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Abstract

Recently, Guo and Sun derived an identity for factorial Grothendieck polynomials which is a general-
ization of the one for Schur polynomials by Fehér, Némethi and Rimanyi. We analyze the identity from
the point of view of quantum integrability, based on the correspondence between the wavefunctions of a
five-vertex model and the Grothendieck polynomials. We give another proof using the quantum inverse scat-
tering method. We also apply the same idea and technique to derive an identity for factorial Grothendieck
polynomials for rectangular Young diagrams. Combining with the Guo-Sun identity, we get a duality for-
mula. We also discuss a g-deformation of the Guo-Sun identity.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recently, Guo and Sun derived identities for factorial Grothendieck polynomials [1]. The
factorial B-Grothendieck polynomials, which is a K -theoretic analogue of the factorial Schur
polynomials [2-5], have the following determinant form [6,7]

dety ([z; lee ] (1 + Bz;) 1)
H1§i<j§n(zi —zj)
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where A = (A1, A2, ..., A) is a partition, i.e. a nonincreasing sequence of nonnegative integers
whose graphical representation is naturally given by the Young diagram. z = {z1, ..., z,} is a set
of symmetric variables, & = {a1, o2, ...} is a set of factorial variables and

[zilel = (zi @ a)(zi ® o) - (2 D), (1.2)

where z @ o :=z+ o + Bza.

One of the identities Guo and Sun derived is the following one [1]: for a partition A =
(A, ..., Ag) such that A; < m — k and another one u = ((m — k)”’k, Al, ..., Ak), the following
identity holds:

[Ta+Bz"* []lzjler”

ieS} jEST':

Gzl = Y. Gi(zsle)—
= )\‘ S"
g S,'{ZE([Z]) g l_[ l—[ (Z/ — Zi)

ieS} jeS_,’(‘

(1.3)

where S} is a k-subset of [n] = {1,2,...,n}, ([Z]) is the set of k-subsets of n, S_,’f =
{1,2,...,n}\S}, and G)L(zs;{l l) = Ga({ziys - - - » zig o) for S = {iy, ..., ik}

This identity generalizes the one for the Schur polynomials derived by Fehér, Némethi and
Rimanyi [8] which corresponds to the case f =) =y =--- =0, and we will call this type of
identity as Fehér-Némethi-Rimanyi-Guo-Sun type identity.

In this paper, we restrict to the case § = —1, and investigate this identity and also derive
similar identities from the viewpoint of quantum integrability. Recently, there is an active line
of research which investigates relations between integrable models and related structures (inte-
grable lattice models, classical integrable systems, vertex operators, crystal basis) and the (dual,
symmetric) Grothendieck polynomials, and study the properties of the Grothendieck polynomials
using the connections. See [9-17] for examples for various topics. We give another proof of the
Guo-Sun identity (1.3) using the quantum inverse scattering method [18,19], which is a method
developed to study quantum integrable models. Why we can use this method for giving another
proof is based on the correspondence between certain types of partition functions of an integrable
five-vertex model and the Grothendieck polynomials. This correspondence was used to investi-
gate Cauchy-type identities, Gromov-Witten invariants and Littlewood-Richardson coefficients
[9,10,12,13]. In this paper, we give another application of the correspondence. Namely, we give
an integrability proof of the Guo-Sun identity using the quantum inverse scattering method. We
also apply the same idea and technique to derive an identity for factorial Grothendieck polyno-
mials for rectangular Young diagrams. The five-vertex model which is used can be regarded as a
certain limit of the U, (s/l;) six-vertex model [20-22]. Based on this viewpoint, we also discuss
a g-deformation by following the line of computation to derive the Guo-Sun identity.

This paper is organized as follows. In the next section, we explain the correspondence between
the wavefunctions of the U, (s/l\z) six-vertex model and symmetric functions, and its ¢ = 0 de-
generation which gives the correspondence between the wavefunctions of the five-vertex model
and the factorial Grothendieck polynomials. In section 3, we give another proof of the Guo-Sun
identity by using the quantum inverse scattering method. In section 4, we derive an identity for
the factorial Grothendieck polynomials for rectangular shapes by using the same idea and tech-
nique in section 3 to “a different direction”. We discuss a g-deformation of the Guo-Sun identity
by applying the same idea to the U, (s/lz) six-vertex model. Section 5 is devoted to the conclusion
of this paper.
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Fig. 1. The R-matrix of the six-vertex model (2.1). There are six admissible vertex configurations, and the weight asso-
ciated to each configuration is given below the figure of the configuration.

2. U, (s/l\z) six-vertex model, wavefunctions and degeneration to the five-vertex model

In this section, we first introduce the U, (s/l\z) six-vertex model and explain the correspondence
between the wavefunctions and symmetric functions. Next, we degenerate the six-vertex model
to the five-vertex model and explain the correspondence between the wavefunctions and the
factorial Grothendieck polynomials.

