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Abstract

Measurement of the Ratio of the Neutron to Proton Structure Functions, and the Three-Nucleon

EMC Effect in Deep Inelastic Electron Scattering Off Tritium and Helium-3 Mirror Nuclei

Hanjie Liu

The proton and neutron structure functions Fp
2 and Fn

2 , respectively are fundamental to

understanding many studies in nuclear physics. They provide important information about quark

distributions. For example, the ratio Fn
2 /F

p
2 is one of the best measurements to find the ratio of

d quark over u quark distribution inside the proton. While the calculations of structure functions

and quark distributions are non-perturbative, they can be determined by the parameterization of

experimental data. The understanding of Fn
2 /F

p
2 and d/u as x → 1 has a large influence on global

fits and parameterization, and can be used to distinguish the non-perturbative models which give

different predictions. However, Fn
2 /F

p
2 measured using deuteron and hydrogen targets has large

nuclear uncertainties at large x, because the nuclear effects in the deuteron become significant at

large x. The MARATHON experiment, which ran in spring 2018 using the upgraded 11 GeV

Jefferson Lab electron beam, employs a novel method. It performed deep inelastic scattering off

tritium and helium-3 mirror nuclei to measure Fn
2 /F

p
2 over the range x = 0.17 to x = 0.82. Since

tritium and helium-3 are mirror nuclei, theoretical uncertainties largely cancel out in the ratio. The

extracted Fn
2 /F

p
2 has much smaller uncertainties compared with previous experiments at large x.

The MARATHON experiment also provided results on the EMC effect for tritium and helium-3

nuclei. The results are considered essential for understanding the EMC effect. This thesis describes

the MARATHON experiment, and presents results for Fn
2 /F

p
2 , and the EMC effect for tritium and

helium-3.
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Chapter 1: Introduction

Among the many great successes of the Standard Model of particle physics, today we under-

stand that fundamental particles – quarks and gluons – make up the fundamental substructure of

the neutron and proton. Back in the 1950s, electron-proton elastic scattering experiments at the

High Energy Physics Laboratory (HEPL) at Stanford found that the proton was not point-like,

but instead had an extended internal structure. However, the information from the elastic scatter-

ing suggested that the hadron’s extended structure was comprised of “soft" charge and magnetic

moment distributions with no underlying point-like constituents. Quarks, introduced in the early

1960s, were able to explain the low-energy properties of the hadrons, but met serious theoretical

problems when considered as the physical constituents of nucleons in high energy scattering [1].

The quark model was not taken seriously until the first deep inelastic electron scattering experi-

ment was performed at the Stanford Linear Accelerator Center (SLAC) [2]. In Chapter 1, the idea

of deep inelastic scattering will be introduced, as well as the basic knowledge of parton distribution

functions (PDFs) and nucleon structure functions in Quantum Chromodynamics (QCD).

Traditionally, the structure function ratio between neutron and proton, Fn
2 /F

p
2 , is measured

using the hydrogen and deuterium targets. However, since the nuclear corrections applied to the

deuteron data have large model dependence when x > 0.6, the ratio Fn
2 /F

p
2 extracted has big

uncertainty at large x. In the MARATHON experiment, the nuclear effect model dependence is

minimized by performing electron deep inelastic scattering on the mirror nuclei 3H and 3He. The

EMC effect of 3H and 3He are also measured. The details about the MARATHON experiment

motivation and the nuclear effects are given in Chapter 2.

The MARATHON experiment was performed at Jefferson Lab in the spring of 2018. The

experiment kinematics and the experimental setup are described in Chapter 3. The data analysis

procedure for the cross section ratio measurement is introduced in Chapter 4. The method to extract
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Fn
2 /F

p
2 and the EMC effect ratios from data and their results are given in Chapter 5. In Chapter

6, future projects that might have comparable or improved results compared to the MARATHON

experiment are introduced.

1.1 Deep inelastic scattering

1.1.1 Kinematics

When using the electron as a probe to study the structure of the nucleus, in an inclusive process,

only incident electrons and scattered electrons are detected, as shown in Fig.1.1a. Assuming single

photon exchange, the first order Feynman diagram for deep inelastic scattering (DIS) is shown

in Fig.1.1b. The incident electron has incoming and outgoing four momentum of k and k′, and

a four-momentum transfer given by q = k − k′, where the energy transfer is ν = E − E′. Two

invariants are commonly used to describe the scattering process. One is the negative square of the

four-momentum transfer (neglecting the electron mass):

Q2 := −q2 = 4EE′sin2 θ

2
, (1.1)

where θ is the electron scattering angle in the laboratory system. The other is the square of the

invariant mass for the final hadron system:

W2 = (p + q)2 = M2 + 2Mν −Q2, (1.2)

where M is the mass of the hadron. Another important kinematic variable is Bjorken x, where

x = Q2

2Mν . Its physics meaning will be introduced later.

Limited by the uncertainty principle, the spatial resolution that a virtual photon with momentum

Q can reach is about ~/Q. With increasing beam energy E , the smaller structure inside the nucleus

can be “seen" by the electron. Electron scattering is divided into four categories according to the

particles involved in the scattering:
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(a) Inclusive electron scattering (b) Feynman diagram for deep inelastic scatter-
ing

Figure 1.1: Electron scattering

Elastic scattering During elastic scattering, the nucleus stays intact. The electron scatters on the

entire nucleus. The W2 of the final hadron system is equal to the mass of the nucleus.

Quasi-elastic scattering When the energy transfer is bigger than the nuclear binding energy, the

electron scattering probes the nucleons inside the nucleus. Since nucleons have Fermi motion, the

quasi-elastic peak is wider than the elastic peak. The invariant mass W2 is equal to the mass of an

individual nucleon.

Resonance With increasing beam energy, one or more of the nucleons inside the nucleus can

form excited states, called “nuclear resonances". Also, with increased energy and momentum

transfer, the individual nucleons form “resonances" with different spin or angular states. The

invariant mass W2 of the final hadron system is near the mass of the resonance.

Deep inelastic scattering As the incident electron energy continues to increase, one can probe

the nucleon constituents. The scattering cross section becomes continuous. This is called deep

inelastic scattering (DIS). In the MARATHON experiment, a cut of W2 > 3 GeV2 is applied to

distinguish DIS from resonances.

The cross section of electron scattering as a function of ω = 1/x is shown in Fig.1.2 for

3



electron-nucleon scattering and electron-nucleus scattering.

Figure 1.2: The spectra of electron-nucleon scattering and electron-nucleus scattering [3]

1.1.2 Bjorken scaling

The first electron DIS scattering experiment was performed at SLAC. Two unexpected features

at that time appear in the data [1]. First, the measured cross section showed weak dependence on

Q2, which was different from the behavior of elastic scattering. Furthermore, the nucleon structure

functions W1 and W2, which were extracted as analogs to the elastic form factors, have a scaling

feature. The structure functions are related to the cross section by [4]:

d2σ

dΩdE′
= σMott(W2 + 2W1tan2 θ

2
). (1.3)

In general, W1 and W2 are expected to be a function of both ν and Q2. However, as suggested by

Bjorken, in the limit when ν →∞, Q2 →∞, νW2 and W1 become dependent on only one variable,

x:

MW1(ν,Q2) → F1(x) , νW2(ν,Q2) → F2(x). (1.4)

The data, indeed, displayed an approximate scaling behavior, as shown in Fig.1.3 [1].
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Figure 1.3: An early observation of scaling: νW2 for the proton as a function of q2 for W > 2 GeV,
at ω = 4

These two features catalyzed the excitement towards developing theoretical explanations. A

number of non-constituent models were put forward, but none of them could describe the data

over the full kinematic range. On the other hand, the scaling concept inferred from current algebra

and its roots in the quark theory indicated that there are point-like, charged structures within the

nucleon. The constituent model, the parton model, developed by Feynman with the assumption of

point-like partons inside nucleons, automatically gave the scaling behavior [1]. While Feynman

did not specify what the partons were, the quark model where the nucleons are composite of three

valence quarks, a sea of quark-antiquark pairs and neutral gluons, was eventually confirmed by

extensive electron DIS measurements and neutrino deep inelastic scattering in the 1970s [1].

1.2 Quark-parton model

The quark-parton model (QPM) interprets electron inelastic scattering on a hadron as an inco-

herent sum of the electron elastic scattering on the point-like partons inside the hadron. Suppose

a parton of type i with momentum Pi = xiP, where P is the three-momentum of the nucleon, and

charge ei scatters the electron in the range d3k′. In the P → ∞ limit (with fixed q2 and ν), the
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cross section for this elementary elastic scattering is given by [5]:

dσi(xi) →
P
M

8α2q−4e2
i

xi

ν
δ(xi − x)d3k′. (1.5)

The probability of finding the type i parton with momentum xiP is qi(xi). Then the DIS cross

section of a nucleon is obtained by integrating over xi and summing over all types of partons:

dσ(x) =
∑

i

∫
dxiqi(xi)dσi(xi) →

∑
i

P
M

8α2q−4e2
i

x
ν

qi(x)d3k′. (1.6)

The cross section is proportional to q−4. As the Q2 (= −q2) of DIS is normally bigger than 2 GeV2,

this explains the weak Q2 dependence observed in the DIS cross section data. The Bjorken scaling

variable x represents the fraction of nucleon momentum carried by the struck quark.

Another quantum field method to calculate the electron-nucleon DIS cross section in the fixed-

target frame is done by introducing a hadronic tensor W µν in analogy to the leptonic tensor Le
µν:

dσ ∝ Le
µνW

µν (1.7)

For the P→∞ limit, the scattering angle is small (θ → 0), which makes W2 the leading term kept

in the asymptotic expression [5]:

dσ →
P
M

8α2q−4W2(q2, ν)d3k′. (1.8)

Comparing Eq.(1.6) and Eq.(1.8) relates the structure function W2 to the quark momentum distri-

butions by:

νW2(q2, ν) = x
∑

i

e2
i qi(x) (1.9)

On the other hand, W1 is the dominant term when calculating the asymptotic limits for backward

scattering θ = π:

dσ →
1
4

e4q−4 8π
k · P

Q2MW1(q2, ν)
d3k′

(2π)32E′
. (1.10)
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And for the same limit, the cross section for the electron-quark elastic scattering becomes:

dσi(xi) →
1
4

e4q−4 4π
k · P

Q2e2
i δ(xi − x)

d3k′

(2π)32E′
. (1.11)

Similarly, from Eq.(1.10) and Eq.(1.11), W1 is related to the quark distribution by:

MW1(q2, ν) =
1
2

∑
i

e2
i qi(x) (1.12)

As can be seen in Eq.(1.9) and Eq.(1.12), the QPM successfully predicts the Bjorken scaling

behavior of structure functions. In the hadron infinite momentum frame, the momentum distribu-

tion of partons are “frozen" when the electron passes through the partons. In addition, in order

to account for the difference between the experiment measured sum rules and the theoretical pre-

dictions, the QPM assumes the existence of the neutral partons (gluons) inside the nucleon. Even

though the quark-parton model was tested to be successful by various experiments, there is one

serious inconsistency between the model and the data. The quark-parton model is based on the

impulse approximation which assumes that the quarks weakly interact with each other. As a re-

sult, single quark should be freed from the proton in the scattering process. But this is found

not to be true in experiments. The quantum chromodynamics (QCD) theory developed afterwards

eliminated this paradox.

1.3 Running coupling and asymptotic freedom

The perturbative expansion of scattering amplitudes beyond leading order is usually divergent.

For example, in QCD, when introducing loop corrections to the gluon propagator as shown in

Fig.1.4, the loop diagrams and other higher order diagrams are divergent since there is no restric-

tion on the momentum flowing over the loop. These divergences are resolved by renormalization.

For a dimensionless physical quantity R given by a perturbation series in the coupling αs = g2/4π

(defined in analogy to the fine structure constant of QED), the divergence is removed by subtract-

ing the renormalized R at some scale µ2. Then R in general depends on the ratio Q2/µ2 and the
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Figure 1.4: Loop corrections to the gluon propagator

coupling αs(µ
2). However, as the scale µ2 is an arbitrary choice, the physical quantities should not

depend on it, that is, the derivative of R on µ2 is 0 [6]:

µ2 d
dµ2 R(Q2/µ2, αs) = [µ

2 ∂

∂µ2 + µ
2 αs

∂µ2
∂

∂αs
]R = 0 (αs ≡ αs(µ

2)) (1.13)

By introducing the notation t = ln(Q
2

µ2 ) and β(αs) = µ
2 ∂αs
∂µ2 , Eq.(1.13) can be rewritten as:

[−
∂

∂t
+ β(αs)

∂

∂αs
]R(et, αs) = 0, (1.14)

While R can be anything, this differential equation is solved if t satisfies:

t =
∫ αs(Q2)

αs(µ2)

dx
β(x)

(1.15)

where αs(Q2) is defined as the running coupling. By differentiating Eq.(1.15), we get:

∂αs(Q2)

∂t
= β(αs(Q2)) ,

∂αs(Q2)

∂αs(µ2)
=
β(αs(Q2))

β(αs(µ2))
(1.16)

Therefore R(1, αs(Q2)) is a solution to Eq.(1.14). This shows that the scale dependence in R is

absorbed into the coupling αs by running it to the scale Q2.

In QCD, the β function has the perturbative expansion coming from the higher-order correc-

tions shown in Fig.1.4 [6]:

β(αs) = −bα2
s (1 +O(αs)) (1.17)
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where

b =
33 − 2n f

12π
(1.18)

and n f is the number of active light flavours. From Eq.(1.16), the αs(Q2) given by the first term of

β is:

αs(Q2) =
αs(µ

2)

1 + αs(µ2)bt
. (1.19)

As b is positive for n f < 17, the coupling αs logarithmically decreases when Q2 increases, which

is the opposite behavior compared to QED. This is the property referred to as asymptotic freedom.

Inside a nucleus, at short distance (large Q2) when αs is close to zero, the partons are almost free

from neighboring interactions. But at long distance (small Q2), the coupling is so strong that it

is impossible to isolate a free quark, since quark-antiquark pairs are created. This explains the

remaining paradox in the QPM.

1.4 QCD improved parton model

The key feature of QPM remains in QCD that the DIS cross section can be factorized into a

probability of finding a parton and the probability of a hard scattering on the parton. The difference

is that in QCD, the parton density is non-perturbative, as the parton can have very small transverse

momentum (which corresponds to a long-distance strong interaction), so only the hard scattering

part is calculable by perturbation theory.

For the hard scattering process, higher order gluonic interactions are included. Firstly, the

gluon radiation through the process γ∗q→ qg is added to the zeroth order QPM process, as shown

in Fig.1.5. The resulting structure function is given by [6]:

F2(x,Q2) = x
∑
q,q

e2
q[q0(x) +

αs

2π

∫ 1

x

dξ
ξ

q0(ξ){Pqq(
x
ξ
) ln

Q2

κ2 + C(
x
ξ
)} + · · · ] (1.20)

where ξ is the momentum fraction that a quark carries, q0(ξ) is regarded as the unmeasurable,

“bare" distribution of a quark in the nucleon, and κ is an arbitrary cutoff introduced to regulate the
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Figure 1.5: Feynman diagrams for gluon radiation from quarks in DIS

singularity which arises when the emitted gluon is parallel to the quark. Pqq, called the splitting

function, represents the probability distribution for q→ q(z)g(1−z), where the bracket () indicates

the fractions of initial quark momentum. Both Pqq and C are calculable. Gluon radiation introduces

a ln Q2/κ2 scaling violation in the structure function. This has been observed in the data as shown

in Fig.1.6. The dependence on the cutoff κ2 is removed by introducing a “factorization scale" µ,

so that the singularity is absorbed into the parton density q(x, µ2):

q(x, µ2) = q0(x) +
αs

2π

∫ 1

x

dξ
ξ

q0(ξ){Pqq(
x
ξ

ln
µ2

κ2 ) + C(
x
ξ
)} + · · · (1.21)

and Eq.(1.20) becomes:

F2(x,Q2) = x
∑
q,q

e2
q

∫ 1

x

dξ
ξ

q(ξ, µ){δ(1 −
x
ξ
) +

αs

2π
Pqq(

x
ξ
) ln

Q2

µ2 + · · · } (1.22)

The factorization scale and the renormalization scale mentioned in the previous section are usually

chosen to be the same. q(x, µ2) can not be calculated in perturbation theory since it includes the

long-distance strong interaction.

The other gluonic process that changes the quark momentum distribution is γ∗g → qq as

shown in Fig.1.7. The contribution to the structure function from this process is given by:

Fg
2 (x,Q

2) = x
∑
q,q

e2
q[
αs

2π

∫ 1

x
g0(ξ){Pqg(

x
ξ
) ln

Q2

κ2 + Cg(
x
ξ
)} + · · · ], (1.23)
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Figure 1.6: The proton Fp
2 at two Q2 values showing the Bjorken scaling violation [7]

where g0(ξ) is the “bare" momentum distribution of gluons in the nucleon, and Pqg is the splitting

function for g → q(z)q(1 − z). Similarly, the κ2 → 0 singularity is handled by the factorization

that it is absorbed by the gluon density g0(x) → g(x, µ2). By adding Eq.(1.23) to Eq.(1.22), the

quark distribution becomes:

q(x, µ2) = q0(x)+
αs

2π

∫ 1

x

dξ
ξ

q0(ξ){Pqq(
x
ξ
) ln

µ2

κ2 + Cq(
x
ξ
)}

+
αs

2π

∫ 1

x

dξ
ξ
g0(ξ){Pqg(

x
ξ
) ln

µ2

κ2 + Cg(
x
ξ
)} + · · ·

The exact definition of parton densities depends on the renormalization and factorization schemes.

In the DIS scheme, by absorbing the gluon contribution into the quark distribution, the structure

function F2(x,Q2) is given by:

F2(x,Q2) = x
∑
q,q

e2
qq(x,Q2) (1.24)
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Figure 1.7: Feynman diagrams for boson-gluon fusion in DIS

which has the same form as QPM but with a Q2 dependence.

1.4.1 DGLAP evolution

Even though the parton distribution is non-perturbative, its evolution along the factorization

scale µ2 can be calculated by the renormalization group methods and operator product expansion

(OPE), which is known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation. The

form of DGLAP equations are given by[8]:

∂

∂ ln Q2Σ(x,Q
2) =

αs(Q2)

2π
([Σ ⊗ P′qq] + [g ⊗ 2n f Pqg]) (1.25)

∂

∂ ln Q2g(x,Q
2) =

αs(Q2)

2π
([Σ ⊗ P′gq] + [g ⊗ 2n f Pgg]) (1.26)

∂

∂ ln Q2 q±i (x,Q
2) =

αs(Q2)

2π
[q±i ⊗ P±] (1.27)

where the convolution is defined as:

[q ⊗ P](x,Q2) ≡

∫ 1

x

dξ
ξ

q(ξ,Q2)P(
x
ξ
) =

∫ 1

x

dξ′

ξ′
q(

x
ξ′
,Q2)P(ξ′). (1.28)

Σ(x,Q2) is the singlet quark density: Σ =
∑

i(qi + qi), q−i = qi − qi and q+i = qi + qi −
1
n f
Σ are

the non-singlet combinations. The splitting functions P are calculable as a power series in αs. The

leading-order splitting function P(0)ab is regarded as the probability of finding a parton of type a in

a parton of type b with a fraction x of the longitudinal momentum of the parent parton [6]. Once
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the parton densities are known at a starting scale Q2
0, the DGLAP equation is able to calculate the

parton densities at higher Q2 from it. However, the parton densities at the starting scale Q2
0 are

non-perturbative. They can either be calculated by non-perturbative methods which are still under

development [9], or by the parameterization of experimental data.

1.4.2 High twist and target mass correction

Technically, high twist is the 1/Q2 correction term to the leading order DGLAP for DIS struc-

ture functions. It rises up at lower Q2 where the nucleon resonances dominate, or at high x where

the elastic scattering limit dominates. So the assumption of incoherent scattering on the partons in

DIS is no longer valid, and the interactions between partons have to be taken into consideration.

