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We investigate analytically as well as numerically the properties of s-wave holographic superconductors 
in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study 
three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm–Liouville 
method as well as numerical shooting method, the relation between critical temperature and charge 
density, ρ , and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, 
on the critical temperature Tc . We find that in each dimension, Tc/ρ

1/(d−2) decreases with increasing 
the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed 
value of b. Then, we calculate the condensation value and critical exponent of the system analytically 
and numerically and observe that in each dimension, the dimensionless condensation get larger with 
increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the 
spacetime dimension. We confirm that the results obtained from our analytical method are in agreement 
with the results obtained from numerical shooting method. This fact further supports the correctness 
of our analytical method. Finally, we explore the holographic conductivity of this system and find out 
that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime 
dimension.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the most important challenges, in the past decades, in condensed matter physics is finding a justification for the high 
temperature superconductors. The well-known Bardeen–Cooper–Schrieffer (BCS) theory is the first successful microscopic theory of super-
conductivity. This theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs into a boson-like 
state [1]. However, the BCS theory is unable to explain the mechanism of the high temperature superconductors in condensed matter 
physics. The gauge/gravity duality or Anti de-Sitter (AdS)/Conformal Field Theory (CFT) correspondence is a powerful tool which provides 
a powerful tool for calculating correlation functions in a strongly interacting field theory using a dual classical gravity description [2]. 
According to AdS/CFT correspondence, the gravity theory in a (d + 1)-dimensional AdS spacetime can be related to a strong coupling 
conformal field theory on the d-dimensional boundary of the spacetime. The application of this duality to condensed matter physics was 
suggested by Hartnoll et al. [3,4] who suggested that some properties of strongly coupled superconductors on the horizon of Schwarzschild 
AdS black holes can be potentially described by the gravity theory in the bulk, known as holographic superconductor. According to this pro-
posal, a charged scalar field coupled to a Maxwell gauge field is required in the black hole background to form a scalar hair below the 
critical temperature. It was argued that the coupling of the Abelian Higgs model to gravity in the background of AdS spaces leads to black 
holes which spontaneously break the gauge invariance via a charged scalar condensate slightly outside their horizon [5]. This corresponds 
to a phase transition from black hole with no hair (normal phase/conductor phase) to the case with scalar hair at low temperatures 
(superconducting phase) [5–7].
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The properties of holographic superconductors have been investigated extensively in the literature. When the gauge field is in the 
form of linear Maxwell electrodynamics coupled to the scalar field, the holographic superconductor has been explored in [8–10]. The 
studies on the holographic superconductors have got a lot of attentions [11–25]. The investigation was also generalized to nonlinear gauge 
fields such as Born–Infeld, Exponential, Logarithmic and Power–Maxwell electrodynamics. Applying the analytical method including the 
Sturm–Liouville eigenvalue problem [26–32], or matching method which is based on the match of the solutions near the boundary and 
on the horizon at some intermediate point [33,34], or using the numerical method [35–37], the relation between critical temperature and 
charge density of the s-wave holographic superconductors have been investigated. It was argued that the nonlinear electrodynamics will 
affect the formation of the scalar hair, the phase transition point, and the gap frequency. In particular, with increasing the nonlinearity of 
gauge field increases, the critical temperature of the superconductor decreases and the condensation becomes harder, however, it does not 
any affect on the critical exponent of the system and it still obeys the mean field value [38–40].

In this paper, we explore the properties of the s-wave holographic superconductor in higher dimension with Logarithmic gauge field, by 
applying both the analytical Sturm–Liouville eigenvalue method as well as numerical shooting method. In particular, we disclose the effect 
of nonlinear electrodynamics and the dimensions of the spacetime on the critical temperature of the superconductor and its condensation. 
Also, we explore the effects of nonlinearity as well as spacetime dimension on the gap of frequency and electrical conductivity of the 
system. We shall find that increasing the nonlinear parameter makes the condensation harder, so the critical temperature decreases. In 
addition, the gap frequency ωg increases by increasing the nonlinear parameter in each spacetime dimension.

This paper is outlined as follow. In the next section, we introduce the basic field equations of the d-dimensional holographic supercon-
ductor with Logarithmic nonlinear electrodynamics. In section 3, we employ the Sturm–Liouville analytical method as well as numerical 
shooting method to obtain a relation between the critical temperature and charge density. We also confirm that our analytical results are 
in agreement with the numerical results. In section 4, we calculate analytically and numerically, the critical exponent and the condensa-
tion value of the system. In section 5 we study the holographic electrical conductivity of the system and reveal the response of the system 
to an external field. The last section is devoted to closing remarks.

2. HSC with logarithmic nonlinear electrodynamics in higher dimensions

Our starting point is the d-dimensional action in the background of AdS spacetime which includes Einstein gravity, nonlinear gauge 
field, a scalar field and is described by

S =
∫

ddx
√−g [R − 2� +Lm] , (1)

where R is the Ricci scalar, and

� = − (d − 1)(d − 2)

2l2
, (2)

is the negative cosmological constant [41], and l is the AdS radius. The term Lm represents the Lagrangian of the matter field, which is 
written as

Lm = −1

b
ln

(
1 + bF

4

)
− |∇ψ − iq Aψ |2 − m2|ψ |2,

where F = Fab F ab , Fab = ∂a Ab − ∂b Aa is the electromagnetic field tensor, and Aa is the gauge field. The first term in the above expression 
is the logarithmic Lagrangian which was introduced in [42], for the purpose of solving various divergencies in the Maxwell theory. Here 
b is the nonlinear parameter which describes the strength of the nonlinearity of the theory. When b → 0, the logarithmic Lagrangian will 
reduce to the Maxwell form L = − 1

4F . Also, ψ is the scalar field with charge q and mass m.
Varying the action (1) with respect to the metric gab , the gauge field Aa and the scalar field ψ yields the following field equations

Rac − gac R

2
+ �gac = − 1

2b
gac ln

(
1 + bF

4

)
+ 2

4 + bF
Fad F d

c − gac

2
m2|ψ |2 − gac

2
|∇ψ − iq Aψ |2

+ 1

2

[
(∇aψ − iq Aaψ)(∇cψ

∗ + iq Acψ
∗) + a ↔ c

]
, (3)

∇a
(

4Fac

4 + bF

)
= iq

[
ψ∗(∇c − iq Ac)ψ − ψ(∇c + iq Ac)ψ

∗] , (4)