The U, (EB) R-matrix is the following matrix [20,21] (Fig. 1)

u—qw 0 0 0
_ 0 qu—w) (1 —qu 0
0 0 0 u—quw

acting on the tensor product W, ® W, of the complex two-dimensional space W,. We denote the
dual space of W, by W.
The R-matrix (2.1) satisfies the Yang-Baxter relation

Rap(, V) Rye(u, W) Rpe (v, w) = Rpe (v, w)Rae (u, w)Ryp (U, v), (2.2)

actingon W, @ W), @ W,.

We denote the orthonormal basis of W, and its dual as {|0)., |1),} and {,(0], 4 (1|}. We also
introduce the following Pauli spin operators o+ and o~ as operators acting on the (dual) or-
thonormal basis as

ot1) =10), 6T10) =0, (Ojot = (1], (1jlot =0, (2.3)
o 10)=11), o7 |1) =0, (1lo~ =(0], (O]c~ =0. 2.4)
The monodromy matrix T, (#|wy, ..., Wy4+n—k) is the product of R-matrices
T,(ulwy, ..., Wytn—k) = Ra,m-i—n—k(”’ Wingn—k) -+ Ra1(u, wy)
_ <A(u|w1,...,wm+,,_k) B(u|w1,...,wm+n_k)) ’ 2.5)
Clulwy, ..., Wnin—k) D@lwy, ..., Wnin—k)/,

actingon W, @ W1 ® - - ® Wypn—k-
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Fig. 2. The wavefunctions (2.8). The sequence of Os on the bottom part represents the vacuum state |€2),;, 4, —k. The j-th
row counted from the bottom represents the B-operator B(u j|wy, ..., Wy4+,—k) and the top part which is a sequence
of Os and 1s represents the dual vector ,,4,_x (X1 ---x,|. The dual vector is labelled by the positions x1, ..., x, of 1s
counted from the left. The figure illustrates the case n =5, m =k + 3, (x1, x2, x3, x4, x5) = (2, 3,4, 6, 8).

The B-operator is a matrix element of the monodromy matrix 7, (u#|wy, ..., Wy4n—k)

Bu|wy, ..., Wnin—k) = a0l Ty (u|wy, ..., Wnin—i)|Da, (2.6)

actingon Wi ® - - @ Wy 4n—k-

Let us define the (dual) vacuum state as |Q2) 40—k ;=101 @ - Q) 4n—k E W1 Q- ®
Wintn—k (ntn—k (21 =101 ® - @ min—k (0l € W ®---®@ W, _,) and configuration vectors
as

n
mAn—k (X1 Xn| = min—k (2| 1_[ U;;- € ‘/V[}< Q- ® W:1+n—k’ @7
j=1

forl<xi<xy<---<x,<m+n-—k.

We now introduce the wavefunctions Wy, 4—k n (U1, ..., uy|W1, ..., Wytn—k|X1,...,%,) as
(Fig. 2)
Wm+n—k,n(ula ces Up| WL, e Wign—k | X1, - 2 Xn)
=mtn—k (X1 Xp | By |w, ..., Wygn—k) -+~ Blur|wy, ..., wm+n—k)|Q)m+n—ko (2.8)
We next define the following symmetric function Fyqpn—kn (U1, ..., Un|Wi, ..., Wntn—k|X1,
..., Xp) which depends on the symmetric variables uy, ..., u,, complex parameters wi,...,
Wm+n—k and integers xp, ..., x, satisfying 1 <x; <---<x, <m+n —k,
Fm+n—k,n(u17 oo Uplwr, ., wm+n—k|x1, cees Xn)
n m+n—k qu u
o) — %a())
=21 Il woiy—awnr [ =—=F
oeSy j=1i=x;+1 l<i<j<n 0@ T~ Holh)
n Xj*1 n
<11 @eih —wo [T = uos). (2.9)
j=1 i=I j=1
The wavefunction W,k o (U1, ..., Up|Wi, ..., Wyitn—klX1, ..., xy) is explicitly expressed

as the symmetric function Fyp—k o (U1, ..., Un|W1, ..., Wnn—k|X1, ..., Xn)
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Wm+n—k,n(’/lla coUplwy, . wm+n—k|xlv ey Xn)
=Fmin—knM1, ..., Un|Wi, .oy Wngn—k|X1, ...\ Xp). (2.10)

See [23,24] for example for proofs of this correspondence. Next, we explain the degeneration of
the correspondence (2.10). If one sets g to g = 0, the R-matrix for the six-vertex model (2.1)
reduces to that for the five-vertex model

u 0 0 0
0 0 u 0
Ry, Wlg=0=1 0 o L, _w 0 (2.11)
0 0 0 u
Under the change of variables z; =1 —u;l G=1....n),a;=1-w; (j=1,....m+n—
k), \j=xp—jr1—n+j—1((=1,...,n), the correspondence at g = 0 (2.10) becomes the
following correspondence between the wavefunctions of the five-vertex model and the § = —1
factorial Grothendieck polynomials [9,10,12,13]
Wm+n—k,n(ula coUplwr, . wm+n—k|x1’ ceey xn)|q:0
- 1
=[] =G Uz, 2able). (2.12)
— 5. ym+n—k
j=1 (1= zj)m

We use this correspondence in the next two sections to investigate identities for the factorial
Grothendieck polynomials from the viewpoint of quantum integrability.

