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Abstract. After an historical introduction of the concept of symmetry, the many ways in which 
symmetry is used today in physics are briefly reviewed. A new concept, super-symmetry, 
introduced in the 1970’s is also briefly reviewed, and the only experimental example of 
supersymmetry in physics presented. The future of symmetry in physics is briefly discussed. 

1.  The notion of symmetry 
Symmetry, from the Greek σύμμετρος (well-ordered, well-proportioned) was originally introduced to 
describe certain properties of artifacts (Polykleitos, Περι βελοποιϊκών, IV, 2). All ancient civilizations 
used this concept. Two examples are shown in figures 1 and 2. 

 

                        
Figure 1. Decorative motif (Sumerian, circa 2000 
B.C.): translation symmetry. 
(From F. Iachello, in Symmetry in Science II, 
Edited by B. Gruber and R. Lenczewcki, Plenum 
Press, New York, 1986) 

Figure 2. Tile found at the Megaron in Tyrins, 
Greece (Late Helladic, circa 1200 B.C.): 
reflection symmetry.  
(From F. Iachello, loc. cit., 1986)  

 
The language of symmetry is mathematics. The Greeks developed mathematics (geometry) in the 

5th Century B.C., introduced the five regular polyhedra, the tetrahedron, the octahedron, the cube, the 
icosahedron and the dodecahedron, and associated them with the constituents of the Universe: fire 
(tetra-), air (octa-), earth (cube), water (icosa-) and the Universe itself (penta-dodeca-hedron). (Plato, 
Timaeus, 55C). 

The study of symmetry took another step forward during the Italian Renaissance. Regular 
polyhedra were complemented by more complex structures, the Archimedean polyhedra, one of which 
is shown in figure 3. The symmetries of the regular bodies were described in detail (Piero della 
Francesca, De Quinque corporibus regularis, 1482). A mathematical description was introduced 
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(projective transformation), which, translated into modern mathematical language, is the theory of 
group transformations, or simply group theory, figure 4. 

 

            
Figure 3. An Archimedean polyhedron with 26 
bases (after Leonardo da Vinci). (From Luca 
Pacioli, Divina Proportione, Venice, 1509). 
(Facsimile of the original figure CIX.) 

Figure 4. Luca Pacioli instructing Guidobaldo da 
Montefeltro in mathematics (geometry). (Oil 
painting by Jacopo de’ Barbari, 1494). (From a 
print at the Museo e Gallerie Nazionali di 
Capodimonte, Napoli, Italy). An Archimedean 
polyhedron is shown in the top left, and the 
projection method is shown in the tablet to which 
Pacioli is pointing. 

 
Symmetry became so important that in 1595 Kepler stated: the planetary system (known at the 

time), Saturn, Jupiter, Mars, Earth, Venus and Mercury can be reduced to the motion of regular bodies, 
figure 5. Kepler concluded his book with the sentence: Credo spatioso numen in orbe, that is, I believe 
in a geometric order of the Universe. 

 

       

 
 
 
 
 
 
Figure 5. The celestial spheres. (From Kepler, 
Mysterium Cosmographicum, Tübingen, 1595.) 
(As reproduced in F. Iachello, in Symmetries in 
Science VII, Edited by B. Gruber and T. Otsuka, 
Plenum Press, New York, 1994)  
 

 

2.  Symmetry in Physics 
Symmetry was originally introduced in physics to describe certain properties of the constituents of 
matter: crystals, molecules (figure 6), etc., much in the same way as in art, especially when physics 
changed from a description of the macroscopic to that of the microscopic world. 
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Figure 6. The molecule H3C2Cl3 with C3 
symmetry: rotations of 120o around the C-C axis. 
(From F. Iachello, in Symmetry in Science VII, 
Edited by B. Gruber and T. Otsuka, Plenum 
Press, New York, 1994). 

