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Abstract.  As illustrated herein, collective modes and colored noise conspire to produce beam 
halo with much larger amplitude than could be generated by either phenomenon separately.  
Collective modes are inherent to nonequilibrium beams with space charge.  Colored noise arises 
from unavoidable machine transitions and/or errors that influence the internal space-charge 
force.  Lowest-order radial eigenmodes calculated self-consistently for a direct-current, 
cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium serve to model the 
collective modes.  Even with weak space charge, small-amplitude collective modes, and weak 
noise strength, a pronounced halo is seen to develop if these phenomena act on the beam over a 
sufficiently long time, such as in a synchrotron or storage ring. 

INTRODUCTION 

A recent investigation revealed that collective modes and colored noise can 
synergistically conspire to produce large halo in beams wherein self-interaction, e.g., 
space charge, is important [1].  The investigation involved three distinctly different 
potentials: one mimicking a global collective mode in a cylindrical beam for which the 
envelope remains stationary (i.e., an “envelope-matched” beam), another mimicking a 
global collective mode in a spherical beam that is otherwise in thermal equilibrium, 
and the third doing likewise in a self-gravitating Plummer sphere (an example of 
interest in the context of galactic dynamics).  In each case, copious halo developed.  
Colored noise, an unavoidable phenomenon arising from the presence of accelerator-
hardware irregularities that lead to space-charge fluctuations as the beam self-
consistently responds, keeps a small fraction of particles more in phase with the 
collective mode.  Not only does the halo become much larger than that produced by 
either phenomenon (global modes or noise) acting alone, but also the synergism 
removes the popular notion of a hard upper bound to the halo extent [2]. 

Subsequently the original investigation was extended both to improve the inherent 
statistics and to explore large portions of the parameter space [3].  The new study 
concerned a direct-current, cylindrically symmetric beam modeled as a warm-fluid 
Kapchinskij-Vladimirskij (KV) equilibrium configuration possessing a self-consistent 
spectrum of collective, stable axisymmetric flute modes [4].  The associated time-
dependent space-charge force combines with the external focusing force to determine 
the equation of motion of test particles.  Quantifying the evolving halo entailed 
populating the full configuration space with very many (typically 106) test particles, 
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assigning each test particle its own random manifestation of colored noise, and then 
tracking all of their orbits.  The resulting halo depends on the beam parameters (the 
space-charge tune depression), the collective-mode parameters (amplitudes and 
frequencies), and the noise parameters (strength and autocorrelation time). 

The context of the work outlined above was linear accelerators of intense hadron 
beams as might drive heavy-ion fusion or a source of spallation neutrons.  As such, the 
orbital-integration time was correspondingly short and the space charge was likewise 
strong.  A natural question is: Can weak space charge, weak modes, and weak noise, 
by acting over a long time, lead to copious halo?  The answer would be of central 
importance in the context of, e.g., synchrotrons and storage rings wherein the beam 
resides for relatively very long times.  This paper presents a preliminary study, done in 
the context of the warm-fluid KV model, which suggests the answer is “yes”.  It 
commences with a synopsis, for the reader’s convenience, of the underlying models of 
the beam and colored noise (details appear in Ref. [3]).  It then presents the results and 
concludes by summarizing future plans as motivated by the results. 

EQUATION OF TEST-PARTICLE MOTION 

Following Ref. [5], we consider an intense, direct-current charged-particle beam 
propagating in the z-direction at constant speed through a transport channel that 
imposes a constant, cylindrically symmetric, linear transverse focusing force.  The 
beam’s equilibrium configuration is modeled as a warm-fluid Kapchinskij-
Vladimirskij equilibrium, and collective modes are superposed on this equilibrium 
configuration.  These modes correspond to stable, axisymmetric flute perturbations 
derived from linearizing the respective Vlasov-Maxwell-Poisson equations [4].  The 
dimensionless self-field perveance K incorporates the beam parameters: 
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wherein  is the line density (number of particles per unit length), q and m are the 
particle charge and mass, respectively,  and  are the usual relativistic factors, and c 
is the speed of light.  The space-charge tune depression  is defined in terms of K as 
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wherein R0 is the radius of the equilibrium beam and f is the angular frequency 
associated with the bare (linear) external focusing force.  The frequency of the nth 
axisymmetric flute mode is 
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For the analysis in this paper, only the n=1 mode is excited. The radial coordinate r is 
normalized in terms of the envelope radius R0, and the time t is normalized in terms of 
the angular frequency f , i.e., t � f t; effectively this entails setting R0=1 and f =1. 