3. Integrability proof of Guo-Sun identity

In this and the next sections, we consider the five-vertex model whose R-matrix is given by
(2.11) which is the ¢ = 0 limit of (2.1). Every object introduced in the last section should be
understood that we set g to ¢ = 0 in this and the next sections.

In this section, let us show another proof of Guo-Sun identity (1.3) using the quantum in-
verse scattering method. They derived an identity for Grothendieck polynomials of the following
partition o = ((m — k)" %, A1, ..., Ax). Applying the correspondence (2.12) to this partition, we
have

Wintn—kn @1, .o ug|wi, oo, Wgn—k A+ 1, ..., A +km+1,... om+n—k)

n

1
=[] —=Gn U210 2l 3.1)
_ o ym+n—k H n
j=1 (I=2zj)

To prove the Guo-Sun identity, we investigate Wy, n—k.n(U1, ..., Un|W1, ..., Wnn—k|Ax +
I,...;,A1+k,m+1,...,m+n — k) using its graphical description (Fig. 3) and derive another
expression.

First, from the graphical representation of W, yn—k n(u1,..., uslwi, ..., Wynin—klre +

I,...,Aa1+k,m+1,...,m+n — k) and noting that the bulk weights are given by the R-
matrix of the five-vertex model (2.11), one can see that only one configuration is allowed in
n

the rightmost n — k columns (Fig. 4), and we get the factor l_[ u?_k from that configuration.
j=1
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A+ 1 3 )\lJlrlc ( ml—i-l m+n—k
0 | )
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w1 Wm Wm+1 Wm+n—k

Fig. 3. The wavefunctions corresponding to the factorial Grothendieck polynomials of partition © = ((m —
k)"*k,)q, ..., Ag) (3.1). The top part is a sequence of Os and 1s. The 1s appear at positions Ay + 1, Ag—1 +2, ...,
MAk,m+1,m+2,...,m+n—k counted from the left. Subtracting 1,2, ...,n from Ax + 1, A1 +2,..., A1 +k,
m+1,m+2,...,m+n—k, and reorder as a nonincreasing sequence, we get the partition ((m — k)"*k, Mosenes Ak)
which labels the sequence of Os and 1s in this figure. The figure illustrates the casen =5, m =5,k =2, (A1, 12) = (2, 1).

A +1 )/\1+I~' 3 m|+1 m+n—k
0 (

I
1 \ i : 0 Up,
I I 0
' 1 i 0 )
1 0 o
I | i 0 Uk41
o o o
0100 0 Uk
o o |
: 0100 0 uy
O 0 0 0 0 0 0 0
wy Wy W41 Wm+4n—k
Fig. 4. The wavefunction Wy, 4k (U1, ..., uplwy, ..., Wyyp—lhe +1,..., 0 +k,m+1,...,m+n—k). We can

n

see that only one configuration is allowed in the rightmost n — k columns, which gives the factor l_[ u;'fk. The remaining

j=1
n k
part can be expressed as ;; (Ag +1,..., A1 + K| l_[ D(ujlwy, ..., wn) 1_[ B(ujlwy, ..., wm)|Q)m.
j=k+1 j=1

Next, looking at the remaining part, we find that they are expressed as ,,{(Ax + 1,..., A1 +
n

k
k| H D(ujlwy, ..., wpy) HB(ujlwl,...,wm)KZ)m. Hence we have
j=k+1 j=1
Wign—tkn@1, ..., ug|wi, ..., Wnan—klde +1, ..., A +k,m+1,....m+n—k)

n

n k
=[Twi ™ e+ 14kl TT Dajlwieowa) [T Bajlw. . w) Q)
j=1 j=k+1 Jj=1
3.2)
Next, we commute the multiple operators ]—[;fzk 41 D(ujlwy, ..., wy) with the multiple oper-

ators. ]_[];:1 Bujlwy, ..., wn). Erom the Yang-Baxter relation (2.2), we get the intertwining
relation for the monodromy matrices
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Rap(ur, u)Ty(uylwy, ..., wp) Tp(uawy, ..., wy)
=Tp(uz|wy, ..., wy)Ta(uy|wy, ..., W) Rap(uy, uz). (33)

Some matrix elements of (3.3) are given by

u un

D(u1)B(uz) = o _IMZB(“Z)D(MI) i MZB(ul)D(uz), (3.4)
D(u1)B(uz) = D(u2) B(uy), (3.5)
B(u1)B(uz) = B(uz) B(uy), (3.6)
D(u1)D(uz2) = D(u2) D(uy). 3.7

