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The SU(3)- ® SU(3); ® U(1)x gauge model with minimal scalar sector, two Higgs triplets, is
presented in detail. One of the vacuum expectation values u is a source of lepton-number violations
and a reason for mixing among charged gauge bosons—the standard model W* and the bilepton
gauge bosons Y*, as well as among the neutral non-Hermitian bilepton X° and neutral gauge
bosons—the Z and the new Z'. An exact diagonalization of the neutral gauge boson sector is
derived, and bilepton mass splitting is also given. Because of these mixings, the lepton-number
violating interactions exist in both charged and neutral gauge boson sectors. Constraints on
vacuum expectation values of the model are estimated and u = O(1) GeV, v = vy = 246 GeV,
and w = O(1) TeV. In this model, there are three physical scalars, two neutral and one charged, and
eight Goldstone bosons—the needed number for massive gauge bosons. The minimal scalar sector
can provide all fermions including quarks and neutrinos consistent masses in which some of them
require one-loop radiative corrections.
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1. Introduction

In spite of all the successes of the standard model, it is unlikely to be the final theory. It leaves
many striking features of the physics of our world unexplained. In the following, we list
some of them which leads to the model’s extensions. In particular, the models with SU(3)- ®
SU@3); ® U(1)x (3-3-1) gauge group are presented.

1.1. Generation problem and 3-3-1 models

In the standard model, the fundamental fermions come in generations. In writing down the
theory, one may start by first introducing just one generation, then one may repeat the same
procedure by introducing copies of the first generation. Why do quarks and leptons come in
repetitive structures (generations)? How many generations are there? How to understand the
interrelation between generations? These are the central issues of the weak interaction physics
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known as the generation problem or the flavor question. Nowhere in physics this question
is replied [1]. One of the most important experimental results in the past few years has been
the determination of the number of these generations within the framework of the standard
model. In the minimal electroweak model, the number of generations is given by the number
of the neutrino species which are all massless, by definition. The number of generations is
then computed from the invisible width of the Z°:

Tiny =20 — <rh + Zr,>, (1.1)
1

where I' o denotes the total width, the subscript h refers to hadrons, and I'; (I = e, y, T) is
the width of the Z° decay into an Il pair. If T, is the theoretical width for just one massless
neutrino, the number of generations is Ngen = Ny, = Tiny /T, and recent results give a value
very close to three Ngen, = 2.99 £ 0.03 [2, 3], but we do not understand why the number of
standard model generations is three.

The answer to the generation problem may require a radical change in our approaches.
It could be that the underlying objects are strings and all the low-energy phenomena will
be determined by physics at the Planck scale. Grand unified theories (GUTs) have had a
major impact on both cosmology and astrophysics; for cosmology they led to the inflationary
scenario, while for astrophysics supernova, neutrinos were first observed in proton-decay
detectors. It remains for GUTs to have impact directly on particle physics itself [4]. GUTs
cannot explain the presence of fermion generations. On the other side, supersymmetry
(SUSY) for the time being is an answer in search of question to be replied. It does not explain
the existence of any known particle or symmetry. Some traditional approaches to the problem
such as GUTs, monopoles, and higher dimensions introduce quite speculative pieces of new
physics at high and experimentally inaccessible energies. Some years ago, there were hopes
that the number of generations could be computed from first principles such as geometry of
compactified manifolds, but these hopes did not materialize.

A very interesting alternative to explain the origin of generations comes from
the cancelation of chiral anomalies of a gauge theory in all orders of perturbative
expansion, which derives from the renormalizability condition. This constrains the fermion
representation content. Three perturbative anomalies have been identified [5-10] for chiral
gauge theories in four-dimensional space-time: (i) the triangle chiral gauge anomaly [11, 12]
must be canceled to avoid violations of gauge invariance and the renormalizability of the
theory; (ii) the global nonperturbative SU(2) chiral gauge anomaly, [13] which must be absent
in order for the fermion integral to be defined in a gauge invariant way; and (iii) the mixed
perturbative chiral gauge gravitational anomaly [14-16] which must be canceled in order to
ensure general covariance. The general anomaly-free condition is

AFST(IL T . S WL (T =0 a2

representations

where T' is the representation of the gauge algebra on the set of all left-handed fermion and
antifermion fields put in a single column ¢, and “Tr” denotes a sum over these fermion
and antifermion species; T} . are the coupling matrices of fermions ¢ g to the current

]L =, 1Tl g1 + @Ry Tryr, respectively. The i index runs over the dimension of a simple
SU(n) group,i=1,2,..., n%2 -1, witharank n—1, and i = 0 for the Abelian factor.
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First, let us consider the relationship between anomaly cancelation and flavor problem
in the standard model. The individual generations have the following structure under the
SU@B)-®SU(2); ® U(1)y (3-2-1) gauge group:

(vaL/ laL) ~ (1/2/ _1)/ laR ~ (1/ 1/ _2)/

1 4 2 (1.3)
(uuL/daL) ~ <3/2/ 5)1 UgR ~ <31 11 §>r daR ~ <3/ 11_§>*

The values in the parentheses denote quantum numbers based on the (SU(3), SU(2);,
U(1)y) symmetry, where the subscripts C, L, and Y/, respectively, indicate to the color, left-
handed, and hypercharge. The electric charge operator is defined as Q = T° + (1/2)Y, where
Ti = (1/2)c' (i = 1,2,3) with ¢’ are Pauli matrices. The weak isospin group SU(2), is a safe
group due to the fact that

Tr[{o', 07 }o*] = 267 Tr[0*] = 0. (1.4)
However, in the case where at least one of the generators is hypercharge we have
Tr[o'YY] « Tr[o'] =0,  Tr[{c',0/}Y] =26"Tx[Y]. (15)

The anomaly contribution in the last condition is proportional to the sum of all fermionic
discrete hypercharge values on the color, flavor, and weak hypercharge degrees of freedom:

Te[Y]= D (Yo +Yr)+ >, (Yo +Yg). (1.6)

lepton quark

The Tr [Y] vanishes for the fermion content in the ath generation because

> (Yi+Yr) =Y (var) +Y(lar) + Y (lag) = —4,

lepton

Zk(YL + YR) = 3[Y(uaL) + Y(daL) + Y(uuR) + Y(dﬂR)] =+4,

(1.7)

where 3 factors take into account the number of quark colors. In the last case, all the
generators are hypercharge:

Tr[Y’] o T [Q*T5 - QT;], (1.8)

where we used the fact that the electromagnetic vector neutral current vertices do not have

anomalies. For the ath generation, we have
2 1) ( 1>2 1
2(-3)-0(-3) | -3

S (Q°T;-QT2) = [(o)zG) ) (0)<%>2
5 @ -0 =3|(2) (3)- () )] (-3) (1) - (-2)(-2)

lepton
quark

+
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It yields that the anomaly in standard model cancels within each individual generation,
but not by generations. Flavor question and anomaly-free conditions do not seem to have
any connection in the standard model. This leads us to questions when going beyond this
model. Are the anomalies always canceled automatically within each generation of quarks or
leptons? Do the anomaly cancelation conditions have any connection with flavor puzzle?

We wish to show that some very fundamental aspects of the standard model, in
particular the flavor problem, might be understood by embedding the three-generation
version in a Yang-Mills theory with the SU(3)-®SU(3); ®U(1)x semisimple gauge group with
a corresponding enlargement of the lepton and quark representations [17-25]. In particular,
the number of generations will be related by anomaly cancelation to the number of quark
colors, and one generation of quarks will be treated differently from the two others. In the 3-
2-1 low-energy limit, all three generations appear similarly and cancel anomalies separately.
Let us consider the following 3-3-1 fermion representation content:

VaL 1
(PIZL = laL ~ <1/31_§>/ laR ~ (1/ ]-/ _1)/ a= 1/2/3/

vaR

17508 daL
1 " 1.10
Qi = <d1L>~ <3,3,—>, Qur = (—uaL> ~(3,3,0), a=23, (110)
3
UL DuL L
2 1 2 1
UgR ~ <3/1/ 5)/ duRN <3/11_§>/ uRN (3/1/ 5)/ DaRN <3/11_§>~

The quantum numbers in the parentheses are based on the (SU(3).,SU(3);,U(1)x)
symmetry. The right-handed neutrinos vg and the exotic quarks U and D, are composed
along with that of the standard model. We call 3-3-1 model with right-handed neutrinos. The
electric charge operator in this case takes a form Q = T® — (1/+/3)T® + X with T! = 1/2\' (i =
1,2,...,8) and X standing for SU(3); and U(1)y charges, respectively. Electric charges of the
exotic quarks are the same as of the usual quarks, thatis, gy =2/3 and gp, = -1/3.

The SU(3); group is not safe in the sense of the standard model SU(2); with the
vanishing Tr[{c?,0/}, %] = 0. The SU(3), generators proportional to the Gell-Mann matrices
close among them the Lie algebra structure:

[AL, M) =2ifUkAk, (A, W) = %6’7 +2d7k Ak, (1.11)

where the structure constant f7/* is totally antisymmetric, and d”* is totally symmetric under
exchange of the indices. We can normalize the \-matrices such that Tr[A'\/] = 26. Therefore,
fiik and d'i* are calculated by

fik = %Tr[[xi,xf]xk], aik = %Tr[{)ti, MJAK]. (1.12)

The anomaly is proportional to d/ in general, and of course such coefficients vanish in the
case of the SU(2); generators.

In the 3-3-1 model, there are six triangle anomalies which are potentially troublesome.
In a self-explanatory notation, these are (3C)3, (3C)2X, (3L)3, (3L)2X, X3, and (graviton)zX.
The quantum chromodynamics anomaly (3.)° is absent because the theory mentioned is
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vectorlike (i.e., Tt = U 'T5U with some unitary matrix U), and hence the condition A% = 0
is automatically satisfied. For any D fermion representation, it satisfies the condition A(D) =
—-A(D*), where A(D*) is the anomaly of the conjugate representation of D [26]. The pure
SU(3); anomaly (3;)°, therefore, vanishes because there is an equal number of triplets 31
and antitriplets 3] in the given fermion content. The remaining anomaly-free conditions are
explicitly written as follows.

(1) Te[SUEB) P [U1)x] = O

3> Xb- > DIXr=0; (1.13)

generation generation singlet

(2) Te[SUE), I [U(1)x] = O:

> Xp+3 > Xp=0; (1.14)

generation generation
(3) Tr[U()x]’ = 0:

D WNCORTID WCOREED MD W ORED D W DRTINIED

generation generation generation singlet generation singlet
(4) Tr[graviton]*[U(1)x] = O:

3> Xp+9 > Xp-3 > Y Xxf- > > X[t=0, (1.16)

generation generation generation singlet generation singlet

where X[, Xé‘, X§, and Xf indicate to the U(1)y charges of the left-handed lepton, quark
triplets or antitriplets, the right-handed lepton, and quark singlets, respectively. It is worth
noting that some 3 factors in the conditions (2), (3), and (4) take into account the number
of quark colors. With the fermion content as given, it is easily checked that all the above
anomaly-free conditions are satisfied. For example, let us take condition (2). We first calculate
the 3%X anomaly for the first generation: —=1/3 + 3 x (1/3) = 2/3. The anomaly of the
second or the third generation is —=1/3 + 3 x 0 = —1/3. It is especially interesting that this
anomaly cancelation takes place between generations, unlike those of the standard model.
Each individual generation possesses nonvanishing (3L)3, (3L)2X, X3, and (gravion)zX
anomalies. Only with a matching of the number of generations with the number of quark
colors does the overall anomaly vanish.

Next, let us introduce an alternative fermion content, where the three known left-
handed lepton components for each generation are associated to three SU(3); triplets such
that (v, Lar, ZZR)T ~ (1,3,0) (called minimal 3-3-1 model). Canceling the pure SU(3),
anomaly reqruires that there are the same number of triplets and antitriplets, thus Qi =
(wir, dir, Ju)© ~ (3,3,2/3), Qur = (dar, —Uar, ]aL)T ~ (3,3",-1/3). The respective right-
handed fields are singlets: u,g ~ (3,1,2/3) and d,r ~ (3,1,-1/3) for the ordinary quarks;
Jr ~ (3,1,5/3) and Jar ~ (3,1,—4/3) for the exotic quarks. Similarly, to the previous 3-3-1
model, the (3;)%, (3,)>X, X? anomalies vanish only if three generations of quarks and leptons
take into account.
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In a general case, we can verify that the number of generations must be multiple
of the quark-color number in order to cancel the anomalies. On the other hand, if we
suppose that the exotic quarks also contribute to the running of the coupling constants,
the asymptotic-freedom principle requires that the number of quark generations is no more
than five. It follows that the number of generations is just three. This provides a first
step toward answering the flavor question. The asymmetric treatment of one generation of
quarks breaks generation universality. This might provide an explanation of why the top
quark is uncharacteristically heavy [27, 28]. An interesting alternative feature is that the
electric charge quantization in nature might also be explained in this framework [23, 29—
32]. Just enlarging SU(2); to SU(3);, we have thus presented the simplest gauge extension
of the standard model for the flavor question. The new models get five additional gauge
bosons contained in a gauge adjoint octet: 8 = 3 + (2 + 2) + 1 under SU(2);. The 1 is a
neutral Z' and the two doublets are readily identifiable from the leptonic contents as non-
Hermitian bilepton gauge bosons (X,Y)" and (X*,Y*). From the renormalization group
analysis of the coupling constants [17, 33], the SU(3); breaking scale is estimated to be
lower than some TeV in the minimal 3-3-1 model. This is due to the fact that the squared
sine of the Weinberg angle 6y gets an upper bound, sin’6y, < 1/4. There is no “grand
desert” in this model in comparison to GUTs. In contrast, the energy scale in the 3-3-1
model with right-handed neutrinos is very high, even larger than the Planck scale because
of sin®Qyy < 3/4. This version might allow the existence of a “desert.” Anyway, the new
physics in these models expected arise at not too high energies. The new particles such as the
bilepton gauge bosons Z' and exotic quarks would be determinable in the next generation of
collides.

1.2. Proposal of minimal Higgs sector

As mentioned above, there are two main versions of 3-3-1 models—the minimal model and
the model with right-handed neutrinos, which have been subjects studied extensively over
the last decade. In the minimal 3-3-1 model [17-19], the scalar sector is quite complicated
and contains three scalar triplets and one scalar sextet. In the 3-3-1 model with right-handed
neutrinos [20-22, 34, 35], the scalar sector requires three Higgs triplets. It is interesting to
note that two Higgs triplets of this model have the same U(1)y charges with two neutral
components at their top and bottom. Allowing these neutral components vacuum expectation
values (VEVs), we can reduce number of Higgs triplets to be two. Note that the mentioned
model contains very important advantage, namely, there is no new parameter, but it contains
very simple Higgs sector, therefore, the significant number of free parameters is reduced.
To mark the minimal content of the Higgs sector, this version that includes right-handed
neutrinos is going to be called the economical 3-3-1 model [36—42]. The interested reader can
find the supersymmetric version in [43—46].

This kind of model was proposed in [36] but has not got enough attention. In [37],
phenomenology of this model was presented without mixing between charged gauge bosons
as well as neutral ones. The mass spectrum of the mentioned scalar sector has also been
presented in [36], and some couplings of the two neutral scalar fields with the charged W and
the neutral Z gauge bosons in the standard model were presented. From explicit expression
for the ZZH vertex, the authors concluded that two VEVs responsible for the second step of
spontaneous symmetry breaking have to be in the same range u ~ v, or the theory needs an
additional scalar triplet. As we will show in the following, this conclusion is incorrect.
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It is well known that the electroweak symmetry breaking in the standard model is
achieved via the Higgs mechanism. In the Weinberg-Salam model, there is a single complex
scalar doublet, where the Higgs boson H is the physical neutral Higgs scalar which is the
only remaining part of this doublet after spontaneous symmetry breaking. In the extended
models, there are additional charged and neutral scalar Higgs particles. The prospects for
Higgs coupling measurements at the CERN Large Hadron Collider (LHC) have recently been
analyzed in detail in [47]. The experimental detection of the H will be great triumph of the
standard model of electroweak interactions and will mark new stage in high-energy physics.

In extended Higgs models, which would be deduced in the low-energy effective
theory of new physics models, additional Higgs bosons like charged and CP-odd scalar
bosons are predicted. Phenomenology of these extra scalar bosons strongly depends on the
characteristics of each new physics model. By measuring their properties like masses, widths,
production rates, and decay branching ratios, the outline of physics beyond the electroweak
scale can be experimentally determined.

The interesting feature compared with other 3-3-1 models is the Higgs physics. In the
3-3-1 models, the general Higgs sector is very complicated [48-51] and this prevents the
models’ predicability. The scalar sector of the considering model is one of subjects in the
present work. As shown, by couplings of the scalar fields with the ordinary gauge bosons
such as the photon, the W, and the neutral Z gauge bosons, we are able to identify full content
of the Higgs sector in the standard model including the neutral H and the Goldstone bosons
eaten by their associated massive gauge ones. All interactions among Higgs-gauge bosons in
the standard model are recovered.

Production of the Higgs boson in the 3-3-1 model with right-handed neutrinos at LHC
has been considered in [52]. In scalar sector of the considered model, there exists the singly-
charged boson Hj, which is a subject of intensive current studies [53, 54]. The trilinear
coupling ZW*HT which differs at the tree level, from zero only in the models with Higgs
triplets plays a special role on study phenomenology of these exotic representations. We will
pay particular interest on this boson.