From the OPE, the moments of the structure function or parton densities can be expanded as

power series in 1/Q2:
∑
(1/Q2)τ/2−1Cτ(Q2) · · · , where τ ≥ 2 is the twist. The twist is defined as

the difference between the mass dimension and the spin of an operator [8]. At large Q2, the leading

twist 2 terms give a good approximation for the moments, and the scaling violation dependence

on ln Q2 is contained in Cτ(Q2). However, at lower Q2 or high x, the higher twist terms become

large. The twist 4 terms need to be included. While these corrections are difficult to calculate, the

twist-4 coefficients are determined by adding an additional term to the fitting function of F2 data:

FHT
2 (x,Q

2) = FLT
2 (x,Q

2)[1 + CHT (x,Q2)/Q2] (1.29)

where FLT
2 is the leading twist contribution, CHT is the contribution from twist-4.

The twist expansion from pQCD is derived in the limit that the mass of the hadron is negligible

when compared with Q2. At finite Q2, where low energy fixed target experiments are performed,

a target mass correction (TMC) is applied to account for the neglect of O(m2/Q2) terms in the

kinematic variables. The TMC can be absorbed into the leading twist term [10]. Then the F2

fitting function becomes [9]:

F2(x,Q2) = OT MC[F twist−2
2 (x,Q2)][1 + CHT (x,Q2)/Q2] (1.30)
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where OT MC describes the inclusion of the TMC of the twist-2 contributions to the structure func-

tion.
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Chapter 2: Fn
2 /F

p
2 and EMC effect

The nucleon structure functions measured, in fixed-target DIS experiments, provide precise

constraints on the valence quark distributions. The proton structure function Fp
2 is extracted using

a hydrogen target. Since there is no free neutron target, the neutron structure function Fn
2 is found

using nuclear targets with A ≥ 2. However, the discovery of the EMC effect shows that there is

unexpected behavior implying the nuclear structure function is not simply the sum of the nucleon

structure functions [11]. This led to the study of nuclear effects, which modifies the structure

functions for nuclei. The motivation of the MARATHON experiment is to measure the cross

section ratios at large x, so that the neutron to proton structure function ratio can be obtained at

large x as well as the d quark over u quark ratio, and to understand the nuclear effects.

2.1 Fn
2 /F

p
2 and d/u

From the parton model, the F2 structure function is related to the struck quark densities by

F2(x) = xi
∑

i e2
i qi(x). The electric charges carried by u, d and s quark are 2/3, -1/3 and -1/3.

Therefore, the proton structure function Fp
2 is given by:

Fp
2 (x) = x[(

2
3
)2(u + u) + (−

1
3
)2(d + d) + (−

1
3
)2(s + s)]. (2.1)

Since the u/d quarks and proton/neutron are both isospin symmetric, the u(d) quark in the proton

has same distribution as the d(u) quark in the neutron: up(x) = dn(x) ≡ u(x), dp(x) = un(x) ≡ d(x),

and similarly for anti-quarks. The resulting neutron structure function Fn
2 is expressed by:

Fn
2 (x) = x[(

2
3
)2(d + d) + (−

1
3
)2(u + u) + (−

1
3
)2(s + s)]. (2.2)
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From Eq.(2.1) and Eq.(2.2), Fn
2 /F

p
2 is given by:

Fn
2

Fp
2
=

4(d + d) + (u + u) + (s + s)

4(u + u) + (d + d) + (s + s)
(2.3)

Neglecting the strange quarks and anti-quarks, it becomes:

Fn
2

Fp
2
=

1 + 4d/u
4 + d/u

, (2.4)

here the u(d) is the sum of the quarks and anti-quarks. Therefore, precise measurement of Fn
2 /F

p
2

can provide constraints on the d/u ratio.

2.1.1 d/u at large x

One of the factors that has a large impact on the parameterizations of PDFs is the assumption

on d/u behavior as x → 1. It is apparent from Eq.(1.25) to Eq.(1.28) that the quark distributions

at x = 1 are invariant under evolution. When x = 1, the process becomes elastic scattering

on the nucleon, and in the limit Q2 → ∞, the elastic form factors vanish. But what’s more

important is the rate at which the distribution functions vanish with x, since this can lead to a

nonzero renormalization-scale-invariant distribution function ratio at x = 1 [9]. The predictions

for d/u as x → 1 from different models range from 0 to 0.5. Therefore, the experimental measured

d/u at large x becomes a discriminator between models.

If SU(6) symmetry were exact, the wave function of a proton polarized in the +z direction is

given by [12]:

p ↑ =
1
√

2
u ↑ (ud)S=0 +

1
√

18
u ↑ (ud)S=1 −

1
3

u ↓ (ud)S=1

−
1
3

d ↑ (uu)S=1 −

√
2

3
d ↓ (uu)S=1,

(2.5)

where S denotes the total spin of the two-quark component. In this limit, the u quark and d quark in

proton would be identical, and the distribution function of each valence quark should be equivalent,
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which implies u(x) = 2d(x) for all x. It gives the neutron to proton F2 structure function ratio as:

Fn
2

Fp
2
=

2
3

,
d
u
=

1
2
[SU(6) symmetry] (2.6)

However, the SU(6) symmetry is broken naturally as the masses of the nucleon and ∆ are split by

about 300 MeV. Furthermore, the experimental measured Fn
2 /F

p
2 drops well below 2/3.

The correlations between the mass splitting of the nucleon and ∆ and the large-x behavior of

Fn
2 /F

p
2 was observed by Close [13] and Carlitz [14]. They assume the nucleon first breaks up into

a quark which then interacts with the virtual photon, and the remaining nucleon constituents are

regarded as a pair “diquark". The suppression of the “diquark" S = 1 state relative to S = 0 state

can explain the symmetry breaking. When x → 1, the ratio of the S = 1 state term over the S = 0

state term vanishes. The first term in Eq.(2.5) is dominant, so that Fp
2 is essentially given by the

single u quark distribution at x = 1, in which case:

Fn
2

Fp
2
=

1
4

,
d
u
= 0 [S = 0 dominance] (2.7)

The suppression of the S = 1 state can be understood in analogy to the atomic hyperfine splitting

as a color hyperfine interaction. In the hyperfine-perturbed quark model [15], at lowest order, the

Hamiltonian for the color-magnetic hyperfine interaction between two quarks is proportional to

®Si · ®Sj , where ®Si is the spin vector of quark i. This force is repulsive if the spins are parallel and is

attractive when they are anti-parallel. Hence, it leads to the S = 1 state suppression, and results in

the d/u→ 0 at x = 1.

Another suggestion on the SU(6) symmetry breaking is based on perturbative QCD from Farrar

and Jackson [16]. They postulate at x ≈ 1, the hadron structure functions can be calculated

to O(m2/q2) by lowest-order perturbation theory where the incoming quarks can be treated as

free. The results of the calculation shows that when the spins of two quarks are aligned, only

the exchange of a longitudinal gluon is allowed due to angular momentum conservation, so the

contribution to the structure function from the aligned quarks is suppressed by (1 − x) relative to
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the anti-aligned quarks. That is to say, the “diquark" with the state Sz = 0 is dominant when x → 1.

Thus, the quark from which the virtual photon scatters has the same helicity as the nucleon itself.

From Eq.(2.5), we can see the probability of the u quark having the same helicity as the proton is

five times the probability of the d quark having the same helicity as the proton. This gives d/u and

Fn
2 /F

p
2 as:

Fn
2

Fp
2
=

3
7

,
d
u
=

1
5
[Sz = 0 dominance] (2.8)

A later exposition from Brodsky et al. based on counting-rules gives a similar result [17]. It

predicts that the helicity-parallel quark distribution q+(x) is enhanced relative to the helicity-anti-

parallel quark distribution q−(x): q±(x) ∼ (1 − x)2n−1+2∆Sz , where n is the minimum number of

spectator quarks and ∆Sz = 0 for parallel quarks and ∆Sz = 1 for anti-parallel quarks to the proton

helicities. This leads to same prediction as Eq.(2.8).

In order to understand the dynamics of the quark distribution at large x, experimental measure-

ments of d/u at large x are needed to examine these theoretical predictions.

2.1.2 Fn
2 from deuteron data

The u quark distribution is well constrained by existing Fp
2 data. The d quark is more sensitive

to Fn
2 which is normally extracted from the deuteron data. An uncertainty induced by the nuclear

corrections applied to Fd
2 limits the precision for the d quark distribution extraction. Before, only

Fermi motion correction was considered to account for the binding effects for the deuteron. The

extracted Fn
2 /F

p
2 goes to 1/4 and d/u goes to 0 as x → 1. So most parameterizations set d/u = 0

at x = 1. However, a reanalysis of SLAC and NMC data by including more nuclear corrections

suggests that the pQCD predicted Fn
2 /F

p
2 → 3/7 and d/u→ 0.2 as x → 1 are allowed, which leads

to an about ∼40% change in the d quark distribution at x = 0.5 [18]. Therefore, understanding

deuteron nuclear effects is crucial for the determination of Fn
2 /F

p
2 at large x.

In the valence quark region (x & 0.3), the impulse approximation is mostly used to describe

the deuteron structure function. In this approximation, only one nucleon is directly involved in the

scattering process, and the total γ∗D amplitude is factorized into γ∗N and ND amplitudes. So the
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deuteron structure function is a convolution of a smearing function f (y) and the nucleon structure

functions as:

Fd
2 (x,Q

2) (conv) =

∫
dy f (y)[Fp

2 (
x
y
,Q2) + Fn

2 (
x
y
,Q2)]. (2.9)

where f (y) accounts for the Fermi motion and binding effects of the deuteron. As Fn
2 and Fp

2 are

the free nucleon structure functions, an additional off-shell correction that can not be included in

the convolution is added:

Fd
2 = Fd (conv)

2 + δ(off)Fd
2 (2.10)

Figure 2.1: The ratio Fn
2 /F

p
2 extracted from deuteron and proton data with a) only Fermi motion

considered (Bodek et al. [19]), b) Fermi motion, binding effects and off-shell corrections included
(Melnitchouk and Thomas [20]), c) using nuclear density model (Whitlow et al. [21]).

The Fn
2 /F

p
2 extracted from deuteron and proton data using different nuclear models can be quite

different, as shown in Fig.2.1. In the early days the deuteron analysis by Bodek et al. [19], the

nuclear effects were considered to be small as the binding energy of the deuteron is only 2.2 MeV,

while the energy transfer in the scattering process is at GeV level. Only the nucleon Fermi motion

was taken into account in f (y), and the off-shell correction is ignored. This gives the result that
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Fn
2 /F

p
2 → 1/4 as x → 1. However, the discovery of the EMC effect (introduced later) indicates

that nuclear effects inside nuclei are larger than expected, and only including the Fermi motion is

not sufficient, as shown in Fig.2.2 [22]. Melnitchouk and Thomas add the binding effects to f (y)

Figure 2.2: The ratio F2(Fe)/Fd
2 averaged over Q2 as a function of x. The curve shows the the

expected behavior by including the Fermi motion of the nucleons in the nucleus.

and includes the off-shell corrections as Eq.(2.10) [20]. The Fn
2 /F

p
2 extracted is larger than 1/4

and in general consistent with the pQCD expectation of 3/7 as x → 1. An alternative method to

incorporate binding effects performed by Whitlow et al. [21] uses the nuclear density model from

Frankfurt and Strikman [23]. In this model, the EMC effect of the deuteron was assumed to scale

similarly to heavier nuclei according to the ratio of the nuclear densities [12]:

Fd
2

Fp
2 + Fn

2
= 1 +

ρd

ρA − ρd
[
F A

2

Fd
2
− 1] (2.11)

where ρd is the charge density of deuterium nucleus, and ρA and F A
2 are the charge density and

structure function of an atomic number A nucleus. The result of Fn
2 /F

p
2 from this method is
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significantly higher than the others and is close to the SU(6) expectation as x → 1. Melnitchouk

and Thomas point out that even though the extrapolation from heavier nuclei to the deuteron is

qualitatively reasonable, due to the special nature of the deuteron, where the neutron and proton

are far apart, the extrapolation can not be considered quantitatively reliable [20].

A recent study by J. Arrington et al. [24] argues that it is important to account properly for the

Q2 dependence of the data especially for x & 0.7, and some of the variations in Fn
2 /F

p
2 can result

from the inconsistent treatment of kinematics of the data and calculations. Also, a careful study on

the systematic uncertainties of Fn
2 /F

p
2 induced by nuclear effect model dependence is performed

using different wave functions, different smearing models and off-shell predictions [25]. The re-

sults, as shown in Fig.2.3, have a much smaller uncertainty at large x compared with that shown on

Fig.2.1. While the total uncertainty in Fig.2.3 is calculated as a quadrature sum of different kinds

of uncertainties, this may not be reliable since different uncertainties can be correlated. Taking a

linear sum of all uncertainties shown in Fig.2.3 gives the range 0.04 < Fn
2 /F

p
2 < 0.42 at x = 1.

Here, the pQCD prediction is not ruled out.

Figure 2.3: The Fn
2 /F

p
2 ratio together with the uncertainties induced by nuclear effects models.

“Model uncertainty" is the uncertainty from the smearing function and off-shell effects. The red
hatched region corresponds to the uncertainty range in Fig.2.1.
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2.2 The EMC effect

The EMC effect is named after the European Muon Collaboration, who were the first group

to discover the effect, somewhat by accident [11]. Originally, the European Muon Collaboration

performed muon scattering on hydrogen, deuterium and iron targets to measure the structure func-

tions. The use of iron targets was to increase the luminosity. When they compared the iron structure

function FFe
2 to the deuterium structure function Fd

2 per nucleon, the ratio was not unity, as shown

in Fig.2.2, that is to say the nucleon structure function inside the nucleus is modified by the nuclear

medium, and the nuclear effects were significantly larger than expected. After the initial finding,

many experiments have confirmed the features of the EMC effect. A list of experiments can be

found in [26]. After many years, the experimental results for σA/σD per nucleon as a function

of x agree. The prominent features are: the ratio is less than unity at very small x, and rises and

crosses 1 as x ∼ 0.1, then falls to a minimum at x = 0.65 and thereafter rises steeply, as shown

in Fig.2.4. The x region is divided into separate regions: shadowing (x . 0.1, where the ratio is

below unity at very small x), anti-shadowing (around 0.1 . x . 0.28, where the ratio is above 1),

and the EMC effect (x & 0.28, where the ratio is below unity in the middle x). At high x, the rapid

rise presumably comes from the Fermi motion. On the other hand, the EMC effect has weak Q2

dependence, and decreases logarithmically with A [27].

2.2.1 Theoretical models of the EMC effect

The EMC effect suggests that the valence quarks in the nucleus tend to carry a smaller fraction

of the momentum of nucleons than in free nucleons. Many theoretical models attempt to explain

the origin of this trend. They can be divided into five categories: binding and x rescaling models,

pion enhacement models, multiquark clusters models, dynamical rescaling models, and short range

correlation models. The detailed review of the first four categories can be found in [26]. The light

nuclei EMC results from JLab [33], which show that the EMC effect likely depends on the local

nuclear density, have renewed the interest of studying short range correlations in recent years.
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Figure 2.4: The typical EMC effect of a nucleus. The data comes from [27] (solid circles), [28]
(solid squares), [29] (open circles), and [30] (open triangles). The theoretical models are based on
the x rescaling. The solid line is from [31], and the dashed line and dashed-dotted line are from
[32] with values of 〈ε〉 of -26 and -39 MeV, respectively. [26]

Binding and x rescaling models

The models of the binding effects and Fermi motion before the discovery of the EMC effect as-

sumed that the struck nucleon was off-shell and possessed a Fermi momentum, while the rest of

the nucleus, comprising A-1 nucleons, remained in the ground state. However, in general, when a

nucleon is knocked out of a nucleus, the recoil energy will excite the residual nucleus to an excited

state. This is included in the later binding models by defining a separation energy ελ of the struck

nucleon in the orbital specified by λ and a momentum ®p:

ελ = MA − Mλ
A−1 − MN (2.12)

where MA and MN are the mass of the nucleus and the nucleon, and Mλ
A−1 is the mass of the

residual nucleus in the excited state [34]. Then the Bjorken x becomes:

x′ =
Q2

2p′ · q
, (2.13)
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where p′ is (MN + 〈ε〉, ®p), which neglects the recoil nucleus, and 〈ε〉 is the separation energy

averaged over all occupied shells. The off-shell nucleon apparently has a negative 〈ε〉. So x

is smeared by the Fermi momentum ®p and shifted by an amount (−〈ε〉/M). The rescaling of x

is able to explain the EMC ratio RE MC for x > 0.3. However, this approach is criticized for the

improper normalization of the spectral function. Frankfurt and Strikman point out that a flux factor

correction should be applied in a fully relativistic theory, which strongly reduces the effect of 〈ε〉

[35].

The remaining issue in this approach is the values of 〈ε〉. The mean separation energy deter-

mined from single nucleon knockout reactions such as (p, 2p) and (e, e′p) rapidly saturates with

increasing A at around -25 MeV, while -40 MeV has been used to explain the iron data. On the

other hand, some suggest that direct measurements in these reactions may miss the high energy

component generated by nucleon correlations [26]. The short-range and tensor correlations result-

ing from realistic nucleon-nucleon interactions strongly increase the mean separation energy, and

as a result the agreement with data is partially recovered [36]. However, the agreement between

the model and the data is only qualitative, as shown in Fig.2.4. It is difficult to simultaneously

satisfy agreement in multiple x regions.

Pion enhancement models

In the nucleus, the nucleons are bound together presumably by the exchange of mesons, mostly

pions. The nucleus’ momentum is shared between the nucleons and pions. An increase in the num-

ber of virtual pions as A increases can produce an EMC effect at small x, implying a depletion at

large x through momentum conservation. The nuclear structure function per nucleon is calculated

by summing over the nucleon structure function and the pion structure function in a convolution

formalism:

F A
2 (x) =

∫ 1

x/A
fN (z)FN

2 (
x

Az
)dz +

∫ 1

x/A
fπ(z)Fπ

2 (
x

Az
)dz, (2.14)

where z is the momentum fraction carried by the nucleon or pion, fN (z) and fπ(z) are the mo-

mentum distributions of nucleons and pions, FN
2 and Fπ

2 are the free nucleon and pion structure
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function. The agreement between the pion models and the data are qualitatively good, as shown in

Fig.2.5 [26]. However, the evidence for the pion fields enhancement hasn’t been found so far. For

example, the enhancement of pion fields naturally indicates an enhancement of the sea quarks in

nuclei. This contradicts the results from Drell-Yan experiments, which found no evidence for an

enhancement of anti-quarks [37].

Figure 2.5: Comparison between EMC effect data and the pion enhancement models. The data are
the same as Fig.2.4. The solid line is from [38], and the dashed line is from [39].

Multiquark clusters models

In dense nuclei, the nucleons are tightly packed so part of the nucleons can be viewed and treated as

multiquark clusters. Color-singlet states can be made of 6, 9, 12 etc quarks. The nuclear structure

function per nucleon is then expressed as the sum over nucleons and six-quark clusters (and can be

extended to larger clusters):

F A
2 (x) =

∫ 1

x/A
fN (z)FN

2 (
x

Az
)dz +

∫ 1

x/A
f6(z)F6

2 (
x

Az
)dz, (2.15)
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where f6(z) is the momentum distribution of the six-quark clusters, and F6
2 is the six-quark struc-

ture function. The normalization:

∫
fN (z)dz = 1 − p ,

∫
f6(z)dz = p (2.16)

gives the probability of forming six-quark clusters inside a nucleus, which reflects the fraction of

the time that the nucleons are found very close together with overlapping wave functions. For

the structure function of six-quark clusters, one can get an idea from [40] which gives F2(x) ∼

(1 − x)2n−1 where n is the number of spectator quarks. Since 6q clusters have 5 spectator quarks

and the range of x is extended to 2, the 6q structure function can be F6
2 (x) ∼ (1 − x/2)9 [26].