The axisymmetric flute modes differ from breathing modes: the beam boundary is 
static (“envelope-matched,” meaning R0 is constant) in the case of flute modes, but 
oscillates in the case of breathing modes.  In both cases the beam is root-mean-square 
(rms) mismatched.  For the warm-fluid KV beam, the equilibrium density profile 
exhibits a step-function discontinuity at the boundary.  In turn, the flute modes 
likewise involve a discontinuity in the density profile at the boundary.  For example, 
consider the KV beam excited by the n=1 flute mode.  The density profile inside the 
beam is always uniform, but its magnitude oscillates.  To conserve particle number, 
this mode includes an oscillating surface charge, i.e., the density profile exhibits a 
Dirac delta function at the (stationary) envelope radius such that the integral over the 
beam cross section is independent of time.  By contrast, the lowest-order breathing 
mode entails a self-similar oscillation; the envelope radius itself oscillates, and the 
number density likewise oscillates but remains everywhere uniform. 

To explore the dynamics of halo formation, we compute the motion of test particles 
constrained to lie on radial orbits (the choice of orbital angular momentum has little 
impact on the overall halo dynamics [3]).  By definition, test particles contribute 
nothing to the total potential and do not interact with each other.  The equation of test-
particle motion decomposes into two regimes, one internal to the beam for which the 
normalized radial coordinate r < 1, and the other external to the beam for which r ������
With only the n=1 flute mode excited, it is [5] 
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LQ�ZKLFK� 1 is the ratio of the rms electrostatic energy contained in the n=1 collective 
mode to that contained in the equilibrium beam, and 1 is given by Eq. (3) upon 
setting f =1 and n ��� �%HFDXVH�(T������GHYROYHV�IURP�OLQHDU�SHUWXUEDWLRQ�WKHRU\�� 1 
must be small compared to unity for it to be valid. 

Our goal is to assess the extent to which colored noise, in combination with the 
collective mode, influences the particle dynamics.  Noise is inherent to accelerators 
because they are imperfect.  Machine errors, irregularities, and transitions will feed 
space-charge fluctuations as the beam evolves self-consistently in response to these 
external influences.  Examples include forces from image charges due to irregularities 
in the accelerator hardware as well as errors in radiofrequency and magnetic fields.  In 
the lab frame the errors may themselves be time-independent, or they may fluctuate 
due to, e.g., jitter.  From the perspective of a beam particle, the effect of all of these 
machine imperfections is to impart time-dependent noise on the particle orbit; thus, the 
next step is to include this noise in the equation of test-particle motion. 

The noise is modeled as gaussian colored noise sampling an Ornstein-Uhlenbeck 
process, and it is quantified in terms of a frequency fluctuation (t).  The first two 
moments of (t) determine the statistical properties of the noise: 
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in which tc denotes the autocorrelation time, i.e., the time scale over which the noise 
signal changes appreciably.  The special case of white noise corresponds to the limit 
tc ����$IWHU�JHQHUDWLQJ�D�FRORUHG-noise signal using, e.g., the technique developed in 
Ref. [6], the next step is to compute |A| 〈|δ |〉 which then constitutes the measure of 
noise strength.  In a beam each particle will have its own distinct initial conditions and 
thus experience a manifestation of the noise differing from that seen by each of the 
other particles.  Hence, while integrating an orbit, at each successive time step a 
randomly generated frequency fluctuation is computed in keeping with the statistical 
properties specified in Eq. (5).  This frequency fluctuation leads to a fluctuation in the 
space-charge tune depression; calculated in a manner consistent with Eq. (3), it is: 
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Where they occur in the equation of motion, Eq. (4), the quantity ω1 is replaced by 
ω1+δω(t), and the quantity 2 is replaced by 2+ 2(t), with 2(t) given by the last 
expression in Eq. (6).  The fluctuation thereby influences the propagation of the orbit 
to the next time step. 

The methodology briefly summarized above is elaborated in Ref. [3].  This 
reference also provides a detailed study of how the various parameters influence the 
halo dynamics in linear accelerators of high-average-current ion beams.  What follows 
presents results pertaining to long-lived beams such as those in circular machines. 

HALO PRODUCTION IN LONG-LIVED BEAMS 

An example of a “long-lived” beam would be one that transits the Fermilab Booster 
synchrotron.  This machine accelerates long proton bunches from 0.4 GeV at injection 
to 8 GeV at output.  Accordingly the beam becomes more relativistic and space charge 
becomes correspondingly weaker; a representative choice for the space-charge tune 
depression is =0.95.  We thus choose this value for  and then consider modest mode 
H[FLWDWLRQV��VSHFLILFDOO\�� 1=0.01 and 0.05.  A rough measure of percent rms mismatch 
associated with this n ��PRGH�LV��� 1

1/2
�>�@��VR�WKH�FKRLFHV�RI� 1 correspond roughly 

to 5% and 10% rms mismatches, respectively.  Test-particle orbits are then integrated 
over a ‘long’ time, a time corresponding to roughly 3,000 turns around the Booster, 
which is about 16% of the total time the beam resides in the Booster. 