At the tree level, the mass matrix for the upquarks has one massless state, and in
the downquark sector there are two massless ones. This calls for radiative corrections. To
solve this problem, the authors in [37] have introduced the third Higgs triplet. In this sense,
the economical 3-3-1 model is not realistic. In the present work, we will show that this is a
mistake! Without the third one, at the one loop level, the fermions in this model, with the
given set of parameters, gain a consistent mass spectrum. A numerical evaluation leads us
to conclusion that in the model under consideration, there are two scales for masses of the
exotic quarks.

At the tree level, the neutrino spectrum is Dirac particles with one massless and
two degenerate in mass ~ h”v. This spectrum is not realistic under the data because there
is only one squared-mass splitting. Since the observed neutrino masses are so small, the
Dirac mass is unnatural. One must understand what physics gives h*v « h'v—the mass
of charged leptons. In contrast to the seesaw cases [55-62] in which the problem can be
solved, in this model the neutrinos including the right-handed ones get only small masses
through radiative corrections [42, 49, 63-78]. We will obtain these radiative corrections and
will provide a possible explanation of natural smallness of the neutrino masses. This is not
the result of a seesaw, but it is due to a finite mass renormalization arising from a very
different radiative mechanism. We will show that the neutrinos can get mass not only from
the standard symmetry breakdown, but also from the electroweak SU(3); ® U(1)y breaking
associated with spontaneous lepton-number breaking (SLB), and even through the explicit
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lepton-number violating processes due to a new physics. The total neutrino mass spectrum
at the one-loop level is neat and can fit the data.

This report is organized as follows. In Section 2, we give a review of the model with
stressing on the gauge bosons, currents, and constraints on the new physics. The Higgs-gauge
interactions and scalar content are considered in Section 3. Section 4 is devoted to fermion
masses. We summarize our results and make conclusions in the last section—Section 5.

2. The economical 3-3-1 model

We first recall the idea of constructing the model. An exact diagonalization of charged and
neutral gauge boson sectors and their masses and mixings are presented. Because of the
mixings, currents in this model have unusual features which are obtained then. Constraints
on the parameters and some phenomena are sketched.

2.1. Particle content

The fermion content which is anomaly free is given by (1.10) like that of the 3-3-1 model with
right-handed neutrinos. However, contrasting with the ordinary model in which the third
generation of quarks should be discriminating [28], in the model under consideration the
first generation has to be different from the two others. This results from the mass patterns
for the quarks which will be derived in Section 4.

The 3-3-1 gauge group is broken spontaneously via two stages. In the first stage, it is
embedded in that of the standard model via a Higgs scalar triplet:

X1 '
X=1 X2 '~<L&—§> (2.1)
X3

1 u
u>=7§<0>. (2.2)
w

In the last stage, to embed the standard model gauge symmetry in SU(3). ® U(1),, another
Higgs scalar triplet is needed:

with the VEV given by

¢
p=1 ¢ ~(L&§) 2.3)
¢3

1 0
()= 7 <8> : (2.4)

with the VEV as follows:
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Table 1: Nonzero lepton number L of the model particles.

Field VaL lar, R VR x(l) X2 ¢; Uprr Dar g
L 1 1 -1 2 2 -2 -2 2

The Yukawa interactions which induce masses for the fermions can be written in the most
general form as follows:

Ly = Linc + Linv, (2.5)

where LNC and LNV, respectively, indicate to the lepton number conserving and violating
ones as shown below. Here, each part is defined by

Line = hMQqpyUr + haDﬂéthX*DﬂR + hgQu ddar + My Qur ¢ Uar
(2.6)
+ oy o $lok + o €pmn (F1) , (01),,, (), + Hoe,

Liny = SZéleuaR + SgaéaLX*daR + SE@lL‘i)DaR + SauéaL(p*uR +H.c, (2.7)

where p, m, and n stand for SU(3); indices.

The VEV w gives mass for the exotic quarks U and D,: u gives mass for u;, d,, while
v gives mass for u,, di, and all ordinary leptons. In Section 4, we will provide more details
on analysis of fermion masses. As mentioned, w is responsible for the first stage of symmetry
breaking, while the second stage is due to u and v; therefore, the VEVs in this model satisfies
the constraint:

u?, v* < W’ (2.8)

The Yukawa couplings in (2.6) possess an extra global symmetry [49, 50] which is not broken
by v, w, but by u. From these couplings, one can find the following lepton symmetry L
as in Table 1 (only the fields with nonzero L are listed; all other fields have vanishing L).
Here, L is broken by u which is behind L(y)) = 2, that is, u is a kind of the SLB scale
[79-83]. It is interesting that the exotic quarks also carry the lepton number (so-called
leptoquarks); therefore, this L obviously does not commute with the gauge symmetry. One
can then construct a new conserved charge £ through L by making a linear combination
L = xT5 + yTg + LI. Applying L on a lepton triplet, the coefficients will be determined:

4
L=—Ts+ 2L 29
ek (2.9)

Another useful conserved charge B which is exactly not broken by u, v, and w is usual baryon
number: B = BI. Both the charges £ and B for the fermion and Higgs multiplets are listed in
Table 2.

Let us note that the Yukawa couplings of (2.7) conserve B, however, violate £ with +2
units which implies that these interactions are much smaller than the first ones [41]:

Sty Star Sa+ 55 < h, by, G, hgy. (2.10)
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Table 2: 3 and £ charges of the model multiplets.

Multiplet X ¢ Qir Qar UgR dar Ur Dgr PaL lar
1 1 1 1 1 1
B-ch = = = = = =
charge 0 0 3 3 3 3 3 3 0 0
4 2 2 2 1
L-charge 3 -3 -3 3 0 0 -2 2 3 1

In previous studies [19, 37, 84-86], the LNV terms of this kind have often been excluded,
commonly by the adoption of an appropriate discrete symmetry. There is no reason within
the 3-3-1 models why such terms should not be present.

In this model, the most general Higgs potential has very simple form:

VO $) = iy + 1297+ L ()" + 22(079)" + () (979) + Aa(x ) (41x).- o)

It is noteworthy that V(y,¢) does not contain trilinear scalar couplings and conserves
both the mentioned global symmetries; this makes the Higgs potential much simpler and
discriminative from the previous ones of the 3-3-1 models [48-51]. This potential is closer to
that of the standard model. In the next section, we will show that after spontaneous symmetry
breaking, there are eight Goldstone bosons—the needed number for massive gauge ones and
three physical scalar fields (one charged and two neutral). One of two physical neutral scalars
is the standard model Higgs boson.

To break the gauge symmetry spontaneously, the Higgs vacuums are not SU(3); ®
U(1)y singlets. Hence, nonzero values of y and ¢ at the minimum value of V(y, ¢) can be
easily obtained by (for details, see Section 3):

Wt Aapg - 203

ty = = , 2.12

Xy=— T (2.12)
2 gl - 20y

t Ev_=u 213

Pi=3 4hdp -3 219

It is important noting that any other choice of u, w for the vacuum value of y satisfying (2.12)
gives the same physics because it is related to (2.2) by an SU(3); ® U(1)x transformation.
It is worth noting that the assumed u #0 is, therefore, given in a general case. This model,
however, does not lead to the formation of Majoron [79-83, 87].

2.2. Gauge bosons

The covariant derivative of a triplet is given by
D, =0, —igTiW;, —igxToXB, =0, —ip,, (2.14)

where the gauge fields W; and B transform as the adjoint representations of SU(3); and
U(1)x, respectively, and the corresponding gauge coupling constants g, gx. Moreover,
Ty = (1/+/6)diag(1,1,1) is fixed so that the relation Te(T;T;) = (1/2)6; (i,j = 1,2,...,9)
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is satisfied. The ), matrix appeared in the above covariant derivative is rewritten in a
convenient form:

W,
Wiy, + f XB V2W); V2X])
_ 8 )— Wg.” 2 —
Pu=5 V2W;, ~Ws, + w3 + t\/;XB# V2Y;, , (215)
2Ws 2
10% ! H
V2X]| V2V RV t\/;XB”

where t = gx/g. Let us denote the following combinations:

Wlﬂ + inﬂ Y = Wf’l‘ + l'W7‘u X0 = W4‘u - l-W5,4 (2 16)

0
N I Y T

having defined charges under the generators of the SU(3); group. For the sake of convenience
in further reading, we note that W, and W5 are pure real and imaginary parts of X;? and X;?*,
respectively:

(-
W, =

(X0 - X, (2.17)

1 0 0
SIEXE), Wa=

V2

The masses of the gauge bosons in this model are followed from

Wiy, =

,EGB

mass

= (Du($) ' (D*(9)) + (Du(x)) " (D*(x))

guw

_& Lo yWwt+ & g (WP )Y Y EE WY YW

27]2 2,,2

2 2
1 2 (2 u 1 1 /2
3 <—W3ﬂ+%W8#+t§\/;B‘u> + 3 <W3,4+%Wgﬂ—t§\/;Bﬂ>
2, 2 2 2
g w 2 1 2 g uw 1 1 2 IO# IO*#
- —Wsg, —t=1/=B W, — —t-4/%B X X
i < V3o 3\/;” P\ gl 3B J(XT X

2
g uw 2 1 /2 10 o
- —Wsg,—t=1/=B X X
+4ﬁ< 3 3\[3” (XT+XT)

2
g N 1*2 . U 10% 2
+E(u2+w2){(xg+xg) +[i(X0 - x]°)

[ole}
0Q

+

(2.18)

The combinations W’ and Y’ are mixing via

2 2 2 U
G _ 8 1m iy [US+ O uw w
Lo = T (Wﬂ ,Y# ) < s W4 vz> <Y’+"> . (2.19)
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Diagonalizing this mass matrix, we get physical charged gauge bosons:
W, = cos QWL —sinf Y,;, Y, =sin QWL +cos B Yl:, (2.20)

where the mixing angle is defined by

tan@ = £, (2.21)
w
The mass eigenvalues are
2,2
M2, = 340 ) (2.22)
g
M2 = Z(u2 +0% + w?). (2.23)

Because of the constraints in (2.8), the following remarks are in order:

(1) 6 should be very small, and then W, =W, Y, = Y;, ;

(2) v = Dyeak = 246 GeV due to identification of W as the W boson in the standard
model.

Next, from (2.18), the W5 gains mass as follows:

Mz, —g—z(w2+u2) (2.24)
= . :

Finally, there is a mixing among W3, Ws, B, W4 components. In the basis of these elements,
the mass matrix is given by

2_ .2
/ u? + v? w-v _ 2 (u? +20?%) 2uw \
V3 3v6
2_ .2
) v-ov 1(4w2 +u? +v?) @(2w2—u2+27)z) —iuw
M2 = -8 V3 3 9 V3
* —i(u2+27)2) @(ZWZ—u2+27)2) 2—tz(wz+uz+4:vz) _ 8
3v6 9 27 3v6
2 8t
2uw -—uw ———uw u? + w?
\ V3 3v6
(2.25)
Note that the mass Lagrangian in this case has the form
1
LNC = VIM?V, VT = (W3 Ws, B,W,). (2.26)

mass 2

In the limit u — 0, Wy does not mix with W3, Ws, B. In the general case u #0, the mass
matrix in (2.25) contains two exact eigenvalues such as

2
g
M =0, M, = Z(w2 +u?). (2.27)
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Thus, the W and W5 components have the same mass, and this conclusion contradicts the
previous analysis in [36]. With this result, we should identify the combination of W and Ws:

V2X) = Wy, - iWs, (2.28)

as physical neutral non-Hermitian gauge boson. The subscript 0 denotes neutrality of gauge
boson X. However, in the following, this subscript may be dropped. This boson caries the
lepton number with two units. Hence, it is the bilepton like those in the usual 3-3-1 model
with right-handed neutrinos. From (2.22), (2.23), and (2.27), it follows an interesting relation
between the bilepton masses similar to the law of Pythagoras:

M3 = M3 + M3,,. (2.29)
Thus, the charged bilepton Y is slightly heavier than the neutral one X. Remind that the
similar relation in the 3-3-1 model with right-handed neutrinos is [88]: |[M3 — M%| < m?, .

Now, we turn to the eigenstate question. The eigenstates corresponding to the two
values in (2.27) are determined as follows:

/3t tan 20

A, - 1 —t W = 1 V3 tan 26 ' (230)

V18 + 42 3\05 ' 1+ 4tan? 20 (1’

To embed this model in the effective theory at the low energy, we follow an appropriate
method in [89, 90], where the photon field couples with the lepton by strength:

\/ggx -
EM _ _ "
= e A (2.31)

Therefore, the coefficient of the electromagnetic coupling constant can be identified as

V3gx .
VIS+4Z

Using continuation of the gauge coupling constant g of SU(3); at the spontaneous symmetry
breaking point,

(2.32)

g=g[SUQ),] = i (2.33)

from which it follows

o V2w (2.34)

\/3 - 4si,

The eigenstates are now rewritten as follows:

t t
Ay = swWa, + cw< - \/ﬂgwg,l +1/1- ?WBH>,

W o=t Wi, + /3ty We, + 1 Wi,

M Tear,  Afiear, | \JTea,

where we have denoted sy = sin Oy, tg = tan 260 and so forth.

(2.35)
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The diagonalization of the mass matrix is done via three steps. In the first step, it is in
the base of (A, Z,, Z;,, Wy,), where the two remaining gauge vectors are given by

t £
Z# = wagﬂ —Sw\| — ﬂWgﬂ +1/1- ﬂB# ’
/3 3
(2.36)
Z =11 fy Wee+ W B
pT T T e
In this basis, the mass matrix M? becomes
/0 0 0 0 \
0 u? +v? cowu® — v? 2uw
- wk Y i
Cw ci\/3 —4sh, cw
2
M? = gz 0 oW —v? U +4cjw? + o3 u? Quw (2.37)
2 2 -
ci\/3 - 4s3, (3 —4sy,) cw\/3 - 4s3,
2
2uw B uw 2t

0 . cuw
\ cw cw\/3 — 4s, /

Also, in the limit u — 0, Wy, does not mix with Z,,, ZIZ. The eigenstate WL; y is now defined

by
t \/4C12/V —1tyg 1
W, = X 7, + W,
cw/1 + 483, cw\/1 + 483, \/1+485,

We turn to the second step. To see explicitly that the following basis is orthogonal and
normalized, let us put

z, (2.38)

to
sg=— 20 (2.39)
cwn\/1 + 483,
which leads to
Wi, = 50 Zy + cor[to\[4ck, — 12}, +1/1 - £, (4}, - )Wy, ]. (2.40)

Note that the mixing angle in this step €' is the same order as the mixing angle in the charged
gauge boson sector. Taking into account [3] s%v =~ 0.231, from (2.39) we get sgr = 2.28s¢. It is
now easy to choose two remaining gauge vectors orthogonal to W, "

Ry, = co Z— 50 [to\/4c}, ~ 12}, +1/1- 8 (4}, - 1) W4,

R, =1\[1-13(4c}, - 1)Z,, — to\/4c}, — 1Wy,.

(2.41)
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Therefore, in the base of (A, Z,, 2;4, Wi”), the mass matrix M'? has a quasi-diagonal form:

0 O 0 0
0 mz mzz' 0
2 _
M, = 0 mz’z, mi/ 0 (242)
&
0 0 0 Z(u2+w2)
with
o (1+383)u? + (1 +485,)0* - B,0°
o 4g72 [Cw +(3- 4SW)t o) '
\/1+48,{[caw + (3 —4s3) ) 55| u? — 0 — (3 — 457 ) 5w}
20 w w)tze , (2.43)

2
Meg =
4g724/3 - 4s, [, + (3 —4s7, ) 13,]
, [c3y + (B =453, ) 55| t* + 0% + [4cy, + (1 +4cy, ) (B — 4s,, ) 5] w?
o 4g72(3 - 4syy) [cpy + (3 - 457, ) 154]

In the last step, it is trivial to diagonalize the mass matrix in (2.42). The two remaining mass
eigenstates are given by

Zy = coRu—5,R,  Z5=5,R,+cyR), (2.44)

where the mixing angle ¢ between Z and X' is defined by
= {13 45) (1+46,)] " caw + (3= 45 ol = 02 = (3 - 4y ) B’}
x {[2s3y — 1+ (8}, — 253, — 3) B3] — [cow +2(3 — 45}, ) t5,] ©° (2.45)
+ [2c)y, + (8sy, + 9czw)t§6]w2}71.
The physical mass eigenvalues are defined by

M, =[2¢7*(3- 45%,\,)]71{(:12,v (u* + w?) +0?

- \/[C%/v (12 + w?) +07]* + (3 - 452)) (312w? — 1207 — v2w?) },

M2, = [2¢7%(3- 45%,\,)]_1{6124/ (u? + w?) +0?

+ \/[C%,V (12 + w?) +02]* + (3 - 452,) (BuPw? — 1207 - v2w?) }
(2.46)
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Because of the condition (2.8), the angle ¢ has to be very small:

m[vz + (11 - 1482, )12 . (2.47)

4 2
ZCWw

tz(p:—

In this approximation, the above physical states have masses:

2

M2, = %(vz ) (2.48)
w
2C2 (,{)2

M2, = EW (2.49)

Consequently, Z! can be identified as the Z boson in the standard model, and Z? being the
new neutral (Hermitian) gauge boson. It is important to note that in the limit u — 0 the
mixing angle ¢ between Z and Z' is always nonvanishing. This differs from the mixing
angle 6 between the W boson of the standard model and the singly-charged bilepton Y.
Phenomenology of the mentioned mixing is quite similar to the W — Wx mixing in the left-
right symmetric model based on the SU(2), ® SU(2); ® U(1)p_; group (the interested reader
can find in [90]).

