The single-term formula for ground band energies of A=20-100 mass region nuclei

Vidya Devi^{1*} and J.B.Gupta²

¹ Meme Media Laboratory, Hokkaido University, Sapporo 060-8628, Japan and ² Ramjas College, University of Delhi, Delhi-110007, INDIA

Introduction

There are serval empirical formulae to express the ground state band level energies of nuclei. The simplest well-known expression for rotational spectra is

$$E = \frac{\hbar^2}{2\Im} J(J+1), \tag{1}$$

where \Im and J are the moment of inertia and spin of the nuclei. The Bohr-Mottelson expression for deformed nuclei [1] is

$$E(J) = AX + BX^2 + CX^3 \tag{2}$$

where X = J(J + 1). Holmberg and Lipas [2] noted that the moment of inertia (\Im) of deformed nuclei increase with level energy linearly, i.e

$$\Im(J) = a + bE. \tag{3}$$

By substituting Eq.(3) in Eq.(1), they obtained the two-parameter ab formula

$$E(J) = a \left[\sqrt{1 + bJ(J+1)} - 1 \right]$$
 (4)

and compared the level energies calculated from the two-parameter ab formula (4) with experimental energies. Later Zeng et al [3] illustrated the nonlinearity of the relation between \Im and E in the rotational spectra for low and high spins. However by rewriting Eq.(4) and comparing it with Eq.(1), they derived a new relation between \Im and E:

$$\Im = \frac{1}{2ab} \left(\sqrt{1 + \frac{2}{a}E} + 1 \right). \tag{5}$$

Substituting Eq.(5) into Eq.(1), they formulated a new energy expression called the pq formula:

$$E(J) = a \left(\left\{ \kappa^2 + \left[\kappa^4 + \kappa^3 \right]^{1/2} \right\}^{1/3} + \left\{ \kappa^2 - \left[\kappa^4 + \kappa^3 \right]^{1/2} \right\}^{1/3} \right)$$

where $\kappa = (bJ(J+1))/2$. Further, Brentano et.al [4] noted the dependence of MI on the spin (J) and energy (E):

$$\Im = \Im_0 (1 + aJ + bE) \tag{6}$$

By dropping the energy-dependent term in Eq.(6) and the putting this in Eq.(1), Brentano et al obtained the two-parameter formula, called the soft rotor formula (SRF)

$$E = \frac{1}{\Im_0(1+\alpha J)}J(J+1).$$
 (7)

Gupta et.al [5] suggested a single- term expression for ground band level energies of a soft-rotor. They replaced the concept of the arithmetic mean of the two terms used in the Bohr-Mottelson expression by the geometric mean and introduced a two-parameter formula called the power law

$$E = aJ^b. (8)$$

By using eq.(8) for any spin (J) index b can be determined from the ratio

$$R_J = E(J)/E(2) = (J/2)^b.$$
 (9)

Taking logs on both sides, we get

$$b_J = \log(R_J) / \log(J/2) \tag{10}$$

By using Eq.(10), one can evaluate the value of index b for different J in any given nucleus.

Available online at www.sympnp.org/proceedings

^{*}Electronic address: vidya@nucl.sci.hokudai.ac.jp

1. Result and Discussion

In Figure 1 we compared ground band energy of ⁷⁴Se, ⁷⁸Se calculated by ab-formula, Ejiri, soft rotor formula and power law and compared with the experimental data. As we know that the $R_{4/2}$ ratio of ⁷⁴Se is 2.1 and ⁷⁸Se is 2.5 therefore ⁷⁴Se shows vibrational nature and ⁷⁸Se shows the γ -soft behavior.

FIG. 1: Comparison between experimental energies with fits of ab formula, Ejiri, SRF and power law for ⁷⁴Se, ⁷⁸Se nuclei.

FIG. 2: Values of the fitted parameters a and b as a function of $R_{4/2}$ from the least squares fit.

The comparison shows that the power law is valid for both vibrational and soft nuclei. In ⁷⁴Se nuclei, Ejiri, SRF and power law show good agreement with the experimental values, but *ab* formula does not show good result for this nuclei. In case of ⁷⁸Se nuclei *ab*, ejiri, SRF and power law show excellent agreement with experimental values. Figure 2 shows the values of the fitted parameters *b* and *a* against the $R_{4/2}$ ratio. The value of *b* rises from 0.4 to 1.6 with increasing $R_{4/2}$. Similar is the case of *a* versus $R_{4/2}$ ratio. The value of *a* falls with increasing $R_{4/2}$. This reflects the smaller energy spacing in softer nuclei having ratio $R_{4/2} \leq 2.5$.

Conclusion

To summarize, we studied the power law which is applicable for both vibrational and soft nuclei. The point at which the value of b exhibits a sharp drop is an indication of the shape phase change in the nucleus. Thus the single-term expression in the form of a power formula is an alternative to the perturbation expansions.

Acknowledgments

The authors are grateful to Dr. Kiyoshi Kato (Researcher, Professor Emeritus, Nuclear Reaction Data Centre (JCPRG), Faculty of Science, Hokkaido University, Sapporo-JAPAN) for constant encouragement.

References

- [1] A. Bohr. B. R. Mottelson, Nuclear Structure, Vol II (New York: Benjamin).
- [2] P. Holmberg, P. O. Lipas, Nucl. Phys. A, 117, 552 (1968).
- [3] G. M. Zeng, E.G. Zhao, Phys.Rev. C, 52, 1995 (1864).
- [4] P von Brentano et. al, Phys. Rev. C, 69, 044314 (2004).
- [5] J. B. Gupta, A. K. Kavathekar, R. Sharma, Phys. Scr., 51, 316 (1995).