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Abstract. This talk describes progress at understanding the properties of the nucleon and
its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-
lying states of the excited baryon spectrum. The need to approach physical values of the
light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then
outline the development of techniques that will enable the extraction of the masses of the higher
resonances, and describe how such calculations provide insight into the structure of the hadrons.
Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice
measurement of the moments of quark distributions and of Generalized Parton Distributions.

1. Introduction
Spectroscopy is a powerful tool for uncovering the important degrees of freedom of a physical
system and the interaction forces between them. The spectrum of QCD is very rich: conventional
baryons (nucleons, ∆, Λ, Ξ, Ω, and so on) and mesons (π, K, ρ, etc.) have been known for nearly
half a century, but other, higher-lying exotic states, such as glueballs, hybrid mesons and hybrid
baryons bound by an excited gluon field, and ‘multi-quark’ states, consisting predominantly
of four or five quarks in the case of mesons and baryons respectively, have proved more
elusive, partly because our theoretical understanding of such states is insufficient, making their
identification difficult.

Interest in excited baryon resonances in particular has been sparked by experiments dedicated
to mapping out the N∗ spectrum in Hall B at the Thomas Jefferson National Accelerator
Facility (JLab); evidence for the possible existence of a strangeness S = 1 qqqqq pentaquark
state, discussed in many talks at this workshop, has provided a further insentive for a detailed
understanding of baryon resonances.

Much of our current understanding of conventional and excited hadron resonances comes from
QCD-inspired phenomenological models. For conventional baryons, the extensive calculations
by Isgur, Karl, and Capstick within a non-relativistic quark model[1, 2, 3] remain influential.
However, there are a growing number of resonances which cannot be easily accommodated within
quark models. States bound by an excited gluon field, such as hybrid mesons and baryons, are
still poorly understood. The natures of the Roper resonance and the anomalously light Λ(1405)−
remain controversial. Experiment shows that the first excited positive-parity spin-1/2 baryon
lies below the lowest-lying negative-parity spin-1/2 resonance, a fact which is difficult to reconcile
in quark models. The question of the so-called “missing” baryon resonances is still unresolved:
the quark model predicts many more states[2, 3] than are currently known. Compared to the
large number of positive-parity states, there are only a few low-lying negative-parity resonances.
A quark-diquark picture of baryons predicts a sparser spectrum[4]. Various bag and soliton
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models have also attempted to explain the baryon mass spectrum. The search for the S = 1
pentaquark states was spurred by a chiral soliton model. While most models expect the lightest
pentaquarks to have positive parity [5, 6], a light, narrow isotensor state of negative parity can
be accommodated within the quark model [7].

Given the current intense experimental efforts in spectroscopy in general, and of baryons
in particular, the need to predict and understand the baryon spectrum from first principles is
clear; lattice QCD calculations provide the means of undertaking such ab initio studies. The
aim is not merely to obtain a set of masses for the states, but also to gain insight into the quark
and gluon structure of the states and to understand the relevant degrees of freedom; this latter
aspect will be an important emphasis of this talk.

A more direct measure of the quark and gluon structure of hadrons is provided through
the parton distributions as determined in Deep Inelastic Scattering (DIS), and more generally
through the Generalized Parton Distributions (GPD’s). The determination of these quantities
is the subject of intense experimental effort which needs to be matched by corresponding
lattice investigations. Lattice QCD calculations are restricted to studying the moments of these
distributions, and there has been substantial recent progress which I will review briefly at the
end of the talk.

The layout of the remainder of this talk is as follows. In the next section, I will review
lattice results for the lowest-lying baryon states composed of quarks with masses around that
of the strange quark. I will then detail the importance of correctly including the effects of the
pion cloud, and describe recent progress at achieving that goal. The next section will outline
the recent development of techniques for a comprehensive study of the masses of the higher
excitations, and plans to implement these techniques. Finally, I will present recent results on
the moments of GPD’s and of structure functions before giving my conclusions.