2.3. Currents

The interaction among fermions with gauge bosons arises in part from

i¢y, D¢ = kinematic terms + H R A (2.50)

2.3.1. Charged currents

Despite neutrality, the gauge bosons X°, X% belong to this section by their nature. Because of
the mixing among the standard model W boson and the charged bilepton Y as well as among
(X + X%) with (W3, Ws, B), the new interaction terms exist as follows:

B = S (W 1Y X ), @51

where
Tty = €0 (Pary"lap + Uary"dar) = s (Ve y*lar + ULy"di + Uary"Dar), (2.52)
JY = co(@ary*lar + Ury"dir + ary*Dat) + 5o (Vary*lat + Hary"dar), (2.53)

= (1= By) Pary"vS, + Tary*Uy — Darydar)

tog

2.54
\/1+4t5, (2:54)

X (Vay"va + tipy"ur — Upy"UyL — dary"dar + Dary"Dar).

— Bo(Very*var + Ury"usr — dary"Dar) +
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Comparing with the charged currents in the usual 3-3-1 model with right-handed neutrinos
[34, 35], we get the following discrepancies:

(1) the second term in (2.52),
(2) the second term in (2.53),
(3) the second and the third terms in (2.54).

All above-mentioned interactions are lepton-number violating and weak (proportional to
sin @ or its square sin’0). However, these couplings lead to lepton-number violations only
in the neutrino sector.

2.3.2. Neutral currents

As before, in this model, a real part of the non-Hermitian neutral X"° mixes with the real
neutral ones such as Z and Z'. This gives the unusual term as follows:

HNC = e AFEM + 2NC 4+ 20 (2.55)

unnormal*

Despite the mixing among W3, Wg, B, Wy, the electromagnetic interactions remain the same
as in the standard model and the usual 3-3-1 model with right-handed neutrinos, that is,

LM = Yarfrefs (2.56)
f

where f runs among all the fermions of the model.
Interactions of the neutral currents with fermions have a common form:

= %ﬂ” [gkv (f) = gea (DY fZy, k=12, (2.57)
w

where

cp{Ta(f1) — 365X (fr) + [(3 - 853 ) B — 253 ] Q(f)

sl = VA a1+ (G- 88,
sy [(4c), - DT5(fr) +3c3 X (f1) - (3- 5SW)Q(f)]
V@G, -1+ G-£)8)
aa(f) = [T3(fL) - 365,(X - Q) (fL)] 59

VA +42) 1+ B-8)E,]

Sw[(4cw - DT3(f1) +3c, (X - Q) (fL>]
V@G, -1+ G-£)5)]

v (f) = gv(f)(cy — sp, 59 — —Cy),

24(f) = g1a(f)(cp — Sy, 5p — —Cy).
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Table 3: The Z}l — ff couplings.

f s (f) g14(f)
cp = 5\ (43, 1) (1 +4£2,) cp\[(4ch, = 1) (1+4£3,) +5,
Va
20/(1+48,) [1+ (3-8 )] 2\/(4ch, - 1) [1+ (3~ 5]
(3-4ck,) [ep\/(ack, - 1) (1 +483)) + 5] cp\[(4ch, = 1) (1+4£3,) +5
i w ¢ w 20 ¢ _ ¢ w 20 ¢
28ty -1 [1+ (- )83 /(4 D1+ 3~ £)8]
. co\/4ch, —1[3(1+283,) —8s7, (1+43,) | =5, (3+25%, )\ /1+4t5,  cp\/4ch, —1(1+283,) —s,com\/1+4E5,
1
61/ (ack, — 1) (1 +48) [1+ (3 - £,) 8] 21/(4c},—1) (1+483,) [1+ (3-8, ) 2]
. (1-4c3,) [ep\/(4ch, - 1) (1 +48,) + 5,] cp\[(4ch, = 1) (1+483,) +5,
' 6/(4h, - D [1+ (- )] 2[4, - )1+ (- )]
(3-85%,) [ep\/(4c3, — 1) (1 +48,) + 5] cp\[(4ch, = 1) (1+4£3,) +5,
Uy
6\/(4ck, -1+ (B3 -£)£,] 2¢/(4c, -1+ B-£)E]
i co\/4ch, —1[(1-4c),) (1+483,) +613 | +5, (1+2ch, )\ /1+483,  cp\/4ch, —1(1+263)) —spcam\/1+483,
61/ (ack, — 1) (1 +48) [1+ (3- £,)53] 2\/(4CW—1)(1+4t o) [1+(3-2,) 2]
u co\/4ch, —1[385,—4s%, (1+483,) ] +5, (3=7s3, )\ /1+4t3, cp\/Ach, — 113, +5,c0 0\ /1+485,
3y - 1) (1+48) [1+ (3= 6,)5] V(4 =1) (1+48,) [1+(3-6,) 5]
b co\/4ch, —1[2s3, (1+4t2,) -3t3,] —s, (3—5s3, )\ /1+4t3, ) cp\J4ch, 18, +5,3,0/1+483,
3y/(ack, - 1) (1 +48) [1+ (3- £,)8] V(4 -1) (1+48) [1+ (3-£,) ]

Here, T3(f1), X(f1), and Q(f) are, respectively, the third component of the weak isospin, the
U(1)y charge, and the electric charge of the fermion f;. Note that the isospin for the SU(2);
fermion singlet (in the bottom of triplets) vanishes: T5(f1) = 0. The values of g1v(f), g14(f)
and gy (f) are listed in Tables 3 and 4.

Because of the above-mentioned mixing, the lepton-number violating interactions
mediated by neutral gauge bosons Z! and Z? exist in the neutrino and the exotic quark sectors:

NC _ gtz@ng(V)
unnormal — 2

(Vary"vS, + i y*UL — Dary*dar) ZE + Hee. (2.59)

Again, these interactions are very weak and proportional to sinf. From (2.52)—(2.54) and
(2.59), we conclude that all lepton-number violating interactions are expressed in the terms
dependent only in the mixing angle between the charged gauge bosons.
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2.4. Phenomenology

First of all, we should find some constraints on the parameters of the model. There are many
ways to get constraints on the mixing angle 6 and the charged bilepton mass My. Below we
present a simple one. In our model, the W boson has the following normal main decay modes:

W7_>l§l (l=eII’LIT)/
(2.60)
N\ ud, u¢s, u’b, (u— o),

which are the same as in the standard model and in the 3-3-1 model with right-handed
neutrinos. Beside the above MODES, there are additional ones which are lepton-number
violating (AL = 2)—the model’s specific feature:

W™ —lv (I=e,pur). (2.61)

It is easy to compute the tree-level decay widths as follows [91, 92]:

2 aM
rBOm(w_>lv,)_g 9MW(1— )<1—f—x—)z Celid

2 2 1252, '
2 staM m?
FBom(W—>lvl)_g eMW(l_ )(1_E_x_>: 0 W, X = l,
2 2 1252, M3,
C
S — agay) = Sy 2 (e 4 (e
color
x +x (x —E)z Cg“MW 2 mi _ mic
2 = 452 |‘/l]|’ X = MZ’X_MZ'
w
(2 62)

Quantum chromodynamics radiative corrections modify (2.62) by a multiplicative factor [3,
91, 92]:

1+as(Mz) .\ 1.409a;  12.77a] 104 (2.63)

Sy =
QcQ T ar? a3

which is estimated from as(Mz) = 0.12138. All the state masses can be ignored, the predicted
total width for W decay into fermions is

OlMW

rt°t_104“ W1-
2SW( sg) + :

(2.64)

Taking a(Mz) = 1/128, My = 80.425GeV, si, = 0.2312, and I'ls} = 2.124 + 0.041 GeV [3], in
Figure 1, we have plotted I'}jf as function of sg. From the figure we get an upper limit:

sin @ < 0.08. (2.65)

It is important to note that this limit value on the LNV parameter u/w is much larger than
those in [50, 93, 94].
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2.3 T T T T

22 F : : : : : : : : R
2165 f-=-=--=--- ———————- ———————— —_———————- ——————— |

2.1
> 2083

1.9

1.8 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

sin 0

- rw (Sil’l 6)

Figure 1: W width as function of sin 6, and the horizontal lines are an upper and a lower limit.

Figure 2: Feynman diagram for the wrong muon decay y~ — e v.V,.

Since one of the VEVs is closely to the those in the standard model: v = Ve =
246 GeV, therefore only two free VEVs exist in the considering model, namely, u and w. The
bilepton mass limit can be obtained from the “wrong” muon decay:

P — eV, (2.66)

mediated at the tree level, by both the standard model W and the singly-charged bilepton
Y (see Figure 2). Remind that in the 3-3-1 model with right-handed neutrinos, at the lowest
order, this decay is mediated only by the singly-charged bilepton Y. In our case, the second
diagram in Figure 2 gives main contribution. Taking into account of the famous experimental
data [3]
Ripuon = T —e iev”) <1.2% 90% CL, (2.67)
(i —ewm,)

we get the constraint: Ryyon = Mév / Mi. Therefore, it follows that My > 230 GeV.
However, the stronger bilepton mass bound of 440GeV has been derived from
consideration of experimental limit on lepton-number violating charged lepton decays [85].
In the case of u — 0, analyzing the Z decay width [37, 95, 96], the Z — Z' mixing angle
is constrained by —0.0015 < ¢ < 0.001. From atomic parity violation in cesium, bounds for
mass of the new exotic Z' and the Z — Z' mixing angles, again in the limit u — 0, are given
[37,95,96]:

—-0.00156 < ¢ < 0.00105, Mz, >21TeV. (2.68)
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Table 4: The Zﬁ — ff couplings.

f v (f) $4(f)
s+ (48, —1) (1 +48,) sp\/ (43, —1) (1 +4£2,) -
" (48 [+ G- )] D o=
z (3-4ck,) [sp\/(4ck, - 1) (1 +48,) - ¢ sp\/(4ck, 1) (1+4£3,) -
2/(ehy ~ 1) [1+ (3~ £,)] 2V<4cw—1>[1+<s—t%v>tze]
sp\/4ch, —1[3(1+2t2,) —8s%, (1+483))] +c, (3+25% )\ /1+4t2,  sp0\/4ch, —1(1+2)) +cpcaw/1+485,
" 61/ (ack, — 1) (1 +48) [1+ (3 - £,) 8] 21/(4c},—1) (1+483,) [1+ (3-8, ) 2]
. (1-4c3,) [sp\/ (4}, - 1) (1 +48,) - ¢, ) sp\/(4ck, - 1) (1 +48,) — ¢,
1 o\/(4c3, -1+ 3~ )5 24, -1+ (3~ )5
. (3-85%,) [sp1/ (4, — 1) (1 +4£) — ¢, sp\/(4ch, —1) (1 +483,) -
' 6\/(4c, ~1)[1+ (3-£,)E2,] 2y/(4c, -1)[1+ (3~ t%v)fze]
i sp\/4ch, —1[(1-4c},) (1+483,) +6t3,] —cp (1423, )\ /1+413, sp\/4ch, —1(1+2650) +cpcam /1 +485,
61/ (ack, — 1) (1 +48) [1+ (3- £,)53] 2\/(4CW—1)(1+4t o) [1+(3-2,) 2]
u Sp\/4ch, —1[3t3,—4s%, (1+4£3,) ] —c, (3=7s3, )\ /1+4t3, Sp\/4ch, — 113, —coci /1 +485,
3/ (4ch, ~ 1) (1+48,)[1+ (3~ £,) 5] V(4 1) (1+48,) [1+(3-£5,) ]
b sp\/4ch, —1[252, (1+483,) -3t3,] +c, (3-5s3, )\ /1+43, ) sp\/4ch, —1t2)—c,ci\[1+483,
3y/(ack, - 1) (1 +48) [1+ (3- £,)8] V(4 -1) (1+48) [1+ (3-£,) ]

These values coincide with the bounds in the usual 3-3-1 model with right-handed neutrinos
[97]. The interested reader can find in [40] for the general case u #0 of the constraints.

For our purpose, we consider the p parameter—one of the most important quantities
of the standard model, having a leading contribution in terms of the T parameter, is very
useful to get the new-physics effects. It is well-known relation between p and T parameter:

p=1+aT. (2.69)

In the usual 3-3-1 model with right-handed neutrinos, T gets contribution from the oblique
correction and the Z — Z' mixing [88]:

TruN = Tzz + Toblique, (2.70)

where Tzz = (tan? ¢/ ct)(M2Zz / MzZl —1) is negligible for Mz less than 1TeV; Toplique depends
on masses of the top quark and the standard model Higgs boson. Again, at the tree level
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Figure 3: Feynman diagram for = — e v,v,.

and the limit (2.8), from (2.22) and (2.48) we get an expression for the p parameter in the
considering model:

M? 2 3u?
A 2.71)
cyM7, v -3u v

p:

Note that (2.71) has only one free parameter u, since v is very close to the VEV in the standard
model. Neglecting the contribution from the usual 3-3-1 model with right-handed neutrinos
and taking into account the experimental data [3] p = 0.9987 + 0.0016, we get the constraint
on u parameter by u/v < 0.01 which leads to u < 2.46 GeV. This means that u is much smaller
than v, as expected.

It seems that the p parameter, at the tree level, in this model, is favorable to be bigger
than one and this is similar to the case of the models contained heavy Z’ [98].

The interesting new physics compared with other 3-3-1 models is the neutrino physics.
Due to lepton-number violating couplings, we have the following interesting consequences.

(1) Processes with AL = +2

From the charged currents, we have the following lepton-number violating AL = +2 decays
such as
U — e Vevy,

- e~ (2.72)
U — e vy, (ucan be replaced by 7)

in which both the standard model W boson and charged bilepton Y, are in intermediate
states (see Figure 3). Here, the main contribution arises from the first diagram. Note that the
wrong muon decay violates only family lepton-number, thatis, AL = 0, but not lepton number
at all as in (2.72). The decay rates are given by

I'(p — e vy (= — e vy
( ) I ) o .

Riare = =
T — e Vewy)  T(p — e vew,)
Taking s¢ = 0.08, we get Ryare = 6 X 1072. This rate is the same as the wrong muon decay one.
Interesting to note that, the family lepton-number violating processes

viv; — V]'Vj, (l 75 ]) (274)

are mediated not only by the non-Hermitian bilepton X but also by the Hermitian neutral
Z', Z? (see Figure 4).

The first diagram in Figure 4 exists also in the 3-3-1 model with right-handed
neutrinos, but the second one does not appear there.
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(a) (b)

Figure 4: Feynman diagram for v;v; — v;jv; (i#j = e, u, 7).

(2) Lepton-number violating kaon decays

Next, let us consider the lepton-number violating decay [3]:
Kt — 7%+e™5, <3x10° at 90%CL. (2.75)
This decay can be explained in the considering model as the subprocess given below:
S—ii+e'v,. (2.76)

This process is mediated by the standard model W boson and the charged bilepton Y.
Amplitude of the considered process is proportional to sin 6:

in2 M2
M(5 — ii+e'%,) = wo__gv). (2.77)
Mz, T M2

Next, let us consider the “normal decay” [3]:

K* —a%+e"v, (4.87+0.06)% (2.78)
with amplitude
M(E—ti+ev) = MLZ (2.79)
w
From (2.77) and (2.79), we get
Ry = LE 2l ETTe) o (2.80)

[(§—ii+etv,)
In the framework of this model, we derive the following decay modes with rates:

(Kt —a’+e'%,) T(K"—a'+u'%,)

L2 -3
= = 0<6x10™. 2.81
[(K* — 70 +etv,) T(K*— a0+ pty,) SIS0 (281)

kaon =

Note that the similar lepton-number violating processes exist in the SU(2) z®SU(2); ®U(1)5_;
model (for details, see [90]).
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2.5. Summary

In this section, we have presented the 3-3-1 model with the minimal scalar sector (only two
Higgs triplets). This version belongs to the 3-3-1 model without exotic charges (charges of
the exotic quarks are 2/3 and —1/3). The spontaneous symmetry breakdown is achieved
with only two Higgs triplets. One of the VEVs u is a source of lepton-number violations
and a reason for the mixing between the charged gauge bosons—the standard model W and
the singly-charged bilepton gauge bosons as well as between neutral non-Hermitian X° and
neutral gauge bosons: the Z and the new exotic Z'. At the tree level, masses of the charged
gauge bosons satisfy the law of Pythagoras M2 = M% + M2, and in the limit w > u,v, the
p parameter gets additional contribution dependent only on u/v. Thus, this leads to u < v,
and there are three quite different scales for the VEVs of the model: one is very small u =
O(1) GeV—a lepton-number violating parameter; the second v is close to the standard model
ONe: U = Dyeak = 246 GeV; and the last is in the range of new physics scale about O(1) TeV.

In difference with the usual 3-3-1 model with right-handed neutrinos, in this model
the first family of quarks should be distinctive of the two others.