(∇a − iq Aa)(∇a − iq Aa)ψ − m2ψ = 0. (5)

When b → 0, the above equations reduce to the equations of motion of holographic superconductors in Maxwell theory [4]. We shall work 
in the probe limit, in which the scalar and gauge field do not back react on the metric background. We consider a d-dimensional planar 
AdS-Schwarzschild black hole which is described by the following metric

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2hijdxidx j, (6)

where hijdxidx j is the line element of a (d − 2)-dimensional planar hypersurface and f (r) is given by

f (r) = r2

l2
− 1

rd−3

(
rd−1+

l2

)
, (7)
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where r+ is the event horizon radius. The temperature of the superconductor is an important parameter in condensed matter physics, so 
according to AdS/CFT dictionary, we need to have this concept on the gravity side. The Hawking temperature of the black hole on the 
horizon is given by

T = f ′(r+)

4π
= (d − 1)r+

4π l2
, (8)

which should be identified as the temperature of the superconductor. Here, the prime denotes derivative with respect to r. Without lose 
of generality, we consider the electromagnetic field and the scalar field in the forms

Aadxa = φ(r) dt, ψ = ψ(r). (9)

Let us note that due to the gauge freedom, we can choose ψ(r) to be a real scalar field. Inserting metric (6) and scalar and gauge fields 
(9) in the field equations (4) and (5), we arrive at the following equations for the gauge and scalar fields(

2 + bφ′2(r)
)

φ′′(r) + d − 2

r

(
2 − bφ′2(r)

)
φ′(r) − q2φ(r)

f (r)
ψ2(r)

(
2 − bφ′2(r)

)2

= 0, (10)

ψ ′′(r) +
(

f ′

f
+ d − 2

r

)
ψ ′(r) +

(
q2φ2(r)

f 2(r)
− m2

f (r)

)
ψ(r) = 0. (11)

Our next step is to solve the nonlinear field equations (10) and (11) and obtain the behavior of ψ(r) and φ(r). For this purpose we need 
to fix the boundary conditions for φ(r) and ψ(r) at the black hole horizon (r = r+) and at the asymptotic AdS boundary (r → ∞). From 
Eqs. (10) and (11), and using the fact that f (r+) = 0, we can imply the boundary conditions

φ(r+) = 0, ψ(r+) = f ′(r+)ψ ′(r+)

m2
. (12)

The reason that At = φ(r), must be zero at the horizon comes from the fact that at the horizon, the quantity A2 = gab Aa Ab , that is the 
norm of vector, should be finite at r = r+ . Far from the horizon boundary, at the spatial infinity (r → ∞), the asymptotic performance of 
the solutions are

φ(r) = μ − ρ

rd−3
, (13)

ψ(r) = ψ−
r	− + ψ+

r	+ , (14)

where

	± = 1

2

[
(d − 1) ±

√
(d − 1)2 + 4m2l2

]
. (15)

Here the parameters μ and ρ are dual to chemical potential and charge density of the field theory on the boundary. Coupling the 
scalar field to the Maxwell field in the field equations give us an effective mass for ψ that can be positive or negative, but since, at 
low temperature it is possible that the effective mass becomes sufficiently negative, so in this temperature we have an instability in the 
formation of the scalar field and the system will encounter the superconducting phase [9]. Thus, we can have negative mass for ψ but it 
must satisfy the BF (Breitenlohner–Freedman) bound [41],

m2 ≥ − (d − 1)2

4l2
, (16)

which can be easily understood from Eq. (15). In what follows we will choose some values for m2 that satisfy this bound. From the 
AdS/CFT dictionary, we have 〈O〉 as a condensation operator on the boundary, which is dual to the scalar field ψ in the bulk. We can 
choose the boundary condition in which either ψ+ or ψ− vanishes [3]. Indeed, either ψ+ or ψ− can be dual to the value of the operator, 
and the other one is dual to its source. However to keep up the stability of the AdS space, one of them must be equal to zero [8]. In this 
paper we shall choose ψ− = 0 and take ψ+ = 〈O+〉 non zero.

It is worth noting that Eqs. (10) and (11) have several scaling symmetries, one of them is,

φ → aφ, ψ → aψ, q → qa−1, b → ba−2 . (17)

This symmetry allows us to choose q = 1 in the equations, without loss of generality. We shall also choose l = 1 by using other symmetries. 
In the remaining part of this paper, we study analytically as well as numerically the different properties of the HSC with nonlinear 
electrodynamics.

3. Critical temperature versus charge density

In this section, we would like to explore the critical temperature of higher dimensional HSC in the presence of logarithmic nonlinear 
electrodynamics. Our investigation will be both analytically and numerically. At the end of this section, we compare our results.
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3.1. Analytical method

First, we obtain analytically a relation between the critical temperature and charge density of the HSC by using the Sturm–Liouville 
eigenvalue problem. For convenience, we transform the coordinate in such a way that, r → z = r+/r. Under this transformation, Eqs. (10)
and (11) can be rewritten as(

2 + b
z4

r2+
φ′2

)
φ′′ + bz3d

r2+
φ′3 − r2+

z4

φ

f
ψ2

(
2 − b

z4

r2+
φ′2

)2

+ 2(4 − d)

z
φ′ = 0, (18)

ψ ′′ +
(

f ′

f
+ 4 − d

z

)
ψ ′ +

(
r2+φ2

z4 f 2
− m2r2+

z4 f

)
ψ = 0, (19)

where the prime now indicates derivative with respect to z. At the critical temperature (T = Tc) we have ψ = 0, which implies that in 
this temperature the condensation is zero. Thus, Eq. (18) reduces to(

2 + b
z4

r2+c

φ′2
)

φ′′(z) + bz3d

r2+c

φ′3(z) + 2(4 − d)

z
φ′(z) = 0. (20)

Now, we try to solve the above equation and find a solution for this equation in the interval [z, 1]. Considering the asymptotic behavior 
of φ near the AdS boundary (z → 0), given in Eq. (13), we can write the solution in the form