2. Recent results for the baryon spectrum
The computation of the masses of the lowest-lying states has long been a benchmark calculation
of lattice QCD since it provides a direct comparison with well-known experimental quantities;
a recent review is provided in [8]. The computation is in principle straightforward:

(i) Choose an interpolating operator O that has a good overlap with P , the state of interest,

〈0 | O | P 〉 �= 0,

and ideally a small overlap with other states having the same quantum numbers.
(ii) Form the time-sliced correlation function

C(t) =
∑
�x

〈O(�x, t)O†(�0, 0)〉.

(iii) Examine the behavior of the correlator at large Euclidean time

C(t) =
∑
P

| 〈0 | O | P 〉 |2
2mP

exp −mP t, (1)

yielding the mass of the lightest state.

However, a precise comparison with experiment requires control and understanding of the
systematic uncertainties: the extrapolation of the lattice volume V → ∞, the control over
discretisation errors by taking the lattice spacing a −→ 0, and finally, and most delicately, the
chiral extrapolation in the quark mass from the values at which the computations are performed
to the physical quark masses.
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Figure 1. The left-hand plot shows of the lightest positive- and negative-parity nucleon
resonances using two independent interpolating operators [9], while the right-hand plot shows
also the spin-3/2 and spin-1/2 masses of both parities [10], obtained using the FLIC fermion
action.

Whilst the benchmark calculations reviewed in [8] are in full QCD, most of the more
exploratory studies described below are in the quenched approximation. The use of the
quenched approximation introduces a systematic uncertainty of around 10% for most light-
hadron quantities. The observation of excited resonances in lattice QCD is invariably more
demanding than that of the ground states since, for hadrons composed of light quarks, the
signal-to-noise ratio for excited-state correlators decreases with increasing excitation energy.
None-the-less, there has recently been a flurry of activity aimed at computing the excited nucleon
spectrum, and in particular the masses of the lightest spin-1/2 and spin-3/2 states of both
parities [11, 12, 13, 9, 10, 14, 15]. These calculations employ a variety of fermion discretisation,
each has quarks with masses around that of the strange quark, uses local interpolating operators,
and each finds a spectrum broadly in line with quark-model expectations mN < mN1/2− < mN ′ ,
where N , N1/2− and N ′ are the nucleon, its parity partner, and first radial excitation of the
nucleon, the so-called “Roper” resonance, respectively. This is illustrated in Figure 1. In
particular, none of these calculations reveal evidence of two of the more puzzling observations
in the nucleon spectrum, the anomalously light Roper resonance, and a light Λ(1405)−.
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Figure 2. The left-hand plot shows the masses of the nucleon, its parity partner, and the first
radial excitation of the nucleon obtained from a calculation using overlap fermions at a lattice
spacing a = 0.2 fm [19]. The right-hand plot is a calculation of the masses using a variational
approach[20]

A crucial realization in recent years has been that QCD at the physical values of the light-
quark masses is very different from that for quarks with masses around that of the strange quark
mass because of the rôle played by the pion cloud, and the resultant non-analytic behavior with
the quark mass. Several groups have embarked on programs aiming at enabling fits to the
lattice data so as to correctly incorporate this behaviour, both within full QCD and quenched
QCD[16, 17].

In concert with this understanding has been the advent of fermion actions, satisfying the
Ginsparg-Wilson relation[18], possessing an exact analogue of chiral symmetry at a finite
lattice spacing, and the development of the computational resources required to exploit these
actions. Thus quark masses approaching the physical light-quark masses are now within reach.
A particular realization of the action is through overlap fermions, which admit the use of
shifted-mass inverters allowing the simultaneous calculation of propagators at a range of quark
masses. A Bayesian fit to the standard nucleon interpolating operator obtained in the quenched
approximation to QCD using overlap fermions, with pion masses as low as 180 MeV, is reported
in ref. [19]. The masses of the nucleon, its parity partner and the first radial excitation of the
nucleon are shown in Figure 2, revealing an inversion of the ordering of the states at light pion
masses; such a result is consistent with a picture of the experimentally observed N(1440) Roper
as indeed a simple three-quark resonance.

