
INFRARED PHENOMENOLOGY OF ULTRAVIOLET

PHYSICS BEYOND THE STANDARD MODEL

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF PHYSICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Nathaniel Jay Craig

August 2010



 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      http://creativecommons.org/licenses/by-nc/3.0/us/

 

 

 

This dissertation is online at: http://purl.stanford.edu/sk185cs0786

 

© 2010 by Nathaniel Jay Craig. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/sk185cs0786


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Savas Dimopoulos, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Shamit Kachru

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Eva Silverstein

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



Acknowledgments

As an undergraduate, I keenly remember lingering over the acknowledgments sections

in the theses of my lab’s past doctoral students. The thought of reaching the end

of one’s graduate studies and paying tribute to colleagues and friends seemed deeply

compelling. It is curious indeed to have reached this stage myself, wondering how to

find words adequate to repay the many debts of gratitude I have incurred over the

course of the last five years.

It is only fair to begin by acknowledging the guidance and support of my advisor,

Savas Dimopoulos. I can say with considerable certainty that what little ‘taste’ I

possess as a physicist is due entirely to his efforts. I am grateful to Savas for allowing

me tremendous freedom in my studies; the independence he allowed me proved price-

less. I am further indebted to Savas for collecting an assembly of excellent minds,

and I owe great thanks to the other members of the ‘Savas Group’ from 2005-2010

(many of whom have remained part of the collective long after obtaining their own

PhD’s): Peter Graham, Asimina Arvanitaki, Surjeet Rajendran, Prashant Saraswat,

Sergei Dubovsky, and Roni Harnik. One of the greatest pleasures of studying under

Savas was the constant flux of extraordinary faculty members who came to spend

time with us at Stanford (and allowed us to spend time at their own institutions).

Among these, I am especially indebted to John March-Russell, Stuart Raby, David E.

Kaplan, and Nemanja Kaloper. But of course, those visits – and my progress through

graduate studies – would have all been for naught without the assistance of countless

able administrative staff, particularly Julie Shih, Guadalupe Makasyuk, and Maria

Frank.

iv



One of the many benefits of a Stanford graduate education was the unparalleled ac-

cess to brilliant physicists. Many faculty members at Stanford have contributed signif-

icantly to my development as a physicist – especially Jay Wacker, Shamit Kachru, Eva

Silverstein, Steve Shenker, Renata Kallosh, Michael Peskin, and David Goldhaber-

Gordon. Jay, in particular, warrants exceptional thanks for advising me at the begin-

ning of my graduate career. His introduction to diverse topics in quantum field theory

– and specifically to the nonperturbative tools of supersymmetric gauge theories –

proved instrumental to much of my graduate research. The quality of the postdocs at

Stanford and SLAC was no less noteworthy, and I have been privileged to learn from

some of the best. I am exceptionally indebted to Rouven Essig and Gonzalo Torroba

for their collaboration and insight.

But of course, by far the richest interactions of a graduate student’s career are

furnished by his or her fellow students. In this regard I am exceptionally grateful to

Daniel Green, my officemate and frequent collaborator for three years at Stanford. In

addition to his outstanding work on our joint projects, Dan both inspired and pushed

me to raise my game as a physicist and enrich my toolbox of formal techniques.

I would also like to acknowledge the company and contributions of all the other

Stanford and SLAC students, especially my fellow fifth-year students, Mariangela

Lisanti and Sho Yaida. Frequent visits to Oxford made it possible to know and

work with the delightful group of students there as well, particularly my collaborator

Matthew McCullough.

It seems impossibly difficult to make it through graduate school intact without

the unflagging support of countless friends and loved ones. The Stanford Cycling

team was a constant source of diversion and enjoyment during the course of my time

here, as were so many friends. Although I cannot hope to enumerate them all, among

those most responsible for the persistence of my sanity were Patrick Sullivan, Katy

Keenan, Michael Taylor, Kevin Weil, Peter Behroozi, Susannah Dickerson, Stefan

Meister, Arwen Bradley, Joakim Vinberg, and Samuel Wilson. But I reserve partic-

ular gratitude for Karl Twelker, with whom I have had the pleasure of sharing many

cups of espresso; numerous early-morning rides; many exchanges between theorist

and experimentalist; and much commiseration.

v



This long and unusual road began with my parents, Barry and Diane, without

whose love and constant encouragement I would not be here. Their willingness to

indulge and support my esoteric interests proved to be a model of parenting that I

hope one day to emulate with children of my own. And of course there is my brother,

Aidan, whose example I have followed in so many aspects of my life, physics included.

I would be remiss not to also express my gratitude to my soon-to-be parents-in-law,

Stuart and Shirley Crow, for a variety of wonderful adventures in the last few years of

graduate school – and especially the week in Tahiti during which much of this thesis

was compiled.

Finally, I am deeply and impossibly indebted to my fianceé, Katy Crow, for being
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Chapter 1

Introduction

The unreasonable effectiveness of the Standard Model as an explanation for physics

below the weak scale is legendary; its theoretical architecture and ∼ 20 parameters

suffice to describe most measured particle physics observables with great accuracy. At

the same time, the motivations for pushing beyond its framework are manifold. There

is a pressing need to explain both the origin of Standard Model parameters themselves

and the nature of observed phenomena lying beyond their scope. The motives are

both theoretical and empirical in character; theoretical considerations motivate us to

seek solutions for, e.g., the hierarchy problem (namely, the many orders of magnitude

separating the scales of gravity and electroweak symmetry breaking); the smallness

of the strong CP angle; the structure of Standard Model flavor; and the apparent

unification of gauge couplings. Empirical observations compel us to explain, among

other things, the measured degree of baryon asymmetry; the nature and structure

of dark matter; and the small (but finite!) value of the cosmological constant. And

then, of course – in addition to all this – there is the failure of the Standard Model

to incorporate a theory of quantum gravity, the apparent non-renormalizability of

which poses exceptional theoretical challenges. The energy scales at which solutions

to these problems may arise range from the very low (around 4× 10−3 eV in the case

of the cosmological constant) to the very high (around the Planck scale, ∼ 1019 GeV,

in the case of quantum gravity).

Many of these motivations for physics beyond the Standard Model may ultimately

1



CHAPTER 1. INTRODUCTION 2

be addressed by the same tools of quantum field theory that describe the Standard

Model itself. But matters are thornier for – at the very least – the hierarchy prob-

lem, the cosmological constant problem, and the quantum gravity “problem”, the

answers to which seem to require not merely new applications of field-theoretic tools,

but rather the genesis of an entirely new theoretical architecture. Perhaps the most

promising developments in this direction over the last several decades have been string

theory and its natural descendent, supersymmetry (SUSY). String theory provides, to

date, our best hope of formulating an ultraviolet-complete theory of quantum gravity.

But consistent critical string theories must be formulated in ten dimensions; repro-

duction of the four-dimensional world of our observations requires that the six “extra”

dimensions be compactified.1 If string theory is responsible for the structure of the

Standard Model or the resolution of the cosmological constant problem, the com-

pactification manifold must necessarily be topologically complex. Such topological

complexity may give rise to additional fields and sectors beyond the Standard Model,

providing a window into physics of the ultraviolet even when the compactification

scale is very high.

Supersymmetry – a symmetry relating bosons and fermions – is a natural con-

sequence of string theory that may persist at energies well below the scale of com-

pactification (although it is possible to have supersymmetry without evident string

theory, and string theory without evident supersymmetry). In the case of the Stan-

dard Model, such supersymmetry would be manifest in the form of supersymmetric

partners for all known particles. The nonobservation of supersymmetric partners at

presently-explored energies suggests that supersymmetry must be broken at or above

the weak scale. If supersymmetry is spontaneously broken near the weak scale, it

would provide a natural resolution to the hierarchy problem by ensuring cancellation

between divergent contributions to the Higgs mass. The masses of supersymmetric

partners would likewise lie naturally at the weak scale, making evidence of supersym-

metry apparent at the LHC. As such, weak-scale supersymmetry is one of the most

attractive candidates for physics beyond the Standard Model. But even apart from

1Of course, one may also consider non-critical string theory in fewer than ten dimensions, but
this lies somewhat outside our scope of consideration.



CHAPTER 1. INTRODUCTION 3

its potential role in stabilizing the Higgs mass, supersymmetry enables the study of

strongly-coupled or otherwise intractable dynamics owing to a rich structure of dual-

ities and exact results – making it a tremendous tool of both phenomenological and

theoretical appeal.

Much of the physics entailed by string theory and supersymmetry is expected

to lie at very high energies, well beyond the scales probed by colliders or ancillary

experiments. If we are to have any hope of understanding the fundamental structure

of reality, it is therefore instrumental to look for new ways in which the dynamics of

inaccessible energies may be made apparent at more accessible ones. In this thesis, we

will explore ways in which ultraviolet physics motivated by the shortcomings of the

Standard Model may give rise to new signatures and phenomena in the infrared. We

will find that physics at high energies often leaves its imprint – sometimes directly,

often obliquely – on observables at lower energies, from which we may extract signals

accessible at the LHC and other experiments.

In Chapter 2, we will study a potential (weak-scale) observational consequence

of string theoretic realizations of the Standard Model. String theories with topologi-

cally complex compactification manifolds suggest the simultaneous presence of many

unbroken U(1) gauge symmetries without any light matter charged under them. The

gauge bosons associated with these U(1)’s do not have direct observational conse-

quences. However, in the presence of low energy supersymmetry the gauge fermions

associated with these U(1)’s, the so-called “photini”, mix with Standard Model gaug-

inos and extend the MSSM neutralino sector. This leads to novel signatures at the

LHC. Observation of a plenitude of photini at the LHC would be evidence that we

live in a string vacuum with a topologically rich compactification manifold. This

work was done in collaboration with Asimina Arvanitaki, Savas Dimopoulos, Sergei

Dubovsky, and John March-Russell; and was published in [21].

In Chapter 3, we will study a related scenario involving a multiplicity of ob-

servable fields arising from realistic string compactification. Topologically complex
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compactification manifolds imply the existence of multiple sectors beyond the Stan-

dard Model, many of which may independently inhabit nonsupersymmetric min-

ima. Multiple independent supersymmetry breaking sectors lead to multiple pseudo-

goldstone fermions – would-be “goldstinos” – changing both supersymmetric col-

lider phenomenology and cosmology. Motivated by considerations arising from the

complexity of realistic string compactifications, we argue that many of the indepen-

dent SUSY-breaking sectors should be conformally sequestered or situated in warped

(Randall-Sundrum-like) throats, in which case significant changes to the previous

2m3/2 prediction for goldstini masses arise. If the sequestered hidden sector is, as

is likely, a metastable SUSY-breaking sector of the general Intriligator-Seiberg-Shih

(ISS) class then multiple goldstini can originate from within a single sector, along with

many supplementary ‘modulini’, all with masses of order m3/2. All of these fields

couple to the MSSM through the ‘Goldstino Portal’. Collider signatures involving

SSM sparticle decays can provide strong evidence for both warped-or-conformally-

sequestered sectors, and of the ISS mechanism of metastable SUSY breaking. Along

with photini, the Goldstino Portal gives another potential window to the physics of

the hidden sectors of string theory. This work was done in collaboration with John

March-Russell and Matthew McCullough, and has been submitted for publication; it

appears in preprint form in [47].

In Chapter 4, we shift gears somewhat to consider what the implications of su-

persymmetry and extended dynamics might be for Standard Model flavor. One ex-

ceptionally attractive picture for physics beyond the Standard Model arises if the

fermions of the Standard Model are, in fact, composites of a strongly-interacting sec-

tor whose dynamics spontaneously breaks supersymmetry. Such single-sector com-

positeness addresses both Standard Model and supersymmetric flavor problems, as

well as the origin and mediation of supersymmetry breaking. Using the tools of

metastable SUSY breaking, we construct calculable models with low-energy super-

symmetry where the flavor hierarchy is generated by quark and lepton compositeness,

and where the composites emerge from the same sector that dynamically breaks su-

persymmetry. The observed pattern of Standard Model fermion masses and mixings
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is obtained by identifying the various generations with composites of different dimen-

sion in the ultraviolet. These ”single-sector” supersymmetry breaking models give

rise to various spectra of soft masses which are, in many cases, quite distinct from

what is commonly found in models of gauge or gravity mediation. This work was done

in collaboration with Rouven Essig, Sebastian Franco, Shamit Kachru, and Gonzalo

Torroba; and was published in [46].

In Chapter 5, we study a closely related set of ideas, in which the Standard Model

fermions are all elementary but couple to a supersymmetric, near-conformal sector

over a range of energies. The observed hierarchy of fermion masses and mixings

may be generated by renormalization group flow induced by these couplings. If the

conformal sector is supersymmetric, these effects are rendered calculable by a com-

bination of superconformal symmetry and a technique called a-maximization. The

viability of such models depends on whether they generate the observed fermion mass

hierarchy before the Standard Model gauge couplings hit a Landau pole. We con-

struct a variety of simple vector-like models of superconformal flavor, including both

ten-centered and democratic variations. We discuss in detail the subtleties of apply-

ing the a-maximization procedure to determine anomalous dimensions of Standard

Model fields, and ultimately we find that a wide range of models based on SU(N) or

Sp(2N) SQCD with fundamental and adjoint matter are viable theories of supercon-

formal flavor. This work has been submitted for publication; it appears in preprint

form in [45].



Chapter 2

Collider signals of compactification

2.1 Introduction and Summary

String theory is a mathematically successful and beautiful theory of quantum gravity.

However, as is natural to expect for any theory of quantum gravity given the enor-

mous value of the relevant energy scale, MPl ' 1019 GeV, testing string theory at

experimentally accessible energies is challenging. Two major qualitative predictions

of string theory are supersymmetry (SUSY) and extra spatial dimensions. The weak

hierarchy problem suggests that at least one of these phenomena may be accessible

to observations at TeV energies.

The discovery of large extra dimensions at the LHC would certainly open a spec-

tacular window into string dynamics. Here we concentrate on a more challenging

scenario in which the weak hierarchy problem is solved by low energy SUSY, but the

size of extra dimensions is very small (for instance, Planck or GUT scale). Although

the very discovery of low energy SUSY would provide strong support for the string

framework, it is natural in this case to ask whether further evidence for string theory

at low energies may exist.

The usual characteristic signature of extra dimensions—excited Kaluza–Klein

(KK) modes—is unavailable for small extra dimensions, as massive KK modes are

too heavy to be produced. However, realistic string theory constructions typically

result in extra-dimensional manifolds with rich and non-trivial topology. One way

6
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to characterize the topological complexity of the manifold is by enumerating closed

sub-manifolds(cycles) of different dimensionality that cannot be deformed one into

another—the so-called (co)homology classes. This is a natural generalization of the

way in which orientable closed two-dimensional surfaces can be characterized by the

number of handles. Realistic compactifications in string theory typically involve man-

ifolds with a large number of cycles—from several hundreds to 105. The reason for

this is simple combinatorics—generically there are many non-equivalent ways to em-

bed a lower dimensional surface in a reasonably non-trivial six-dimensional manifold.

For instance, the simplest Calabi–Yau space—a six torus—has six 1- and 5-cycles,

fifteen 2- and 4-cycles, and twenty 3-cycles.

Interestingly, the topological complexity of a compactification manifold leaves

imprints in the spectrum of KK zero modes, even if the size of the extra dimensions

is arbitrarily small. To understand how this happens, let us recall another intrinsic

feature of string theory: the presence of a new kind of gauge field, in the guise of

antisymmetric tensor fields (forms) of various rank. In four space-time dimensions an

antisymmetric second rank tensor (2-form) Bµν is equivalent to a massless scalar field,

while higher rank forms are non-dynamical. This changes in higher dimensions, where

higher rank antisymmetric tensor fields can be both dynamical and different from the

scalar (0-form), and vector (1-form) fields. Higher rank antisymmetric forms play

a crucial role in the Green–Schwarz mechanism for anomaly cancellation in string

theory and are related to the presence of extended objects in the theory such as

strings and branes. Just as a vector field is coupled to the world-line of a charged

particle, higher rank forms are coupled to the world-volumes of extended objects. Of

particular interest in what follows are the Ramond–Ramond (RR) forms C2,4 of type

IIB theory of rank 2 and 4, or C1,3 of type IIA theory of rank 1 and 3; the extended

objects charged under these fields are D-branes [142].

The crucial property of antisymmetric tensor fields is that upon compactification

they give rise to many KK zero modes, labeled by the independent cycles of the

internal manifold [84]. Interestingly, the number of zero modes depends only on the

topology of extra dimensions, but not on their absolute size. Indeed, zero modes

are scale free, so that their number cannot depend on a dimensionful parameter.
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Consequently, zero modes provide a probe of extra dimensions even in the limit where

their size is tiny. The discovery of a large number of particles with similar properties

whose presence is hard to motivate within a strictly 4-dimensional theory would

be evidence for the existence of extra dimensions with complicated topology1. For

instance, every independent 4-cycle Σ4
i in type IIB string theory gives rise to an ultra-

light2 (pseudo)scalar field with axion-like couplings, defined as an integral of C4 over

the 4-cycle. More generally, every independent n-cycle gives rise to a scalar KK zero

mode in the presence of a rank n form.

One of these pseudoscalar fields may play the role of the QCD axion [152], while

others may be observed by a number of cosmological and astrophysical experiments

in the next decade [22]. It is worth keeping in mind that these string axions may

acquire a high-scale mass in a number of ways (e.g., due to the presence of branes

wrapping the corresponding cycles or from fluxes; they may also be projected away

by orientifold planes). However, the strong CP problem suggests that at least one of

these fields survives at low energies. Given the large number of independent cycles

on a typical compactification manifold, it would be strange if only one of them gave

rise to the light axion, thereby leading to the expectation of a plenitude of ultra-light

axion-like particles— the “string axiverse” [22].

String axions are (pseudo)Goldstone bosons and cannot have any renormalizable

couplings with the fields of the Standard Model. All their interactions are suppressed

by the compactification scale, so there is no opportunity to observe string axions

in conventional collider experiments. However, these string axions are not the only

matter suggested by a topologically-complex compactification manifold. The main

point of the current paper is that in the string axiverse with low energy SUSY it is

natural to expect another plenitude of particles with weak scale masses that can be

observed at the LHC.

The reason is that an antisymmetric form of rank n gives rise also to massless

vector fields, labeled by the independent cycles of dimension (n− 1). As in the scalar

case, these vectors are defined as integrals of the form over the corresponding cycle.

1Replication of the Standard Model generations may already be a hint supporting this logic.
2Being massless at the perturbative level, these fields acquire a mass due only to non-perturbative

effects.
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For instance, in type IIB theory each of the 3-cycles Σ3
i makes it possible to define a

4d vector field

Aiµ =

∫
Σ3

i

C4 (2.1.1)

by taking three of the four-form indices along the directions of the cycle. Moreover,

each 4d vector field Aiµ inherits a gauge symmetry from the underlying 10d abelian

gauge symmetry of the RR field C4 → C4 + dΛ3, so that the end result is a plethora

of 4d U(1) gauge fields.

As with string axions, these fields may acquire a high mass from fluxes, or may be

projected away by orientifold planes. However, as before, there is no reason for this

to occur with all such vector fields and it is therefore natural to expect a plenitude of

massless U(1) fields in the string axiverse. It is interesting to note that essentially the

same ingredients—cycles and form fields—give rise to the string landscape of vacua

that motivates fine-tuning of the vacuum energy. Successful scanning of the vacuum

energy suggests the presence of at least several hundreds of cycles (giving rise to the

famous 10few×100 vacua of string theory), thus providing an additional motivation for

the plenitude of axions/photons.

An important property of the string RR U(1) fields is that there are generically no

light states charged under them. The reason is that the only objects charged under

RR forms are non-perturbative D-brane states, so that particle states charged under

RR U(1)’s arise from D-branes wrapping the corresponding cycles. These states have

masses above the string scale apart from the exceptional case of vanishingly small

cycle volumes.

As a result, at low energies the RR U(1)’s interact with the Standard Model

fields—which themselves arise from light perturbative string states—either through

higher-dimensional operators unobservable at colliders, or through renormalizable

kinetic mixing terms with the hypercharge U(1)Y
3. In the presence of light particles

charged under additional U(1)’s such kinetic mixing would be strongly constrained

from astrophysics and laboratory searches for millicharged particles [54, 55, 65, 134].

However, as discussed above, such light millicharged states are absent for RR U(1)’s

3As observational consequences are the main focus of this paper, we postpone the discussion of
the origin of the mixing in string theory in the RR case until section 2.5.
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and these constraints do not pertain. As a consequence of the absence of light charged

states, kinetic mixings with RR photons can be removed by field redefinition in the

low energy theory without introducing any physical effects apart from changing the

value of the hypercharge gauge coupling. Consequently, massless RR vector fields per

se do not provide a useful observational window into extra dimensions.

However, the situation becomes significantly more interesting in the presence of

low energy SUSY. In this case massless RR photons are accompanied by their light

fermionic superpartners—photini. Unlike vectors, RR photini acquire masses of order

the gravitino mass m3/2 as a result of SUSY breaking. If the dominant source of

SUSY breaking for the MSSM also comes from the gravity mediation, then these

photini masses are of the same order as the MSSM soft masses. This is the most

interesting case for the LHC, and therefore will remain our primary focus in what

follows. Another possibility is that the dominant source for the communication of

SUSY breaking to the MSSM comes from gauge mediation, so that RR photini are

much lighter than the MSSM superpartners.

As a consequence of a non-trivial photini mass matrix, the mixing of RR photini

with the bino cannot be rotated away and has observable effects as we discuss in Sec-

tion 3.5. For the purposes of LHC phenomenology, the significant result of this mixing

is the extension of the MSSM neutralino sector by a plenitude of new states mixed

with the bino through the gaugino mass matrix. This leads to a variety of possible

signatures depending on the amount of mixing and the size of the inter-photini mass

splittings, including extended supersymmetric cascades with high lepton and jet mul-

tiplicities arising from inter-photini transitions; displaced vertices from Lightest Or-

dinary Supersymmetric Particle (LOSP) decays or inter-photini transitions; cascades

ending with different photini escaping the detector leading to multiple reconstructed

masses for the invisible particle; and if the LOSP is charged so it stops, out-of-time

decays of the LOSP to photini, with the possibility of the produced photini varying

from event to event. Combinations of these signatures can also coexist.

Finally we emphasize that these photini signatures can occur for any set of U(1)’s

that kinetically mix with hypercharge and do not possess light charged states, not just

the photini of RR U(1)’s [69,98]. Such multiple hidden U(1)’s are not uncommon in
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string theory and can arise from a variety of sources–for example, isolated branes not

intersecting with the branes that realize the SM sector. If the isolated brane possess

only vector-like matter—the more common case—the matter can get a large positive

mass–squared leaving an unbroken U(1) with no surviving light charged states.

Of course, the existence of a plenitude of (possibly very) weakly coupled photini

may pose challenges for conventional cosmology. In Section 2.3 we consider the po-

tential constraints on photini masses and mixings from cosmological considerations,

as well as the various means by which these constraints may be obviated. In Section

2.4 we turn to the case of light photini in theories with gauge mediated SUSY break-

ing. Although the prospective signatures of such light photini at the LHC are less

promising, their decays may give rise to observable astrophysical signals.

2.2 Phenomenology

2.2.1 The photino lagrangian

Let us now turn to the 4d effective theory arising from kinetic mixing between visible

and hidden gauge sectors. It has been well known for many years [94] that theories

with multiple U(1) gauge symmetries may admit kinetic mixings among the different

U(1)’s. Consider, for simplicity, the case of two such symmetries, U(1)a × U(1)b.

For the typical case of interest, U(1)a is a visible-sector gauge symmetry such as

hypercharge U(1)Y , while U(1)b is some hidden-sector gauge symmetry. In the basis

in which the interaction terms have the canonical form, the pure gauge part of the

Lagrangian can be written as

Lgauge = − 1

4
F µν

(a)F(a)µν −
1

4
F µν

(b)F(b)µν +
ε

2
F µν

(a)F(b)µν . (2.2.1)

where ε parametrizes the kinetic mixing between the two U(1)s. In a supersymmetric

theory, such a Lagrangian generalizes to [57]

Lgauge =
1

32

∫
d2θ {WaWa +WbWb − 2εWaWb} (2.2.2)
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where Wa and Wb are the chiral gauge field strength superfields for the two gauge

symmetries (e.g., Wa = D̄2DVa for the U(1)a vector superfield Va). To bring the pure

gauge portion of the Lagrangian to canonical form, we may shift the hidden-sector

gauge field via

V µ
b → V ′µ

b = V µ
b − εV µ

a (2.2.3)

so that Wb → W ′
b = Wb − εWa. This renders the gauge Lagrangian diagonal,

Lgauge =
1

32

∫
d2θ {WaWa +W ′

bW
′
b} , (2.2.4)

and shifts the visible-sector gauge coupling by an amount

ga → ga/
√

1− ε2 . (2.2.5)

If there are no light states charged only under U(1)b, then the above field redefini-

tion produces no change in the interactions of states charged only under U(1)a. Thus

the theory is relatively uninteresting in the absence of light hidden-sector charged

states; the hidden sector photon decouples entirely, the only remnant being the shift

in the hypercharge gauge coupling [95]. The success of supersymmetric gauge cou-

pling unification, if assumed to be non-accidental, then indicates that
∑

i ε
2
i . 0.01,

where the sum runs over all U(1)’s with which hypercharge mixes.

However, the hidden sector gaugino λb may not decouple so readily when super-

symmetry is broken. Although the U(1)b gauge boson may be decoupled by field

redefinitions, the gaugino λb still mixes with the visible sector via off-diagonal terms

in the gaugino mass matrix [98]. These remnant interactions between hidden-sector

gauginos and visible-sector states provide indications of the hidden-sector gauge sym-

metry even in the absence of light states charged directly under U(1)b.

Motivated by the appearance of many hidden-sector U(1)s arising from dimen-

sional reduction of RR forms, let us now consider n hidden-sector U(1)s kinetically

mixed with the Standard Model hypercharge U(1)Y . The gauge bosons Aiµ mix among

themselves and with the hypercharge gauge boson Bµ via kinetic mixing, while the

photini γ̃i mix among themselves and with the bino B̃ via both kinetic mixing and
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off-diagonal terms in the gaugino mass matrix. The structure of this mixing is deter-

mined by (among other things) the details of supersymmetry breaking, the geometry

of the internal manifold, and induced mixing between brane and bulk gauge super-

multiplets.

The gauge kinetic terms may be rendered canonical by hidden-sector field redef-

initions analogous to those discussed above. In the absence of light charged states,

the canonically normalized U(1) gauge fields Aiµ and their D-terms decouple entirely.

The only remnant impact on the hypercharge gauge boson Bµ is a shift in the hyper-

charge gauge coupling, which may have implications for unification when the mixings

are large.

The interesting physics lies in the photini. Despite the decoupling of the hidden-

sector U(1) gauge bosons, we crucially retain mixing in the gaugino mass matrix.

The mixings between the photini and MSSM gauginos are encoded in the Lagrangian

terms

δL ⊃ iZIJλ
†
I∂/λJ +mIJλIλJ (2.2.6)

where here I, J run across the bino B̃ and n photini γ̃i; the ZIJ encode arbitrary

kinetic mixing, while the mIJ are generated when supersymmetry is broken. As

with the gauge kinetic terms, the gaugino kinetic terms may be diagonalized via

field redefinitions so that ZIJ → δIJ and mIJ → m′
IJ . In particular, if the kinetic

terms can be made canonical by the transformation λI → λ′I = P−1
IJ λJ , then m′

IJ =

P †
IKmKLPLJ . It bears mentioning that if the original mass mixing terms are strictly

proportional to the gauge kinetic term, then the mass mixing in the canonical basis

vanishes. The persistence of mixing among gauginos requires that SUSY-breaking

gaugino masses are not exactly proportional to the gauge kinetic mixing matrix,

which has implications for the precise mechanism by which supersymmetry is broken

and communicated to the gauginos. Moreover since the final physical mixing among

the gauginos depends on the mass matrix mixing, the gauge-coupling unification

constraint on the amount of kinetic mixing with hypercharge does not limit the size

of the mixing among gauginos.

To study the neutralino mass eigenstates, we may diagonalize the gaugino mass
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matrix m via mD = f∗mf−1, where f is a unitary matrix. The mass eigenstate

neutralinos ÑI may then be written as

ÑI = fIJλJ (2.2.7)

where I, J = 1, ..., n+ 4 runs over the four MSSM neutralinos and the n photini; fIJ

are the components of the matrix f , and λI = (B̃, W̃ , H̃d, H̃u, γ̃1, ..., γ̃n) are the gauge

eigenstate gauginos with canonical kinetic terms.

When mixings are large, there is no particular distinction among neutralinos;

every neutralino mass eigenstate is an admixture of MSSM gauginos and photini. In

the limit of small mixing, however, the neutralinos decompose into mostly-MSSM

and mostly-photino states. Consequently, we may think of the Ña (a = 1, ..., 4) as

mostly-MSSM neutralinos, and the Ñi (i = 5, ...., n+4) as mostly-photino neutralinos.

For the sake of clarity we will henceforth concern ourselves primarily with the case of

small mixings, though in principle a broad range of hidden-visible mixings may arise.

In the limit of small mixing, the components in f decompose accordingly: the

coefficients fab are akin to those of the conventional MSSM neutralino matrix and de-

pend principally on the parameters mZ , tan β, µ,m1,m2. The coefficients fi1, in turn,

encode mixing between the hidden-sector photini and the bino. For simplicity, we

will henceforth write fi1 ≡ εi. It is this mixing that gives rise to interactions between

hidden-sector photini and the fields of the MSSM. It is important to emphasize that

these εi are not identical to the original kinetic mixing terms εiWiWY ; they incorpo-

rate additional O(mi/mB) factors from the diagonalization of kinetic terms and the

gaugino mass matrix.

In the limit of small εi, the mixings between photini and the higgsinos (and wino)

are of order fi(2,3,4) ' f1(2,3,4)εi, and may be parametrically smaller than the photino-

wino mixing by MSSM mixings. Lastly, the coefficients fij correspond to mixings

among the various photini, and vary from ∼ 10−3−1 depending on the range of cycle

areas and their intersection properties.4

4The mixings among photini are dictated by the gauge kinetic coupling matrix for the RR fields;
at tree level this takes the form ZRR ∝ AC−1 + iC−1, where the matrices A =

∫
CY

β ∧ ∗6 α and
C =

∫
CY

β∧∗6 β are integrals over the Calabi-Yau of the three-forms α, β comprising the cohomology
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2.2.2 Photini signatures at the LHC

The mixings between the bino and hidden-sector photini give rise to interactions

between the mostly-photino neutralinos Ñi and the fields of the MSSM. The LHC

signatures of these interactions depend on the mixing parameters and on the photini

mass spectrum. Given the absence of low energy fields charged under RR U(1)’s,

gravity mediation is the dominant source of the photini soft SUSY-breaking masses.

For the remainder of this section we will assume that gravity mediation is also the

dominant source of SUSY breaking for the fields of the MSSM. In this case the photini

masses are of the same order as the MSSM soft masses; this is the scenario with the

richest possible phenomenology. Another plausible scenario—in which the dominant

source of the MSSM soft masses is gauge mediation, so that all the photini are much

lighter than the MSSM superpartners—will be discussed in Section 2.4.

Given the expected multiplicity of the photini, on statistical grounds we may

expect several (or perhaps many) of them to be lighter than the Lightest Ordinary

Supersymmetric Particle (LOSP). This gives rise to interesting LHC signatures due to

LOSP decays into photini and subsequent interphotini transitions. For definiteness, in

the formulae below we will concentrate on the scenario wherein the LOSP is an MSSM

neutralino; it is straightforward to generalize to other cases. This does not bring any

qualitatively new features except for the smallest values of bino-photini mixing, in

which case the charge of the LOSP becomes particularly significant. For these small

mixings, a neutral LOSP escapes from the detector before decaying, while a charged

(or colored) LOSP may stop in the detector due to electromagnetic interactions and

produce a late decay signature out-of-time with collisions.

When the LOSP is an MSSM neutralino, photini production and subsequent inter-

photini decays are dominated by the following three interactions:

1. Transitions through the Z-boson via couplings of the form ÑIÑJZ.

2. Transitions through the neutral Higgs h via couplings of the form ÑIÑJh.

basis dual to the three-cycles [106]. These matrices generally possess off-diagonal entries with values
set by the geometrical moduli of the compactification.
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Figure 2.1: Different decay channels for both the LOSP decay into photini and inter-
photini transitions: via Z, Higgs, and sfermion.

3. Transitions through intermediate squarks and sleptons via couplings of the form

ÑIqq̃ and ÑI ll̃.

There may also be decays occurring via Standard Model photon emission, but such

processes are suppressed by an additional loop factor and subdominant for a wide

range of MSSM parameters [88]. Though suppressed relative to the interactions dis-

cussed above, processes involving photon emission may constitute another noteworthy

signature at the LHC.

The decay rate ΓZIJ(ÑI → ÑJ + ff̄) via Z-boson emission is parametrically of
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order

ΓZIJ(ÑI → ÑJ + ff̄) ' 1

192π2

αW
c2W

|−fI3f ∗J3 + fI4f
∗
J4|

2 (δm)5

m4
Z

BR(Z → ff̄) (2.2.8)

where δm = mI − mJ is the mass splitting between neutralinos (which we have

assumed to satisfy δm < mZ ; for larger splittings, the Z boson is produced on-

shell and two-body phase space dominates). In general, one expects decay chains

ending in mostly-photino neutralinos to begin with the production of a mostly-MSSM

neutralino. For the process Ña → Ñj, this corresponds to a lifetime of order

τZ(Ña → Ñj) ' 10−13 s ×
(

10−2

ε

)2(
1

η

)4(
10 GeV

δm

)5

(2.2.9)

when a = 1, 2 – i.e., Ña is mostly-bino or mostly-wino. Here the factor η ∼
O(mZ/µ) ∼ O(mZ/m1,2) parametrizes the degree of mixing between MSSM gaug-

inos, and may vary from ∼ 0.1 − 1 depending on the size of SUSY-breaking soft

masses. When a = 3, 4 – i.e., Ña is mostly-higgsino – the lifetime is of order

∼ η2τZ(Ñ1,2 → Ñj). The lifetime for transitions Ñi → Ñj between mostly-photino

neutralinos is similarly given by τZ(Ñi → Ñj) ' ε−2 τZ(Ñ1,2 → Ñj).

The decay rate ΓhIJ(ÑI → ÑJ + ff̄) via the Higgs h goes like

ΓhIJ(ÑI → ÑJ + ff̄) ' 1

192π3
|−QIJ sinα− SIJ cosα|2 (δm)5

m4
h

BR(h→ ff̄) (2.2.10)

where QIJ = 1
2
[fI3(fJ2 − tWfJ1) + fJ3(fI2 − tWfI1)], SIJ = 1

2
[fI4(fJ2 − tWfJ1) +

fJ4(fI2− tWfI1)], and α is the usual angle of rotation between the neutral Higgs mass

eigenstates.

This corresponds to a lifetime for Ña → Ñj of order

τh(Ña → Ñj) ' 10−12 s ×
(

10−2

ε

)2(
1

η

)2(
10 GeV

δm

)5 ( mh

150 GeV

)4

(2.2.11)

for a = 1, 2, with η as above. As before τh(Ñ3,4 → Ñj) ∼ η2τ(Ñ1,2 → Ñj), and

τh(Ñi → Ñj) ∼ ε−2 τ(Ñ1,2 → Ñj).
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Figure 2.2: The existence of multiple photini states lighter than the bino – and mixing
with MSSM neutralinos via the bino – may modify MSSM cascade decay chains to
the LSP.

The decay rate via a sfermion goes like

Γl̃IJ(ÑI → ÑJ + ff̄) ' α2
W

48π

∣∣∣∣f ∗I2 + tWf
∗
I1 −

ml

mW cβ
f ∗I3

∣∣∣∣2 (2.2.12)

×
∣∣∣∣f ∗J2 + tWf

∗
J1 −

ml

mW cβ
f ∗J3

∣∣∣∣2 (δm)5

m4
f̃

which corresponds to a lifetime for Ña → Ñj of order

τl̃(Ña → Ñj) ' 10−12 s ×
(

10−2

ε

)2(
10 GeV

δm

)5 ( ml̃

150 GeV

)4

(2.2.13)

for a = 1, 2. In the case a = 3, 4, we have instead τl̃(Ñ3,4 → Ñj) ∼ η−2τ(Ñ1,2 → Ñj)

(unless tan β is large, in which case τl̃(Ñ3,4 → Ñj) ∼ τ(Ñ1,2 → Ñj)). Transitions be-

tween mostly-photino neutralinos are again simply τl̃(Ñi → Ñj) ∼ ε−2 τ(Ñ1,2 → Ñj).

The dominant decay via sfermion exchange depends sensitively on sfermion spec-

troscopy; in general one expects sleptons to be lighter than squarks, thereby predom-

inantly producing leptonic final states.