φ(z) = λr+c ζ(z), (21)

where λ = ρ

rd−2+c
, and

ζ(z) =
1∫

z

√
1 + 2(d − 3)2bλ2 z̃(2d−4) − 1

(d − 3)bλ2 z̃d
dz̃, (22)

and we have used the fact that φ(1) = 0. Since the above integral cannot be solved exactly, we perform a perturbative expansion of 
2(d − 3)2bλ2 in the right side of Eq. (22) and consider only the terms that are linear in b. For this purpose, we assume the nonlinear 
parameter b expressed as

bn = n	b, n = 0,1,2, · · · , (23)

when 	b = bn+1 − bn [31]. So the expansion of 2(d − 3)2bλ2 is

2(d − 3)2bλ2 = 2(d − 3)2bnλ
2 = 2(d − 3)2bn(λ

2|bn−1) + O [(	b)2] . (24)

Substituting Eq. (24) into Eq. (22), we can distinguish two cases [31]:
In the first case where 2(d − 3)2bn(λ2|bn−1) < 1, we have

ζ(z) = ζ1(z) ≈
1∫

z

[1 + bn(λ
2|bn−1)(d − 3)2 z̃(2d−4) − 1

2 bn
2(λ4|bn−1)(d − 3)4 z̃(4d−8) + ...] − 1

(d − 3)bn(λ2|bn−1)z̃d
dz̃

= (1 − zd−3) + (d − 3)3bn(λ
2|bn−1)

2(7 − 3d)
(1 − z3d−7). (25)

In the second case where 2(d − 3)2bn(λ2|bn−1) > 1, the integration can be done for two ranges of values of z, one for z < z0 < 1 and the 
other for z0 < z ≤ 1. Here z0 is obtained from 2(d − 3)2bn(λ2|bn−1)z2(d−2) = 1 for z = z0. In the former case where z < z0 < 1, we have,

ζ(z) = ζ2(z) ≈
z0∫

z

[1 + bn(λ
2|bn−1)(d − 3)2 z̃(2d−4) − 1

2 bn
2(λ4|bn−1)(d − 3)4 z̃(4d−8) + ...] − 1

(d − 3)bn(λ2|bn−1)z̃d
dz̃

+
1∫

z0

1

(d − 3)bn(λ|bn−1)z̃d

[√
2bn(λ|bn−1)(d − 3)z̃(d−2)

(
1 + 1

4bn(λ2|bn−1)(d − 3)2 z̃(2d−4)

− 1

32 b2
n(λ4|bn−1)(d − 3)4 z̃(4d−8)

)
− 1

]
dz̃

= −zd−3 + zd−3
0 − (d − 3)3

2 (3d − 7)
bn

(
λ2|bn−1

)(
z3d−7

0 − z3d−7
)

+
√

2√
bn(λ|bn−1)

(
1

z0
− 1

)

+ 1

2
√

2 (−2d + 3) (d − 3)2 bn
√

bn
(
λ3|bn−1

) (
1 − z−2d+3

0

)
− 1

(d − 3)(−d + 1)bn(λ2|bn−1)

(
1 − z−d+1

0

)

− 1

16
√

2(d − 3)4(−4d + 7) b2
n

√
bn(λ5|bn−1)

(
1 − z−4d+7

0

)
. (26)
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Since we have

bn(λ
2|bn−1) = 1

2(d − 3)2z0
2d−4

, (27)

thus Eq. (26) can be written in terms of z0,

ζ2(z) = −zd−3 + zd−3
0 − (d − 3)

4(3d − 7)z2d−4
0

(
z3d−7

0 − z3d−7
)

+ 2(d − 3)zd−2
0

(
1

z0
− 1

)

+ (d − 3)z3d−6
0

−2d + 3

(
1 − z−2d+3

0

)
− 2(d − 3)z2d−4

0

(−d + 1)

(
1 − z−d+1

0

)
− (d − 3)z5d−10

0

4(−4d + 7)

(
1 − z−4d+7

0

)
. (28)

While in the latter case where z0 < z ≤ 1, we find

ζ(z) = ζ3(z) ≈
1∫

z

1

(d − 3)bn(λ|bn−1)z̃d

[√
2bn(λ|bn−1)(d − 3)z̃(d−2)

(
1 + 1

4bn(λ2|bn−1)(d − 3)2 z̃(2d−4)

− 1

32 b2
n(λ4|bn−1)(d − 3)4 z̃(4d−8)

)
− 1

]
dz̃

=
√

2√
bn(λ|bn−1)

(
1

z
− 1

)
+ 1

2
√

2 (−2d + 3) (d − 3)2 bn
√

bn
(
λ3|bn−1

) (
1 − z−2d+3

)

− 1

(d − 3)(−d + 1)bn(λ2|bn−1)

(
1 − z−d+1

)
− 1

16
√

2(d − 3)4(−4d + 7) b2
n

√
bn(λ5|bn−1)

(
1 − z−4d+7

)
(29)

and from Eq. (27),

ζ3(z) = 2(d − 3)zd−2
0

(
1

z
− 1

)
+ (d − 3)z3d−6

0

−2d + 3

(
1 − z−2d+3

)
− 2(d − 3)z2d−4

0

−d + 1

(
1 − z−d+1

)
− (d − 3)z5d−10

0

4(−4d + 7)

(
1 − z−4d+7

)
.

(30)

At the first approximation the asymptotic AdS boundary condition for ψ is given by Eq. (14). Near the asymptotic AdS boundary, we define 
a function F (z) such that

ψ(z) ∼ 〈O+〉
r	++

z	+ F (z). (31)

Substituting Eq. (31) into Eq. (19), we arrive at

F ′′(z) + F ′(z)

(
4 − d + 2	+

z
+ f ′(z)

f (z)

)
+ F (z)

(
	+(3 − d + 	+)

z2
+ 	+ f ′(z)

zf (z)
− m2r2+

z4 f (z)

)
+ F (z)

(
r4+cλ

2ζ 2(z)

z4 f 2(z)

)
= 0. (32)

The above equation can be written in the Sturm–Liouville form

[T (z)F ′(z)]′ − Q (z)F (z) + λ2 F (z)N(z)ζ 2(z) = 0 , (33)

where we have defined

T (z) = r2+c z2	++2−d(1 − zd−1),

Q (z) = r2+c z2	+−d−1[zd	2+ + z(m2 − 	+ + 	+d − 	2+)
]
, (34)

N(z) = 1

(1 − zd−1)2
.