3. Higher excited resonances and variational methods
A comprehensive picture of resonances requires that we go beyond a knowledge of the ground
state mass in each channel, and obtain the masses of the lowest few states of a given quantum
number. This we can accomplish through the use of variational methods[21, 22]. Rather than
measuring a single correlator C(t), we determine a matrix of correlators

Cij(t) =
∑
�x

〈Oi(�x, t)O†
j(�0, 0)〉,

where {Oi; i = 1, . . . , N} are a basis of interpolating operators with given quantum numbers.
We then solve the generalized eigenvalue equation

C(t)u = λ(t, t0)C(t0)u
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Table 1. The number of times nJ
Γ that the irreducible representation Γ of O occurs in the

reduction of the irreducible representation J of SU(2).

J nJ
G1

nJ
G2

nJ
H

1/2 1 0 0
3/2 0 0 1
5/2 0 1 1
7/2 1 1 1
9/2 1 0 2

to obtain a set of real eigenvalues λn(t, t0). At large Euclidean times, these eigenvalues then
delineate between the different masses

λn −→ e−Mnt + O(e−Mn+1t).

The eigenvectors u are orthonormal with metric C(t0), and a knowledge of the eigenvectors can
yield information about the partonic structure of the states.

An early attempt to use these methods to extract the first radial excitation of mesons and
baryons employed operators constructed from a local, and from a spatially extended source[23].
A more recent application has been to the calculation of the mass of the Roper resonance,
using spatially smeared, gauge-invariant three-quark operators of varying widths[20]. Though
the authors are unable to approach the very light pion masses attained in reference [19], they
find the behavior of the masses of the states with pion mass is at least suggestive of the level
crossing observed in the Bayesian analysis, as shown in Figure 2. Furthermore, the resulting
eigenstates are consistent with a radial node in the wavefunction.

Recently, the LHP Collaboration has developed the techniques to enable the construction of
baryon interpolating operators that can be easily be extended to include multi-quark operators,
and those with excited glue[24, 25]. This is delicate, since the cubic symmetry of the lattice
admits only three double-valued, irreducible representations (IR’s), G1, G2 and H, of dimensions
2, 2 and 4 respectively[26, 27]. The irreducible representations J of the continuum group SU(2)
are reducible under the cubic group O; the number of times nJ

Γ that each of these reducible
representations occurs in the irreducible representation Γ of O is shown in Table 1. States with
J > 5/2 lie in irreducible representations containing states with lower spins, and furthermore,
for a given J , the different degrees of freedom can lie in different irreducible representations.
The masses of the components in these distinct IR’s will agree only in the continuum limit.
Furthermore, an implicit assumption in previous lattice studies is the increase in ground-states
masses with increasing spin; I will comment further on this below. Parity is easily incorporated,
yielding the group Oh, with the corresponding IR’s gaining the labels g and u for positive parity
and negative parity respectively.

The starting point for the operator construction is a basis of gauge-invariant terms of the
form

ΦABC
αi;βj;γk=εabc(D̃

(p)
i ψ̃)A

aα(D̃(p)
j ψ̃)B

bβ(D̃(p)
k ψ̃)C

cγ , (2)

where A,B,C indicate quark flavor, a, b, c are color indices, α, β, γ are Dirac spin indices, ψ̃
indicates a smeared quark field, and D̃

(p)
j denotes the p-link covariant displacement operator

in the j-th direction; the quark fields are smeared using a three-dimensional gauge-covariant
Laplacian. These gauge-invariant operators are now combined into elemental operators having
the appropriate flavor structure. The remaining step is to apply group-theoretical projections
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Figure 3. Ground-state effective masses for the each of the IRs G1g, Hg and G2g, where the
subscript g denotes positive parity[28].