All three production mechanisms lead to parametrically similar rates. Although

the decay rate via sfermion exchange is reduced at larger sfermion masses, at the same

time two other channels are also being suppressed by the MSSM neutralino mixing

parameter η, which is smaller for the heavier MSSM spectrum.
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Figure 2.3: The LHC signatures of multiple photini states at the LHC as a function
of the photino-bino mixing εi and mass splittings δmi.

These processes may drastically modify MSSM particle cascades at the LHC,

which no longer end at the MSSM LOSP (see Fig. 2.2). Depending on the values of the

mixing parameters εi and mass splittings δm, photini give rise to several (potentially

coexisting) classes of signatures illustrated in Fig. 2.3.

First, the usual supersymmetric cascades of the MSSM may both become longer

and give rise to larger lepton multiplicities. These effects arise due to both decays of

LOSP to photini and transitions among photini, either of which may happen promptly

for large enough mixings and mass splittings. The branching ratios of Standard Model

states produced during these transitions depend on which of the above-mentioned

three decay channels dominates. In particular, decays via the Z or (especially) slep-

tons will increase the lepton multiplicity of these cascades.

Second, for smaller values of the mixing parameters and mass splittings one may

see displaced vertices either from interphotini transitions, LOSP decays, or potentially

both.

Furthermore, if interphotini transitions are too slow to be observed inside the
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detector it may be the case that multiple photini are discovered during the process of

mass reconstruction. In particular, if the rates of LOSP decay into several different

photini are competitive, but the rate of interphotini transitions are sufficiently slow,

cascades may end with photini of different masses escaping the detector. One will

then find that the observed kinematical distributions cannot be fitted by assuming a

single value of the mass for the invisible particle at the end of the cascade.

For the smallest values of mixings, the signatures depend sensitively on the charge

of the LOSP. Neutral LOSPs may exit the detector before decaying, resulting in rather

pedestrian MSSM signatures. Charged LOSPs, however, may stop in the detector and

decay out of time with collisions. As in the previous case, the interesting feature of

these decays is that the mass of the invisible particle produced by late decays may

vary from event to event, posing the same challenges for mass determination. This

may be especially interesting for two body decays with otherwise straightforward

kinematic edges, such as l̃→ lNi.

It is worth stressing that some of these signatures may coexist, and the actual

combination of signatures that will be observed depends on the details of the photini

spectrum and mixings. For instance, if all mixing parameters are around ∼ 10−3 and

the neutralino spectrum is somewhat dense, such that the mass difference between

LOSP and the lightest photini is less then ∼ 30 GeV (”Displaced LOSP decays”

region in Fig. 2.3), then one will observe both displaced vertices from the LOSP

decays and cascade decays ending in a multiplicity of invisible particles with different

masses.

Another interesting possibility is that the mixing is relatively large, εi & 0.05, and

the mass splittings between the LOSP and some of the photini are quite substantial,

& 50 GeV. This scenario – corresponding to the ”Prompt decays...” region in the

upper right corner in Fig. 2.3 – gives rise to longer prompt cascades, while a few of

the lightest photini have smaller splittings (e.g., in the ”Displaced photini decays”

region in Fig. 2.3) and produce displaced vertices.

Displaced vertices from LOSP decays or interphotini transitions are likely to pro-

vide the most striking and immediate indication of multiple photini. However, to
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check the distinctive feature of the axiverse—photini multiplicity reflecting the topo-

logical complexity of the underlying compactification—requires accurate photini mass

determination. Furthermore, in some cases the mass determination of the invisible

particle(s) becomes the only way to distinguish this scenario from the MSSM at the

LHC. Such is the case for, e.g., the ”Photini decay outside detector” region in Fig. 2.3

corresponding to ∼ 10−3 mixing, in which the interphotini decays cannot be observed

but prompt LOSP decays are assured by the significant splitting between the LOSP

and photini.

The significant possibility of invisible final states with different masses motivates

further development of mass determination techniques and their adaptation to cases

in which the two decay chains in Fig. 2.2 are not identical. Of particular interest are

chains in which the masses of the two final invisible particles are different, as would

be the case if transitions between the lightest photini happen outside the detector.

This generalization is straightforward for some of the existing mass-determination

techniques such as the polynomial (e.g., [37, 110]) ) and the endpoint methods (e.g.,

[93]), but may require more work in other cases such as the MT2 method (e.g. [30,

122]) and its progeny (such as [36]). On the positive side, mass determination is more

efficient for longer cascades, which are to be expected in the multi-photini scenario.

Ultimately, it appears realistic to expect mass determination techniques at the LHC

to distinguish photini states down to splittings of 5÷ 10 GeV.

The LHC phenomenology of the multi-photini scenario may be spectacular, with

many leptons and displaced vertices at the end of the MSSM cascades, but it re-

quires dedicated collider study to determine how effective ordinary SUSY searches

and kinematic techniques may be in determining the parameters of this new sector.

In particular, care is required to distinguish the existence of a multi-photino sector

from, e.g., NMSSM models with many singlinos. Only a measurement of the couplings

between the different neutralino states (at the ILC, for example) will eventually reveal

that photini couple through the bino, while for singlinos it is the Higgs that provides

the bridge of communication to the MSSM.
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2.2.3 Collider Bounds on String Photini

There appear to be surprisingly few collider bounds on the existence of light string

photini. The customary LEP bound on the lightest neutralino mass comes from ex-

perimental limits on chargino masses and GUT relations between gaugino masses,

the relaxation of which leaves few constraints on the mass and mixings of light neu-

tralinos [64]. Potential bounds on the parameters of photini states can come either

from precision measurements of the Z width or direct production, since there are no

light states with RR U(1) charge.

The best current bounds on photino production come from LEP direct search

limits on processes like e+e− → Ñ1Ñ2. The model-independent bounds from LEP

OPAL searches at
√
s = 208 GeV constrain σ(e+e− → Ñ1Ñ2)×BR(Ñ2 → ZÑ1) . 70

pb form1+m2 < 208 GeV [1]. This amounts to a relatively weak constraint on photino

masses and mixings for all but the largest values of ε; the bounds are negligible even

for ε ∼ 1 provided sufficiently heavy sleptons and small higgsino-photino mixing.

Precision electroweak observables may provide another probe of string photini.

Among other quantities, the invisible Z width is a sensitive probe of additional light

states. If there are N photino states that the Z boson can decay to, the contribution

to its decay width is given by [92]

δΓZ '
GF

6
√

2π
m3
Z

N∑
i,j=1

(εiεj)
2(fi4f

∗
j4 − fi3f

∗
j3)

2 ∼ GF

6
√

2π
N2ε4η4m3

Z (2.2.14)

∼ 0.03 MeV×N2
( ε

0.1

)4 (η
1

)4

(2.2.15)

Given that the invisible Z decay width has been measured with an error of 1.5

MeV [10], photini states that are lighter than half the Z mass, i.e. 45 GeV, are

constrained to have a combined mixing with the Higgsinos smaller than

εη .
0.3√
N
, (2.2.16)

which is relevant only in the case where there are many photini lighter than mZ/2
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with O(1) mixing to the Standard Model.

Although there are many other potential constraints from existing Standard Model

parameters (including, e.g., corrections to the W mass, sin2 θW , EDMs, muon g − 2,

and rare meson decays), such constraints are no stronger than the relatively weak

bounds discussed above.

2.3 Cosmology of String Photini

The cosmological implications of multiple photini coupled to the MSSM through

the hypercharge portal may be problematic (cf. [98]). Even if inflation does not

reheat these states directly, they will be thermalized by MSSM interactions provided

εi & 10−6. If a photino is the LSP, it will generically exceed the observed dark matter

relic abundance by a prohibitive amount.

A photino LSP γ̃ may freeze-out while nonrelativistic for mixings of ε & 10−3.

However, in this case the photino will be overabundant by a factor of ∼ ε−4 (an

unfortunate consequence of the convenient fact that weak interactions alone may

produce the observed dark matter relic abundance). On the other hand, for ε < 10−3

their interactions will freeze-out while the photini are relativistic, so that the photino

LSP will dominate over SM radiation at T ∼ mγ̃ for 10−6 < ε < 10−3. When ε . 10−6,

the photini do not reach thermal equilibrium with the MSSM, but out-of-equilibrium

photino production will nonetheless overclose the universe with photini by an amount

∝
(

ε
10−11

)2
. Clearly, some mechanism is necessary to dilute the photini overabundance

for a vast range of mixings.5 Of course, these constraints are far from ironclad. In

what follows we will see how the challenges of photino cosmology may be overcome

in a variety of ways.

5It is worth noting that the massless photons of these hidden U(1)s remain cosmologically irrel-
evant (provided they are not direct products of the inflaton’s decay), since there are no light states
charged under them and gravitational interactions alone will not lead to their overproduction.
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2.3.1 Photino qua LSP

As observed above, the freeze-out of a nonrelativistic photino LSP generally leads

to an overabundance of order ε−4. However, it is nonetheless possible to obtain a

suitable photino relic abundance from conventional freeze-out in a proscribed region

of parameter space. For sufficiently large values of ε, coannihilation with MSSM

higgsinos may lead to a freeze-out relic abundance compatible with observations.

Higgsino dark matter is well known to yield low relic abundance due to its efficient

annihilation into gauge bosons and coannihilation with charginos. If the photino LSP

is sufficiently close in mass to the higgsino (i.e., provided (mH̃ −mγ̃)/mγ̃ . Tf/mγ̃ ∼
5%) it may coannihilate efficiently at freeze-out with an appreciable abundance of

higgsinos. The coannihilation cross section scales as ε2, and the resultant photino relic

abundance is approximately Ωγ̃h
2 ' 0.1

(
10−1

ε

)2 (
µ

100 GeV

)2
. A similar scenario may

arise by coannihilation with the stau, again provided a correlation between masses

within ∼ 5%.

Of course, the overproduction of photino dark matter for ε . 0.1 may be ame-

liorated if the photini are themselves never in thermal equilibrium with the MSSM.

Scattering processes that maintain photini in thermal equilibrium become inefficient

below ε . 10−6. However, even if they are not in thermal equilibrium, an appreciable

abundance of photini may still be generated via interactions of MSSM particles in

the thermal bath. The resulting relic abundance from thermal production is rela-

tively insensitive to the reheating temperature (as the photini couple to the MSSM

via renormalizable interactions), and scales as Ωγ̃h
2 ' 0.1

( mγ̃

100 GeV

) (
ε

10−11

)2
. Even

photini that do not reach thermal equilibrium will be prohibitively overproduced by

thermal production for all but the smallest mixings.

However, if the reheating temperature TR following a period of entropy production

is below the photino freeze-out temperature Tf , then the relic abundance may be

significantly reduced [81]. While it is possible for the primary period of inflation to

end with such low TR, it would be difficult to account for baryogenesis or the observed

cosmological density perturbations. A more palatable cosmological history might

involve a second phase of weak-scale [145] or thermal [131] inflation at lower energies.

Such cosmologies reconcile a low TR with baryogenesis and density perturbations, and
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may be further required to resolve any additional moduli problems. The upper bound

on TR required to avoid excess thermal production is imposed by the requirement that

MSSM superpartners not reach thermal equilibrium after reheating.

Of course, another possibility is simply that an MSSM neutralino is the LSP.

Such a scenario is not unreasonable if the gauginos all obtain SUSY-breaking masses

from a single source, since RG running may lower the masses of MSSM gauginos

relative to those of the photini. In this case, all the conventional considerations for

MSSM neutralino relic abundance still pertain. Such a scenario leads to unpromising

photino signatures at the LHC for all but the largest values of ε; only for ε & 0.1

and mγ̃ ∼ mLSP would the hidden-sector photini be expected to appear in sparticle

cascades if a photino is not the LSP.

2.3.2 Photino decay into a nonthermal sector

The photino overabundance problem may also be ameliorated if the photini decay

to a lighter R-parity odd state that was never in thermal equilibrium and does not

dominate the energy density of the universe. In order for this to occur, it is necessary

both for the photini to decay before their energy density dominates over radiation,

and for the mass mLSP of the R-parity odd particle to be sufficiently small. For

ε & 10−3 and 10−6 & ε & 10−11 these requirements suggest that the lightest photino

decay rate is Γ > H(Teq/ε) in the former case and Γ > H(Teqε
1/2/10−11/2) in the latter

case, where Teq ∼ 1 eV is the temperature at matter-radiation equality and mLSP

mγ̃
< 1

ε4

and mLSP

mγ̃
< ε2

10−22 , respectively. If the decay involves any MSSM particles, the lifetime

must not exceed one second in order to preserve successful BBN predictions. Finally,

for 10−3 & ε & 10−6 the lightest photino decouples while relativistic, so that we

require Γ < H(mγ̃) and mLSP < 0.1 eV.

A promising candidate for such an R-parity odd particle may be an axino ã that

couples to photini through interactions of the form α
4πfa

ãγ̃iσµνF
µν
i . The mixing of

the photini to the bino implies a decay channel γ̃i → ã + γ, so that the lifetime

has to be faster than 1 sec – i.e., α
4πfa

< 10−13 GeV−1. The axino mass is naturally

∼ m3/2; lighter masses require a no-scale SUSY-breaking scenario that itself may be
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spoiled by radiative corrections. Even in the no-scale case, the very coupling that

induces photino decay generates an irreducible one-loop contribution to the axino

mass of order mã ∼
mγ̃i

16π2

(
α

4πfa

)2
Λ2 ∼ 10−8mγ̃i

(
Λ
fa

)2
, where Λ is the smaller of the

SUSY and the PQ breaking scale. As a result, the axino is unlikely to solve the

photini overabundance problem for ε < 10−2.

2.3.3 Photino decay into a thermal sector

Finally, the photini overabundance problem may be solved if photini can decay before

BBN into a sector (hidden or visible) that is in thermal equilibrium with the primor-

dial plasma at the time of the decay. A hidden sector of this genre may naturally

arise from a distant stack of D-branes on the compactification manifold. To make the

photino decay possible it should contain, e.g., a pair of R-parity even chiral super-

fields h, h̄ charged under the hidden sector U(1) group. Then the photino decay will

proceed through the mixing of the RR photini with the hidden sector neutralino. The

µ-term that determines the mass of the fermionic components ψh,h̄ must be in the

range ∼ 1 MeV÷1 GeV, in which case the lightest photino may decay into a scalar-

fermion pair χh → hψh̄ through the gauge interactions. Since the scalar h is likely to

acquire a significant soft mass from SUSY breaking, we also require a superpotential

Yukawa interaction allowing the scalar to decay into a pair of hidden fermions. A toy

example of such a hidden sector with the required properties would be a mirror sector

with the MSSM field content but a somewhat smaller µ-term. The precise decay time

depends on the mixing parameters, hidden sector Yukawas and scalar masses, but

naturally happens before BBN since it proceeds through renormalizable interactions.

If the hidden photon is massless (or light, with a mass of order the hidden fermion

masses) and mixes with the SM photon with the mixing parameter & 10−8, the hidden

sector will remain in thermal equilibrium with the MSSM until the hidden fermions

freeze out. The lower bound on the hidden fermion mass comes from the requirement

that this freeze-out occurs before BBN. This scenario is just a supersymmetric version

of the usual paraphoton scenario with the hidden fermions as light millicharged parti-

cles; existing bounds on millicharged particles leave a large region in the mass/mixing
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parameter space for this scenario to work.

The presence of the extra hidden sector may or may not have a significant impact

on LHC phenomenology. An interesting scenario may arise if the rate for photino

decay into the hidden sector is faster than the rate for transition between photini,

while the MSSM neutralino decays preferentially into the RR photini. In this case,

the displaced vertices due to the interphotini transitions are absent, but multiple

missing final states with different masses still serve as a signature of the axiverse.

An equally viable scenario would involve the MSSM itself as the thermal sector,

where the decay proceeds into Standard Model fermions through R-parity breaking

operators. In lieu of exact R-parity, another anomaly-free discrete symmetry such

as baryon triality could forbid dimension-four and -five operators leading to the pro-

ton decay while allowing the lepton-violating interactions LLE,QLD. The strongest

bounds on some of the R-parity violating Yukawas in this case come from the neu-

trino masses at the level 3 × 10−6 (while some of the new Yukawas are practically

unconstrained). Again, depending on the values of the new Yukawas and mixing pa-

rameters, these new interactions may either eliminate the LHC signatures of photini

(e.g., if the new Yukawas are large and the would-be MSSM LSP decays immedi-

ately) or leave them completely unchanged (e.g., if all new Yukawas are at the level

10−5 ÷ 10−6, and the mixing between photini is at the level ε ∼ 10−2).

2.4 Light Photini from Gauge Mediation

Thus far we have focused largely on theories where both MSSM fields and RR pho-

tini gain weak-scale soft masses from conventional gravity mediation. However, it is

entirely possible that the primary communication of SUSY breaking to the Standard

Model occurs through gauge interactions. Since the messengers of gauge mediation

are assuredly not charged under the RR U(1) gauge groups, gravitational effects are

the sole source of photino masses and mixings; the natural value of photino masses

is then mi ∼ m3/2. Preserving the successful flavor-blindness of gauge mediation sug-

gests that gravity-mediated contributions to soft scalar masses-squared are no more

than one part in one thousand. On the other hand, sparticle mass limits require the
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messenger masses to exceed ∼ 10 TeV. Taken together, this implies that the grav-

itino and photino masses in a gauge-mediated scenario may be expected to range

from m3/2,mi ∼ 0.1 eV÷ 1 GeV.

When the photino masses are particularly small, the bino-photino mixing is di-

minished further by the ratio of masses so that fi1 ' εi
mi

mB
. This suggests that the

effective mixing given by fi1 may be significantly smaller than the intrinsic mix-

ing εi; for a gauge-mediated scenario, the expected range of photino masses implies

10−12 . fi1 . 10−2 for εi = 1.

The LHC signatures of very light photini may differ from those of their heavier

brethren. Interphotini transitions are suppressed by a factor of
(
ε
mγ̃

mB

)4

and thus

quite unlikely to produce observable particle cascades. The same smallness of effective

mixing between light photini and the MSSM does, however, increase the likelihood

of displaced vertices. The lifetime for the decay of an MSSM neutralino LOSP to a

light photino scales as

τ(Ña → Ñi) ∼ 10−8 s×
(

10−2

ε

)2(
1 MeV

mi

)2(
100 GeV

ma

)3

. (2.4.1)

Such decay of a neutral LOSP in the detector will result in displaced vertices and

missing energy from photini escaping the detector. In this case, however, the mass

splittings among photini are far to small to be resolved with available mass resolution,

so that all indications of multiplicity are lost. The lifetime may also be sufficiently long

for the neutral LOSP to escape from the detector entirely before decaying, resulting

in no deviations from the conventional MSSM phenomenology.

When SUSY breaking is communicated by gauge mediation, it is quite likely that

the MSSM LOSP is charged – as occurs frequently with the stau for lower values of

the messenger scale. The case of a charged LOSP remains exceptionally interesting

for even the longest of lifetimes, as the LOSP is likely to stop in the detector due to

electromagnetic interactions before decaying out of time into photini.

Naturally, the LHC signatures of light photini bear a superficial resemblance to

those of a conventional gravitino LSP in theories of gauge mediation. Indeed, the

rates for decays into photini and the gravitino may be competitive. The relative rates
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scale as

Γ(Ña → Ña + ...)

Γ(Ña → G̃+ ...)
∼ 1

12π

αW
c2W

ε2i
m2
im

2
3/2M

2
P

m2
Bm

4
Z

(2.4.2)

where we have assumed a mostly-bino neutralino LOSP. This suggests that neutral

LOSP decay to photini dominates over decays to the gravitino when εi
m2

i

m2
W

& 10−15

(e.g., for εi & 10−5 when mi ∼ MeV – a wide range of parameters).

Discriminating between the two cases is largely a matter of branching ratios. For

example, photon production via Ña → γ+G̃ is the dominant channel for the decay of a

bino-like neutralino into a gravitino, while decays involving Z or Higgs are suppressed

by factors of (1−m2
Z/m

2
a)

4 and (1−m2
h/m

2
a)

4, respectively. In contrast, the decay of

a bino-like neutralino into photini proceeds dominantly via the Z or Higgs, while the

decay into (Standard Model) photons Ña → γ + Ñi is suppressed by an additional

loop factor.

The cosmology of such light photini is, as one might expect, somewhat delicate.

Even if the intrinsic mixing ε is large, the effective mixing is bound to be significantly

smaller. Consequently, if a photino is the LSP there is little hope of attaining an

appropriate relic abundance from freeze-out. Indeed, if the photini ever achieve ther-

mal equilibrium with the MSSM, they will generically freeze-out while relativistic and

remain subject to the usual constraints on hot relics. A more likely scenario is that

these photini never achieve thermal equilibrium (as is the case, e.g., for ε . 10−1 when

mγ̃ ∼ MeV), though they may be overproduced by scattering in the thermal bath.

Owing to the smallness of the effective mixing, however, the resulting relic abun-

dance may be suitable for a far greater range in ε; for light photini the abundance

from thermal production is approximately

Ωγ̃h
2 ' 1.0×

( ε

10−3

)2 ( mγ̃

1 MeV

)3

. (2.4.3)

In cases where the photini are overproduced, the mechanisms discussed in Sec. 2.3

may still be effective, albeit at significantly lower scales. In any case, the longevity

of the MSSM LOSP may also be a problematic source of late decays; for too small
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values of ε (e.g., ε . 10−6 for mγ̃ ∼ MeV), the LOSP decay may spoil the successful

predictions of Standard Model BBN. A long-lived charged or colored LOSP would

be further constrained by the CMB and heavy element searches. The decay of the

gravitino itself into photini and hidden-sector photons is relatively uninteresting owing

to the lightness of the gravitino, occurring with a lifetime far exceeding the age of

the universe: τ(G̃ → γ̃i + γi) ∼ 1023
( mG̃

1 MeV

)3
s. In this case, the longevity of the

gravitino implies that the usual gauge mediation constraints on gravitino cosmology

must be respected, even though the gravitino is not the LSP.

If, instead, the gravitino is the true LSP, very little changes; decays of the MSSM

LOSP still occur preferentially into photini and Standard Model fields for a wide range

of parameters. The decay of the lightest photino into a gravitino and hidden sector

photon is extremely slow, also on the order of τ(Ñi → G̃+γi) ∼ 1023
( mG̃

1 MeV

)3
s. Both

the lightest photino and the gravitino are cosmologically long-lived, and conventional

considerations regarding their abundances and impact on Standard Model cosmology

still apply6.

Another potential cosmological bound on light photini with masses . 30 MeV

may come from supernova cooling via photino-strahlung. The pair-production of

light photino states is highly suppressed, however, and readily satisfies constraints

from SN1987a [63] due to the small effective mixing, ε
mγ̃

mB
. 10−5. For example, the

so-called “Raffelt criterion” – that exotic cooling processes do not alter the observed

neutrino signal provided their emissivity is sufficiently small – requires Ė . 1019

ergs/g/s. For light photini, the emissivity of photino-strahlung via slepton exchange

scales as Ė ∼ 1019
(

100 GeV
mẽ

)4 (
ε (mγ̃/mB)

0.1

)4

ergs/g/s, consistent with observations for

ε
mγ̃

mB
. 10−1.

2.4.1 Astrophysical signatures of light photini

Although it is important that no decays occur around the time of BBN, transi-

tions among light photini may be slow enough to occur on cosmologically interesting

6Note, however, that both in this and the previous cases, some of the constraints will be modified,
because gravitinos are not being produced from the LOSP decays, that lead instead to the photini
production.
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timescales. The production of Standard Model particles during interphotini transi-

tions may be observable and, moreover, well-suited to explain observed astrophysical

anomalies associated with MeV-scale physics. The 511 keV excess associated with

e+ + e− annihilations recently measured by the INTEGRAL satellite [105, 114, 115]

may be explained by just such transitions. It is crucial that electrons and positrons

produced by the decay of a dark matter particle not be injected with more than a few

MeV of energy in order to fit existing gamma ray backgrounds [32], a constraint easily

satisfied by transitions among photini with masses and splittings of order ∼ MeV.

The photon flux measured by INTEGRAL may be accounted for by a dark matter

particle of mass m and abundance Ω decaying into (among other things) e+ +e− with

a lifetime [50]

τINT ∼ 1026

(
Ω

0.2

)(
1 MeV

m

)
s. (2.4.4)

Amusingly, the interphotini decays via, e.g., off-shell Z emission occur with a lifetime

τ(Ñi → Ñj + e+ + e−) ∼ 1023

(
10−5

ε

)4(
1 MeV

δm

)5

. (2.4.5)

Consequently, transitions among light photini may account for the INTEGRAL signal

with ε ∼ 10−5 for mγ̃, δm ∼ MeV, for which the abundance from thermal production

is expected to be Ωh2 ' 10−4. This assumes, of course, that the gravitino is not the

LSP or that (invisible) decay rates into a gravitino LSP are slower than interphotini

transitions.

2.5 Discussion

2.5.1 Origin of mixing

For hidden U(1)’s realized as either perturbative heterotic string states [57] or as

gauge excitations of D-branes of type-II string theory [3] the kinetic mixing with

U(1)Y , if absent at tree level, arises by a process that directly generalizes the classic

calculation of Holdom [94]. For example in the type-II case stretched open string

states with one end on the SM brane stack and the other on the hidden D-brane lead
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to massive states charged under both U(1)’s, and a one loop open string diagram

then, in general, generates kinetic mixing [3]. An interesting feature of the D-brane

calculation is that it can also be interpreted as a tree-level exchange of a bulk closed

string state between the two stacks, and both the NS-NS two–form B2 and for Dp-

branes the RR p-form Cp−1 lead to mixing. The open string description is most useful

for small separations between the stacks, while for large separation the supergravity

approximation to the closed string computation is more appropriate and allows the

treatment of both warped compactifications and those with fluxes. The resulting

mixing is model dependent, ranging in size from O(1) in the case of tree-level mixing,

to in the loop-generated case a one-loop factor down to exponentially suppressed

values if the compactification is warped, or if the mediating fields are massive, e.g.,

due to fluxes.

From the effective field theory point of view kinetic mixing among U(1)Y and the

RR U(1) is also allowed. However, one may worry that there might be a subtlety

arising from the absence of perturbative string states carrying RR charges.

Indeed, as already summarized the conventional mechanism giving rise to mix-

ing between U(1) gauge bosons relies on integrating out heavy bi-fundamental fields

charged under both gauge groups. However, substantial mixing between hypercharge

U(1)Y and RR gauge fields cannot be generated in this way. Indeed, as explained

above, there are no states charged under RR fields with masses below the string scale.

Moreover, the only states carrying RR charges are non-perturbative D-branes states,

which should be thought of as solitonic states from the viewpoint of the hypercharge

U(1)Y (which itself typically arises as a conventional perturbative string state). One

may expect that loops involving such solitonic states are exponentially suppressed.7

Nevertheless, the mixing between hypercharge U(1)Y and RR gauge fields can be

generated directly at the level of the string-scale supergravity effective action. One

example of a situation giving rise to such a mixing was discussed in [106]. Namely,

one considers a D7 brane in the type IIB theory that wraps a four-cycle with a non-

contractible loop inside. In the presence of a non-trivial Wilson line along this loop a

7Note that in a theory with gravity there must exist Reissner-Nordstrom black holes charged
under both U(1)’s. Once again the contribution to kinetic mixing from integrating out these bi-
fundamental states is expected to be exponentially small.
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mixing between the D7’s perturbative U(1) gauge field and RR U(1) may arise from

the world-volume Chern-Simons action∫
D7

C4 ∧ F ∧ F .

The size of this mixing is controlled by the corresponding Wilson loop; this term

takes the form of kinetic mixing when self-duality conditions are imposed on the

C4. Perhaps an even simpler example of such kinetic mixing arising from the Chern-

Simons action occurs in the case of a D5 brane wrapping a two-cycle in type IIB

string theory [85]. The term of interest appears in the Chern-Simons action from the

pull-back of the RR form to the world-volume of the D5 brane,∫
D5

ζ dC4 ∧ F .

Here ζ is a (4d) complex scalar modulus parameterizing deformations of the D5

brane. Once again, this interaction takes the form of kinetic mixing when self-duality

conditions are imposed on the C4.

In these examples the D-branes serve as portals giving rise to a mixing between

perturbative and RR gauge sectors. The D-brane may be either directly a part of

the brane configuration giving rise to the Standard Model gauge group, or belong to

the hidden sector and acquire a mixing with the hypercharge U(1) at one loop in the

conventional way.

Kinetic mixing between hidden and visible U(1)’s then begets mass mixing; the

gaugino mass matrix descends from the gauge kinetic mixing matrix when supersym-

metry is broken. Properly speaking, the full gauge kinetic matrix for both photini

and MSSM gauginos depends on, e.g., complex structure moduli zk (in the IIB case;

the same role is played by Kähler moduli in the IIA case). The mass matrix arises

when the complex structure moduli are replaced by their F -term expectation values,

so that mIJ ∝ Fzk
∂zk
ZIJ(zl). In general, the F terms of the various complex structure

moduli are expected to vary, so that the mass matrix m is not strictly proportional

to the kinetic mixing matrix Z. Likewise, the size of mass mixings may exceed the
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size of kinetic mixings, so that ε ∼ O(1) mixings in the gaugino mass matrix may

remain consistent with perturbative gauge coupling unification.

This discussion strongly suggests, that the effective field theory expectation is cor-

rect; there is no obstruction for the mixing between RR gauge fields and hypercharge,

just as there is no obstruction for mixing between two D-brane U(1)’s. Nevertheless, it

is worth keeping in mind that, to the best of our knowledge, there is no explicit exam-

ple of string theory vacuum supporting this point. For instance, it turns out that the

D7 mechanism above doesn’t give rise to non-zero mixing for the toric Calabi-Yau’s

(the only explicitly studied example), due to apparently accidental cancelation.

We don’t think this is a reason to worry that the phenomenology discussed in

this paper may be disfavored—it appears likely that the lack of explicit examples is

just a reflection of the well-known fact, that constructing explicit string vacua with

stabilized moduli is hard. At the very least, as explained in the introduction, extra

U(1) factors with no light charged states may come also from hidden D-branes, rather

than from RR fields. Rather, we consider this theoretical problem as a motivation

for further studies of the plausible sources and sizes of the mixing.

2.5.2 The scale of SUSY breaking

Throughout this paper we have focused on the observational consequences of string

photini in a conventional low energy SUSY scenario. However, such photini may

also be observed at the LHC in a high-scale scenario such as split supersymmetry

[15,16,80]. In this case, scalar superpartners are heavy and inaccessible at the LHC,

but fermions remain at the weak scale due to chiral symmetries. In this scenario string

photini masses are likely to remain at the weak scale due to the same R-symmetry that

keeps gauginos light, rendering photini observable at the LHC. The phenomenology

of split SUSY events involving the direct production of non-colored superpartners

remains quite similar to the case of low energy SUSY. The main difference between

photini signatures of split supersymmetry and conventional SUSY is the absence of

interphotini transitions through an intermediate slepton, because all sleptons are now

very heavy.
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A particularly interesting feature of split SUSY is that the gluino is very long lived,

since all its decay channels go through a heavy intermediate squark. This results in a

spectacular signature due to delayed decays of gluinos stopped in the detector. Such

a signal persists in the presence of string photini, but an interesting new feature is

that the wide range of photini signatures discussed earlier – in particular, cascades

and displaced vertices – may now appear out-of-time in the decays of stopped gluinos.

2.6 Conclusions

A string-theoretic universe with small extra dimensions is often thought to leave few

explicit signatures at low energies – and particularly few signatures accessible at the

LHC. Here we have seen, however, that the topological complexity of compactification

manifolds in string theory suggests the presence of many unbroken U(1)’s without

light charged states. Despite the decoupling of the photons associated with these

U(1)’s, contact with the Standard Model may still arise due to mixing between the

photini and MSSM bino in the presence of low energy supersymmetry. This mixing

gives rise to a broad range of novel signatures at the LHC, including displaced vertices

and cascade decays from both LOSP decays to photini and interphotini transitions,

as well as multiple reconstructed masses for particles exiting the detector. Such

signatures pose new challenges to existing techniques for event reconstruction and

mass determination at the LHC. Should a plenitude of photini be observed at the

LHC in this fashion, it would provide compelling infrared evidence for a topologically

rich string compactification in the ultraviolet.



Chapter 3

Goldstini Variations

3.1 Introduction

If the Standard Model is UV completed by string theory – consistent with the hy-

pothesis of supersymmetry (SUSY) – the topological complexity of realistic compact-

ification manifolds suggests the existence of many additional sectors sequestered from

the fields of the Standard Model. The dimensional reduction of form fields may result

in a proliferation of light axion-like scalar fields [23,24], or weak-scale abelian vector

fields and their superpartners [21], which can dramatically alter standard cosmolog-

ical, astrophysical, and collider phenomenology. Moreover, the presence of stacks

of spacetime-filling branes may lead to nonabelian gauge sectors with fundamental

matter in the four-dimensional theory. The mere observation that such supersymmet-

ric nonabelian gauge theories possess metastable SUSY-breaking vacua [99] suggests

that supersymmetry may be broken in these different (purely field-theoretic) sectors.

Furthermore, there are numerous additional ways in which supersymmetry may be

broken by intrinsically stringy objects – e.g., nonsupersymmetric flux backgrounds or

the presence of both D- and anti D-branes in the compactification manifold. On

a topologically complex compactification manifold with various nonabelian gauge

sectors, fluxes, branes, and antibranes, it is not unreasonable to expect a rich va-

riety of SUSY-breaking dynamics to coexist. Thus, the existence of multiple (likely

metastable) SUSY-breaking sectors is not merely a theoretical novelty, but rather a

36
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well-motivated consequence of physics in the ultraviolet.1

Historically, however, the study of SUSY breaking and its phenomenology has

focused on a single sector additional to the Supersymmetric Standard Model (SSM),

whose dynamics give rise to a nonsupersymmetric ground state. Recently it has been

shown [39, 40] that relaxing this assumption to include multiple sources of SUSY

breaking can lead to interesting and appealing scenarios in which the conventional

phenomenology of single-sector SUSY breaking is significantly modified, similar to

the way in which multiple photini can also alter conventional SUSY phenomenology

[21]. In this paper we wish to extend the results of [39, 40] with an eye towards the

underlying physical context in which multiple SUSY breaking is likely to arise.

The mediation of this multiple-sector supersymmetry breaking to the Standard

Model may occur in any of the customary ways, leading to weak-scale soft masses and

the usual successes of the SSM. However, even if the fundamental interactions between

these sectors and the SSM are Planck-suppressed, the multiple breaking of supersym-

metry gives rise to less-suppressed couplings between additional ‘goldstini’ and SSM

fields. In this fashion, the existence of new sectors with otherwise-unobservable cou-

plings to the SSM may be revealed via what we may call the ‘Goldstino Portal’. In

this sense the goldstini and their companions are further distinguished from moduli,

whose masses are likewise around m3/2 but whose couplings are Planck-suppressed.

Specifically, in [40] it was argued that the presence of multiple sequestered sectors

that break SUSY spontaneously gives rise to multiple ‘goldstini’ of mass 2m3/2 in

addition to the true global goldstino which provides the extra degrees of freedom of

the gravitino of mass m3/2. It was further shown [39,40] that such a set-up can lead to

exciting new signatures at the LHC which could confirm not only the validity of the

supergravity framework but also the presence of multiple sequestered SUSY breaking

sectors, providing indirect, but striking, evidence for complexity of the string com-

pactification. Subsequently it was shown that this scenario can also lead to solutions

of the cosmological problems with a heavy gravitino LSP [39].

1Indeed, the fact that cosmological evolution preferentially populates the metastable vacua of
SQCD rather than the supersymmetric vacua [6, 48, 71] provides a strong argument that the mere
existence of multiple (reheated) nonabelian gauge sectors with light fundamental matter implies the
existence of simultaneous SUSY breaking in multiple sectors.



CHAPTER 3. GOLDSTINI VARIATIONS 38

These considerations come with two caveats. The first is purely experimental; the

smallness of flavour-changing neutral currents (FCNCs) and other signs of Standard

Model flavour violation imply that the flavour-violating contributions to SSM soft

masses from all SUSY-breaking sectors must necessarily be small. In particular,

this requires that all SUSY breaking communicated via intrinsically flavour-violating

mediation mechanisms such as (the non-anomaly-mediated part of) gravity mediation

must be at most one thousand times smaller than that communicated via flavour-

preserving mechanisms. Although this is possible if all such contributions to SUSY

breaking are conveniently small to begin with, it seems much more plausible that

the smallness of flavor violation arises from locality and warping [144] or conformal

sequestering [126, 129]. Once again, this is a well-motivated consequence of physics

in the ultraviolet. Sequestering is known to arise readily in the presence of strongly

warped backgrounds such as warped throats, e.g., type IIB string theory [107], and the

ubiquity of warped throats on realistic compactification manifolds is well-known [60,

78, 91]. The pairing of multiple SUSY breaking and sequestering via warped throats

is suggested by more than just FCNC considerations alone; the very existence of

multiple goldstini requires it as multiple unsequestered SUSY breaking sectors simply

lead to one ur-breaking of supersymmetry. But if sequestering and multiple SUSY

breaking are so closely intertwined, it is then natural to consider what implications

sequestering may have on the spectrum and phenomenology of the resulting goldstini.