This formula is only expected to be valid at large x. It shows that F6
2 is softer than the nucleon

structure function, which leads to the depletion of the iron structure function, and it has a hard tail

that explains the rapid rise in RE MC at very large x. A comparison with data is shown in Fig.2.6.

Figure 2.6: Comparison between EMC effect data and the quark cluster model. The data are the
same as Fig.2.4. The solid line is from [41], and the dashed line is from [42].

However, there is no evidence found for the existence of multiquark clusters. Their struc-

ture function and momentum distribution require guessing, and are sensitive to many parameters.
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Therefore, this approach does not have much predictive power.

Dynamical rescaling models

It was found that the discrepancy between FFe
2 and Fd

2 largely disappears if the comparison is made

between the deuterium data at Q2 and the iron data at Q2/2 [43]. This suggests that the EMC effect

might be due to the deconfinement of quarks and gluons inside a nucleus compared to that in a free

nucleon. In the framework of pQCD, such a change in confinement scale leads to the rescaling

relation between nuclear structure functions as [43]:

1
A′

F A′
2 (x,Q

2) =
1
A

F A
2 (x, ξAA′(Q2)Q2) (2.17)

where ξAA′ is the “rescaling parameter" given by:

ξAA′(Q2) =
(λ2

A′

λ2
A

)αs(µ2
A′
)/αs(Q2)

. (2.18)

where αs is the QCD running coupling constant, and λA is the confinement scale. The renormal-

ization scale µA occurs when the nucleon only consists of valence quarks and no gluons radiated.

The relation between λA and µA is given by:

µ2
A′ =

( λ2
A

λ2
A′

)
µ2

A (2.19)

λA is obtained by assuming that the change in the confinement size is proportional to the probability

that two nucleons overlap with one another.

The EMC effect predicted from Eq.(2.17) has good agreement with data at intermediate x,

although it predicts a smaller crossing point when RE MC = 1 at ∼ 0.25, as shown in Fig.2.7. It is

not applicable at small and very large x where substantial next-to-leading order QCD corrections

need to be considered. One explanation for the change in quark confinement size is that the bound

nucleon size increases relative to the free one, referred to as nucleon “swelling". However, the
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change of nucleon size should also lead to a change in the elastic form factors, for which no

experimental evidence has been found [27].

Figure 2.7: Comparison between EMC effect data and the dynamic scaling model. The data are
the same as Fig.2.4. The solid line and dashed line are from [43] for different ranges of Q2 corre-
sponding to the SLAC and EMC data, respectively.

Short range correlation model

When the measurement of the cross section ratio (σA/A)/(σd/2) is extended to x > 1 region, a

plateau is observed at x & 1.45, as shown in Fig.2.8a. The plateau have been attributed to the

nucleon-nucleon short range correlations (SRC), in which two nucleons occasionally get close

enough and form a NN pair such that their interactions cannot be explained by a mean field.

It has been shown in electron quasi-elastic scattering experiments that SRC pairing (mostly np

pairs) shifts nucleons from low-momentum nuclear states to high-momentum states with momenta

greater than the nuclear Fermi momentum [44]. The amplitude of the plateau, which represents the

SRC scale factor compared to the deuteron, is independent of Q2 as well, making SRC phenomena

seem related to the EMC effect. From the experimental measurements, it was found that the slope

of the EMC effect is proportional to the amplitude of the SRC plateau, as shown in Fig.2.8b. As

a result, the EMC effect can be understood as being driven by the high virtuality of the SRC pairs

[46] or by the nuclear local density [47]. The predictions from both phenomenological models
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(a) The nuclei cross section ratios in quasi-
elastic region. The red line is the fit of the
plateau. [44]

(b) The slope of the EMC effect plotted vs the
SRC scale factor for a variety of nuclei. [45]

Figure 2.8: The short range correlations and the EMC effect.

agree with the data. While the local density model assumes the EMC effect is isospin independent,

the high virtuality model assumes it is isospin dependent. Further experiments are needed to fully

distinguish between the two.

The theoretical and phenomenological models mentioned above are able to qualitatively de-

scribe the EMC effect data. However, no clear evidence is found yet to support any of the micro-

scopic features assumed by the models. In addition, it is hard for the theoretical models to agree

with the EMC effect data without spoiling other relevant nuclear properties.

2.3 The MARATHON experiment

Considering the importance for the determination of the nucleon structure function ratio Fn
2 /F

p
2

at large x (x > 0.7), and the large uncertainty for nuclear effects in the deuteron, the MARATHON

experiment puts forward a novel method. Instead of using a deuteron target, it performs electron

deep inelastic scattering on the tritium (3H) and helium-3 (3He) targets over the x range from

0.17 to 0.82. The cross section for the scattering process is determined by the nuclear structure
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functions:

d2

dΩdE′
(E, E′, θ) =

4α2E′2

Q4 cos2(
θ

2
)

[
F2(ν,Q2

ν
+

2F1(ν,Q2)

M
tan2(

θ

2
)

]
(2.20)

where α is the fine-structure constant, E is the incident electron energy, E′ and θ are the scattering

energy and angle of the scattered electron. The structure function of 3H and 3He can be extracted

from the experimental cross sections. Then the ratio Fn
2 /F

p
2 is extracted from the ratio F

3H
2 /F

3H
2

(introduced in Chapter 5), where it requires a theoretical prediction for the EMC effect difference

between 3H and 3He. Because 3H and 3He are mirror nuclei, the difference should be small.

Thus, the results is expected to have much less nuclear physics model dependence than with a

deuteron target. On the other hand, we also perform DIS on the deuteron target in the MARATHON

experiment. So the EMC effect of 3H and 3He are able to be measured. It is widely accepted that

the understanding of the structure functions of the simplest nuclei is the first step to a complete

understanding of the EMC effect.
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Chapter 3: Experimental Setup

3.1 Introduction

In order to access the high x region (x ∼ 0.83), both W2 and Q2 must be sufficiently large.

Conventionally, Q2 > 1 − 2 GeV2 and W2 > 3 − 4 GeV2 is considered as the DIS region [48].

In order to meet the requirement for deep inelastic scattering, the energy of the incident electron

should be large (≥ 8.5 GeV). At the same time, since the scattering cross section decreases as the

incident electron energy increases, to accumulate sufficient statistics, the beam energy shouldn’t

be too high. Hence, the upgraded 11 GeV electron beam at Jefferson Lab (JLab) combined with

a pair of identical 4.0 GeV/c High Resolution Spectrometers (HRS) in Hall A provide the best

system to measure the nucleon structure functions in the large x region.

The MARATHON experiment completed data taking in the spring of 2018. During the experi-

ment, the beam energy was kept at 10.6 GeV. The 3He, 3H and 2H data were taken at 12 kinematic

points, while the 1H data was only taken at five kinematic points (x ∼ 0.2 − 0.338). The total x

range covered is from 0.2 to 0.82. A complete list of kinematic is shown in Table 3.1. The distri-

butions of W2 and Q2 versus x are shown in Fig.3.1 and Fig.3.2. A W2 > 3 GeV2 cut is applied to

make sure that the scattering is in the DIS region.

The experimental setup and its calibrations will be introduced in the following sections.

3.2 Accelerator

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jlab is comprised of two anti-

parallel linear accelerators (linacs) linked by multiple recirculation beam lines [49]. Unlike the

pulsed beam typical of ring shaped accelerators, the CEBAF accelerator is capable of sending

continuous wave (CW) beam up to 200 µA, resulting in high luminosity. From 1995 to 2012, the
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Figure 3.1: W2 vs. x distribution in the MARATHON experiment

Figure 3.2: Q2 vs. x distribution in the MARATHON experiment
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Kinematics x W2 (GeV2) Q2 (GeV2) θ (◦) E′ (GeV) HRS
kin0 0.200 12.14 2.81 16.81 3.1 L
kin1 0.218 11.89 3.07 17.58 3.1 L
kin1* 0.199 12.45 2.87 17.58 2.9 R
kin2 0.258 11.32 3.63 19.14 3.1 L
kin3 0.298 10.76 4.19 20.58 3.1 L
kin4 0.338 10.20 4.76 21.93 3.1 L
kin5 0.378 9.63 5.32 23.21 3.1 L
kin7 0.458 8.51 6.45 25.59 3.1 L
kin9 0.538 7.38 7.57 27.77 3.1 L
kin11 0.618 6.26 8.70 29.81 3.1 L
kin13 0.698 5.13 9.82 31.73 3.1 L
kin15 0.778 4.00 10.95 33.55 3.1 L
kin16 0.818 3.51 11.82 36.12 2.9 R

* Kin1 RHRS data is used for RHRS calibration only. It’s not included in
the physics analysis.

Table 3.1: The kinematics of the MARATHON experiment

CEBAF was running in a 6 GeV configuration. It delivered electron beams up to 6 GeV to three

experimental halls (Hall A, B, C). In 2017, JLab completed the 12 GeV upgrade project by largely

making use of the existing CEBAF. During the 12 GeV upgrade, 5 high performance cryomodules

were added in each linac, and a new arc was added for the newly built experimental Hall D. The

schematic of the upgrade is shown in Fig.3.3.

A detailed diagram of the accelerator is shown in Fig.3.4. The electron beam, which can be

polarized or unpolarized, is produced at the injector by illuminating a photocathode and the beam

is then injected into the north linac. The recirculating beam lines send the beam multiple times

through the linac, where the electron gains around 1.1 GeV energy in each pass. After passing

through the south linac, the beam is directed to one of the experimental halls (Hall A, B, C) or sent

through for additional recirculation. Since there are five recirculation beam lines in the east arc,

the beam energies available to experimental Halls A, B, and C are 2.2 GeV, 4.4 GeV, 6.6 GeV, 8.8

GeV and 11 GeV, which are called energy pass 1, 2, 3, 4, and 5. The accelerator can deliver the

first four passes to a single hall. The fifth pass can be delivered to all four halls simultaneously.

With the newly added arc in the west arc, the fifth pass electron sent to Hall D is accelerated one
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Figure 3.3: CEBAF 12 GeV upgrade schematic

Figure 3.4: CEBAF overview [50]
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Figure 3.5: Hall A configuration during the MARATHON experiment

more time through the north linac. The beam energy for Hall D is around 12 GeV, and it is used to

generate a 9 GeV photon beam for hadron spectroscopy study.

3.3 Hall A overview

The basic layout of Hall A during the MARATHON experiment is shown in Fig.3.5. The beam

line transports the beam onto the target. Then the two HRS and the detector packages are used to

detect the scattered electrons, while the remaining beam goes to the beam dump. Details of these

devices are discussed in the following sections.

3.4 Hall A arc and beam line

At the end of the south linac, the beam is extracted to transport lines and then deflected into

the Hall A arc. The Hall A arc then bends the beam into the Hall A beam line. The arc is also
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used for the beam energy measurement. After the arc, the beam is essentially undeflected onto the

target. Along the Hall A beam line, there is a Beam Current Monitor (BCM), a pair of rasters and

two Beam Position Monitors (BPMs). These elements are necessary to transport the electron beam

onto the target and simultaneously monitor the accuracy of the beam energy, current and position.

3.4.1 Beam energy measurement

The absolute beam energy can be measured using the curvature of the arc. The Hall A arc

is a composite of eight dipoles interspersed with quadruploes and sextupoles. The nominal bend

angle of the beam in the arc section is 34.3◦, (see Fig.3.6). The concept behind the measurement is

that the momentum of the beam (p) is proportional to the product of the field integral of the eight

dipoles (
∫ −→

B ·
−→
dl) and the net bend angle through the arc section (θ):

p = k

∫ −→
B ·
−→
dl

θ
(3.1)

where k=0.299792 GeV rad T−1 m−1/c [51]. The magnetic field integral of the bending elements

(eight dipoles) is measured based on a reference magnet (9th dipole), and the actual bend angle can

be measured either when the beam is in the dispersive or achromatic mode. In the disperive mode,

only dipoles are turned on. The bend angle is determined by performing harp scans with a set of

wire scanners located at the entrance and exit of the arc section. The achromatic mode occurs when

both dipoles and multipoles are turned on to keep the beam size optimal for production data. The

bend angle is then determined by the beam position monitors along the arc. The accuracy of the

measurement in the dispersive mode (δEbeam/Ebeam ∼ 2 × 10−4) is better than that in achromatic

mode (δEbeam/Ebeam ∼ 5× 10−4), but it is an invasive measurement. During a harp scan, the harps

move across the beam allowing for a precise measurement of the beam position.

The beam energy inserted in the data stream for each run is measured relatively to a nominal

momentum p0, which is calibrated to the absolute measurement. Knowing the beam positions

along the arc and the currents of the magnets, the deviation from the central momentum δp is
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Figure 3.6: Hall A arc section

determined. The beam energy becomes p0+ δp. The precision of this approach is around 5×10−4.

The Arc method was performed multiple times during the Hall A GMP experiment, which took

data at each beam energy pass (just prior to the MARATHON experiment). A comparison between

the beam energy of pass 1, 3, 4, and 5 from Arc method and the relative method can be found in

the Table 2.2 of Ref. [52]. The results show good agreement.

3.4.2 Beam Current Monitor

The Beam Current Monitor (BCM) is designed for a stable, low-noise, non-interfering beam

current measurement [51]. It includes an Unser monitor, two RF cavities and associated elec-

tronics. Both the Unser monitor and the two RF cavities can be used to determine the current

absolutely. The Unser monitor is a Parametric Current Transformer, which responds to the passed

DC current with good linearity. The gain of the Unser can be calibrated by passing a known DC

current from the current supplier in the counting house to a wire inside the beam pipe. The nominal

output is 4 mV/µA. This level output is sent to a Voltage-To-Frequency (VTOF) converter whose

output frequency is proportional to the input DC voltage level and then fed to the scalers. While

the gain of the Unser monitor is stable within 0.1%, its offset drifts significantly on a time scale of
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several minutes. Therefore, it cannot be used to continuously monitor the beam current. Instead,

the Unser monitor provides an absolute reference during the calibration of the two RF cavities.

Two cylindrical RF cavities are located on either side of the Unser Monitor. They are tuned to

the frequency of the beam (1.497 GHz) with a large loop antenna inside the cavity. When beam

passes through the cavity, the output signals from the loop antenna is proportional to the beam

current. The output of each RF cavities is split into two parts. One part goes to a 1 MHz down

converter, as the frequency of the output signal is 1.497 GHz. Then the signal is sent to three

amplifiers (×1, ×3, ×10), each of which covers a different linear region, so that the total linear

region for current is from about 3 µA to 200 µA. The amplifiers outputs are sent to an RMS-to-DC

converter, and the resulting analog DC voltage is sent to a VTOF converter. These signals are then

fed to scalers and inserted into the data stream. The other part of the RF cavity output is sent to

a digital receiver which covers the full current range with high linearity. Its output is also sent to

scalers and inserted in the data stream. The schematic of BCM is shown in Fig.3.7.

The gain and offset of the RF cavity can be measured by passing through an electron current

with the measurement from Unser monitor as an absolute reference. Then the time-accumulated

charge can be calculated from the scaler counts:

Q = I · t = (gain ·
BCM counts

t
+ offset) · t (3.2)

where I is the beam current that is proportional to the BCM rate, and t = clock counts
f0

. A clock

signal with frequency f0 = 103700 Hz is sent to both spectrometers. BCM and clock signals are

counted by scalers. In the data analysis, the measurement from the down stream digital receiver is

used.

3.4.3 Raster and Beam Position Monitor

The beam size from the accelerator is about hundred micro-meters [51]. It can cause damage to

the target cell at high currents. To minimize this, the electron beam is usually rastered to a diameter

of a few mm. The raster is a pair of horizontal (X) and vertical (Y) dipoles which deflect the beam
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Figure 3.7: Beam Current Monitors [53]

at 25 kHz in the X and Y directions. The ratio of frequencies fX/ fY should be an irrational number

in order to get a Lissajous pattern, so that the beam is deflected uniformly in every direction. Due

to the high beam energy of the MARATHON experiment, two rasters are synchronized to produce

a 2 mm × 2 mm square pattern. It’s shown in Fig.3.8.

Figure 3.8: Rastered beam y vs. beam x

After the rasters, two Beam Position Monitors (BPMs) and two wire scanners (superharps)

are located upstream of the target. All are used to measure the beam position absolutely and the

beam direction is then extracted from the pair. The design of superharps is shown in Fig.3.9. The
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superharps positions are surveyed with respect to the Hall A coordinates at regular internals and

the results are reproducible at the level of 200 µm [51]. Each harp contains three wires which

can be moved in and out of the beam line by a motor driver at a known speed. A peak signal is

generated when a wire crosses the beam. Therefore, from the peak signal’s relative position and

the surveyed harp’s absolute position, the absolute beam position can be determined. This method

is invasive. It cannot be used during data taking. Instead, it provides an absolute reference to the

BPMs calibration.

Figure 3.9: Superharp design

The BPM consists of a 4-wire antenna array of open ended thin wire striplines tuned to the fun-

damental RF frequency of 1.497 GHz of the beam [54]. When beam passes through the BPM, the

signal amplitude picked up by each antenna is related to the relative beam position and direction.

The BPMs data is recorded event by event in the data stream. During the BPMs calibration, the

beam position (with raster off) is first determined by a harp scan, and then the absolute measure-

ment from the superharps is used to calibrate the BPMs data that is taken simultaneously.

Since the BPMs only provide the average beam position, the event-by-event beam position has

to be constructed by combining the information from BPMs and rasters. The rasters are calibrated

by using the BPMs as a reference or a carbon hole target of which the size is known. A similar

detailed calibration procedure of superharps, BPMs and rasters is found in Ref.[55].

3.5 Target

The target system includes five cells of gaseous 3H, 3He, 2H, 1H and an empty cell for back-

ground studies. Several solid targets are hung below the cells and used for calibrations. The target
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ladder is shown in Fig.3.10 and a list of targets used in the MARATHON experiment and their

purpose are shown in Table 3.2.

Figure 3.10: Target ladder

Target name Materials Thickness (mg/cm2) Purpose
Tritium 3H gas 85.099 ± 0.825 Production
Helium3 3He gas 53.3752 ± 0.57 Production

Deuterium 2H gas 142.15 ± 0.788 Production
Hydrogen 1H gas 70.8 ± 0.3974 Production
Empty cell Aluminum 7075 - Background study

25 cm Dummy Aluminum 7075 - Background study
Optics Carbon 99.95% (muti-foils) Optics study

Carbon hole Carbon 99.95% - Raster calibration
and beam alignment

Carbon Carbon 99.95% (single foil) Raster calibration

Table 3.2: A list of targets used in MARATHON

Tritium is radioactive. For safety reason, the amount of tritium in the target was limited to a

radioactivity of approximately 1 kCi = 37 TBq. A special target system was designed to minimize

the safety hazards associated with the tritium target. The system consists of three layers of con-

tainment/confinement during the operation, which include a sealed target cell, a scattering chamber

and the Hall itself. The target cells are of a modular design (see Fig.3.11). This design made the

installation of the target system easy and allowed the tritium cell to be installed after all other tar-
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Figure 3.11: Tritium target cell design

get installation activities had been completed. It also allowed the tritium cell to be filled off site

at the Savannah River site tritium Enterprises (SRTE). The target ladder was put inside a sealed

scattering chamber which was part of the target vacuum system. The vacuum system included a

beryllium window to isolate the scattering chamber vacuum from the upstream beam line. The

beryllium window needed to be considered in the beam energy loss correction. As the final layer

of containment/confinement, all the doors of the Hall were locked. In case of an accidental release

of tritium, an exhaust system was installed to be able to remove tritium in a controlled manner.

Since the target cells are sealed, the cell assemblies are cooled by a heat sink. Coolant 15K helium

from the End Station Refrigerator (ESR) is preheated to 40K and then used to cool the heat sink.