The exact diagonalization of the neutral gauge boson sector is derived. Because of the
parameter u, the lepton-number violation happens only in neutrino but not in charged lepton
sector. It is interesting to note that despite the above-mentioned mixing, the electromagnetic
current remains unchanged. In this model, the lepton-number changing (AL = +2) processes
exist but only in the neutrino sector.

It is worth mentioning on the advantage of the considered model: the new mixing
angle between the charged gauge bosons 6 is connected with one of the VEVs u—the
parameter of lepton-number violations. There is no new parameter, but it contains very
simple Higgs sector, hence the significant number of free parameters is reduced.

The model contains of new kinds of interactions in the neutrino sector. Hence, neutrino
physics in this model is very rich. We will turn to further studies on neutrino masses and
mixing in Section 4.

3. Higgs-gauge boson interactions

We first obtain the scalar fields and mass spectra. The couplings of the scalar fields with the
ordinary gauge bosons are presented then. Cross section for the production of the charged
Higgs boson at LHC is calculated.

3.1. Higgs potential

The Higgs potential in the model under consideration is given by (2.11). Let us first shift the
Higgs fields into physical ones:

XPO_}_i ¢+
A P2 3.1
X= sz ’ ¢= 2" a (3.1)

PO
X3t E P
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The subscript P denotes physical fields as in the usual treatment. However, in the following,
this subscript will be dropped. By substitution of (3.1) into (2.11), the potential becomes

viod =i (e 75) () s (8 5) (e )
Joioi (91 75) (984 75) + 030

(e ) (e ) v (x5 + 2) (8 9)]
it (o 25 ) (980 55 ) < osts]

n[(8 ) () e (- ) ()
< Joigi (8« J5) (8% 75 ) + 959

| (o 5 )0+ (08 5 ) + (08 + 25 ) 03]
(e )« (o e (8 5))

From the above expression, we get constraint equations at the tree level:

+

N

+A

—_

+A

N

(3.2)

2
‘u%+/\1(u2+w2)+i3%20,
. (33)
u* + w?)

=0.
2

[I% + 1\2’02 + .)L3
The nonzero values of y and ¢ at the potential minimum as mentioned can be easily derived
from these equations to yield the given (2.12) and (2.13).
Since u is a parameter of lepton-number violation, therefore the terms linear in u
violate the latter. Applying the constraint (3.3), we get the minimum value, mass terms,
lepton-number conserving, and violating interactions as follows:

V(x/ ‘;b) mm + VII];IaSS + Vmass + VLNC + VLNV/ (34)

where

b oy 1,5 5 2, ,2 2
=o't -~ (W + w?) [ (U + W) + A307],
4 4 (3.5)

an\llass = )L1 (u51 + w53)2 + ./\zvzsg + )L3’U (MS1 + wS3)Sz,

Vmin = -

A + + + - - -
Vigass = 74 (ugy +ox; +wy) (upy +ovx; +wes), (3.6)
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Vine = (00" + 2(479)" + A5 (xTx) (679) + 1 () (67x) + 20wSs (xTx)
+21,05:(§79) + 43052 (xTy) + LswSs (§9) + % vz +wg3) (X'¢)  (37)
« 5 (o) + ) (910

Viny =201uS1(x"x) + suS1 (') + %”[4’1 (x'¢) + 1 (6] (38)

In the above equations, we have dropped the subscript P and used y = (x), x;, Xg)T, ¢ =
(P79, 3 )T. Moreover, we have expanded the neutral Higgs fields as

xO _ 51 +iA1 XO _ S3+iA3 Sz+iA2
! v2 ’ V2 V2

In the literature, the real parts (S;, i = 1,2,3) are also called CP-even scalar and the imaginary
part (A;, i = 1,2,3)—CP-odd scalar. In this paper, for short, we call them scalar and
pseudoscalar field, respectively. As expected, the lepton-number violating part Vinc is linear
in u and trilinear in scalar fields. These couplings will be also a source for lepton-number
violations such as the mass spectra of quarks including exotic ones as well as neutrino
Majorana masses, but given at higher-order corrections.

In the pseudoscalar sector, all the fields are Goldstone bosons: G; = A1, G, = Ay, and
Gs = As (cf. (3.5)). The scalar fields Si, S, and S3 gain masses via (3.5), thus we get one
Goldstone boson G4 and two neutral physical fields—the standard model H? and the new
HY with masses:

3 = : (3.9)

4\ — A2
mﬁo = A, 0? +)t1(u2 +w2) _ \/[sz2 - (12 +wz)]2 +)L§v2(u2 +w?) = 121 302,
1
(3.10)
M2, = 1502+ 1 (1 + @) +\ [ = 4y (12 + w?)|2 + 0202 (12 + w?) = 2y, (3.11)
In term of original fields, the Goldstone and Higgs fields are given by
1
Gy = (S1-19S3),
Vit
0 5¢
H®=¢:S; - = (teS1+ S3), (3.12)
Vi+8
o
HY=5:5; + ¢ - (teS1+S3),
Vit
where
Az My M
by 3IVWIVEX (3.13)

T LM - L,M2
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From (3.11), it follows that mass of the new Higgs boson My is related to mass of the
bilepton gauge X° (or Y* via the law of Pythagoras) through

M2 21152 M?
M2 _ EZu M2 [1 o(MI;V)] _ ;ZwMg( [1 +(9<M_V2V>] ~ 18.80 M%. (3.14)
X X

Here, we have used a = 1/128 and S%/v =0.231.
In the charged Higgs sector, the mass terms for (¢1, y2, $3) are given by (3.6), thus
there are two Goldstone bosons and one physical scalar field:

1

Hy = ——— (u¢] + vy3 + we3) (3.15)
Vu? + v? + w?
with mass
)L4 M2 ~/\4
M3, = > (u* + 0% + w?) =204 —- 2 " or M2 =4.704M3,. (3.16)
The two remaining Goldstone bosons are
+ 1 + +
G5 = ———=(¢7 —te93),
\V1+8
(3.17)

3 1
(1 +8) (12 + 02 + w?)

Thus, all the pseudoscalars are eigenstates and massless (Goldstone). Other fields are related
to the scalars in the weak basis by the linear transformations:

HO —5¢59 C; —5¢Ch Sl
H? = CiSe S¢ CiCo Sg P
G4 Co 0 —Se 53
1

N
H, 1 w2 2 e 2
: I e w? + cju -sg\/w? + cjv X3
G} \Jw? + cjv? vS29
vc

2

[o(todi + ¢3) - w (1 + ) x3]-

(3.18)

w 2 #;

With the two Higgs triplets of the model, there are twelve real scalar components. Eight of the
gauge symmetries of SU(3); ® U(1)y are spontaneously broken, which eliminates just eight
Goldstone bosons associated with these fields. It leaves over just four massive scalar particles
as obtained (one charged and two natural). There is no Majoron field in this model which
contrasts to the 3-3-1 model with right-handed neutrinos [99, 100]. Let us remind the reader
that among the Goldstone bosons there are four fields carrying the lepton number, but they
can be gauged away by an unitary transformation [87].
From (3.10) and (3.11), we come to the previous result in [36]:

M>0,40,>0, 404> A3 (3.19)
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Equation (3.16) shows that the mass of the charged Higgs boson Hy is proportional to those of
the charged bilepton Y through a coefficient of Higgs self-interaction A4 > 0. Analogously, this
happens for the standard-model-like Higgs boson H® (Mo ~ My ) and the new H (M HY ~
Mx). Combining (3.19) with the constraint (3.3), we get a consequence: A3 is negative (A3 <
0). Let us remind the reader that the couplings 141, are fixed by the Higgs boson masses and
A3, where A3 defines the splitting Am%l = —[.)L% /(2A1)]v? from the standard model prediction.

To finish this section, let us comment on our physical Higgs bosons. In the effective
approximation w > v, u, from (3.18), it follows that

HO ~ SZ/ H? ~ 53/ G4 ~ Sl/

+ + + + + + (320)
H3 ~ ¢3, G: ~ o7, Gg ~ Xz-

This means that, in the effective approximation, the charged boson H; is a scalar bilepton
(with lepton number L = 2), while the neutral scalar bosons H® and H} do not carry lepton
number (with L = 0).

3.2. Higgs-standard model gauge couplings

There are a total of 9 gauge bosons in the SU(3); ® U(1) x group and 8 of them are massive. As
shown in the previous section, we have got just 8 massless Goldstone bosons—the justified
number for the model. One of the neutral scalars is identified with the standard model Higgs
boson; therefore, its couplings to ordinary gauge bosons such as the photon, the Z, and the
W#* bosons have to have, in the effective limit, usual known forms. To search Higgs bosons
at future high-energy colliders, one needs their couplings with ordinary particles, specially
with the gauge bosons in the standard model.
The interactions among the gauge bosons and the Higgs bosons arise in part from

3 (DY) (D'Y). (3.21)
Y=x, ¢

In the following, the summation over Y is default and only the terms giving interested
couplings are explicitly displayed. The covariant derivative is given by (2.14):

Dy, = 8, — i, = 0, —iPy< — DS, (3.22)

where the matrices D}fc and IDPC,C are written as

Ws 2
W+ 2+ t\/;XBﬂ 0 Y
NC _ & Wiy 2
pyc=% 0 Wk s t\/;XB,, 0 :
2W8;4 2
” 0 A t\/;XBF
(3.23)
0 CQW; + S@Y; XB

pse = % oW, + 50Y; 0 coY; —soW, |- (3.24)

XV coY; —seW; 0
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Table 5: Trilinear coupling constants of W*W ™~ with neutral Higgs bosons.

Vertex Coupling
ra

W*W-H Sve
ra

W*W~H} S oSt

Let us recall that t = gx/g = 3v2sw/4/3 - 4s},, tan6 = u/w, and W, Y;;, and Xﬁ are the
physical fields. The existence of i is a consequence of mixing among the real part (Xg* + X,‘i)
with W3, Wg,, and B,; and its expression is determined from the mixing matrix U given in
Appendix A.1:
(X +X3)
yﬂ = U4zz# + U4gz‘; + (U44 - 1)7, (325)

where

Uy = —ty (c¢\/1 —4s3.chy - s¢\/4c%,v - 1),
Uss = ~to (5,/1 - 453,63, +cp\/4ch, — 1), (3.26)

U44 = \/1 —4S§,C12,V.

First, we consider the relevant couplings of the standard model W boson with the Higgs and
Goldstone bosons. The trilinear couplings of the pair W*W~ with the neutral scalars are given

by

2
t 1 8V -
(DRG0 (D) + (D05(9)) (D7 p) + Hae. = S—WiW™HS,, (3:27)
Because of S; is a combination of only H and H 0 therefore, there are two couplings which
are given in Table 5.

Couplings of the single W with two Higgs bosons exist in

i(YTpCory - oY pCY) = %Wﬁ [Y; (cod"Y1 — 500"Y3) — 0"Y5 (coY1 — seY3)] + Hec.
ig
= 5 lx3 (00" 7 = 500x3) = 03 (o = sox3)

+ ¢ (cod' Py — 500/ p3) — 393" (cody — so3)] +Hee.
(3.28)
The resulting couplings of the single W boson with two scalar fields are listed in Table 6,
where we have used a notation A 9, B = A(0,B) — (0,A)B. Vanishing couplings are
U(W H;H’) = U(W H; H)) = U(W H'G})

(3.29)
=U(W H)G}) =U(W H;G,) =U(W G{G,) =0.
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Quartic couplings of W*W~ with two scalar fields arise in part from

2
g + - 5 % * %
(DY) (PHY) = SWW s + X0+ 5x3")5 ~ coso ("X +X1X5) (339
+ 3" Py + oy b7 + 5393 — cese (i3 + 193]

With the help of (A.3) and (A.4), we get the interested couplings of W*W~ with two scalars
which are listed in Table 7. Our calculation give following vanishing couplings:

U(W*W H;G5) =U(W*W™GLG,) =U(W*W H'G)) =v(W*W H)G)) =0.  (3.31)

Now, we turn to the couplings of neutral gauge bosons with Higgs bosons. In this case, the
interested couplings exist in

i(YTPYCoMY — aryt pNCY)
ig « - - *
- ‘E{W§ (001" )XY = 032 + 0udpy b1 — .92 9h)

U
—8(8ﬂx?*x?+aux§x£ + 0 py b7 + 0, P — 20, x5 X3 — 20,5 h3)

+ t\f B/ [ - SO+ Ouxixs + 0ux2 D) + 5 (Qui ] + 0,93 92 + i)

0x 0

+ Y (B X3 + O3 X + O 93 +a#¢§¢;)} +He
(3.32)

It can be checked that, as expected, the photon A, does not interact with neutral Higgs
bosons. Other vanishing couplings are

U(AH;G;) = U(AH;G;) = U(AG;G3) =0,
U(AAH") = U(AAH)) = U(AAG,) =0,
U(AZH") =U(AZH)) = U(AZG,) =0,
U(AZ'H") =U(AZ'HY)) = U(AZ'Gy) = 0.

(3.33)

The nonzero electromagnetic couplings are listed in Table 8. It should be noticed that the
electromagnetic interaction is diagonal, that is, the nonzero couplings in this model always
have a form:

iequA"H" 0, H. (3.34)
For the Z bosons, the following observation is useful:
W;:u122‘u+.../ Wg:u22zﬂ+"', (335)
Bt =UgpZt +---, y”=u4ZZl‘+... :
Here,
U12 = C(PCQfCW,
U cy(s3, —3c3,55,) s(p\/(l 4sg,ch,) (4cy, — 1)
” V3ewca ' (3.36)
<C<P\/m +8p4/1 - 456,CW>

V3eo

Uz =~
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Table 6: Trilinear coupling constants of W~ with two Higgs bosons.

Vertex Coupling Vertex Coupling

180Co W”_Gg a:: Gl gCow

24/w? + cjv? 24/w? + cjv?

W H; 9, Gy

- c -
WGt 8, H e WH-GE 8, G -4
e igw ot N 0 ig
WHG? 9, Gy 8 WHG? 9, H B
24/w? + cjv? 2

2
guc e
o 8% Wr-G? &, G o 8%w
24/w? + cjv? 24/w? + cjv?
gUsxH

4 Jw? + cfv?

WFEHj 8, Gy

W Hj 0, Gs

are elements in the mixing matrix of the neutral gauge bosons given in Appendix A.1. From
(3.32) and (3.35), it follows that the trilinear couplings of the single Z with charged Higgs
bosons exist in part from the Lagrangian terms:

ig Uy t,[2 - U 2t /2 N
— ?ZV [<U12 - % + 5\/;[132)5#)(2)(5 + <U12 + % * 3\/;132) aﬂd)l d)f

(3.37)
2 2t |2 o s o
OV el e Ou3 P53 + U (0uPy b3 + Oup3¢7) | + Hee
From (3.37), we get trilinear couplings of the Z with the charged Higgs bosons which are
listed in Table 9. The limit sign (—) in the Tables is the effective one.

In the effective limit, the ZG5Gs vertex gets an exact expression as in the standard
model. Hence, Gs can be identified with the charged Goldstone boson in the standard model
(Gw+).

Now, we search couplings of the single Z, boson with neutral scalar fields. With the
help of the following equations,

— —

X(l) Ou X(l)* =iG1 0y Sy, Xg Ou Xg* =iG3 0, S3, ‘i’g Op 4’3* =iGz 0y 5o,

1 - —
a‘ux(l)*xg + aﬂxg*x(l) = 3 [6#5153 + 6#5351 + a‘uG1G3 + BMG3G1 +1G3 3,4 51 +iG 5,4 53],

(3.38)
the necessary parts of Lagrangian are
g Un £, )2 5, 5 _ 2, B3
> [<U12 + \/g 3\/;1132 Gy a‘u S1+UpG 8,4 S; + \/guZz 3 3U32 (3 39)

= = u 2t, (2 =
x G3 8# S3+ UypGs a‘u S+ <— Uqpp + % + g\/;U32>G2 a# 52]
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Table 7: Nonzero quartic coupling constants of W*W~ with Higgs bosons.

Vertex Coupling Vertex Coupling
2.2.2 2.2
T T+TT— g CGU — ~0,~0 g C(~}
2 242
W*W-G:G: £ W*W~ GG} £
2,2 2
e gw — ~0~0 &
W*W~H; G, | ganw W*W- ELHO g5y
26 2(w? + cjv?) ! 4
2.2
8¢ 2
W*W-HH Té W W-GIGY 8 Zze
2.2
&8s 2
WHW-HOH? i WHIW-GIGY £

Table 8: Trilinear electromagnetic coupling constants of A* with two Higgs bosons.

Vertex AFHj 8, Hj AFG; 8, G AFG; 8, G

Coupling ie ie ie

The resulting couplings are listed in Table 10. we conclude that G, should be identified to Gz
in the standard model. For the Z' boson, the following remark is again helpful:

Wi =UpZl+--, WY =UpZ¥ +---,

(3.40)
B =UzpZ* + -, y"=ll43Z'”+---,
where
U1z = sycocw,
2 a2 2 42 2 2 _
o — sy (spy — 3¢ySg) +c(p\/(1 dsgcy) (4cy, - 1)
» V3w ce / (3.41)
tw (sq,\/4c‘2,\, —1-cp\/1- 4s§,clz,v>
Uz = - .
V3ce

Thus, with the replacement Z — Z' one just replaces column 2 by 3, for example, trilinear
coupling constants of the Z,, with two neutral Higgs bosons are given in Table 11.
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Next, we search couplings of two neutral gauge bosons with scalar fields which arise
in part from

Y+pr:ICpNC#Y = i_z{ (Y7 (AllllAlll‘- +yuy") + Y5 (Any? + Asauy?) [ Ya + AngZZ# xY3Y,
+ [Y7 (A + Asauy™) + Y5 (AL Assy + v,y*) | Y )

(D (A AT, + vuy™) + x5 (AL, v + A%,y X

+ [ (ALY + ALY + x5 (A AL, + vy ] xS

+ [ (AT AL, + ) + 65 (ATt + ALy 61

+ [07 (AT + ALy + 45 (AL AL, + v 65

+ (A AL )6 + (A AL,) 9 83).