In particular, we will argue below that warping and sequestering lead to substantial

deviations from the goldstino mass prediction of 2m3/2, and that the spectrum of

goldstini – and resulting collider phenomenology – are richer than previously thought.

The second consideration is largely theoretical. Weak-scale supersymmetry in

the SSM favours dynamical means of SUSY breaking in order to explain the hierar-

chy between the Planck and SUSY-breaking scales [154]. In turn, dynamical SUSY

breaking in general requires a SUSY-breaking sector to possess a rich set of gauge

dynamics and fields. It is therefore instrumental to consider whether common classes

of dynamical SUSY-breaking theories might modify or alter the goldstino spectrum,

perhaps by the presence of additional light states. At the very least, the interactions
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required to stabilize SUSY-breaking vacua frequently alter the corresponding gold-

stino mass. Moreover, we will argue that it is quite common that a single dynamical

SUSY-breaking sector gives rise to multiple faux goldstini. Such additional states

may then couple to MSSM fields through the Goldstino Portal, and their observation

would shed further light on the nature of the supersymmetry breaking sector(s).

In short: the potential observability of multiple SUSY breaking has been well

established. However, it is instrumental to ask whether the additional physics that

naturally accompanies multiple SUSY breaking may enrich and expand the goldstino

spectrum and phenomenology.

In particular, in Section 3.2 we compute the goldstino mass for a general class

of effective supersymmetry breaking Lagrangians using the conformal compensator

formalism. We will find that important corrections to the goldstino mass arise from

the effects of stabilizing the SUSY-breaking vacuum. In Section 3.3 we show how the

presence of warping, or conformal sequestering, significantly modifies the prediction of

2m3/2 for the goldstini masses. The discovery of such modifications would be ‘smoking

gun’ for the presence of such dynamics in one or more sequestered hidden sectors. In

Section 3.4 we study the particle content of a hidden Intriligator-Seiberg-Shih-type

(ISS) [99] sector preserving a (discrete) R-symmetry. We show that such a sector

would give rise to Nc goldstini and Nc(Nc−1) ‘modulini’ of mass ≥ 2m3/2 (in the ab-

sence of warping or conformal sequestering), where Nc is the number of colours in the

asymptotically free UV gauge group. A simple example of this setup is schematically

illustrated in Figure 3.1. Although such a discrete-R-symmetry-preserving sector is

incapable of generating gaugino masses, in the context of multiple SUSY breaking

sectors this poses no problem. In particular, since there is no phenomenological rea-

son to require more than one of the independent SUSY-breaking sectors to break

R-symmetry, and requiring all independent sectors to break R-symmetry severely

constrains the number of possible string landscape vacua, we expect that our results

on ISS-type sectors should apply to realistic theories of SUSY-breaking in the string

landscape.2

2We note in passing that such R-symmetry-preserving sequestered SUSY breaking sectors can
also lead to attractive phenomenological features, such as, e.g., cosmologically acceptable thermal
leptogenesis [39].
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SSM

SUSY ISS

G̃

Nc × ζ

(N2
c −Nc)× χ

√
Ncyff

Figure 3.1: A schematic example of multiple sequestered SUSY-breaking. In this
setup there are two SUSY breaking sectors: The first sector is a SUSY breaking sector
with one F-term of magnitude f which couples to the SSM with an effective mediation
scale Λ. This sector needn’t preserve an R-symmetry and could thus generate gaugino
masses. The second sector is an R-symmetry preserving SU(Nc) ISS sector where all
non-zero F-terms are of magnitude yf , implying this sector has an overall effective-
SUSY-breaking-scale of

√
Ncyf . The ISS sector couples to the SSM with a mediation

scale of
√
xΛ. The overall effective SUSY breaking scale that determines the gravitino

mass is feff = f
√

1 +Ncy2. If y � 1, Nc goldstini, ζ, and Nc(Nc − 1) modulini, χ,
all arise from the ISS sector, as shown in Section 4, while the longitudinal mode of
the gravitino dominantly arises from the first sector.
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Figure 3.2 provides a schematic illustration of the new possibilities that arise for

the mass spectrum of goldstini/modulini. Such states are typically grouped into sets

with a goldstino (or goldstini) at a lower limit point at βm3/2 with modulini sitting

relatively tightly spaced above this limit. For unsequestered or unwarped sectors,

β = 2 (modulo potentially large corrections from stabilization of the SUSY-breaking

vacuum as explained in Section 3.2). Otherwise, any value 2 ≥ β ≥ 0 is possible, so

some subset of the goldstini/modulini may be lighter then the gravitino, while the

lightest observable-sector supersymmetric partner (LOSP) may either sit above all

the goldstini and modulini, or may be in the middle of the spectrum of states. We

emphasise that in theories with multiple sectors it is unreasonable to expect, indeed

unlikely, for the LSP to reside in our sector.3 The true LSP may be the gravitino,

one of the limit point goldstini, or yet another state, such as a hidden photino.

In Section 3.5 we briefly discuss the couplings of the goldstini and modulini of our

secnario, and among other topics, present a potential ‘smoking gun’ collider signature

that can give evidence for the physical realisation of the ISS mechanism of SUSY-

breaking.4 In general the goldstini of multiple SUSY breaking sectors, including those

within a hidden ISS sector, couple to SSM chiral multiplets through the Goldstino

Portal as [40]

Lint ⊃
N∑
i=1

N−1∑
a=1

m̃2
iVia
fi

ζaψφ
† (3.1.1)

where N is the total number of F-terms, fi, in all sectors, m̃2
i is the soft mass con-

tribution from the i’th hidden sector F-term, m̃2
i = −f 2

i /Λ
2
i , the effective mediation

scale of the i’th hidden sector to the SSM is Λi, and Via is the rotation matrix that di-

agonalises the goldstini mass matrix.5 The ζa are the N−1 goldstini mass eigenstates

and the true global goldstino that forms the longitudinal component of the gravitino is

the N th eigenstate with zero mass in this basis. If we make the reasonable assumption

that SUSY breaking from all sectors is not communicated in an identical way, i.e., if

3We particularly thank Lawrence Hall for stressing the importance of this point to us.
4We will return to the detailed phenomenology of the goldstini/modulini and their effects on

collider experiments and astrophysical and cosmological observations in a later work.
5To avoid confusion, note that the fi have mass-dimension two.
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G̃ m3/2

Mass
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2m3/2
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MLOSP
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ζ1 (2 − γX)m3/2
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φLOSP
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Figure 3.2: A diagram depicting a subset of the possible spectra. The left panel
shows the SSM LOSP, the gravitino and goldstini/modulini from two ISS sectors,
one at the end of a warped throat (so with mass spectrum at 2fω/ω as shown in
Section 3.1), and one just gravitationally sequestered from the SSM. The right panel
shows a possible spectrum where the SSM LOSP is lighter than 2m3/2, but, however,
could still decay to a goldstino originating in a conformally sequestered (or warped)
sector, here chosen not to be of ISS type, so there is only a single goldstini state,
and no modulini. An interesting variant of this scenario occurs if the anomalous
dimension of the SUSY-breaking field satisfies γX > 1, in which case LOSP decays
could occur to a goldstino which is lighter than the gravitino. The resulting collider
and cosmological phenomenology can depend strongly on which of these patterns is
realised. Unlike for the various goldstini, decays to the modulini of a hidden ISS
sector depend on the couplings in that sector, and are thus not guaranteed. Three
different sectors are shown in order to elucidate a range of possibilities, though any
number ≥ 2 of independent SUSY-breaking sectors implements the goldstini scenario.
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not all Λi are equal, then couplings of the SSM to all goldstini are generated by the

interaction of Eq.(3.1.1). Crucially, these couplings between the goldstini and SSM

are parametrically stronger than gravitational, even if the effective mediation scale is

∼MP . Moreover, these goldstini-SSM couplings distinguish the goldstini from other

m3/2-scale fermions such as, e.g., derivatively-coupled modulini, whose couplings to

SSM states at a scale E are suppressed relative to those of goldstini by EΛi/fi.
6

For the field-theoretic breaking of global SUSY, it is reasonable to expect that the

distribution of breaking scales is roughly log-flat since, assuming SUSY is unbroken at

tree level, breaking only occurs via non-perturbative effects (modulo technicalities in-

volving Fayet-Illiopoulos terms), which scan over an exponentially large range of scales

as UV couplings and beta-function coefficients are linearly changed [102,154]. In the

context of multi-sector SUSY breaking, there should be a lower cutoff on this distri-

bution of SUSY-breaking scales, implied by the (at least gravitational strength, i.e.,

anomaly-mediated) communication of breaking from the dominant SUSY-breaking

sector to the sub-dominant ones. If we require SUSY to solve the hierarchy problem,

and we assume the dominant SUSY breaking sits at the intermediate scale, the lowest

independent SUSY-breaking sector should have scale ∼ TeV. In Section 3.2 we will

see how such a scenario leads to a strong modification of the goldstino mass when

arising from a sector with such a very low SUSY-breaking scale.

In fact, in the landscape of string theory, one might naively expect ‘tree-level’

breaking due to the presence of fluxes or anti-D-branes in the vacuum not to be

distributed at all scales, but instead concentrated at the string scale. Nevertheless,

because of the presence of warped throats (caused by the back reaction from fluxes or

branes), an approximately log-flat distribution of SUSY-breaking scales can still apply

due to the approximately log-flat distribution of throat lengths expected in realistic

string compactifications [60, 78, 91], and such structures are further motivated by

the phenomenological necessity of conformal sequestering if SUSY is relevant to the

6Though this is true of conventional, derivatively coupled modulini, there are of course exceptions
– for example, the fermionic components of moduli superfields involved in supersymmetry breaking,
whose couplings to SSM states are goldstino-like. We particularly thank Joe Conlon for discussions
on related issues.
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solution of the hierarchy problem. In this context it is also noteworthy that anti-D-

branes (or equivalent fluxes) sitting at the IR tip of one or more throats can have

significant utility in the string landscape, as the presence of the anti-D-brane charges

relaxes the tadpole constraints on the allowed vacua, and thus allows for a (quite

possibly exponentially) larger landscape of vacua.

Having discussed our view of the overall scene in which the goldstini scenario is

set and motivated, we now turn to our specific results, starting with the changes to

the goldstini mass spectrum arising from the stabilization of SUSY breaking vacua.

3.2 Goldstini Masses in Supergravity

Perhaps the clearest way to study the goldstino mass spectrum in supergravity is

through the use of the conformal compensator formalism [51, 52, 128]. The relevant

physics may be captured by considering a single chiral superfield X(y) = x(y) +
√

2ψX(y)θ+ fX(y)θ2 with a Polonyi-type superpotential and Kähler terms necessary

for stabilizing the vacuum at finite 〈x〉. The Lagrangian is given by

L =

∫
d4θ φ†φ

(
X†X − c(X†X)2

M2
+ ...

)
+

∫
d2θφ3fX + h.c. (3.2.1)

where φ = φ + fφθ
2 is the conformal compensator and c > 0. Such a Lagrangian

naturally arises as an effective description of SUSY breaking valid below the scale

M (e.g., an O’Raifeartaigh model with fields of mass M)7. The quartic stabilizing

term in the Kähler potential is absolutely necessary in the context of supergravity;

its absence would induce a runaway to large field values. If X were the only source

of supersymmetry breaking, we would identify ψX as the true longitudinal goldstino

G that is eaten by the gravitino. Indeed, in this case the zero momentum equation of

motion for x may be solved to yield x =
ψ2

X

2fX
. Thus in the far infrared we may write

7Note that here, for simplicity, we have assumed an R-symmetry is preserved. Inclusion of
Kähler terms such as c′X†X3/M2 allow the study of R-breaking cases, with similar results to the
R-preserving case.
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X as a nonlinear superfield,

X =
G2

2fX
+
√

2Gθ + fXθ
2 (3.2.2)

which corresponds to the usual nonlinear parameterization of the goldstino G ≡ ψX

[116].

Now let us consider the effects of multiple SUSY breaking on the fermion ψX . We

assume the dominant contribution to SUSY breaking comes not from X, but from

other sectors sequestered from X, so that 〈fφ/φ〉 = m3/2. Clearly, it is now necessary

to keep careful track of dependence on the conformal compensator. We may analyze

the effects of SUSY breaking on X by going to the canonical basis via the rescaling

X → X/φ and solving the auxiliary equation of motion to find

fX = −2c(fφ/φ)|x|2x+ 2cx†ψ2
X + fM2

M2 − 4c|x|2
. (3.2.3)

By minimizing the resulting scalar potential for x, we may then extract the mass for

the would-be goldstino η ≡ ψX ,

mη = 2m3/2

(
1−

M2m2
3/2

2cf 2
+ ...

)
(3.2.4)

where additional correction terms are O
(
M4m4

3/2

c2f4

)
. This expansion is valid in the

regime m2
3/2/c � f 2/M2 <∼ m3/2MP . One can see that as

√
f (and M) approaches

m3/2 these corrections become significant and a different expansion is necessary. From

a numerical study we find that for
√
f < m3/2 these large corrections can drive the

goldstini mass much smaller than 2m3/2. Such corrections are to be expected as in this

case the SUSY-breaking communicated to a sector becomes larger than the breaking

within the sector itself.

A few remarks are in order. As can be seen clearly in Eq.(3.2.4), the goldstino mass

in a given SUSY-breaking sector depends on both the overall scale of SUSY breaking

and the scales within the sector itself; the interplay of supersymmetry breaking and
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vacuum stabilization leads to important corrections to the goldstino mass. Of course,

the generalization of this setup to N SUSY-breaking sectors is straightforward, re-

sulting in N goldstini ηi; in the mass eigenbasis these become the eaten longitudinal

goldstino and N − 1 uneaten goldstini ζa (related to the ηi by ηi = Viaζa, where Via

is the rotation matrix that diagonalizes the goldstini mass matrix).

In this case it may seem that if one makes a unitary transformation such that

there is only one Polonyi field G =
∑

i fiXi/feff all other orthogonal combinations

X̃i might remain massless by this derivation. However, in this new basis the stabilizing

Kähler term will lead to mixed interactions between G and the other fields X̃i. The

non-zero vev of G then leads to masses for the fermionic components of X̃i and the

same results are recovered.

In subsequent sections, we will often be interested in computing corrections to

mη = 2m3/2 due to additional physics such as warping and sequestering. In such

cases, for convenience we will dispense with the details of stabilization and instead

carry out a näıve application of the nonlinear goldstino parameterization

X =
η2

2fX
+
√

2ηθ + fXθ
2 (3.2.5)

for the would-be goldstino η given a Polonyi superpotential and canonical Kähler

term for X. For free fields without warping this parameterization gives the leading

result mη = 2m3/2, which omits the corrections due to stabilization but is valid in the

limit m2
3/2/c � f 2/M2. Such a simplifying assumption will make the effects of new

physics more transparent, with the understanding that corrections from stabilization

have been suppressed.

Let us now turn to one such genre of new physics – the changes to the golds-

tini mass spectrum arising from the warping and/or conformal sequestering that can

naturally occur in the string landscape.
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3.3 Warped and Sequestered Goldstini

The observed smallness of FCNCs require that SUSY breaking communicated via

flavour-violating mechanisms such as gravity mediation must necessarily be subdom-

inant to flavor-preserving contributions. Absent some degree of unnatural tuning,

this is most readily achieved by warping on an extra-dimensional space [144] or, in

four dimensions (and essentially equivalent by AdS/CFT duality) sequestering by

a conformal sector [126, 129]. Such sequestering is known to arise readily in string

theory in the presence of strongly warped backgrounds [107]. But even apart from

considerations of flavour, the persistence of multiple goldstini requires that different

SUSY breaking sectors be sequestered from each other in a similar fashion; in fact,

one should think of sequestering and multiple goldstini as inextricably intertwined.

Given the effective dimensional transmutation brought about by warping, it is then

natural to consider whether the scale of goldstino masses may be significantly modi-

fied if the additional SUSY breaking sector is at the bottom of a warped throat or in

the far IR of a pseudo-conformal sector.

As before, the conformal compensator formalism may be used to clearly study the

effects of warping or sequestering on the goldstino mass prediction, mη = 2m3/2. To

get started, consider some number of chiral superfields Xi with Polonyi-type super-

potentials and a sequestered Kähler potential. The relevant Lagrangian is

L =

∫
d4θ φ†φ

∑
i

(X†
iXi + ...) +

∫
d2θ φ3

∑
i

µ2
iXi + h.c. (3.3.1)

where, for simplicity, we have omitted terms necessary for stabilizing the SUSY break-

ing vacuum.8 Here φ = φ + fφθ
2 is the appropriate conformal compensator, which,

as we will see below, need not always be identified with the SUGRA conformal com-

pensator. Rescaling Xi → Xi/φ and expanding Xi in the nonlinear parameterization

Xi = η2
i /2fXi

+
√

2ηiθ + fXi
θ2 (3.3.2)

8As mentioned above, this omits the leading corrections to mη due to stabilization found in
Eq.(3.2.4).
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we obtain

L ⊃
∫
d2θ φ2

∑
i

µ2
iXi = −1

2

(
2
fφ
φ

)∑
i

η2
i + constant . (3.3.3)

There are two salient details worth noting in this result. The first is that here

we have assumed the Xi are free fields with canonical scaling dimension; as we will

discuss below, the result changes significantly when the scaling dimensions of fields

responsible for SUSY breaking differ from unity. The second is that the conformal

compensator is ultimately responsible for setting the goldstino masses. The additional

Goldstini of multiple SUSY breaking obtain masses of order mη = 2
fφ

φ
; this only

corresponds to mη = 2m3/2 when fφ/φ = m3/2, which is not guaranteed to be the

case, as we will shortly show.

Perhaps the simplest example of such deviations arise when the some of the chi-

ral fields Xi possess scaling dimensions ∆Xi
> 1, possibly at a conformal or near-

conformal fixed point.9 Such circumstances arise frequently in theories with confor-

mal sequestering [107, 126, 129, 148], and more generally whenever SUSY breaking

sectors are strongly coupled.

To see the effects of large anomalous dimensions more clearly, let us focus on the

case of a single chiral superfield X with scaling dimension ∆X 6= 1 at a conformal

fixed point. It is frequently the case that X is a component of a gauge invariant chiral

operator of some interacting gauge theory, e.g., an SU(2) theory with moduli space

of gauge-invariant meson operators parametrized as

M =

(
εZ X

−XT O(X2/Z)

)
. (3.3.4)

Expanding around Z 6= 0, X = 0, conformal symmetry demands that the Kähler

9In order to compare results with those in [40], we will use the conventions ∆X = 1 + γX to
define the anomalous dimension γX in terms of the scaling dimension ∆X . This corresponds to the
choice d lnZX/d lnµR = −2γX .
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potential for X must be of the form

K = φ†φ(Z†Z)1/∆Z

[
1 +

X†X

(Z†Z)(∆X/∆Z)
+ ...

]
, (3.3.5)

where φ is the SUGRA conformal compensator with 〈φ〉 = 1 + m3/2θ
2. We assume

there is also a superpotential Polonyi term

W = φ3µ2X (3.3.6)

where the constant µ2 has dimension (3−∆X); additional Kähler terms are required,

as usual, to stabilize the SUSY breaking vacuum of X. We can study the theory near

the origin of moduli space in terms of redefined fields

Ẑ = φZ1/∆Z and X̂ = φ∆XX/Ẑ∆X−1 , (3.3.7)

for which the Kähler potential is canonical (without any dependence on φ) and the

superpotential term becomes

W → φ2−γXµ2ẐγX X̂ . (3.3.8)

We are interested in the mass term for the goldstino component of X̂. Utilizing the

nonlinear parameterization of Eq.(3.3.3), we find, in the case of current interest,

L ⊃ −1

2
(2− γX)m3/2η

2 , (3.3.9)

from which we see the goldstino mass is

mη = (2− γX)m3/2 , (3.3.10)

in agreement with the perturbative result of [40]. The key point here is that γX need

not be perturbative, so in principle the goldstino mass may range from 0 to 2m3/2

depending on the size of γX . For example, if the superpotential of the gauge theory

at the interacting fixed point involved a marginal operator, W ⊃ trM2, we would
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have γX = 1/2 and thus mη = 3
2
m3/2.

This is a simple example of our first point – that the mass of a goldstino coming

from a chiral superfield X depends sensitively on the scaling dimension ∆X . The

smallness of FCNCs suggests that multiple SUSY-breaking sectors, if present, must be

sequestered in order to avoid prohibitive flavour-violating contributions to soft masses.

In four dimensions, this is most readily accomplished by conformal sequestering, in

which case anomalous dimensions γX 6= 0 are generically expected.

Thus far our discussion has also assumed that the mediation of dominant SUSY

breaking arises through the conventional SUGRA conformal compensator; as we will

now argue, this, too, no longer holds in many situations where SUSY breaking fields

are sequestered by conformal dynamics or warping in higher-dimensional spaces.

3.3.1 Warped goldstini 5D

In order to probe the effects of warping on goldstino masses, let us consider a toy

model of warping in the form of a 5D supersymmetric Randall-Sundrum model [143].

While such constructions are perhaps not as realistic as those based on more complete

warped throat solutions [112, 113], they nonetheless capture much of the relevant

physics. To set notation, we take the 5th dimension to be compactified on an interval

of length πr via a S1/Z2 orbifold, with metric

ds2 = e−2kr|θ|ηµνdx
µdxν + r2dθ2 (3.3.11)

for −π < θ ≤ +π; the slope discontinuities at θ = 0, π signal the presence of 4D

branes fixed by the orbifold boundary conditions. These branes mock up the resolved

physics of the UV Calabi-Yau ‘head’, and IR throat ‘tip’ in the IR of the more realistic

complete string solutions. As usual, the warp factor e−2kr|θ| indicates that physical

scales on the θ = π IR brane are redshifted relative to those on the θ = 0 UV brane.

At energies below the mass of the lightest gravitational Kaluza-Klein (KK) mode,

we may employ an effective 4D Lagrangian describing the physics of fields localized

on UV and IR branes separated by a warped throat. The Lagrangian for this effective
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theory is [26, 128]

L = −3M3
5

k

∫
d4θ
(
φ†φ− ω†ω

)
+

∫
d4θ(φ†φKUV + ω†ωKIR) (3.3.12)

+

∫
d2θ(φ3WUV + ω3WIR) + h.c.

Here φ is the conformal compensator field and ω is the “warp factor” superfield,

ω = φe−kT (3.3.13)

where T = πr + ... is the radion superfield (in a horrible abuse of notation, we will

write the warp factor superfield in terms of its scalar and auxiliary components as

ω = ω+fωθ
2). The physics we are interested in will be encoded by Kähler and super-

potential terms for a Polonyi field localized on the IR brane. The anomaly-mediated

communication of supersymmetry breaking to fields localized in the IR arises via the

warped conformal compensator ω, giving rise to supersymmetry breaking of order

fω/ω.

Ultimately, the size of supersymmetry breaking seen by IR fields is determined by

the stabilization mechanism fixing the expectation value of the radion, and hence the

warp factor superfield ω. Although it is often the case that simple forms of radius

stabilization lead to 〈fω/ω〉 ∼ 〈fφ〉 (as in, e.g., [128]), we will be interested in a much

more general class of stabilization mechanisms.

Now let us consider the effects of this stabilization on supersymmetry breaking in

the IR. Suppose that the field content in the IR includes one or more fields breaking

supersymmetry (in addition to other sources of supersymmetry breaking in the UV).

We may represent this locally by a Polonyi model for a field X, via a superpotential

term WIR = µ2X + ... and Kähler term KIR = X†X (along with the usual additional

Kähler terms necessary to stabilize the potential). Assume now that the dominant

contribution to supersymmetry breaking arises elsewhere on the manifold, so that X

can be identified as a non-linear pseudo-goldstino field. To study the dynamics of

X, we may rescale X → X/ω, which results in canonical Kähler terms for X and a



CHAPTER 3. GOLDSTINI VARIATIONS 52

superpotential

WX = ω2µ2X . (3.3.14)

The resulting goldstino mass term is

L ⊃ ωfω
µ2

fX
η2 = −1

2
(2fω/ω)η2 . (3.3.15)

As expected, the mass for this IR-localized goldstino depends on the warped SUSY-

breaking order parameter 〈fω/ω〉 rather than the UV order parameter 〈fφ〉.
What are the effects of warping on the goldstino mass spectrum? Clearly, in the

case of no warping, ω = φ = 1 +m3/2θ
2 and hence mη = 2fω/ω = 2m3/2, consistent

with the familiar result. Moreover, in the event that there is nontrivial warping

but the stabilization mechanism yields fω/ω ∼ fφ = m3/2, we again obtain mη '
2m3/2. However, this is far from the only possible outcome. Consider a stabilization

superpotential of the form [127]

L =

∫
d2θ(cUV φ

3 + cIRω
3 + εφ3−nωn) + h.c− f 2

UV [1 + gravity terms] . (3.3.16)

The first two terms can arise from constant superpotentials localized on the UV and

IR branes; the third term requires a bulk gauge theory with some massive fundamental

matter.

For ε� cUV , cIR and n < 3, the ε term contributes a vev to ω of order

|〈ω〉|4−n =
n(3− n)

6

∣∣∣∣εcUVc2IR

∣∣∣∣� 1 , (3.3.17)

with ∣∣∣∣〈fω〉〈ω〉

∣∣∣∣ =
|cIR|
M2

P

| 〈ω〉 | and | 〈fφ〉 | =
|cUV |
M2

P

=
fUV√
3MP

. (3.3.18)

Here the radion mass is of order 〈fω/ω〉, while the gravitino mass is of order 〈fφ〉.
Significantly, the order parameter for SUSY breaking in the IR is parametrically
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suppressed relative to 〈fφ〉. Thus, in this case, the goldstino mass is

mη = 2
fω
ω

= 2
|cIR|
M2

P

| 〈ω〉 | � 2m3/2 . (3.3.19)

Depending on the choice of stabilization parameters, this results in a goldstino mass

ranging between 0 < mη ≤ 2m3/2. The generalization to many Goldstini is straight-

forward; for η → ηi one need only take ω → ωi and fω → fωi
in the case of multiple

throats.

3.3.2 Sequestered goldstini in 4D

As one might expect, we can also see the effects of warping on goldstino masses in a

strictly four-dimensional picture of conformal sequestering. In this situation the role

of warping is played by the dynamics of a superconformal sector coupling to the IR

fields. Following [127], for the sake of specificity we will focus on the case of a 4D

SU(2) SUSY gauge theory with 8 fundamentals P and superpotential

W = λP 4 + κP 2. (3.3.20)

This theory flows to a conformal fixed point in the infrared, where the coupling

λ is assumed to be marginal. At the conformal fixed point, the superconformal R-

symmetry fixes the scaling dimension of P such that ∆P = 3/4; thus λ is dimensionless

(marginal) and the coefficient κ has scaling dimension ∆κ = 3/2. The moduli space

of gauge invariant operators can be parameterized as

PP =

(
εZ Y

−Y T O(Y 2/Z)

)
(3.3.21)

where ε = iσ2 is the antisymmetric tensor. Here Y is a 2× 6 matrix of fields.

Conformal symmetry constrains the theory below the scale Z to have Kähler terms
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of the form

K = φ†φ(Z†Z)2/3[1 +O(|Y |2/|Z|2)] (3.3.22)

= Ẑ†Ẑ[1 +O(|Ŷ |2/|Ẑ|2)]]

where Ẑ = φZ2/3 and Ŷ = φY/Z1/3. In terms of these variables, the superpotential

becomes

W = λẐ3 + κẐ3/2φ3/2 , (3.3.23)

which has the same form as our 5D Randall-Sundrum theory with n = 3/2 and Ẑ ∼ ω.

Indeed, if we make the identifications Ẑ → MPω, λ → cIR/M
3
P , and κ → ε/M

3/2
P ,

we may reproduce all the details of the warped model in terms of a four dimensional

conformal field theory.

Of course, we may consider a wide range of conformal field theories with various

marginal operators at the conformal fixed point. In general, a superpotential

W = λP k + κP 2 (3.3.24)

leads, below the scale of Z, to an effective superpotential

W = λẐ3 + κẐ6/kφ3−6/k (3.3.25)

where n = 6/k. The constraint n > 3 corresponds to k > 2; for k > 2, ∆Z < 3, which

is eminently sensible in order that κ remain a relevant deformation. In any event, we

need not commit to a specific conformal field theory; any dynamics with ∆Z > 1 may

suffice.

Now let us consider the effects of sequestering on Goldstini coupled to the confor-

mal sector. This corresponds to coupling the field Ẑ (which is our stand-in for the

warp superfield) to a field with a Polonyi term. First, consider the theory where the

field X that breaks SUSY is a total composite of scaling dimension ∆X = 3. This

is the four dimensional analog of a purely “IR-localized” field; the case of ∆X < 3
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corresponds to a partially-localized field, which we will discuss momentarily.

Expanding around Z 6= 0 and X = 0, the Kähler potential below the scale Z is

constrained by conformal symmetry to be of the form

K ⊃ φ†φ(Z†Z)1/∆Z

[
1 +

X†X

(Z†Z)(3/∆Z)
+ ...

]
(3.3.26)

We may thus define canonical fields

Ẑ = φZ1/∆Z and X̂ = φ3X/Ẑ2 (3.3.27)

in terms of which the Kähler potential is canonical.

If the theory contains a Polonyi term for the candidate SUSY breaking field X,

the superpotential is of the form

W = φ3µ2X → µ2Ẑ2X̂ (3.3.28)

It is then a simple matter to compute the goldstino mass; the Lagrangian includes a

term

L ⊃ −1

2

(
2
fZ
ẑ

)
η2 (3.3.29)

so that the goldstino mass is given by mη = 2fZ/ẑ ∼ 2fω/ω, as expected from the

results of the previous subsection. The stabilization mechanism for Z is simply the

one considered earlier.

We may also consider the case where 1 ≤ ∆X ≤ 3, i.e., the candidate SUSY

breaking field has a large anomalous dimension but should not be interpreted as

being completely localized on the brane; rather, it has a warped profile in the 5D

picture corresponding to a bulk mass term.

Once again, expanding around Z 6= 0 and X = 0, the Kähler potential is con-

strained by conformal symmetry to take the form

K ⊃ φ†φ(Z†Z)1/∆Z

[
1 +

X†X

(Z†Z)(∆X/∆Z)
+ ...

]
, (3.3.30)
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with canonical fields given by Ẑ = φZ1/∆Z and X = φ∆XX/Ẑ∆X−1, in terms of which

the Kähler potential is canonical. The superpotential term for X thus takes the form

W = φ3µ2X → µ2φ2−γX ẐγX X̂ . (3.3.31)

Carrying out the nonlinear parameterization for the goldstino, we find in this case a

goldstino mass

mη = (2− γX)m3/2 + γX
fZ
ẑ

. (3.3.32)

This result interpolates nicely between the results found in the limiting cases γX = 0

and γX = 2. In the former limiting case, we retrieve the physics of a free Polonyi

field with no warping; in the latter limiting case, the physics of a fully sequestered

Polonyi field where the scale of SUSY breaking is set not by fφ, but fω/ω.

Thus far we have remained relatively agnostic about the detailed physics of su-

persymmetry breaking, but this, too, may have a significant impact on the spectrum

of goldstini, as we will now see.

3.4 Multiple Goldstini and Modulini from ISS Sec-

tors

The notion of multiple SUSY breaking sectors prompts us to consider how SUSY

may be broken within each sector. The ISS models [99] demonstrate that SQCD with

massive flavours exhibits a meta-stable SUSY breaking ground state. Further, the

simplicity of such models would suggest that spontaneously broken SUSY is generic

in SUSY field theory and in the landscape of string vacua. Therefore it is natural to

consider, in the context of multiple SUSY breaking sectors, that some number may

well be of the ISS type, without the addition of any of the singlets or deformations that

are absent in the original ISS models, and that are needed only to break R-symmetries.

Here we show that such a sector would give rise to multiple goldstini fields along with
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many more ‘modulini’ fields of mass ≥ 2m3/2.
10 These extra states could potentially

lead to a smoking gun signature of an ISS hidden sector by determining missing

energy in LOSP decays to the gravitino, goldstini and modulini.

3.4.1 ISS models at low energies

To illustrate the essential physics we concentrate on the classic ISS-model of SQCD

with Nc colours and Nc+1 ≤ Nf <
3
2
Nc flavours in the free magnetic range [101,149,

150]. The generalization to other gauge groups should be straightforward. A simple,

intuitive understanding of why such an ISS sector gives rise to multiple goldstini fields

comes from the fact that, in the far IR, it flows to multiple decoupled O’Raifeartaigh-

like models as we now show.

Using Seiberg duality [149] the IR-free description of the theory is described by an

Nf×Nf gauge singlet meson matrix Πij and Nf flavours of magnetic quarks ϕi and ϕ̃j

in the fundamental (respectively anti-fundamental) of a SU(Ñ = Nf −Nc) magnetic

gauge theory. This theory is weakly coupled at low energies and has a superpotential

given by

W = h Tr
[
ϕ · Π · ϕ̃− µ2 · Π

]
. (3.4.1)

We assume a generic, non-hierarchical, matrix µ2
ij which can be diagonalized without

loss of generality. Among other symmetries this theory exhibits a U(1)R symmetry

where the ϕ fields have zero R-charge and Π has R-charge 2.

Considering the F-components of the meson superfields,

−F †
Πij

= hϕi · ϕ̃j − hµ2
ij (3.4.2)

the first term in this matrix equation is of rank Nf−Nc whereas the second term is of

rank Nf > Nf −Nc, therefore it is impossible to have fΠij
= 0 for all {i, j} and SUSY

10Purely for typographical clarity we ignore, throughout this section, the possibility of the warping
or conformal sequestering considered in Section 3.3. We emphasise that typically the metastable
SUSY-breaking of ISS-type studied in the present section should also come along with such seques-
tering dynamics, leading to the changes in overall goldstini (and modulini) mass scales and couplings
explicated in Section 3.3.
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is broken. This is the famous ISS ‘rank condition’. The minimum of the potential is

V =
Nc∑
i

(hµ2
i )

2 (3.4.3)

where µ2
i are the Nc smallest eigenvalues of µ2

ij. This minimum occurs in field space

Π =

(
Y Z

Z̃ Φ

)
, ϕ =

(
ϕ0 + χ, ρ

)
, ϕ̃ =

(
ϕ̃0 + χ̃

ρ̃

)
, µ2 =

(
µ̃2

0 0

0 µ2
0

)
(3.4.4)

with ϕ0 ·ϕ̃0 = µ̃2
0. Also, Φ is an Nc×Nc matrix of fields, Y is (Nf−Nc)×(Nf−Nc), ρ is

Nc×Nc and the dimensionality of the other terms is apparent from these assignments.

Upon rewriting the superpotential in terms of these fields it splits into three pieces

W = W1 +W2 +W3 with

W1 = h Tr [ρ · Φ · ρ̃+ ρ · Z̃ · ϕ̃0 + ϕ0 · Z · ρ̃− µ2
0 · Φ]

= −h Tr [µ2
0 · Φ] + h

Nf−Nc∑
i=1

(φ1i
· Φ · φ2i

+ µ̃0i
(φ1i

· φ4i
+ φ2i

· φ3i
)) .(3.4.5)

Here the φ are Nc dimensional vectors, and the µ̃0i
are the first Nf − Nc diagonal

components of the µ̃2
0 matrix. In the first line we recognise W1 as an O’Raifeartaigh-

like model and in the second line the fields ρ, ρ̃, Z̃, and Z have been written as matrices

made up of row and column vectors to demonstrate explicitly how the superpotential

W1 decomposes into Nf −Nc O’Raifeartaigh-like sectors. The remaining pieces of the

superpotential are

W2 = h Tr [χ · Y · χ̃+ χ · Y · ϕ̃0 + ϕ0 · Y · χ̃] (3.4.6)

W3 = h Tr [ρ · Z̃ · χ̃+ χ · Z · ρ̃] . (3.4.7)

W2 comprises a sector which doesn’t break SUSY and contains massive chiral super-

fields along with the Goldstone superfields of the spontaneously broken symmetries.

The Goldstone fields of the spontaneously broken SU(Nf−Nc) are eaten by the gauge

superfields through the supersymmetric Higgs mechanism. These SUSY-preserving
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fields are only coupled to the SUSY-breaking sector through the cubic terms in W3

and can therefore be consistently neglected when considering the first sector.

