sϕλ + cϕκ
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⎛
⎜⎜⎝

A
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W ′
4

⎞
⎟⎟⎠ ,

(A.1)

where we have denoted

sθ′ ≡
t2θ(

cW
√

1 + 4t22θ
) , κ ≡

√
4c2

W − 1, λ ≡
√

1 − 4s2
θ′
c2
W. (A.2)
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A.2. Neutral scalar bosons

⎛
⎝S1

S2

S3

⎞
⎠ =

⎛
⎝−sζsθ cζsθ cθ

cζ sζ 0
−sζcθ cζcθ −sθ
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⎠

⎛
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1
G4

⎞
⎠ . (A.3)

A.3. Singly-charged scalar bosons

⎛
⎝φ+

1
χ+

2
φ+

3

⎞
⎠ =

1√
ω2 + c2

θv
2

⎛
⎜⎜⎝
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√
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⎟⎟⎠

⎛
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5
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6

⎞
⎠ . (A.4)

B. Feynman integrations

In this appendix, we present evaluation of the integral:

I(a, b, c) ≡
∫

d4p

(2π)4

p2(
p2 − a

)2(
p2 − b

)(
p2 − c

) , (B.1)

where a, b, c > 0 and I(a, b, c) = I(a, c, b).

B.1. Case of b /= c and b, c /=a

We first introduce a well-known integral as follows:∫
d4p

(2π)4

1(
p2 − a

)(
p2 − b

)(
p2 − c

) =
−i

16π2

{
a lna

(a − b)(a − c) +
b ln b

(b − a)(b − c) +
c ln c

(c − b)(c − a)

}
.

(B.2)

Differentiating two sides of this equation with respect to a, we have∫
d4p

(2π)4

1(
p2 − a

)2(
p2 − b

)(
p2 − c

)
=
−i

16π2

{
lna + 1

(a − b)(a − c) −
a(2a − b − c) lna

(a − b)2(a − c)2
+

b ln b

(b − a)2(b − c)
+

c ln c

(c − a)2(c − b)

}
.

(B.3)

Combining (B.2) and (B.3), the integral (B.1) becomes

I(a, b, c) =
∫

d4p

(2π)4

[
1(

p2 − a
)(
p2 − b

)(
p2 − c

) +
a(

p2 − a
)2(

p2 − b
)(
p2 − c

)
]

=
−i

16π2

{
a(2 lna + 1)
(a − b)(a − c) −

a2(2a − b − c) lna

(a − b)2(a − c)2
+

b2 ln b

(b − a)2(b − c)
+

c2 ln c

(c − a)2(c − b)

}
.

(B.4)

If a, b � c or c � 0, we have an approximation as follows:

I(a, b, c) � − i

16π2

1
a − b

[
1 − b

a − b ln
a

b

]
. (B.5)
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B.2. Case of b = c and b /=a

We put

I(a, b) ≡ I(a, b, b) =
∫

d4p

(2π)4

p2(
p2 − a

)2(
p2 − b

)2
, (B.6)

where I(a, b) = I(b, a).
Using the Feynman’s parametrization,

1
A2B2

=
Γ(4)

Γ(2)Γ(2)

∫1

0
dx

x(1 − x)[
xA + (1 − x)B

]4
, (B.7)

we have

1(
p2 − a

)2(
p2 − b

)2
= 6

∫1

0
dx

x(1 − x)(
p2 −M2

)4
, (B.8)

where M2 ≡ xa + (1 − x)b. Equation (B.6), therefore, becomes

I(a, b) = 6
∫1

0
dxx(1 − x)

∫
d4p

(2π)4

p2(
p2 −M2

)4
. (B.9)

With the help of

∫
d4p

(2π)4

p2(
p2 −M2

)4
=

−i
3(4π)2

1
M2

, (B.10)

(B.9) is given by

I(a, b) =
−2i

(4π)2

∫1

0
dx

x(1 − x)
xa + (1 − x)b . (B.11)