For integrable models which have the R-matrix of the five-vertex model as an intertwiner, a com-
pact formula between the commutation relations between multiple D-operators and B-operators
can be derived from (3.4), (3.5), (3.6), (3.7), following the argument of [25] (they were analyzing
the integrable phase model [26], but the type of the representation for the quantum space does
not affect the argument). The result is given by

n k
[ p@jlwi.....wa) [ Bwjlwi. ... wn)

J=k+1 j=1

- > T ui’ﬁui]_[B(u,»|w1,...,wm)]_[D(u,»|w1,...,wm). (3.8)

spe(Myiesp,jesy ieSy jesy

(3.8) can be shown as follows (see the Proof of Theorem 6.1 in [25]). First, using (3.4), (3.6) and
(3.7) to move all the B-operators to the left of all the D-operators, one notes the operator part of
all the terms which appear can be expressed as

[1B@lwi,...;wn) [] Dwjlwi, .., ww), (3.9)
ieSy jeS_}j

[n]

for S} € ( ' ) To extract the coefficient of (3.9) for a fixed S}, one uses (3.5) repeatedly to
rewrite the left hand side of (3.8) as

[T pwjlwi,....wn) [ ] Bwilwi, ..., wa). (3.10)
jeg ieSy
Finally, we only use (3.4) repeatedly to move all the B-operators to the left of all the D-operators.
We only need to concentrate on the first term of the right hand side of (3.4) when commuting
the B- and D-operators to extract the coefficient of (3.9), since if we once use the second term
of the left hand side of (3.4), we get other operators. Noting this, one finds the coefficient of the

u
operator is given by | | —— and we get the commutation relation (3.8).
u: .
J

iesy, jeS_Z B
Using (3.8) and the action of the D-operators on the vacuum state

m
[T owjiwi.....own)1Qm =TT [Tej = wi)iQm. (3.11)
jesy jespi=!

(3.2) becomes
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Wm+n—k,n(”1s---,unlwla--~,wm+n—k|)“k+1a---a)\1+k,m+1,---,m+n—k)

[Tt Y T T e —w

j=1 se(Wyiesp,jesy ! jesyi=1
w41k T Bilw, .. wn) Q). (3.12)
ieSy

which one can further rewrite using (2.8) and (2.12)

1
m{re+ 1,00, + k| 1_[ B(uilwy, ..., wyn)|R)m = 1_[ WGA(ngla), (3.13)
ieSy jesy <

as

Witn—tkn@1, ..., un|Wi, ..., Wnan—klde + 1, ..., A +k,m+1,....om+n—k)

—H DD | B ]_[]_[(u, w) [1 GGl G149

se()iesp, jesy ! jesti=l GS”

Finally, we compare the two expressions for the same object. From (3.1) and (3.14), we get

‘ 1
1:[1 (]_ijcu({zl,...,ZnHa)

—1_[ 11 Mu_’ ]_[]_[(u, w,)]_[(1 —Gizglw).  (3.15)

Se("])leS,’: jES” / ]ES’” 1 jesy

which, using the translation rule z; =1 —ui! G=1....n,aj=1-w; (j=1,....,m+n—
k), can be rewritten as the Guo-Sun identity (1.3) for the case g = —1

[Ta—-z"]tzjler”
ieSy Jesn
Guzle)= > Gilzgilo) : (3.16)

spe() [TITG -

lESk jGSZ

4. An identity for rectangular shapes

In this section, we apply the idea and technique used in the last section “in a different direc-
tion” to derive an identity for factorial Grothendieck polynomials. We consider the case when
the partitions whose corresponding Young diagrams are rectangular shapes, i.e. we consider the
case when the partition is of the form p = ((m — k)" %, 0X). We show the following identity.

Theorem 4.1. Let z ={z1, ..., 2n} be a set of symmetric variables and a = {«1, a2, ...} a set of
factorial variables. For a partition i = ((m — k)", 0%), the following identity holds:
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m]+1 m+n—k

1 0 Up

1 )

1 i g 0 O UE+1

0 UL

1 3 0 0 uq

0 0 0 0 0 0 0 0
w1 W Wy, W41 Wm+4n—k

Fig. 5. The wavefunctions corresponding to the factorial Grothendieck polynomials of rectangular shapes pu = ((m —
Kk, 0F) (4.3).

[Ta-e" ™[] []c®ap

iesy jespi=1

Guzle)= ) :
g M Me-a

ieSy jeﬁ

“.1)

where S,’(" is a k-subset of [m] ={1,2,...,m}, ([’]':]) is the set of k-subsets of m and @ =
{1,2,...,mN\S;".