It is clear that Φ remains massless at tree level, and the diagonal component of

Φ contains the goldstino. The pseudo-moduli of this field become massive at one-

loop level through their interactions with the heavy φ fields and these masses can be

calculated to all orders in the SUSY breaking parameters with the use of the Coleman-

Weinberg potential [44]. However, as we would later like to embed this theory in

SUGRA, and the Coleman-Weinberg approach is not manifestly supersymmetric, we

choose instead to work in terms of the effective Kähler potential which arises when

the heavy superfields are integrated out. This agrees with the Coleman-Weinberg

potential to second order in the SUSY breaking F-terms and in the limit where SUSY

is unbroken this is exact at one-loop.11

In general for a superpotential of the form

W =
1

2
Mijϕi · ϕ̃j , (3.4.8)

whereMij includes mass terms and the pseudomoduli fields, the exact one-loop Kähler

potential is given by

K(1) = − 1

32π2
Tr

[
M †M log

(
M †M

|Λ|2

)]
. (3.4.9)

Reading off the matrix M from Eq.(3.4.5) one finds that the theory describing

the light fields contained in Φ, after integrating out the heavy fields contained in φ,

is described by the superpotential

W = h Tr [µ2
0 · Φ] , (3.4.10)

and the effective Kähler potential Keff = K(0) + K(1), where K(0) is the canonical

11Including higher order corrections in the SUSY breaking parameters would necessitate including
supercovariant derivates. The effective Kähler potential is sufficient for our needs.
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Kähler potential, and K(1) is given by

K(1) = − h2

32π2

Nf−Nc∑
i=1

Tr

[
2

(
2 + log

(
|µ̃0i

|2

Λ2

))
Φ† · Φ +

1

3|µ̃0i
|2

(Φ† · Φ)2 + ...

]
.(3.4.11)

Here the ellipses denote higher order terms which we can ignore as we are studying

the theory near the origin of field space, 〈Φ〉 � µ̃0. (The first logarithmic correction

to the terms quadratic in Φ corresponds to one-loop wavefunction renormalization

of the fields.) Eqs.(3.4.10) and (3.4.11) are sufficient for studying the low-energy

phenomenology of the ISS model. One can see from the quartic term in the Kähler

potential that, once the diagonal components of Φ develop F-terms, a scalar potential

for all pseudo-moduli in Φ is generated, and in these (global) SUSY ISS models all

scalars are stabilized at the origin 〈Φ〉 = 0.

Most importantly for our purposes, this low energy theory respects the R-symmetry

detailed earlier, forbidding the fermions in Φ, hereafter called ‘modulini’, from gaining

mass. This can also be understood by considering the ISS model before integrating

out the massive fields: As there are more fermions with R-charge QR = 1 than with

QR = −1, then, if the vacuum is R-symmetry preserving, not all fermions can obtain

a Dirac mass, implying some remain massless.

One may worry that sub-leading corrections spoil this result. There exist cor-

rections to the Kähler potential of the form δK ∼ Tr [Φ† · Φ]2/|Λ|2 where Λ is the

strong coupling scale of the theory. These corrections have interesting consequences

when the theory is embedded in SUGRA, however as they respect the R-symmetry,

we conclude that, in the global limit, they do not contribute to the modulini masses.

There is also a non-perturbative explicit R-symmety-breaking superpotential term

W = Nc(h
Nf Λ−(3Nc−2Nf ) det[Π])1/(Nf−Nc) (3.4.12)

generated by gaugino condensation [7, 14, 56, 101]. However it preserves a discrete

R-symmetry subgroup larger than Z2, and thus the modulini remain protected from

gaining a mass. We will return, in the next section, to a discussion of these operators

in the context of SUGRA .
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In summary, one sees that in the global SUSY limit the metastable supersymmetry-

breaking vacuum of SQCD with Nc colours and Nc + 1 ≤ Nf <
3
2
Nc massive flavours

flavours contains N2
c massless modulini (of which Nc are goldstini). In the next sec-

tion we show that in local supersymmetry these modulini acquire a mass ≥ 2m3/2

(ignoring warping and/or conformal-sequestering).

3.4.2 ISS modulini masses in Supergravity

In SUGRA with spontaneously broken SUSY, one requires a constant term in the su-

perpotential to cancel the cosmological constant from the non-zero scalar potential.

This constant breaks any continuous R-symmetry and we would expect this to mani-

fest itself in a hidden ISS sector by displacing the minimum of the scalar potential for

the pseudo-moduli from the origin, and in turn generating masses for the modulini.

First, by considering Eq.(3.4.11) we see that when 〈Φ〉 6= 0 modulini masses are

indeed generated. As long as 〈Φ〉 � µ̃0 the dominant contribution comes from the

quartic operator, higher order terms leading to subdominant corrections suppressed

by higher powers of 〈Φ〉 /µ̃0. For fa ∼ µ � M2
P for all a, we show in Appendix A.1

that the condition 〈Φ〉 � µ̃0 is satisfied. Thus our SUGRA analysis is valid whenever

the scale of supersymmetry breaking is parametrically below the Planck mass.

Moreover, as also detailed in Appendix A.1, we find, for fields, Xi, with super-

and Kähler-potentials of the form,

W = W0 + faXa (3.4.13)

K = XaX
†
a? +

1

µ2
Aab?cd?XaX

†
b?XcX

†
d? , (3.4.14)

and under the same conditions, that the fermion masses are given by

mab = 2m3/2

(
A(ad?bl?)(A(ij?kl?)fifj?)−1fd?fk −

fafb
f 2
eff

)
(3.4.15)

once the goldstino direction has been rotated away. (The goldstino direction is the

zero eigenvector of this mass matrix which can clearly be seen as famab = 0.)
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Armed with Eq.(3.4.15) we can apply these results to modulini from the ISS sector.

In Section 3.4 we identified two quartic operators in the Kähler potential that may

lead to modulini masses: Tr [(Φ†Φ)2] and Tr [(Φ†Φ)]2, and in both cases the tensor

A can be written in terms of the identity matrix. First we consider just the operator
1
µ2 Tr [(Φ†Φ)2] and diagonalise the F-terms as in Section 3.4. In this basis one finds

for the mass matrix

mab,cd = 2m3/2

(
f 2
a + f 2

b

2fafb
δadδbc −

fafc
f 2
eff

δabδcd

)
(3.4.16)

where the fa are the diagonal elements of the hµ2
0 matrix in the superpotential. We

can now split Φ into two sets of fields to study the masses.

First, focusing on the diagonal elements, i.e. a = b, c = d, we find a mass matrix:

maa,bb = 2m3/2

(
δab −

fafb
f 2
eff

)
(3.4.17)

which has Nc eigenvalues of 2m3/2(1, 1, 1, ..., 1, 0). The field with zero mass is the true

goldstino field G = fiΦii/feff that mixes with the gravitino and is eaten leading to a

gravitino of mass m3/2. In the presence of multiple SUSY breaking sectors this field

is in general a mixture of the goldstini from all sectors and from the ISS sector we

would then expect Nc ‘goldstini’ fields, ζ, of mass 2m3/2.

Now considering the off-diagonal fields, i.e. a 6= b, c 6= d, we find that the only

non-zero terms in the mass matrix have c = b, d = a and are of the form

mab,ba = 2m3/2

(
f 2
a + f 2

b

2fafb

)
. (3.4.18)

These fields in general have m ≥ 2m3/2, with a lower limit, m = 2m3/2, in the case

with all F-terms equal (again ignoring warping and/or conformal sequestering). These

off-diagonal fields are the (now massive) modulini, χ, which accompany the goldstini.

In summary, in the context of multiple sequestered SUSY breaking sectors, from

each meta-stable ISS-type SUSY-breaking sector one expects Nc goldstini of mass

2m3/2 and Nc(Nc− 1) modulini with mass m ≥ 2m3/2. We emphasise that this result
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is valid in the absence of extra singlet fields or other deformations of the global-

SUSY-limit of the ISS sector that spoil the discrete R-symmetry outlined in Section

3.4.1. Nevertheless, as explained in the Introduction, our results are expected to apply

to realistic theories of SUSY-breaking in the string landscape as there is no reason

to require all of the independent SUSY-breaking sectors to break their discrete R-

symmetries.

3.4.3 Sub-leading corrections

There are a number of operators that might alter these results. We first consider

those we expect to arise within the ISS sector itself. Näıvely, a cause for concern

is the fact that by using the effective Kähler potential we are omitting higher order

terms in an expansion in f/µ2 <∼ 1. We have, however, calculated the full one-loop

diagram for the modulini masses, which includes these corrections to all orders and

where the effects of SUGRA are included, and we find that the goldstini masses

remain unaltered and the modulini masses remain bounded below by 2m3/2, so do

not change the qualitative results from the previous section. The full results of this

calculation are contained in Appendix A.2.

Next, as discussed in [99] and in Section 3.4.1, there are corrections due to the

underlying microscopic theory of the form δK ∼ Tr [Φ† · Φ]2/|Λ|2 where Λ is the

strong coupling scale of the theory. As highlighted in [99] the effects from these

operators are expected to be small as |Λ| � µ. Including this operator we find that

the masses of the fermions are altered slightly. In particular if we set all F-terms

equal we find that for

K = Tr [Φ† · Φ]− a

|µ|2
Tr [(Φ† · Φ)2]− b

|Λ|2
Tr [Φ† · Φ]2 (3.4.19)

and the superpotential in Eq.(3.4.10) the fermion masses are

m = 2m3/2
1

1 + bNc|µ|2
a|Λ|2

(3.4.20)

As |Λ| � |µ| then unless b � a corrections from the microscopic theory are small
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(though possibly phenomenologically interesting). The sign of b is unknown and

so these small corrections to the goldstini and modulini masses can potentially be

positive or negative.

As mentioned earlier gauge interactions also lead to an explicit breaking of the

R-symmetry through the generation of the low energy superpotential [7,14,56,99,101]

W = Nc(h
Nf Λ−(3Nc−2Nf ) det[Π])1/(Nf−Nc) . (3.4.21)

Corrections due to this term should be small, though. First, this operator leads

to a superpotential term proportional to ΦNf/(Nf−Nc); however we know that Nf >

3(Nf −Nc) so the discrete R-symmetry remaining after the inclusion of this operator

will forbid majorana masses for the modulini in Π in the global SUSY limit. On

the other hand, once the theory is embedded in SUGRA, we know the R-symmetry

is broken and this leads to vacuum expectation values for the scalar components of

〈Π〉 ∼ m3/2 [2]. As with the corrections to the Kähler potential we would then expect

this operator to lead to masses for the modulini. We can estimate these corrections

as

δm ∼ Nch
Nf/(Nf−Nc)Λ−(3Nc−2Nf )/(Nf−Nc) 〈Φ〉Nf/(Nf−Nc) (3.4.22)

∼ m3/2

(m3/2

Λ

)(3Nc−2Nf )/(Nf−Nc)

(3.4.23)

and as Λ � µ� m3/2 and also 3Nc > 2Nf , these corrections should be small unless

(3Nc − 2Nf )/(Nf −Nc) < 1.

Other operators may arise from outside the ISS sector which lead to R-symmetry

breaking and would modify these masses. Such scenarios have been discussed in detail

in [40] and thus we direct the interested reader to this work for a through discussion.

We note that if the ISS sector(s) is/are sequestered from other SUSY breaking sectors,

and only couple to them via the SSM, then corrections to these masses should be at

least a loop factor smaller than m3/2. If the ISS sector only couples to the SSM and

other SUSY breaking sectors gravitationally then we expect the masses not to deviate

from the calculation above.
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3.5 Couplings and Phenomenology

We now turn briefly to collider phenomenology. For definiteness throughout this

section, we will take as a working assumption the set-up described in detail in Refs.

[39,40], namely, the goldstino and gravitino masses are ≥ O(10GeV), and the SUSY-

breaking scales are such that the goldstini have comparable, or greater couplings to

the SSM than the gravitino. In such a set-up all SUSY collider events will terminate

in a cascade decay to the LOSP which may further decay to the goldstino or gravitino

within the detector. Such an event can lead to striking signatures at the LHC [59]

such as monochromatic electrons or muons in the case of a selectron or smuon LOSP

[138]. The lifetime of the LOSP could be determined by observing decays of stopped

LOSPs within the detector [25, 42] or within a proposed stopper detector [70, 89,

90] which could be constructed after the observation of long-lived charged particles.

Further, when observing these decays it may be possible to determine the masses of

the gravitino and goldstino using the methods discussed in [38, 41, 111]. Therefore,

under these assumptions, it may be possible to measure the gravitino and goldstino

masses and couplings to the SSM LOSP and we will take this to be the case throughout

the remainder of this work.

3.5.1 Couplings in the warped/conformally-sequestered case

Let us begin with a few brief remarks on the coupling of warped and sequestered

goldstini to the Standard Model. The couplings of the goldstini to Standard Model

fields in this case come from interactions of the form

L ⊃
∑
i

1

Λ2
i

∫
d4θX†

iXiΦ
†Φ . (3.5.1)

In the case of conformal sequestering (the situation is analogous for warping), large

anomalous dimensions associated with the operator Xi lead to a suppression of the

above operator at scales E < Λi of order (E/Λi)
2γi (if the operator X†

iXi corresponds

to a conserved current there is no suppression). Assuming the exit from the conformal

fixed point is controlled by SUSY breaking, this amounts to a suppression of order
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(
√
fXi

/Λi)
2γi in the infrared. Ultimately, this suppression affects both the goldstino-

SSM couplings as well as the contributions of this sector to SSM soft masses, such

that the infrared interactions are still of the form

L ⊃
∑
i

1

Λ2
i

(
fXi

Λ2
i

)γi
∫
d4θX†

iXiΦ
†Φ =

∑
i,a

m̃2
iVia
fi

ζaψφ
† . (3.5.2)

Here the conformal suppression is simply absorbed into the soft mass m̃i, which

therefore may be significantly smaller than naive expectations. The principle effect

of this is to further suppress the contributions of sequestered or warped sectors to

both SSM soft masses and the relevant SSM-goldstino couplings. However, for fixed

TeV-scale soft masses, the couplings of such goldstini to the SSM are still significantly

stronger than gravitational. The couplings of, e.g., derivatively-coupled modulini in

a warped/sequestered sector are suppressed relative to this by the usual factor E/m̃

at energy scale E, but not by additional factors from warping.

As mentioned in the Introduction, Via is the rotation matrix that diagonalises the

goldstini mass matrix:

mij = 2m3/2

(
δij −

fifj
f 2
eff

)
, (3.5.3)

where the ζa are the N−1 goldstini mass eigenstates and the true goldstino that forms

the longitudinal component of the gravitino is the N th eigenstate with zero mass in

this basis. We see that as
∑

i fiVi,a 6=N = 0 then if SUSY breaking from all sectors is

communicated in an identical way, i.e. all Λi are equal, then the goldstini couplings

to the SSM would be zero, and we would only interact with the true goldstino that

forms the longitudinal mode of the gravitino. However, it is a reasonable assumption

that in general not all Λi are equal, and if even one of these effective mediation scales

is different then couplings to all goldstini are generated.
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3.5.2 Distinguishing ISS SUSY-breaking

An important question is how we could possibly distinguish if we were coupled to Nc

goldstini from one hidden ISS sector, multiple goldstini from many different sectors

or just one goldstino with a different effective SUSY breaking scale. We will see that

making this distinction is in principle possible, however we will first consider some

moral differences between these scenarios. First of all for a hidden ISS sector one

would expect a larger coupling of goldstini to sfermion-fermion pairs than gaugino-

gauge boson pairs. This would imply a hidden SUSY breaking sector that preserves

an R-symmetry. Secondly the F-terms of a hidden ISS sector should be roughly the

same magnitude whereas there is no a priori reason to expect the SUSY breaking scale

in multiple sequestered sectors to be similar. Finally the SUSY breaking F-terms of

a hidden ISS sector would be mediated in a similar way, and therefore couplings to

goldstini arising within a single ISS sector should be of the same order of magnitude.

We illustrate the possibility of making this distinction with the example given in

the Introduction of two sequestered SUSY breaking sectors which couple to the SSM

differently as illustrated in Figure 3.1. Considering the decay of a scalar LOSP to

the goldstini via the Goldstino Portal, if we ignore details of phase-space factors, the

partial width for this process is:

Γφ†→ζψ ' 1

16π
mφ

N−1∑
a=1

|Ca|2 (3.5.4)

where Ca is the dimensionless coupling of the goldstini to φ and ψ given in Eq.(3.5.2).

As detailed in Appendix A.3, if the sfermion masses are generated through a Kähler

potential term of the form

Ksoft =
Tr [Φ† · Φ]φ†φ

xΛ2
(3.5.5)

where φ is an MSSM field, we find that the respective decay widths to goldstini and
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ζ

χ

G̃

l̃

m3/2

Figure 3.3: LOSP decays to the gravitino, goldstini and modulini of a hidden ISS
sector. The modulini masses are bounded below by 2m3/2 and the observation of
such a decay pattern would provide strong support for the physical realisation of the
ISS mechanism of SUSY breaking.

the gravitino are:

Γφ†→ζψ ' mφ

16π

(
(x− 1)f

xΛ2

)2
Ncy

2

1 +Ncy2
(3.5.6)

Γφ†→Gψ ' mφ

16π

(
f

xΛ2

)2
(x+Ncy

2)2

1 +Ncy2
(3.5.7)

As expected we see that in the limit x → 1 the decay channel to goldstini vanishes

and we recover the usual decay width to the gravitino. More importantly however

we see that Nc from the ISS sector always appears in combination with y2 which

parameterises the overall scale of the SUSY breaking in the ISS sector. Therefore

in this scenario with Goldstino Portal couplings alone one could not distinguish the

Nc goldstini in an ISS sector from a SUSY breaking sector with one goldstino and a

higher SUSY breaking scale.

However, there is in principle no reason for the couplings to be of the form in
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Eq.(3.5.5) and the more general coupling

Ksoft =
BijklΦ

†
ijΦklφ

†φ

xΛ2
(3.5.8)

where B takes some unknown values, allows not only the goldstini to couple to the

SSM fields but the off-diagonal modulini fields also couple with similar strength. This

arises through the non-zero F-terms of the SUSY breaking fields.12 This coupling then

allows for a ‘smoking gun’ collider signature of a hidden ISS sector as LOSP decays

will occur to the goldstini and modulini of the hidden ISS sector. If not all F-terms

are identical then the modulini masses are all greater than 2m3/2 (in the absence of

warping or conformal sequestering), but bounded below by this value and the long-

lived LOSP decay spectrum would be observed to be of the form depicted in Figure

3.3. This decay pattern would give strong support for the ISS mechanism of SUSY

breaking if observed and the number of colours in the hidden ISS sector could, in

principle, be deduced from the number of decay lines.

This signature is distinct from, say, a LOSP decaying to many gravitino-mass-

scale moduli or modulini. This is because the couplings to the ISS sector particles

are not simply Planck-scale but depend on a combination of the SUSY-breaking scale

in the ISS sector and the messenger scale, which needn’t necessarily bear any relation

to the Planck scale. Therefore, although one would generically expect many O(m3/2)

mass particles in top down constructions such particles would not typically lead to

the LOSP decay signatures as could arise from a hidden ISS sector.

3.6 Conclusions

As the LHC begins to make inroads in the exploration of the electroweak scale, it is

timely to consider what experimental indications may be found regarding physics at

12We note that the coupling of hidden sector SUSY-preserving fields to the SSM through their
interactions with the SUSY breaking fields can therefore be of the same strength as goldstino cou-
plings to the SSM and this could have phenomenological consequences for other models of SUSY
breaking. This mechanism of SUSY-preserving fields ‘hitching’ through the Goldstino Portal could
be useful in scenarios where small renormalizable couplings to gauge-invariant combinations of SSM
fields are desired.
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much higher scales. Certainly the discovery of Standard Model superpartners would

be a great breakthrough in itself, but there also exists the potential to learn much

more about the mechanism of supersymmetry breaking and its communication to

our sector. The observation of LOSP decays to a gravitino would tell us about the

quantum nature of gravity [35], while the goldstini proposal [40] shows both that

such an observation could be consistent with a standard cosmology [39] and that

the observation of LOSP decays to additional goldstini would imply the existence of

other sequestered SUSY breaking sectors. As we have argued, the existence of such

SUSY breaking sectors is a natural consequence of compactification on a topologically

complex manifold.

Considering the consequences of multiple sequestered SUSY breaking sectors in

light of experimental constraints (e.g., FCNCs) and theoretical considerations (e.g.,

the structure of calculable models of dynamical SUSY breaking) leads to a surprisingly

rich spectrum of fields whose masses range from 0−2m3/2 and whose interactions with

Standard Model fields may be much stronger than the naive mediation scales suggest.

The presence of such goldstini and modulini spanning a range of masses would signifi-

cantly alter conventional supersymmetric phenomenology. Moreover, measuring their

masses and couplings at the LHC would lend insight into not merely the mechanism

of supersymmetry breaking, but also the existence and dynamics of additional sectors

coupled to the Standard Model through the Goldstini Portal. In this fashion, various

features of ultraviolet physics – warping, conformal dynamics, metastable supersym-

metry breaking – may become evident in the infrared via the mass spectrum and

interactions of goldstini and modulini.



Chapter 4

Dynamical supersymmetry

breaking & flavor

4.1 Introduction

Two central mysteries in fundamental physics involve the discrepancy between GFermi

and GNewton, and the origin of the patterns in the quark and lepton Yukawa couplings.

Supersymmetry is a well motivated candidate which addresses the first question. It is

then natural to ask, can we find supersymmetric models of weak scale physics where

both questions are answered simultaneously, and the dynamics that explains the weak

scale also explains the texture of the fermion mass matrix?

One promising idea which could explain the structure of the Yukawa couplings

is compositeness. If the first two generations of quarks and leptons are composites

at some intermediate scale Λ, while flavor physics is generated at Mflavor � Λ, then

the masses and mixings of the first two generations will be suppressed by the small

parameter ε ≡ Λ/Mflavor. The third generation should be elementary (external to

the strong dynamics), because the top quark Yukawa coupling is O(1) and thus not

suppressed. It was proposed in [17,130] that perhaps the strongly-coupled sector that

is responsible for dynamical supersymmetry breaking could also generate the first two

generations of quarks and leptons as composites of the same strong dynamics. Such

“single-sector” models could give a simultaneous explanation of the Planck/weak

71
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hierarchy and the masses and mixings of Standard Model particles.

While this is an attractive idea, there were no calculable examples. Recently,

using the fact that supersymmetric QCD has simple metastable vacua that exhibit

dynamical supersymmetry breaking [103], calculable examples of such single-sector

models were developed [72]. The simplest examples give rise to two composite gen-

erations, both arising from dimension two operators in the high energy theory. The

natural texture of the matrix of masses and mixings is then of the form
ε2 ε2 ε

ε2 ε2 ε

ε ε 1

 . (4.1.1)

In the models of [72], the first two generations of sparticles are parametrically heavier

than the third generation sparticles.

It would be nice, however, to find other classes of calculable single-sector models

where the mass matrix can take a more general form. For instance, if one of the

generations arises from a dimension three operator in the high energy theory, while

the other arises from a dimension two operator, one would expect a mass matrix of

the slightly more appealing form 
ε4 ε3 ε2

ε3 ε2 ε

ε2 ε 1

 . (4.1.2)

Our goal in this paper is to explore the class of calculable single-sector models

that can be constructed given the current state-of-the-art in models of dynamical

supersymmetry breaking. We will find that models with this flavor structure – as

well as models with additional parameters that give more general classes of mass

matrices – can easily be constructed.

In the models of [17, 130], as well as the newer calculable models in [72], the

composite generations not surprisingly couple more strongly to the SUSY-breaking

order parameter than the elementary third generation (whose leading sfermion mass
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arises from gauge mediation, after weakly gauging the Standard Model subgroup of

the global symmetry group of the SUSY-breaking theory). Therefore, one is led to

phenomenology very reminiscent of the “more minimal” scenario advocated by Cohen,

Kaplan and Nelson [43] (see also the earlier paper [58]), where the first and second

generation sfermion masses are larger than those of the third generation. One of the

surprises we shall find here is that in some of our models even some of the composites

can have leading masses arising from gauge mediation and comparable to the third

generation masses.

4.1.1 General strategy

Before we proceed to a detailed analysis, it is worth explaining the general strat-

egy. One of the most elegant ideas for explaining the texture of Yukawas given by

Eq. (4.1.2), which matches observation reasonably well, is to postulate that the first

and second generations are secretly composite above some scale Λ, and in the high-

energy theory their Yukawa couplings are then irrelevant operators. With a first and

second generation emerging from operators whose dimensions in the UV are 3 and 2

(and an elementary third generation), one naturally gets the structure above, with

the small parameter

ε = Λ/Mflavor (4.1.3)

emerging from the suppression of irrelevant operators in the high-energy theory. For

ε ∼ 10−1, this is an excellent starting point for matching observations.

More concretely, consider an asymptotically free SQCD theory with gauge group

G, fundamental quarks (Q, Q̃) and a field U in a 2-index tensor representation of the

gauge group. We will call this the “electric theory”, and its dynamical scale will be

denoted by Λ.

A promising approach to constructing calculable models arises when the theory

has an infrared dual description (the “magnetic theory”) where the mesons (QUQ̃)

and (QQ̃) are weakly coupled. These are the fields that will produce the first and

second generations. Generically, the IR theory will also contain magnetic quarks

(q, q̃), and a field Ũ in a rank 2 tensor representation of the magnetic gauge group.
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Furthermore, we imagine that there is some additional UV physics at a scale

Mflavor > Λ, responsible for generating the Yukawa couplings1

WY uk ⊃ 1

M4
flavor

(QUQ̃)H(QUQ̃) +
1

M3
flavor

(QQ̃)H(QUQ̃) +

1

M2
flavor

(QQ̃)H(QQ̃) +
1

Mflavor

(QQ̃)HΨ3 + Ψ3HΨ3 . (4.1.4)

Rescaling the fields by appropriate powers of Λ so that they are canonically normalized

gives a Yukawa matrix of the form (4.1.2).

In general, the mesons (QQ̃) and (QUQ̃) contain more matter than just the first

two Standard Model generations. It will be shown that some of the extra components

of these fields together with the magnetic quarks yield a weakly coupled supersym-

metry breaking model (as in [103]). In this effective description, supersymmetry

breaking occurs through tree-level and one-loop interactions, while the supersymme-

try breaking scale is generically an inverse loop factor above the electroweak scale.

The organization of the paper is as follows. In §4.2, we present the simplest model

which naturally gives rise to two composite generations with a Yukawa matrix of more

general type than (4.1.1). This model has two parameters in the flavor sector instead

of one, and so while it can model observations quite well, it is perhaps less elegant

than the more predictive structure in (4.1.2). Therefore, in §4.3, we move on to a

class of models which give rise to the structure (4.1.2). A starring role is played by the

metastable SUSY-breaking vacua of supersymmetric QCD with fundamental flavors

and an additional adjoint chiral superfield. After discussing the asymptotically free

electric theory and its infrared free magnetic dual, we find new metastable SUSY

breaking vacua.

In §4.4 we show how this simple model naturally explains the flavor hierarchy

and present the fermion and sparticle spectrum. We also discuss constraints on the

sparticle spectra from flavor changing neutral currents (FCNCs). The simplest model

is consistent with the constraints from FCNCs only in a small region of parameter

1The MSSM contains separate Hu and Hd fields, but we will simplify schematic equations of this
sort by just denoting both Higgs fields by H throughout the paper.
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space, and in §4.5 we present more general models that accommodate current bounds.

Finally, in §4.6, we present our conclusions, where we also briefly compare this

method of explaining the Yukawa flavor pattern to other common explanations in

the literature. Two appendices are devoted to a more careful discussion of FCNCs

(Appendix B.1) and a discussion of gauge coupling unification and the existence of

Landau poles (Appendix B.2). Since all of the models we study will typically have

a lot of extra massive matter at very high scales, gauge coupling unification can be

challenging; however, as explained Appendix B.3, one way to reduce the number of

extra supermassive fields significantly is to abandon the requirement that the very

massive extra matter fill out complete SU(5) multiplets.

4.2 A Simple Model

4.2.1 Basic scheme

We will implement the pattern (4.1.2) in models with calculable dynamical super-

symmetry breaking, with the composites arising from the SUSY breaking sector.

However, because the models are rather complicated, it is useful to start by realizing

a more modest goal. One could instead envision a model which generates the first

and second generations as composites of different strongly coupled sectors. With both

arising from, say, dimension two operators in the high-energy theory, the resulting

Yukawa texture would be of the form
ε2 εδ ε

εδ δ2 δ

ε δ 1

 , (4.2.1)

with

ε = Λ1/Mflavor, δ = Λ2/Mflavor . (4.2.2)

While this is less elegant than the first idea, we will see that it is quite simple

to realize in practice. One can therefore compare the relative complexity of the

model building required to realize the different textures and decide which seems more
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appealing. In fact, as we will see, the simplest class of models which realizes the

texture (4.2.1) can also, by variation of parameters, realize the texture (4.1.2). So it

is quite natural to consider both patterns.

4.2.2 Example

The most obvious way to make such a model is to simply combine two of the calculable

single-sector models that produce a single composite generation which is dimension

two in the UV theory, discussed in §4.1 of [72].

For instance, consider supersymmetric SU(Nc) QCD with Nc = 11 and with

Nf = 12 flavors of quarks Q, Q̃, and a common quark mass m� Λ. This theory has

metastable vacua which are evident in the weakly coupled magnetic dual description

[149], valid at energies � Λ. The magnetic dual is an SU(Nf−Nc) gauge theory with

Nf flavors of magnetic quarks q, q̃, and a meson Φ which transforms in the (Adj + 1)

of the SU(12) flavor group but is a gauge singlet. The magnetic superpotential is

W = h Tr(Φq̃q)− hµ2 TrΦ , (4.2.3)

where the second term arises due to the mass deformation of the electric theory. Here,

µ ∼
√
mΛ (4.2.4)

and we can set Λmagnetic = Λ (where the magnetic theory develops a Landau pole at

Λmagnetic), so h ∼ 1.

This theory breaks supersymmetry by the rank condition [99]; the magnetic quarks

develop a vacuum expectation value (vev) which breaks the SU(12) flavor symmetry

to SU(11), and FΦ 6= 0. We choose an embedding of the Standard Model SU(5) into

the SU(12) flavor group such that:

Q = (5 + 5 + 1) + 1

Q̃ = (5 + 5 + 1) + 1
(4.2.5)

where the decomposition in parentheses indicates the embedding into SU(11). The
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mesons of the magnetic theory can then be decomposed according to

Φ =

(
Y1×1 ZT

1×11

Z̃11×1 X11×11

)
, (4.2.6)

with Y, Z, Z̃ and X transforming in the 1,11,11, and (Adj + 1) of SU(11).

In terms of SU(5) quantum numbers, X decomposes as

X = (10 + 5̄) +
[
2× 24 + 15 + 15 + 10 + 2× 5 + 5 + 3× 1

]
. (4.2.7)

We see that there is an entire Standard Model generation, and additional matter

which can be given a large mass (at the scale Λ) as in [72], by adding appropriate

“spectators” to the QCD dynamics and deforming the superpotential by a suitable

mass term:

W3 = λ
∑
R

(
(QQ̃)RSR

)
(4.2.8)

with the sum over representations running over the representations in brackets in

(4.2.7), and SR being spectators added in the appropriate conjugate representations.

After recalling that the relation between the magnetic meson and QQ̃ involves a

power of Λ to canonically normalize the meson, one sees that this gives the unwanted

matter masses of order λΛ which can be a very high scale. (We envision choosing Λ

just below the GUT scale, for instance.)

The composite generation arising fromX is obviously of dimension two in the high-

energy theory, and therefore it will have Yukawa couplings suppressed by the ratio of

scales Λ/Mflavor. The scalars in X are pseudo-moduli which receive a calculable mass

from loops in the magnetic theory, of order h2µ. Gauge mediation, with “messengers”

coming both from the composite generation and some of the additional components of

X and the magnetic quarks, will transmit masses of order gSMµ to the other Standard

Model generations [72].

It is then clear how to proceed to make a simple model which gives rise to the

pattern of Yukawa couplings in (4.2.1), with two composite generations. Consider an

SU(Nc,1)×SU(Nc,2) gauge theory with Nf,1 flavors of quarks in the first gauge factor



CHAPTER 4. DYNAMICAL SUPERSYMMETRY BREAKING & FLAVOR 78

and Nf,2 in the second.

If we choose Nc,i = 11, Nf,i = 12, and independent quark masses mi for the two

sets of quarks, we end up with two copies of the previous model, with SUSY-breaking

scales µ1,2 =
√
m1,2Λ1,2.

Gauge invariance forbids any additional marginal or relevant couplings in the

electric theory, so in fact the most generic renormalizable superpotential for the high-

energy theory takes precisely the form we wish, though the choice of parameters

mi � Λi is only technically natural and would need to be retrofitted [61] in an

acceptable construction.

Adding now an elementary pair of Higgs bosons and an elementary third gener-

ation, we will find precisely the pattern of Yukawas in (4.2.1), with ε and δ as in

(4.2.2).

The FCNC problems in this kind of model will be discussed in §5 and Appendix

B. With heavy sparticle masses ∼ 20 TeV in the first two generations, moderate

degeneracy is required. The soft masses of the first two generations will be controlled

by µ1/4π and µ2/4π; then the µi should be chosen to lie in the range ∼ 250 TeV to

avoid prohibitive FCNCs.2 Gauge mediated masses will then be dominated by the

larger of these two scales. There will be 8 additional messenger pairs in the 5 + 5

of SU(5), coming from the magnetic quarks and mesons in the two QCD sectors.

Therefore, these models will have a Landau pole before the GUT scale.

In the discussion so far, we have not broken R-symmetry. We can incorporate

R-breaking by adding a further superpotential deformation to the electric theory,

∆Wel ∼ (QQ̃)2. This perturbation was studied in some detail in [66]. The perturba-

tion to the magnetic dual theory is

W4 =
1

2
h2µφ Tr(Φ2) . (4.2.9)

2This introduces a new coincidence problem: why are the masses generated by two unrelated
sectors of strong dynamics relatively close to one another? We require µ1 and µ2 to be within
roughly twenty percent of one another to avoid problems with FCNC; the relevant constraints on
similar models will be discussed in great detail in §5 and Appendix B. We note that obtaining the
two sectors from a single theory at higher energies, along the lines indicated in the next section,
could ameliorate this coincidence problem.
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This perturbation both explicitly breaks R-symmetry, and leads to a larger spontaneous

breaking, as the SU(11) singlet in X develops a vacuum expectation value. Also, after

the addition of this coupling, we see that the composite generation no longer arises

strictly from X – competition between the masses from (4.2.8) and (4.2.9) render it

an admixture of the 10 + 5 from X, and one of the spectators. However, for µφ � Λ

it is largely composite, with the admixture of spectator suppressed by the small pa-

rameter µφ/Λ. To get acceptable gaugino masses we will set h2µφ to lie in the TeV

range, while Λ is not far from MGUT, so this ratio is negligibly small.

4.2.3 A landscape of simple models

We can derive the simple model in §4.2.2 by starting with a high-energy theory

consisting of a single SU(Nc) gauge group with Nf quark flavors together with an

adjoint superfield U . The dynamics of this theory was studied in detail, in the presence

of an adjoint superpotential, in [117–119]. Let us imagine that our theory has a

superpotential

W =
gk+1

k + 1
Tr (Uk+1) + . . .+ g1 Tr (U) = Tr (Pk+1(U)) , (4.2.10)

where Pk+1(U) is a generic degree k+1 polynomial Pk+1 =
∑k+1

j=1
gj

j
U j, and g1 should

be interpreted as a Lagrange multiplier imposing the tracelessness constraint on U .

The classical vacua of this theory can be found by setting the eigenvalues of the

Nc ×Nc traceless matrix U equal to various roots of the equation

P ′(x) =
k∑
j=0

gjx
j =

k∏
i=1

(x− ai) = 0. (4.2.11)

Let us assume that P is sufficiently generic so that ai 6= aj for i 6= j.

In the vacuum where Ni of the eigenvalues of U are equal to ai, and a total of p

different ai appear as eigenvalues of U , the gauge group is broken as

SU(Nc) →
k∏
i=1

SU(Ni)× U(1)p−1 (4.2.12)
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where
∑

iNi = Nc.

The classical low-energy physics is that of a product of SUSY QCD theories with

Nf quark flavors, but it is clear that in the quantum theory the physics depends in

detail on the precise values of the ai, since e.g. ai−aj determines the masses of charged

off-diagonal components of the U field which serve as bi-fundamentals connecting the

different gauge factors. As long as the k roots ai in (4.2.11) are distinct, the adjoint

superfield gives rise to no massless excitations in any of these vacua. Not all such

partitions give rise to a theory with supersymmetric quantum vacua. For instance, if

any of the SU(Ni) factors has Ni > Nf , it suffers from a runaway to infinity in field

space.

Now, deforming the high-energy theory by a small quark mass m for the Nf quark

flavors (small compared to the effective adjoint mass in each vacuum), we obtain a

landscape of vacua with different SU(Ni) gauge factors, each with Nf quarks. The

different SQCD sectors have different scales Λi, determined by matching scales at the

value of the adjoint mass. In particular, the scale of the ith theory is determined in

terms of the scale Λ of the original electric theory by

Λ
3Ni−Nf

i = Λ2Nc−NfgNi
k+1

∏
j 6=i

(ai − aj)
Ni−2Nj . (4.2.13)

This implies that the supersymmetry breaking scale of each SU(Ni) theory is deter-

mined in terms of the scale of the parent SU(Nc) gauge theory, the quark mass m,

and the pattern of symmetry breaking encoded in (4.2.11). We can then anticipate

generating a variety of vacua starting from one high-energy gauge theory, giving rise

to a discretuum of possible values of the parameters ε, δ in §4.2.1.