According to the Sturm–Liouville eigenvalue problem, the eigenvalues of Eq. (33) are

λ2 =
∫ 1

0 (T F ′2 + Q F 2)dz∫ 1
0 T Nζ 2

1 F 2dz
, for 2(d − 3)2bn(λ

2|bn−1) < 1, (35)

and

λ2 =
∫ 1

0 (T F ′2 + Q F 2)dz∫ z0
0 T Nζ 2

2 F 2dz + ∫ 1
z0

T Nζ 2
3 F 2dz

, for 2(d − 3)2bn(λ
2|bn−1) > 1. (36)

We assume the trial function F (z) in the form [32],

F (z) = 1 − αz2, (37)
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which satisfies the boundary conditions F (0) = 1 and F ′(0) = 0. We now can determine λ2 for different values of parameters d and b. 
From Eq. (8) at the critical point, the temperature is

Tc = (d − 1)r+c

4π
. (38)

Using the fact that λ = ρ/rd−2+c , we can rewrite the critical temperature for condensation in terms of the charge density ρ as

Tc = (d − 1)

4π

(ρ

λ

) 1
d−2

. (39)

This implies that the critical temperature is proportional to ρ1/(d−2) . According to our analytical method, in order to calculate the critical 
temperature for the condensation, we minimize the function λ in Eqs. (35) and (36) with respect to the coefficient α for different values 
of nonlinear parameter b and spacetime dimension d. Then, we obtain Tc/[ρ1/(d−2)] through relation (39). As an example, we bring 
the details of our calculation for d = 5, n = 1 and the step size 	b = 0.1. From Eq. (23), we have b1 = 0.1. At first, we must calculate 
2(d − 3)2bn(λ2|bn−1) for this case, to find out which equation for obtaining λ2 should be used. We find λ2|bn−1 = λ2|b0=0 = 18.22. Thus, 
2(d − 3)2b1(λ

2|b0) = 14.58. This indicates that we should use Eq. (36). This equation for the fixed d and b reduces to

λ2 = 380.64 − 570.96α + 296.05α2

4.73 − 3.84α + α2
, (40)

which its minimum is λ2
min = 49.25 for α = 0.773. We use this value for calculate the critical temperature. The critical temperature 

becomes Tc = 0.166ρ1/3. In Tables 1, 2 and 3, we summarize our results for λmin and Tc/[ρ1/(d−2)] for different values of the parameters 
d and b. From these tables we see that at a fixed d, the critical temperature decrease as the nonlinear parameter b increases and for a 
fixed value d the critical temperature increase by increasing d.

3.2. Numerical method

In this subsection we study numerically the critical behavior of the logarithmic holographic superconductor. For this purpose we use 
the shooting method. We have the second-order Eqs. (10) and (11). For solving these equations, we require four initial values on the 
horizon, namely φ(r+), φ′(r+), ψ(r+) and ψ ′(r+). But with regards to Eq. (12), ψ ′(r+) and ψ(r+) are not independent, also φ(r+) = 0. 
So we just have two parameter at the horizon that are independent, they are ψ(r+) and φ′(r+). Note that φ′(r+) means the value of the 
electric field at the horizon (φ′2 = Fab F ab).

Also these equations have two other scaling symmetries except Eq. (17), which allow us to set r+ = 1 and l = 1 to perform numerical 
calculation [3]. After using these scalings, only two parameters that specify the initial values at the horizon (ψ(r+), φ′(r+)) are determi-
native for our numerical calculation. Therefore, the φ and ψ equations in z coordinate becomes(

2 + bz4φ′2(z)

)
φ′′(z) + bdz3φ′3(z) − φ(z)

z4 f (z)
ψ2(z)

(
2 − bz4φ′2(z)

)2

+ (−2d + 8)

z
φ′(z) = 0, (41)

ψ ′′(z) +
(

f ′(z)

f (z)
+ 4 − d

z

)
ψ ′(z) +

(
− m2

z4 f (z)
+ φ2(z)

z4 f 2(z)

)
ψ(z) = 0. (42)

To obtain initial values, we consider the behavior of the ψ and φ near the horizon (z = 1), such that

ψ ≈ ψ(1) − ψ ′(1)(1 − z) + ψ ′′(1)

2
(1 − z)2 + ..., (43)

φ ≈ −φ′(1)(1 − z) + φ′′(1)

2
(1 − z)2 + .... (44)

According to these expansions, we find that the coefficients which are determinative for calculating φ and ψ , are in the form φ(1), φ′(1), 
ψ(1), ψ ′(1), φ′′(1), ψ ′′(1) and .... The effects of coefficients of (1 − z)n when n is large, can be neglected. Because the value of (1 − z)n in 
higher orders are very small in the vicinity of the horizon where z = 1. Also, we set φ(1) = 0 in Eq. (44). If we substitute these expansions 
into Eqs. (41) and (42), we can find all these coefficients 

(
φ′(1), φ′′(1), φ′′′(1), φ(4)(1), ψ(1), ψ ′(1), ψ ′′(1), ψ ′′′(1), ψ(4)(1)

)
in terms of ψ(1)

and φ′(1). Thus, as before mentioned only the values ψ(1) and φ′(1) are determinative. Near the critical temperature ψ is very small, so 
we can set ψ(1) = 0.00001. According to the shooting method we can perform numerical calculation near the horizon with one shooting 
parameter φ′(1), to get proper solutions at infinite boundary. This value of φ′(1) can give us the value of critical density ρc through 
Eq. (21).

By solving equations numerically, we find that φ is a uniform function that starts at zero value at the horizon and increases to the 
value μ in the asymptotic boundary. But for ψ , there are unlimited solutions that satisfy our boundary condition. We can label this 
solutions by number of times that ψ get zero in the interval [0, 1]. From these solutions only the case that reduces uniformly from ψ(1)

to zero, will be stable. In Fig. 1 the various solutions for d = 4 and d = 5 has been shown, where the blue line shows stable ψ .
We can determine φ and ψ by using the numerical calculation. Thus we can find the coefficients in the asymptotic behavior of these 

fields Eqs. (13) and (14), which are μ, ρ and ψ+ (we choose ψ− to be zero). By specifying the values of ρ , we can find the resealed critical 
temperature. In Tables 1–3, we summarize the results for the critical temperature of phase transition of holographic superconductor in the 
presence of logarithmic nonlinear electrodynamics for different values of b and d. Also we compare the analytical results obtained from 
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Fig. 1. ψ(z) with boundary condition ψ− = 0 for three lowest values of ρc . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Table 1
Critical temperature Tc for d = 4 and 	+ = 2, m2 = −2. Here we choose 
the step size 	b = 0.1.