Proof. We first introduce another class of monodromy matrices

Tj(wlut, ... up) = Rg,j(tn|w) - Ray j(1|w)

. Awlui, ..., un) Bwlug, ..., un)
_(6(w|u1,...,u,,) 5(w|u1,...,un)> ’ 4.2)

and vectors in the auxiliary space |Q), = g, ®-- ®|l)an eW,® - @W,, and , (01" | .=
a01® - ® (0 ® g (11 ® - ® g, (1 € Wi ®--- @ Wi .
In this section, we deal with the Wavefunctlons of the following type Wy, 4n—k.n (U1, . .., un|wi,
s Wian—kl1, ..., k,m+1,...,m 4+ n — k), which due to the correspondence (2.12), can be
expressed using the factorial Grothendieck polynomials of a rectangular shape ((m — k)", 0%)
as

Wintn—kn@i, ...;uglwi, ..o, Wyan—kll, ..., k,m+1,...,m+n—k)
- 1
:HWG((m_k)n_k,ok)({zl,...,zn}|a). (4.3)
j=1 %

We now apply the same idea and technique used in the last section, but we use in a different
direction this time. From the graphical representation of the wavefunctions W, 1n—k »(u1, ...,
uplwi, ..., Wygn—kll, ..., k,m+1,...,m+n —k) (Fig. 5), we first find that only one config-
uration is allowed in the rightmost n — k columns, which gives the factor ]_[’}:1 u’; -k again. The
remaining part can be written using the matrix elements of another type of monodromy matrices
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m k
(4.2) we introduced in this section as , (01" % [T Awjlur. ..., un) [ [Cw;lur. ... u2)[Q)n,

j=k+1 j=1
and we have
Wintn—kn @i, ... uglwi, oo, Wygn—kl1, .. k,m+ 1,00, m +n — k)
n k . .
=[] wj  uc0 1" ]_[ Awjlur, o) [ [Cwjlun, ... ua) Q). (4.4)
j=l1 j=k+1 j=l1
Next, we commuFe the operators H;ﬂ:kﬂ Z(wﬂul, ..., up) with ]_[]j‘-:1 6(wj|u1, ..., up). The
intertwining relation
Riz(wi, w)To(waluy, ... u)Ti(wilut, ..., uy)
=T1(wilur, ..., u)To(waluy, ..., up) Riz(wi, wo), 4.5)
gives
— — wy  — — wp  — —
A(w))C(wy) = ———C(wr)A(w)) — ——C(wy) A(wa), (4.6)
wy — Wi w2 — wq
Aw1)C(w2) = A(w)C(wy), 4.7
A(w)A(wr) = A(w2)A(wy), (4.8)
C(w1)C(wz) = C(wr)C(wy), 4.9)

from which we can get the following compact form of the commutation relation by the argument
in [25]

m k
[T Awjlur....ouwn) [TC@jlur, ... un)

j=k+1 j—]
> I — ]_[ Cwjlur,....un) [] Awjlur, ... up). (4.10)
spe(Myiespjesp | jesy jesm

Using (4.10) and the action of the A-operators on the state |2,
n
[T Awjlur,...,u)i@)n =TT [ [ —wp)in, (4.11)
jesy jesgi=1

(4.4) can be rewritten as

Wingn—kn@1, ... un|Wi, ooy Wingn—ikl1l, ..., k,m+1,....m+n—k)
[l X T T e
j=l1 sre(™yiesy, jesi jeS”” 1
(01" TT Cwjlur, ..., 1n) Q). (4.12)

jesy
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1 l i i I Up
I 1 I I
| 1 1 1
| I 1 1
1 \ 1 [ Uk+1
1 I 1 1
1 ‘ 0 | UL
I 1 I 0
! T T 0 L
I I 0 0
1 0
|
1 () L (0 L (0
1 0100 VU1
0 0 0 0
w1 Wi
Fig. 6. The partition function , (Okl”7k| l_[ f(wj lu1, ..., un)|Q)n. We note that only one configuration is allowed,
jesy
n
from which one can see , (0K 1" K| [T Cwjluy,....un)| Q=[] u];-.

s o Qm
JES

One can easily see from the graphical description that the partition function
2 (0F17K) l_[ C(wjluy, ..., uy)|2), is completely frozen (Fig. 6), and find that its explicit
jesy
form is given by

n
WO TT Cwjlur. . un) 1), = [ [ - (4.13)

jesy

Substituting (4.13) into (4.12), we get

Wotn—kn@i1, ..., uplwi, ..., Wyan—k|l,....k,m+1,...,m+n—k)
n . n

T« > TI ﬁ TT [ —wp. (4.14)
J=L gy iesy, jesy ' / jesyi=1

Finally, we compare the two expressions (4.3) and (4.14) to get

n
1
1_[ WG((m—k)"_k,Ok)({Zlv ceey Zn}|(x)
j=1 g
—Hu > 11 — Hn(ul—w]) (4.15)
J=U o sme(yjesy, jeSy /es"”fl
which, after using the translation rule z; =1 —u (] =1,...,n),aj=1-w;(j=1,....m+