Interestingly, in §4.3, we will also obtain models with the texture (4.1.2) from

this class of gauge theories with k = 2. So it is possible that one high-energy theory

could give rise, in different vacua, to single-sector models which each have realistic

phenomenology, with different explanations for the physics of flavor!
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4.3 SQCD with an adjoint

The previous section explored a class of models giving a Yukawa matrix (4.2.1) based

on two parameters ε and δ. The rest of the paper is devoted to constructing calculable

models with a “dimensional hierarchy”, where the first and second generations arise

from composite fields of dimension 3 and 2, respectively, while the third generation

(denoted by Ψ3) and Higgs are elementary. Such models naturally give rise to the

desired Yukawa texture (4.1.2) involving a single parameter ε.

We now focus on a study of the theory which appeared in §4.2.3: the electric

gauge theory will be SU(Nc) SQCD, with Nf quarks (Qi, Q̃j), and a field U in the

adjoint of the gauge group. While the analysis of §4.2.3 was concerned with large

adjoint masses (such that the adjoint could be integrated out of infrared physics),

henceforth we will be interested in the case where the adjoint mass is small and its

dynamics remains important at low energies. This theory has been studied in detail

in [117–119], and we start by reviewing their conclusions.3

4.3.1 The electric theory

We begin by specializing to the case where the adjoint has a general renormalizable

superpotential

Wel =
gU
3

Tr U3 +
mU

2
Tr U2 + λ Tr U . (4.3.1)

This superpotential will not have any metastable SUSY breaking vacua, which re-

quires additional perturbations discussed below in §4.3.3. Here ‘ Tr ’ means a trace

over the gauge indices, while ‘ Tr’ will be used to indicate traces over flavor indices.

λ is a Lagrange multiplier field, imposing Tr U = 0. We denote the strong coupling

scale by Λ. Calculability in the magnetic dual theory discussed below will require

mU � Λ. Higher dimensional operators Tr Uk+1 with k ≥ 3 are dangerously irrele-

vant and may influence IR physics if present; see [119] for a discussion of their effect.

In general we will focus on theories with k = 2, albeit with some discussion of theories

with k ≥ 3 in subsequent sections.

3See e.g. [9] for a rather different construction of metastable vacua in SQCD with an adjoint.



CHAPTER 4. DYNAMICAL SUPERSYMMETRY BREAKING & FLAVOR 82

The matter content with its gauge and anomaly free global symmetry quantum

numbers is (for mU = 0),

SU(Nc) SU(Nf )L SU(Nf )R U(1)V U(1)R

Q � � 1 1 1− 2
3
Nc

Nf

Q̃ � 1 � −1 1− 2
3
Nc

Nf

U Adj 1 1 0 2
3

A nonzero mass mU breaks the R-symmetry. It will be useful to think of mU as a

background superfield with R-charge 2/3.

The superpotential has two critical points, a1, a2. The different classical vacua

correspond to placing r1 eigenvalues of U equal to a1, and r2 = Nc − r1 eigenvalues

equal to a2. The gauge group is broken to

SU(Nc) → SU(r1)× SU(r2)× U(1) . (4.3.2)

Imposing the tracelessness condition r1a1 + r2a2 = 0, the critical points are4

a1 =
r2

r1 − r2

mU

gU
, a2 = − r1

r1 − r2

mU

gU
. (4.3.3)

The low energy theory splits into two decoupled SQCD sectors with only fundamental

matter (as long as mU 6= 0). Quantum-mechanically, the vacua are stable if all

ri ≤ Nf ; therefore, a necessary condition for the theory to have a stable vacuum is

Nf ≥ Nc/2. Nf will also be restricted to Nf <
2
3
Nc so that the magnetic theory is IR

free. Summarizing, we will work in the range

Nc

2
< Nf <

2

3
Nc (4.3.4)

(The case Nf = Nc/2 is excluded because there are no magnetic quarks.)

An important role will be played by the two mesons

(M1)ij = Q̃iQj , (M2)ij = Q̃iUQj , (4.3.5)

4Vacua with r1 = r2 can only exist for mU = 0. This case won’t arise in our discussions.
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where the gauge indices are contracted and suppressed. The moduli space is parametrized

by these mesons and baryons (we refer the reader to [119] for their definition, which

will not be needed here), modulo classical relations. Notice that in [119], the dimen-

sion 3 meson was defined as

MKSS
2 = Q̃

(
U +

mU

2gU

)
Q . (4.3.6)

The redefinition U → Us = U + mU

2gU
amounts to setting mU = 0 and simplifies

considerably the electric-magnetic duality discussion. However, we will work with the

definition (4.3.5), where M2 has classical scaling dimension 3, instead of being a linear

combination of dimension 2 and dimension 3 fields. This simplifies the structure of the

Yukawa couplings (4.2.1) when we later embed the first Standard Model generation

inside M2.

4.3.2 The magnetic dual

The magnetic dual theory consists of SQCD, with gauge group SU(Ñc = 2Nf −
Nc) and strong coupling scale Λ̃, Nf quarks (q, q̃), one magnetic adjoint field Ũ ,

and two gauge singlet fields corresponding to the mesons (4.3.5). The theory has a

superpotential5

Wmag = −gU
3

Tr Ũ3 +
Nc

2Ñc

mU Tr Ũ2 + λ̃ Tr Ũ +

+
gU

Λ̂2

(
Ñc −Nc

2Ñc

mU

gU
Tr(M1qq̃) + Tr(M1qŨ q̃) + Tr(M2qq̃)

)
.(4.3.7)

The Lagrange multiplier λ̃ is introduced to impose Tr Ũ = 0.

The energy scale Λ̂ appears because M1 and M2 are elementary, but have scaling

dimensions 2 and 3, respectively. This dimensionful quantity is related to the electric

5We are dropping a constant term which depends only on gU . This becomes important when
trying to match the gauge invariants Tr Un → Tr Ũm. Also, (4.3.7) differs slightly from the
expression in [119]; this is due to the meson definitions (4.3.5) and (4.3.6).
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(Λ) and magnetic (Λ̃) dynamical scales by

Λ2Nc−Nf Λ̃2Ñc−Nf =

(
Λ̂

gU

)2Nf

. (4.3.8)

For mU = 0, the gauge and global (nonanomalous) symmetry transformations are

SU(Ñc) SU(Nf )L SU(Nf )R U(1)V U(1)R

q � � 1 Nc

Ñc
1− 2

3
Ñc

Nf

q̃ � 1 � −Nc

Ñc
1− 2

3
Ñc

Nf

Ũ Adj 1 1 0 2
3

M1 1 � � 0 2− 4
3
Nc

Nf

M2 1 � � 0 8
3
− 4

3
Nc

Nf

Notice the different R-charge of M1 and M2 (which can be read off directly in the

electric theory). A nonzero mass mU breaks the R-symmetry.

In the range (4.3.4), the magnetic theory is IR free and the Kähler potential can

be expanded

K =
1

α1|Λ|2
Tr(M †

1M1)+
1

α2|Λ|4
Tr(M †

2M2)+
1

α3

Tr(q†q+ q̃q̃†)+
1

α4

Tr (Ũ †Ũ)+ . . .

(4.3.9)

where αi are order one positive numbers and ‘. . .’ include interaction terms. The

canonically normalized mesons are

Φ :=
M1√
α1 Λ

=
Q̃Q
√
α1 Λ

, ΦU :=
M2√
α2 Λ2

=
Q̃UQ
√
α2 Λ2

. (4.3.10)

Similarly, replacing q → √
α3q, q̃ →

√
α3q̃ and Ũ → √

α4Ũ gives canonical kinetic

terms to the adjoint and magnetic quarks. Henceforth, only canonically normalized

fields will be used.

The superpotential then becomes

Wmag =
g̃U
3

Tr Ũ3 +
m̃U

2
Tr Ũ2 + λ̃′ Tr Ũ +

+
h

Λ

[
c1m̃U Tr(Φqq̃) + c2 Tr(ΦqŨ q̃)

]
+ h Tr(ΦUqq̃) . (4.3.11)
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The parameters introduced here are related to the previous ones by

g̃U := −(α4)
3/2gU , m̃U :=

α4Nc

Ñc

mU , h :=
√
α2α3

gUΛ2

Λ̂2

c1 :=

(
α1α4

α2

)1/2
Nc −Nf

g̃UNc

, c2 :=

(
α1α4

α2

)1/2

, λ̃′ :=
√
α4 λ̃ . (4.3.12)

Also, m̃U � Λ is required for calculability in the magnetic theory (although in the

opposite limit, m̃U � Λ, the adjoint may be integrated out of the electric theory to

produce the models of §4.2.3).

We end this analysis by pointing out the following interesting consequence of

the duality. All the interactions between the meson Φ and the rest of the fields of

the magnetic theory are suppressed by 1/Λ. At energies E � Λ, Φ approximately

decouples from the rest of the system. In particular, while the trilinear coupling

between ΦU and the magnetic quarks is order h, the corresponding interaction for Φ

is only order hm̃U/Λ. This difference can be understood as follows: When m̃U = 0

the U(1)R symmetry presented before forbids a coupling Φqq̃. Turning on a nonzero

mass and treating it as a spurion superfield, the only trilinear coupling allowed by

R-symmetry is (m̃U/Λ)Φqq̃.

4.3.3 Metastable SUSY breaking

The low energy theory (4.3.11) contains a massive adjoint Ũ , magnetic quarks (q, q̃)

interacting with a meson ΦU , and an extra meson Φ whose interactions with the other

fields are suppressed by 1/Λ. The (ΦU , q, q̃) sector is very similar to the magnetic

theory studied by Intriligator, Seiberg, and Shih (ISS) in [103], although the corre-

sponding electric theories are quite different. For instance ΦU is of dimension 3 in

the UV, while the ISS meson has scaling dimension 2.

We focus on vacua with 〈 Tr Ũ2〉 = 0, corresponding to r1 = Nf , r2 = Nc − Nf

in (4.3.3). For this choice of parameters the magnetic gauge group is unbroken. In

addition, to reduce the amount of additional matter (see §4.4), we choose Ñc = 1

(for this choice the magnetic gauge group is trivial). Then there is also no magnetic
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adjoint, and the magnetic superpotential simplifies to

Wmag = c1h
m̃U

Λ
Tr(Φqq̃) + h Tr(ΦUqq̃) . (4.3.13)

Importantly for the low energy physics, in this case there is an additional R-symmetry

under which the mesons have charge 2, while the magnetic quarks have charge 0. This

symmetry, which is anomalous, will be denoted by U(1)′R. Once the Standard Model

gauge group is embedded in the symmetry group of the theory, we will need to break

U(1)′R in order to generate large enough gaugino masses.

In the low-energy theory, m̃U/Λ appears as a free parameter which determines how

strongly the meson Φ couples to the magnetic quarks. For pedagogical purposes, we

first restrict ourselves to the limit m̃U � Λ, which simplifies the analysis considerably.

While this limit can lead – for a careful choice of parameters – to a phenomenologically

viable model that is not in conflict with current limits from FCNCs (see §4.5.1), larger

values of m̃U (§4.5.2) or additional superpotential interactions (§4.5.3) are desirable.

In this weakly coupled description, a supersymmetry breaking vacuum is generated

once a term Tr ΦU is added to the superpotential.6 Following [66, 82], the U(1)′R

symmetry will be broken by adding a small explicit breaking term proportional to

Tr Φ2
U . Furthermore, in order to avoid an exactly massless superfield, a mass term

Tr Φ2 is needed.

Summarizing, the superpotential including the minimal set of deformations re-

quired to construct a realistic model of SUSY breaking is

Wmag = c1h
m̃U

Λ
Tr(Φqq̃) +

1

2
mΦ Tr Φ2 (4.3.14)

+

[
−hµ2 Tr ΦU + h Tr(ΦUqq̃) +

1

2
h2µφ Tr(Φ2

U)

]
.

To facilitate the interpretation of the model, the fields and interactions that will be

responsible of breaking supersymmetry have been collected inside square brackets.

The deformation parameters mΦ, µ and µφ should be parametrically smaller than

6We break SUSY predominantly with ΦU because the interactions of Φ with the magnetic quarks
are suppressed by m̃U/Λ � 1. Other deformations are explored below.
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the dynamical scale Λ so that microscopic corrections to the Kähler potential can be

neglected.

Equation (4.3.14) is the full superpotential when Ñc = 1. For Ñc > 1, it is

straightforward to add the adjoint and interactions described in (4.3.11); in this case,

the formulas below are still valid in the vacuum 〈 Tr Ũ2〉 = 0.

Foreseeing the use of this theory as a single-sector model of SUSY breaking, we

point out that certain off-diagonal components of ΦU and Φ will be identified with

the first and second Standard Model generations. Of course, such components cannot

have large vector-like supersymmetric masses via superpotential terms (4.3.14) that

couple them to conjugate fields. The Standard Model composite generations will

be made massless by introducing heavy spectator fields coupled to the unwanted

conjugate fields. However, for now we will analyze the theory with superpotential

(4.3.14) and no extra fields.

In the electric theory, the deformations added to (4.3.13) to arrive at (4.3.14)

correspond to perturbing (4.3.1) by

∆Wel ∼ λQ Tr(QUQ̃) +
1

Λ0

Tr(QQ̃)2 +
1

Λ3
0

Tr(QUQ̃)2 (4.3.15)

where Λ0 is some UV scale satisfying Λ0 � Λ. In particular, the Yukawa interaction

λQ Tr(QUQ̃) in (4.3.15) gives rise to the SUSY-breaking source term −hµ2 Tr(ΦU)

appearing in (4.3.14). Thus µ is related to the parameters of the electric theory by

hµ2 := λQ
√
α2Λ

2 , µ :=

√
λQ
α3gU

Λ̂, (4.3.16)

The parametric separation of scales µ� Λ required for calculability and metastability

in the magnetic theory arises from the smallness of the dimensionless coupling λQ, as

contrasted with the dimensionful quark mass m of [103]. Indeed, all the deformations

introduced in (4.3.15) arise from marginal and irrelevant interactions in the electric

theory. In particular, no small quark mass term mQQ̃ will be needed. More general

perturbations will be discussed momentarily.

Since µφ comes from an irrelevant operator in the electric theory, we naturally
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have µφ � µ. The analysis then proceeds as in [66]. In the limit µφ → 0 super-

symmetry is broken at tree level by the rank condition, and ΦU is stabilized at the

origin due to one-loop effects. For finite µφ � µ, the U(1)′R is explicitly broken and

supersymmetric vacua appear at a distance µ2/µφ from the origin. The SUSY break-

ing vacuum is displaced slightly from the origin and is still parametrically long-lived.

The observation that the CW potential can generate a minimum when the potential

slopes to a supersymmetric vacuum at tree-level was noticed in [67, 68]. Of course,

there are also supersymmetric vacua at large values of ΦU , whose existence crucially

relies on (calculable) non-perturbative effects [7], but as in [9, 103] the longevity of

the metastable vacuum here is guaranteed by the hierarchy µ/Λ � 1. Finally, the

theory possesses a large number of additional vacua labeled by the possible parti-

tions (4.3.2) of the gauge group; stability of the vacuum with 〈 Tr Ũ2〉 = 0 against

potential transitions into such vacua may be guaranteed provided µ� m̃U , which is

readily accommodated.

Let us now analyze the pattern of supersymmetry breaking in more detail. We

parameterize the fields as

ΦU =

(
YU, Ñc×Ñc

ZT
U, Ñc×(Nf−Ñc)

Z̃U, (Nf−Ñc)×Ñc
XU, (Nf−Ñc)×(Nf−Ñc)

)
, (4.3.17)

Φ =

(
YÑc×Ñc

ZT
Ñc×(Nf−Ñc)

Z̃(Nf−Ñc)×Ñc
X(Nf−Ñc)×(Nf−Ñc)

)
, (4.3.18)

qT =

(
χÑc×Ñc

ρ(Nf−Ñc)×Ñc

)
, q̃ =

(
χ̃Ñc×Ñc

ρ̃(Nf−Ñc)×Ñc

)
. (4.3.19)

We will not present the spectrum of this model in detail7, but only focus on the

fields ρ, ρ̃, ZU , Z̃U , Z, and Z̃. Integrating out these fields generates the (bosonic)

Coleman-Weinberg (CW) potential, which in general is given by

VCW =
1

64π2
STrM4 log

M2

Λ2
cut

, (4.3.20)

7We refer the reader to [66].
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where M is the mass matrix of the fields being integrated out and Λcut is some high-

energy cut-off [44]. The superpotential for the fields that generate the CW potential

that will lift the tree-level runaway direction XU is

W ⊃ h
(
ρ ZU Z

)
XU χ c1m̃U

Λ
χ

χ̃ hµφ 0
c1m̃U

Λ
χ̃ 0 mΦ



ρ̃

Z̃U

Z̃

 , (4.3.21)

where χχ̃ is given by (4.3.27). Since we take m̃U/Λ � 1, the Z, Z̃ fields completely

decouple from the ρ, ρ̃, ZU , Z̃U sector. Moreover, the SUSY breaking field XU couples

in this limit only to the ρ, ρ̃, ZU , Z̃U sector, and we can focus on the fermion mass

matrix

Mf = h

(
XU χ

χ̃ hµφ

)
. (4.3.22)

The bosonic components of ρ, ρ̃, ZU , Z̃U will have masses given by

Mb =

(
M †

fMf −h∗F ∗
XU

−hFXU
MfM

†
f

)
, with − F ∗

XU
= h

(
−µ2 + hµφXU 0

0 0

)
. (4.3.23)

The analysis proceeds now exactly as in [66], and we may borrow the results from

there. Near the origin of field space, the Coleman-Weinberg potential from integrating

out ρ, ρ̃, ZU , and Z̃U is

VCW = m2
CW |XU |2 + . . . (4.3.24)

where ‘. . .’ refers to higher order interactions and mixings with X that can be ne-

glected. The “CW mass” is

m2
CW = b|h2µ|2 , b =

log 4− 1

8π2
Ñc . (4.3.25)

Combining (4.3.24) with the tree-level potential computed from (4.3.14),

Vtree = (Nf − Ñc)| − hµ2 + h2µφXU |2, (4.3.26)
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we find

〈hXU〉 ≈
µ2µ∗φ

b|µ|2 + |µφ|2
≈
µ∗φ
b

, 〈χχ̃〉 ≈ µ2 (4.3.27)

and

|WXU
| ≈ |hµ2| . (4.3.28)

Importantly for the low energy phenomenology, the vev of XU is larger than µ∗φ by the

inverse loop factor 1/b ∼ 16π2. Hence, the spontaneous breaking of the R-symmetry

is parametrically larger than the explicit one, and gaugino masses can be sufficiently

large. Corrections suppressed by 1/Λ have been neglected.

The field Φ is stabilized supersymmetrically,

WΦ = 0 , 〈X〉 = 0 , 〈Y 〉 ≈ −c1
m̃U

Λ

hµ2

mΦ

, (4.3.29)

where we have neglected corrections of O(µφµ
2m̃3

U/(m
2
ΦΛ3)). From the F -term for

the magnetic quarks, we find

〈YU〉 = −c1
m̃U

Λ
〈Y 〉 . (4.3.30)

The rest of the fields are stabilized at the origin. The hierarchy µφ � µ� Λ ensures

that the vacuum is parametrically long-lived against transitions into the various su-

persymmetric vacua [66]. The theory receives microscopic corrections controlled by

m̃U/Λ and µ/Λ, which are parametrically suppressed compared to the IR effects we

have discussed. At this order, it is consistent to set 〈Y 〉 = 〈YU〉 = 0. Moreover,

(4.3.14) implies that there are one-loop contributions mixing X and XU ,

V1−loop ∼ m2
CW Re

(
m̃U

Λ
X∗XU

)
. (4.3.31)

This is negligible in the limit m̃U � Λ. Finally, we note that the unbroken global

symmetry is

SU(Nf − Ñc)× U(1) . (4.3.32)

In §4.4, we will weakly gauge and identify a subgroup of SU(Nf − Ñc) with the
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Standard Model gauge group. This will mean that part of the XU , X, ZU , Z̃U , ρ,

ρ̃, Z, and Z̃ will have Standard Model gauge charges. In particular, we will identify

part of XU and X with the first and second generation Standard Model fermions.

4.3.4 More general superpotential perturbations

Let us summarize what we have done so far:

1. We have constructed a metastable vacuum based on the (almost decoupled)

sector (ΦU , q, q̃), by having superpotential terms that are linear and quadratic

in ΦU ; see (4.3.14).

2. The extra meson Φ has been lifted by adding an appropriate mass term, which

is naturally large in the magnetic theory once U(1)′R is broken. This sector

is decoupled from the SUSY breaking sector at leading order in m̃U/Λ. It is

important to note that later on, we will re-couple part of this sector (one chiral

generation), and decouple the rest via couplings to spectator fields.

3. In the metastable vacuum, the magnetic gauge group is completely Higgsed at

the scale 〈χχ̃〉 = µ2. The magnetic adjoint Ũ is massive and its interactions

with the rest of the fields are suppressed by 1/µ and 1/Λ. Or, in the case of

Ñc = 1, the magnetic theory has no adjoint to begin with, as explained around

(4.3.14).

In the high-energy electric gauge theory, we have allowed only specific marginal

and irrelevant operators (4.3.15). The aim of this subsection is to discuss what hap-

pens when more general deformations are allowed.

Adding a U4 piece changes the chiral ring and introduces extra degrees of freedom

in the low energy theory. The resulting low energy phenomenology will be analyzed

in §4.5.3. On the other hand, adding Un factors (with n ≤ 3) to any superpotential

term containing the mesons (QQ̃) and/or (QUQ̃), modifies negligibly the low energy

theory. This is because we are considering a vacuum where the magnetic adjoint does

not have a vev, and it has suppressed couplings to the SUSY breaking sector.
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We are thus left with the possibility of adding irrelevant operators up to dimen-

sion 6, formed from the two mesons. One possibly dangerous term arises from the

dimension 5 operator (Q̃Q)(Q̃UQ). This would result in a mixing between Φ and ΦU

in the low energy magnetic theory.

The full magnetic superpotential arising from marginal and irrelevant deforma-

tions of the electric superpotential, up to dimension 6, is then of the form

Wmag = −hµ2 Tr ΦU +
1

2
mΦ Tr Φ2 + ∆m Tr ΦΦU + α Tr Φ3 +

+
1

2
h2µφ Tr Φ2

U + c1h
m̃U

Λ
Tr(Φqq̃) + h Tr(ΦUqq̃) . (4.3.33)

The cubic term does not alter our analysis of the metastable vacuum near the origin

of field space. Furthermore, as long as (∆m)2 . mΦµφ, the results of the previous

subsection are approximately correct.

However, for (∆m)2 > mΦµφ, the computation of the metastable vacuum receives

important corrections. In this range there is still a metastable vacuum, but now both

ΦU and Φ play a role in the SUSY breaking dynamics, and receive direct soft masses.

This alternative will be explored, and exploited, in §4.5.2.

4.4 Single-sector SUSY breaking

The model of §4.3 with magnetic superpotential (4.3.14) will now be used to construct

a “single-sector” SUSY breaking model in which some Standard Model generations

are composite mesons of the strongly coupled electric theory. In §4.4.1, we discuss a

simple embedding of the first and second generation Standard Model fermions into the

mesons of the SUSY breaking sector. We show how this generates the desired fermion

Yukawa matrix, (4.1.2), and thus naturally produces the observed flavor hierarchy. In

§4.4.2, we estimate the parametric contributions to various sparticle masses. While

the gaugino masses are generated from gauge mediation only, the sfermions may

obtain a mass from gauge mediation or directly from the supersymmetry breaking

sector (in particular, from the one-loop Coleman Weinberg potential).
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Constraints on the sfermion masses from flavor-changing neutral currents (FC-

NCs) are discussed in §4.4.3. Although the sfermion masses are diagonal in the flavor

basis in which the fermion Yukawa matrices take on the texture of (4.1.2), large

off-diagonal sfermion mass terms may be generated after diagonalizing the fermion

Yukawas. This can lead to large FCNCs unless the sfermion masses of first two genera-

tions are roughly the same (universal) or are both very heavy (decoupled). Successful

model-building then amounts to finding various limits of the adjoint model that give

rise to soft terms compatible with FCNC and other constraints. We will reserve a

discussion of specific parametric limits and viable soft spectra for §4.5.

4.4.1 MSSM generations from composites

A simple single-sector SUSY breaking model can be constructed by embedding the

first Standard Model generation inside the meson ΦU and the second generation inside

the meson Φ (the embeddings are described in detail below). The third generation will

come from an additional elementary field, which we denote by Ψ3. The fields Φ and

ΦU were defined in (4.3.10) but are reproduced here schematically for convenience:

ΦU ∼
Q̃UQ

Λ2
, Φ ∼ Q̃Q

Λ
. (4.4.1)

While both ΦU and Φ are dimension one fields at low energies in the magnetic theory,

they are dimension three and two fields, respectively, in the UV electric theory. The

fermion Yukawa couplings will be generated at high energies – at which the electric

theory is weakly coupled – through couplings between the Standard Model fields

contained inside Q̃UQ, Q̃Q, and Ψ3 and an elementary Higgs field, H,

WY uk ⊃ 1

M4
flavor

(QUQ̃)H(QUQ̃) +
1

M3
flavor

(QQ̃)H(QUQ̃) +

1

M2
flavor

(QQ̃)H(QQ̃) +
1

Mflavor

(QQ̃)HΨ3 + Ψ3HΨ3. (4.4.2)

Here Mflavor denotes the “flavor scale” at which these terms are generated, and we

have neglected O(1) dimensionless couplings. Since Q̃UQ, Q̃Q and Ψ3 are dimension
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three, two, and, one, respectively, the generated Yukawa couplings are suppressed by

different powers of the flavor scaleMflavor. At low energies, this Yukawa superpotential

becomes

WY uk ⊃ Λ4

M4
flavor

ΦUHΦU +
Λ3

M3
flavor

ΦHΦU +

Λ2

M2
flavor

ΦHΦ +
Λ

Mflavor

ΦHΨ3 + Ψ3HΨ3. (4.4.3)

Setting ε = Λ/Mflavor gives the following fermion Yukawa matrix (up to O(1) dimen-

sionless couplings) 
ε4 ε3 ε2

ε3 ε2 ε

ε2 ε 1

 , (4.4.4)

which will generate the desired flavor hierarchy for ε ∼ 10−1. Note that it requires

Λ ∼ 10−1Mflavor, so that the strong coupling scale of the electric theory cannot be too

much below the “flavor” scale.

We now describe the embedding of the Standard Model fields inside the SUSY

breaking mesons in more detail. To present our results in a compact way, an SU(5)

GUT notation will be adopted, but the Standard Model gauge group SU(3)C ×
SU(2)L×U(1)Y can be easily used instead. The latter embedding will be explored in

Appendix B.3 and has the advantage that it generates less additional heavy Standard

Model charged matter that change the RG running of the Standard Model gauge

couplings — in particular, Landau poles (which we discuss in Appendix B.2) can be

pushed to much higher energy scales.

The minimal choice for the number of flavors and colors of the electric theory

corresponds to

Nf = 12 , Ñc = 1 ⇒ Nc = 23

The SU(Nf = 12) global symmetry is broken to SU(Nf − Ñc = 11) by the vacuum

expectation value χχ̃ = µ2 (see (4.3.27)). The Standard Model GUT group is a

weakly gauged SU(5) subgroup of SU(11), with the following embedding of SU(5)
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into SU(12):

Q ∼ (5 + 5̄ + 1) + 1 , Q̃ ∼ (5̄ + 5 + 1) + 1, (4.4.5)

where the representations in round brackets denote the embedding into SU(11).

The mesons of the magnetic theory decompose as (see (4.3.17))

ΦU =

(
YU, 1×1 ZT

U, 1×11

Z̃U, 11×1 XU, 11×11

)
, Φ =

(
Y1×1 ZT

1×11

Z̃11×1 X11×11

)
, (4.4.6)

The fields (Yi, χ, χ̃) fields are all singlets under the Standard Model gauge group,

while XU and X decompose as

(10 + 5̄) +
[
2× 24 + 15 + 15 + 10 + 2× 5 + 5̄ + 3× 1

]
, (4.4.7)

where the representations in round brackets will form the desired Standard Model

fermions and the matter in square brackets represents additional matter that we will

want to remove.

The unwanted matter can be removed by the addition of spectator fields SR̄ for

each representation R in square brackets (except the singlet piece Tr (XU), which

participates in supersymmetry breaking) and with superpotential couplings

Wel ⊃ λ1R

∑
R̄

S1R̄(QQ̃)R + λ2R
1

Λ0

∑
R̄

S2R̄(QUQ̃)R

→ Wmag ⊃ λ1RΛ
∑
R̄

S1R̄XR + λ2R
Λ2

Λ0

∑
R̄

S2R̄XU,R. (4.4.8)

The unwanted matter will now have masses of order Λ and Λ2/Λ0, where Λ0 is some

UV scale above Λ, as in (4.3.15). Note that in this case, we do not need to add the

perturbations ( Tr(Q̃Q))2 and ( Tr(Q̃UQ))2 as in [66], which would have given mass

to the fermionic components of X and XU , since these components can be lifted by

trilinear couplings with spectators as in (4.4.8) (of course, these perturbations could

have been added without qualitatively changing the discussion).

We also include spectators that pair up with Z and Z̃, which are also charged
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under the Standard Model gauge group. It is worth briefly explaining why we can

include spectators to remove the unwanted Z, Z̃ particles in this model, but not

e.g. in the models of [72]. In ISS-like models, the Z and Z̃ are in the same multiplet

as the magnetic meson that breaks SUSY by the rank condition, and they receive

a tree-level SUSY-breaking mass. This is because they mix with the ρ components

of the magnetic quarks, which obtain a mass from the q̃Φq coupling in the magnetic

superpotential. Therefore, they play an important role in the calculation of the one-

loop Coleman-Weinberg potential, and altering the spectrum of Z, Z̃-mesons, even

if it could be done without creating instabilities, would drastically affect the model.

In this model, in contrast, there are two magnetic mesons, and only ΦU is playing a

role in the supersymmetry breaking, while Φ is almost a spectator to the dynamics.

Therefore, the Z, Z̃ mesons play no role in the Coleman-Weinberg computations, and

can be safely given a large mass of order Λ2/Λ0 from the coupling (4.3.15), or an even

larger mass of order λΛ by adding appropriate spectators.

Once the chiral deformation (4.4.8) is turned on, the (10 + 5̄) Standard Model

fermions from X and XU (see (4.4.6)) are massless to all orders in perturbation

theory.8 Non-zero masses with the appropriate flavor hierarchy can be generated

with the superpotential in (4.4.2).

4.4.2 Sparticle spectrum

Having identified superfields of the Standard Model with various components of the

mesons Φ and ΦU , we may now make parametric estimates for the soft masses obtained

by gauginos, sfermions, and the gravitino in the SUSY-breaking vacuum.

There are two possible contributions to the sparticle masses. One contribution can

come from a direct coupling to SUSY breaking. This is the case for the composite

first generation sfermions in XU that obtain a (large) mass from the CW potential,

VCW ∼ m2
CW |XU |2 , mCW ∼

√
bh2µ. (4.4.9)

8More precisely, due to the µφ perturbation the chiral fermions have a very small admixture with
the spectators. This mixing is of order (µφΛ0/Λ2) ∼ 10−14 in the range of interest µφ ∼ TeV,
Λ ∼ MGUT , Λ0 ∼ MPl, and can be safely ignored.
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The composite second generation sfermions arising from X have couplings to the

SUSY breaking sector that are suppressed by the ratio m̃U/Λ. For m̃U/Λ � 1,

the second generation sfermions obtain only a negligibly small mass from the CW

potential, even though they are composites! The gauginos and third generation do

not directly feel the SUSY breaking.

The second contribution to the sparticle masses comes from gauge mediation. Af-

ter weakly gauging, for example, a SU(5) or SU(3)C × SU(2)L × U(1)Y subgroup

of the global SU(Nf − Ñc) symmetry as in (4.4.5), the fields ρ, ρ̃, ZU , and Z̃U will

be charged under the Standard Model gauge group and act as messengers of super-

symmetry breaking to the sparticle sector. (We have seen in §4.3.3 and §4.4.1 that

the fields Z and Z̃ can be decoupled from the SUSY breaking sector and given very

heavy masses of O(Λ), so their interactions with the sparticle sector can be com-

pletely ignored.) The messenger masses may be computed from (4.3.22) and (4.3.23);

we refer the reader to [66] for the details. Very roughly, at leading order the fermionic

components have masses ∼ hµ, while the bosonic components have masses ∼ 0, hµ,

and 2hµ; the massless bosons will acquire a mass ∼ gSMµ when the flavor group is

gauged. In the Standard Model embedding of (4.4.5), we have 4× (5+ 5̄) messengers,

so that gauge coupling unification is in principle possible (for a complete discussion

of unification in these models, see Appendix B.2).

The gauge mediated two-loop contribution to the sfermion squared masses is para-

metrically given by

m2
GM ∼

(
g2

16π2

)2
(hFXU

)2

M2
, (4.4.10)

where g is a Standard Model gauge coupling, FXU
∼ hµ2 is the SUSY breaking F -

term of the field XU , and M ∼ hµ is a typical messenger mass. We have neglected

a sum over Dynkin indices and O(1) numbers — the precise expression is much

more complicated and will not be needed for our purposes. Schematically, the gauge-

mediated contribution to sfermion soft masses is thus

mGM ∼ g2

16π2
hµ. (4.4.11)
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The gauge mediated contribution to the gaugino masses is given in [66]. The

mass must be proportional to the R-symmetry breaking, which is dominated by the

spontaneous breaking from the vev of 〈hXU〉 ∼ µφ/b. We find

mλa ∼
g2
a

16π2
〈hX〉 ∼ g2

aµφ , (4.4.12)

where ga, a = 1, 2, 3, are the Standard Model SU(3)C , SU(2)L, and U(1)Y gauge

couplings, and we have again neglected O(1) numbers (as well as even smaller correc-

tions of O(µφ/(16π2)) from the explicit R-symmetry breaking). Notice that the 1/b

factor in the the spontaneous R-symmetry breaking vev, X ∼ µφ/b, cancels the loop

factor.

The gauge mediated contribution to the sfermion and gaugino masses are compa-

rable if

µφ ∼ µ/(16π2). (4.4.13)

If we want gauge mediated masses of O(1 TeV), we need to choose (assuming h ∼ 1

for now)

µφ ∼ 1 TeV,
√
F ∼ µ ∼ O(100− 200 TeV), (4.4.14)

so that the direct SUSY breaking contribution from the CW potential to the first

(and possibly second) generation sfermions is

mCW ∼ 10 TeV. (4.4.15)

A more detailed analysis reveals that in order for the metastable vacuum to be

long-lived (which requires µφ � µ), the gauge mediated contribution to the col-

ored sfermions cannot be much less than ∼ 2.5− 3 TeV, with the masses of the bino,

wino, and gluino around 70 GeV, 130 GeV, and 500 GeV, respectively [66].

The gravitino mass in this theory is simply given by

m3/2 ∼

√
Nf − Ñc

3

hµ2

MP

(4.4.16)
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For the low SUSY breaking scale considered here, the gravitino is light and has a

mass of

m3/2 ∼ 10 eV, (4.4.17)

which makes it cosmologically quite safe [153].

4.4.3 Supersymmetric flavor

An essential challenge faced by single-sector models — and, indeed, by all models of

supersymmetry breaking and mediation — is to generate a spectrum of soft masses

compatible with observational constraints on flavor-changing neutral currents (FC-

NCs). In general, the soft masses for squarks and sleptons explored in §4.4.2 are not

diagonal in the same basis as the fermion mass matrix, leading to potentially pro-

hibitive FCNCs. But the virtue of calculable models of single-sector SUSY breaking

and flavor is that phenomenologically viable spectra may be related directly to mi-

crophysical parameters of the theory, and viable models may be found as a function

of such parameters. In light of the potential soft terms discussed above, it is thus

natural to consider what ranges of ultraviolet parameters in the adjoint model give

rise to supersymmetric soft spectra compatible with experimental constraints.

Absent any additional mechanism to generate alignment between the Yukawa ma-

trices and sfermion soft masses, spectra compatible with FCNCs may arise from either

approximate universality or decoupling. Universality – for which the sfermion mass

matrices are proportional to the identity – suffices because the identity is diagonal

in any basis, so that no sfermion mass mixing is generated when we rotate to the

fermion mass eigenbasis. Although small deviations from universality are acceptable

(and, indeed, inevitable given RG evolution of soft parameters to the weak scale),

they must remain rather small compared to the overall scale of soft masses.