To obtain the integral, we can put t = xa + (1 − x)b; (B.11) is then rewritten

I(a, b) =
2i

(4π)2(a − b)3

∫a
b

dt

[
t − (a + b) +

ab

t

]
. (B.12)

Therefore, we get

I(a, b) = − i

16π2

[
a + b

(a − b)2
− 2ab

(a − b)3
ln
a

b

]
. (B.13)

If b � a or a � 0, we have the following approximation:

I(a, b) � − i

16π2b
. (B.14)

Let us note that the above approximations aI(a, b, c), (or bI(a, b, c)), and bI(a, b) are kept in
the orders up to O(c/a, c/b) and O(a/b), respectively.
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[78] T. Kitabayashi and M. Yasuè, “S2L permutation symmetry for left-handed μ and τ families and
neutrino oscillations in an SU(3)L ⊗U(1)N gauge model,” Physical Review D, vol. 67, no. 1, Article ID
015006, 16 pages, 2003.

[79] G. B. Gelmini and M. Roncadelli, “Left-handed neutrino mass scale and spontaneously broken
lepton number,” Physics Letters B, vol. 99, no. 5, pp. 411–415, 1981.

[80] S. Bertolini and A. Santamaria, “The doublet majoron model and solar neutrino oscillations,” Nuclear
Physics B, vol. 310, no. 3-4, pp. 714–742, 1988.

[81] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, “Are there real goldstone bosons associated with
broken lepton number?” Physics Letters B, vol. 98, no. 4, pp. 265–268, 1981.

[82] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, “Spontaneously broken lepton number and
cosmological constraints on the neutrino mass spectrum,” Physical Review Letters, vol. 45, no. 24,
pp. 1926–1929, 1980.

[83] D. Chang, W.-Y. Keung, and P. B. Pal, “Spontaneous lepton-number breaking at electroweak scale,”
Physical Review Letters, vol. 61, no. 21, pp. 2420–2423, 1988.

[84] M. D. Tonasse, “The scalar sector of 3-3-1 models,” Physics Letters B, vol. 381, no. 1, pp. 191–201, 1996.
[85] M. B. Tully and G. C. Joshi, “Mass bounds for flavour mixing bileptons,” Physics Letters B, vol. 466,

no. 2–4, pp. 333–336, 1999.
[86] N. T. Anh, N. A. Ky, and H. N. Long, “The Higgs sector of the minimal 3-3-1 model revisited,”

International Journal of Modern Physics A, vol. 15, no. 2, pp. 283–305, 2000.
[87] L. N. Epele, H. Fanchiotti, C. G. Canal, and W. A. Ponce, “Can the Majoron be gauged away?”

preprint, 2007, http://arxiv.org/abs/hep-ph/0701195.
[88] H. N. Long and T. Inami, “S, T, U parameters in an SU(3)C ⊗SU(3)L ⊗U(1) model with right-handed

neutrinos,” Physical Review D, vol. 61, no. 7, Article ID 075002, 9 pages, 2000.
[89] P. V. Dong and H. N. Long, “U(1)Q invariance and SU(3)C⊗SU(3)L⊗U(1)X models with β arbitrary,”

European Physical Journal C, vol. 42, no. 3, pp. 325–329, 2005.
[90] R. N. Mohapatra, Unification and Supersymmetry, The Frontiers of Quark-Lepton Physics, Springer, New

York, NY, USA, 1992.
[91] J. F. Donoghue, E. Golowich, and B. R. Holstein, Dynamics of the Standard Model, Cambridge

University Press, Cambridge, UK, 1992.
[92] D. Bardin and G. Passarino, The Standard Model in the Making, Precision Study of the Electroweak

Interactions, Clarendon Press, Oxford, UK, 1999.
[93] F. Pisano and S. S. Sharma, “Majoron emitting neutrinoless double beta decay in the electroweak

chiral gauge extensions,” Physical Review D, vol. 57, no. 9, pp. 5670–5675, 1998.
[94] J. C. Montero, C. A. de S. Pires, and V. Pleitez, “Comment on “Majoron emitting neutrinoless double

beta decay in the electroweak chiral gauge extensions”,” Physical Review D, vol. 60, no. 9, Article ID
098701, 1 pages, 1999.