b α λ2
min Tc |Analytical Tc |Numerical

0 0.601 17.30 0.117
√

ρ 0.118
√

ρ
0.1 0.632 27.79 0.103

√
ρ 0.103

√
ρ

0.2 0.652 41.55 0.094
√

ρ 0.092
√

ρ
0.3 0.668 61.16 0.085

√
ρ 0.082

√
ρ

Table 2
Critical temperature Tc for d = 5 and 	+ = 3, m2 = −3. Here the step size for Analytical(1) is 	b = 0.1 and for 
Analytical(2) is 	b = 0.05.

b α1 λ2
min(1)

Tc |Analytical(1) α2 λ2
min(2)

Tc |Analytical(2) Tc |Numerical

0 0.722 18.23 0.196 ρ1/3 0.722 18.23 0.196 ρ1/3 0.198ρ1/3

0.1 0.773 49.25 0.166 ρ1/3 0.786 70.38 0.156ρ1/3 0.145ρ1/3

0.2 0.804 126.79 0.142 ρ1/3 0.820 251.15 0.126 ρ1/3 0.113ρ1/3

0.3 0.825 327.92 0.121 ρ1/3 0.841 942.89 0.101ρ1/3 0.090ρ1/3

Table 3
Critical temperature Tc for d = 6 and 	+ = 4, m2 = −4. Here the step size for Analytical(1) is 	b = 0.1 and for 
Analytical(2) is 	b = 0.05.

b α1 λ2
min(1)

Tc |Analytical(1) α2 λ2
min(2)

Tc |Analytical(2) Tc |Numerical

0 0.792 22.66 0.269 ρ1/4 0.792 22.66 0.269 ρ1/4 0.271ρ1/4

0.1 0.854 104.14 0.222 ρ1/4 0.878 494.17 0.183ρ1/4 0.160ρ1/4

0.2 0.880 471.19 0.184 ρ1/4 0.909 19538.1 0.116 ρ1/4 0.104ρ1/4

0.3 0.902 5283.9 0.136 ρ1/4 0.920 1.1 × 106 0.069ρ1/4 0.067ρ1/4

Sturm–Liouville method with those obtained in this subsection numerically. From Table 1, we observe that the analytical results are in 
good agreement with the numerical results.

In Table 1 we show the critical temperature for different values of b with the scalar operator 〈O〉 = 〈O+〉 for 3-dimensional super-
conductor, we consider m2 = −2 and 	b = 0.1. We see that the values obtained analytically with this step size, is indeed in very good 
agreement with the numerical results. Similarly in Tables 2 and 3, we show the critical temperature for different values of b, of the scalar 
operator for 4 and 5 dimensional superconductor with the mass of scalar field m2 = −3 and m2 = −4. We choose the step size 	b = 0.1
and 	b = 0.05. For the case 	b = 0.05, the agreement of analytical results derived from Sturm–Liouville method with the numerical 
calculation is clearly seen. So by reducing the step size in higher dimensions, we can improve the analytical result.

It is worth noting that according to the BF bound given in Eq. (16), the mass of the scalar field, depends on the spacetime dimension. 
For example, m2 ≥ −9/4 for d = 4, m2 ≥ −4 for d = 5, and m2 ≥ −25/4 for d = 6. For convenient, in this paper we choose the mass as 
m2 = −2, −3, −4 for d = 4, 5, 6, respectively. The reason for these choice comes from the fact that for these values of m, the value of 	+
becomes integer and so the calculations are simplified. In addition, if we assume a fixed value for m in all of these dimensions, we arrive 
at the same result (see Table 4).

Therefore, the re-scaled critical temperature increases with increasing the dimension for fixed values of the mass of the scalar field 
and small values of the nonlinear parameter b. From these tables we also understand that for each d, the critical temperature decrease as 
the nonlinear parameter b increases for the fixed scalar field mass. So the condensation gets harder as the nonlinear parameter becomes 
larger. This result is consistent with the earlier findings [26,28,34,37]. Fig. 2 represents a comparison between these results from numeric 
and analytic calculations with different values of the step size 	b.
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Table 4
Critical temperature Tc for b = 0 and m2 = −2. Here we choose the step 
size 	b = 0.1.

d α λ2
min Tc |Analytical Tc |Numerical

4 0.601 17.30 0.117
√

ρ 0.118
√

ρ

5 0.786 28.125 0.182ρ1/3 0.184ρ1/3

6 0.848 35.39 0.254ρ1/4 0.257ρ1/4

Fig. 2. Comparison of Tc in terms of ρ from numerical and analytical calculation.

4. Condensation values and critical exponent

4.1. Analytical method

In this subsection we will calculate the order parameter 〈O+〉 as well as the critical exponent in the boundary of spacetime. For this 
purpose we need the behavior of the gauge field φ near the critical point. If we write down Eq. (18) near the critical point Tc and keep 
terms that are linear in b, we obtain

φ′′(z) + (4 − d)

z
φ′(z) + (−2 + d)z3bφ′3(z)

r2+
− 2φ(z)r2+

ψ2(z)

z4 f (z)

(
1 − 3bz4φ′2(z)

2r2+

)
= 0. (45)

In the previous section we calculate the solution for this equation in the case that we are at the critical point (ψ = 0), that obtained in the 
form Eq. (21). Now in this section we consider that the temperature is near the critical temperature, so we have condensation and ψ �= 0, 
thus we use Eq. (31) for ψ . Since we are near to critical point, the condensation value is very small, and we can expand the solution for 
Eq. (45) around the solution for φ at T = Tc (that we had previously obtained it as Eq. (21)), in terms of small parameter 〈O+〉2

r
2	++

, as

φ(z)

r+
= λζ(z) + 〈O+〉2

r2	++
χ(z) + · · · , (46)

where we have taken the boundary condition as χ(1) = χ ′(1) = 0. Substituting Eq. (31) and (46) into (45), we arrive at the equation for χ

χ ′′(z) +
[
(3d − 6)bλ2z3ζ ′2(z) + 4 − d

z

]
χ ′(z) = 2z−4+2	+r2+λF 2(z)ζ(z)

f (z)

(
1 − 3bλ2z4ζ ′2(z)

2

)
. (47)

The left hand side of this equation can be rewritten as

χ ′′(z) +
[
(3d − 6)bλ2z3ζ ′2(z) + 4 − d

z

]
χ ′(z) = χ ′′(z) + (3d − 12)bλ2z3ζ ′2(z)χ ′(z) + 6bλ2z3ζ ′2(z)χ ′(z) + 4 − d

z
χ ′(z). (48)