Although our model of the beam and transport channel is, respecting the Booster, 
irrelevant at worst and rudimentary at best, it nevertheless serves as a platform to 
explore whether modest collective modes and weak noise might, if acting over a long 
period of time in a beam with weak space charge, lead to substantial emittance 
degradation and halo formation.  The autocorrelation time is chosen to be tc=80; this 
corresponds to about eight orbital periods of a typical beam particle.  Then, for each 
value of 1, noise strengths 〈|δ |〉=0, 10-4, 10-3, 10-2, and 10-1 are considered.  These 
choices correspond to frequency fluctuations spanning from 0 to about 10% of the 
collective-mode frequency ω1.  The strength of the frequency fluctuation is not 



quantitatively identical to the magnitude of machine errors; in a recent paper Gerigk 
[7] shows, for example, that a 1% rms focusing error translates into a few percent (i.e., 
significantly greater than 1%) rms fluctuation in the oscillation frequency. 

For each set of input parameters, 1,000 test-particle orbits are then integrated.  This 
is a relatively small sample (the studies in Ref. [3] typically incorporate 106 test 
particles), but is one that permits a quick survey of the parameter space.  At time t=0, 
these particles are distributed throughout the interior of the beam in keeping with a 
uniform density profile over the range 0 ��r < 1; their initial velocities are all zero. 

The results of this exploratory study appear in Fig. 1 below, wherein the halo 
amplitude RH, defined to be the radius of the outermost particle at the specific time 
step under consideration, is plotted versus time.  With zero noise, the collective mode 
periodically enlarges the halo, but only by a small amount.  However, the addition of 
colored noise, even noise as weak as 0.01% of the oscillation frequency, results in a 
substantial growth of the halo.  For 〈|δ |〉 =1-10% of 1, the halo is strongly 
enhanced, and the time scale for this enhancement is rapid.  Using a larger number of 
test particles would yield a larger halo; a crude estimate based on inspection of Fig. 3 
of Ref. [3] is that 106 test particles would, compared to the results shown in Fig. 1, 
yield a roughly 25% larger halo amplitude at later integration times. 

Faced with these results, one might be concerned that, since they are unrealistic, 
density discontinuities inherent to collective modes in the warm-fluid KV beam could 
somehow lead to unrealistic dynamics, thereby vitiating the findings.  This seems not 
to be the case because, for example, adding noise to a perturbed thermal-equilibrium 
beam, one completely devoid of discontinuities and wherein the perturbation mimics 
the presence of a global collective mode, likewise yields enhanced halo [1]. 

 

  

FIGURE 1.  Evolution of halo amplitude [RH(t) vs. time t] for exploratory long-
run-time integrations involving 1,000 WHVW�SDUWLFOHV�ZLWK� 1=0.01 (left) and 0.05 (right).  
The run time (2×105 differential-equation time units) corresponds roughly to 3,000 
transits of Fermilab’s Booster synchrotron.  Progressing from bottom to top in each 
panel, the curves correspond to noise strengths 〈|δ |〉 = 0, 10-4, 10-3, 10-2, and 10-1. 

1 = 0.01 1 = 0.05



IMPLICATIONS AND FUTURE WORK 

Despite the limitations inherent to our idealized model, the qualitative features of 
Fig. 1 may provide new insight into emittance dilution observed in Fermilab’s Booster 
synchrotron.  Specifically, the beam emittance is observed to grow continually after 
injection.  Synergism between noise from machine errors (such as hardware alignment 
errors and jitter in the magnet power supplies) and collective modes arising from 
injecting an imperfectly matched beam stands as a candidate explanation.  More work 
is required before one can conclude that this actually is the explanation.  Thus, as they 
presently stand, the findings herein have motivated further study in collaboration with 
Fermilab’s Booster Space Charge Study Group.  Fermilab staff are now in the process 
of including realistic values for hardware alignment errors and jitter in the ORBIT 
code [8] used to simulate the Booster, and will then use this code to compute how 
these errors influence a beam injected with an imperfect match as represented by, e.g., 
an asymmetric transverse emittance [9].  In parallel, we will be doing production runs 
with our model involving much larger numbers of test particles in an effort to aid in 
interpreting the results of the ORBIT simulations. 
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