to obtain operators which transform irreducibly under all lattice rotations and reflection
symmetries:

BΛλF
i (t) =

dΛ

gOh

∑
R∈Oh

D
(Λ)
λλ (R)∗URB

F
i (t)U †

R, (3)

where Λ refers to an Oh IR, λ is the row in the IR, gOh
is the number of elements in Oh, dΛ is

the dimension of the Λ IR, D(Λ)
mn(R) is a Λ representation matrix corresponding to group element

R, and UR is the quantum operator which implements the symmetry operations.
An initial, exploratory study exploiting this formalism has recently been performed[28], at

only a single value of the quark mass around that of the strange quark, and at a single value of
the lattice spacing a � 0.1 fm. Figure 3 shows the effective masses, defined by

Meff(t) = lnC(t)/C(t+ 1)

for the lowest-lying states for each of the three, positive-parity IR’s. The apparent coincidence
of the effective masses in the G2g and Hg channels, containing spins J = 5/2, 7/2, . . . and
J = 3/2, 5/2, . . . respectively, suggests that the usual identification of a mass extracted from H
with the mass of a state of spin 3/2 is somewhat premature. Indeed, experimentally the lowest-
lying I(JP ) = 1/2(5/2+) state, the N(1680) F15, is comparable in mass with the lowest-lying
I(JP ) = 1/2(5/2+) state, the N(1720) P13. Further lattice studies are essential to definitively
identify the quantum numbers of baryon states, requiring the determination of the masses of
several states in each channel, and the behavior of these masses in the approach to the continuum
limit.

I have emphasized that determinations of the spectrum can provide insight into the structure
of states, as well as their masses. Thus future lattice studies of baryons will need to include
not only the simple three-quark fields introduced above, but also interpolating fields sensitive to
excited glue (’exotics’), to molecular states, and, most saliently in this workshop, pentaquark or
multi-quark states[29]. Perhaps most importantly, these states become unstable with decreasing
pion mass, requiring more sophisticated, and computationally demanding, analysis.

4. Structure functions and generalized parton distributions
A direct probe of the structure of nucleons is provided through the measurements of form
factors, structure functions, and generalized parton distributions. The parton distribution
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functions measured in deep inelastic scattering (DIS) contain information about the fractional
momentum carried by partons in the infinite-momentum frame. Generalized parton distributions
(GPD’s)[30, 31, 32] extend this description to include information about the transverse
distribution of the partons within a nucleon, and furthermore provide a formalism that
encompasses both DIS and the elastic form factors. Experimental information about GPD’s
comes from Deeply Virtual Compton Scattering (DVCS) that forms an essential component of
the current and future JLab program.

These distributions are related to the matrix elements between nucleon states of the (non-
local) light-cone operator

O(x) =
∫
dλ

4π
eiλxψ

(−λn
2

)
γ · nPe−ig

∫ λ/2

−λ/2
dα n·A(αn)

ψ

(
λn

2

)
, (4)

where n is a unit vector along the light code. The use of a Euclidean lattice precludes the direct
measurement of the matrix elements of these operators, and hence of a direct determination
of the functional form of the structure functions and GPD’s. However, the moments of the
distributions with respect to the light-cone momentum fraction can be related to the matrix
elements of local operators. For the flavor-non-singlet, unpolarized distributions these are

O{µ1µ2...µn}
q = ψ̄γ{µ1iDµ2 . . . Dµn}ψ. (5)

In the case of DIS, the moments are simply related to the forward matrix elements:

〈PS|O{µ1µ2...µn}
q |PS〉 =

∫ 1

0
dxxn(q(x) + (−1)n+1q(x))P {µ1 . . . Pµn}, (6)

where P and S are the nucleon momentum and spin respectively.
The off-forward matrix elements, between hadrons with momenta P and P ′, are related to

the moments of the generalized parton distributions H(x, ξ, t) and E(x, ξ, t), where ∆ = P −P ′,
t = ∆2 and ξ = −n · ∆/2. Specifically, for the case ξ = 0

∫
dxxn−1H(x, 0, t) = An,0(t)∫
dxxn−1E(x, 0, t) = Bn,0(t). (7)

In particular, the lowest moments correspond to the familiar form factors A10(t) = F1(t) and
B10(t) = F2(t). Analogous expressions, Ẽ(x, ξ, t) and H̃(x, ξ, t) together with the corresponding
moments, can be constructed in polarized case.