Decoupling, on the other hand, exploits the observation that sfermion contribu-

tions to FCNCs scale as high inverse powers of the sfermion mass, and vanish as the

sfermion masses are taken to infinity. The size of the top Yukawa coupling implies that

only the third generation of sfermions needs be near the weak scale to preserve the

naturalness of weak-scale SUSY as a solution to the hierarchy problem. Fortunately,
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FCNC constraints are strongest for the first two generations of sfermions, so that fla-

vor constraints and naturalness may be simultaneously satisfied by making the first

two generations heavy while keeping the third generation light. This approach leads

to “more minimal” [43, 58] models with an inverse hierarchy of sfermion masses. In

such scenarios, the masses of the first two generations of sfermions are constrained by

the two-loop sfermion contribution to the stop mass, which renders the stop tachyonic

when mf̃1
,mf̃2

& 20 TeV unless the high-scale stop mass is unnaturally large [18].

In the models considered here, sfermions of the first two generations may ac-

quire SUSY-breaking soft masses directly, while all three generations acquire universal

SUSY-breaking soft masses from gauge mediation. Barring additional superpotential

terms mixing the mesons of the magnetic theory, these soft masses are all diagonal in

the same basis as the non-diagonal Yukawa textures (4.1.2). If the gauge-mediated

contributions are around mGM ∼ 1− 3 TeV, the third generation of sfermions is light

enough to roughly preserve the naturalness of electroweak symmetry breaking. It

is then a question of how large the additional contributions to the first and second

generations coming from mCW must be in order to avoid FCNCs. In general, both

must be & 5 TeV with some degree of degeneracy; a detailed treatment of FCNC and

other constraints on the sfermion spectrum is contained in Appendix B.1.

The great virtue of calculable single-sector models is that these flavor constraints

may be related explicitly to the UV parameters of the theory. In the limit m̃U/Λ � 1,

only the first generation feels supersymmetry breaking directly. In general, such a

spectrum – with sfermions of the first generation much heavier than those of the

second and third – yields prohibitive contributions to FCNCs. However, if the cou-

pling h is sufficiently small it is possible for such contributions to satisfy approximate

universality given a certain degree of tuning. For larger values of m̃U/Λ, both first

and second generations obtain significant soft masses directly from SUSY breaking,

realizing a calculable version of the “more minimal” scenario. This is perhaps the

most natural spectrum of supersymmetry breaking in such theories, and (calculably)

reminiscent of the dimensional hierarchy spectra in [130]. Finally, it is possible for

all three generations to receive soft masses solely from direct gauge mediation if the

chiral ring is extended slightly. These models naturally satisfy FCNC constraints via
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universality, but lose some of the single-sector appeal.

We will now detail these approaches in §4.5.

4.5 Models

In light of the potential soft terms described in §4.4.2 and the supersymmetric flavor

constraints outlined in §4.4.3, let us now consider various limits of the adjoint theory

that give rise to phenomenologically viable spectra. In §4.5.1 we will consider the

simplest theory with approximate universality, which involves a simple embedding but

requires some degree of tuning to satisfy FCNC constraints. In §4.5.2 we will consider

models with the familiar inverse hierarchy of soft masses; these models readily satisfy

flavor constraints but entail a slightly less minimal embedding of Standard Model

fields. In §4.5.3 we expand the chiral ring of the adjoint model to include theories

where all three generations obtain universal masses from direct gauge mediation. In

this case, the composite field that breaks SUSY is distinct from those giving rise to

Standard Model generations, but all the ingredients of SUSY breaking, mediation,

and flavor are contained within the same gauge sector.

4.5.1 A model with approximate universality

We begin by exploring the simplest single-sector model that requires only the minimal

Standard Model embedding of (4.4.7). Though admittedly not the most elegant

model, this approach will illustrate some of the issues that will reappear in more

elaborate alternatives.

In the limit m̃U/Λ � 1, only the first generation feels supersymmetry breaking

directly; the meson Φ in which the fields of the second generation are embedded

remains approximately supersymmetric. Gauging the flavor symmetry then produces

universal gauge-mediated masses for all three generations. From Eqs. (4.4.9) and

(4.4.11), these respective soft masses are

mCW ∼ h

4π
hµ , mGM ∼ αg

4π
hµ , (4.5.1)
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where αg = g2
SM/4π. The first generation thus obtains a mass-squared of m2

f̃1
∼

m2
CW +m2

GM while the second generation obtains a mass-squared of only m2
f̃2
∼ m2

GM .

For low sfermion masses where mGM ∼ 3 TeV, we need mf̃1
to be the same as mf̃2

within ∼ 2− 5% in order to avoid large FCNCs (see Appendix B). This requires the

CW contribution to the first generation mass to be smaller than the gauge-mediated

mass, which may be achieved only if h . αg/4. There is no reason for h to be so

small, but it is interesting that tuning a single dimensionless coupling can help solve

the problem from FCNCs. In this case, the direct SUSY breaking mass from the

one-loop effective potential is much smaller than the gauge mediated mass, and the

spectrum looks like a very minor deviation from that of standard gauge mediation.

One tension in the reasoning of the previous paragraph comes from the observation

that h � 1 is in conflict with astrophysical constraints that imply a lower bound

h & O(1). Indeed, recall that in scenarios with a low scale of SUSY breaking and

warm gravitino dark matter the gravitino mass has an upper bound of ∼ 16 eV, which

translates into a bound on the SUSY-breaking scale of [153]

V
1/4
min = |

√
hµ| . 260 TeV . (4.5.2)

Then fixing the stop mass in (4.5.1) gives a lower bound on h,

√
h &

4π

αg

mt̃

260 TeV
∼ O(1) . (4.5.3)

Of course, this bound may be obviated by large entropy production at late times.

Absent a cosmological solution, this tension may also be removed by the following

simple modification. Let us allow two different µ parameters, µ1 > µ2,

W ⊃ −h Tr(µ2ΦU) = −hµ2
1 TrYU − hµ2

2 TrXU . (4.5.4)

(Notice that nothing forbids such different µ’s once the global symmetry group is

explicitly broken by weakly gauging the Standard Model subgroup.) By the rank
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condition, the VEV of χ is set by the largest µ1,

〈χχ̃〉 = µ1 .

On the other hand, the SUSY breaking scale is

|WXU
| = |hµ2

2| .

In this more general setup, the direct and gauge-mediated masses become

mCW ≈ h

4π

hµ2
2

µ1

, mGM ≈ αg
4π

hµ2
2

µ1

. (4.5.5)

The upper bound on the scale of SUSY breaking from the astrophysical bound on the

gravitino mass now does not limit h, but rather

µ1 .
αg
4π

(260 TeV)2

mt̃

. (4.5.6)

Then it is possible for h to be small enough to satisfy approximate universality.

Although the tuning of h to accommodate FCNC constraints is somewhat arbitrary,

it gives rise to a satisfactory spectrum of sfermions in the simplest embedding of

Standard Model fields into the adjoint model.

4.5.2 A model with decoupling

A more familiar approach to viable single-sector SUSY breaking with a dimensional

hierarchy is to adopt a decoupling solution in which the first- and second-generation

sfermions are heavy. Indeed, this is the natural spectrum arising in adjoint models

for finite values of m̃U/Λ.

Just from the couplings in the superpotential (4.3.14), the SUSY breaking sector

induces a soft mass for the second generation at one loop of order

mCW,2 ∼
(
Nc −Nf

gU

mU

Λ

)
h

4π
hµ (4.5.7)
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where the factor inside the brackets comes from the fact that the interaction between

Φ and the magnetic quarks is proportional tomU/Λ, and the second factor is the usual

CW mass (4.3.25). Order-one numerical factors coming from the precise matching

(4.3.12) have been absorbed into gU , and we have set Ñc = 1. Recall that mU and gU

are the mass and cubic coupling of the adjoint field U in the electric theory.

In our case, (Nc−Nf ) ∼ O(10) and gU can be made smaller than one. By taking

mU/Λ small but finite (unlike the case mU/Λ → 0 of §4.3.3 and §4.5.1), it is possible

to obtain
Nc −Nf

gU

mU

Λ
∼ O(1) . (4.5.8)

For h ∼ O(1), the direct SUSY breaking mass contribution is larger than the gauge

mediated effect,

mCW,2 ∼
h

4π
hµ >

αg
4π

hµ (4.5.9)

and both first- and second-generation sfermions can be made much heavier than the

stop.

There is, however, a small obstacle to this simple picture that needs to be over-

come. From the superpotential (4.3.14), the magnetic quarks q, q̃ only couple to the

linear combination
Nc −Nf

gU

mU

Λ
Φ + ΦU (4.5.10)

which gets a mass from the one-loop CW potential

VCW ≈ m2
CW Tr

[(
Nc −Nf

gU

mU

Λ
X +XU

)† (
Nc −Nf

gU

mU

Λ
X +XU

)]
. (4.5.11)

The orthogonal combination remains light. Therefore, at first glance it seems that the

effect of increasing the coefficient mU/Λ is simply to redefine which scalar acquires a

one-loop mass and which scalar receives a mass only from gauge mediation. At the

level of the sfermion mass matrices, however, this would generate large off-diagonal

elements strongly constrained by FCNCs; such mixings would require prohibitively

large sfermion masses & 100 TeV to evade flavor constraints.

We can solve this problem by noticing that if the first generation sfermions (10+5̄)
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come from matrix elements XU,ij which are different from the matrix elements Xkl

containing the second generation, then (4.5.11) will give independent masses to each

of the Standard Model sfermions. In other words, both generations can come from

the linear combination (4.5.10) albeit from different matrix elements, and both then

acquire comparable one-loop masses.

For this, we need to be able to have two different (10+ 5̄) inside each meson. The

minimal choice corresponds to

Nf = 17 , Nc = 33

with the SU(5)SM embedding

Q ∼ 1 + [1 + 5 + 5 + 5̄] , Q̃ ∼ 1 + [1 + 5̄ + 5̄ + 5] .

Each of the mesons X and XU contains two independent (10 + 5̄)’s, plus additional

matter that is lifted by coupling it to spectator fields. The corresponding Standard

Model generations are identified with orthogonal elements 10 + 5̄.

To ensure that this happens, the superpotential coupling Eq. (4.4.8) of the spec-

tators to the appropriate matrix elements can be enforced by a discrete symme-

try. For instance, we can consider a vector-like Z2, with charge assignments Q ∼
1+ + [1+ + 5+ + 5− + 5̄+], opposite charges for Q̃, and with U being odd. Intro-

ducing, in particular, 10− and 5− spectators, the 10− + 5̄− mesons are lifted. Only

the 10+ + 5̄+ from each QQ̃ and QUQ̃ survive – and these come from different ma-

trix elements since U is odd. Notice that this discrete symmetry commutes with

the global symmetry group left unbroken by the SU(5)SM embedding. Also, since

U → −U is not a symmetry in the presence of a Tr U3 superpotential, its coefficient

gU has to be small in order for this analysis to be approximately correct. In practice,

gU . ε ∼ O(0.1) is required.

A fully realistic single-sector model satisfying the bounds from FCNCs is then

possible, albeit with a slightly less minimal embedding of the Standard Model into

composites of the strong dynamics. Let us consider a simple example. Take the
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messenger scale to be

M = hµ ≈ 250 TeV . (4.5.12)

Setting h ∼ O(1), and mU/Λ ∼ O(0.01), the sfermion spectrum at the messenger

scale is

mf̃1 ≈ 20 TeV , mf̃2 ≈ 15 TeV , mf̃3 ∼ 1.5 TeV (4.5.13)

The gaugino masses are

mλ ∼ O(1 TeV) for µφ ∼ O(1 TeV) (4.5.14)

and the metastable vacuum is parametrically long-lived. In this class of models, the

number of messengers is 6× (5 + 5̄) so that perturbative unification is not possible.

It would be interesting to find a model that unifies and where the first two generation

sfermions have decoupled to the multi-TeV scale.

As a final remark connecting with the discussion in §4.3.4, when (4.5.8) is satisfied

the field breaking susy and R-symmetry is a linear combination of Φ and ΦU with

order one coefficients – see Eq. (4.5.10). Turning on generic superpotential defor-

mations ∆Wel = (QQ̃)n(QUQ̃)m, the properties of the metastable vacuum will be

fixed by only the largest linear and quadratic meson terms. These have to satisfy the

stability conditions found in [66], while other terms play a subleading role. Therefore

the metastable vacuum will exist and be long-lived for quite generic superpotential

deformations.

4.5.3 Composite models with direct gauge mediation

So far we have found models where both composite generation sfermions acquire

soft masses from direct couplings to the SUSY breaking sector (see §4.2 and §4.5.2)

or where the first generation gets a direct SUSY breaking mass, while the second

predominantly obtains a mass from gauge-mediation (see §4.3.3 and §4.5.1). We

saw that in order to satisfy FCNC constraints in the latter scenario, the one-loop

SUSY breaking mass must be considerably suppressed relative to the gauge-mediated

masses.
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This limit suggests a slightly more general “single-sector” scenario in which SUSY-

breaking still arises from strong dynamics of the SU(Nc) gauge group, but all the soft

masses come predominantly from gauge mediation. In this case, the flavor problem

would be solved automatically due to the flavor-blindness of the gauge interactions.

Though one might argue that this is no longer strictly a single-sector theory — SUSY-

breaking is now external to the composites comprising Standard Model fields — such

models still retain a pleasing amount of compactness. No new ingredients beyond

the fields and interactions of the SU(Nc) gauge theory are required, and all the

messengers, SUSY-breaking fields, and Standard Model composites arise from the

same dynamics. In this section we will present a simple deformation of the adjoint

model possessing these properties.

Consider the adjoint model of §4.3, but allowing a U4 term in the electric super-

potential (the general Uk case has been studied in [119]),

Wel =
1

4

1

ΛU

Tr U4 +
gU
3

Tr U3 +
mU

2
Tr U2 (4.5.15)

The magnetic dual has gauge group SU(Ñc = 3Nf −Nc), Nf magnetic quarks (q, q̃),

a magnetic adjoint Ũ , and three gauge singlets

M1 = Q̃Q , M2 = Q̃UQ , M3 = Q̃U2Q .

It will be useful to work in terms of the canonically normalized mesons,

Φj =
Mj

Λj
,

up to order one numerical constants from the Kähler potential as in Eq. (4.3.10).

Again, we will focus on the case Ñc = 1, for which the magnetic dual is a theory

of weakly coupled hadrons with superpotential

Wmag = h Tr(Φ3qq̃) +
2

3
h2gU Tr(Φ2qq̃) +

1

2
h2

(
mU

Λ
− 1

9
hg2

U

)
Tr(Φ1qq̃) (4.5.16)
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where h = ΛU/Λ. In the limit

gU � 1 ,
mU

Λ
� 1 , (4.5.17)

the dimension 2 meson Φ1 and the dimension 3 meson Φ2 are almost decoupled from

the rest of the low energy fields (Φ3, q, q̃).

These fields (Φ3, q, q̃) are then used to break SUSY in a by now familiar way.

Adding the superpotential deformation

∆Wel ∼
1

Λ0

(QU2Q̃) +
1

Λ5
0

(QU2Q̃)2 ⇒ ∆Wmag ∼ −hµ2 Tr Φ3 + h2µφ Tr (Φ3)
2

(4.5.18)

breaks SUSY by the rank condition, creates a metastable vacuum at a distance ∼
16π2µφ from the origin of Φ3 space, and breaks the R-symmetry both explicitly and

spontaneously (the latter dominating).

The first and second SM generations are identified with Φ2 and Φ1 respectively,

with the third generation being elementary. In the limit (4.5.17), none of the com-

posite generations participate directly in the SUSY breaking. Therefore the sfermion

soft squared masses come predominantly from gauge mediation, involving the SUSY

breaking fields (q, q̃) only at two loops. These contributions are flavor blind and hence

there are no flavor problems.

It is quite surprising that calculable single-sector models exist where the composite

soft masses come predominantly from direct gauge mediation. The gauge dynamics

we have found is rich enough to provide marginal couplings (gU and mU/Λ in the

example above) that control the strength of the direct SUSY breaking masses. It is

possible to set these parameters to zero without changing the SUSY breaking scale

and messenger masses. It would be interesting if this mechanism has an analog in

single-sector models with gravity duals [33,75,133].
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4.6 Concluding remarks

We have introduced and studied calculable models of single-sector SUSY breaking

that have fully realistic Yukawa textures (implementing the dimensional hierarchy

idea) and satisfy FCNC bounds, considerably improving earlier constructions [72].

The beauty of these constructions stems from the way in which the apparently in-

tricate structure of the MSSM originates from a rather minimal, calculable gauge

theory.

Our discussion focused primarily on a class of models based on SQCD with fun-

damental flavors and an adjoint. These theories possess composites of various dimen-

sions, controlled by the adjoint superpotential, and exhibit a surprisingly wide range

of interesting behaviors. In certain parametric limits they give rise to models in which

first- and second-generation sfermions are heavy due to compositeness and decouple.

Perhaps more unexpectedly, there are also models in this class where compositeness

gives rise to realistic Yukawa matrices, but all sfermion masses come predominantly

from gauge mediation and are thus universal.

The parametric limits presented here represent a fraction of the possible single-

sector models that may emerge from theories of supersymmetric QCD with funda-

mental flavors and a rank-two tensor field. It would be useful to further explore

the range of possible soft spectra that may be realized such theories. Moreover, the

models we have considered suffer somewhat from a surfeit of extra matter charged

under the Standard Model; it would certainly be compelling to find other examples

of calculable theories with more efficient embeddings.

Of course, such single-sector theories are but one approach (among many) to

addressing the Standard Model flavor problem. We conclude by comparing and con-

trasting our mechanism with other explanations for the Yukawa hierarchies which

exist in different classes of models.

4.6.1 Comparison to other explanations

The earliest class of explanations, and probably the best explored, use the Froggatt-

Nielsen idea [73]. Here, one introduces a new U(1) symmetry, R, broken by the vev of
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a new scalar 〈φ1〉 which has charge +1. One assumes that all of the Standard Model

fermions are exactly massless in the limit that R is unbroken - that is, one assigns

different charges to their left and right-handed components. Finally, one assumes

the existence of some very heavy set of fermions (with various values of R) at a

scale 〈φ0〉 � 〈φ1〉, whose mass is set by the expectation value of another R-neutral

Higgs field φ0. By assigning appropriate charges under R to the Standard Model

fermions, one can then generate Yukawa couplings suppressed by different powers of

ε = 〈φ1〉/〈φ0〉. Models which are broadly successful in accounting for flavor physics

can emerge from this framework. Some of the most successful models have more

than one small parameter. The scales involved are not very tightly constrained by

data, so such models can account for observed physics and remain untestable in the

foreseeable future.

An idea closely related to our own is to consider supersymmetric models where the

MSSM generations interact with a strongly coupled SCFT (at least over some range

of energies). If the MSSM Yukawa couplings receive different anomalous dimensions,

this can provide an explanation of Yukawa hierarchies [137]. A recent exploration of

this idea appears in [141]. We note that this is very similar to our mechanism; here,

the large anomalous dimension comes from the fact that the MSSM fields are secretly

composite and hence the Yukawa couplings are higher dimension operators above the

compositeness scale Λ. In addition, our mechanism correlates this structure with the

dynamics of SUSY breaking.

A much more recent class of interesting, field-theoretic ideas appears in [83]. These

“Domino theories” are incompatible with conventional low-energy supersymmetry,

but are otherwise an economical proposal for generating realistic Yukawa textures.

A very wide class of inter-related ideas uses the physics of extra dimensions:

• In superstring compactifications, e.g. those of the heterotic string, it is easy to

find supersymmetric scenarios where the tree-level Yukawa couplings are related to

topological invariants of the compactification manifold. These invariants often give

some vanishing couplings, usually because the homology cycles on which some of the

matter fields are localized do not intersect with the Higgs or with the other matter

field in the relevant Yukawa coupling. In such a circumstance, the leading coupling
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is generated by world-sheet or space-time instanton effects, due to supersymmetric

non-renormalization theorems. (The instanton is a non-local object in the internal

dimensions, and can connect the disconnected homology cycles). In a topology where

only the top quark Yukawa is present at tree level, this can provide an attractive

explanation for the rough features of the fermion mass matrix. Note that this idea

requires multiple parameters to match the observed spectrum, since each instanton

action is a priori unrelated to the others; this idea also remains untestable until one

reaches the compactification scale, which is typically ∼MGUT. Many modern variants

of this idea also exist in brane-world scenarios involving D-branes in Type II string

theories. For recent discussions in heterotic and type II models, see [34] and [97], for

instance. Very recent work in the context of F-theory, where instantons do not play

an important role in the attempts to explain flavor physics, is summarized in [53].

• In theories where the Standard Model gauge fields propagate in “thick” branes (e.g.

live in flat extra dimensions which are not excessively large), one can obtain Yukawa

hierarchies by localizing the matter fermions within these branes [20, 108, 109]. In

these split fermion scenarios, there are parameters governing both the location of the

fermions (and the Higgs scalars), and the thickness or form of their wavefunctions.

In many ways, this is similar to the first scenario above. With a small set of such

parameters, one can find acceptable scenarios. These models can be testable at the

TeV scale, but need not be [125].

• In theories with warped (AdS-like) extra dimensions, with Standard Model gauge

fields in the bulk, one can try to explain flavor by localizing fermions at different

points along the radial direction of AdS [77, 96]. Such theories are dual to large N

gauge theories [132]. Fields localized in the IR are composites of the CFT dynamics,

while those localized in the UV are elementary fields external to the CFT. It can

be of interest to have either an elementary Higgs (e.g. in a supersymmetric scenario

where supersymmetry is broken at the end of the warped throat geometry), or a

composite Higgs (e.g. in non-supersymmetric Randall-Sundrum scenarios). In the

former case, the fermions localized at the IR end of the geometry (which are highly

composite) will have the smallest Yukawa couplings, while in the latter case the highly

composite fermions will have the largest Yukawa couplings. In such scenarios, like
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in the split fermion scenarios, there are again typically several parameters; they are

now associated with the anomalous dimension of the CFT operator which couples

the Standard Model fermion to the large N CFT. The non-supersymmetric scenarios

of this sort are likely to be testable at the LHC due to the existence of charged,

light KK modes coming from the TeV-scale end of the throat geometry. In the

supersymmetric scenarios this scale is considerably higher, since it is associated with

SUSY-breaking, and there may be no Standard Model charges visible at this scale in

any case (since there is no need for the Standard Model gauge fields to have support

in the entire warped geometry). In this general framework, there are in fact recent

steps towards making holographic duals of models quite similar to the ones we have

considered [33,75,133].

In several of these cases, there are clear implications for the physics of grand

unification. In the Froggatt-Nielsen models, one must extend the GUT group by an

additional U(1) and add new matter multiplets at a high scale. This is not compatible

with standard SU(5) GUTs. In the cases with split or warped localized fermions, one

has the normal difficulties associated with “explaining” unification as opposed to

postulating it by tuning additional matter content (which is of course un-necessary

in the MSSM). In particular in string theory realizations of the third scenario, it is

challenging to avoid Landau poles, due to the large number of massive matter fields

involving in typical constructions of the observable sector and the large N CFT (see

e.g. §5 of [33]). The case with instanton-suppressed Yukawa couplings is naively

compatible with unification, though it introduces new parameters and renders the

apparent relations in e.g. (4.1.2) somewhat ad hoc.

The explanation of flavor in our single-sector models is most similar in spirit to

the last extra-dimensional scenario we discussed, in the supersymmetric case with

an elementary Higgs and small couplings for the highly composite fermions. The

composites in our models are analyzed via Seiberg duality instead of using AdS/CFT

duality, but both classes of models rely on compositeness to suppress Yukawa cou-

plings. We are close to having models which avoid Landau poles, but the pile-up

of extra matter fields at the scale Λ where the composite generations are generated

remains an obstacle to making models with honest, weakly-coupled unification. Since
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our models involve at most one or two parameters in the flavor sector, they are quite

competitive in terms of predictivity with all of the classes of scenarios enumerated

above. The correlation between soft-terms and Yukawa couplings, evident in most of

the single-sector models (with at least one and often both of the first two generations

having large sparticle masses in most of the known classes of models), is a further

prediction which is absent in the non-supersymmetric theories, in supersymmetric re-

alizations of the Froggatt-Nielsen mechanism, and in the methods based on instanton

calculus in supersymmetric string compactifications.



Chapter 5

Superconformal Models of Flavor

5.1 Introduction

The observed hierarchy of fermion masses and mixings remains one of the most puz-

zling features of the Standard Model; the masses of three generations of quarks and

leptons range over more than five orders of magnitude. Yet the observed spectrum is

not entirely random, but rather seems to reflect an underlying structure. The masses

of subsequent generations are arrayed with nearly even spacing; intergenerational

mixings exhibit a nearest-neighbor hierarchy; and the similarity of down-type quark

and lepton masses relative to up-type quark masses is suggestive of a grand unified

theory (GUT) at high energies.

It seems likely that a comprehensive ultraviolet completion of the Standard Model

may feature some explanation for this apparent flavor structure. Perhaps the most

common approach to such theories of flavor involves engineering the observed Yukawa

textures directly, either through approximate symmetries or radiative corrections

[62, 73, 83, 86, 123, 124]. A compelling alternative approach is to treat the Yukawa

matrices as entirely anarchical, consistent with effective field theory, and generate

the flavor hierarchy through wavefunction renormalization. In four dimensions, this

may be readily accomplished by coupling the Standard Model to a sector with strong

conformal dynamics [8,76,137,141] or by assembling Standard Model fermions them-

selves as composites of some strong dynamics [17, 46, 72, 130]. The Yukawa matrices

114
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then acquire the desired hierarchical form in terms of the canonically-normalized low-

energy degrees of freedom. In both cases, supersymmetry frequently plays a role,

both in rendering calculable the strong dynamics responsible for flavor hierarchies

and in explaining the scale of electroweak symmetry breaking. This raises the at-

tractive prospect that the hierarchy problem, Standard Model flavor hierarchy, and

supersymmetric flavor problem may all share a common explanation and correlated

features.

In this paper we wish to focus on specific models of flavor produced by coupling

the Standard Model to a sector with strong conformal dynamics over a range of en-

ergies in which both sectors are supersymmetric. Among other features, such models

have the virtue of considerable predictivity, as the anomalous dimensions (and hence

fermion masses) of Standard Model fields are determined entirely by the gauge group

and matter content of the superconformal sector. The primary challenge in build-

ing such models is to explicitly determine these anomalous dimensions, which at the

time of the original work in [137] was difficult to achieve for simple models without a

proliferation of superpotential couplings. In [141], considerable progress was made to-

wards studying vector-like models of superconformal flavor using the a-maximization

procedure [104] to determine the anomalous dimensions of both Standard Model and

SCFT fields. Here our approach follows closely that of [141], using a-maximization to

investigate the flavor spectrum arising from simple vector-like superconformal sectors.

In principle, this picture of flavor is related by a loose version of the AdS/CFT

correspondence [19, 87, 132, 146, 155] to warped 5D models [143] in which each field

has an exponential profile fixed by its bulk mass [77, 96]. Insofar as these 5D mod-

els possess the virtues of calculability and parametric freedom, one might naturally

wonder whether 4D superconformal models have any real advantages over their 5D

duals. Among other things, models based on 4D CFTs have fewer free parameters,

as anomalous dimensions of all fields are fixed by the superconformal algebra and

marginal interactions. Although various flavor textures may be realized in 5D by

adjusting bulk masses, this leads to a proliferation of parameters, and it is not en-

tirely clear whether a given 5D theory possesses a dual 4D CFT. Moreover, as the

AdS/CFT correspondence is a strictly large-N duality, studying theories based on 4D
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CFTs at small N may reveal features not readily accessible in 5D duals [49,136,147].

Our paper is organized as follows: In Section 2 we introduce the philosophy of

superconformal flavor, relevant constraints, and previous results. In Section 3 we re-

view the relation between R charges and scaling dimensions at superconformal fixed

points, as well as the a-maximization procedure for determining the superconfor-

mal R-symmetry. Some subtlety arises when gauge-invariant operators saturate the

unitarity bound, which influences both the a-maximization procedure and the con-

tribution of SCFT states to the Standard Model β function. Having established the

necessary tools, we turn in Section 4 to simple models of superconformal flavor based

on SU(N) gauge theories with an adjoint chiral superfield. In Section 5 we briefly

treat related models based on Sp(2N) gauge theories, which have the virtue of sig-

nificantly smaller matter content charged under SU(5)SM . In Section 6 we discuss

the fixed points of these models and issues related to decoupling. We reserve for

the Appendix the detailed constraints and numerical results of the a-maximization

procedure as applied to the models in Sections 4 and 5.

5.2 Flavor hierarchy from flavor anarchy

The essential philosophy of superconformal flavor stems from the observation that

fermion mass ratios and mixings may arise in the infrared from anarchy in the ultra-

violet due strictly to quantum renormalization effects [76]. The size of renormalization

effects required to explain the flavor hierarchy points to strongly coupled dynamics,

which are in general incalculable. If, however, the dynamics are supersymmetric and

approximately conformal, these strong renormalization effects may be estimated ac-

curately [137]. In this section we will first review the means of generating Standard

Model flavor hierarchies through large wavefunction renormalization, before turning

to the approximately superconformal sectors that may be responsible. For simplicity,

and to avoid potential conflicts with experimental constraints on baryon and lepton

number-violating operators, we will restrict our attention to models of superconfor-

mal flavor operating at and above the GUT scale. This simplifying assumption leads

us to consider Standard Model fermions strictly as components of GUT multiplets.
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5.2.1 Standard Model flavor physics

The Standard Model Yukawa couplings are of the form (in unified notation)

WSM ⊃ yiju TiTjHu + yijd TiF jHd (5.2.1)

where the Ti ⊃ Qi, Ui, Ei transform as a 10 of SU(5)SM and the F i ⊃ Li, Di transform

as a 5, with i = 1, 2, 3. (We will not consider here the source of neutrino masses,

but these may be included fairly easily.) The philosophy of superconformal flavor is

simply that the Yukawa matrices yu and yd are not intrinsically hierarchical in the

far ultraviolet, but rather contain O(1) factors consistent with effective field theory.

The observed hierarchy in the Yukawas arises because the fields Ti and F i inherit

large wavefunction renormalization factors at some lower scale through coupling to an

approximately conformal sector. When the infrared degrees of freedom are canonically

normalized, the O(1) entries of the Yukawa matrices accumulate additional family-

dependent suppression factors.

To see how this comes about, assume the fields Φi = Ti, F i of the Standard Model

acquire large wavefunction renormalizations Zi(µ) in the holomorphic basis at a scale

µ 'MGUT :

L =

∫
d4θ
∑
i

Zi(µ)Φ†
iΦi (5.2.2)

In the physical basis where fields are canonically normalized, this leads to suppression

factors εi ≡ 1/
√
Zi in the Yukawa couplings. In this notation, the Yukawa couplings

are given by

WSM ⊃ εTi
εTj
yiju,0TiTjHu + εTi

εF j
yijd,0TiF jHd (5.2.3)

where yiju,0, y
ij
d,0 ∼ O(1) are the anarchical Yukawa coefficients from the ultraviolet

theory. To within these O(1) coefficients, the quark and lepton masses are therefore
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given by

(mt,mc,mu) ≈
1√
2
v sin β (εT3εT3εHu , εT2εT2εHu , εT1εT1εHu) (5.2.4)

(mb,ms,md) ≈
1√
2
v cos β (εT3εF̄3

εHd
, εT2εF̄2

εHd
, εT1εF̄1

εHd
)

(mτ ,mµ,me) ≈
1√
2
v cos β (εT3εF̄3

εHd
, εT2εF̄2

εHd
, εT1εF̄1

εHd
)

where v ≈ 246 GeV as usual. The resulting mixing angles in the CKM matrix are

|VCKM | ≈


1 εT1/εT2 εT1/εT3

εT1/εT2 1 εT2/εT3

εT1/εT3 εT2/εT3 1

 (5.2.5)

which offers a fairly good parameterization of the observed values. It is natural, then,

to consider what values of εi are required to match the observed masses of Standard

Model fermions. This is not an exact science; the εi should be chosen to produce

quark and lepton masses at the GUT scale, where they are subject to potentially

sizable uncertainties due to supersymmetric threshold corrections. But a reasonable

estimate gives (assuming εHu ∼ εHd
∼ 1) [13,141]

εTi
≈ (0.001÷ 0.002, 0.03÷ 0.04, 0.7÷ 0.8) (5.2.6)

εF i
≈ tan β · (0.002÷ 0.01, 0.001÷ 0.007, 0.006÷ 0.02)

where the values of εF i
come from considering the down-type quark masses; the result

for lepton masses gives, encouragingly, similar results to within uncertainties due to

threshold corrections.

There are clearly various ways to generate the hierarchy of (5.2.6). We will fo-

cus here on two types of flavor structures. The first is the so-called “ten-centered”

structure, in which only the Ti of the Standard Model obtain significant ε factors

from the conformal sector. The utility of these models stems from the observation

that Standard Model flavor looks to be driven predominantly by a hierarchy among

the different generations of Ti. For this to work also requires a large value of tan β,
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which may cause problems with proton decay. Alternatively, we will also consider

more “democratic” models with coupling to both Ti and F i. Here it is possible to

accommodate much smaller values of tan β, but one must be careful not to generate

over-large hierarchies among the F i.

5.2.2 Superconformal flavor physics

Given that the flavor hierarchy may be explained by large wavefunction renormaliza-

tion of Standard Model fields, it is now a matter of determining how such large renor-

malization might arise. Typically, the renormalization of Yukawa couplings and other

dimensionless parameters in 4D scales logarithmically with energy, which is poorly

suited to generating the required large factors (up to Zi ∼ 106) required to explain the

range of quark masses. The key point, however, is that such significant effects may

be realized in theories with approximately scale-invariant gauge couplings. If Stan-

dard Model fields Φi couple over some range of energies to fields charged under an

approximately conformal gauge group G, these couplings may generate large anoma-

lous dimensions γi. In this case the wave-function renormalization of the fields Φi is

given in terms of the anomalous dimension γi by d
dt

logZi ≈ −γi (where t = log µ). If

the group G becomes approximately conformal at a scale Λ and flows away from the

conformal fixed point at a scale Λ∗, the resulting suppression factors take the form

εΦi
= exp

(
−1

2

∫ log Λ

log Λ∗

γidt

)
(5.2.7)

Of course, the running of Standard Model gauge and Yukawa couplings spoils con-

formal invariance. For an approximately superconformal fixed point, the anomalous

dimensions are constant up to corrections of order g2
SM/16π2 and y2/16π2. In this

approximation, the γi are constant, and so we find

εΦi
=

(
Λ∗

Λ

)γi/2

(5.2.8)
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When the anomalous dimensions are sufficiently large – typically γi ∼ O(1) – and

the range of energies Λ∗ < µ < Λ sufficiently long, the suppression factors required

by the flavor hierarchy will be readily generated.

The large anomalous dimensions γi for Standard Model fields may be generated

by coupling to operators of the conformal sector via marginal interactions at the

conformal fixed point. When the fixed point is superconformal, these anomalous

dimensions become calculable. At such a fixed point, there is a simple relation between

the scaling dimension of a chiral primary operatorO and its superconformal R-charge,

dim(O) = 3
2
RO. Correspondingly, the anomalous dimensions of operators at the

superconformal fixed point are given by γO = 3RO−2. Since marginal superpotential

terms at the fixed point must have R-charge 2, a superpotential coupling between SM

and SCFT fields of the form W = ΦiO implies RΦi
= 2−RO and hence γi = 4−3RO.

Such couplings require O to transform nontrivially under Standard Model gauge

symmetries. We may accomplish this by weakly gauging an SU(5)SM subgroup of

the flavor symmetries in the SCFT, which amounts to a (small) explicit breaking

of the global symmetry group. One caveat of this discussion is that the correct

superconformal R charges may not always be readily determined, a challenge we will

turn to in §3.

In this paper we will restrict our focus to vector-like superconformal sectors with

fundamental matter and a rank-2 (adjoint or antisymmetric) tensor field. Such higher-

rank fields introduce new gauge-invariant chiral operators whose canonical dimensions

and R-charges may differ significantly from those of gauge-invariant operators formed

by fundamental fields alone. As successful models of superconformal flavor require

two or more operators with the same SU(5)SM charges but substantially different

R-charges, rank-2 tensor fields therefore comprise an essential ingredient of super-

conformal flavor engineering. This situation is highly reminiscent of 4D models of

composite flavor, in which various Standard Model families arise as mesons of iden-

tical SM charges but differing canonical dimensions [46, 130]. Likewise, we focus on

vector-like conformal sectors due both to their ubiquity (as such gauge sectors often

arise in string compactifications) and the simplicity with which their exotic states

may be decoupled.
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MGUTMW MSUSY

Λ∗ ΛL

MPl

Λ

µ

Figure 5.1: Cartoon of energy scales. We assume the gauge group G is approximately
conformal in the energy range Λ∗ < µ < Λ; that the fields charged under G decouple
from the Standard Model around MGUT ∼ Λ∗; and that any Standard Model Landau
poles lie at a scale ΛL > Λ (and ideally > MPl). In principle, fields charged under G
may be responsible for breaking supersymmetry at a scale MSUSY .