n — k), becomes the identity
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[Ta-e"*T] ]G ®en

iesy jesmi=1
G (it oy @)= > : . O (4.16)
spe(i) [T IT@—a

ieSy jef

Example of Theorem 4.1. When n =2, k = 1, m = 2, the right hand side of (4.1) is
(I —a1)(z1 © a2)(z2 ® a2) n (I —a2)(z1 @ ar)(z2 ®ar)
o) — ] o] — o
=(ajap —ay —ax + D) (z1 + 22 — 2122) + a1 + oz — ajon, 4.17)

which gives the left hand side G(1.0)({z1, 22} |e).

Combining (4.1) with the Guo-Sun identity (1.3) for the case A1 = --- = Ax = 0 and using
Go,...,0) (zg;g loe) =1, we get the following duality formula.

Theorem 4.2. The following identity holds:

[Ta-z* ] ]]ci @

Z ieSy jespi=1
seiy 11 1TG-2
leSl?jES,?
n
—k
[Ta-e ™ [T []@ew)
iesy jesi=1
= Z k (4.18)
seipy 1L 1@
iGS,:”jeg

5. A g-deformation

In this section, we discuss a g-deformation of the Guo-Sun identity. We follow the same pro-
cedure of computation in section 3 done for the five-vertex model. Now we consider the U, (s/la)
six-vertex model whose R-matrix is given by (2.1). Recall that the correspondence between the
wavefunctions of the six-vertex model and the symmetric functions (2.9) are given by (2.10),
which applied to the one Wy, pn—k n (U1, ..., un|W1, ..., Wngn—kl|X1, .. Xk, m+1,....om+n—
k) we deal with in this section, becomes

Wintn—kn @1, - Un|Wi, ooy Wygpn—k|X1, -, Xk, m+1, ... ,om+n—k)
=Fnin—kn@1,....ug|Wi, ..., Wygn—kl|xt, ..., xc,m+1,....m+n—=k). 5.1
Next we examine Wk n (@1, ..., Un|lwi, ..., Wngn—klx1, ..., xe,m+1,...,m+n —k)

from another point of view as in section 3. Unlike the case for the five-vertex model, there are
several allowed configurations in the rightmost n —k columns (for the five-vertex model, only one
configuration is allowed). However, from the so-called ice rule (¥ |5 (8| Rap(u, w)|ct)q|B)p =0
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x1 Tl m+1 m-+n—=k
0 I 0 | 0 1
1 0 0 Up,
| ynrk 0
1 0
1<y1 <y <-<yn—r<n
1 0 0
Y1
i 0 U
0 0 0 0 ( 0 0 0
w1 Wm Wm+1  Wmtn—k

Fig. 7. The decomposition of the wavefunctions (5.2). From the ice rule of the R-matrix of the six-vertex model and the
boundary condition, we note that for every allowed configuration, the states on the horizontal edges between the m-th
and the (m + 1)-th column consist of (n — k) 1’s and k 0’s. We label the positions of the (n — k) 1’s as y1,¥2, ..., Yn—k
(1 <y <y < <yp_k <n), starting from the bottom row.

unless « + B = y + § and since the states at the right boundary are all (0|, one can see that the
wavefunctions can be decomposed as (Fig. 7)

Witn—kn@i, ... uglwi, ..., Wygn—kl|xt, ..., xe,m+1,....m+n—k)
B Z Wn,n—k(wm+ls---swm+n—k|ula-~-’un|yls---1yn—k)
I<yi<yz<-<yn—k=<n
n
X (X1 -+ Xk ]_[ B(ujlwi, ..., wy) Dy, Wi, ..., W)
J=Yn—k+1
Yn—k—1 y2—1
< 1 B@jlwi....own)--x [] Bjlwi,....ww)Duy, |wi. ... wn)
J=Yn—k-1+1 Jj=y1+l
yi—1
< ] Bjlwi..... wn)|2)m, (5.2)
j=1
where

Wn,n—k(wm—Hv---awm—i—n—k|ul’---7’4n|yl7---ayn—k)

n
=t (® - @uini(ll [ AGwjlwnst, .. wnpnt)

J=Yn—k+1
XB(uy,,_k [Wint15+ -+ s Winpn—k)

Yn—k—1 -1

X 1_[ AU j | Wity oy Windn—k) -+ X l_[ A(ujlwmtt, .-y Wintn—k)
J=Yn—k—1+1 J=y+l

yi—1
X Bty [wg 15 Wrn ) [ [ A 1Wnt1, s Wiin )10tk ® - @ (01

j=1

(5.3)
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Wn,n_k (Wim1s -+ s Wingpn—k|U1, -« o  Un| Y1, - .., Yn—k) 1s another class of wavefunctions and one
can show the following correspondence