Taking into account the fact that

3bλ2z4ζ ′(z)ζ ′′(z)χ ′(z) = 3bλ2z4ζ ′(z)
φ′′(z)

λr+
χ ′(z), (49)

if we rewrite Eq. (20), we find

φ′′ + bz3dφ′3

2r2+

(
1 + bz4

2r2+
φ′2

)−1

+ (4 − d)φ′

z

(
1 + bz4

2r2+
φ′2

)−1

= 0 (50)

and substituting φ′′(z) from this into (49), we have,
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3bλ2z4ζ ′(z)ζ ′′(z)χ ′(z) = 3bλ2z4 ζ ′(z)

λr+

(
d − 4

z
φ′ + O (b) + O (b2)

)
χ ′(z)

= 3(d − 4)bλ2z3ζ ′ φ′

λr+
χ ′(z) + O (b2) + O (b3) = 3(d − 4)bλ2z3ζ ′2(z)χ ′(z). (51)

Therefore we have

3(d − 4)bλ2z3ζ ′2(z)χ ′(z) = 3bλ2z4ζ ′(z)ζ ′′(z)χ ′(z), (52)

and hence Eq. (48) may be written

χ ′′(z) + 3bλ2z4ζ ′(z)ζ ′′(z)χ ′(z) + 6bλ2z3ζ ′2(z)χ ′(z) + 4 − d

z
χ ′(z) = 2z−4+2	+r2+λF 2(z)ζ(z)

f (z)

(
1 − 3bλ2z4ζ ′2(z)

2

)
. (53)

Multiplying both sides of Eq. (53) by the following factor,

T (z) = 1

zd−4
e

3bλ2 z4ζ ′2(z)
2 , (54)

we can write Eq. (53) as,

(Tχ ′)′ = 2z−d+2	+r2+λF 2(z)ζ(z)

f (z)
. (55)

Integrating the above equation in the interval [0, 1] and using the boundary conditions for χ , yields

T (z)χ ′(z)|z→0 = −
1∫

0

2z−d+2	+r2+λF 2(z)ζ(z)

f (z)
dz. (56)

Substituting T (z) in above equation and noting that we have two cases for ζ(z) to substitute in this equation, we finally obtain[
χ ′(z)

zd−4

] ∣∣∣∣
z→0

= −λA, (57)

A =
⎧⎨
⎩

A1 for 2(d − 3)2bn(λ
2|bn−1) < 1,

(A2 +A3) , for 2(d − 3)2bn(λ
2|bn−1) > 1,

(58)

where

A1 =
1∫

0

2r2+z2	+−d F 2ζ1

f
dz, A2 =

z0∫
0

2r2+z2	+−d F 2ζ2

f
dz, A3 =

1∫
z0

2r2+z2	+−d F 2ζ3

f
dz, (59)

where ζ1, ζ2 and ζ3 are given by Eqs. (25), (26) and (29). Now we write down the relation between χ ′(z) and (d − 3)-th derivative of 
χ(z). If we rewrite Eq. (47) at z → 0, we have

χ ′′(0) = χ ′
(

d − 4

z

)∣∣
z→0, (60)

thus is a matter of calculations to show that we can write the following relation in d-dimensions,

χ(d−3)(z = 0)

(d − 4)! = χ ′

zd−4

∣∣
z→0. (61)

From Eqs. (13) and (46) and by expanding χ(z) around z = 0, we have

μ − ρ

rd−3+
zd−3 = r+λζ + 〈O+〉2

r2	+−1
+

{
χ(0) + zχ ′(0) + ... + z(d−3) χ

(d−3)(0)

(d − 3)! + ...

}
. (62)

Comparing the coefficient of zd−3 on both sides of the above equation we obtain

− ρ

rd−2+
= −λ + 〈O+〉2

r2	++

χd−3(0)

(d − 3)! . (63)

Using Eq. (63) and (57), we arrive at

ρ

rd−2
= λ

[
1 + 〈O+〉2

r2	+
A

(d − 3)

]
, (64)
+ +
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Fig. 3. The dimensionless condensation operator in terms of dimension less temperature for different values of b.

with regards to definition of λ = ρ

rd−2+c
, and substituting r+ and r+c from the relations that we have for T and Tc given in Eqs. (8) and 

(38), we find the relation between the condensation operator and the critical temperature in d-dimensional spacetime near the critical 
temperature (T ∼ Tc) as

〈O+〉 =
(

4π

d − 1

)	+
√

(d − 3)(d − 2)

A
T 	+

c

√
1 − T

Tc
. (65)

Thus, we find that the critical exponent of the order parameter is 1/2, and near the critical point this operator satisfies

〈O+〉 = βT 	+
c

(
1 − T

Tc

)1/2

, (66)

which holds for various values of b, m and d. The coefficient β is given by

β =

⎧⎪⎪⎨
⎪⎪⎩

(
4π

d−1

)	+ √
(d−3)(d−2)

A1
, for 2(d − 3)2bn(λ

2|bn−1) < 1,

(
4π

d−1

)	+ √
(d−3)(d−2)
A2+A3

, for 2(d − 3)2bn(λ
2|bn−1) > 1.

(67)

From these results we can analysis the effect of the nonlinear parameter b and the spacetime dimension d, on the values of β . Our 
analytical results are presented in Tables 5, 6 and 7 which we also compare them with the numerical results.

4.2. Numerical method

In the previous section for the numerical solution, we was needed only the charge density at the critical point for obtaining the 
re-scaled critical temperature. Here we start with increasing ψ(1) from ψ(1) = 1

10000 to higher values in the small steps, meaning that 
the temperature becomes lower. At any step we can find all the coefficient of the asymptotic behavior of ψ and φ, such as ψ+ . We use 
the value of ψ+ for calculation of the order parameter 〈O+〉, and exploring the behavior of this parameter in terms of temperature for 
different dimension of the spacetime and for different values of b. For example for d = 4, 5, 6 we obtain condensation 〈O+〉 from following 
relations,

〈O+〉 = √
2ψ+ for d = 4, (68)

〈O+〉 = ψ+ for d = 5,6, (69)

where the coefficient 
√

2 is a convenient normalization factor [3]. Now we want to plot the dimensionless condensation as a function of 
dimensionless temperature. Since we work in units where c = h̄ = 1, all physical quantities can be described in unit which is some power 
of the mass. In this unit, length and time have dimension of [mass]−1, energy, momentum and T have dimension [mass], while ρ has 
dimension [mass]d−2. Also since in this unit, the scalar field must be dimensionless, so ψ+ must have dimension [mass]	+ . Thus we can 
plot dimensionless 〈O+〉/T 	+

c as a function of T /Tc , where 	+ is defined by Eq. (15).
This curves for the condensation operator are qualitatively similar to what that obtained in BCS theory, the condensate rises quickly 

when the system is stayed on below the critical temperature and goes to a constant as T → 0. Near the critical temperature, as obtained 
from analytical results in Eq. (66), the condensate is proportional to (1 − T

Tc
)1/2, that is the behavior that predicted by Landau–Ginzburg 

theory. This curves for d = 4, 5, 6 in Fig. 3 represents that, when we increase b, the dimensionless condensation becomes larger. Also, by 
comparing the condensation for different d in Fig. 4, we find that it becomes large in higher dimensions.