This removes ∼ 15W of heat generated by the electron beam. The beam current allowed on the

tritium cell was limited to a maximum of 22 µA. A detailed description of the Hall A Tritium

Target systems can be found in Reference [56].

The gas target thickness is one of the dominant scale uncertainties in cross section ratio extrac-

tion. The target thickness of 2H, 1H are determined by the NIST table using equation of states. For

3He and 3H, the temperature and pressures during the fill at room temperature are used assuming

the ideal gas law. The relative uncertainty for the target thickness is 0.6% for 1H and 2H, 1.1% for

3He, and 1% for 3H [57].

3.6 Hall A High Resolution Spectrometers

In order to isolate different reaction channels, two identical HRS were constructed to verti-

cally bend charged particles and determine their momenta with a high momentum resolution (at
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Figure 3.12: The layout of a HRS (side view)(the numbers in the plot are out of date)

the 10−4 level) over the range 0.8 to 4.0 GeV/c. The basic layout is shown in Fig.3.12. This

figure corresponds to the original design of a HRS. The numbers on the plot have been changed

somewhat over the years. For example, the Q1 quadrupoles in both spectrometers have been re-

placed in 2016. Each of the HRSs includes a pair of superconducting quadrupoles followed by an

indexed dipole magnet which includes additional focusing. Following the dipole is a third super-

conducting quadrupole that is identical to the second one. The left HRS (LHRS) magnets operated

as expected, while the right HRS (RHRS) was only able to reach a maximum central momentum

of about 3.16 GeV/c, due to complications caused by an internal short in the dipole. During the

MARATHON experiment, the RHRS could only operate and remain stable at 2.9 GeV/c. The main

design characteristics of the HRS are shown in Fig.3.13 [51].

3.6.1 Scattering angle and momentum measurement

To extract the differential cross section, the scattering angle and the scattering momentum need

to be measured. If the position and direction of the scattered particle (xtg, ytg, θtg, φtg, see Fig.3.15)

at the interaction vertex are determined, the scattering angle can be calculated by combining θtg

and φtg (measured relative to the central ray of the spectrometer), and the spectrometer central

43



Figure 3.13: Main design characteristics of the HRS.

angle θ0 between the beam line and the spectrometer nominal central ray [51]:

θscat = arccos(
cos(θ0) − φtgsin(θ0)√

1 + θ2
tg + φ

2
tg

) (3.3)

where θ0 can be obtained either from the spectrometer survey or data from the Experimental

Physics and Industrial Control System (EPICS). Since a survey requires hours of beam down-

time, it is impossible to be performed for each run. In the MARATHON experiment, θ0 and the

spectrometer mispointing offsets are determined by three linear variable differential transformer

(LVDT) and an encoder located around the spectrometer. Their values are monitored by EPICS

and inserted in the data stream every few seconds.

Similarly, if the relative momentum fractional difference δ for the scattered particle is mea-

sured, it can be used to calculate the absolute scattering momentum p:

p = p0(1 + δ) (3.4)
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where p0 is the central momentum of the spectrometer. The central momentum p0 is determined

by multiplying the central magnetic field measured by NMR probes in the dipole by a calibration

constant[58]. This spectrometer central momentum was cross checked with using constants de-

termined by performing elastic scattering on 12C target and missing-energy measurements of the

1p1/2 state in the 12C(e,e’p) reaction [59].

While θ0 and p0 are determined by EPICS data at the beginning of each run, xtg, ytg, θtg,

φtg and δ are measured on an event by event basis. The trajectory of a charged particle passing

through a series of magnets is represented by a vector ®x = (x, y, θ, φ, δ) [51]. The interaction

vertex at the spectrometer entrance can be reconstructed from the coordinates of the scattered

particles measured at the focal plane through an optics matrix. The HRS magnets tuning of the

MARATHON experiment is the same as the GMP experiment, and they have optics data taken

around 3.1 GeV/c. To save beam time, we use the optics matrix from the GMP experiment in the

data analysis [52]. While part of the target boiling data was taken in 2017 with slightly different

magnets tuning, the optics matrix used in that part of analysis is from our optics calibration. The

basic idea of optics calibration is introduced in the following sections, while the details are found

in [52] and [60].

3.6.2 Coordinate systems and optics matrix

The variables used in the optics calibration are measured in different coordinate systems. A

short overview of five commonly used coordinate systems is presented here. A more detailed

description can be found in [60].

• Hall Coordinate System (HCS) The origin of the HCS is at the center of the hall, which

is defined by the intersection of the beam line and the vertical symmetry axis of the target

system. ẑ is along the beam line and points to the beam dump. ŷ is vertically up. See

Fig.3.14.

• Target Coordinate System (TCS) Each of the two spectrometers has its own TCS. ẑ is

along the central ray of the spectrometer and points away from the target. x̂ is vertically
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Figure 3.14: Hall coordinate system (top view)

down. The origin of TCS is defined to be the point on ẑ axis at a distance L from the sieve

slit surface of the spectrometer, where L is the distance from the hall center to the midpoint

of the central sieve slit hole. See Fig.3.15. Ideally, the origin of TCS should be at the hall

center.

Figure 3.15: Target coordinate system (top view)

• Detector Coordinate System (DCS) The intersection of wire 184 of the VDC1 U1 plane

and the perpendicular projection of wire 184 in the VDC1 V1 plane onto the VDC1 U1 plane

defines the origin of the DCS. (VDC will be introduced in section 3.7.1). ẑ is perpendicular

to the VDC plane pointing vertically up. x̂ is along the long symmetry axis of the VDC. The

x̂-ẑ plane is also called dispersive plane. See Fig.3.16.

• Transport coordinate system (TRCS) at the focal plane Rotating the DCS clockwise
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(a) Side view

(b) Top view

Figure 3.16: Detector coordinate system

around its y-axis by 45◦ generates the TRCS. See Fig.3.17.

• Focal plane Coordinate System (FCS) To simplify the optics calibration, a rotated coordi-

nate system FCS is defined. It’s obtained by rotating the DCS around its y-axis by an angle

ρ, where ρ is the angle between the local central ray1 and the ẑ axis of the DCS. So the ẑ

axis of the FCS rotates as a function of the fractional relative momentum ∆p
p . See Fig.3.18.

For each event, xdet , ydet , θdet and φdet are measured by VDC in DCS. Then these focal plane

variables are corrected for any detector offsets from the ideal central ray of the spectrometer to ob-

tain x f p, y f p, θ f p and φ f p in FCS. The transform formula can be found in [60]. These observables

are used to calculate xtg, ytg, θtg, φtg and δ in TCS. In optics calibration (raster off), in order to

reduce the unknowns, xtg is effectively fixed at zero by requiring that the beam position on target

1The ray with θtg = φtg = 0
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Figure 3.17: Transport coordinate system (side view)

Figure 3.18: Focal plane (rotated) coordinate system (side view)

is within 250 µm of the origin of HCS. Then a set of tensors (up to fifth order) Yj kl , Tj kl , Pj kl and

D j kl link the focal plane coordinates to target coordinates according to:

ytg =
∑
j,k,l

Yj klθ
j
f py

k
f pφ

l
f p (3.5)

θtg =
∑
j,k,l

Tj klθ
j
f py

k
f pφ

l
f p (3.6)

φtg =
∑
j,k,l

Pj klθ
j
f py

k
f pφ

l
f p (3.7)

δ =
∑
j,k,l

D j klθ
j
f py

k
f pφ

l
f p (3.8)
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where Yj kl , Tj kl , Pj kl and D j kl are polynomials in x f p. For example,

Yj kl =

m∑
i=0

Ci xi
f p. (3.9)

The CYjkl

i , CTjkl

i , CPjkl

i and CDjkl

i are the optics matrix elements which are optimized in the optics

calibrations.

3.6.3 Optics calibrations

The calibrations for the optics matrix elements of geometric variables y, θ and φ are done by

performing DIS scattering on a multi-foil target, with a sieve slit placed in front of the spectrometer

and the raster turned off. The sieve is about an inch thick made of Tungsten with holes drilled in

a grid pattern, see Fig.3.19a. The scattered electrons are stopped by the metal, except those whose

tracks pass through the holes and reach the focal plane detectors. In practice, it is not convenient to

use the basic variables ytg, θtg, φtg, since the ytg varies with φtg. On the other hand, the interaction

position zreact along the beam corresponds to the z position of the foil target in HCS. The vertical

and horizontal positions at the sieve plane in TCS, xsieve and ysieve (see Fig.3.15), represent the

positions of the holes in the sieve-slit collimator. These three variables are uniquely determined

for the given targets and the sieve slit. They are linked to the basic variables through the equations:

zreact = −(ytg + D)
cos(arctanφtg)

sin(θ0 + arctanφtg)
+ xbeamcot(θ0 + arctanφtg) (3.10)

ysieve = ytg + Lφtg (3.11)

xsieve = xtg + Lθtg (3.12)

where xbeam is the beam position in HCS measured by BPM. xtg is calculated using the beam posi-

tion in the vertical direction, the vertical displacement of the spectrometer from its ideal position,
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θtg and zreact . Once zreact , xsieve, ysieve are known from the survey, and xdet , ydet , θdet , φdet are

measured by the focal plane detectors, the optics matrix elements are determined from Eq.(3.5),

Eq.(3.6) and Eq.(3.7) by a χ2 minimization procedure. An example of reconstructed sieve pattern

after calibration is shown in Fig.3.19b.

(a) Geometric configurations of the sieve slit (b) Reconstructed configuration of the sieve slit

Figure 3.19: The sieve slit collimator

The δ calibration in the GMP experiment was done by performing elastic scattering on a liquid

hydrogen target with sieve removed. The raster was turned on to protect the target. The central

momentum of the spectrometer was adjusted from -4% to 4% in steps of 2%, so that the elastic

peak moves across the focal plane and covers the whole momentum acceptance. By comparing the

scattering momentum calculated from the elastic scattering formula with that reconstructed from

eq.(3.8), the optics matrix elements for δ are determined.

3.7 Detector package

The detector packages for the two spectrometers are designed to perform various functions

including providing triggers to the data acquisition (DAQ) system and characterizing the charged

particles passing through the spectrometer. In the MARATHON experiment, the detector package

includes:
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• A pair of Vertical Drift Chambers (VDCs) to provide tracking information;

• Two scintillators (s0 and s2) to provide timing information and generate the main trigger to

the DAQ;

• A gas Cherenkov and two-layer shower detectors for electron identification.

The configurations of the detector packages in both spectrometers are shown in Fig.3.20. They

are almost identical except for the shower detectors.

(a) Detector package of LHRS
(b) Detector package of RHRS

Figure 3.20: Detector package in MARATHON

3.7.1 Vertical Drift Chamber (VDC)

A pair of VDCs in each HRS provides the tracking information (position and direction) of the

scattered particle at the focal plane. Each VDC is composed of two wire planes in a standard UV

configuration—the wires of each successive plane are perpendicular to one another. The VDC lies

in the laboratory horizontal plane. The wires are inclined at an angle of 45◦ with respect to the

dispersive and non-dispersive directions. Nominally, the particle trajectory crossing the wire plane

is at an angle of 45◦. See Fig.3.21.
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Figure 3.21: Schematic layout of VDCs

For a single wire plane, the sense wires are connected to ground and are placed horizontally

between two high voltage planes. This configuration generates a uniform electric field in the

vertical direction (the solid line in Fig.3.22). The chamber is filled with a gas mixture of argon

and ethane. Charged particles passing through the chamber gas cause ionization. In the electric

field, the ionized electrons travel from the trajectory to the sense wires along the path of least time

(the arrowed lines in Fig.3.22). When an electron is collected by a sense wire, the wire generates a

signal. The timing of this signal is measured by TDC, which is referenced to the main event trigger.

This time can be converted into a perpendicular distance from the trajectory to the wire plane (the

dot/dashed line in Fig.3.22). By performing a linear fit on these drift distances, the local cross-over

point Qi and the local trajectory angle θQi of the track is determined for each wire plane [61]. By

combining the cross-over information from the four wire planes, the position and direction of the

trajectory at the first wire plane can be determined.

A single wire drift-time spectrum in common-stop mode is shown in Fig.3.23. A larger x-axis

value represents a shorter time. The timing offset t0 is due to the signal processing time and various

cable lengths. Before comparing the drift time from different wires, the timing offset t0 has to be

subtracted. The variable t0 corresponds to the value of the bin which has the largest slope on the
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right side of the main peak.

Figure 3.22: A nominal track in a wire plane

3.7.2 Scintillators

There are two scintillator planes (S0 and S2) installed in the MARATHON experiment. When

a particle passes through the scintillator materials, a small flash of light is emitted and collected by

the photomultiplier tubes (PMTs). The signals from the PMTs are measured by both ADCs and

TDCs, and are used to generate the event trigger (see Section 3.8.1). The timing information of S0

and S2 combined with the distance between them can be used to measure the speed of particles (β).

β helps distinguish a cosmic event (β < 0) from a physics event (β > 0). The timing calibration

method is described in Section 3.3.3 in [52]. S0 is located just in front of the Cherenkov. It is an

un-segmented scintillator plane with two PMTs on each side along the dispersive direction. See

Fig.3.24a. S2 is located after the Cherenkov and is composed of 16 paddles. The paddles are

arranged to provide segmentation along the dispersive direction. Each paddle is viewed by two

PMTs on each side along the non-dispersive direction. See Fig.3.24b.

53



Figure 3.23: A single wire drift-time spectrum in common-stop mode [61]

3.7.3 Gas Cherenkov Detector

In the MARATHON experiment, a gas Cherenkov detector filled with CO2 was mounted be-

tween S0 and S2. It allows for an electron identification with 99% efficiency [51]. The gas

Cherenkov is used to distinguish scattered electrons from hadron backgrounds. The background

is largely composed of pions generated from photopion production which can pass through the

spectrometer, be reconstructed back to the target and fake being an electron.

Cherenkov radiation arises when the speed of the charged particle (v) in the detector material

is faster than the speed of light in the same material (v > c/n). For CO2 gas Cherenkov, the index

of refraction at STP is n=1.00041. The threshold momentum for electron to produce Cherenkov

light is 0.017 GeV/c, whereas for pions the threshold is 4.8 GeV/c [62].

The Cherenkov detector has ten spherical mirrors with 80 cm focal length, each viewed by a

PMT. The 10 mirrors are placed in front of the exit window for the detector and are arranged in

two columns of 5 mirrors. The Cherenkov ring emitted by the electron is reflected by the mirrors

onto the paired PMTs placed at the side of the box. See Fig.3.25. The signal from each PMT is
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(a) The layout of S0

(b) The layout of S2 (top view)

Figure 3.24: Scintillators

recorded by an ADC. The sum of the ADC values from 10 PMTs is proportional to the total number

of photoelectrons collected. The length of the particle’s path in the gas radiator in the LHRS is 120

cm, and 130 cm in the RHRS, leading to an average of about 12 emitted photoelectrons. Since the

gain of different PMTs varies, it was calibrated for each PMT before summing. The gain of each

PMT is determined by normalizing the single photoelectron peak to the same value.

While the pions does not emit Cherenkov radiation, energetic knock-on electrons produced by

pions become a dominant contamination. However, in order to produce Cherenkov light that can

cross the mirror and be reflected to the PMT, and generate a trigger (fire S0 and S2), the knock-on

electrons have to satisfy strict conditions. Therefore, the contamination is small (about 10−3) [62].

3.7.4 Shower detectors

The shower detectors provide additional particle identification (PID) information to separate

electrons from backgrounds. The shower detectors are built from lead glass. Each HRS has two

layers. The configurations of shower detectors in each HRS are shown in Fig.3.26. In LHRS, each
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Figure 3.25: Front view and side view of Gas Cherenkov Detector

layer has 2×17=34 blocks and the blocks are oriented perpendicular to the tracks. In RHRS, the

first layer has 2×24=48 blocks, and the blocks are arranged the same way as LHRS, while the

second layer has 5×15=75 blocks and they are parallel to the tracks. Each block is viewed by a

single PMT.

Figure 3.26: The configurations of shower detectors in LHRS and RHRS

When high energy electrons pass through the materials, they produce photons through the

bremsstrahlung process; the photons then convert into electron-positron pairs which in turn emit
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further energetic bremsstrahlung photons. This continues until the energy of the pair produced

electrons and positrons drops below a critical energy (around 15 MeV). At the same time, the

electrons and positrons produced in the cascade emit Cherenkov light which are collected by PMTs

and then measured by ADCs. The total number of Cherenkov photons is proportional to the particle

energy. Therefore, the sum of the ADC values of fired PMTs is proportional to the energy of the

scattered electron deposited in the shower detectors. The electrons deposit most of their energy

in the shower detectors. Other particles like muons and pions only deposit a small energy in the

shower detectors, since the probability of the bremsstrahlung emission varies as the inverse square

of the particle mass.

In the data analysis, a group of adjacent fired blocks is first identified as a cluster and the sum

of their calibrated ADC values is considered as the total energy of the electron:

E =
∑
i∈C

Ei =
∑
i∈C

gi · Ai (3.13)

where C is the set of block numbers belonging to the cluster. Ai is the pedestal subtracted ADC

value of the i th block, and gi is the calibration constant of this block. To determine the calibration

constants, firstly, a bunch of "electron" events is selected by requiring a big Cherenkov sum, a

good track and a relative large shower energy. Secondly, a cluster made up of the block that has the

biggest ADC value and its surrounded blocks is selected in each layer. In principal, neglecting the

electron mass, the total energy (E) of the two clusters should be equal to the momentum (P) of the

electron which is reconstructed from the focal plane variables. Therefore, the calibration constants

can be determined by minimizing the χ2:

χ2 =

N∑
i

(E i
ps + E i

sh − Pi)

=

N∑
i

(
∑

j∈Cps

g j · Ai
j +

∑
k∈Csh

gk · Ai
k − Pi)2

(3.14)

N is the number of selected “electron" events. “ps" and “sh" are the first and second layer of the
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shower detectors. After calibration, the ratio of the energy to the momentum (E/P) of electrons

are close to 1 as shown in Fig.4.5.

3.8 Data acquisition

The data-acquisition (DAQ) systems for Hall A uses CODA (CEBAF On-line Data Acquisition

System) developed by the JLab data-acquisition group [51]. The DAQ hardware consist mainly

of commercially available electronics, including front-end Fastbus and VME digitization devices

(ADCs, TDCs, scalers) to collect the data from the detectors. Besides that, the JLab developed

Trigger Supervisor (TS) together with the Trigger Interface (TI) boards, Trigger Distribution (TD)

boards and Signal Distribution (SD) boards are the central point for the DAQ. They distribute

trigger, synchronous clock source and sync signals to the front-end electronics and monitor the

BUSY signals returned from the front-end electronics [63]. For each event, which generates a

trigger through logic operations by NIM modules, the TS receives the trigger and sends event

readout signal through the distribution system to the TI in the front-end crates. Then, the read-out

controller (ROC) gathers the data and buffers them in memory, and sends these buffers to the event

builder (EB) via a network connection. The EB builds events from fragments sent by multiple

ROCs and passes them to the event recorder (ER) which writes data to a local disk. Another event-

transfer (ET) system allows additional data like EPICS data and scaler data to be inserted in the

data stream every few seconds. Finally, everything is controlled by the RunControl process, from

which users can build their own DAQ configurations, and start and stop runs.

The EPICS are used to monitor the sensors and probes of both Hall A instrumentation as well

as the accelerator. The EPICS data is monitored in real time by alarm handlers and the shift crews

to insure the data quality. The BCM data is recorded by scalers, as well as all the triggers and

detector signals which are sent to a discriminator first and then to scalers. The scaler data can be

used to monitor the real-time trigger rates, detector behaviors and calculate the DAQ dead time.