The first lattice calculations were detailed in references [33] and [34]. These calculations,
performed in full QCD, employed quark masses in the region of the strange quark mass.
Nevertheless they allowed important insight into the structure of the nucleon, such as the angular
momentum carried by the quarks within the nucleon, and the transverse distribution of quarks
as x −→ 1. A compendium of the results is given in the talk of Dru Renner[35].

In this talk, I will give a simple example of the insight into nucleon structure accessible
through lattice QCD. The quark distribution can be considered in a representation in which the
longitudinal structure is described in terms of the momentum fraction x whilst the transverse
structure is described in terms of an impact parameter �b⊥, corresponding to the transverse
displacement of the quark relative to the “center” of the nucleon[38]. Thus we have

H(x, 0,∆2
⊥) =

∫
d2b⊥ q(x, b⊥)ei�b⊥·�∆⊥

An,0(−∆2
⊥) =

∫
d2b⊥

∫
dxxn−1. (8)
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Figure 4. The left-hand plot shows the impact-parameter-dependent parton distribution within
a simple model[36]. The right-hand plot shows the flavor-non-singlet moments as discussed in
the text[37].

The expectation is that, in the limit x −→ 1, where the quark carries an increasing fraction of
the longitudinal momentum, the transverse distribution should become narrower. The higher
moments in eqn. 7 are sensitive to increasingly larger values of x, and thus we would expect
a correspondingly milder fall-off with −t. The lattice data do indeed support this picture, as
illustrated in Figure 4; note that only moments differing by two correspond to moments of the
same physical quantity.

The need to extend these calculations to physical values of the light quark masses is very
apparent. A long-standing problem for lattice studies of structure functions was the apparent
disagreement between lattice determinations of the momentum fraction carried by valence quarks
in a proton, and the phenomenological values. An important development was the realization
that this discrepancy could be resolved by correctly including the non-analytic behavior in the
approach to the chiral limit[39, 40].

The first steps in this program have been taken by the LHP Collaboration[41], adopting
a hybrid approach of computing domain-wall valence quarks on dynamical configurations
generated using 2 + 1 flavors of Asqtad sea quarks[42]; this has enabled pion masses as light
as 360 MeV to be attained. The first results are already encouraging, in that the value for the
nucleon axial charge, gA, a quantity known to be somewhat sensitive to finite-volume effects[43],
at the lightest value of the pion mass, and on the largest volumes, approaches the experimental
value, as shown in Figure 4.

Future work as part of this project will include the computation of the higher moments of the
GPD’s, as well as quantities such as the N to ∆ transition form factors, providing information
on the deformation of the nucleon beyond that accessible through measurements of nucleon
quantities alone. The next generation of calculations will employ a fully consistent formalism
between the sea and valence quarks, and extend the range of accessible quantities to include
flavor-singlet distributions.

5. Conclusions
In this talk, I have tried both to review recent lattice QCD calculations of hadron spectroscopy
and structure, and to indicate future directions. The ground-breaking theoretical developments
enabling computations at light quark masses are being matched by commensurate computational
resources, germinating in the US from the Department of Energy’s SciDAC Initiative. Studies
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of hadron structure are now approaching the regime where the physics of the pion cloud should
be manifest. A more complete picture of the spectrum of QCD in both the meson and baryon
sectors will follow the development of improved hadronic operators, together with the use of
variational methods. Thus lattice studies will be in a position both to guide and interpret the
exciting experimental program in hadronic physics.
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