Now we find that the results obtained for the behavior of the condensation operator near the critical point, from numerical calculation 
is in good agreement with the results obtained from analytical calculation in Eq. (66). From Eq. (66) we can write

ln

(
〈O+〉
T 	+

)
= lnβ + 1

2
ln

(
1 − T

Tc

)
. (70)
c



A. Sheykhi et al. / Physics Letters B 781 (2018) 139–154 149
Fig. 4. The dimensionless condensation operator in terms of dimensionless temperature for different values of d.

Fig. 5. Fitting the order parameter with a straight line whose slope is 1/2 for different b and d.

Table 5
The values of γ = √

2β for d = 4 and the step 
size 	b = 0.1.

b γ |Analytical γ |Numerical

0 92.8 140.09
0.1 108.88 194.52
0.2 124.03 251.09
0.3 282.83 314.32

Table 6
The values of β for d = 5 and the step size for Analyti-
cal(1) is 	b = 0.1 and for Analytical(2) 	b = 0.05.

b β|Analytical(1) β|Analytical(2) β|Numerical

0 238.5 238.5 385.20
0.1 330.93 369.70 1077.9
0.2 441.06 537.81 2259.4
0.3 580.26 779.34 4445.8

Now we can plot ln
(

〈O+〉
T

	+
c

)
as a function of ln(1 − T

Tc
). From the dotted curves in Fig. 5, we see that the plot which is fitted to a straight 

line has slop 1/2, that is the critical exponent. The slope is independent of parameters b and d. Also we can find β from the y-intercept 
of the lines. Finally we conclude that the phase transition is of second order and the critical exponent of the system always take the 
value 1/2, and the nonlinear electrodynamics can not change the result. This result seems to be a universal property for various nonlinear 
electrodynamics [27,34,29].

Now we summarize the results for β for a holographic superconductor in logarithmic electrodynamics, which obtained from analytical 
calculation from Eq. (67) and from numerical calculation which explained before, for different values of b and d, in Tables 5, 6 and 7. Also 
we compare these results.

The results that obtained for β from the numerical and analytical solutions for d = 5 and d = 6 represent in Tables 6 and 7. Also for 
these dimensions, the results from analytical for the step size 	b = 0.1 is far from the numerical, so we consider a smaller step size 
	b = 0.05, to increase our accuracy.
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Table 7
The values of β for d = 6 and the step size for Analytical 
(1) is 	b = 0.1 and for Analytical(2) 	b = 0.05.

b β|Analytical(1) β|Analytical(2) β|Numerical

0 533.82 533.82 934.97
0.1 871.26 1088.12 8629.5
0.2 1350.20 2920.86 45677
0.3 2071.40 8213.86 253670

From these tables we find that the value β , increases with increasing the nonlinear parameter b. Also, when the step size 	b is smaller, 
the analytical results are closer with the numerical results rather than the larger step size.

5. Conductivity

The superconductor energy gap is an essential feature of the superconducting state which may be characterized by the threshold 
frequency obtained from the electrical conductivity. Hence, in this section we investigate the behavior of the electric conductivity as a 
function of frequency. In the linear response theory, the conductivity is expressed as the current density response to an applied electric 
field

σi j = J i

E j
. (71)

According to the AdS/CFT correspondence dictionary, if we want to have current in the boundary, we must consider a vector potential in 
the bulk. This implies that by solving for fluctuations of the vector potential A j in the bulk, we will have a dual current operator J i in 
the CFT [3]. Inasmuch as the dual CFT has a spatial symmetry, one can consider just the conductivity in the x direction. We turn on the 
small perturbation in the bulk gauge potential as

δAx = Ax(r)e−iωt ,

where ω is the frequency. Thus, the equation of motion for Ax(r), at the linearized level of the perturbation, takes the form

(
2 − bφ′2(r)

)
A′′

x (r) +
[

2bφ′(r)φ′′(r) +
(

d − 4

r
+ f ′(r)

f (r)

)(
2 − bφ′2(r)

)]
A′

x(r) + ω2

f 2(r)

(
2 − bφ′2(r)

)
Ax(r)

− ψ2(r)

f (r)
(2 − bφ′2(r))2 Ax(r) = 0. (72)

The asymptotic (r → ∞) behavior of the above differential equation is obtained as

A′′
x (r) + d − 2

r
A′

x(r) + ω2

r4
Ax(r) = 0,

which admits the following solution in the asymptotic (r → ∞),

Ax =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A(0) + A(1)

r − ω2 A(0)

2r2 ... , for d = 4,

A(0) + A(1)

r2 + ω2 A(0)ln(kr)
2r2 + ..., for d = 5,

A(0) + A(1)

r3 + ω2 A(0)

2r2 ... , for d = 6,

(73)

where A(0), A(1) are constant parameters and k is a constant with [length]−1 dimension which inserted for a dimensionless logarithmic 
argument. From the AdS/CFT dictionary, the boundary current operator may be calculated by differentiating the action [43]

J = δSbulk

δA(0)
= δSo.s

δA(0)
= ∂

(√−gLm
)

∂ A′
x

∣∣
r→∞, (74)

where A(0) is the dual to a source in the boundary theory. Also, So.s and Lm are, respectively, the on-shell bulk action and the Lagrangian 
of the matter field. The So.s action is given by

So.s =
∞∫

r+

dr

∫
dd−1x

√−gLm. (75)

Expanding the action to quadratic order in the perturbation and taking into account Eq. (72), So.s. reduces to

So.s =
∫

dd−1x
rd−4 f (r)Ax(r)A′

x(r)
′2

∣∣
r→∞. (76)
−2 + bφ (r)
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Fig. 6. The real part of conductivity for different temperature in terms of ω/T .