58



3.8.1 Triggers

Triggers are used to select the electron events, and should be loose enough to not miss a possible

candidate. For this purpose, three triggers are built for each spectrometer in the MARATHON

experiment. First, a possible candidate must fire both S0 and S2. As mentioned in Section 3.7.2,

S0 is viewed by two PMTs as is each paddle of S2. A coincidence between two PMTs is made

for S0 and each paddle of S2. The logical OR of the sixteen S2 paddles signals is formed as

the S2 signal. The first trigger (T1/T4 for LHRS/RHRS) which is also the main trigger is the

logical AND of the S0 and S2 signal (S0&S2). Second, a possible electron event must also fire the

Cherenkov. An analog sum of the signals from the 10 Cherenkov PMTs is formed. The logical

AND of this Cherenkov sum and the logical AND of S0 and S2 signal forms the second trigger

(T2/T5 = (S0&S2)&GC). This helps separate the physics event from the cosmic events. In order to

measure the trigger efficiency, a third trigger (T3/T6) which is the logical AND of the Cherenkov

sum and the logical OR of the S0 and S2 signal ((S0‖S2)&GC) is formed.

The trigger setup is shown in Fig.3.27 and Fig.3.28 [64]. For a given physics event in LHRS(RHRS),

T1(T4) is designed to come first, T2(T5) second, and then T3(T6). The triggers are sent to the TS to

make the gates for the ADCs and TDCs. The fired triggers are recorded in the data stream. A graph-

ical user interface (GUI) is used to define the prescale factors of the triggers. In the MARATHON

experiment, all the prescale factors were set to 1.
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Figure 3.27: LHRS trigger setup

Figure 3.28: RHRS trigger setup
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Chapter 4: Data Analysis

4.1 Introduction

The double differential electron scattering cross section dσ
dE ′dΩ (E

′, θ) represents the probability

density function of finding an electron within energy range ∆E′ and solid angle ∆Ω after it scatters

from a target particle. With a fixed incident energy, the cross section is a function of the scattering

energy and the scattering angle. Using the equipment introduced in the last chapter, we are able to

identify the scattered electrons and measure the physics kinematics in the scattering process, and

eventually extract the cross section from the data collected.

The data yield is the integral of the double differential cross section over a certain phase space:

Ydata =

∫
dσ

dE′dΩ
(E′, θ)dE′dΩ (4.1)

It is related to the probability for an electron scattering into a certain solid angle. Therefore, the

yield is extracted from the data as the ratio of the number of scattered electrons detected in that

phase space (Ne) to the corresponding luminosity (L):

Ydata =
Ne

L
(4.2)

Nominal cuts are applied to select the electrons scattered from the target gas. However, the detec-

tors do not operate at 100% efficiency; the DAQ can miss an event due to electronics and computer

processing time, and, in addition, some backgrounds are misidentified as electron events. In order

to get the true number of scattered electrons, several corrections have to be applied:

Ne = (Ne
raw − Ne+ − NEC) · Ce f f · CDT · ACC(E′, θ) (4.3)
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where Ne
raw is the raw counts of the scattered electrons; Ne+ is the background electrons produced

through pair production from the 2γ decayed of a π0; NEC is the background electrons scattered

from the end caps of the target; Ce f f is the product of detectors’ efficiencies including trigger effi-

ciency, VDC efficiency and PID efficiency; CDT is the DAQ dead time correction; and ACC(E′, θ)

is the acceptance function which accounts for the non-uniform response of the spectrometer.

Luminosity is the product of the number of incident electrons (N i
e) and the number of target

particles (Ntarg):

L = N i
e × Ntarg (4.4)

where N i
e is calculated by multiplying the beam current by the beam time. Ntarg is the number of

target particles seen by the electrons, and is proportional to the density thickness regardless of the

target length:

Ntarg ∝
τ

mA
(4.5)

where mA is the nucleus mass, and τ is the gas thickness given in Table 3.2.

The average cross section can be extracted from the yield by:

σavg(∆E′,∆Ω) =
Ydata(E′, θ)
∆E′∆Ω

(4.6)

The yields from different targets are binned in the same way. Therefore, the cross section ratio

is equal to the yield ratio. In the MARATHON experiment, a typical production run is about one

hour, and after few runs the target was switched to a different gas target, while everything else was

kept the same. The spectrometers are considered stable over time periods of hours. The efficiency

of detectors and the acceptance function should be the same for different gases, and cancel out in

the yield ratio. Only the dead time, the background contamination and the boiling effect have to be

studied for each target. The consistency of efficiencies and the comparison between the acceptance

functions of different targets are shown in Section 4.2. Finally, in order to get the Born cross section

ratio at the bin center, the radiative correction, coulomb correction and the bin centering correction

are applied.
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4.2 DAQ and detector efficiencies

No detector and DAQ works perfectly. The inefficiency of detectors and DAQ affects the

number of events collected, and results in misidentifying electrons. The DAQ dead time varies

run by run, and has to be corrected in the data analysis. While the efficiencies of the detectors are

canceled in the yield ratio, they characterize the behavior of the spectrometers and were monitored

during the experiment.

4.2.1 DAQ dead time

The DAQ dead time is the time after each event during which the system can not record another

event. It is a function of rate. The dead time consists of two parts. One part comes from the

electronics dead time. Using a discriminator as an example, if the event rate is too high, a second

pulse occurring during the process of the first pulse extends the dead time. The electronics dead

time is usually less than 100 ns [52]. Since the event rate during the MARATHON experiment

was lower than 2 kHz, electronics dead time is negligible. The second part is the TS processing

dead time, and the dead time when the computer and network transfer data. This is measured and

corrected per run.

For the dead time measurement, scalers with zero dead time are used to monitor the absolute

counts. The triggers are sent to both the TS and the scalers. Since the prescale factor was kept at 1,

the ratio of the CODA recorded trigger counts (Ntrig) and the counts from scaler (Nscal) represents

the DAQ live time. The dead time correction factor is:

CDT =
1

Ntrig/Nscal
(4.7)

In data analysis, the T2 trigger is used in the LHRS electron selection. For RHRS which only ran

at the kin16, the T5 trigger is used. The dead time correction factor of T2(T5) trigger for different

kinematics is shown in Fig.4.1.
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Figure 4.1: T2(T5) dead time correction factor of each target for each kinematic setting

4.2.2 Trigger efficiency

Inefficiencies in the scintillators and Cherenkov result in a failure for generating triggers for

an electron event. As the leading trigger, the T1/T4 (S0&S2) efficiency can be measured using

T3/T6 ((S0‖S2)&GC) as a reference. In principal, if T3/T6 is formed for an electron event, T2/T5

((S0&S2)&GC) must be formed too. For a good electron sample with T3/T6 fired, if the T2/T5

counts are less than the T3/T6 counts, the difference comes from the (S0&S2) inefficiency, which

is equivalent to the T1/T4 inefficiency. Since the VDC timing is invalid for an event with missing

T1/T4, using the spectrometer reconstructed information to select the electron sample can cause a

bias. Only the Cherenkov sum cut and the energy cut of the shower detectors are applied in the

electron sample selection. The T1/T4 efficiency, ηT1/T4 is then equal to the ratio of T2/T5 counts

to the T3/T6 counts in the electron sample:

ηT1/T4 =
T2/T5 counts in the electron sample
T3/T6 counts in the electron sample

(4.8)

In order to minimize the dilution from cosmic events, the T1/T4 trigger efficiency is calculated at

high event rate runs for each gas target. The efficiency results are shown in Fig.4.2a, and the ratios
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of T1 efficiency between different targets are shown in Fig.4.2b. The ratios are equal to one within

statistical uncertainties.
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Figure 4.2: T1/T4 trigger efficiency

While T1/T4 is the production trigger, T2/T5 is the trigger used in data analysis. Besides

S0&S2 efficiency, T2/T5 involves the Cherenkov detection efficiency – that is, the possibility of

Cherenkov to be fired when an electron passes. If we can select a clean electron sample, the ratio

of the T2/T5 counts to T1/T4 counts in the sample represents the Cherenkov detection efficiency.

This efficiency multiplied by the T1/T4 efficiency is the T2/T5 efficiency. However, it is difficult

to define a clean electron sample with only an E/P cut, since there is pion contamination in the

shower detectors (introduced in Section 4.4.1). While other tritium experiments which were run

before and after the MARATHON experiment have much lower π/e, their study shows that the

Cherenkov detection efficiency is close to 1.

4.2.3 VDC efficiency

Two parts contribute to the VDC efficiency. The first part is the VDC detection efficiency; that

is, the efficiency of the wire being fired when a charged particle passes. It is measured by using
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Figure 4.3: Detection efficiency of LHRS U1 wires

three adjacent wires. If the two outer wires have a hit, the middle wire should be fired as well.

The efficiency of each wire was monitored online during data taking. An example of the online

efficiency plot is shown in Fig.4.3. The VDC detection efficiency is above 99% for the central area

where most data are collected.

The dominant inefficiency from the VDC comes from the track reconstruction. In the data

analysis, a good electron event is required to have only one track. Due to backgrounds and software

misreconstruction, there exist electron events with no track or multiple tracks. This efficiency is

obtained by calculating the percentage of one-track events in a clean electron sample. The T2

trigger and tighter PID cuts are applied in the clean sample selection. In order to minimize the

cosmic contamination in the electron sample, the VDC efficiency is studied for the low x kinematic

settings, where the event rate is much higher than the cosmic rate. The one-track efficiency is

shown in Fig.4.4. The efficiency is about 98% and is the same between different targets.

4.2.4 PID efficiency

The Cherenkov and shower detectors are used to identify the electrons. However, the Cherenkov

can be fired by the knock-on electrons produced by other particles with fewer photoelectrons emit-

ted. As can be seen in Fig.4.5(a), the peak around 300 is the single photoelectron peak. In the
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Figure 4.4: VDC efficiency for LHRS and RHRS at kin0, kin1 and kin2

shower detectors, other particles (mostly pions) deposit some part of their energy, which generate

a small peak at low E/P in Fig.4.5(b). Therefore, a specific Cherenkov sum cut and a E/P cut

are applied to get rid of these backgrounds, which are called PID cuts. In the PID cuts study, we

care about both the possibility of electrons being able to survive the cuts (ηe), and the possibility

to reject pions (ηπ).

The PID efficiency is the product of the Cherenkov sum cut efficiency and the E/P cut effi-

ciency. If a clean electron sample or pion sample is selected, the efficiency is measured by passing

the sample events through the cut. Cherenkov and shower detectors are considered to work inde-

pendently. Therefore, the electron/pion sample used in the Cherenkov sum cut study is selected

by a tight E/P cut as well as other nominal cuts. Similarly, the sample for the E/P cut study is

obtained by applying a tight Cherenkov sum cut. Low π/e runs are used. The PID study shows

that the ηe is above 99%, and ηπ is above 99.9%.

4.2.5 Acceptance

When the spectrometer transports the charged particles from target to focal plane, the electrons

can be stopped when they collide with the edge of the magnet systems. The acceptance of the

spectrometer depends on the interaction vertex position, the in-plane and out-of-plane angle, and
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Figure 4.5: Cherenkov sum distribution and E/P distribution. The arrows point to the nominal cuts.

the momentum. While the cross sections depends only on the momentum (E′) and the full scatter-

ing angle (θ), it is convenient to measure the acceptance as a function of E′ and θ. The acceptance

function A(E′, θ) is not uniform everywhere. It is close to 1 at the center of the spectrometer and

starts to drop off when reaching the edge. Acceptance cuts on the interaction vertex position, the

in-plane and out-of-plane angle, and the relative momentum are applied to avoid multi-scattering

effects and bad optics reconstruction near the edge.

Normally, the acceptance function is determined from simulations when extracting the absolute

cross section. However, since the geometrical acceptance does not depend on the target nuclei, it

is supposed to be canceled in the yield ratio between different targets. In the MARATHON data

analysis, a quick comparison between the acceptance functions of 2H and 1H was performed. The

E′ vs. θ distribution in data with all the nominal cuts applied represents a convolution of the

radiative cross section and the acceptance function. The radiative cross section is obtained from

the program mentioned in Section 4.5. Assuming that the acceptance function is uniform in a small

phase space, the (E′,θ) distribution divided by the radiative cross section gives the acceptance value

for each (E′,θ) bin. The ratio of the 2H acceptance to the 1H acceptance is shown in Fig.4.6. The

ratio is near 1 except for a few bins at the edge with poor statistics.
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Figure 4.6: The 2H/1H acceptance function ratio

4.3 Boiling effect correction

As can be seen in Eq.(4.4), the luminosity depends on the gas target thickness. However,

when the electron passes through the target gas, the heat generated by the radiation changes the

local density. The target thickness τ given in Table 3.2 needs to be corrected. The amount of

heat deposited is determined by the beam current. Therefore, the real gas thickness “seen" by the

electrons is a function of current; this is called the boiling effect.

The boiling effect for each gas target was studied by performing a current scan. Both the data

and simulation show that the target density reaches equilibrium within a few seconds after the

beam first hits the target. Two analysis methods are applied to measure the boiling effect. The

first method is to extract the charge normalized yield of the gas with corrections applied [65]. The

corrections include detector efficiencies, DAQ dead time and end cap contamination. The charge

normalized yield is given by:

Ygas =
PS · Ne

Q · ε · LT
(4.9)

where PS is the DAQ prescale factor, Ne is the number of good electrons with background sub-

tracted, Q is the total charge incident on the target, ε is the product of detector efficiencies and PID

efficiency, and LT is the live-time. The Ygas is measured at multiple incident currents (Ibeam). A
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simple quadratic polynomial function describes well the boiling effect’s relation between Ygas and

Ibeam. This function is then normalized to 1 at Ibeam = 0, where there is no boiling effect. The

boiling correction is applied run by run by multiplying the gas thickness by the correction factor

expressed as:

f (Ibeam) = a · I2
beam + b · Ibeam + 1.0 (4.10)

where a, b are the fit parameters, and Ibeam is the average current of the run. The density change for

3H target as a function of current is shown in Fig.4.7. At low current, the systematic uncertainty is

larger, because the BCM monitors have larger uncertainty for low current measurement.

Figure 4.7: The 3H density change as a function of current

The second method avoids performing the corrections by taking the ratio:

Rboiling =
Ygas

Yend cap
(4.11)

where Ygas and Yend cap are the charge normalized yields from the gas section of the target compared

to the upstream end cap. The solid target does not have a boiling effect, which has been proved by

measuring the yield from an aluminum target at different currents [65]. Therefore, Yend cap remains

constant at different currents. The distribution of Rboiling is proportional to that of Ygas. And

this normalization difference will be eliminated when normalizing the Rboiling to 1 at Ibeam = 0.
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Since Ygas and Yend cap are extracted with the same nominal cuts except for the vertex Z cut in the

same run, the corrections applied in the first method as well as the total charge are canceled in

the ratio. This avoids the uncertainty induced by the BCM offset uncertainty in the beam charge

measurement. Then the yield ratio in Eq.(4.11) is reduced to the ratio of electron counts from gas

versus those from upstream end cap part:

Rboiling =
Ygas

Yend cap
=

Ngas
e

Nend cap
e

(4.12)

Boiling data were collected with the LHRS during December 2017, March 2018 and May 2018

with different kinematic settings. They were analyzed by the above two methods, and the results

are in agreement. The ratio of the density correction factors between targets are shown in Fig.4.8.

Most of our production data were taken with the current set at 20 µA.

Figure 4.8: The boiling correction factor ratio for various target combinations

4.4 Background subtraction

As shown in previous sections, the efficiencies of the detectors are close to 100%. The two HRS

are able to characterize 99% of electrons and reject 99.99% of non-electron particles. However,
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not all the detected electrons are scattered from the target gas. The electrons generated from other

processes can contribute. This electron backgrounds vary according to the target geometry and the

kinematics. They are different for different targets, and have to be considered in the extraction of

cross section ratios.
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Figure 4.9: The E/P distribution for: (a) all events with nominal cuts applied except PID cuts; (b)
pions (no Cherenkov signals); (c) electrons (with Cherenkov cut). The long-dashed lines indicate
the cut of E/P > 0.1. The short-dashed lines are the nominal E/P cut.

4.4.1 Pion contamination

Even though the Cherenkov rejects pions with 99% efficiency, a pion can fire the Cherenkov by

producing knock-out electrons. In the shower detectors, pions normally deposit a small amount of

energy which generate a second peak at low E/P. However, the tail of the peak can be above the

nominal E/P cut as shown in Fig.4.9(c). That is, some pions pass the PID cuts and are misidenti-

fied as electrons.

Since the pion E/P spectrum is independent of the Cherenkov signals, the pion contamination

in Fig.4.9(b) is obtained by properly normalizing the pion distribution from Fig.4.9(c). In order

to determine the normalization, two regions are defined in the E/P distributions of pions and

electrons as shown in Fig.4.9. The regions 1 and 3 are supposed to be pure pion regions, which are
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defined by the cut 0.7 > E/P > 0.1. This cut helps remove events with E/P near 0 which might

come from inefficiency in the shower detectors. The regions 2 and 4 are defined by the nominal

E/P cut. The normalization is obtained from N1/N3. The π/e ratio is given by (N1/N3)*N4/N2.

This actually overestimates the π/e ratio, since region 1 includes not only pions but also some

electrons which come from the tail of the main E/P peak. The π/e ratio is shown in Fig.4.10. It

is less than 0.26%. Since the pion contamination is so small, and it cancels out when subtracting

other backgrounds, no correction is applied for the pion contamination.
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Figure 4.10: The π/e ratio

4.4.2 End cap contamination

The aluminum entrance window of the gas target is about 0.25 mm thick. From a scattering

cross section perspective, its thickness is comparable to the gas thickness. As a result, a large part

of the scattered electrons come from the end cap. A vertex Z position cut is applied to get rid of

these end cap events. However, the tail of the end cap events leak into the region where the gas is

present, and is not removable by the nominal cuts, as shown in Fig.4.11. The upstream end cap is

flat, while the downstream end cap is round. This difference leads to the different width and height

of the two end cap peaks in Fig.4.11.

The end cap contamination is studied by performing an identical kinematic scattering on the
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Figure 4.11: The vertex z distribution at target

empty cell. The empty cell has the same design as the gas target, but with no gas filled. The

contamination is measured by extracting the luminosity normalized yield of the empty cell with

the nominal cuts applied. The luminosity is the product of the total beam charge and the thickness

of the empty cell window, where the upper part (vertex Z < 0) of the target uses the entrance

window thickness, and the lower part (vertex Z > 0) uses the exit window thickness. Since the gas

targets have slightly different window thickness from the empty cell, a thickness correction factor

is applied to the empty cell yield (YE M) to find the true end cap contamination for each gas,

YCorr
E M = YE M ×

Tgas
window

T E M
window

(4.13)

where Tgas
window is the window thickness of the gas target, and T E M

window is that of the empty cell [66].

The ratio of YCorr
E M to the gas yield gives the percentage for the end cap contamination. It is a

function of x. One or two empty cell runs were taken regularly after few production runs. The

detector efficiencies and spectrometer acceptance remain the same for all targets. Therefore, only

the dead time correction and boiling effect are considered in the ratio. The end cap contamination

correction factor is:

CEC = 1 −
YCorr

E M

Ygas
(4.14)
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The ratios of the correction factors between different gases are fitted by exponential functions. The

raw cross section ratio is then corrected by multiplying CEC bin by bin. The correction factors on

ratios are shown in Fig.4.12, where only statistic uncertainties are considered.

Figure 4.12: End cap contamination correction factor on ratios

4.4.3 Charge symmetric background

When the electron passes through the target, there is a possibility of the scattering process

producing a π0. The π0 decays into two photons, which then produce electron-positron pairs.

These electrons behave the same as those scattered from the gas, so they cannot be removed by

the nominal cuts. As the electrons and positrons are produced in pairs, the electron background

is measured by extracting the luminosity normalized yield of the positrons. The π0 decay is the

dominant process for producing positrons.