N

|3

(3.42)

Here, AZ. (i =1,2,3) is a diagonal element in the matrix (2/g) D}fc which is dependent on the
U(1)x charge:

Wt ot 2 Wt ot 2
AWl 8 2B A oWt 8 TS
11 3 \@ 3 3 4 11 3 \@ 3 3 4
Wt ot 2 Wt ot 2
_ 8 ¢ _ 8
Agé( = —Wél + % - 5 gB‘u, A’;z = —Wil: + % + g gB#, (343)
Wt ot 2 Wt 2t 2
A 278 Z4lZpe AR = 278 L SN [Zpk,
IV »= T3 T3V3

Quartic couplings of two Z with neutral scalar fields are given by

gzz{ [xd (AR AT, + yy) + x5 (AL, 0" + ALy
+ [ (A)lclyy” + A§3‘My#) + X35 (AggAg%# +yuyt)1xs + (Agng?Z/i)(i)Z*d)(Z)} (3.44)
= gzz{ (ATTAL, + vy ) )T d + (AR A, + vy X3 X3
(AT ALY (S + 3 + (A AL, )95 93).

In this case, the couplings are listed in Table 12.
Trilinear couplings of the pair ZZ with one scalar field are obtained via the following
terms:

2

8

G,
T [0S2A5,, A%, +uS1AY, AlY + wS; A%, ALY

3y (3.45)

+ (uS1 + wS3) Yyt — (wSh + u53)y”AfQ#]'

The obtained couplings are given in Table 13.
Because of (3.40), for the ZZ' couplings with scalar fields, the above manipulation is
good enough. For example, Table 12 is replaced by Table 14.
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Now, we turn to the interested coupling ZW*H arisen in part from

Y*p})‘CpCCﬂY +H.c.
2
ff (W ALY; (coYi - seYs) + Wi [(coAl, - sayt)Y; + (cay — saAl) ;] Yo} + Hee.
(3.46)
For our Higgs triplets, one gets

g—Z{W (A% x5 (cox) = s0x3) + AT DY (codt - s093)]

2V2
(3.47)

+ W, 7 [(coAf} = sey™) 1" + (coy — se A3y ) X5']
+ Wi dd[(co AL — soy )y + (coy™ — se AL )§3] ) + Hec.

From (3.47), the trilinear couplings of the W boson with one scalar and one neutral gauge
bosons exist in a part:

2 2 4t 2
o Mﬁw 3 \EBM} o H]
W,“
+U¢5[09y#_59< Wi~ ﬁ+it\/§Bﬂ>] (3.48)

+wx2[59(W +V3WE) + 29 ]}+Hc

From the above equation, we get necessary nonzero couplings, which are listed in Table 15.
Vanishing couplings are

U(AW*H;) = U(AW*G;) = 0. (3.49)

Equation (3.49) is consistent with an evaluation in [53], where authors neglected the
diagrams with the yW*HT vertex.

From (3.24), it follows that, to get couplings of the bilepton gauge boson Y* with ZH,
one just makes in (3.48) the replacement cg — —sp, sg — co.

Finally, we can identify the scalar fields in the considered model with that in the
standard model as follows:

H«—h, Gi — Gw+, Gy «— Gy. (3.50)

In the effective limit w > v, u our Higgs can be represented as

1
\/—iu + Gxo Gw+
1
X = GY_ , ¢ = 7@ ('U + h + IGZ) ’ (351)
1
—(w+H" +iGy) H;
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where G3 ~ Gz, G, ~ Gy- and
Gy +iG; ~V2Gxo (3.52)

are the Goldstone boson of the massive gauge bosons Z’, Y-, and X?, respectively. Note that
identification in (3.52) is possible due to the fact that both scalar and pseudoscalar parts of
) are massless. In addition, the pseudoscalar part is decoupled from others, while its scalar
part mixes in the same as in the gauge boson sector.

We emphasize again that, in the effective approximation, all Higgs gauge boson
couplings in the standard model are recovered (see Table 16). In contradiction with the
previous analysis in [36], the condition u ~ v or introduction of the third triplet are not
necessary.

3.3. Production of H; via WZ fusion at LHC

The possibility to detect the neutral Higgs boson in the minimal version at e*e™ colliders was
considered in [101] and production of the standard model-like neutral Higgs boson at LHC
was considered in [52]. This section is devoted to production of the charged H at the CERN
LHC.

Let us firstly discuss on the mass of this Higgs boson. Equation (3.16) gives us
a connection between its mass and those of the singly-charged bilepton Y through the
coefficient of Higgs self-coupling 14. Note that in the considered model the neutrino Majorana
masses exist only in the loop levels. To keep these masses in the experimental range, the mass
of Mp: can be taken in the electroweak scale with 14 ~ 0.01 (see the next section). From
(3.16), takmg the lower limit for My to be 1 TeV, the mass of Hj is in range of 200 GeV.

Taking into account that, in the effective approximation, H is the bilepton, we get the
dominant decay channels as follows:

Hz_ — vy, }lda/ ?aaar ) ) (353)
N ZWS, ZWT, XWT, ZY .

Assuming that masses of the exotic quarks (U, D,) are larger than M Hz, wWe come to the
fact that the hadron modes are absent in decay of the charged Higgs boson. Due to that the
Yukawa couplings of HyI7v are very small, the main decay modes of the are in the second line
of (3.53). Note that the charged Higgs bosons in doublet models such as two-Higgs doublet
model or minimal supersymmetric standard model have both hadronic and leptonic modes
[54]. This is a specific feature of the model under consideration.

Because of the exotic X, Y, Z' gauge bosons are heavy, the coupling of a singly-
charged Higgs boson (H;) with the weak gauge bosons, H;W7¥Z, may dominate. Here, it
is of particular importance for the electroweak symmetry breaking. Its magnitude is directly
related to the structure of the extended Higgs sector under global symmetries [102-106]. This
coupling can appear at the tree level in models with scalar triplets, while it is induced at the
loop level in multiscalar doublet models. The coupling, in our model, differs from zero at the
tree level due to the fact that the H5 belongs to a triplet.

Thus, for the charged Higgs boson H3, it is important to study the couplings given by
the interaction Lagrangian:

Line = fzwnHy W ZF, (3.54)
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Table 9: Trilinear coupling constants of Z# with two charged Higgs bosons.

Vertex Coupling

U
V3

t /2
+ (0205 + 2(4)2) 5\/;1.132 + (,()23291142} —_ —igSWtW

2 ig
Z'H, 9, Hj m { (v%c} + w?sh)Unp + [w? (1 -3c]) — vy —=
0

- Uy 2t [2 i
Z+G; 3, Gt < [c U + (1-3s 9) = §\£u32—529u4z] — %(1 - 2s3)
7'G; 8, G: B8 (P42 U + [P (1-3e2) - w?] U2
6 K6 2(w? + cjv?) S0/ 12 ‘o ‘o V3

N

ig
\/> w +2'U u®2 + 20 SQC9U42} — 2—(1 ZSW)

ZMH; 9, GE ——— (s2pU12 + V320U + 2c20Usp) — 0

4\/(4)2 +cg 202

igwucy
2(w? + cjo?)

o u
ZMHj 8, G} [ AU+ (2~ 309) 2, \/> u32+529u42]ﬁ0

= igouc
Z”GE a# Gg L (529U12 + \/55291122 + 2C29U42) —0
4 Jw? + cjv?

where fzwH, at tree level, is given in Table 15. The same as in [53], the dominant rate is due
to the diagram connected with the W and Z bosons. Putting necessary matrix elements in
Table 15, we get

g2vwsag Cp = St/’\/(4cw ~1)(1+485,)

fzwr =~ . (3.55)
4y + o2 \[(1+48,) [}, + (4ck, - 1))
Thus, the form factor, at the tree-level, is obtained by
wsrg|cy — sp\/ (4c2, — 1) (1 +483,)
pofown _ o0 — s/l )] (3.56)

gMw 2\/(“)2 +c5v?) (1+4t5,) [cfy + (4cfy, - 1)85 ]

The decay width of Hy — WZ;, where i = L, T representing, respectively, the longitudinal
and transverse polarizations is given by [53]:

21w, z)
16

where A(1,w,z) = (1 -w — z)* — 4wz, w = M3, /M2 : and z = M2 /M . The longitudinal
and transverse contributions are given in terms of F by

[(Hf — WEZ;) = My | M|, (3.57)

|My|? = f’;—z(1 —w-2)FP,  |Mrr|? = 28%w|FP. (3.58)



P. V. Dong and H. N. Long 37

For the case of Mp: » Mgz, we have |[Mrr|*/|M_[* ~ 8M12,VMZZ/M4zi which implies that
the decay into a longitudinally polarized weak boson pair dominates that into a transversely
polarized one. The form factor F and mixing angle t, are presented in Table 17, where we
have used S%v =0.2312, v = 246GeV, w =3 TeV (or My = 1TeV) as the typical values to
get five cases corresponding with the sg values under the constraint (2.65).

Next, let us study the impact of the H; W7 Z vertex on the production cross section of
pp — W*Z*X — H;X which is a pure electroweak process with high pr jets going into
the forward and backward directions from the decay of the produced scalar boson without
color flow in the central region. The hadronic cross section for pp — H;X via W*Z fusion is
expressed in the effective vector boson approximation [107-109] by

16772 dar
outt(5, M2, ) = — 7 N T(HE — WiZ))ris , (3.59)
< HZ) A1, w, Z)MHi )L;L g dr pp/WEZy
where T = M%{i /s, and
da.z J‘ dr’ J‘ dx dar
a2 Zh0n(Z) % (3.60)
dr pp/WfZ\ ! e

with 7' =5/s and ¢ = 7/7'. Here, fi(x) is the parton structure function for the ith quark, and

I 4{;[(1 g)ln( §> +2@-1)|,

where ¢ = (g c§/16cw)[glv(q]) + glA(q])] with g1v(q;), g1a(q;) for quark g; is given in [38,
Table I]. Using CTEQ6L [110], in Figure 5, we have plotted oe (s, M Hzi) at4/s=14TeV, as a
function of the Higgs boson mass corresponding five cases in Table 17.

Assuming discovery limit of 25 events corresponding to the horizontal line, and taking
the integrated luminosity of 300 fb™" [111], from the figure, we come to conclusion that, for
sg = 0.08 (the line on top), the charged Higgs boson H3 with mass larger than 1700 GeV,
cannot be seen at the LHC. These limiting masses are denoted by Mmix and listed in Table 17.

If the mass of the above-mentioned Higgs boson is in range of 200 GeV and s¢ = 0.08, the
cross section can exeed 260 fb, that is, 78000 of H; can be produced at the integrated LHC
luminosity of 300 fb™". This production rate is about ten times larger than those in [53]. The
cross sections decrease rapidly as mass of the Higgs boson increases from 200 GeV to 400 GeV.

3.4. Summary

In this section, we have considered the scalar sector in the economical 3-3-1 model. The
model contains eight Goldstone bosons—the justified number of the massless ones eaten by
the massive gauge bosons. Couplings of the standard model-like gauge bosons such as of
the photon, the Z, and the new Z' gauge bosons with physical Higgs ones are also given.
From these couplings, the standard model-like Higgs boson as well as Goldstone ones are
identified. In the effective approximation, full content of scalar sector can be recognized. The
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Figure 5: Hadronic cross section of W*Z fusion process as a function of the charged Higgs boson mass for
five cases of sin 6. Horizontal line is discovery limit (25 events).
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Figure 6: Lepton Yukawa couplings.

CP-odd part of Goldstone associated with the neutral non-Hermitian bilepton gauge bosons
Gxo is decoupled, while its CP-even counterpart has the mixing by the same way in the gauge
boson sector. Despite the mixing among the photon with the non-Hermitian neutral bilepton
X" as well as with the Z and the Z' gauge bosons, the electromagnetic couplings remain
unchanged.

It is worth mentioning that masses of all physical Higgs bosons are related to that
of gauge bosons through the coefficients of Higgs self-interactions. All gauge scalar boson
couplings in the standard model are recovered. The coupling of the photon with the Higgs
bosons are diagonal.

It should be mentioned that in [36], to get nonzero coupling ZZh at the tree level, the
authors suggested the following solution: (i) # ~ v or (ii) by introducing the third Higgs
scalar with VEV (~ v). This problem does not happen in our consideration.

After all we focused attention to the singly-charged Higgs boson Hj with mass
proportional to the bilepton mass My through the coefficient 4. Mass of the Hj is estimated
in a range of 200 GeV. This boson, in difference with those arisen in the Higgs doublet models,
does not have the hadronic and leptonic decay modes. The trilinear coupling ZW*HJ which
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Table 10: Trilinear coupling constants of Z, with two neutral Higgs bosons.

Vertex Coupling
ZFG, 5,; H —% [<U1z @ - —\/>U32>Se + U4zce] —0
o u 2t |2
ZFGy 0, H %(- Uy, + % + 3\/;1132)0@
= s 2 t /2
ZrGs o, H Tg <7§u22 + 5\/;U32>09 - U4259] —0
ZHGy é_,; HY % [<U1z + % - %\/glln)se + U42C9] —0
Z#GZ 5}; H? %( ulz UZZ \/>U32>S§ — 0
o C 2 t /2
ZM'Gs 8, HY -% [<%Uzz + 3\/;1132)00 - U4239] —0
70Gy 8, G Sl(u ll co - Upse| — >—
xen 5 122t 32 Jtp — U4250 2cw
7G5 3, Gy
< 2 t /2
ZFG; 0, Gy % [<7§U22 + 5\/;1132)59 + U4zce] —0

differs, at the tree level, while the similar coupling of the photon yW*HJ as expected,
vanishes. In the model under consideration, the charged Higgs boson H; with mass larger
than 1700 GeV cannot be seen at the LHC. If the mass of the above-mentioned Higgs boson is
in range of 200 GeV, however, the cross section can exceed 260 fb, that is, 78000 of H3 can be
produced at the LHC for the luminosity of 300 fb™'. By measuring this process, we can obtain
useful information to determine the structure of the Higgs sector.

4. Fermion masses

We first give some comments on the charged lepton masses and set conventions. The neutrino
and quark masses are correspondingly considered.

4.1. Charged-lepton masses

The charged leptons (I = e, y, T) gain masses via the following couplings:

L, =h G plor + He (4.1)
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Table 11: Trilinear coupling constants of Z,, with two neutral Higgs bosons.

Vertex Coupling

o u
Z"Gi o, H 8% [(U13 ﬁ - —\/71133)59 + U4309] —0

2

1 5 8 23 8
Z"G, 8, H E( Ups + \/’U33>cg — m
w

Z'G; 5;4 H gZSg [<\BU23 + \/7U33>Ce U4359] —0
Z"G é—;; HY gzcg [<U13 \/7U33>59 + U43€e] —0
& 2t (2
iden 5,4 H? §<— U3 + % + E\/;U33>S§ —0
Z'"Gs é_/; HY 8% [< Uss + \/71133) U4359] — _gc+
4CW -1
i~ 2 8 U23 8caw
Z'"Gy 8, Gy 5 U+ — -3 U33 co —Upsy| — ————=
ZCW \ /40‘2/\/ -1
7"G, 8, G 0

Z"Gy 0, Gy

Nog

2 t |2
[<7§UQ3 + 5\/;1133)59 + U43C9] —0

The mass matrix is, therefore, followed by

hy iy i
M=K, W, K, |, (4.2)

2\ H W

31 ""32 "33

which of course is the same as in the standard model and thus gives consistent masses for the
charged leptons [37].

For the sake of simplicity, in the following, we can suppose that the Yukawa coupling
of charged leptons Kl is flavor diagonal, thus I, (a = 1,2, 3) are mass eigenstates respective to
the mass eigenvalues m, = —(v/v/2)h,,

For convenience in further reading, we present the Yukawa interactions of (2.6) and
(2.7) in terms by Feynman diagrams in Figures 6, 7, and 8, where the Hermitian adjoint ones
are not displayed. The Higgs boson self-couplings are depicted in Figure 9.

4.2. Neutrino masses

First, we present mass mechanisms for the neutrinos. Next, detailed calculations and analysis
of the neutrino mass spectrum are given. The experimental constraints on the coupling h” are
also considered.
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Figure 9: Higgs boson self-couplings.
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Table 12: Quartic coupling constants of ZZ with two scalar bosons.