Wn,n—k(wm+lv ceey wm+n—k|”l» ce UYL e Yi—k)
=Fnn—kWm+1s - Wntn—k|U1s s Ul Y1y o evs Yn—k)s 5.4
where fn,n,k(wmﬂ, ooy Winan—k U1y oo Un|Y1, -+, Yn—k) is the following symmetric func-
tions with symmetric variables wy,+1, ..., Wy4+n—k, another set of variables u1,...,u, and a
set of integers yi, ..., yp—k satisfying l <yj <y <--- <y, <n
Fn,n—k(wm+1a ceey wm+n—k|u1 e UVl ooy Yn—k)
L qWm+to (i) = Wm+o ()
m+o (i) — Wm+o(j
ST TT gty [ e ooty
0ESn i j=1iz=y;+1 I<i<j<n—i 1\ Wm+o® m+o(j)
n—kyj—1

< [TIT @~ qwm+a<,>>1"[<1 Dy, - (5.5)

j=1i=1

One can show the correspondence (5.4) for example by the Izergin-Korepin method [27,28],
which can be applied to the wavefunctions [24] as follows. First, we construct the following
Korepin’s lemma which list the properties of the partition functions which uniquely characterize
them. For the case of the wavefunctions W,,,n_k(wm_s_l, s W=k ULy oo Un Vs s Yn—k)s
the Korepin’s Lemma is given below.

Proposition 5.1. The partition functions W p—k (W1, - -+ Winn—k [ U1, o, Un| V1, s Yn—k)
satisfies the following properties.

(1) Wonn—k(Wm+1, - o s Winn—k|U1,s - Un|Y1, - .., Yn—k) is a polynomial of degree n — k in u,
if Yyn—k =n.
(2) Wn,n,k(wmﬂ, e Winn—k U1, oo un| Y1, .., Yu—k) IS Symmetric with respect to wj, j =

m+1,...,m+n—k.

(3) The following recursive relations between the partition functions hold if y,—y = n:

Wn,n—k(wm+lv s Wipgn—k |81, oo U Y1, Yn—k)|u,,:0 =0, (5.6)
Wn,n—k(wm+1 s Wingn—k |1, oo up |y, - yn—k)|un:wm+,,_k
m+n—k—1 n—1
=1 — @ wmtn—k l_[ (Witn—k — qwj) H(u] — qWntn—k)
Jj=m+1 j=1
X Watn—k=1(Wmt1s -+ Winpn—k—1 W15 -+ Un—1|Y15 -3 Yu—k—1)- (5.7

If yn—r # n, the following factorizations hold for the wavefunctions:

Wn,n—k(wm+lv oo Wipgn—k | U1, oo U Y1, )’n—k)
m—+n—k

[T a@n—w)Wains@nits o Wi kler oyt yni)- (5.8)
Jj=m+1
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(4) The following holds for the casen —k =1, y1 =n

n—1

Wt W, .. unln) = (0= qun [ [ — qwni). (5.9)
j=1

After constructing Korepin’s Lemma, by showing that the symmetric functions f,,,n_k (Wm+1,

v Wingn—k|U1s oo, Un|Y1, - - ., Yu—k) satisfy all the properties in Proposition 5.1 and we get the
correspondence (5.4).

Now we examine the factors

n

wxtoxal [ Bl .., wa) DGy, Jwi, ... wp)

J=Yn—k+1
Yn—k—1
X 1_[ B(ujlwi, ..., wn)
J=Yn—k-1+1
-1 y1—1
xox [T Bjlwi, ..., wa) Dy lwi, . own) [ ] Bjlwi, .. wn)|2)m,
J=yi+l j=1

(5.10)

in (5.2). We apply the method used in [29] to study correlation functions of the XXZ spin chain
for simplifying (5.10). From the intertwining relation (3.3) for the six-vertex model (2.1), we get

D)) B(uz) = ;_—“B(u )D<u1>+ — Lu 2B<u1)D<uz) (5.11)
B(u1)B(uz) = B(u2) B(uy). (5.12)

From the argument which is standard in the algebraic Bethe ansatz, we can combine (5.11),
(5.12) and

D(ulw1,..-,wm)lﬂ)m=1_[(u—wi)|9)m, (5.13)

i=1

to show the following relation

D@uegilwi, ..., wn) [ ] Bjlwi, ... wn) Q)

j=l
1 m H(uk_quj) e+
_Z]_[(uk w;) £+1 HB(uJ|w1,...,wm)|Q)m. (5.14)
k=1i=1
n(uk uj) /;ék
J#k