The positron yield was measured by reversing the polarity of the spectrometer. Since the cross

section is very small and decreases when x increases, the positron runs were taken only at low

kinematic settings (kin1, kin3, kin5). The ratio of e+/e− is equal to their yield ratio. An empty

cell measurement was performed for each positron kinematic setting to subtract the end cap back-
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ground using the same procedure discussed in Section 4.4.2. The relative hadron (especially π+)

rate was higher in positron runs than that in the electron runs, which produces a non-negligible

pion background. The pion contamination is determined by fitting the E/P distribution with a

combination of an exponential function and a Gaussian function, see Fig.4.13. The ratio of the

integral of the exponential tail above the nominal E/P cut to the total positron events represents

the pion contamination. After subtracting the end cap contamination and pion contamination, the

Figure 4.13: E/P distribution of positrons with nominal cuts applied

ratio of positron yield to electron yield, R(x) = Ye+/Ye−, is fit by an exponential function. As shown

in Fig.4.14, the charge symmetric background is less than 1.6% at low x and is negligible at high x.

It is removed by multiplying the raw cross section ratio by the correction factor given in Eq.(4.15):

Ce+ = 1 −
Ye+

Ye−
= 1 − R(x) (4.15)

4.4.4 Tritium decay

Tritium is radioactive, decaying into helium-3 by the following beta decay process:

3H→3 He + e− + νe (4.16)
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Figure 4.14: Charge symmetric background correction factor

with a half life of τ1/2 = 4500± 8 days [67]. This results in a decreasing 3H density and increasing

3He contamination in the tritium target. Therefore, the yield extracted from tritium data (Y
3H

raw)

represents a combination of electrons scattering on 3H and 3He:

Y
3H

raw =

∑
i(Ti + Hi)∑

i Qi(N t
i + Nh

i )
(4.17)

where i is the run number, Ti (Hi) is the number of electrons scattered from 3H (3He), Qi is the

beam charge, and N t
i (Nh

i ) is 3H (3He) thickness in the tritium target. A correction factor is applied

to remove the 3He yield and extract the real 3H yield.

The tritium target was filled with an initial tritium number N t
0, and an initial helium-3 number

Nh
0 [57]. As tritium decays into helium-3, the 3H number and 3He number change over time:

N t
i = N t

0e−ti/τ1/2 (4.18)

Nh
i = Nh

0 + N t
0(1 − e−ti/τ1/2) (4.19)

But the total number of nuclei in the target cell remains constant: Ntot = N t
0 + Nh

0 . Therefore,
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Eq.(4.17) is rewritten to separate out the 3H yield:

Y
3H

raw =

∑
i Ti∑

i QiN t
i
·

∑
i QiN t

i∑
i QiNtot

+

∑
i Hi∑

i QiNh
i

·

∑
i QiNh

i∑
i QiNtot

(4.20)

= Y3H ·

∑
i Qi(1 − fHei )∑

i Qi
+ Y3He ·

∑
i fHei∑
i Qi

(4.21)

where Y3H (Y3He) is the real 3H (3He) yield, fHei is the 3He contamination in the tritium target for

each run (see Fig.4.15):

fHei =
Nh

i

Ntot
(4.22)

Once the 3He yield is found, the 3H yield can be separated from the raw yield via the expression:

Y3H = Y
3H

raw ·

∑
i Qi∑

i Qi(1 − fHei )
− Y3He ·

∑
i Qi fHei∑

i Qi(1 − fHei )
(4.23)

The real ratio of 3H and 3He yields becomes:

Y3H
Y3He

=
Y

3H
raw

Y3He
·

∑
i Qi∑

i Qi(1 − fHei )
−

∑
i Qi fHei∑

i Qi(1 − fHei )
(4.24)

The ratio of 3H to 2H yields is obtained in a similar way:

Y3H
Y2H
=

Y
3H

raw

Y2H
·

∑
i Qi∑

i Qi(1 − fHei )
−

Y3He
Y2H
·

∑
i Qi fHei∑

i Qi(1 − fHei )
(4.25)

4.5 Radiative corrections

The cross section given by Eq.(2.20) corresponds to the zeroth order Feynman diagram, which

is called the Born cross section. However, to describe the true scattering process, higher order

corrections must be applied due to a number of effects. Firstly, the electrons lose energy when

traveling through materials via bremsstrahlung and ionization. The measured incident energy and

scattering momentum do not represent the true ones during the collision. Secondly, higher or-
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Figure 4.15: 3He contamination in 3H target during the MARATHON experiment

der quantum electrodynamics (QED) processes also make contributions to the total cross section.

These radiative effects need to be removed from the raw yield to obtain the Born cross section.

The program used to compute the radiative corrections for the MARATHON experiment is the

same one used in the Hall C 6 GeV EMC experiment (JLab E03-103) [68] with the tritium target

geometry incorporated. It is primarily based on the Mo & Tsai method [69, 70].

The “internal" radiative effects, which occur during the collision, include the vacuum polar-

ization and the electron vertex diagrams, the internal bremsstrahlung, and the soft multiple photon

emission process (see Fig.4.16). The corrections are restricted to one photon exchange between the

electron current and hadron current. Photon emission by hadrons is negligible. The infrared diver-

gent piece of the two-photon exchange diagrams and the emission of real photons by hadrons are

only considered in radiative corrections to the elastic peak. The straggling effect of the electrons

passing through the materials before and after the collision is referred to as “external" radiative

effect, which is a combination of external bremsstrahlung and ionization. The measured cross

section (σrad) is related to the Born cross section by [70]:

σrad(Es, Ep) =

∫ T

0

dt
T

∫ Es

Es min(Ep )

dE′s

∫ Ep max(E ′s)

Ep

dE′pI(Es, E′s, t)σr(E′s, E
′
p)I(E

′
p, Ep,T − t) (4.26)

where I(E, E′, t) represents the probability of an electron with initial energy E losing energy to
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(a) Born
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(b) Vacuum
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(c) Vertex
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(d) Bremsstrahlung
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(e) Bremsstrahlung
�
(f) Soft photon emission

Figure 4.16: Feynman diagrams in internal radiative correction

E′ after traveling distance t in the material due to the external radiation. T is the total path length

of the electron before scattering and after scattering. Es is the measured incident energy and Ep

is the measured scattering energy. σr(E′s, E
′
p) is the Born cross section σborn(E′s, E

′
p) with internal

radiative effects included.

The missing mass squared (W2) of the scattering is defined by the four momentum of the final

hadron system (p f ) and of the emitted photon(k):

W2 = (p f + k)2 ≥ p2
f = M2

f (4.27)

where M f is the invariant mass of the final hadron system. For a given missing mass, the invariant

mass of the final hadron system will be small if high energy photons are emitted. That is to say, the

lighter invariant mass states have a radiative tail at the heavier invariant mass states, but not vice

versa. For example, the elastic peak has the smallest M f , hence its tail affects all the other states.

As a result, the radiative cross section for DIS is a combination of radiative tails from the elastic
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(b) Quasi-elastic
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Figure 4.17: Schematic representation of the processes that contribute to the DIS radiative cross
section

peak, quasi-elastic states, and the nearby DIS states (see Fig.4.17):

σrad = σ
elastic
rad + σ

quasi−elastic
rad + σDIS

rad (4.28)

Each process can be calculated using Eq.(4.26). The elastic tail and quasi-elastic tail are calculated

by the exact formula given by Mo & Tsai. For DIS, the internal bremsstrahlung is approximated

by adding two external radiators, one before and one after the scattering. The rest of the internal

radiative effects are included in a factor F(Q2,T) similar to Eq.(2.8) in [70]. The σr is the product

of σborn and F(Q2,T). The double integral in Eq.(4.26) is calculated exactly instead of using the

energy peaking approximation. The ionization is taken care of event by event in the data analysis

rather than in the radiative corrections [71].

If there is a valid model Born cross section (σmodel
born ) that applies over the measured region,

the radiative cross section (σmodel
rad ) can be calculated from it. Then the radiative correction factor

becomes the ratio:

RC =
σmodel

born (E
′, θ)

σmodel
rad (E

′, θ)
(4.29)

The Born cross section extracted from data (σdata
born) is obtained by multiplying the measured cross
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section (σdata
rad ) by the radiative correction factor:

σdata
born = σ

data
rad · RC (4.30)

The radiative correction factors applied to the cross section ratios as a function of x are shown in

Fig.4.18.

Figure 4.18: Radiative correction factors applied to the cross section ratios as a function of x

4.5.1 Cross section model

In order to make a good estimate of the radiative correction factor, it is important to choose a

cross section model that approximates accurately the real Born cross section. For the MARATHON

kinematics, the contribution to the radiative cross section from the elastic tail and quasi-elastic tail

is small (see Fig.4.19). The elastic cross section is calculated from the nuclei form factors. The

quasi-elastic cross section is obtained by using a y-scaling model [68]. For the inelastic cross

section, the model used in 6 GeV experiments is no longer valid, due to the larger Q2 from the

higher energy beam in the MARATHON experiment. However, the structure functions for the

proton (Fp
2 ) and deuteron (Fd

2 ) are well measured by many experiments over a wide kinematic

range. And there are numerous phenomenological EMC models which describe the previous EMC
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data over the x range similar to the MARATHON experiment. Therefore, the structure function

for 3H and 3He can be computed by multiplying the deuteron structure function by the EMC ratio.
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Figure 4.19: 3H Born cross section σborn
model and radiative cross section σrad

model from model with
Q2 = 14x (similar to the MARATHON kinematic settings). Contributions from the elastic tail
(σrad

E L ), quasi-elastic tail (σrad
QE ) and DIS (σrad

DIS) to the radiative cross section are shown.

The kinematic coverage of the MARATHON experiment is similar to the SLAC proton and

deuterium DIS experiments [19]. Even though Whitlow et al. did a global reanalysis of Fp
2 and Fd

2

with higher statistics and better systematic control, this fit doesn’t include the resonance region,

with a cut W2 > 3 GeV2 [72]. In the MARATHON experiment, we use a fit by Bodek et al. [19]

which includes both the DIS and resonance regions. The format of Fd
2 and Fp

2 are the same as in

Eq.(5.1) in [19] with the DIS parameters given in TABLE VIII. The 3H and 3He structure functions

are built from Fd
2 using the 3H and 3He EMC ratios:

F
3H
2 = Fd

2 · R(
3H) R(3H) =

F
3H
2

Fd
2

(4.31)

F
3He
2 = Fd

2 · R(
3He) R(3He) =

F
3He
2

Fd
2

(4.32)

R(3H) and R(3He) are the EMC ratios taken from S. Kulagin and R. Petti [10][73] (KP - or K&P

- see Fig.A.3). The KP model does appear to be in excellent agreement with the raw cross section
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ratio measurements without applying any large nuclear corrections. The inelastic born cross section

is then computed using the F2 with the assumption that R = σL/σT = 0.18:

σDIS model
born =

4α2E2
p

Q4 cos2(
θ

2
)F2

[
1
ν
+

1 +Q2/ν2

xM(1 + R)
tan2(

θ

2
)

]
(4.33)

Other Fp
2 , Fd

2 and EMC models are also used to evaluate the systematic uncertainty from model

dependence. More details are presented in Appendix A.

4.6 Coulomb correction

The Born cross section formula given by theory is based on the assumption that the wave

functions of the incident and scattered electrons are described by plane waves. However, the

Coulomb field of the target particles will distort the wave function. This Coulomb effect shifts the

Q2 value of the interaction to an “effective" value, given by [74]:

Q2
e f f = Q2(1 +

3Zα~c
2RE

)2 (4.34)

where Z is the nuclear charge and R is the hard-sphere equivalent radius of the nucleus. R is equal

to (53 < r2 >)1/2, where < r2 > is the root-mean-squared radius of the nucleus. The Coulomb

correction to the cross section is calculated by using the cross section model presented in Section

4.5.1:

Ccoul =
σ∗(x,Q2)

σ∗(x,Q2
e f f )

(4.35)

where σ∗ denotes the model cross section, and Q2 is the average Q2 of a bin. This correction is

applied by multiplying the yield with the correction factor.

4.7 Bin centering and combination of kinematics

In the kinematics of the MARATHON experiment, the Q2 dependence of the structure function

is negligible. Therefore, the yield is binned in x only. The size of the bins are varied for different
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kinematics to optimize the statistical uncertainty over the measured range. The yields of different

targets use the same bins. Once the cross section ratio is extracted as the yield ratio with all the

corrections applied, which x the data point corresponds to must be determined. Since the average

x within a bin from different targets are essentially the same, it is used as the bin value. The

average x includes both the acceptance and the cross section information similar to the yield. The

results for the Born cross section ratios for each kinematic setting as a function of x are shown in

Fig.4.20 to Fig.4.23 with only statistical uncertainty included. The x value for each bin represents

the average x.

The measured ratio is the ratio for the average cross sections. In order to combine the data

points which have similar average x, the average cross sections must be converted to the value at a

specific x. This is called the bin centering correction and it is done using the cross section model

presented in Section 4.5.1:

Cbc =
σ∗(x,Q2)∫
σ∗(x,Q2)dx

(4.36)

where σ∗ is the model cross section, and Q2 is the average Q2 of the bin.

The ratio between the cross sections from different targets at a given x with bin centering

correction applied is expressed by:

R(x) =
σ1(x)
σ2(x)

=
Y1(∆x)
Y2(∆x)

·
C1

bc

C2
bc

(4.37)

The bin centering correction factors applied to 2H/1H cross section ratio are less than 1.1%, and

those applied to 3He/2H, 3H/2H and 3H/3He ratios are less than 0.8%.

The final ratio at a given x is the weighted average of the ratios corresponding to that x [72]:

R(x) =
∑

i wi Ri(x)∑
i wi

, δk =

√∑
i(wiδ

k
i )

2∑
i wi

(4.38)

with

wi =
1

(δstat
i )

2 (4.39)
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where i denotes the points, and δk
i represents the uncertainties on Ri(x) from different sources k.

The weight wi is determined by the statistical uncertainty (δstat
i ). The systematic errors (δk) on the

final value are obtained by propagating δk
i . The relative systematic errors are added in quadrature

to get the total systematic error.

4.8 Experimental uncertainties

Every measured physics variable and applied correction results in a systematic error on the

cross section. Some of them are canceled in the ratio, while others lead to an uncertainty in the

ratio.

The uncertainties of the beam energy, measured momentum and the scattering angle will shift

the real x value, which in turn will affect the corrections that are related to x and change the ratio.

The accuracy of the beam energy measurement is around 5×10−4. This results in a relative change

in x by about 2 × 10−4. The momentum resolution is 4 × 10−4, which induces a relative 5.7 × 10−4

shift in x. The resolution of the scattering angle measurement is dominated by the uncertainty of

the spectrometer central angle θ0 read from EPICS, which is about 0.001◦. This leads to a shift

in x less than 1 × 10−4. These 0.01% shifts on x have a negligible effect on the ratio. Therefore,

the uncertainties induced by the beam energy, measured momentum and the scattering angle are

ignored.

The uncertainty of the total charge measurement comes from the precision of the BCM mea-

surement, which is about 1%. Since the BCM at our production current range is independent of

the current, the uncertainty is canceled in the ratio.

The uncertainties of the gas thickness given in Table 3.2 result in an overall shift of the ratios.

The effects are calculated by the error propagation function:

δR
R
=

√
(
δτ1
τ1
)2 + (

δτ2
τ2
)2 (4.40)

The gas thickness uncertainties lead to 0.79% uncertainty in σ(2H)/σ(1H), 1.20% uncertainty in
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σ(3He)/σ(2H), 1.12% uncertainty in σ(3H)/σ(2H) and 1.44% uncertainty in σ(3H)/σ(3He).

The uncertainty induced by the boiling corrections on the ratio is calculated from the variance-

covariance matrix of the fit functions Eq.(4.10). As the luminosity is determined for each kinematic

setting, this uncertainty remains the same for points at that same kinematic setting. The uncertainty

due to the boiling corrections on the ratios is less than 0.4%.

The poor reconstruction near the edges of the spectrometer from the uncertainty of the optics

matrix cause a loss in the electron reconstruction. The resulting uncertainty on the ratio is studied

by applying different acceptance cuts. The relative uncertainty is found to be less than 0.2%.

The uncertainty from the end cap contamination mostly comes from the end cap thickness un-

certainty given in [66]. Especially for the downstream end cap of the gas cell, the uncertainty in the

thickness is about 20%. The resulting uncertainty on the YCorr
E M is calculated similarly to Eq.(4.40),

which is less than 20%. The uncertainty in the ratio coming from the end cap contamination de-

pends on the percentage of the contamination, which decreases when x increases. The relative

uncertainty is less than 0.3% on average since most of these events are removed with cuts.

The uncertainty in the charge symmetric background is dominated by the statistical uncertainty,

and the correction factors on the ratios are tiny (less than 0.2%). The uncertainty induced by this

correction is negligible.

The uncertainty from the tritium decay correction is different between σ(3H)/σ(3He) and

σ(3H)/σ(2H). As can be seen in the Eq.(4.24) and Eq.(4.25), the systematic uncertainty of the

former comes mainly from fHe where the half life of tritium has an uncertainty, while the un-

certainty of the latter is not only due to fHe but also the uncertainty of Y3He/Y2H. The relative

uncertainty in fHe is estimated by:

∆ fHe

fHe
=

fHe(τ + ∆τ) − fHe(τ)

fHe(τ)
(4.41)

where ∆τ is 8 days. The result is about 0.2%. The uncertainty on the cross section ratio caused

by this is negligible. The relative uncertainty on the σ(3H)/σ(2H) from the Y3He/Y2H uncertainty is
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estimated by error propagation:

∆R(3H/2H)
R(3H/2H)

=

∑
i Qi fHei∑

i Qi(1− fHei
)

R(3H/2H)
· ∆(

Y3He
Y2H
) (4.42)

The coefficient is less than 2.6%, and assuming the relative error on Y3He/Y2H is 3%, then the

relative uncertainty on σ(3H)/σ(2H) is less than 0.1%.

The uncertainty on the cross section ratio from radiative corrections can be divided into two

parts. One is from the uncertainty in the cross section model, which has been discussed in Ap-

pendix A. It is less than 0.35%. The other part is from the Mo&Tsai method. The theoretical

uncertainty of the internal correction is smaller than 1.4% [72], and should have negligible con-

tribution to the cross section ratios for light nuclei. The uncertainty for the external radiative

correction depends on the length of the electron path. In our experiment, it is similar between

different targets. Therefore, the uncertainty cancels in the ratio.

The shift in the Q2 due to the Coulomb correction is very small (less than 0.004 GeV2). The

structure function has little dependence on Q2 in the MARATHON kinematics. Therefore, the

uncertainty on the Coulomb correction due to the cross section model is negligible.

The uncertainty of the bin centering correction comes from the model cross section. It is studied

by using different models. The bin centering correction depends heavily on the shape of the model

cross section. As the EMC ratios extracted from our data agree well with the KP model, it is used

as the EMC ratios to build F
3H
2 and F

3He
2 . Since only the DIS Born cross section is utilized in the

bin centering correction, Whitlow’s F2 model [72] is applied as the other option. The deviation

on the bin centering correction is less than 0.08% for 2H/1H. For the EMC ratios, it is negligible

when x < 0.75, and is less than 0.025% at high x. For 3H/3He, the uncertainty is negligible.

A summary of the systematic uncertainties on the cross section ratios is shown in Table 4.1.
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Source δR
R

(σ(2H)
σ(1H)

)
δR
R

(σ(3He)
σ(2H)

)
δR
R

(σ(3H)
σ(2H)

)
δR
R

( σ(3H)
σ(3He)

)
Beam energy - - - -
HRS momentum - - - -
Scattering angle - - - -
Beam current - - - -
Target boiling < 0.40% < 0.32% < 0.3% < 0.3%
Acceptance 0.2% 0.2% 0.2% 0.2%
Endcap contamination 0.3% 0.3% 0.3% 0.3%
Charge symmetric back-
ground

- - - -

Tritium decay - - < 0.1% -
Radiative Correction 0.26% 0.25% 0.3% 0.35%
Coulomb Correction - - - -
Bin centering 0.08% < 0.02% < 0.02% -
Target density* 0.79% 1.20% 1.12% 1.44%

total** < 0.61% < 0.54% < 0.56% < 0.58%
* The uncertainties induced by target density uncertainties are considered as the normalization

uncertainty. They will be examined in Section 5.1.2.
** The total systematic uncertainties don not include the normalization uncertainties.