Vertex Coupling
27G\G g <u +@—3\/?u >2+u2 o
i 3 ANV RN e 27 23,
2
272G, Gy %< U + uzz t\/>ll32> —>—2
2[/ 2 t 2o\
Z7G5Gs %[<7§uzz+§\/;u32> U2, —0
2
ZZG1G3 gz <U12— @ - \/>u32>u42 —0
2
u t /2
ZZHH %{sé[sé(ulz+%—§\/;usz> +c§< Uy + = \/71,[32) +U2,

2
Uy 2t [2 Uy 2t 2 g
+520U4s2 <U12 - % - g\/;usz ] <U12 - —2; -3 §U32> } — 2g7

w
Q2
ZZHHO 7{ & [ <u12 22 \/>u32> + cg< Up + = \fuﬁ) F U2,
u u
+520U 42 <U12 - ﬁ - —\/>U32>:| +s <u12 - ﬁ - —\/>U32> } —0
2 Un t 2\ 2 t 2\
ZZG4G4 % I:Cg <U12 + % - 5\/;1132) + Sé<7§U22 + g\/;u:Q)
u.
—S29 <U12 - ﬁ - —\/>u32>u42 + LI42:| - g
g8 u t 2 :
ZZHH, 5 g[sg(mﬁ%—g\gu&) +c9< Un + = \fu3>
2t Zt
<U1z _U=z \/71132) + 829 <U12 U \/7U32> ]

2 2t [2
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2, u
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Table 13: Trilinear coupling constants of ZZ with one scalar bosons.

Vertex Coupling

2 2 2
g u22 2t 2 Uzz t 2 S¢
Z7ZH 7 [UCg <ll12 - % - E\/;U& — US;Sp Up+—-= —U32 - w—lliz
2
2 t [2 Uy 2t g’v
—wsecg| —=Uxp + —\/jll > —2ws;s (ll - \/711 >U — =
¢ 9<\@ n+3\3Un :sel U2 32 JUxp %

2
Cyy
2t
ZZH? g? [ <u12 22 \/>U32> +UC; S <U12 + — \/>U32> + w & LI2
2 22 2t
+wcgCo \fSUZZ + = U32 + ZLUCgSe U12 U32 U42 —0

2w u
ZZGy gT [39 (U1 +v3Uyp) + CC—2:U42] [Ulz ﬁ - —\/>U32] —0

Table 14: Trilinear coupling constants of ZZ' with one scalar bosons.

Vertex Coupling

ZZ'H = [vcg U, - Un 2 \/71132) <U13 Up 2 \/71133) US¢Sp
<LI + — \/7 u ><LI + — \/7 u > ws;C < U + \/j u >
12 32 13 33 ozt a3zl

2 u 2t |2
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2wsg u u t 2
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Table 15: Trilinear coupling constants of neutral gauge bosons with W* and the charged scalar boson.

Vertex Coupling
2
_ &
AW*G; ?vsw
20w
ZW*H, Z\/ﬁ [soco (U2 + v3U) + c2oUr]
0
) Pow
ZW*H; [soce (Urz + v/3Uas) + c2oUus] — 0
24/w? + cév2
. g’ 5 S Uxn 4t 2 e
ZW GS T - SBU12 + (2 - 359)% + E §U32 - 329U42 e —TUSWtW

(07 - ?)

ZW*G; LA A
8cg\/w? + 502

[s20 (U12 + v/3U2) +2c20Usn] — 0

Table 16: The standard model coupling constants in the effective limit.

Vertex Coupling Vertex Coupling
2
WWhh % GwGw A ie
2 2
WWh %v WWG,Gy %
H 2
WGwh —% WWGwGw %
2
WGwGy g ZZh S v
2 ZCW
2 2
ZZhh S 272G,G, .
2¢cy, 2y
'S I's
AWGW 77)Sw ZWGW —?Z)Swtw
8 ig 2
7 __° y4 ——(1-2
Gzh 2 GwGw e ( SW)

4.2.1. Neutrino mass mechanisms

In the considering model, the possible different mass mechanisms for the neutrinos can
be summarized through the three dominant SU(3)- ® SU(3); ® U(1)x-invariant effective
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Table 17: Values of F, t,, and Mg for given sg.
2

S 0.08 0.05 0.02 0.009 0.005
ty —0.0329698 —-0.0156778 —0.00598729 —0.00449063 —0.00422721
F —-0.087481 —-0.0561693 -0.022803 -0.0102847 —-0.00571598
Mﬁgx [GeV] 1700 1300 700 420 320

operators as follows [112, 113]:

O =G5 v, 43)
O = (0" For) (X" gL ), (4.4)
0%% = (x"¥op) (wordx). (4.5)

where the Hermitian adjoint operators are not displayed. It is worth noting that they are
also all the performable operators with the mass dimensionality d < 6 responsible for the
neutrino masses. The difference among the mass mechanisms can be verified through the
operators. Both (4.3) and (4.5) conserve £, while (4.4) violates this charge with two units.
Since d(O™C) = 4 and L(¢$) = 0, (4.3) provides only Dirac masses for the neutrinos which
can be obtained at the tree level through the Yukawa couplings in (2.6). Since d(O°'®) = 6 and
(L{x)) p70 for p = 1 vanish for other cases, (4.5) provides both Dirac and Majorana masses
for the neutrinos through radiative corrections mediated by the model particles. The masses
induced by (4.3) are given by the standard SU(2); ® U(1), symmetry breaking via the VEV
v. However, those by (4.5) are obtained from both the stages of SU(3); ® U(1)x breaking
achieved by the VEVs u, w, and v.

Note that the LNV interactions in (2.7) are due to quarks. Hence, they do not give
contribution to LNV of the leptons such as of the neutrinos. Except the LNV couplings of
(2.7), all the remaining interactions of the model (lepton Yukawa couplings (2.6), Higgs
self-couplings (2.11), etc.) conserve £. This means that the operator (4.4) of LNV cannot be
mediated by particles of the model; in other words, it must be introduced by hands. As a fact,
the economical 3-3-1 model including the alternative versions [17-22] are only extensions
beyond the standard model in the scales of orders of TeV [40, 114, 115]. Hence, it is expected
that the operator in (4.4) has to be mediated by heavy particles of an underlined new physics
at a scale M much greater than «w which have been followed in various of grand unified
theories (GUTs) [37, 112, 113, 116-125]. Thus, in this model the neutrinos can get mass from
three very different sources widely ranging over the mass scales: u ~ O(1) GeV, v = 246 GeV,
w ~O(1)TeV, and M ~ O(10'%) GeV.

We remind that, in the former version [20-22], the authors in [126] have considered
operators of the type (4.4), however, under a discrete symmetry [22, 37]. As shown in
Section 4, the current model is realistic, and such a discrete symmetry is not needed because
as a fact that the model will fail if it is enforced. In addition, if such discrete symmetries
are not discarded, the important mass contributions for the neutrinos mediated by model
particles are then suppressed. For example, in this case the remaining operators (4.3) and
(4.5) will be removed. With the only operator (4.4), the three active neutrinos will get effective
zero masses under a type Il seesaw [55-62] (see below). However, this operator occupies a
particular importance in this version.
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Alternatively, in such model, the authors in [49] have examined two-loop corrections
to (4.4) by the aid of explicit LNV Higgs self-couplings, and using a fine tuning for the tree-
level Dirac masses of (4.3) down to current values. However, as mentioned, this is not the
case in the considering model because our Higgs potential (2.11) conserves £. We know that
one of the problems of the 3-3-1 model with RH neutrinos is associated with the Dirac mass
term of neutrinos. In the following, we will show that if such a fine tuning is done to get small
values for these terms, then the mass generation of neutrinos mediated by model particles is
not able, or the results will be trivial. This is in contradiction with [49]. In the next, the large
bare Dirac masses for the neutrinos, which are as of charged fermions of a natural result from
standard symmetry breaking, will be studied.

4.2.2. Neutrino mass matrix

The operators O™N¢, OB, and O™V (including their Hermitian adjoint) will provide the
masses for the neutrinos: the first responsible for tree-level masses, the second for one-loop
corrections, and the third for contributions of heavy particles.

Tree-Level Dirac Masses

From the Yukawa couplings in (2.6), the tree-level mass Lagrangian for the neutrinos is
obtained by [127, 128]:

Lies = Wy Varvor($3) = h, Ve vip(3) + Hee.
= 2(¢9)h”, Varver + Hec.
= _(MD)abguvaL + H.c.
Y g 0 (Mp) .\ (VoL
- E(vaL, VaR) <(MD)ab : a v +H.c.
1

= —EYZM,,XL +H.c.,

(4.6)

where h?, = —h;  is due to Fermi statistics. The Mp is the mass matrix for the Dirac neutrinos:

0 -A -B
(Mp),,, = 2wl = (- Mb),, = (4 0 ), «7)
B C 0
where
A= \thZ”U, B=V2h!.v, C= \th;TU. (4.8)

This mass matrix has been rewritten in a general basis X{ = (VeL, VuL, VL, Vg, v;R, ViR):

M, = ( AE)ID Ag£> . (4.9)
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The tree-level neutrino spectrum, therefore, consists of only Dirac fermions. Since h?, is
antisymmetric in a and b, the mass matrix Mp gives one neutrino massless and two others

degenerate in mass 0, —-mp, mp, where mp = (A?+ B> + Cz)l/z. This mass spectrum is not
realistic under the data; however, it will be severely changed by the quantum corrections; the
most general mass matrix can then be written as follows:

_ (M. Mj,
MV - <MD MR) 7 (410)

where M| g (vanished at the tree level) and Mp get possible corrections.
If such a tree-level contribution dominates the resulting mass matrix (after correc-
tions), the model will provide an explanation about a large splitting either Am2, > Am?

atm
or AmiSND > Amitm/ o1 [3] (see also [49]). Hence, we need a fine-tuning at the tree level

[49] either mp ~ (Amgtm)1/2(~ 5x 102 eV) or mp ~ (AmiSND)1/2(~ eV) [3]. Without loss of
generality, assuming that h, ~ hy, ~ hy,., we get then h” ~ 107" (or 107'2). The coupling h” in

this case is so small and, therefore, this fine tuning is not natural [129, 130]. Indeed, as shown
below, since h” enters the dominant corrections from (4.5) for My g, these terms My r get
very small values which are not large enough to split the degenerate neutrino masses into a
realistic spectrum. (The largest degenerate splitting in squared mass is still much smaller than
Amgo1 ~ 8 x107°eV? [3].) In addition, in this case, the Dirac masses get corrections trivially.
The above problem can be solved just by the LNV operator (4.4), and then the operator
(4.5) obtaining the contributions from particles in the model is suppressed (for details, see
[126]). However, we do not consider the above solution in this work. This implies that the
tree-level Dirac mass term for the neutrinos by its naturalness should be treated as those as of
the usual charged fermions resulted of the standard symmetry breaking, say, h” ~ h¢ (~ 107°)
[129, 130]. It turns out that this term is regarded as a large bare quantity and unphysical.
Under the interactions, they will of course change to physical masses. In the following, we
will obtain such finite renormalizations (for more details, see [131]) in the masses of neutrinos.

One-Loop Level Dirac and Majorana masses

The operator (4.5) and its Hermitian adjoint arise from the radiative corrections mediated by
the model particles and give contributions to Majorana and Dirac mass terms M, Mg, and
Mp for the neutrinos. The Yukawa couplings of the leptons in (2.6) and the relevant Higgs
self-couplings in (2.11) are explicitly rewritten as follows:

lept v =c¢ + v = + I = + I ¢ + I7 0
‘EY = ZhabvaleLd).% - 2habVaRlbL¢1 + hubvaleR(i)l + habvaRled)s + hablﬁleRd)z + H.C.,
0% 0 0% .0 + 0% 0 + 0% 0

LI = A (0] xT + X3 x3) + a3 (xTxT + x3°x3) + Ladpy @ x T x] + Nadp3 3 x5 X
+ Laghs 1 XY X3 + Nadpy P3 x 3 XY -
(4.11)

The one-loop corrections to the mass matrices My, of vy, M of vg, and Mp of v are, therefore,
given in Figures 10, 11, and 12, respectively.
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Figure 10: The one-loop corrections for the mass matrix M.
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Figure 11: The one-loop corrections for the mass matrix Mg.

Radiative Corrections to My and Mg

With the Feynman rules at hand [127, 128], M is obtained by

Si(ML) Py J‘ = I(V +m)

famstnir S

x (i2h? ,Py)

4(2huc P )—"——~ T <ihcd\f )
x (ihl, pL)( mégzpz—még) (mT)
(i ) e

(- mfb;r)z —m) <M47>'

1(y+md)
p* - m}

yoma) (4.12)

Because the Yukawa couplings of the charged leptons are flavor diagonal, (4.12) becomes

iv2\quw

(ML), = hy, [ I (g, b3’ ¢1) mZI(ma,m¢3

where the integral I(a, b, c¢) is given in Appendix B.

(a,b not summed),
(4.13)

mg)],
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In the effective approximation (2.8), identifications are given by ¢35 ~ Hy and ¢7 ~ G,

[39], where H; and Gy, as above mentioned are the charged bilepton Higgs boson and the

Goldstone boson associated with W* boson, respectively. For the masses, we have also m2 =

m%iz (= (\4/2)w?) and mél = 0. Using (B.5), the integrals are given by "
2 2 2 i 1 m%Iz mi
I(mafm¢3rm¢1) = 1e o _m%{Z [1 - o —mﬂz In m%{Z:I’ a=e,u,r. (4.14)
Consequently, the mass matrix (4.13) becomes
L . WL N
16020 (m3 - mib) (m3 - m%iz) (m? - m%{z)z méz (m? - mi[z 2 m%iz

v 2 2
~ %[mi<l +1n mz“ > —mi<1 +lnm—2b>:|,
lémr“vmy,, my, my,

(4.15)
where the last approximation (4.15) is kept in the orders up to O[(mi/b/ m%lz)z]. Since mi,z =
(A4/2)w?, it is worth noting that the resulting M| is not explicitly dependent on 4, however,
proportional to fg = u/w (the mixing angle between the W boson and the singly-charged
bilepton gauge boson Y [38]), ﬁvh’;b (the tree-level Dirac mass term of neutrinos), and mp,
in the logarithm scale. Here, the VEV v = vyeak and the charged-lepton masses m, (a = e, y, T)
have the well-known values. Let us note that M; is symmetric and has vanishing diagonal
elements.

For the corrections to Mg, it is easily to check that the relationship (MRg) ., = =(ML) 4
is exact at the one-loop level. (This result can be derived from Figure 11 in a general case
without imposing any additional condition on k!, h”, and further.) Combining this result
with (4.15), the mass matrices are explicitly rewritten as follows:

0 fr
(ML) gp = —(MR) g = <f 0 t>, (4.16)
r t 0

where the elements are obtained by

= aore L ([ (1410 7 2 (1 M
f=(V2v o . mo( 1+ nqu -m,| 1+ nm%{ ,
L 2 2
v to [ 2 mg 2 mi
r=(vV2vh,) = ) |me( 1+In—= ) -mz( 1+In— , (4.17)
8 | mHz mH
_ ) )
_ v tg 2 mﬂ 2 mz
t= (\/th#T){<m> -m#<1+lng> - n; 1+In m%_] .
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It can be checked that f, r, t are much smaller than those of Mp. To see this, we can take
m, = 0.51099 MeV, m,, = 105.65835MeV, m, = 1777MeV, v = 246GeV, u = 2.46GeV, w =
3000 GeV, and mp, = 700GeV (A4 ~ 0.11) [38—40], which give us then

f=(2oh})(318x107"),  r=(vV20h},)(593x107°),  t=(V20h),)(590x107),
(4.18)

where the second factors rescale negligibly with w ~ 1-10 TeV and m, ~ 200-2000 GeV. This
thus implies that

| Mig|

M| ~107, (4.19)

which can be checked with the help of |[M| = (MTM)U2

given as follows

. In other words, the constraint is

|ML,R| < |MD| (4.20)

With the above results at hand, we can then get the masses by studying diagonalization of
the mass matrix (4.10), in which, the submatrices My g and Mp satisfying the constraint
(4.20) are given by (4.16) and (4.7), respectively. In calculation, let us note that since Mp
has one vanishing eigenvalue, M, does not possess the pseudo-Dirac property in all three
generations [132], despite being very close to those because the remaining eigenvalues do.
As a fact, we will see that M,, contains a combined framework of the seesaw [55-62] and the
pseudo-Dirac [132-142]. To get mass, we can suppose that h” is real and, therefore, the matrix
iMp is Hermitian: (iMp)" = iMp (4.7). The Hermitianity for M r is also followed by (4.16).
Because the dominant matrix is Mp (4.20), we first diagonalize it by biunitary transformation
[131]:

L v = Ui, (,7=1,2,3), (4.21)

Mgiag = diag(0,~mp, mp) = (i)' MpU, mp =V A2+ B>+C?, (4.22)

Var = Vir(=il)

where the matrix U is easily obtained by

Cy\/2(A%?+C?) iBC-Amp BC-iAm
) V2 ) D D
u-= —-By\/2(A2+C?) i(A2+C?) (A2+C?) |- (4.23)
mp 2(A2 + Cz) > 0 . .
V A\[2(A2+C2) iAB+Cmp AB+iCmp

Resulted by the anti-Hermitianity of Mp, it is worth noting that M, in the case of vanishing
M r (4.9) is indeed diagonalized by the following unitary transformation:

V= % <_llflu lﬁ) . (4.24)

A new basis (vq, v, ... ,vs){ = VTX{, which is different from (v;, vl.cR)T of (4.21), is therefore
performed. The neutrino mass matrix (4.10) in this basis becomes

Md' €
VIM,V = ( 1ag ) 4.25
v € _Mdiag ( )

e=UTMU €' =¢, (4.26)
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where the elements of € are obtained by

€11 = €xn =€ =0, (4.27)
e = i€}y = {[ABmp +iC(A* = B>+ C?)| f + [(C* - A*)mp + 2iABC]|r
- (4.28)
+ [iA(A? - B* + C*) - BCmp|t} [m}\/2(A2 + C2)] 1,
e = {(A*+ C?)[(Cmp —iAB)t — (Amp +iBC) f] 429)

— [B(A% = C¥)mp +iAC(A% + 2B + C?)]r) [m2 (A% + C2)] .