Using (5.14) repeatedly, one gets
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n Yn—k—1
[ Bwjlwi.....ww)Dy, lwi....;wn)  []  Bjlwi.....wn)
J=Yn—-k+1 J=Yn—k—1+1
-1 y1—1
[T B@jlwi. ... wn) D@y, lwi, ..o ww) [ ] BGjlwr, ... wn)1Q)m
J=y1+1 Jj=1
- yi—1
[T T] (e —qup
_YZI >Z }Z "—kﬁ( :lb;eaf’f}a,_,
n—k Y
al_lc?;all a,l,k;gc?l_,’f.._,;n,k,lj_ll_l l_[ 1_[ (tq; — up)
lbial,
n
<[] B@jlwi.....w.) Q. (5.15)
j=1
J#ai,....an—k

Combining (5.15) and the correspondence

n
mxtoxl ] BUjlw, o wn)|Qm
j=1
JF#al,...an—k
m,n({uh cees un}\{ualv cees uan,k}|wl» e Wil X1, e, X, (5.16)

(5.10) becomes

mtoxdl [ B@jlw. .. wn) Dy, lwi, . wp)

J=Yn—k+1
Yn—k—1
X H B(ujlwy, ..., wy)
J=Yn—k-1+1
»n-1 yi—1
x [ Bjlwi.....wn) D@y, lwr. ..., ww) [ ] Bjlwr. ... wn)1Q2m
j=y+l Jj=1
n—k yji—1
H [T e —aqu
e ¥
_ZZ Z HHM“J_ w;) n—k V)
al_lgzz?zflll ﬂn—k;;hk_;n k-1 == 1—[ 1_[ (Maj —up)
lh;éa],
Xmen({ul,...,un}\{ual,...,uanfk}|w1,...,wm|x1,...,xk). 5.17)

Inserting (5.17) into the right hand side of (5.2), one gets
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Wm-i—n—k,n(“l,--~aun|w1,--~,wm+n—k|xla~--axk,m+1,-~~,m+n_k)
Y1 y2 Yn—k n—k m
=2 x> 2 wg-w
I=yi<y2<-<yn—k<nai=1 ay=1 an—i=1 j=li=1
027201 an—k?éal ----- An—k—1
_ yi—1
ﬂ H (tta; = qus)
=1
b;éal, 7“]*1
X
n—k Yj
[T IT -uw
S b
J b#ay,..., aj
XWn‘nfk(wm+1,~~~,wm+n7k|ulv-~~vun|y1,~~',}7n7k)
XWm,I‘l({u15--~aul’l}\{ud]5'-~5uan_k}|w17---awm|xl5---5xk)a (5.18)

which, using the correspondences (2.10) and (5.4), becomes an identity

Fm+n7k,n(uly "'7uﬂ|w17 cet wm+n7k|-x1s sy X, M + 17 e, m +n _k)
Y1 y2 Yn—k n—k m
D DD D DEEEED DR | § (7™
I<y1<y2<-<yn—ik<nay=1 ay=1 ap—x=1 j=li=1
aFar A Far,...,pg—1
— )j—l
H H (tta; = qup)
=1
b#al ..... a171
X
Yj
l_[ H (a; = )
=1 =
b#al,
XFn,n—k(wm+17 s Wpn—k UL, o UYL, o Yn—k)
XEmn(urs o un\{uays oo ttg,_ Hwi, oo wi Xy, ..o, Xk, (5.19)

for the symmetric functions (2.9) and (5.5).
6. Conclusion

In this paper, from the point of view of quantum integrability, we first investigated the identity
for the factorial Grothendieck polynomials found by Guo and Sun [1] which generalizes the
one for the Schur polynomials by Fehér, Némethi and Rimdnyi [8]. We gave another proof by
using the quantum inverse scattering method, which is a method to analyze quantum integrable
models. Why the method can be used is based on the fact between the correspondence between
the wavefunctions of a five-vertex model and the factorial Grothendieck polynomials. See [9,10,
12,13] also for previous works on the investigations of Cauchy-type identities, Gromov-Witten
invariants and the Littlewood-Richardson coefficients using this correspondence.

We next used the same idea and technique “in another direction” to derive an identity for the
factorial Grothendieck polynomials of rectangular shapes. Combining the identity with the Guo-
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Sun identity, we obtained a duality formula. We also discussed a g-deformation of the Guo-Sun
identity, based on the correspondence between the wavefunctions of the U, (sl2) six-vertex model
and the g-deformation of the factorial Grothendieck polynomials and following the same line of
computation to prove the Guo-Sun identity. The identity obtained for the g-deformed symmetric
functions is rather much more complicated than the Guo-Sun identity since the six-vertex model
is a more general model than the five-vertex model, and it is an interesting problem whether one
can simplify the identity to a more compact form.

It may also be interesting to reexamine existing formulas for the Schur and Grothendieck
polynomials from the viewpoint of quantum integrability, and apply the same idea and technique
in different ways, cases and places to obtain new identities. It is also interesting to investigate if
the integrability technique can be applied beyond Grassmannian Grothendieck polynomials. One
needs first to investigate if the set-valued tableaux descriptions of more general Grothendieck
polynomials in [30—32] can be translated into the language of integrable models.
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