Table 4.1: Systematic uncertainties on the cross section ratios

4.9 Cross section ratios

The cross section ratios for each kinematic setting are shown in Fig.4.20 to Fig.4.23 with

statistical uncertainties only. The results show good agreement between nearby kinematics. The

statistical uncertainty at low x is lower than 1%, and rises up to 2% at the highest x. The statistical

uncertainty can be reduced by combining nearby kinematic points.
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Figure 4.20: σ(2H)/σ(1H) for each kinematic setting (only statistical uncertainties are included)
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Figure 4.21: σ(3He)/σ(2H) for each kinematic setting (only statistical uncertainties are included)
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Figure 4.22: σ(3H)/σ(2H) for each kinematic setting (only statistical uncertainties are included)
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Figure 4.23: σ(3H)/σ(3He) for each kinematic setting (only statistical uncertainties are included)
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The results after combining nearby points are shown in Fig.4.24 to Fig.4.27. The statistical

uncertainty and the systematic uncertainty are added in quadrature. The systematic uncertainty

does not include the normalization uncertainty coming from the target density correction.

The σ(2H)/σ(1H) ratio is well measured over a large kinematic range (x up to 0.9). Many

models have been developed to describe the data. The comparison between σ(2H)/σ(1H) from

the MARATHON experiment and those from global fits are shown in Fig.4.24. The “Whitlow",
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MARATHON norm. uncer. Whitlow norm. uncer.

Figure 4.24: σ(2H)/σ(1H) result as a function of x. The MARATHON result (red circles) is
compared with the σ(2H)/σ(1H) from global fits. The 0.79% normalization uncertainty is not
included in the uncertainty bar.

“Bodek", and “NMC" fits are parameterizations of proton and deuteron structure function data.

The “Whitlow" fit includes eight SLAC DIS experiments on 1H and 2H [72], where the error band

is a composite of statistical and systematic uncertainties. The systematic uncertainty is determined

by comparing the difference between the results from the two fitting models. The normalization

uncertainty on σ(2H)/σ(1H) from the Whitlow fit is about 1% and is not included in the uncertainty

band. It is comparable with the normalization uncertainty for the MARATHON result (0.8%).

The data set used in the “Bodek" fit comes from three SLAC DIS experiments, which have less

statistics than what is used in the Whitlow fit and a larger systematic uncertainty due to the radiative
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correction procedure applied. The NMC data covers a large range of x and Q2. Not only the

NMC data, but also data from SLAC and BCDMS [75] are included in the NMC fit. While the

uncertainty provided by the NMC collaboration applies to the structure functions individually, the

uncertainty on the ratio should be less, and is not shown in the figure. On the other hand, the CJ15

fit parameterizes the parton distribution functions (PDFs) [48]. It includes not only DIS data but

also high energy data from Fermilab. The structure function is then built from the PDFs. The fit

from K&P is also based on PDFs [10], which is different from CJ15. The MARATHON result

agrees with global fits within experimental uncertainties. The KP model gives the best description

for the MARATHON data. This suggests that our systematic uncertainty is under control.

The EMC effect on helium-3 has only been measured by HERMES [76] and JLab E03-103

[33] before the MARATHON experiment. However, the published result from the HERMES ex-

periment has the isoscalar correction applied. The comparison between the σ(3He)/σ(2H) from

the MARATHON experiment and JLab E03-103 is shown in Fig.4.25. The uncertainty on the
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Figure 4.25: σ(3He)/σ(2H) as a function of x. The MARATHON result (red circles) is com-
pared with that from JLab E03-103 experiment (blue circles). The claimed 1.2% normalization
uncertainty is not included.
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MARATHON result is similar to that of E03-103. Note that in the high x range of E03-103

(x > 0.6), this is not considered as deep inelastic scattering anymore since the W2 value is too

low. The normalization uncertainty for the results is not included. The agreement between the two

experiments is reasonable.

The MARATHON experiment is the first DIS measurement using a tritium target. Theσ(3H)/σ(2H)

result shows a clear EMC effect for 3H (see Fig.4.26). The uncertainty for the 3H EMC ratio is

comparable to that of 3He. The σ(3H)/σ(3He) decreases as x increases (see Fig.4.27), which

agrees with the fact that Fn
2 /F

p
2 decreases as x increases. The neutron inside 3H has a softer dis-

tribution than the mirror proton inside the 3He. Ignoring the normalization uncertainty, the total

uncertainty on σ(3H)/σ(3He) is less than 1.4%.
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Figure 4.26: σ(3H)/σ(2H) as a function of x. The claimed 1.12% normalization uncertainty is not
included.
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Figure 4.27: σ(3H)/σ(3He) as a function of x. The claimed 1.44% normalization uncertainty is
not included.
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Chapter 5: Results

5.1 Fn
2 /F

p
2 results

The nuclear structure function F1 in Eq.(2.20) is related to F2 by the expression:

F1 =
F2(1 +Q2/ν2)

2x(1 + R)
, (5.1)

where R = σL/σT is the ratio of the virtual photoabsorption cross sections for longitudinally and

transversely polarized photons. Replacing F1 in the cross section formula Eq.(2.20) by Eq.(5.1)

gives:

σ =
4α2E2

p

Q4 cos2(
θ

2
)F2

[
1
ν
+

1 +Q2/ν2

xM(1 + R)
tan2(

θ

2
)

]
. (5.2)

The measurements of R by SLAC, NMC and HERMES using multiple nuclear targets show no A

dependence in the MARATHON kinematics [77][78][79][80]. So we assume that R is equal for

different nuclei. Then the ratio of the F2 structure functions between nuclei is equal to their cross

section ratios, for example:
F

3H
2

F3He
2

=
σ(3H)
σ(3He)

. (5.3)

5.1.1 Fn
2 /F

p
2 extraction

If the distributions of proton and neutron remain the same inside different nuclei, then Fn
2 /F

p
2

could be extracted directly from the ratio of the nuclei structure functions. However, the EMC

effect demonstrates that the nucleon structure functions are modified by the nuclear medium and

vary between different nuclei. In order to extract the free nucleon structure function ratio Fn
2 /F

p
2 ,
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firstly let’s define a EMC-type ratio for a nucleus [12], A
Z X , as:

RAZ =
F

A
Z X
2

ZFp
2 + (A − Z)Fn

2
, (5.4)

where F
A
Z X
2 is the nuclear structure function measured from the experiment, and Fn

2 and Fp
2 are

the free neutron and proton structure functions. This ratio effectively characterizes how large the

nuclear effect is inside the nucleus, and it can only be found from theory calculations (see Fig.5.1).

Once the EMC-type ratio is known, it can be used to extract the Fn
2 /F

p
2 ratio from the nuclei

structure function ratios.
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Figure 5.1: The EMC-type ratios for 2H, 3He and 3H from the KP model

For the MARATHON experiment, the goal is to find Fn
2 /F

p
2 from the tritium over helium-3

cross section ratio, as the difference in nuclear corrections for the two mirror nuclei should be

small. But before doing that, we would like to extract the Fn
2 /F

p
2 from the deuteron over proton

ratio at low x (x < 0.6), where the nuclear effect is well understood, in order to check the overall

systematic uncertainty.
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Fn
2/F

p
2 from Fd

2/F
p
2

The EMC-type ratio for the deuteron is expressed by:

R21 =
Fd

2

Fn
2 + Fp

2
. (5.5)

From Eq.(5.5), Fn
2 /F

p
2 is extracted from Fd

2 /F
p
2 by:

Fn
2

Fp
2
=

Fd
2 /F

p
2

R21
− 1 (5.6)

The result is shown in Fig.5.2. It agrees well with the KP model.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Bjorken x

0.3

0.4

0.5

0.6

0.7

0.8

p 2
 / 

F
n 2

F H1

2 / FH2

2F
He3

2 / FH3

2F

KP model

H1

2 / FH2

2Norm. uncer. from F

He3

2 / FH3

2Norm. uncer. from F

Figure 5.2: Fn
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p
2 extracted from F
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2 /F

3He
2 and F

2H
2 /F
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2

Fn
2/F

p
2 from F3H

2 /F
3He
2

The EMC-type ratio for 3H and 3He are defined as:

R31 =
F

3H
2

Fp
2 + 2Fn

2
, R32 =

F
3He
2

2Fp
2 + Fn

2
. (5.7)
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From Eq.(5.7), the Fn
2 /F

p
2 is found from F

3H
2 /F

3He
2 by:

Fn
2

Fp
2
=

1/R − 2F
3H
2 /F

3He
2

F3H
2 /F

3He
2 − 2/R

, (5.8)

where R is R32/R31, called “super-ratio". It represents the nuclear effects difference between 3H

and 3He, which should be small for the mirror nuclei [81]. As can be seen in Fig.5.3, R calculated

by K&P is indeed around 1, and only goes up to 1.01 at the highest x point. The nuclear corrections

considered in the KP model include the off-shell correction, the target mass correction, higher-twist

correction, and nuclear meson-exchange current correction which only produces a small correction

when x < 0.2.
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Figure 5.3: The ratios between EMC-type ratios from KP model

The Fn
2 /F

p
2 results are given in Fig.5.2. The Fn

2 /F
p
2 ratio obtained from 3H and 3He cross

section ratio is higher than that from the deuteron and proton ratio, but they seem to match after a

vertical shift, and have a similar shape as the KP model. This normalization difference is discussed

in the following section.
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5.1.2 Normalization

Since nuclear effects for different nuclei are similar near x = 0.3, the ratio Fn
2 /F

p
2 extracted

from different nuclear structure function ratios should be same in that range. The difference be-

tween the ratio Fn
2 /F

p
2 extracted from 3H/3He and d/p likely comes from a normalization uncer-

tainty induced by a target density mismeasurement (at the two standard deviations level). Unlike

other systematic uncertainties which are measured during the experiment, the uncertainty in the

target density measurement is found by an engineering procedure during the cell filling, using the

ideal gas law. The systematic uncertainties induced by the target densities provided by the target

group are dominant (1.0% − 1.5%) in the total systematic uncertainties. In order to find the origin

of this normalization difference, we extract Fn
2 /F

p
2 from F

3H
2 /F

2H
2 and F

3He
2 /F

2H
2 near x = 0.3.

Fn
2/F

p
2 from F3H

2 /F
2H
2

From the EMC-type ratios for 3H and 2H given in Eq.(5.7) and Eq.(5.5), the Fn
2 /F

p
2 is extracted

from F
3H
2 /F

2H
2 by:

Fn
2

Fp
2
=

F
3H
2 /F

2H
2 − R31/R21

2R31/R21 − F3H
2 /F

2H
2

. (5.9)

The result is shown in Fig.5.4. It agrees with the Fn
2 /F

p
2 extracted from the deuteron to proton ratio

near x = 0.3.

Fn
2/F

p
2 from F3He

2 /F
2H
2

From the EMC-type ratios for 3He and 2H given in Eq.(5.7) and Eq.(5.5), the Fn
2 /F

p
2 is extracted

from F
3He
2 /F

2H
2 using:

Fn
2

Fp
2
=

F
3He
2 /F

2H
2 − 2R31/R21

R31/R21 − F3He
2 /F2H

2

. (5.10)

As shown in Fig.5.4, the Fn
2 /F

p
2 obtained from F

3He
2 /F

2H
2 is larger than the others. While the result

from F
3H
2 /F

2H
2 agrees with the Fn

2 /F
p
2 from F

2H
2 /F

1H
2 , we attribute the normalization difference for

the result from the tritium over helium-3 ratio comes from the 3He target density uncertainty.
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Figure 5.4: Fn
2 /F

p
2 extracted from F
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2 , F
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2 /F
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2 , F

3H
2 /F

2H
2 and F

3He
2 /F

2H
2 at low x

Based on the assumption that the nuclear effect cancels around x = 0.3, the normalization for

each nuclear structure function ratio is decided by comparing the ratio Fn
2 /F

p
2 from data (Rdata) to

the KP model (RKP) between x = 0.2 to x = 0.4 and minimizing the χ2-like quantity:

∑
i

(
Rdata(xi) − RKP(xi)

δRdata(xi)

)2
. (5.11)

The normalization results are shown in Table 5.1, and the ratio Fn
2 /F

p
2 after normalization is shown

in Fig.5.5. The normalization needed for F
2H
2 /F

1H
2 and F

3H
2 /F

2H
2 are well within their total uncer-

tainties, while F
3He
2 /F

2H
2 and F

3H
2 /F

3He
2 need to be scaled by 2.4% and -2.6%, respectively. This

effectively implies that the target densities for 1H, 2H and 3H require no normalization factor, but

the 3He target density requires a 2.4% correction factor.

The uncertainty in the normalization comes from the model dependence on Fn
2 /F

p
2 and the sta-

tistical uncertainty of the data. The model dependence can be determined by comparing the nor-

malization found using different Fn
2 /F

p
2 models, and to be consistent, all EMC-type ratios should

come from same model. However, except for the KP model, the other available model CJ15 [48]

has a different Fn
2 /F

p
2 shape compared to the data, shown in Fig.5.6. In order to use CJ15 model,
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p
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Ratio Normalization

F
2H
2 /F

1H
2 +0.6%

F
3H
2 /F

2H
2 -0.2%

F
3He
2 /F

2H
2 +2.4%

F
3H
2 /F

3He
2 -2.6%

Table 5.1: The normalization on nuclei structure function ratios

an iteration would have to be applied to eliminate the Fn
2 /F

p
2 difference on the super-ratio R cal-

culation [12]; this may be done in a future analysis.

5.1.3 Fn
2 /F

p
2 results

The ratio Fn
2 /F

p
2 extracted from F

3H
2 /F

3He
2 (presumably) has a small nuclear model dependence.

The F
3H
2 /F

3He
2 is scaled by a factor of 0.976. The resulting Fn

2 /F
p
2 ratio is shown in Fig.5.7 together

with the KP model. The KP model describes the data fairly well. As can be seen in Eq.(5.8),

the uncertainties in the ratio Fn
2 /F

p
2 come from the tritium over helium-3 structure function ratio

and the super-ratio R. The ratio F
3H
2 /F

3He
2 uncertainty is the same as their cross sections ratio

uncertainty given in Section 4.8. The uncertainty in the super-ratio R from the KP model is not

available yet. As a reference from [81], the theoretical uncertainty in R can increase linearly from
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Figure 5.6: Fn
2 /F

p
2 extracted from renormalized 3H/3He using CJ15 model. [82]

0% at x = 0 to 1% at x = 0.82. By neglecting the theoretical uncertainty on R, the total uncertainty

in Fn
2 /F

p
2 is less than 4.5%, and given in Appendix C Table C.1.

A comparison between the ratio Fn
2 /F

p
2 from the MARATHON experiment and previous SLAC

deuteron experiments which are at similar kinematics are shown in Fig.5.8. In the global reanalysis

of the SLAC deuteron and proton DIS data, Whitlow et al. [21] included the Fermi smearing in the

Fn
2 /F

p
2 extraction, and studied the model dependence by using three different deuteron wave func-

tions (Paris[83], Reid[84], Bonn[85]). The results start to diverge when x > 0.65. At x = 0.85,

using the Bonn wave function gives a 20% higher ratio than using the Paris wave function, and

using the Reid soft core wave function is 15% lower. As mentioned in Section 2.1.2, Melnitchouk

and Thomas[20] reanalyzed SLAC data by including more nuclear corrections in the deuteron

model, such as binding effects and off-shell corrections, which leads to another different SLAC

result shown in Fig.5.8. The ratio Fn
2 /F

p
2 extracted from F

3H
2 /F

3He
2 is similar to that from Mel-

nitchouk and Thomas[20]. However, no conclusion can be made at this time since higher twist and

target mass corrections might change the results significantly.
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5.2 EMC effect

The purpose of EMC effect study is to compare the average nucleon structure function inside

a nucleus versus inside a deuteron. If a nucleus has an equal number of protons and neutrons, the

observable for the EMC effect is the ratio of the nuclear structure function per nucleon to that of

the deuteron:
F A

2 /A

Fd
2 /2

(5.12)

Since the neutron has a “softer" (lower) distribution than the proton, nuclei with different numbers

of protons and neutrons require an isoscalar correction.

5.2.1 Isoscalar correction

An isoscalar correction is applied and uses the measurements of free nucleon structure func-

tions to eliminate the proton excess or neutron excess inside a nucleus. An isoscalar nucleus, with

an equal number of protons and neutrons, is constructed after applying the correction. The EMC
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ratio on the nucleus with the isoscalar correction applied is expressed by:

(
F A

2 /A

Fd
2 /2

)
iso
=

(
F A

2

Fd
2

)
·

Fp
2 + Fn

2

ZFp
2 + (A − Z)Fn

2
(5.13)

=

(
F A

2

Fd
2

)
·

1 + Fn
2 /F

p
2

Z + (A − Z)Fn
2 /F

p
2

(5.14)

As can be seen in Eq.(5.14), the isoscalar correction depends on the Fn
2 /F

p
2 ratio. The ratio Fn

2 /F
p
2

given in Fig.5.7 has only a small model dependence at large x. Therefore, it is used to make the

isoscalar correction on the MARATHON EMC data.

5.2.2 3He EMC effect

The EMC effect on helium-3, before and after isoscalar correction, are shown in Fig.5.9. The

2.4% normalization on F
3He
2 is applied. The 3He EMC ratio crosses 1 around x = 0.3, which

is consistent with the measurements of the EMC effect on other nuclei. The uncertainties of the
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helium-3 EMC ratio come from the uncertainties of F
3He
2 /F

2H
2 and the isoscalar correction. The

ratio F
3He
2 /F

2H
2 has the same uncertainties as the cross section ratios given in Section 4.8. The

isoscalar correction has a Fn
2 /F

p
2 model dependence; a detailed study can be found in [86]. The

study shows that the difference between models can lead to a 2.8% uncertainty on the 3He EMC

ratio and 3.9% on the 3H EMC ratio at the highest x point. However, some of the Fn
2 /F

p
2 models

are surely not correct at high x. For example, the NMC fit does not include any deuteron nuclear

corrections. So in this thesis work, only the experimental uncertainties on the Fn
2 /F

p
2 given in

Table C.1 are included. The results of the helium-3 EMC effect is given in Table C.2, where the

systematic uncertainties are probably underestimated.
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Figure 5.9: 3He EMC ratio result from the MARATHON experiment compared with the KP model,
the SLAC A-dependent fit and the SLAC average nuclear density fit [27]. HERMES [76] and JLab
E03-103 [33] 3He EMC results are also shown. The 2.4% normalization on σ(3He) is applied. The
isoscalar correction uncertainty is not included.

The data is compared with the KP model, the SLAC A-dependent fit and the SLAC average

nuclear density model [27]. The root-mean-squared radius used for 3He is 1.88 fm. Both the KP

model and the SLAC A-dependent fit [27] are able to describe the slope of the 3He EMC effect,
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but in the range x > 0.7, the minimum predicted from the SLAC A-dependent fit is more than 3%

lower than the minimum in the data. On the other hand, the average nuclear density model fails to

describe the data and gives a lower prediction.

Previous 3He EMC data from HERMES and JLab E03-103 with isoscalar corrections are also

shown. The result from the MARATHON experiment agrees with the HERMES measurement in

the overlap region. The result from E03-103 has a similar slope to the MARATHON data, but is

lower. S. Kulagin and R. Petti argue that in order to match the Fn
2 /F

p
2 from the NMC experiment,

a 3% normalization is required for the JLab E03-103 3He EMC data [87]. If we include this

normalization, the data from E03-103 agrees well with the MARATHON result. Note that the W2

for E03-103 in the range x > 0.76 is less than 2 GeV2, which corresponds to the resonance region.