According to the asymptotic behavior of φ and Ax given by Eq. (13) and Eq. (73), and using Eq. (74), one can calculate the holographic 
current as

J x =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(1) , for d = 4

2A(1) − ω2 A(0)

2 , for d = 5,

3A(1) , for d = 6.

(77)

Thus, from Eq. (71) and Ex = −∂tδAx , the electrical conductivity is obtained as

σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A(1)

iωA(0) , for d = 4,

2A(1)

iωA(0) + iω
2 , for d = 5,

3A(1)

iωA(0) , for d = 6.

(78)

It is worth noting that the divergence terms in the above action is eliminated by adding a suitable counterterm [44,16]. Now, one can nu-
merically solve the differential equation for Ax(r) in Eq. (72) by imposing an ingoing wave boundary condition near the event horizon [7]

Ax(r) = S(r) f −iω/(4π T ), (79)

where

S(r) = 1 + a1(r − r+) + a2(r − r+)2 + ...,

T is the Hawking temperature and the coefficients a1, a2, . . . are characterized by Taylor expansion of Eq. (72) around the horizon r+ . 
With Ax at hand, we can calculate the conductivity from Eq. (78). We summarize our results regarding the behavior of the conductivity 
in Figs. 6–9.

The behavior of the real parts of conductivity as a function of frequency for various nonlinear parameter b and in various dimension 
at different temperature are depicted in Fig. 6. As one can see from this figure, the superconducting gap appears below the critical 
temperature that becomes deep with decreasing the temperature. That means ωg becomes larger. Since ωg is probational to the minimum 
energy that needed to break the condensation, therefore with decreasing the temperature, the condensation becomes stronger. Also, the 
gap becomes sharper as we decrease the temperature. At enough large frequency, the behavior of conductivity indicates a normal state that 
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Fig. 7. The imaginary part of conductivity for different temperature in terms of ω/T .

Fig. 8. The real part of conductivity for different b in terms of ω/Tc .

follows a power law relation with frequency, i.e. Re[σ ] ∝ ωd−4 [43]. For 3-dimension of CFT, the real part of conductivity is independent 
of frequency which tends toward a constant value for large frequency (see Figs. 6a and 6b).

The associated imaginary parts of conductivity are illustrated in Fig. 7 which is related to the real parts of conductivity by the Kramers–
Kronig relations. Hence, the pole in the imaginary parts of conductivity at ω = 0 points out to a delta function in the real parts which are 
shown by the vertical lines in Fig. 6. Although, the delta function cannot be resolved numerically, but we know that it exists. By compari-
son the figures, we find that at any fixed temperature and frequency, the conductivity in higher dimensions is larger. For d = 6, more delta 
functions and poles appear inside the gap as one decreases the temperature. The BCS theory explains systems that are weak coupled, 
which means, there was no interaction between the pairs. But holographic superconductors are strongly coupled. With decreasing the 
temperature, the interactions become stronger and form a bound state. The additional delta functions and poles related to this state [8].

In order to determine the effect of the dimension and nonlinear parameter on the superconducting gap at low temperature T ≈ 0.15Tc , 
we plot real and imaginary parts of the holographic electrical conductivity as a function of normalized frequency ω/Tc in Figs. 8 and 9. 
From the BCS theory we have relation ωg = 2	, where 	 is the energy required for charged excitations, that leads to ωg � 3.5Tc . In [8], 
it was shown that the relation connecting the frequency gap with the critical temperature, for d = 3 and d = 4 dimensional holographic 
superconductor becomes ωg/Tc ≈ 8, which is more than twice of the corresponding value in the BCS theory. Also it was argued that this 
ratio for d = 4, 5, is always about eight, and the relation ωg/Tc ≈ 8 is universal. However, as one can see from Fig. 8 in each dimension, 
the superconducting gap increases with increasing the nonlinear parameter b. Also, for the fixed value of the nonlinear parameter b, the 
energy gap effectively increases with increasing the dimension, which indicates that the holographic superconductor state is destroyed for 
large ω/Tc . This implies that the relation between ωg and Tc depends on the parameters b and d.
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Fig. 9. The real part of conductivity for different b in terms of ω/Tc .

6. Closing remarks

To sum up, in this paper we have continued the study on the gauge/gravity duality by investigating the properties of the s-wave 
holographic superconductor in higher dimensional spacetime and in the presence of nonlinear gauge field. We have considered the Loga-
rithmic Lagrangian for the U (1) gauge theory which was proposed by Soleng [42]. We follow the Sturm–Liouville eigenvalue problem for 
our analytical study as well as the numerical shooting method. We explored three aspects of these kinds of superconductors. First, we 
obtained the relation between critical temperature and charge density, ρ , and disclosed the effects of both nonlinear parameter b and the 
dimensions of spacetime, d, on the critical temperature Tc . We found that in each dimension, Tc/ρ

1/(d−2) decreases with increasing the 
nonlinear parameter b. Besides, for a fixed value of b, this ratio increases for the higher dimensional spacetime. This implies that the high 
temperature superconductor can be achieved in the higher dimensional spacetime. We confirmed that our analytical method is in good 
agreement with the numerical results. Second, we have calculated the condensation value and critical exponent of the system analytically 
as well as numerically and observed that in each dimension, the coefficient β becomes larger with increasing the nonlinear parameter b. 
Besides, for a fixed value of b, it increases with increasing the spacetime dimension, i.e., in higher dimensional spacetime.

Finally, we explored the electrical conductivity of the holographic superconductor. Our aim in this part was to disclose the effects of 
the nonlinear gauge field as well as the higher dimensional spacetime on the superconducting gap of the holographic superconductor. 
We observed that the superconducting gap appears below the critical temperature that becomes deep with decreasing the temperature. 
Besides, we found that at high frequency, the behavior of conductivity indicates a normal state that follows a power law relation with 
frequency, i.e. Re[σ ] ∝ωd−4. We also investigated the imaginary part of superconductor and found that the pole in the imaginary parts of 
conductivity at ω = 0 points out to a delta function in the real parts. We concluded that for a fixed value of the nonlinear parameter b, the 
energy of gap effectively increases with increasing the dimension, which indicates that the holographic superconductor state is destroyed 
for large ω/Tc . This indicates that the relation between ωg and Tc depends on the parameters b and d.
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