Let us remind the reader that (4.27) is exactly given at the one-loop level M}, (4.13) without
imposing any approximation on this mass matrix. Interchanging the positions of component
fields in the basis (v1,vy, ..., Vé){ by a permutation transformation Pt = Py3 Py, that is, vy —
(PT)pqvq (p,.g=1,2,...,6) with

, (4.30)

S O O O O
[eNeNel NNl
OO R O OO
S O O OO
O — OO OO
_ o O O o o

the mass matrix (4.25) can be rewritten as follows:

0 0 €12 €13
€12 €13 0 0
€21 | —Mp 0 0 €23
€31 0 mp €32 0
€21 0 0 €23 Mp 0
€31 0 €32 0 0 —mp

PY(VIM,V)P = (4.31)

It is worth noting that in (4.31), all the off-diagonal components |e| are much smaller than the
eigenvalues | + mp| due to Condition (4.20). The degenerate eigenvalues 0, —mp, and +mp
(each twice) are now splitting into three pairs with six different values, two light and four
heavy. The two neutrinos of first pair resulted by the 0 splitting have very small masses as
a result of exactly what a seesaw does [55-62], that is, the off-diagonal block contributions
to these masses are suppressed by the large pseudo-Dirac masses of the lower-right block.
The suppression in this case is different from the usual ones [55-62] because it needs only
the pseudo-Dirac particles [132-142] with the masses mp of the electroweak scale instead of
extremely heavy RH Majorana fields, and that the Dirac masses in those mechanisms are now
played by loop-induced f, r, t (4.17) as a result of the SLB u/w. Therefore, the mass matrix
(4.31) is effectively decomposed into Ms for the first pair of light neutrinos (vs) and Mp for
the last two pairs of heavy pseudo-Dirac neutrinos (vp):

(v1,v4,v2,v3,v5,v6) ] — (vs,vp)| = Vi (v1, 94, v, 3,75, %)},

4.32
VE(PVIM,VP) Ve = diag(Ms, M (432
eff v eff g( SI P)/
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Table 18: The values for h” and two largest splittings in squared mass.

Fine tuning hY m%, (eV?) 4mplexs| (eV?)
m2 ~ Am?,, 8.30 x 107" 2.50 x 107 3.95x 107"
m ~ Am? g 1.66 x 10712 1.00 158 x 1078

where Vg, Mg, and Mp get the approximations:

1 £
Veff_<_é+ 1)/ é

—mp 0 0 €23
0 0 €12 €13 0 mp €32 0
<€12 €13 0 0) 0 €23 Mp 0
€32 0 0 —mp

(4.33)

0 e -mp O 0 €23

0 e _ 0 mp €32 0

MS =< €21 0 ’ MP 0 €23 Mp 0

€31 0 €32 0 0 —mp
The mass matrices Mg and Mp, respectively, give exact eigenvalues as follows:
2Im(e3e13€
s = :I:—(2 Ben =) . :|:21m<—€13€123€32>, (4.34)
mp —€x mp

mP:t:_mD:t|€23|r mp’i:mD:t|€23|- (435)

In this case, the mixing matrices are collected into (vs., vp., VP’:E){ = VI (vs, vP){, where the V.
is obtained by

1-10 0 0 O
110000
1100 x-x00 _ €3 ;
V. = Sloooo1 1| K= o] = exp (iargen). (4.36)
0000 x -«
001100

It is to be noted that the degeneration in the Dirac one | + mp| is now splitting severally.
From (4.35), we see that the four large pseudo-Dirac masses for the neutrinos are
almost degenerate. In addition, the resulting spectrum (4.34), (4.35) yields two largest
squared mass splittings, respectively, proportional to m7, and 4mp|eys|. From (4.29) and
(4.18), we can evaluate |ex;| = 3.95 x 107 mp < mp (where A ~ B ~ C ~ mp/+/3 is
understood). Because the splitting 4mp|ey3| is still much smaller than Am?ol, this therefore
implies that the fine tuning, as mentioned, is not realistic. (In detail, in Table 18, we give the
numerical values of these fine tunings, where the parameters are given as before (4.18).)
Similarly, for the two small masses, we can also evaluate [mg.| = 4.29 x 107 mp. This
shows that the masses mg, are very much smaller than the splitting |e;3|. This also implies that
the two light neutrinos in this case are hidden for any mp value of pseudo-Dirac neutrinos.
Let us see the sources of the problem why these masses are so small: (i) vanishing of all
the elements of left-upper block of (4.31); (ii) in (4.34) the resulting masses are proportional
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to |e|®/ m%), but not to |e>/mp as expected from (4.31). It turns out that this is due to the
antisymmetric of h”, enforcing on the tree-level Dirac-mass matrix and the degenerate of
Mpg = —M|, of the one-loop level left-handed (LH) and RH Majorana-mass matrices. It can
be easily checked that such degeneration in Majorana masses remains up to higher-order
radiative corrections as a result of treating the LH and RH neutrinos in the same gauge triplets
with the model Higgs content. For example, by the aid of (4.5) the degeneration retains up to
any higher-order loop.

Radiative corrections to Mp

As mentioned, the mass matrix Mp requires the one-loop corrections as given in Figure 12,
and the contributions are easily obtained as follows:

4 i me v i m
l(Mrad)gb = J‘(zdﬁp)4(_12hv P, ) (V 2) < hlcdfPR> (V"‘ 62i)

p* —my
2 2 2
x ik, P,) 1 (iA3” v +ix4”—>
(p? m? ) 2 2

(4.37)
+J ‘p (ihts.P )1( P+ mc)(h )l( wmd)
2 de
(2 —m; f P md
1 7
X (IZhdeL)( 2 ) (1/\3 > +1)L47>.
We rewrite
iv2h?
(M), = =2 (108 +?) + e () (439)

+ [As (1 + w?) + Ay mi[(mlzl,nﬁ%) },  (a,b not summed),

where I(a,b) is given in (B.13). With the help of (B.14), the approximation for (4.38) is
obtained by

8v2r2v T

Asw? A uz  m? u* m4b
= —V2h" (3—> 1 <1 —4) it )0 =, 2.
ab\ 16720 Ut A3 w? - m%b * w m‘}iz

Because of the constraint (2.8), the higher-order corrections O(:--) can be neglected; thus
Mg‘d is rewritten as follows:

ra v [ Asw? A m?2
(MBY) 4 = —\@hab<163%> (1+64), 6a= (1 + )i) <w2 + —2> (4.40)

mHZ

h” 2
(Mg‘d)ab ~——ab { [A (u? + w?) + A4u2] +[As (u? + w?) + A4w2] nT“ }
(4.39)

where 6, is of course an infinitesimal coefficient, that is, |6] < 1. Again, this implies also that
if the fine tuning is done the resulting Dirac-mass matrix get trivially. It is due to the fact that
the contribution of the term associated with 6, in (4.40) is then very small and neglected;
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Figure 12: The one-loop corrections for the mass matrix Mp.

the remaining term gives an antisymmetric resulting Dirac-mass matrix, that is, therefore,
unrealistic under the data.
With this result, it is worth noting that the scale

2
‘ Asw (4.41)

1620

of the radiative Dirac masses (4.40) is in the orders of the scale v of the tree-level Dirac masses
(4.7). Indeed, if one puts |(\3w?)/(16r?v)| = v and takes |A3] ~ 0.1-1, then w ~ 3-10TeV as
expected in the constraints [40, 114, 115]. The resulting Dirac-mass matrix which is combined
of (4.7) and (4.40), therefore, gets two typical examples of the bounds: (i) (Asw?)/(16%v) +
v ~ O(v); (ii) (\3w?)/(167%v) +v ~ O(0). The first case (i) yields that the status on the masses
of neutrinos as given above is remained unchanged and therefore is also trivial as mentioned.
In the last case (ii), the combination of (4.7) and (4.40) gives

(Mp) 4 = V217, (08,). (4.42)

It is interesting that in this case the scale v for the Dirac masses (4.7) gets naturally a large
reduction, and we argue that this is not a fine tuning. Because the large radiative mass term
in (4.40) is canceled by the tree-level Dirac masses, we mean this as a finite renormalization in
the masses of neutrinos. It is also noteworthy that, unlike the case of the tree-level mass term
(4.7), the mass matrix (4.42) is now nonantisymmetric in a and b. Among the three eigenvalues
of this matrix, we can check that one vanishes (since det Mp = 0) and two others massive are
now nondegenerate (splitting). Let us recall that in the first case (i) the degeneration of the
two nonzero eigenvalues are, however, retained because the combination of (4.7) and (4.40)
is proportional to h?, v.

In contrast to (4.19), in this case there is no large hierarchy between M; g and Mp.
To see this explicitly, let us take the values of the parameters as given before (4.18), thus
A3 = =1.06 and the coefficients 6, are evaluated by

5 =6.03x1077, 6y =6.23x107, 5: =628 x 107°. (4.43)

Hence, we get

~1072-1073. (4.44)
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With the values given in (4.43), the quantities h” and mp can be evaluated through the mass
term (4.42); the neutrino data imply that h” and mp are in the orders of h® and m.—the Yukawa
coupling and mass of electron, respectively.

Because of the Condition (4.44) and the vanishing of one eigenvalue of Mp, we can
repeat the procedure as given above to diagonalize the full matrix M, with Mp given by
(4.42) and My r by (4.16). First, we can easily find a mixing matrix V as in (4.24); Second, in
the new basis we obtain the seesaw form as in (4.31); Finally, the resulting mixing matrix and
masses for the neutrinos are derived. It is worth checking that the two largest squared mass
splittings as given before can be approximately applied on this case of (4.44) such as (mp)6|)>
and 4(mp|6])|e|, and seeing that they fit naturally the data.

Mass contributions from heavy particles

There remain now two questions not yet answered: (i) the degeneration of Mg = —Mj; (ii)
the hierarchy of M g and Mp (4.44) can be continuously reduced? As mentioned, we will
prove that the new physics gives us the solution.

The mass Lagrangian for the neutrinos given by the operator (4.4) can be explicitly
written as follows:

Liase = S M (N Far) (o) + Hee

=s, M <\ﬁ aL+\a} ><\[ bL+\fva>+H.c. (4.45)

1—
= —ExﬁMgewa +H.c,

where the mass matrix for the neutrinos is obtained by

@,
new [ MM (4.46)
w ., W,
Mmoo M

in which the coupling st is symmetric in a and b. For convenience in reading, let us define

the submatrices of (4.46) to be M}*", M*, and M™ similar to that of (4.10). Because of the

condition #? « uw < w?, the corresponding submatrices M}", MJ", and M" of (4.46)

get the right hierarchies and the two questions as mentioned are solved simultaneously .
Intriguing comparisons between s” and h” are given in order:

(1) h” conserves the lepton number; s” violates this charge;

(2) h” is antisymmetric and enforcing on the Dirac-mass matrix; s” is symmetric and
breaks this property;

(3) h” preserves the degeneration of Mg = —M; s” breaks the Mr = —M;

(4) a pair of (s”,h”) in the lepton sector will complete the rule played by the quark
couplings (s, h) (see below);

(5) h” defines the interactions in the standard model scale v; s” gives those in the GUT

scale M.
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Let us now take the values M = 10"°GeV, w = 3000GeV, u = 2.46GeV, and s” ~ O(1)
(perhaps smaller), the submatrices M?®" = —6.05 x 105" eV and MW =~ -7.38 x 10~*s” eV
can give contributions (to the diagonal components of My and Mp, resp.) but very small. It
is noteworthy that the last one M"Y = -0.9s” eV can dominate M.

To summarize, in this model the neutrino mass matrix is combined by M, + M}",
where the first term is defined by (4.10) and the last term by (4.46); the submatrices of M,,
are given in (4.16) and (4.42), respectively. Depending on the strength of the new physics
coupling s”, the submatrices of the last term, M}*" and M}, are included or removed.

4.2.3. Some remarks from experimental constraints

Conventional neutrino oscillations are insensitive to the absolute scale of neutrino masses.
Although the latter will be tested directly in high-sensitivity tritium beta decay studies and
neutrinoless double beta decay (0vpp) as well as by its effects on the cosmic microwave
background and the large-scale structure of the Universe [143, 144]. With the present of sterile
neutrinos in this model, the experimental constraints on their masses may be also important
and give us bounds on several parameters such as the coupling h” and 6,.

If the liquid scintillator neutrino detector experiment is confirmed, the sterile-neutrino
masses will get some values in range of eV. In this case, the coupling h" is also in orders of h°.
The X-ray measurements yield an upper limit of sterile neutrino mass [145] m; < 6.3 keV. For
all the other cosmological constraints, the sterile neutrino masses are in the range [146, 147]
2keV < m, < 8keV. In such cases, the coupling h” will get bounds in orders of h*7.

It is well known that the radiative mass generation can also induce the large lepton
flavor violating processes such as y — ey as the similar one-loop effect. The possible one-
loop diagrams for this process are depicted in Figure 13. Suppose that m2, mf{z > md, =
g?v?/4 [38], we get the approximation [148]:

T(p—ey) _ Bsy

Br(u — ey) = (k). (4.47)

T(u— ev,v,) 8ra

Since Br(u — ey) < 1.2x 107", a = 1/128 and s2,, = 0.2312 [3], the coupling h” is bounded
by h¥ < 3.47 x 107, where h” = h’, = hy,. set is understood. Our above result, ¥ ~ h°,
satisfies this constraint. It can be shown that the value for h¥ also satisfies constraints from

such processes as i — 3e and pe conversion (for more details, see [149]).

4.3. Quark masses

First, we present the general quark mass spectrum. Some details on the one-loop quark
masses are given then.

4.3.1. Quark mass spectra

Note that in [37], the authors have considered the fermion mass spectrum under the Z,
discrete symmetry which discards the LNV interactions. Here, the couplings of (2.7) in such
case are forbidden. Then, it can be checked that some quarks remain massless up to two-loop
level. To solve the mass problem of the quarks, the authors in [37] have shown that one-third
scalar triplet has to be added to the resulting model. In the following, we show that it is not
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Figure 13: One-loop contributions to the lepton flavor violating decay y — ey.

necessary. The Z, is not introduced and thus the third one is not required. The LNV Yukawa
couplings are vital for the economical 3-3-1 model.

The Yukawa couplings in (2.6) and (2.7) give the mass Lagrangian for the upquarks
(quark sector with electric charge qup = 2/3):

m — st — v _
‘231;55 — 7§ (ulLu + UL(U)UR + j‘i (ulLu + LILw)uaR - EuaL(hZauaR + Sl&luR) + H.c.
(4.48)
Consequently, we obtain the mass matrix for the upquarks (11, uz, u3, U) as follows:
-sfu —sju -sju -hu
1 htv hiv hio sfo
Myp = — 21 22 23 2 ‘ (4.49)

V2| Ko ko ko sSo
—siw -shw —sjw -hw
Because the first and the last rows of the matrix (4.49) are proportional, the tree-level upquark
spectrum contains a massless one!
Similarly, for the downquarks (gqown = —1/3), we get the following mass Lagrangian:
D

W @ o
ﬁg:ii]sn = %; (daLu + DuLw)DﬁR + \/L% (daLu + DaLw)daR + \_fzdlL (hgdaR + SEDaR) + H.c.
(4.50)

Hence, we get mass matrix for the downquarks (dy, dz, d3, D,, D3):

hfv hgv hgv S?U s?v

d d
SyU SyUu

d d
531U SzU

d d
S5y W SyH,w

d d
S3W SzpHw

Mdown ==

-

d D D
Sy hypu hyu

d D D
su hpu hju

d D D
syw hyw hyw

d D D
s5w hpw hpw

(4.51)
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Figure 14: One-loop contributions to the upquark mass matrix (4.49).
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Figure 15: One-loop contributions to the downquark mass matrix (4.51).
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We see that the second and fourth rows of matrix in (4.51) are proportional, while the third
and the last are the same. Hence, in this case there are two massless eigenstates.

The masslessness of the tree-level quarks in both the sectors calls radiative corrections
(the so-called mass problem of quarks). These corrections start at the one-loop level.
The diagrams in Figure 14 contribute the upquark spectrum, while Figure 15 gives the
downquarks. Let us note the reader that the quarks also get some one-loop contributions
in the case of the Z, symmetry enforcing [37]. The careful study of this radiative mechanism
shows that the one-loop quark spectrum is consistent.

4.3.2. Typical examples of the one-loop corrections

To provide the quarks masses, in the following we can suppose that the Yukawa couplings
are flavor diagonal. Then, the u, and u3 states are mass eigenstates corresponding to the mass
eigenvalues:

v v
my = hly,—, ms = h%,—. 4.52
2 22 \ﬁ 3 33 \ﬁ ( )
The u, state mixes with the exotic U in terms of one submatrix of the mass matrix (4.48):
M 1 /stu hYu (453)
WA stw hWw) " .