5.2.3 3H EMC effect

The 3H EMC effect before and after isoscalar correction is shown in Fig.5.10. This represents
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Figure 5.10: 3H EMC ratio result from the MARATHON experiment compared with the KP model,
the SLAC A-dependent fit and the SLAC average nuclear density fit [27]. The 1.12% normalization
uncertainty on σ(3H)/σ(2H) and the isoscalar correction uncertainty are not included.
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the first measurement of the tritium EMC effect. The isoscalar corrected 3H EMC ratio crosses

unity around x = 0.3. The uncertainties are calculated in the same way as the 3He EMC ratios.

The prediction for the tritium EMC ratios from the KP model and two SLAC fits [27] are also

shown in Fig.5.10. The SLAC A-dependent fit describes well the slope for the 3H EMC effect,

except when x > 0.7, the SLAC fit is 2% lower than the data. The KP model is also able to

reproduce the 3H EMC effect. However, the average nuclear density model from SLAC indicates

a much lower tritium EMC effect. The root-mean-squared radius used for 3H is 1.68 fm.

The comparison between the EMC effect on 3H and 3He is shown in Fig.5.11. They are similar,

which supports the assumption that the difference in the nuclear corrections between tritium and

helium-3 is small.
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Figure 5.11: Comparison between 3H EMC ratio and 3He EMC ratio. The 2.4% normalization on
σ(3He) is applied.
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5.3 Conclusions

In the MARATHON experiment, the ratio Fn
2 /F

p
2 is extracted from the ratio F

3H
2 /F

3He
2 . Be-

cause tritium and helium-3 are mirror nuclei, the nuclear correction difference between them is

expected to be small. Therefore, the extracted Fn
2 /F

p
2 has much smaller nuclear model depen-

dence than previous extractions from deuteron and proton DIS data. The Fn
2 /F

p
2 obtained from

the MARATHON experiment agrees with the Fn
2 /F

p
2 extracted by Melnitchouk and Thomas[20]

using the SLAC deuteron and proton DIS data, which is close to the pQCD predictions for Fn
2 /F

p
2

as x → 1. However, no conclusion can be made at this time. In order to extract the leading order

Fn
2 /F

p
2 , the higher order pQCD corrections, high twist effects and the target mass corrections have

to be considered, which could have a large effect at large x. This requires additional theoretical

calculations.

The EMC ratio for tritium and helium-3 are presented. We have performed the first measure-

ment of the EMC effect in tritium. Both EMC ratios agree with the predictions from the KP model

and the SLAC A-dependent fit, while the SLAC average nuclear density model fails to reproduce

the data. This supports the concept that the EMC effect is unlikely to be related to the average

nuclear density.

One thing to note is that in order to make the Fn
2 /F

p
2 extracted from tritium and helium-3 agree

with that from deuteron and proton around x = 0.3, a 2.4% normalization is applied to the helium-

3 structure function. The interesting thing is that a 3% normalization is also required in the JLab

E03-103 3He EMC ratio to match the NMC Fn
2 /F

p
2 [87]. Including the normalization factor, the

KP model describes well the MARATHON data. Their model appears to provide a good reference

for the nuclear effects in future study.
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Chapter 6: Future project and experiments

Even though nuclear effects largely cancel out when taking the ratio between 3H and 3He,

the super-ratio R used in the Fn
2 /F

p
2 extraction (e.g. Eq.(5.8)) still has model dependence. An

alternative method has been put forward [88] to parameterize the free neutron and proton structure

functions by analyzing proton, deuteron and A = 3 nuclear data. In this way, nuclear effects

can be studied. Furthermore, with the upgraded 12 GeV electron beam at JLab, the spectator

tagging method will be used in the BONUS12 experiment to directly measure the nearly free

neutron structure function [89]. The SoLID collaboration aims to extract the d/u ratio at large x

by performing parity-violating deep inelstic scattering (PVDIS) on the proton [90].

6.1 An alternative data analysis method

In the last chapter, the ratio Fn
2 /F

p
2 is extracted from F

3H
2 /F

3He
2 following the method given

in the MARATHON proposal [12], which uses a theoretical calculation for the super-ratio R. In

the super-ratio R calculation, the nuclear structure functions are built from free nucleon structure

functions by including multiple nuclear corrections, such as nuclear binding effects, Fermi smear-

ing, and the off-shell corrections. The off-shell corrections are determined from parameterization

of DIS data, where isospin independence for neutron and proton is assumed. However, if isospin

dependence from off-shell effects does occur, it could have a large effect on the super-ratio R.

Tropiano et al. [88] tried to fit the isospin dependent off-shell corrections based on the isoscalar

off-shell functions obtained from the CJ15 and the KP model using the JLab E03-103 F
3He
2 /F

2H
2

data. The isoscalar off-shell functions obtained from the CJ15 and the KP model are quite differ-

ent, which result in dramatically different super-ratio R predictions at large x, as shown in Fig.6.1.

But since the F
3He
2 /F

2H
2 data used in the fit is only between 0.33 . x . 0.58, the resulting isospin

110



dependent off-shell functions are not considered reliable.

Figure 6.1: Comparison on (a) Super-ratio R, (b) the ratio F
3H
2 /F

3He
2 , between the model with

isoscalar off-shell corrections and isospin dependent off-shell corrections. The isoscalar off-shell
function is obtained from the CJ15 and the KP model. [88]

An alternative method to extract the ratio Fn
2 /F

p
2 that avoids the nuclear model dependence is to

do a global fit at the structure function level [88]. The nuclear structure function can be expressed

as the sum of the on-shell and off-shell contributions:

F A
2 (x,Q

2) = F A(on)
2 (x,Q2) + F A(off)

2 (x,Q2). (6.1)

The on(off)–shell contributions can be written as:

F A (on)
2 (x,Q2) =

∑
N

∫
dy

[
f N
22(y, γ) F

N
2

(
x
y
,Q2

)]
, (6.2)

F A (off)
2 (x,Q2) =

∑
N

∫
dy

[
f̃ N
22(y, γ) F

N
2

(
x
y
,Q2

)]
δ f N

(
x
y
,Q2

)
, (6.3)

where f N
22 and f̃ N

22 are the on-shell and off-shell smearing functions computed using non-relativistic

nucleon spectral functions. The on-shell nucleon structure functions FN
2 and the off-shell func-

tions δ f N can be extracted from data. There are four unknowns: Fp
2 , Fn

2 , δ f p, δ f n, and we

have the global proton and deuteron DIS data together with the F
3He
2 /F

2H
2 and F

3H
2 /F

2H
2 from the
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MARATHON experiment which are four available observables. Therefore, the four unknowns can

be determined by a global fit.

In this alternative method, not only the free neutron and proton structure functions are param-

eterized, but also the isospin dependent off-shell functions can be extracted. This method removes

potential uncertainties coming from the nuclear effects, and characterizes the isospin dependence

from the off-shell corrections.

6.2 The BONUS12 experiment

The BONUS12 experiment [89] is an extension of the JLab 6 GeV experiment E03-012 (BONUS,

“Barely Off-shell NUcleon Structure") [91] at the upgraded 12 GeV CEBAF. It performs semi-

inclusive electron scattering off the deuterium target. A recoil detector surrounding the deuterium

target is installed to detect the slow protons emitted in the backward direction, and the coincidence

electrons will be detected by the CEBAF Large Acceptance Spectrometer in Hall B. The restriction

to a low momentum proton ensures that the electron scattering takes place on a nearly on-shell neu-

tron. The BONUS12 experiment is scheduled to run in the spring of 2020. The neutron structure

function will be measured in the DIS region up to x ≈ 0.8 with small nuclear model uncertainties.

The projected uncertainties on Fn
2 /F

p
2 are shown in Fig.6.2.

6.3 d/u from proton PVDIS

The SoLID collaboration at JLab Hall A aims to measure the parity-violating asymmetry (APV )

with a solenoidal large intensity device (SoLID), which has a large acceptance and operates under

high luminosity conditions. The parity-violating asymmetry from hydrogen is sensitive to the ratio

d/u and is completely decoupled from any nuclear corrections [90]. In QCD, the asymmetry APV

can be written as:

APV =
GFQ2
√

2πα
[a1(x) + f (y)a3(x)], (6.4)
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Figure 6.2: The BONUS12 projected Fn
2 /F

p
2 results. The filled circle points indicate the data

points with W∗ > 2 GeV with statistical uncertainties. The open squared points show the data
with a loose cut W∗ > 1.8 GeV. The black curves at the bottom indicate the estimated systematic
uncertainties. The upper curve combines the experimental and theoretical uncertainties, while the
lower curve represents the systematic uncertainties after normalization at low x to the world data.
[92]

where y = ν/E . The dominant term in the asymmetry of the proton, ap
1 , is related to the PDFs and

is given by:

ap
1(x) =

12C1uu(x) − 6C1dd(x)
4u(x) + d(x)

(6.5)

∼
u(x) + 0.912d(x)
u(x) + 0.25d(x)

(6.6)

With PVDIS on the hydrogen target, the SoLID collaboration estimates that a 2% uncertainty on

d/u can be reached over a large range of x bins, with the highest being at x = 0.7 after averaging.

The projected d/u results from the MARATHON experiment, the BONUS12 experiment and

the SoLID PVDIS experiment are shown in Fig.6.3.

A global analysis of data from all these new experimental results will shed light on our under-
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Figure 6.3: Projected d/u results from the MARATHON experiment, the BONUS12 experiment
and the SoLID PVDIS experiment.

standing of the quark dynamical distributions at large x.
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Appendix A: Cross Section Model Comparison

The systematic error induced by the cross section model is studied by comparing the results

of cross section ratios extracted using different models. Besides the Bodek fit, the other available

Fp
2 and Fd

2 model is from the NMC collaboration, which fits the SLAC and BCDMS DIS data, as

well as NMC data [75]. The comparison between the structure functions from the two models are

shown in Fig.A.1. This NMC fit does not include the resonance region, as compared to their first fit

[93], while the difference resulting from neglecting the resonance is negligible everywhere except

in the lowest x bin where difference approaches 2% [94]. But it is useful for comparing how the

resonance will affect the MARATHON results. A global fit of R = σL/σT is utilized in the NMC

model to build the cross section.

(a) Fp
2 from different models (b) Fd

2 from different models

Figure A.1: F2 Structure functions from different models

A good empirical parametrization of the EMC data by J. Gomez et al. [27] can also be used to

build the 3H and 3He EMC ratio. However, the parametrization is for isoscalar nuclei. A Fn
2 /F

p
2

model is required to account for the differences in non-isoscalar targets. Three Fn
2 /F

p
2 models with

different shapes are applied (see Fig.A.2). The Fn
2 /F

p
2 from SLAC is linear with Fermi motion

taken into consideration [19]. The NMC Fn
2 /F

p
2 is simply equal to (Fd

2 /F
p
2 − 1) with no nuclear
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effects considered [93], which is not valid at large x (x > 0.6). The Fn
2 /F

p
2 from CJ15 [48] includes

Fermi motion, binding, and nucleon off-shell effects. The resulting EMC ratios of 3H and 3He are

shown in Fig.A.3.

Neglecting the results at large x from utilizing NMC Fn
2 /F

p
2 , the changes in the radiative cor-

rection factors using different models are no more than 0.35%.

Figure A.2: Fn
2 /F

p
2 from different models with Q2 = 14x GeV2 (similar to the MARATHON

kinematic settings)
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(a) 3H EMC ratio from different models without isoscalar correction

(b) 3He EMC ratio from different models without isoscalar correction

Figure A.3: EMC ratio from different models
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Appendix B: Cross Section Ratio Data

The data for the cross section ratios are listed in the tables below. The tables include the relative

statistical uncertainties and systematic uncertainties.

x Q2 (GeV2) R
(σ(2H)
σ(1H)

)
δRstat/R δRsys/R

0.17 2.42 1.7383 0.0039 0.0056

0.19 2.72 1.7322 0.0027 0.0053

0.22 3.10 1.7056 0.0030 0.0050

0.25 3.48 1.6774 0.0038 0.0049

0.29 4.02 1.6413 0.0038 0.0049

0.32 4.50 1.6188 0.0048 0.0053

0.34 4.91 1.5920 0.0063 0.0055

0.38 5.32 1.5290 0.0102 0.0061

Table B.1: σ(2H)/σ(1H) results. The 0.79% normalization uncertainty is not shown in the table.
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x Q2 (GeV2) R
(σ(3He)
σ(2H)

)
δRstat/R δRsys/R

0.17 2.42 1.5738 0.0037 0.0054

0.19 2.72 1.5662 0.0026 0.0050

0.22 3.10 1.5628 0.0028 0.0048

0.25 3.49 1.5673 0.0034 0.0047

0.29 4.01 1.5744 0.0034 0.0047

0.33 4.55 1.5625 0.0040 0.0048

0.36 5.00 1.5777 0.0061 0.0054

0.385 5.39 1.5941 0.0077 0.0054

0.43 6.02 1.5713 0.0059 0.0051

0.48 6.75 1.6179 0.0073 0.0052

0.51 7.22 1.6014 0.0078 0.0054

0.55 7.78 1.5998 0.0078 0.0052

0.59 8.32 1.5901 0.0079 0.0053

0.63 8.93 1.6024 0.0087 0.0052

0.67 9.38 1.5952 0.0100 0.0054

0.70 9.91 1.6273 0.0089 0.0052

0.74 10.50 1.6580 0.0085 0.0050

0.78 11.13 1.6530 0.0086 0.0051

0.82 11.75 1.6355 0.0115 0.0051

Table B.2: σ(3He)/σ(2H) results. The 2.4% normalization on σ(3He) is not applied.
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x Q2 (GeV2) R
(σ(3H)
σ(2H)

)
δRstat/R δRsys/R

0.17 2.42 1.4758 0.0041 0.0056

0.19 2.72 1.4519 0.0028 0.0053

0.22 3.10 1.4250 0.0029 0.0051

0.25 3.50 1.4160 0.0033 0.0050

0.29 4.00 1.3991 0.0033 0.0050

0.33 4.54 1.3731 0.0039 0.0051

0.36 5.01 1.3827 0.0063 0.0056

0.385 5.39 1.3598 0.0080 0.0056

0.43 6.03 1.3298 0.0060 0.0053

0.48 6.75 1.3324 0.0076 0.0055

0.51 7.22 1.3176 0.0080 0.0056

0.55 7.78 1.3001 0.0080 0.0055

0.59 8.32 1.2835 0.0081 0.0055

0.63 8.93 1.2791 0.0090 0.0054

0.67 9.38 1.2621 0.0103 0.0056

0.70 9.91 1.2882 0.0092 0.0054

0.74 10.50 1.2856 0.0089 0.0053

0.78 11.13 1.3065 0.0089 0.0053

0.82 11.75 1.2858 0.0119 0.0054

Table B.3: σ(3H)/σ(2H) results. The 1.12% normalization uncertainty is not shown in the table.
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x Q2 (GeV2) R
( σ(3H)
σ(3He

)
δRstat/R δRsys/R

0.17 2.42 0.9377 0.0038 0.0058

0.19 2.72 0.9272 0.0026 0.0055

0.22 3.10 0.9118 0.0028 0.0054

0.25 3.48 0.9033 0.0034 0.0053

0.29 4.00 0.8876 0.0036 0.0053

0.33 4.56 0.8790 0.0042 0.0053

0.36 5.02 0.8759 0.0062 0.0057

0.385 5.40 0.8525 0.0076 0.0058

0.43 6.01 0.8456 0.0059 0.0055

0.48 6.75 0.8236 0.0075 0.0056

0.51 7.22 0.8227 0.0080 0.0058

0.55 7.78 0.8126 0.0081 0.0056

0.59 8.32 0.8068 0.0082 0.0056

0.63 8.93 0.7984 0.0091 0.0056

0.67 9.38 0.7912 0.0104 0.0058

0.70 9.91 0.7921 0.0091 0.0056

0.74 10.49 0.7750 0.0088 0.0055

0.78 11.12 0.7900 0.0088 0.0055

0.82 11.75 0.7862 0.0118 0.0055

Table B.4: σ(3H)/σ(3He) results. The 2.4% normalization on σ(3He) is not applied.
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Appendix C: Fn
2 /F

p
2 and EMC results

The Fn
2 /F

p
2 extracted from tritium over helium-3 is given in Table C.1. The 3He EMC effect

result with isoscalar correction is given in Table C.2. Both results are with the 2.4% normalization

applied on F
3He
2 . The 3H EMC effect result with isoscalar correction is given in Table C.3. The

discussions on the uncertainties can be found in Chapter 5. The normalization uncertainties are not

included.
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x Q2 (GeV2) R(Fn
2 /F

p
2 ) δRstat δRsys

0.17 2.42 0.764 0.009 0.014

0.19 2.72 0.739 0.006 0.013

0.22 3.10 0.702 0.006 0.012

0.25 3.48 0.682 0.007 0.011

0.29 4.00 0.646 0.007 0.011

0.33 4.56 0.628 0.008 0.011

0.36 5.01 0.622 0.012 0.011

0.385 5.40 0.572 0.014 0.011

0.43 6.01 0.560 0.011 0.010

0.48 6.75 0.517 0.013 0.010

0.51 7.22 0.516 0.014 0.010

0.55 7.78 0.498 0.013 0.009

0.59 8.32 0.488 0.013 0.009

0.63 8.93 0.472 0.015 0.009

0.67 9.38 0.459 0.016 0.009

0.70 9.91 0.461 0.014 0.009

0.74 10.49 0.429 0.013 0.008

0.78 11.12 0.460 0.014 0.009

0.82 11.75 0.453 0.018 0.009

Table C.1: Fn
2 /F

p
2 results. The 2.4% normalization on σ(3He) is applied.
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x Q2 (GeV2) R δRstat δRsys

0.17 2.42 1.028 0.004 0.006

0.19 2.72 1.018 0.003 0.006

0.22 3.10 1.008 0.003 0.006

0.25 3.49 1.006 0.004 0.005

0.29 4.01 1.003 0.004 0.005

0.33 4.55 0.991 0.004 0.005

0.36 5.00 0.999 0.007 0.006

0.385 5.39 0.997 0.008 0.006

0.43 6.02 0.980 0.006 0.006

0.48 6.75 0.998 0.008 0.006

0.51 7.22 0.988 0.008 0.006

0.55 7.78 0.982 0.008 0.006

0.59 8.32 0.973 0.008 0.006

0.63 8.93 0.977 0.009 0.006

0.67 9.38 0.969 0.011 0.006

0.70 9.91 0.989 0.010 0.006

0.74 10.50 0.999 0.009 0.006

0.78 11.13 1.004 0.009 0.006

0.82 11.75 0.992 0.013 0.006

Table C.2: The EMC ratio for 3He results with isoscalar correction. The 2.4% normalization on
σ(3He) is applied.
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x Q2 (GeV2) R δRstat δRsys

0.17 2.42 1.030 0.005 0.007

0.19 2.72 1.019 0.003 0.006

0.22 3.10 1.009 0.003 0.006

0.25 3.50 1.008 0.004 0.006

0.29 4.00 1.005 0.004 0.006

0.33 4.54 0.991 0.004 0.006

0.36 5.00 1.000 0.007 0.006

0.385 5.39 0.997 0.009 0.006

0.43 6.03 0.979 0.007 0.006

0.48 6.75 0.994 0.009 0.006

0.51 7.22 0.984 0.009 0.006

0.55 7.78 0.976 0.009 0.006

0.59 8.32 0.967 0.009 0.006

0.63 8.93 0.969 0.010 0.006

0.67 9.38 0.960 0.011 0.006

0.70 9.91 0.979 0.010 0.006

0.74 10.50 0.989 0.010 0.006

0.78 11.13 0.994 0.010 0.006

0.82 11.75 0.981 0.013 0.006

Table C.3: The EMC ratio for 3H results with isoscalar correction. The 1.12% normalization
uncertainty of σ(3H)/σ(2H) is not included.
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