5.2.3 Constraints on superconformal sectors

It is not quite enough to simply generate large wavefunction renormalization for

Standard Model fermions. Weakly gauging a subgroup of the SCFT flavor symmetries

leads to a plethora of extra states charged under both G and SU(5)SM , which must

be decoupled well before the weak scale, both to avoid spoiling Standard Model gauge

coupling unification and violating observational bounds on SM-charged exotics. For

simplicity, we assume the decoupling occurs at a scale ∼ Λ∗, due to some small

relevant deformations of the SCFT. It is not necessary to assume that all SCFT

states acquire masses of O(Λ∗); it may be the case that some fields survive to lower

energies, and perhaps are responsible for supersymmetry breaking at a lower scale.

If Standard Model fields decouple from the superconformal sector at Λ∗, we still

need to worry about irrelevant operators induced at this scale. Foremost is the need

to avoid operators violating baryon and lepton number. Although in general such

operators will not be induced directly by the superpotential couplings of our theory,

they are expected to appear as dimension-six operators in the Kähler potential with

suppression of order 16π2/Λ2
∗. If Λ∗ ∼MGUT , this is fairly safe for all but the largest

values of tan β.

Whatever the scale of superconformal flavor, a principal constraint arises from

the requirement that the Standard Model gauge couplings remain perturbative long

enough for the observed flavor hierarchy to be generated. Consistency of our models
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requires that SU(5)SM remain a weakly-gauged subgroup of the SCFT flavor symme-

tries while at the approximately conformal fixed point, but the addition of so much

extra matter charged under SU(5)SM tends to generate a Landau pole for g5. Suc-

cessful model-building amounts to ensuring that the Landau pole lie at a scale ΛL

above the window of energies in which the flavor hierarchy is produced.

This constraint may be enforced quite easily. The NSVZ beta function [139] for

the SU(5)SM gauge coupling g5 is given by

βg5 = − g3
5

16π2

[15−
∑

i T (ri)(1− γi)]

1− 5g2
5/8π

2
=

g3
5

16π2

b

1− 5g2
5/8π

2
(5.2.9)

where b is the “exact” β-function coefficient

b ≡ −15 +
∑
i

(1− γi)T (ri) = −3 Tr
[
U(1)RSU(5)2

SM

]
(5.2.10)

Given the R-charges of the SCFT fields charged under SU(5)SM , we may compute b

for a given model and determine the scale ΛL at which g5 hits a Landau pole (subject

to some subtleties arising when operators of the SCFT sector go free, as we will

discuss in the next section). It is amusing to note that this β-function coefficient is

equivalent to the U(1)RSU(5)2
SM global anomaly coefficient at the conformal fixed

point. This will turn out to play an important role in computing the contribution to

βg5 from gauge-invariant chiral operators that saturate the unitarity bound.

Using these results, we subject the models under consideration to a fairly simple

criterion: that they generate an adequate flavor hierarchy over the range Λ∗ < µ < Λ

smaller than the hierarchy Λ∗ < µ < ΛL between decoupling and the Landau pole

for g5. For all models we compute ΛL/Λ∗ assuming Standard Model field content,

an additional SU(5)SM adjoint Higgs Σ, and the field content of the superconformal

sector. For ten-centered models, we compare this to the ratio Λ/Λ∗ required to get

within a factor of 3 of the observed hierarchy in up-type quark masses. For democratic

models, we compare this to both the ratio ΛT/Λ∗ required to get within a factor of 3

of the up-type quark hierarchy, and the ratio ΛF/Λ∗ required to get within a factor

of 3 of the lepton mass hierarchy for tan β = 10.
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5.3 R charges from a-maximization

Clearly, in order for the superconformal flavor mechanism to be effective it is neces-

sary for the conformal sector to generate sufficiently large anomalous dimensions for

Standard Model fields. Ideally, these anomalous dimensions should be calculable –

often a challenging proposition for strongly coupled theories. A tremendous advan-

tage is gained if the universe is supersymmetric over the energy range in which the

flavor hierarchy is generated. In this case the superconformal algebra relates the scal-

ing dimension of gauge-invariant chiral operators to their transformation properties

under the superconformal U(1)R symmetry.

Recall that the superconformal algebra is the superalgebra SU(2, 2|1), the bosonic

part of which consists of the familiar conformal SO(4, 2) and an additional non-

anomalous U(1)R. The charges of gauge-invariant chiral primary operators under this

particular U(1)R give, in turn, their scaling dimension at the conformal fixed point.

When this U(1)R may be readily identified, it provides a direct means of computing

anomalous dimensions for fields coupled to the SCFT; such was the strategy employed

in [137]. However, the utility of this approach is limited by the ease with which the

superconformal U(1)R may be identified. In general, superconformal theories possess

a variety of candidate U(1)R symmetries; the principle challenge lies in determining

which U(1)R dictates the scaling dimensions of chiral primary operators at the fixed

point.

Once the correct R-charges are known, unitarity imposes a bound relating the

scaling dimension of a gauge-invariant operator O and its R-charge via the inequality

[135]

∆(O) ≥ |3
2
R(O)| (5.3.1)

The inequality is saturated for chiral and antichiral primary operators; we will hence-

forth be interested solely in gauge-invariant chiral primaries for which the equality in

(5.3.1) is exact. Once we know the scaling dimension, we can express the anomalous

dimension γ of an operator in terms of its R-charges; for a chiral primary,

∆O ≡ 1 +
1

2
γO =

3

2
RO → γO = 3RO − 2 (5.3.2)
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Clearly, if we can compute the R-charges of operators under the superconformal U(1)R

symmetry, we may determine (up to the usual corrections of order g2
5/16π2 coming

from the gauging of flavor symmetries) the anomalous dimensions of fields in a given

model of flavor anarchy. But therein lies the rub; in general, a given theory will

possess a variety of candidate U(1)R symmetries, none of which are obviously the

superconformal U(1)R. That is, if R0 is some valid U(1)R symmetry, so too is

Rt = R0 +
∑
i

siFi (5.3.3)

where Fi are all the non-R flavor charges of the global symmetry group F . The

superconformal U(1)R corresponds to some specific choice of the si.

In truth, the situation is not quite so dire; the superconformal U(1)R is expected

to commute with non-Abelian flavor symmetries, so we can restrict the linear combi-

nations in (5.3.3) to only Abelian flavor generators. Moreover, if there is some sort

of charge conjugation symmetry, then the U(1)R should commute with that as well,

leaving only the Fi commuting with charge conjugation. For the simplest example of

SQCD, these conditions are sufficient to imply that the superconformal U(1)R can’t

mix with any generators of the global symmetries SU(F )× SU(F )× U(1)B, so that

the superconformal U(1)R may be uniquely determined by the vanishing of the ABJ

anomaly at the superconformal fixed point. For theories with additional matter con-

tent, however, one must somehow account for potential contributions from all possible

abelian flavor symmetries.

The solution to this obstruction is a clever procedure called a-maximization [104],

which amounts to the observation that the superconformal R charges are those that

locally maximize the central charge a. Recall that a is the coefficient of the curvature

term in the trace of the 4d energy-momentum tensor,

〈T µµ 〉 = − a

16π2
(R̃µνρσ)

2 + ... (5.3.4)

Conveniently, supersymmetry allows us to compute a for a given theory in terms of
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traces of R-charges. The result, due to [11,12], is

a =
3

32

[
3 Tr R3 − Tr R

]
, (5.3.5)

where Tr R =
∑

i |ri|(Ri−1) is the sum over fermionic R-charges of the matter fields

i in the theory, weighted by their dimensions ri. The insight of a-maximization is

that the correct values of the si corresponding to the superconformal U(1)R charge

are given when the trial a function

at(si) =
3

32

[
3 Tr R3

t − Tr Rt

]
(5.3.6)

has a local maximum as a function of the si. TheR-charges given by the a-maximization

procedure are precisely those appearing in the superconformal U(1)R, and hence give

the correct scaling dimension of gauge-invariant chiral primary operators in cases

where it may not be determined by simpler means.1

Of course, as with so many clever things, this solution is contingent on being able

to identify all the global U(1) symmetries at the infrared fixed point. Clearly, if only

a subset of the total U(1) global symmetries have been identified, a-maximization

over this incomplete subset will generally yield an incorrect result. Although it’s

sometimes sufficient to identify the U(1) global symmetries in the ultraviolet, it is

frequently the case that accidental global U(1) symmetries emerge in the infrared.

Most commonly these accidental U(1)’s are associated with gauge-invariant operators

O saturating the unitarity bound in the IR. When such a field goes free, there arises

a new U(1) global symmetry associated with rotations of O. These accidental U(1)s

will spoil the a-maximization procedure unless appropriately accounted for.2

1Of course, the central charge a is of interest for more than simply a-maximization; for some
time, this a was conjectured to obey a 4d analogue of the c-theorem, although counterexamples have
subsequently been found [151].

2It is amusing to note that the counterexample to the conjectured a-theorem exploits precisely
this loophole in the a-maximization procedure.
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5.3.1 Accounting for accidental U(1)s

In the event that an operator O hits the unitarity bound, the a-maximization pro-

cedure will only yield correct R-charges provided that a(Rt) is modified to account

for O going free. In principle, this may be accomplished by replacing the putative

contribution from RO by the free-field value of RO = 2/3, via

a(Rt) → a(Rt) + a(2/3)− a(O) (5.3.7)

This may be implemented physically using a procedure developed in [29]. If O trans-

forms as some representation rO of the global symmetry group, consider introducing

an additional vector-like pair of gauge-invariant superfields L,M to the theory, where

M transforms in the same flavor representation as O and L transforms in the ap-

propriate conjugate representation. In addition to the new fields, include also a

superpotential

WLM = L(O + hM). (5.3.8)

Treating h as a perturbation, when h = 0 we see that M is a free field and R(L) =

2−R(O). Now turn on a small h; if R(O) > 2/3 (i.e., when O is consistent with the

unitarity bound), the term hLM is relevant, so L and M become massive and may be

integrated out. In this case, the theory in the IR is identical to the original theory; the

contributions of L and M to anomalies and a-maximization cancel entirely. However,

when O violates the unitarity bound, the picture changes significantly. It’s still

the case that R(L) = 2− R(O), but now R(O) < 2/3 implies that the coupling h is

irrelevant and flows to zero in the IR. In that case, M is a free field with R(M) = 2/3,

and the contributions of L and M to a no longer cancel. Indeed, adding L and M to

the a-maximization procedure entails

a(Rt) → a(Rt) + a(M) + a(L) (5.3.9)

= a(Rt) + a(2/3)− a(O) (5.3.10)

= a(Rt) +
dim(rO)

96
(2− 3RO)2(5− 3RO) (5.3.11)
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Hence the addition of L and M to the theory precisely fixes a in the desired fashion

when the field O goes free. Naturally, this prescription may be generalized to account

for any number of operators hitting the unitarity bound.

Although the addition of L andM was introduced as a somewhat ad hoc procedure

for fixing up the a-maximization procedure, such fields must additionally be accounted

for in all anomaly calculations involving flavor symmetries of the SCFT [141]. In

particular, the effects of L and M must be included in the running of the Standard

Model gauge coupling g5 when SU(5)SM is embedded in a weakly gauged subgroup of

the superconformal global symmetries. Indeed, the inclusion of these contributions is

crucial in correctly determining the effects of the SCFT sector on the running of g5,

particularly when determining the scale of potential Standard Model Landau poles.

At first glance, this may seem somewhat unusual; the fields L and M were intro-

duced merely to account for gauge-invariant operators going free in the a-maximization

procedure. The necessity of accounting for their contributions to other anomalies be-

comes most transparent when viewed from the perspective of the composite degrees

of freedom in the IR. As noted in §2, the contribution of SCFT fields to the running

of the gauge coupling g5 is equivalent to their contribution to the U(1)RSU(5)2
SM

global anomaly of the SCFT. As such, anomaly-matching guarantees that these con-

tributions must be the same whether computed in terms of the UV or IR degrees of

freedom.

Consider then the contribution of a composite operator O to the NSVZ β-function

for g5:

∆b = (1− γO)T (rO) = 3(1−RO)T (RO) (5.3.12)

When RO violates the unitarity bound, the näıve contribution from γO 6= 0 computed

via a-maximization is incorrect. But notice that when O goes free, the contributions

from the corresponding L and M to the NSVZ β-function for g5 are given by

∑
i=L,M

(1− γi)T (ri) =
∑
i=L,M

3(1−Ri)T (ri) (5.3.13)

= T (rO) + 3(RO − 1)T (rO) = γOT (rO)
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which precisely cancels the näıve contribution from O violating the unitarity bound

and enforces γO = 0. Thus incorporating the effects of L and M in the running of

g5 does not merely fix the a-maximization procedure; it also fixes the contribution of

composite fields to all global anomalies of the SCFT (and hence also to βg5).

In general, these additional contributions have the effect of lowering the contribu-

tion of the SCFT to βg5 (as one might expect, since the näıve γO are negative and

increase b). As such, they play a key role in determining what candidate supercon-

formal sectors may explain the flavor hierarchy before generating a Landau pole for

the Standard Model gauge coupling.

5.4 Simple models with SU(N)

With these tools in hand, let us now turn to a series of simple vector-like models

of superconformal flavor whose anomalous dimensions may be calculated using a-

maximization. We will begin with models where the superconformal sector consists

of an SU(N) gauge group, adjoint superfield A, and some number of fundamental

and antifundamental flavors. In [141] it was claimed that such models are incapable

of generating a sufficient flavor hierarchy before hitting a Landau pole in g5. We will

find, to the contrary, that in many cases the Landau poles are sufficiently remote once

the contributions from SCFT states to βg5 are correctly accounted for.3

5.4.1 SQCD with an adjoint

Before focusing on specific models of superconformal flavor, it is worthwhile to review

a few useful facts aboutN = 1 supersymmetric SU(N) QCD with F (anti)fundamental

flavors Q (Q̃) and a single adjoint chiral superfield A. The theory with a polynomial

superpotential for the adjoint was first studied extensively in [117–119], and later

re-examined using a-maximization [120]. The dynamics of the theory are rendered

3Following correspondence with the authors of [141], their results have been revised to agree with
those found here.
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fairly simple by the addition of a simple superpotential for the adjoint of the form

W =
s0

k + 1
Tr Ak+1 (5.4.1)

Such theories possess and SU(F ) × SU(F ) × U(1)B × U(1)R global symmetry; the

transformation properties of Q, Q̃, and A under the gauge and global symmetries are

shown in Table 5.1.

Table 5.1: Transformation properties of matter fields in SQCD with an adjoint

SU(N) SU(F ) SU(F ) U(1)B U(1)R
Q � � 1 1 1− 2

k+1
N
F

Q̃ � 1 � −1 1− 2
k+1

N
F

A Adj 1 1 0 2
k+1

In general, it is often interesting to study the theory with a more general polyno-

mial superpotential,

W =
k−1∑
i=0

si
k + 1− i

Tr Ak+1−i (5.4.2)

which breaks the remaining R-symmetry for nonzero si. The adjoint superpotential

typically breaks the gauge group SU(N) → SU(r1) × ... × SU(rk) × U(1)k−1 in the

infrared.

Such theories possess stable vacua provided F ≥ N/k. In the far infrared, they may

be described in terms of a dual “magnetic” supersymmetric gauge theory consisting

of a magnetic gauge group SU(kF − N), F magnetic quarks and antiquarks q, q̃, a

magnetic adjoint a, and gauge singlets Mj ∼ Q̃Aj−1Q representing mesons of the UV

theory. Examination of the beta function for the magnetic gauge coupling reveals

that the theory is interacting at its IR fixed point provided N < 2k−1
2
F.
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5.4.2 A ten-centered model

Perhaps the simplest vector-like model of superconformal flavor with a rank-two tensor

is an SU(N) gauge theory with adjoint A and F = 10 fundamental and antifunda-

mental flavors. For simplicity, we will also assume that the term Tr A3 is marginal

at the conformal fixed point. We may embed SU(5)SM in the SU(F )×SU(F ) global

symmetry group as shown in Table 5.2.

Table 5.2: Embedding of a ten-centered model with F = 10

SU(5)SM SU(N)

Q1 +Q2 5 + 5 �
Q1 +Q2 5 + 5 �

A 1 Adj.

The (SU(N)) gauge-invariant mesons transform under SU(5) as

(Q1 +Q2)(Q1 +Q2) = 2× 24 + 2× 1 + 10 + 15 + 10 + 15 (5.4.3)

With this field content, the most general couplings involving two SCFT fields and

one Standard Model field are those incorporating the T1 and T2 fields. As such, our

marginal superpotential terms at the conformal fixed point are

W = T1Q1Q2 + T2Q1AQ2 + A3 (5.4.4)

For the theory with k = 2 and F = 10, we require N < 15 for the theory to

be interacting at the fixed point and N < 20 to have stable vacua. We will also

find RT2 > 2/3 only for N > 10, which gives us a window 10 < N < 15 for this

particular theory. By assumption, the β function for the SU(N) gauge coupling

vanishes at the fixed point, and the above operators are held to be marginal. The R

charges, and hence the scaling dimensions, of the Standard Model fields T1, T2 may

then be computed via a-maximization, the numerical results of which are reserved

for Table C.1 in Appendix C. We find that several mesons are free fields at the fixed
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point: Q1Q2, Q1Q1, Q2Q2, and Q1Q2. Of these, only the 15 of the last meson needs

to be accounted for in the a-maximization procedure, since the 10 component is set

to zero in the chiral ring due to the superpotential couplings with T1.

For N = 11, 12, the R-charges of SM fields are too small to generate the observed

flavor hierarchy over any range of running. However, the theories with N = 13, 14

work beautifully. In both cases, a sufficient flavor hierarchy may be generated before

g5 hits a Landau pole. In order for this to work, it is crucial to correctly account for

the effects of the mesons Q1Q2, Q1Q1, Q2Q2, and Q1Q2 going free when computing

their contribution to β(g5). Thus we find that SU(N) SQCD with an adjoint and

F = 10 fundamental flavors provides a suitable model of superconformal flavor.

It is tempting to consider the same theory with marginal operator Tr A4 at the

conformal fixed point. For such a theory, we require N < 25 in order to be interacting

andN < 30 for stability. We also find that T2 violates the unitarity bound forN < 12,

so we are interested in values 11 < N < 25. The constraints on R-charges and results

of a-maximization are reserved for Table C.2. For sufficiently large N – specifically,

for 21 ≤ N ≤ 24 – a sufficient flavor hierarchy may be generated before g5 hits a

Landau pole.

5.4.3 A more democratic model

Although ten-centered models capture much of the essential features of the flavor

hierarchy, it is worth exploring whether a more complete hierarchy may be generated

by coupling the SCFT to both Ti and F̄i fields of the Standard Model. Extending our

SU(N) model to accommodate couplings to additional Standard Model representa-

tions is fairly simple; it requires only enlarging the flavor symmetry to F > 10. The

simplest such model involves F = 11 fundamental and antifundamental flavors of the

SCFT. The matter content and transformation properties under SU(5)SM are shown

in Table 5.4.3.

Naturally, there is a significant increase in the number of SU(N) gauge invariants

transforming nontrivially under SU(5):

(Q1+Q2+Q0)(Q1+Q2+Q0) = 2×24+3×1+10+15+10+15+2×5+2×5 (5.4.5)
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Table 5.3: Matter content for SU(N) theory with F = 11

SU(5)SM SU(N)

Q1 +Q2 +Q0 5 + 5 + 1 �
Q1 +Q2 +Q0 5 + 5 + 1 �

A 1 Adj.

For clarity, the transformation properties of the SU(N) gauge-invariant mesons

under SU(5) is shown in detail in Table 5.4.

Table 5.4: Meson decomposition under SU(5)

Meson SU(5) Meson SU(5)

Q1Q2 10 + 15 Q1Q0 5
Q1Q1 24 + 1 Q2Q0 5
Q2Q2 24 + 1 Q1Q0 5
Q1Q2 10 + 15 Q2Q0 5

Q0Q0 1

Many of these mesons go free at the conformal fixed point: Q1Q2, Q1Q1, Q2Q2,

Q1Q2, Q1Q0, Q2Q0, and Q0Q0. The 10 component of Q1Q2 will be set to zero in the

chiral ring, as will the 5s that couple to Standard Model matter. As for the vacua of

the theory and the range of parameters, with our customary Tr A3 deformation we

require N < 17 for the fixed point to be interacting and N ≤ 22 for stability of the

vacuum.

Our marginal couplings at the fixed point now are4

W = T1Q1Q2 + T2Q1AQ2 + F 1(Q1Q0 +Q2Q0) + F 2(Q1AQ0 +Q2AQ0) + A3(5.4.6)

The results of the a-maximization procedure are shown in Table C.3. We see that at

N = 11 all the mesons of the SCFT are exactly free, and violate the unitarity bound

4Of course, it is also now possible to couple the SCFT fields to the Higgses Hu and Hd; it is
technically natural to turn these couplings off, which we will do here for simplicity. For a discussion
of the potential complications that arise from coupling SCFT fields to Hu and Hd, see [141].
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for N > 11. So we can use our usual techniques to analyze the theory in the window

10 < N < 17. The results are fairly encouraging; for N > 13 it is possible to generate

a sufficient hierarchy for both the Ti and F i before hitting a Landau pole of SU(5).

5.4.4 Coupling to the adjoint Higgs

One way to address the potential Landau pole in the SU(5) gauge coupling is to find

other ways to reduce naive contributions from Standard Model GUT fields. Large

anomalous dimensions do precisely that; since the contribution to βg5 of a matter field

in the representation ri is proportional to T (ri)(1− γi), it’s clear that large, positive

anomalous dimensions γi can slow somewhat the progression of g5 towards its Landau

pole.

A simple way to implement this idea is to couple the superconformal sector to the

SU(5)SM adjoint Higgs field Σ responsible for breaking SU(5) → SU(3) × SU(2) ×
U(1). Such couplings are, in general, allowed by the symmetries of models considered

here, and are not unreasonable to include among the marginal interactions at the

superconformal fixed point.

Consider, e.g., the model of § 5.4.2, incorporating now additional couplings to the

adjoint Higgs Σ. The allowed interactions are now

Wint = T1Q1Q2 + T2Q1AQ2 + (Q1Q1 +Q2Q2)Σ + A3 (5.4.7)

In principle this gives two extra constraints and one extra unknown, but in fact

the two new terms are identical equations, so we still need a-maximization to solve

for the R-charges. Doing a-maximization on the A3 theory gives us only changes to

the value of b; this dramatically improves the window of running for SU(5) couplings

while preserving the nice predictions of the undeformed theory. There is a small

trade-off in that the 24 component of the linear combination Q1Q1 + Q2Q2 is now

set to zero in the chiral ring, but nonetheless the net effect is to lower b significantly

and thus render the Landau pole more remote.
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5.5 Simple models with Sp(2N)

Although it is compelling that something as simple as SU(N) SQCD with an adjoint

leads to suitable models of superconformal flavor, it’s useful to consider related models

with different gauge groups. Symplectic groups, in particular, offer more “compact”

theories of flavor, in the sense that Standard Model SU(5) may be more efficiently

embedded in their flavor symmetries.

In this section we will focus on N = 1 supersymmetric Sp(2N) gauge theory5

with 2F fundamental flavors Q and an antisymmetric tensor A.6 The IR behav-

ior of Sp(2N) theories with an antisymmetric tensor and polynomial superpotential

Tr Ak+1 was studied in detail in [100], while the theory without polynomial superpo-

tential was analyzed using a-maximization in [140]. With some malice aforethought,

we will focus here on the k = 2 superpotential with marginal operator Tr A3. This

theory is interacting in the IR provided N <
(
k − 1

2

)
F−2(k−1) and possesses stable

vacua provided N < kF . The transformation properties of the matter fields under

the relevant gauge and global symmetries is shown below in Table 5.5.

Table 5.5: Transformation properties of matter fields in Sp(2N) with an antisymmet-
ric tensor

Sp(2N) SU(2F ) U(1)R
Q � � 1− 2(N+k)

(k+1)F

A Anti. 1 2
k+1

5.5.1 A ten-centered model

As a warmup, let us begin with the simplest Sp(2N) theory: Sp(2N) with 2F = 10

flavors of fundamental quark Q and antisymmetric tensor A. This theory was treated

5Here we are choosing notation such that Sp(2) ∼ SU(2)
6The related Sp(2N) theory with symmetric tensor A, studied extensively in [121], is less suitable

for these simple models of flavor due to the different symmetry properties of the mesons QQ and
QAQ.
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in [141]; we review their results here before moving on to a more general model with

larger flavor symmetry. The embedding is shown in Table 5.6.

Table 5.6: Embedding of a ten-centered Sp(2N) model with 2F = 10

SU(5)SM Sp(2N)

Q+Q 5 + 5 �
A 1 Anti.

The mesons of the SCFT then transform under SU(5)SM as

(Q+Q)J(Q+Q) = 24 + 1 + 10 + 10 (5.5.1)

As in the SU(N) theory with F = 10, there are no 5 representations to combine

with the F i of the SM, making this a purely ten-centered model. In this case our

desired couplings to SM fields are (including the customary cubic superpotential for

the antisymmetric tensor)

W = T1QQ+ T2QAQ+ Tr A3 (5.5.2)

For k = 2 and F = 5 we require N ≤ 5 in order for the theory to possess an interacting

fixed point. We find that the gauge invariant chiral operators QQ and QQ go free in

the range of interest, while QQ and QAQ are set to zero in the chiral ring. There

are no baryons in the chiral ring of this theory, since putative baryons of an Sp(2N)

gauge theory may be expressed in terms of mesons.

The constraints and R-charges computed via a-maximization are reserved for Ta-

ble C.5 of the the Appendix. Given the constraint on N , the possible theories are

fairly proscribed. However, forN = 5 the theory generates a sufficient flavor hierarchy

over a small range of energies. Equally attractive is the remoteness of Landau poles;

the relative smallness of the additional Standard Model representations introduced

by the SCFT ensures that g5 remains perturbative many orders of magnitude above

the GUT scale.
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It is fairly straightforward to compute the R-charges for the simple extension to

the k = 3 theory with 2F = 10 flavors. The virtue of such theories is a larger window

of N for which the IR fixed point is interacting – in this case, for N ≤ 8. The lowered

R-charge of A allows the mesons QAQ and QAQ to saturate the unitarity bound as

well. For 8 ≥ N ≥ 5 the outcome is encouraging: adequate flavor hierarchy with

Landau poles far from the GUT scale.

5.5.2 A more democratic model

As before, we can consider extending the ten-centered model in §6.1 by enlarging the

flavor symmetry of the superconformal sector. In this case, the simplest generalization

is to increase the number of fundamental flavors to 2F = 12 (recalling that we need an

even number of flavors to cancel the global anomaly). As always, we may then weakly

gauge an SU(5) subgroup of the flavor symmetry. The corresponding transformation

properties of the SCFT fields are shown in Table 5.7.

Table 5.7: SU(5) embedding of a democratic Sp(2N) model with 2F = 12

SU(5)SM Sp(2N)

Q+Q+Q0 +Q0 5 + 5 + 1 + 1 �
A 1 Anti.

The enlarged flavor symmetry leads to a plethora of Sp(2N) gauge-invariant chiral

operators transforming under SU(5)SM , which we list for convenience in Table 5.8.

Table 5.8: Meson decomposition of under SU(5)

Meson SU(5) Meson SU(5)

QQ 10 QQ 10
QQ 24 + 1 QQ0 5
QQ0 5 QQ0 5
QQ0 5 Q0Q0 1
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Assuming our customary cubic superpotential term for the antisymmetric field,

the theory possesses stable vacua provided N < 12 and is at an interacting IR fixed

point provided N < 7.

The candidate marginal couplings at the conformal fixed point are thus

W = T1QQ+ T2QAQ+ F1(QQ0 +QQ0) + F2(QAQ0 +QAQ0) + Tr A3 (5.5.3)

As always, the gauge-invariant chiral operators with marginal couplings to Standard

Model states are set to zero in the chiral ring (QQ,QAQ, and the linear combinations

QQ0 +QQ0, QAQ0 +QAQ0). Of the remaining chiral operators, QQ,QQ,QQ0, QQ0,

and Q0Q0 saturate the unitarity bound and must be accounted for accordingly in the

a-maximization procedure.

The superconformal R-charge assignments for this theory are shown in Table C.7.

For N = 6 the theory produces a sufficient flavor hierarchy for both the Ti and F i

well below any potential Landau poles in g5. The k = 3 theory with 2F = 12 is

essentially identical in features, albeit with a much larger window of colors (ranging

up to N < 11 for an interacting fixed point).

5.6 Discussion

Thus far we have seen that a variety of models based on SU(N) and Sp(2N) super-

conformal gauge theories with rank-two tensor fields may give rise to the Standard

Model flavor hierarchy above the GUT scale. However, our treatment has elided

a few significant details that warrant some consideration – in particular, the effect

of Standard Model field couplings on the superconformal fixed point, as well as the

details of conformal symmetry breaking and decoupling – to which we now turn.

5.6.1 Saturating the unitarity bound

In the preceding sections, we have been interested in superpotential interactions cou-

pling Standard Model and SCFT fields of the form δW = ΦiO, where O is a gauge-

invariant chiral operator comprised of matter fields of the SCFT. Thus far we have
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treated such interactions as a small deformation away from the original superconfor-

mal fixed point of the SCFT sector, but it is worth examining whether this approxi-

mation is completely justified. It is often the case in the undeformed SCFT that the

scaling dimension of O saturates the unitarity bound, at which point an accidental

U(1) symmetry emerges to enforce RO = 2/3. When the SCFT has a dual description

in which the magnetic dual of O is a free field, we generally interpret saturation of

the unitarity bound as an indication that the field O has gone free.

The issue becomes somewhat more convoluted in the models considered here,

where O is coupled additionally to Standard Model fields Φi by marginal superpo-

tential interactions. In that case, when O hits the unitarity bound it is no longer the

case that an accidental U(1) emerges to enforce RO = 2/3, but rather RO < 2/3 is

allowed. This R charge is not in conflict with the unitarity bound, as the F term for

Φi sets O to zero in the chiral ring, so that the unitarity bound no longer pertains.

One might become concerned about whether the interaction ΦiO in this case truly

amounts to a small deformation of the superconformal fixed point, since it involves

positing a marginal interaction between a Standard Model field and an otherwise-free

operator.7

This question becomes fairly central in the models considered above, where gen-

erating an adequate flavor heirarchy before hitting a Standard Model Landau pole

requires R(O) < 2/3 (for at least one such O) in every case.8

Thankfully, the new fixed points reached by coupling Standard Model fields to the

SCFT are fairly well understood. Turning off the Standard Model gauge coupling and

Yukawa interactions reduces these models to variations on SU(N) SSQCD (analyzed

via a-maximization in [29]) and its Sp(2N) generalization. In this case, the role of

the gauge singlets of SSQCD is played by Standard Model superfields. Although our

models also differ from SSQCD by the inclusion of rank-two tensor fields, these do

not significantly modify the relevant details. To understand the fixed point in detail,

7We thank Dan Green for an extensive discussion of this point. For further discussion, see
also [31].

8Indeed, the only viable vector-like model of superconformal flavor that does not require R(O) <
2/3 for some O is the Sp(2N) theory with no polynomial superpotential for A, studied in [141].
However, this theory requires significantly more decades of running above the decoupling scale Λ∗,
and may not fit between MGUT and MPl.
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let us review the results of [29]. Consider SU(N) SQCD with F flavors Qi, Q̃i and F ′

additional flavors Q′
i′ , Q̃

′
i′ , as well as F ′2 singlets Si

′j′ with superpotential coupling

W = hSi
′j′Q′

i′Q̃
′
j′ (5.6.1)

For h = 0, the IR fixed point is simply that of SQCD with F + F ′ flavors, which

we know to have an interacting fixed point for 3N/2 < F + F ′ < 3N . Turning on

h→ h∗ 6= 0 amounts to a relevant deformation driving the theory to a new family of

SCFTs in the IR, of which the usual fixed points of SQCD are special cases.

The fixed point may also be described by a dual SU(F + F ′ − N) gauge theory.

In the dual theory, the interaction (5.6.1) corresponds to a mass term for the singlets

S and the mesons M ′ ∼ Q′Q̃′, which may be integrated out. The remaining matter

content at the fixed point consists of F flavors of magnetic quarks q′, q̃′; F ′ flavors q, q̃;

an SU(F )× SU(F ) bifundamental meson Mij, and SU(F )× SU(F ′) bifundamental

mesons Pij′ , P
′
ij′ with superpotential interaction

W = Mq′q̃′ + Pq′q̃ + P ′q̃′q (5.6.2)

The duality map for various gauge-invariant operators is

QQ̃→M, S → −qq̃, QQ̃′ → P, Q′Q̃→ P ′, QrQ′N−r → q′F−rqF
′−N+r(5.6.3)

Significantly, although M ′ and S have been integrated out of the dual theory, there

remains a gauge-invariant chiral operator (identified with −qq̃) that has the same

quantum numbers as the original singlets S.

Both the original theory and its dual share a SU(F )L × SU(F )R × SU(F ′)L ×
SU(F ′)R×U(1)B ×U(1)B′ ×U(1)F ×U(1)R0 flavor symmetry; the axial SU(F +F ′)

flavor symmetry is broken to SU(F )×SU(F ′)×U(1)F by h 6= 0. The R charges may

be determined in the original theory by carrying out the a-maximization procedure

subject to the constraints

N + F (R(Q)− 1) + F ′(R(Q′)− 1) = 0, R(S) + 2R(Q′) = 2 (5.6.4)
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It’s clear that the R charge of Q will differ from that of Q′; this is because the R-

symmetry can mix with the U(1)F flavor symmetry, under which Q,Q′ have opposite

charges. Significantly, this implies in the original theory that R(S) = 2 − 2R(Q′),

irrespective of whether Q′Q̃′ violates the unitarity bound. The duality map relates

these R charges to those of the dual theory, such that

2R(Q) = R(M), R(S) = 2R(q), R(Q) +R(Q′) = R(P ) (5.6.5)

In this case, the duality map implies 2R(q) = 2− 2R(Q′), so that the gauge invariant

operator qq̃ inherits the R charge and scaling dimension of the singlets S.

Having established the duality map, it is fairly straightforward to understand the

results of a-maximization in both the original theory and its dual. For fixed F ′/F,

as N/F is increased the theory goes successively through the phases: free electric

fixed point; interacting fixed point with no mesons free; interacting fixed point with

only M = QQ̃ free; free magnetic fixed point. The meson M ′ does not appear in

the phase diagram, as it has been set to zero in the chiral ring by FS in the original

theory, and equivalently has been integrated out in the dual theory. Nonetheless, in

the original theory the field S gains a large anomalous dimension from its coupling to

M ′ = Q′Q̃′, while in the dual theory the same anomalous dimension is developed by

the dual gauge-invariant operator −qq̃. These results hold whether or not M ′ = Q′Q̃′

appears to violate the unitarity bound.

In terms of the models considered in Sections 4 and 5, the results are entirely

analogous, although the Standard Model fields Φi transform under different represen-

tations of the flavor symmetry than the flavor bifundamental S of SSQCD. In terms

of the original variables, an interaction ΦiO sets O to zero in the chiral ring and fixes

R(Φi) = 2 − R(O) irrespective of whether O violates the unitarity bound. In terms

of dual variables, Φi and O are integrated out, but there is a gauge invariant chiral

operator Φ̃i with the same quantum numbers and R charge as the original Φi. In

this case, the low energy Standard Model degrees of freedom may be thought of as

composites of the dual gauge group. Thus there appears to be nothing inconsistent

about generating the flavor hierarchy by coupling Standard Model fields to SCFT
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operators that go free at the undeformed superconformal fixed point.

5.6.2 Decoupling

Thus far we have remained agnostic about what happens at and below the scale Λ∗

at which conformality is broken and the theory flows away from its conformal fixed

point. It certainly is necessary to decouple the SCFT fields carrying Standard Model

charges, lest they come into conflict with observational limits on charged exotics.

Thankfully, this may be accomplished easily in vector-like models simply by giving a

vector mass to the fundamental quarks and antiquarks of the SCFT sector.

There are a variety of controlled ways of breaking conformal invariance. Perhaps

the most typical way involves turning on vector masses for some or all flavors of

fundamental matter at a scale mQ ∼ Λ∗, so that the theory no longer has enough

flavors to remain conformal. Determining the correct IR degrees of freedom after

conformal symmetry breaking is a fairly delicate matter; for a detailed discussion, see

Appendix B of [141].

An alternative is to include a mass mA ∼ Λ∗ for the rank-two tensor A, along the

lines of [148]. Below the scalemA, Amay be integrated out, leaving SQCD (or possibly

a product group of SQCD theories, in the event that the vev of A breaks the original

gauge group) with too few flavors to remain conformal. Thus the theory flows to a

free fixed point that may be described in terms of the dual SQCD degrees of freedom.