[95] D. A. Gutiérrez, W. A. Ponce, and L. A. Sánchez, “Phenomenology of the SU(3)C ⊗ SU(3)L ⊗ U(1)X
model with right-handed neutrinos,” The European Physical Journal C, vol. 46, no. 2, pp. 497–509, 2006.

[96] A. Carcamo, R. Martı́nez, and F. Ochoa, “Z and Z′ decays with and without FCNC in 3-3-1 models,”
Physical Review D, vol. 73, no. 3, Article ID 035007, 17 pages, 2006.

[97] H. N. Long and L. P. Trung, “Atomic parity violation in cesium and implications for the 3-3-1
models,” Physics Letters B, vol. 502, no. 1–4, pp. 63–68, 2001.

[98] P. Langacker and M. Luo, “Constraints on additional Z bosons,” Physical Review D, vol. 45, no. 1, pp.
278–292, 1992.

http://arxiv.org/abs/hep-ph/0701195


P. V. Dong and H. N. Long 73

[99] C. A. de S. Pires and P. S. Rodrigues da Silva, “Spontaneous breaking of global symmetries and
invisible triplet Majoron,” The European Physical Journal C, vol. 36, no. 3, pp. 397–403, 2004.

[100] A. G. Dias, A. Doff, C. A. de S. Pires, and P. S. Rodrigues da Silva, “Neutrino decay and neutrinoless
double β decay in a 3-3-1 model,” Physical Review D, vol. 72, no. 3, Article ID 035006, 8 pages, 2005.

[101] J. E. C. Montalvo and M. D. Tonasse, “Neutral Higgs bosons in the SU(3)L ⊗U(1)N model,” Physical
Review D, vol. 71, no. 9, Article ID 095015, 10 pages, 2005.

[102] J. F. Gunion, H. Haber, G. Kane, S. Dawson, and H. E. Haber, The Higgs Hunter’s Guide, Addison-
Wesley, New York, NY, USA, 1990.

[103] J. A. Grifols and A. Méndez, “WZH± coupling in SU(2) ⊗ U(1) gauge models,” Physical Review D,
vol. 22, no. 7, pp. 1725–1728, 1980.

[104] A. A. Iogansen, N. G. Ural’tsev, and V. A. Khoze, “Structure of the Higgs sector and vertex Z0WH,”
Soviet Journal of Nuclear Physics, vol. 36, no. 5, pp. 717–724, 1982.

[105] H. E. Haber and A. Pomarol, “Constraints from global symmetries on radiative corrections to the
Higgs sector,” Physics Letters B, vol. 302, no. 4, pp. 435–441, 1993.

[106] A. Pomarol and R. Vega, “Constraints on CP violation in the Higgs sector from the ρ parameter,”
Nuclear Physics B, vol. 413, no. 1-2, pp. 3–15, 1994.

[107] G. Kane, W. Repko, and W. Rolnick, “The effectiveW±,Z0 approximation for high energy collisions,”
Physics Letters B, vol. 148, no. 4-5, pp. 367–372, 1984.

[108] M. Chanowiz and M. K. Gaillard, “Multiple production of W and Z as a signal of new strong
interactions,” Physics Letters B, vol. 142, no. 1-2, pp. 85–90, 1984.