This matrix contains one massless quark ~ u;, m; = 0, and the remaining exotic quark ~ U
with the mass of the scale w.

Similarly, for the downquarks, the d; state is a mass eigenstate corresponding to the
eigenvalue:

m, = —h? % (4.54)
The pairs (d», D;) and (d3, D3) are decoupled, while the quarks of each pair mix via the mass
submatrices, respectively,
1 [stu hDu
M =—-— , 4.55
oo (e i -
1 s§3u h%u
Mup, =——— . 4.56
op V2 <s§3w hpw (436

These matrices contain the massless quarks ~ d» and d3 corresponding to m;, = 0 and m;, = 0,
and two exotic quarks ~ D, and D3 with the masses of the scale w.

With the help of the constraint (2.8), we identify m;, my, and ms, respectively, to
those of the u1 = u, u, = ¢, and us = t quarks. The downquarks d;, d>, and dj are,
therefore, corresponding to d, s, and b quarks. Unlike the usual 3-3-1 model with right-
handed neutrinos, where the third family of quarks should be discriminating [28], in the
model under consideration the first family has to be different from the two others.

The mass matrices (4.53), (4.55), and (4.56) remain the tree-level properties for the
quark spectra—one massless in the upquark sector and two in the downquark sector. From
these matrices, it is easily to verify that the conditions in (2.8) and (2.10) are satisfied. First,
we consider radiative corrections to the upquark masses.
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Figure 16: One-loop contribution under Z; to the upquark mass matrix (4.57).

Upquarks

In the previous studies [19, 37, 84-86], the LNV interactions have often been excluded,
commonly by the adoption of an appropriate discrete symmetry. Let us remind that there
is no reason within the 3-3-1 model to ignore such interactions. The experimental limits on
processes which do not conserve total lepton numbers such as neutrinoless double beta decay
[150, 151] require them to be small.

If the Yukawa Lagrangian is restricted to ZLinc [37], then the mass matrix (4.53)
becomes

1 /0 hWu
Mus =~ (0 huw> . (4.57)

In this case, only the element (M), gets an one-loop correction defined by Figure 16. Other
elements remain unchanged under this one-loop effect.
The Feynman rules gives us

, dp . i(p+Mu), | i(p+Muy) .
—i(Muu),,Pr = f W(zhupR)}z_—Mg( - IMUPL)—p}Z - Mg (ih' Pg) o)

-1 uw
y (i4);) 2.
(PZ - M)zﬁ) (pz - M)2(3) 2

Thus, we get

2 d4p pZ
(Muu)lz = _Ziuw)thU(hu) f 2 N2 2 > 2
(2)" (p* = Mp)" (p* = My,) (P> - My,) (4.59)
. 2
= —2iuwh My (") I1(M{, M3, M3,).

The integral I(a, b, c) with a,b > c is given in the B. Following [39], we conclude that in an
effective approximation, M?, M)Z(3 > M)Z( .. Hence, we have

cu=-LR(My).  (460)

(M), = 1M [ M = M3, + M3, In (M, /M
utt /12 ﬁ

2 2
S (M%l - M)263)
The resulting mass matrix is given by

1 /0 hMu+R
M =-7 (0 W ) (4.61)
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Figure 17: One-loop contribution to the upquark mass matrix (4.53).

Table 19: Mass for the u quark as function of (s¥, k).

hY 2 1.5 1 0.5 0.1
sy 0.0002 0.0003 0.0004 0.001 0.01
m, [MeV] 2.207 2.565 2.246 2.375 2.025

We see that one quark remains massless as the case of the tree-level spectrum. This result
keeps up to two-loop level and can be applied to the downquark sector as well as in the cases
of nondiagonal Yukawa couplings. Therefore, under the Z,, it is not able to provide consistent
masses for the quarks.

If the full Yukawa Lagrangian is used, the LNV couplings must be enough small in
comparison with the usual couplings [see (2.10)]. Combining (2.8) and (2.10), we have

hw > hu, sfw > sju. (4.62)

In this case, the element (M1),; of (4.53) gets the radiative correction depicted in Figure 17.
The resulting mass matrix is obtained by

u R u
My = - L <51 <“+ h_u> h ”) , (4.63)

V2 siw hYw
In contradiction with the first case, the mass of u quark is now nonzero and given by
Su
L_R
V2hU

Let us note that the matrix (4.63) gives an eigenvalue in the scale of (1/+/2)hYw which can
be identified with that of the exotic quark U. In effective approximation [39], the mass for
the Higgs y3 is defined by M)zc3 =~ 2\;w?. Hereafter, for the parameters, we use the following
values Ay = 2.0, tg = 0.08 as mentioned, and w = 10 TeV. The mass value for the u quark is as
function of s¥ and hY. Some values of the pair (s¥, hY) which give consistent masses for the
u quark are listed in Table 19.

Note that the mass values in Table 19 for the u quark are in good consistence with the
data given in [3]: m, € 1.5 + 4MeV.

My = (4.64)

Downgquarks

For the downquarks, the constraint,

h2 w > hu, sdw > st u, (4.65)
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Figure 18: One-loop contributions to the downquark mass matrix (4.55) or (4.56).

should be applied. In this case, three elements (M,p, )1, (Mad,p, )15, and (Mg,p,),; Will get
radiative corrections. The relevant diagrams are depicted in Figure 18. It is worth noting that
Diagram 18(c) exists even in the case of the Z, symmetry. The contributions are given by

d

S
(MdaDa) == = R(MDa)’
VR,
S

(MdaDa)Zl = —4ily hDa M?)aI(MZ n M)2(3'

2
M)
ao
) Misg M3, [ Mp, + M, 2Mp MY, N M3, ]
D 2 3 2
Amhae | (M3, - M3)" (M3, - M%) My,
1
-—R'(Mp,),
\/Q ( Dq )
1
V2
We see that two last terms are much larger than the first one. This is responsible for the masses
of the quarks d, and d3. At the one-loop level, the mass matrix for the downquarks is given

by

(4.66)

(MdaDa)lz = -—=R(Mp,).

R
M 1 sﬁ,x<u + h_D> haDau +R
d,D, = — = aa
V2

alla

(4.67)
sdw+R hP w

We remind the reader that a matrix (see also [131])

<Z 1’;) (4.68)
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with D > b, ¢ > a has two eigenvalues:

b2 — (b2 + 2 241/2
_ Zbea ( C)a] . x=D. (4.69)

_ 2
= [‘1 D D2

Therefore, the mass matrix in (4.67) gives an eigenvalue in the scale of D = (1/ ﬁ)hfaw
which is of the exotic quark D,,. Here, we have another eigenvalue for the mass of d,,:

1/2
[(siuw +R) + (WP + R)z] } : (4.70)

2
my = haDau +R {RIZ _ (Sga)

 V2hw (h2,)?

Let us remember that M)ZC3 =~ 2\1w? and the parameters A = 2.0, tp = 0.08 and w = 10TeV as
given above are used in this case; m,, is a function of s%, and hL,. We take the value h, = 2.0
for both the sectors, a = 2 and a = 3. If 532 = 0.015, we get then the mass of the so-called s
quark:

ms = 99.3MeV. (4.71)

For the downquark of the third family, we put s%, = 0.7. Then, the mass of the b quark is
obtained by

my, = 4.4GeV. (4.72)

We emphasize again that (4.71) and (4.72) are in good consistence with the data given in [3]:
mg ~ 95 £ 25MeV and my, ~ 4.70 + 0.07 GeV.

4.4. Summary

The basic motivation of this section is to present the answer to one of the most crucial
questions: whether within the framework of the model based on SU(3)- ® SU(3); ® U(1)x
gauge group contained minimal Higgs sector with right-handed neutrinos, all fermions
including quarks and neutrinos can gain the consistent masses.

In this model, the masses of neutrinos are given by three different sources widely
ranging over the mass scales including the GUT’s and the small VEV u of spontaneous lepton
breaking. At the tree level, there are three Dirac neutrinos: one massless and two degenerate
with the masses in the order of the electron mass. At the one-loop level, a possible framework
for the finite renormalization of the neutrino masses is obtained. The Dirac masses obtain a
large reduction; the Majorana mass types get degenerate in Mz = —M; all these masses are
in the bound of the data. It is emphasized that the above degeneration is a consequence of
the fact that the left-handed and right-handed neutrinos in this model are in the same gauge
triplets. The new physics including the 3-3-1 model is strongly signified. The degenerations
and hierarchies among the mass types are completely removed by heavy particles.

The resulting mass matrix for the neutrinos consists of two parts M, + M}V: the
first is mediated by the model particles, and the last is due to the new physics. Upon the
contributions of M}V, the different realistic mass textures can be produced. For example,
neglecting the last term, the pseudo-Dirac patterns can be obtained. In another scenario, that
the bare coupling h” of Dirac masses gets higher values, for example, in orders of h*7”, the
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VEV w can be picked up to an enough large value (~ O(10°-10%) TeV) so that the type II
seesaw spectrum is obtained. Such features deserve further study. We have also shown that
the lepton flavor violating processes such as 4 — ey, 4y — 3e, and pe conversion get the
consistent values in the bounds of the current experiments.

In the first section, we have shown that, in the considered model, there are three quite
different scales of vacuum expectation values: w ~ O(1) TeV, v = 246 GeV, and u ~ O(1) GeV.
In this section, we have added a new characteristic property, namely, there are two types
of Yukawa couplings with different strengths: the LNC coupling h’s and the LNV ones s’s
satisfying the condition s <« h. With the help of these key properties, the mass spectrum
of quarks is consistent without introducing the third scalar triplet. With the given set of
parameters, the numerical evaluation shows that in this model, masses of the exotic quarks
also have different scales, namely, the U exotic quark (qu = 2/3) gains mass my = 700 GeV,
while the D, exotic quarks (gp, = —1/3) have masses in the TeV scale: mp, € 10 + 80 TeV.

Let us summarize our results.

(1) At the tree level.

(a) All charged leptons gain masses similar to that in the standard model.
(b) One neutrino is massless and the other two are degenerate in masses.
(c) Three quarks uy, d», d3 are massless.

(d) Allexotic quarks gain masses proportional to w—the VEV of the first step of
symmetry breaking.

(2) At the one-loop level.

(a) All above-mentioned fermions gain masses.
(b) The light quarks gain masses proportional to u—the LNV parameter.
(c) The exotic quark masses are separated: my = 700 GeV, mp, € 10 +~80TeV.

(d) There exist two types of Yukawa couplings: the LNC and LNV with quite
different strengths.

With the positive answer, the economical version becomes one of the very attractive models
beyond the standard model.

5. Conclusion

Finally, this is the time to mention some developments of the model as reported on this work
[36-42]. The idea to give VEVs at the top and bottom elements of y triplet was given in [36].
Some consequences such as the atomic parity violation, Z—-Z' mixing angle and Z’' mass were
studied [37]. However, in the above-mentioned works, the W — Y and Wy — Z — Z' mixings
were excluded. To solve the difficulties such as the standard model coupling ZZh or quark
masses, the third scalar triplet was introduced. Thus, the scalar sector was no longer minimal
and the economical in this sense was unrealistic!

In the beginning of the last year, there was a new step in development of the model. In
[38], the correct identification of non-Hermitian bilepton gauge boson X" was established.
The W - Y mixing as well as Wy, Z, Z' one were also entered into couplings among
fermions and gauge bosons. The lepton-number violating interactions exist in both charged
and neutral gauge boson sectors. However, the lepton-number violation happens only in the
neutrino and exotic quarks sectors, but not in the charged lepton sector. The scalar sector
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was studied in [39], and all gauge-Higgs couplings were presented, and all similar ones in
the standard model were recovered. The Higgs sector contains eight Goldstone bosons—the
needed number for massive gauge ones of the model. Interesting to note that the CP-odd
part of Goldstone associated with the neutral non-Hermitian gauge boson Gxo is decoupled,
while its CP-even counterpart has the mixing by the same way in the gauge boson sector.

In [40], the deviation 6Qw of the weak charge from its standard model prediction due
to the mixing of the W boson with the charged bilepton Y as well as of the Z boson with the
neutral Z' and the real part of the non-Hermitian neutral bilepton X is established.

The model is consistent with the effective theory and new experiments because it can
provide all fermions including the quarks and neutrinos with the consistent masses [41, 42].
The exotic quarks and new bosons get masses in order of TeV. There are two different scales
of exotic quark masses: my = 700 GeV, mp, € 10 +80TeV.

It is worth mentioning on advantage of the model: the new mixing angle between
the charged gauge bosons 0 is connected with one of the VEVs u—the parameter of lepton-
number violations. There is no new parameter, but it contains very simple Higgs sector,
hence the significant number of free parameters is reduced. The Higgs self-couplings 114
are constrained by the scalar masses, but the remainder ;3 is fixed by the neutrino masses
[42]. This means also that the generation of the neutrino masses leads to a shift in mass of the
Higgs boson from the standard model prediction.

The model is rich in physics because it includes the right-handed neutrinos, exotic
quarks, and new bosons and also gives an possible explanation of the generation question,
electric charge quantization, and current neutrino mass problem. The supersymmetric
version has been considered [43-46]. The new physics is at TeV scale, therefore, the results
can be verified in the next generation of collides such as LHC and ILC.

Appendices
A. Mixing matrices

For convenience in calculating, in this appendix we give the mixing matrices of the gauge
and Higgs sectors.

A.1. Neutral gauge bosons

Sw C(PCQfCW S(pCQfCW SgCw
W, sw Cp(siy —3cysy) —sphx s, (s - Bcjysp) + cpd VBswcu A
Ws | V3 V3ewee V3ewee z!
B K tw (cpk + Sp) tw (spK — cp) 0 zz )’
JR— - S !
Wa V3 V3cy V3cy Wy
0 —tg (CpA — SyK) —tg (SpA + CyK) A

(A1)

where we have denoted

so=—20 k=112, -1, A=\[1-4533,. (A2)
(Cw\/l +4i’§9)
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A.2. Neutral scalar bosons

S —5:59 C;Se Co H
Sz = C¢ S¢ 0 H? . (A3)
S3 —8:Co C;Co —So Gy

A.3. Singly-charged scalar bosons

X3 vVCp 0 —w G (A4)

+ 2 2,52 +
+
¢; V@™ + U \ weg —Sp\/w? + cév2 vcé Ge

B. Feynman integrations

US20
<¢T> . wse  co\/w? + 502 > <H;>

In this appendix, we present evaluation of the integral:

d4p P2
b,c)= , B.1
abo= | S .

where a,b,c¢ >0and I(a,b,c) = I(a,c,b).

B.1. Case of b#c and b,c#a

We first introduce a well-known integral as follows:

I d'p 1 i { alna__ blnb _ clnc }
em)t (p*—a)(p?-b)(p-c) 16x2|(a-b)(a-c) (b-a)(b-c) (c-b)(c-a)]
(B.2)

Differentiating two sides of this equation with respect to a, we have

J‘ d*p 1
2m)* (p* - a)* (p? - b) (p* ~ )
—i { Ina+1 a(2a—b—c)lna+ blnb clnc }

T 16x? | (a-b)(a-o) (a-b)?(a-c)> (b-a)*(b-0) ’ (c-a)*(c-b)
(B.3)
Combining (B.2) and (B.3), the integral (B.1) becomes
d*p 1 a
I(a,b,c) =
(ab:) f (2x)* [(102 “)@ (o) (P2 - a)*(p? - b) (p? - c)]

- [ a@na+1) _a2(2a—b—c)lna+ b*Inb . Alnc

S lex? | (a-b)(a-c)  (a-b*(a-c)®> (b-a)(b-c) (c-a)ic-b)]
(B.4)

If a,b > c or ¢ = 0, we have an approximation as follows:

i 1 b a
I(a,b,c)——lfm_za_b[l—a_blng]. (B.5)
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B.2. Caseof b=cand b#a

We put
d4 2
lab=1abb) =[S (B.6)
(27)" (p* - a)"(p* - b)
where I(a,b) = I(b, a).
Using the Feynman’s parametrization,
1 r4) x(1 - x)
= dx , B7
AB2 TQT2) Jo [xA+(1-x)B]* (7
we have
1 [—
21 5= 6J dxx(l—x)y (B.8)
(P> -a)"(p*-b) o (pP-M)
where M? = xa + (1 - x)b. Equation (B.6), therefore, becomes
1 d4 2
I(a,b) = 6f dxx(1-x) | ——F (B.9)
: em) (2 - M)
With the help of
d4 2 3
J‘ p4 2 1 l 2 L2' (B.10)
(2r)" (p?2-M?)"  3(4m) M
(B.9) is given by
-2i (! x(1 - x)
I(a,b) = (4‘71-)2 . d.X'm (Bll)
To obtain the integral, we can put t = xa + (1 — x)b; (B.11) is then rewritten
2i a ab
I(a,b :—f dt[t— a+b +—]. B.12
@)= s | di]i- @b+ g (B.12)
Therefore, we get
i a+b 2ab a]
I(a,b) =- - In—|. B.13
@) =5y~ o (B.13)
If b > a or a = 0, we have the following approximation:
I(a,b) = ——" (B.14)

“16x2b

Let us note that the above approximations al(a, b, c), (or bl(a,b,c)), and bl(a,b) are kept in
the orders up to O(c/a, c/b) and O(a/b), respectively.
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