Breaking conformality in this fashion raises the possibility that the remaining degrees

of freedom may break supersymmetry as in [103], although remaining matter charged

under the Standard Model must still be decoupled in a controlled fashion.

5.7 Conclusion

The pattern of Standard Model flavor poses a considerable puzzle to theoretical

physics; both the replication and hierarchy of fermion masses are without obvious

explanation. It is exciting that a superconformal sector coupled to the Standard
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Model may generate the observed fermion mass hierarchy from complete flavor anar-

chy over just a few decades in energy. Such a scenario, moreover, may not be entirely

fantastic; many ultraviolet completions of the Standard Model give rise to additional

gauge groups with bifundamental matter at high energies. If vector-like, these sec-

tors may gracefully decouple at low energies and remain consistent with observational

constraints.

When supersymmetric, these sectors have the virtue of calculability thanks to su-

perconformal symmetry and the a-maximization procedure. As such, we may subject

them to straightforward tests of consistency. Here we have found that simple theories

of both SU(N) and Sp(2N) with fundamental matter and a rank-2 tensor field are

capable of producing the observed flavor hierarchy before the unified Standard Model

gauge coupling hits a Landau pole. Using these results, we have constructed both

ten-centered and democratic models of superconformal flavor. It seems that a variety

of potential models are viable, over a full range of tan β. The challenge now rests in

determining which, if any, such models may be realized in nature. Although mod-

els operating above the GUT scale are advantageous from the perspective of proton

decay and other potentially dangerous baryon number violation, they are generally

too remote to yield distinct experimental signatures beyond the observed Yukawa

textures. It would be amusing to see if such models may be lowered to accessible

energies without running afoul of observational bounds.

Much progress has been made in recent years towards understanding calculable

supersymmetry breaking in vector-like gauge theories, beginning with [103]. Super-

symmetry breaking vacua have been found in SU(N) theories with fundamental and

adjoint matter [9, 46], making it natural to consider whether both superconformal

flavor and supersymmetry breaking may emerge from the same dynamics. The re-

sulting correlations between the patterns of fermion and sfermion flavor may hold the

key to explaining the small amount of observed flavor violation, as well as provide

indications of the superconformal dynamics in the far ultraviolet.

Note added upon completion: After this work was completed, correspondence
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with the authors of [141] revealed that the discrepancy in results regarding the viabil-

ity of SU(N) theories with an adjoint arose from incorrect values of b in the original

version of [141]. Their values and conclusions have subsequently been revised and

found to agree with those appearing in Section 4.



Appendix A

Various goldstini variations

A.1 Modulini masses from Supergravity

In order to calculate SUGRA effects on the ISS model we study a slightly more

general case of the theory detailed in Section 3.4. We start with superfields Xi with

superpotential

W = W0 + faXa (A.1.1)

and Kähler potential

K = XaX
†
a? +

1

|µ|2
Aab?cd?XaX

†
b?XcX

†
d? , (A.1.2)

from which we may define the modified Kähler potential

G =
K

M2
P

+ log
W

M3
P

+ log
W ?

M3
P

(A.1.3)

and field derivatives as Ga = ∂aG, Gab? = ∂a∂b?G with ∂a = MP
∂

∂Xa
. For a modified

Kähler potential of this form, then, once the goldstino direction has been rotated

away, the fermion mass matrix is given as [27]:

mab = m3/2〈∇aGb +
1

3
GaGb〉 (A.1.4)

144
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where ∇aGb = ∂aGb − ΓcabGc. The Christoffel connection, Γ, is of crucial importance

as it encodes the effects of Aab?cd? . Now considering the leading terms in the fermion

mass matrix under the assumption that
√
f ∼ µ�MP one finds:

mab = m3/2

(
−2

3

fafbM
2
P

W 2
0

− M2
P

W0|µ|2
δcd

?

A(ad?bl?)fc〈X†
l?〉
)

(A.1.5)

where A(ad?bl?) has been symmetrized over pairs of holomorphic indices.1 At this stage

it is appropriate to pause and consider the validity of this result. Throughout we have

assumed that as
√
f ∼ µ � MP then 〈X〉 � MP and W0 � M3

P . It may seem that

if one takes the limit A → 0 then mab ∝ fafb which is a rank one matrix with only

one non-zero eigenvalue. However taking this limit means that the scalar fields are

no longer stabilised near the origin and the derivation of this result is no longer valid.

Also it would appear from this result that the fermion mass matrix depends on the

parameter µ; however we will see that 〈X〉 ∼ |µ|2/MP and this dependence drops

out. Again, this independence only necessarily holds in the limit µ�MP .

Now considering the scalar potential V = M4
P e

G(GaG
a − 3) one finds that for

vanishing cosmological constant

W0 = MP

√
fafa

3
=

1√
3
feffMP (A.1.6)

and at the minimum of the scalar potential

〈X†
l?〉 = −2|µ|2W0

M2
P

fk(A(ab?kl?)fafb?)
−1 (A.1.7)

where (Mkl?)
−1 is understood as the standard matrix inverse. With these results in

hand we can now write a general formula for the modulini mass matrix

mab = 2m3/2

(
A(ad?bl?)(A(ij?kl?)fifj?)−1fd?fk −

fafb
f 2
eff

)
. (A.1.8)

This equation is valid up to corrections of the order δm ∼ m3/2|µ|2/M2
P . The extension

1By this we mean A(ad?bl?) = Aad?bl? + Abd?al? + Aal?bd? + Abl?ad? .
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of this formula to one for matrix-valued fields can be found by replacing individual

indices with pairs, i.e. {a} → {ab}. At first Eq.(A.1.8) may appear rather opaque,

however one important property can be observed by inspection. As described in [27]

once the goldstino direction has been rotated away one expects that Gamab = 0. This

is clear from Eq.(A.1.4) when one enforces the condition of vanishing cosmological

constant and that the fields are at the minimum of the potential. At the level of

Eq.(A.1.8) one can see that this result also holds for any form of Aab?cd? as famab =

fb − fb = 0 by inspection.

A.2 Masses to all orders in f

As described in Section 3.4.1 the effective Kähler potential only includes corrections

to second order in the SUSY breaking F-terms. To include higher order corrections at

the level of the Kähler potential would require including higher order supercovariant

derivatives. Therefore it is more straightforward to calculate the modulini masses

to all orders in the F-terms by explicitly evaluating the loop diagram involving the

exchange of scalar and fermionic partners of the heavy fields. In this manner the

effects of SUGRA, and consequent R-symmetry breaking, are included by allowing

for a non-zero vacuum expectation value for the fields which break SUSY. This vev

can be calculated to all orders in the F-terms by including the tadpole term induced

by SUGRA and calculating the scalar masses with the Coleman-Weinberg potential.

Evaluating the one-loop contribution to the modulini masses using the masses and

couplings in Eq.(3.4.5), and setting h = 1 for convenience, one finds

mab,cd = 2m3/2

(
1

2

(
H(fa)

H(fb)
+
H(fb)

H(fa)

)
δadδbc −

fafc
f 2
eff

δabδcd

)
(A.2.1)

where

H(f) =

Nf−Nc∑
i=1

h(f, µ̃2
0i

) (A.2.2)
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and

h(f, µ2) =
1

f 2

(
2fµ2 + 2fµ2 log

(
µ4

µ4 − f 2

)
+ (µ4 + f 2) log

(
µ2 − f

µ2 + f

))
(A.2.3)

Here µ̃0i
≥
√
f is the SUSY mass of the fields which have been integrated out. One can

see that all dependence on the UV cut-off has cancelled and the masses are finite. The

goldstini from the diagonal components of Φ still have mass 2m3/2 and the modulini

from the off-diagonal components have mass ≥ 2m3/2, limiting to 2m3/2 when the

F-terms are equal, as before. Therefore the results derived using the effective Kähler

potential in Section 3.4.1 are qualitatively the same as those one finds when including

the F-terms to all orders.

A.3 Decay widths

Starting with Eq.(3.5.1) we derive the decay width to multiple goldstini under the

assumption that all but one messenger scales are the same. We take the first N − 1

messenger scales equal to
√
xΛ and the N th messenger scale as Λ. Using this, the

orthogonality of Via, the fact that VNi = fi/feff and that
∑

i fiVi,a 6=N = 0 we can

simplify the sum over squares of the couplings:

N−1∑
a=1

|Ca|2 =
N−1∑
a=1

∣∣∣∣∣
N∑
i=1

fiVia
Λ2
i

∣∣∣∣∣
2

=
N−1∑
a=1

(x− 1)2f 2
N

x2Λ4
VNaV

T
aN

=
(x− 1)2f 2

N

x2Λ4

f 2
eff − f 2

N

f 2
eff

(A.3.1)

Thus we have

Γφ†→ζψ ' mφ

16π

(
(x− 1)fN

xΛ2

)2 f 2
eff − f 2

N

f 2
eff

(A.3.2)
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For decays to the gravitino similar steps lead to

|CN |2 =

(
f 2
eff − (1− x)f 2

N

xΛ2feff

)2

(A.3.3)

and

Γφ†→Gψ ' mφ

16π

(
f 2
eff − (1− x)f 2

N

xΛ2feff

)2

(A.3.4)

These results make no assumptions about the relative magnitudes of the various F-

terms and therefore hold if there are multiple SUSY breaking sectors and all but one

mediate SUSY breaking to the SSM in the same way. If all mediation sectors are the

same this corresponds to the limit x→ 1.



Appendix B

Constraints on single-sector flavor

B.1 Constraints from Flavor Changing Neutral Cur-

rents

As is often the case with theories of supersymmetry breaking, the sfermion mass

matrix is generally not diagonal in the same basis as the fermion mass matrix. The

GIM mechanism does not operate for such general squark masses, leading to poten-

tial flavor-changing neutral currents in conflict with experimental bounds. In order

to make meaningful contact with experimental limits, we will parametrize the contri-

butions to flavor changing neutral currents (FCNCs) following [74].

In the single-sector models under consideration, the Yukawa matrices λu, λd, λe are

generated at the scale Mflavor with textures (4.1.2) dictated by the scaling dimensions

of different composite states (in the case of the first two generations) or elementary

states (in the case of the third generation) of the UV theory. When supersymmetry

is broken, the squarks and sleptons of the first two generations may acquire SUSY-

breaking soft masses directly, while all three generations acquire universal SUSY-

breaking soft masses from gauge mediation. Barring additional superpotential terms

mixing the mesons of the magnetic theory, these soft masses are all diagonal in the

same basis as the non-diagonal Yukawa textures (4.1.2).

To reach the physical mass eigenbasis, the fermion mass matrices Mu = vuλu,

149
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Md = vdλd, and M e = vdλe may be diagonalized by bi-unitary transformations

V u
LM

uV u†
R = DuV d

LM
dV d†

R = DdV e
LM

eV e†
R = De (B.1.1)

where, e.g., Du = diag{mu,mc,mt}. Likewise, we may write the 6 × 6 squark mass

matrices M̃u2, M̃d2, M̃ e2 as

M̃x2 =

(
M̃x2

LL M̃x2
LR

M̃x2
RL M̃x2

RR

)
(B.1.2)

where x = u, d, e and, for example, M̃u2
LL is the soft mass matrix for the squarks uL

coming from the doublets Q, while uR are those coming from the singlets ū. Both

M̃x2
LL and M̃x2

RR are Hermitian and come directly from soft masses, while M̃x2
LR and M̃x2

RL

come from the trilinear A-terms. We will henceforth concentrate on the case where

A terms are vanishingly small at the SUSY-breaking scale (they will be regenerated

by RG flow, but still suppressed by a loop factor), so that M̃x2
LL and M̃x2

RR are the

quantities of interest. For simplicity, we will also assume that M̃x2
LL and M̃x2

RR are

identical.

Although the sfermion mass matrices M̃x2
LL, M̃

x2
RR are generated without off-diagonal

elements, the transformation to the fermion mass eigenbasis (B.1.2) also rotates the

sfermions and produces mass mixings between different generations of order

(δM̃x2
MN)ij =

(
V x
MM̃

x2
MNV

x†
N

)
ij

(B.1.3)

where the M,N refer to L and R. In the case where the off-diagonal terms in M̃ q2
LL and

M̃ q2
RR are smaller than the diagonal ones (as they are in the models of interest) and

the V x
L,R are close to the identity, it is conventional to parameterize FCNC constraints

via bounds on the dimensionless quantities

(δxMN)ij =

(
V x
MM̃

x2
MNV

x†
N

)
ij√(

V x
MM̃

x2
MNV

x†
N

)
ii

(
V x
MM̃

x2
MNV

x†
N

)
jj

. (B.1.4)
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The δij thus measure the relative size of the off-diagonal components in the sfermion

mass matrices in a basis where the fermion mass matrices are diagonal. They can

be constrained from measurements of e.g. K0 − K̄0 or D0 − D̄0 mixing and the rare

decays µ→ eγ and b→ sγ.

B.1.1 Constraints on single-sector models

Relatively careful constraints on the sparticle spectrum may be placed on single-sector

theories such as those considered here, owing to the fact that the Yukawa textures and

soft masses are both specified by the dynamics. This allows the degree of alignment

between fermion and sfermion masses to be quantified, thereby ameliorating more

conservative bounds on arbitrary mass matrices. Here we will place bounds on first-

and second-generation sfermion masses for flavor models involving a Yukawa texture of

the form (4.1.2). These constraints are germane to the single-sector models developed

above, but also pertain to other flavor models with similar textures.

Constraints for FCNCs are by far the strongest on the down quark sector, owing

to relatively tight limits on the KL − KS mass difference. As such, we will focus

here on bounds arising from the down sector, under the assumption that the sfermion

masses in all three sectors will be approximately similar; bounds on the up quark and

lepton sector provide considerably weaker constraints on the soft spectrum.

For simplicity, we consider a Yukawa texture of the form

λd '


ε4 2ε3 1

4
ε2

2ε3 3ε2 ε
1
4
ε2 ε 1

4

 , (B.1.5)

where we have chosen the numerical coefficients to give us nonzero eigenvalues ap-

proximately reproducing the down-sector quark masses when ε ∼ 0.1, tan β ∼ 14,

and v = 246 GeV. This gives us down, strange, and bottom masses 3 MeV, 152 MeV,

and 5 GeV, which are close to reality and give realistic FCNC bounds. Naturalness

dictates that the stop mass lie around 1-2 TeV, which sets the scale of gauge-mediated

contributions to all three generations (realistically, the longevity of the metastable
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SUSY breaking vacuum requires the stop mass at the high scale to be not much less

than ∼ 3 TeV). When this is the only source of SUSY breaking, (B.1.4) is always di-

agonal and SUSY FCNCs are negligible. However, in addition to the gauge-mediated

contribution, the first and second generation squarks and sleptons may obtain addi-

tional soft masses directly from SUSY-breaking, leading to an inverse hierarchy. The

size of additional contributions to the soft masses mf̃1
,mf̃2

of the first two generations

is then constrained by FCNCs.

The FCNC constraints are strongest for the parameter (δd)12, which parameterizes

mixing of the first and second generation down-type squarks and is constrained by

K0 − K̄0 mixing; the bound is approximately (δd)12 ≤ 2.5 × 10−3

√
mf̃1

mf̃2

500
for m2

g̃ '
0.3mf̃1

mf̃2
(and weakens with increasing gluino mass). The constraints on first- and

second-generation mixing in the up quark sector from D0− D̄0 are weaker by roughly

a factor of 2, while the constraints on the lepton sector from µ→ eγ are weaker still.

We may also constrain the matrix elements δd13 from B0 − B̄0 mixing and δd23 from

the rare process b→ sγ, though again these constraints prove far weaker than those

arising from K0 − K̄0 mixing.

B.1.2 Constraints from K0 − K̄0

In order to constrain the possible values of mf̃1
and mf̃2

via the parameters (δdLL)12

and (δdRR)12, we can compute their contribution to the KL − KS mass difference

∆mK . This difference has been measured within excellent precision to be very nearly

∆mK = (3.483± 0.006)× 10−12 MeV [10]. There are Standard Model contributions

to this quantity that parametrically fall within the measured value, but depend on

hadronic uncertainties to an extent that the full contribution is unknown. Thus we can

take as our constraint the requirement that our contribution to ∆mK does not exceed

(in magnitude) the measured value. We can extract the contribution to ∆mK from

squark mixing from [74]. These contributions depend on the gluino mass mg̃ and the

squark masses mf̃1
,mf̃2

via the mixings (δdMN)12 for M,N = L,R. We will assume in

our case that the LR and RL contributions are negligible and that δLL ' δRR, which

is fairly accurate even when the Yukawa matrices are not entirely symmetric. This
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leads to by far the strongest constraints on the sfermion mass spectrum, as shown in

Fig. B.1.

B.1.3 Constraints from other processes: B0 − B̄0, D0 − D̄0,

b→ sγ, and µ→ eγ

The mixings (δdMN)13 may similarly be constrained by B0 − B̄0 mixing from their

contribution to ∆mB = (3.337±0.033)×10−10 MeV [10]. The calculation is essentially

identical to that of the previous case, with the replacements mK → mB, ms → mb,

fK → fB, and mf̃2
→ mf̃3

. The resulting constraint is much weaker than that from

K0 − K̄0.

We may constrain mixing between the second and third generations via the rare

decay b→ sγ, using the gluino-mediated contribution in [74]. In this case, we require

that our contribution not exceed the measured branching ratio BR(b→ sγ) = (3.52±
0.23±0.09)×10−4 [28]. The branching ratio is a strong function of squark mass, and

is satisfied readily for squark masses above 1 TeV.

Although we have focused here on the down sector, similar constraints on (δu)12

and (δe)12 arise from D0−D̄0 mixing and the rare decay µ→ eγ, respectively. Assum-

ing the soft masses for all three sectors are parametrically similar, these constraints

are generally weaker than those considered above, so we do not show them explicitly.

B.1.4 Constraints from tachyonic stop mass

Finally, we can take into account the upper bound placed on squark masses by the

desire for a positive stop mass at the weak scale. As noted in [18], overly large masses

for the first and second-generation squarks can drive the stop mass negative via their

two-loop contribution to the stop mass RG. We can place a conservative bound on

the masses of first- and second-generation squarks by just considering the interplay

between one-loop gaugino contributions and two-loop squark contributions to the

stop soft mass. In particular, we will ignore the contribution from the top Yukawa,

which can drive the stop mass more negative. We will also ignore the running of the

first and second generation squark masses, which is (verifiably) negligible. In this
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simplified case, we can solve the RGE for the stop mass analytically to find [18]

m2
t̃ (µ) ' m2

t̃ (Λ) +
∑
i

2

bi
(M2

i (Λ)−M2
i (µ))C t̃

i

−32m̃2
1,2

∑
i

1

2bi

(
gi(Λ)2

16π2
− gi(µ

′)2

16π2

)
C t̃
i (B.1.6)

where t̃ can refer to t̃L or t̃R with appropriate choice of Casimirs (the stronger bound

is on t̃L), i = 1, 2, 3, bi and Ci are the usual GUT-normalized β function parameters

and Casimirs respectively, m̃2
1,2 are the mean squark masses, µ is the low scale (taken

to be 1 TeV), µ′ is the scale where the heavy squarks decouple (taken to be 10 TeV),

and Λ is the scale where SUSY is broken and RG flow commences (taken to be 100

TeV). We also take Mi = g2
iM0, where M0 ∼ µφ is the unified gaugino mass.

We may use the running of the stop mass to place two potential constraints on the

masses of first- and second-generation sfermions. A weak constraint is the requirement

that the stop retain a positive mass-squared at the weak scale; a stronger constraint

is that the stop mass remain large enough at the weak scale to lift the Higgs mass

above LEP limits. Aspects of both constraints are shown in Fig. B.1.

B.2 Unification

As is often the case for theories involving additional multiplets charged under the

Standard Model, it is natural to consider whether the perturbative unification of Stan-

dard Model gauge couplings may be preserved and low-scale Landau poles avoided.

Indeed, many models of metastable SUSY breaking suffer from the ubiquitous intermediate-

scale Landau pole for the Standard Model gauge group. However, here it may be

marginally possible to achieve unification at the GUT scale ∼ 1016 GeV.

Here we briefly recall the standard analysis of how extra SU(5) multiplets affect

the running of the gauge coupling. The relevant formula, found in e.g. §2 of [79], is

that

δαGUT
−1 = −N

2π
log

(
MGUT

M

)
(B.2.1)
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Figure B.1: Constraints on first and second generation sfermion masses. Light gray
region ruled out by K− K̄-mixing. (a) Dark gray region ruled out by tachyonic stops
at the weak scale (mt̃(1 TeV) < 0). We assumed mg̃ = 500 GeV, mt̃(100 TeV) = 1
TeV. Note that the stop mass constraint disappears completely for the mf̃1

and mf̃2

mass range shown when mt̃(100 TeV) ∼ 3 TeV, which is roughly the expected value
in the models under consideration. (b) Dark gray region ruled out by stops being
too light at the weak scale to give a Higgs mass above LEP limits (mt̃(1 TeV) <
1000 GeV, assuming trilinear coupling is negligible). We assumed mg̃ = 500 GeV,
mt̃(100 TeV) = 1.6 TeV.

where

N =
K∑
i=1

ni (B.2.2)

is the sum of the Dynkin indices ni of the K extra SU(5)-charged matter multiplets.

So each 5 or 5̄ contributes 1 to the sum, each 10 contributes 3, each 15 contributes

7, and each 24 contributes 10.

The 4× (5 + 5) messengers we have at the ∼ 100 TeV scale, in our “best” models,

is a safe number to preserve perturbativity of αGUT, in absence of additional SU(5)

charges at higher scales below MGUT. However, we have a large amount of additional

matter at the scales Λ2/Λ0 and λΛ. Even under the assumption that Λ ∼ MGUT

and we can ignore running due to the latter, the states at Λ2/Λ0 will contribute a
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total Dynkin index given by summing over the representations in brackets in (4.4.7),

multiplied by 2 (to include the “spectators” they pair with). The total N just from

(4.4.7) is 40, and makes it somewhat challenging to achieve unification before hitting

a Landau pole, unless one pushes Λ0 dangerously close to MGUT or a larger Yukawa

coupling is used.

It is important to remark that the non-spectator extra states are composites, which

will in fact deconfine around the scale Λ. Such composites will clearly contribute

differently to running at energies > Λ (where we should use the electric description

and count electric quark messengers), and it is conceivable that in some models this

would vitiate the large threshold from encountering this plethora of states – this has

played a crucial role in the ideas of [4, 5]. However, in our concrete models even the

electric “messenger index” would be quite large. In addition, the precise contribution

in the energy regime around Λ ∼MGUT does not seem easily calculable, and is naively

quite significant. Thus, although in our construction we have suceeded in pushing the

Landau pole to very high scales, comparable to MGUT, it would also be interesting to

find models where this problem is completely solved – perhaps along the lines of [4,5].

B.3 Models with less extra matter

Generically, the class of models discussed in this paper exhibit a proliferation of

charged matter coming from X and XU . On one hand, this fact is an aesthetic

nuisance since the corresponding masses, arising from cubic couplings in the electric

theory, are naturally close to the high compositeness scale Λ. More importantly, as

discussed in Appendix B, these states affect the RG running at very high energies,

making perturbative unification challenging. In addition, the models contain a large

number of messengers in the (ρ, ZU) sector. These fields have masses ∼ 100 TeV,

and thus affect the running of couplings more dramatically. In certain cases, like the

one in §4.2.2 and the two composite generation example in [72], these states lead to

Landau poles below the GUT scale.

Throughout the paper, we have adopted SU(5) notation, mainly as a practical way

of simplifying the group theory calculations, with the understanding that SU(3)C ×
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SU(2)L × U(1)Y quantum numbers could be easily re-introduced at any step. In the

absence of Landau poles, a physical consequence of the entire field content (except

the two light Higgs doublets) fitting into SU(5) representations is unification. In this

section we explore what happens if we build models dropping the SU(5) condition.

We will see that both the amount of extra matter in X and XU and the number of

messengers is substantially reduced. We illustrate our ideas with the adjoint model

of §4.3. The minimal model corresponds to taking Nc = 15, Nf = 8 and embedding

the SU(3)C × SU(2)L × U(1)Y into SU(8) according to

Q ∼ [(3,1)x−1/3 + (1,2)x−1/2 + (1,1)x−1 + (1,1)x] + (1,1)0

Q̃ ∼ [(3̄,1)1/3−x + (1,2)1/2−x + (1,1)1−x + (1,1)−x] + (1,1)0

(B.3.1)

There is a one parameter family of possible hypercharge assignments. X and XU

decompose as

(
(3,2)1/6 + (3̄,1)1/3 + (3,1)−2/3 + (1,2)−1/2 + (1,1)1

)
+
[
(8,1)0 + (3̄,2)−1/6 + (3,1)2/3 + (3,1)−1/3 + (1,3)0

+ 2× (1,2)1/2 + (1,2)−1/2 + (1,1)1 + 4× (1,1)0

] (B.3.2)

namely, a full Standard Model generation plus additional matter, shown in square

brackets. We see that the amount of extra matter in X and XU has been reduced to

less than a third of that in (4.4.7). x naturally drops out from (B.3.2), since it comes

with opposite signs in the corresponding Q and Q̃ entries.

Let us now focus on the messengers coming from the (ρ, ZU) sector. Their hyper-

charges do depend on the value of x. Interestingly, setting x = 0 we can form a 5 of

SU(5) by combining the (3,1)1/3 from ρ̃ and the (1,2)−1/2 from ρ (and similarly for

5̄ and ZU and Z̃U). In this case, the messengers become

2× [(5 + 5̄) + ((1,1)1 + (1,1)−1) + 2× (1,1)0] (B.3.3)

where we have used a hybrid SU(5)-Standard Model notation to emphasize that the

entire low energy spectrum is in full SU(5) representations modulo two Y = ±1 pairs.

The number of charged messengers is also reduced, by approximately a 1/2 factor,
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with respect to the example in §4.3, pushing Landau poles to much higher energies

than the ones discussed in Appendix B.2.



Appendix C

R-charges for Superconformal

Flavor

Here we present the results of the a-maximization procedure applied to the various

models considered earlier. The constraints relating various R charges arise from

(a) the posited marginal interactions contained in the superpotential, and (b) the

vanishing of the ABJ anomaly for the superconformal U(1)R, which corresponds to

the vanishing of β at the superconformal fixed point.

We subject the models under consideration to a fairly simple criterion: that they

generate an adequate flavor hierarchy over the range Λ∗ < µ < Λ smaller than the

hierarchy Λ∗ < µ < ΛL between decoupling and the Landau pole for g5. For all models

we compute ΛL/Λ∗ assuming Standard Model field content, an additional SU(5)SM

adjoint Higgs Σ, and the field content of the superconformal sector. For ten-centered

models, we compare this to the ratio Λ/Λ∗ required to get within a factor of 3 of

the observed hierarchy in up-type quark masses. For democratic models, we compare

this to both the ratio ΛT/Λ∗ required to get within a factor of 3 of the up-type quark

hierarchy, and the ratio ΛF/Λ∗ required to get within a factor of 3 of the lepton mass

hierarchy for tan β = 10.

159
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C.0.1 SU(N) with F = 10 and A3 superpotential

The R charges for this theory are constrained by the posited marginal operators and

anomalies to obey

2 = RT1 +RQ1
+RQ2

(C.0.1)

2 = RT2 +RQ1
+RQ2

+RA

2 = 3RA

0 = N +
5

2
(RQ1 − 1) +

5

2
(RQ2 − 1) +

5

2
(RQ1

− 1) +
5

2
(RQ2

− 1) +N(RA − 1)

In the window of interest several mesons go free: Q1Q2, Q1Q1, Q2Q2, and Q1Q2. All

mesons involving A and all baryons are far from the unitarity bound. Of the free

fields, only the 15 of the Q2Q2 needs to be accounted for, since the 10 part is set to

zero in the chiral ring. The a-maximization procedure gives us the following charges:

Table C.1: R charges for SU(N) theory with F = 10 flavors and cubic adjoint
superpotential

N RT1 RT2 RQ1,2 RQ1,2
RA b ΛL

Λ∗
Λ
Λ∗

11 1.448 0.781 0.257 0.276 0.667 33.884 101.78 -
12 1.572 0.905 0.186 0.214 0.667 34.528 101.75 -
13 1.705 1.039 0.119 0.147 0.667 35.925 101.68 101.65

14 1.849 1.182 0.058 0.076 0.667 38.080 101.58 101.19

C.0.2 SU(N) with F = 10 and A4 superpotential

This theory is a fairly trivial variation of the theory in §A.1; the R charges are

constrained to obey

2 = RT1 +RQ1
+RQ2

(C.0.2)

2 = RT2 +RQ1
+RQ2

+RA

2 = 4RA

0 = N +
5

2
(RQ1 − 1) +

5

2
(RQ2 − 1) +

5

2
(RQ1

− 1) +
5

2
(RQ2

− 1) +N(RA − 1)
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In the window of interest several mesons go free: Q1Q2, Q1Q1, Q2Q2, and Q1Q2.

For N ≥ 19, we also add to the tally Q1AQ2, Q1AQ1, Q2AQ2, and Q1AQ2. At no

point do any of the baryons go free. Of the free fields, only the 15 of the Q2Q2 and

Q2AQ2 need to be accounted for, since the 10 parts are set to zero in the chiral ring.

The a-maximization procedure gives us the following charges:

Table C.2: R charges for SU(N) theory with F = 10 flavors and quartic adjoint
superpotential

N RT1 RT2 RQ1,2 RQ1,2
RA b ΛL

Λ∗
Λ
Λ∗

14 1.383 0.883 0.292 0.308 0.5 47.826 101.26 -
15 1.482 0.982 0.241 0.259 0.5 50.080 101.20 101.95

16 1.585 1.085 0.192 0.208 0.5 52.920 101.13 101.49

17 1.690 1.190 0.145 0.155 0.5 56.345 101.07 101.33

18 1.797 1.297 0.099 0.102 0.5 60.363 101.00 101.21

19 1.900 1.400 0.050 0.050 0.5 61.300 100.98 101.11

20 2.000 1.500 0.000 0.000 0.5 61.000 100.99 101.02

21 2.100 1.600 -0.050 -0.050 0.5 61.300 100.98 100.95

22 2.200 1.700 -0.100 -0.100 0.5 62.200 100.97 100.89

23 2.300 1.800 -0.150 -0.150 0.5 63.700 100.95 100.84

24 2.400 1.900 -0.200 -0.200 0.5 65.800 100.92 100.79
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C.0.3 SU(N) with F = 11 and A3 superpotential

In this case there are significantly more couplings in the superpotential. The marginal

superpotential couplings and vanishing anomalies give us conditions

2 = RT1 +RQ1
+RQ2

(C.0.3)

2 = RT2 +RQ1
+RQ2

+RA

2 = RF1 +RQ1 +RQ0

2 = RF1 +RQ2 +RQ0

2 = RF2 +RQ1 +RQ0
+RA

2 = RF2 +RQ2 +RQ0 +RA

2 = 3RA

0 = N +
5

2
(RQ1 − 1) +

5

2
(RQ2 − 1) +

5

2
(RQ1

− 1) +
5

2
(RQ2

− 1)

+
1

2
(RQ0 − 1) +

1

2
(RQ0

− 1) +N(RA − 1)

In the window of interest several mesons go free: Q1Q2, Q1Q1, Q2Q2, Q1Q2, Q1Q0, Q2Q0,

and Q0Q0. The 10 component of Q1Q2 and the linear combination Q1Q0 +Q2Q0 are

set to zero in the chiral ring. The resulting R-charges are shown below:

Table C.3: R charges for SU(N) theory with F = 11 flavors and cubic superpotential

N RT1 RT2 RF1 RF2 RQ1,2 RQ1,2
RQ0/Q̄0

RA b ΛL
Λ∗

ΛT
Λ∗

ΛF
Λ∗

11 1.333 0.833 1.333 0.667 0.333 0.333 0.333 0.667 36.665 101.65 - -
12 1.452 0.952 1.433 0.766 0.266 0.274 0.301 0.667 36.098 101.67 102.14 -
13 1.578 1.078 1.529 0.862 0.202 0.211 0.269 0.667 36.674 101.64 101.49 101.78

14 1.711 1.211 1.623 0.956 0.142 0.145 0.236 0.667 37.976 101.59 101.31 101.20

15 1.851 1.351 1.715 1.048 0.085 0.075 0.200 0.667 40.002 101.51 101.15 100.91

16 1.995 1.495 1.806 1.140 0.032 0.002 0.162 0.667 42.758 101.41 101.02 100.74
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C.0.4 SU(N) with F = 10, A3 superpotential, and marginal

coupling to Σ

Very little changes from the simple case of §A.1 if we add couplings to the adjoint

Higgs Σ of SU(5)SM ; only the contribution to b is modified. The R-charges for

additional coupling to the adjoint Higgs of SU(5) are given below:

Table C.4: R charges for SU(N) theory with F = 10 flavors, cubic superpotential,
and coupling to SU(5) adjoint

N RT1 RT2 RQ1,2 RQ1,2
RA RΣ b ΛL

Λ∗
Λ
Λ∗

11 1.448 0.781 0.257 0.276 0.667 1.467 23.884 102.52 -
12 1.572 0.905 0.186 0.214 0.667 1.600 24.528 102.46 -
13 1.705 1.039 0.119 0.147 0.667 1.733 25.925 102.32 101.649

14 1.849 1.182 0.058 0.076 0.667 1.867 28.080 102.15 101.190

C.0.5 Sp(2N) with 2F = 10 and A3 superpotential

In this case the constraints from superpotential couplings and anomalies are

2 = RT1 + 2RQ̄ (C.0.4)

2 = RT2 + 2RQ̄ +RA

0 = 2(N + 1) + 5(RQ − 1) + 5(RQ̄ − 1) + 2(N − 1)(RA − 1)

2 = 3RA

Now the operators that go free are the mesons QQ and QQ; the meson QQ is set

entirely to zero in the chiral ring, and there are no baryons. The resulting R-charges

are given below:
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Table C.5: R charges for Sp(2N) theory with 2F = 10 flavors and cubic antisymmetric
superpotential

N RT1 RT2 RQ RQ RA b ΛL
Λ∗

Λ
Λ∗

4 1.497 0.830 0.149 0.251 0.667 6.06 109.94 -
5 1.786 1.119 0.026 0.107 0.667 7.16 108.41 101.36

C.0.6 Sp(2N) with 2F = 10 and A4 superpotential

The constraints in this case are a simple generalization of the previous case,

2 = RT1 + 2RQ̄ (C.0.5)

2 = RT2 + 2RQ̄ +RA

0 = 2(N + 1) + 5(RQ − 1) + 5(RQ̄ − 1) + 2(N − 1)(RA − 1)

2 = 4RA

The operators that can go free are now QQ, QQ, and for sufficiently high N both

QAQ and QAQ. The resulting R-charges are shown below.

Table C.6: R charges for Sp(2N) theory with 2F = 10 flavors and quartic antisym-
metric superpotential

N RT1 RT2 RQ RQ RA b ΛL
Λ∗

Λ
Λ∗

4 1.331 0.831 0.266 0.334 0.500 8.46 107.12 -
5 1.531 1.031 0.166 0.234 0.500 9.96 106.05 101.68

6 1.787 1.287 0.093 0.107 0.500 12.41 104.86 101.22

7 2.000 1.500 0.000 0.000 0.500 13.00 104.64 101.02

8 2.200 1.700 -0.100 -0.100 0.500 14.20 104.24 100.89
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C.0.7 Sp(2N) with 2F = 12 and A3 superpotential

The constraints from marginal superpotential terms and anomaly cancellation are

2 = RT1 + 2RQ̄ (C.0.6)

2 = RT2 + 2RQ̄ +RA

2 = RF1 +RQ +RQ0

2 = RF1 +RQ +RQ̄0

2 = RF2 +RQ +RA +RQ0

2 = RF2 +RQ +RA +RQ̄0

2 = 3RA

0 = 2(N + 1) + 5(RQ − 1) + 5(RQ̄ − 1) + (RQ0 − 1) + (RQ̄0
− 1) + 2(N − 1)(RA − 1)

The gauge-invariant chiral operators set to zero in the chiral ring are QQ,QAQ,

and the linear combinations QQ0 + QQ0, QAQ0 + QAQ0. Of the remaining chiral

operators, QQ,QQ,QQ0, QQ0, and Q0Q0 saturate the unitarity bound and must be

accounted for accordingly in the a-maximization procedure. The resulting R-charges

are shown below.

Table C.7: R charges for Sp(2N) theory with 2F = 12 flavors and cubic superpotential

N RT1 RT2 RF1 RF2 RQ RQ RQ0/Q̄0
RA b ΛL

Λ∗
ΛT
Λ∗

ΛF
Λ∗

4 1.333 0.667 1.333 0.667 0.333 0.333 0.333 0.667 9.000 106.70 - -
5 1.549 0.882 1.523 0.856 0.195 0.225 0.282 0.667 8.483 107.10 - -
6 1.847 1.181 1.674 1.007 0.100 0.076 0.227 0.667 9.120 106.61 101.19 101.02
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