[109] S. Dawson, “The effective W approximation,” Nuclear Physics B, vol. 249, no. 1, pp. 42–60, 1985.
[110] E. L. Berger, J. Collins, and B. Gary, “CTEQ6 parton distribution functions,” http://hep.pa.msu.edu/

people/wkt/cteq6/cteq6pdf.html, http://www.phys.psu.edu/∼cteq.
[111] S. Abdullin, G. Azuelos, A. Ball, et al., “Physics potential and experimental challenges of the LHC

luminosity upgrade,” The European Physical Journal C, vol. 39, no. 3, pp. 293–333, 2005.
[112] S. Weinberg, “Baryon- and lepton-nonconserving processes,” Physical Review Letters, vol. 43, no. 21,

pp. 1566–1570, 1979.
[113] F. Wilczek and A. Zee, “Operator analysis of nucleon decay,” Physical Review Letters, vol. 43, no. 21,

pp. 1571–1573, 1979.
[114] A. Carcamo, R. Martı́nez, and F. Ochoa, “Z and Z′ decays with and without FCNC in 3-3-1 models,”

Physical Review D, vol. 73, no. 3, Article ID 035007, 17 pages, 2006.
[115] F. Ochoa and R. Martı́nez, “Family dependence in SU(3)C ⊗SU(3)L ⊗U(1)X models,” Physical Review

D, vol. 72, Article ID 035010, 7 pages, 2005.
[116] L. A. Sánchez, W. A. Ponce, and R. Martı́nez, “SU(3)C ⊗ SU(3)L ⊗U(1)X as an E6 subgroup,” Physical

Review D, vol. 64, Article ID 075013, 9 pages, 2001.
[117] R. Martı́nez, W. A. Ponce, and L. A. Sánchez, “SU(3)C⊗SU(3)L⊗U(1)X as an SU(6)⊗U(1)X subgroup,”

Physical Review D, vol. 65, no. 5, Article ID 055013, 11 pages, 2002.
[118] S. Sen and A. Dixit, “SU(3)C ⊗ SU(3)L ⊗U(1)X gauge symmetry from SU(4)PS ⊗ SU(4)L+R,” Physical

Review D, vol. 71, no. 3, Article ID 035009, 9 pages, 2005.
[119] D. A. Gutiérrez, W. A. Ponce, and L. A. Sánchez, “Phenomenology of the SU(3)C ⊗ SU(3)L ⊗ U(1)X

model with right-handed neutrinos,” European Physical Journal C, vol. 46, no. 2, pp. 497–509, 2006.
[120] J. C. Pati and A. Salam, “Lepton number as the fourth “color”,” Physical Review D, vol. 10, no. 1, pp.

275–289, 1974.
[121] H. Georgi and S. L. Glashow, “Unity of all elementary-particle forces,” Physical Review Letters, vol.

32, no. 8, pp. 438–441, 1974.
[122] H. Georgi, H. R. Quinn, and S. Weinberg, “Hierarchy of interactions in unified gauge theories,”

Physical Review Letters, vol. 33, no. 7, pp. 451–454, 1974.
[123] H. Georgi, “Particles and fields,” in Proceedings of the APS Division of Particles and Fields, C. E. Carlson,

Ed., p. 575, A.I.P., New York, NY, USA, 1975.
[124] H. Fritzsch and P. Minkowski, “Unified interactions of leptons and hadrons,” Annals of Physics, vol.

93, no. 1-2, pp. 193–266, 1975.
[125] F. Gürsey, P. Ramond, and P. Sikivie, “A universal gauge theory model based on E6,” Physics Letters

B, vol. 60, no. 2, pp. 177–180, 1975.
[126] A. G. Dias, C. A. de S. Pires, and P. S. Rodrigues da Silva, “Naturally light right-handed neutrinos in

a 3-3-1 model,” Physics Letters B, vol. 628, no. 1-2, pp. 85–92, 2005.
[127] S. M. Bilenky, C. Giunti, and W. Grimus, “Phenomenology of neutrino oscillations,” Progress in

Particle and Nuclear Physics, vol. 43, no. 1, pp. 1–86, 1999.

http://hep.pa.msu.edu/people/wkt/cteq6/cteq6pdf.html
http://hep.pa.msu.edu/people/wkt/cteq6/cteq6pdf.html
http://www.phys.psu.edu/~cteq


74 Advances in High Energy Physics
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