 
Symmetry acquired importance when it became apparent that the laws of Nature appear to possess 

symmetry properties (end of 19th Century). For example, Maxwell equations are invariant under 
Lorentz transformations 
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This was the beginning of the symmetry approach to physics. Symmetry became the guiding 

principle in constructing theories of the Universe, the most notable one being that of special relativity 
(Einstein, 1905). At about the same time, the mathematical language needed to describe symmetries 
was further developed with the introduction of Lie algebras and groups (Lie, 1880’s) and their 
classification (Cartan, 1890’s). This was the beginning of the group theory approach to physics. Group 
theory became one of the major tools for studying physics problems and their solutions. 

 

3.  The many ways of symmetry in physics 
Symmetry and its language group theory are used today in a variety of ways. 

3.1.  Geometric symmetry 
Geometric symmetry describes the arrangement of constituent particles into a structure, for example 
atoms in a molecule. The mathematical framework to describe these symmetries is point groups. A 
recent example of a molecule where symmetry plays a crucial role is fullerene discovered in 1985 
(figure 7). 
 

                     

 
 
Figure 7. The molecule C60 with icosahedral Ih 
symmetry. (Discovered by Curl, Kroto and 
Smalley, 1985). (From F. Iachello, in Group 
Theoretical Methods in Physics, V.V. Dodonov 
and V.I. Man’ko, eds., Lecture Notes in Physics 
Vol. 382, Springer, Berlin, 1991). 

3.2.  Permutation symmetry 
This symmetry describes properties of systems of identical particles. Its mathematical framework is 
the permutation group, Sn. Permutation symmetry became particularly important with the development 
of quantum mechanics (1920’s). The wave function of two identical particles is either symmetric or 
antisymmetric under interchange of the two particles, 
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(1,2) (2,1)
(1,2) (2,1)

ψ ψ
ψ ψ

= +
= −

        .                                         (2) 

The first equation applies to bosons and the second to fermions. A visualization of permutation 
symmetry is given by the Escher drawing of figure 8. 
 

                        

 
 
 
 
 
 
Figure 8. M.C. Escher, Study of the regular 
division of the plane with horsemen, 1946. 
(‘ M.C. Escher Heirs, c/o Cordon Art, Baarn, 
Holland) 

3.3.  Space-time (or fundamental) symmetry 
This symmetry fixes the form of the equations of motion. Its mathematical framework is continuous 
Lie groups. For example the free Dirac equation 

( ) ( ) 0i m xμ
μγ ψ∂ − =

ψ

                                                       (3) 

is invariant under the group of Lorentz transformations, SO(3,1), or, in general, under the Poincare’ 
group, ISO(3,1). All laws of Nature appear to be invariant under Lorentz transformations. 

3.4.  Gauge symmetry 
This symmetry fixes the form of the interaction between particles and external fields, and the form of 
the equations satisfied by the fields. Its mathematical framework is continuous Lie groups. For 
example, the laws of electrodynamics, Maxwell equations, are invariant under U(1) gauge 
transformations 

A Aμ μ μ→ + ∂ Λ        (4) 
where Λ is an arbitrary function of space and time. The external electromagnetic field, Aμ, appears in 
the coupling of charged particles with the external field as in the Dirac equation 

( ) ( ) 0i eA m xμ μ μγ⎡ ⎤∂ − − =⎣ ⎦  .   (5) 

A major discovery of the 2nd part of the 20th Century has been that strong, weak and electromagnetic 
interactions all appear to be governed by gauge symmetries, the overall gauge group being 
 

(3) (2) (1)c wSU SU U⊗ ⊗  .    (6) 

3.5.  Dynamic symmetry 
This symmetry fixes the interaction between constituent particles. Its main role is to determine the 
spectral properties of quantum systems (patterns of energy levels). Its mathematical framework is 
continuous Lie groups. This type of symmetry was introduced implicitly by Pauli [1] for the hydrogen 
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atom. The Hamiltonian with Coulomb interactions is invariant under a set of transformations, G, larger 
than rotations (Runge-Lenz transformations, SO(4)). It can be written in terms of Casimir operators of 
G, 

( )
2 2

22 (
p e AH
m r C SO

= − = −
4) 1+

 ,   (7) 

resulting in an explicit expression for the eigenvalues in terms of quantum numbers (figure 9) 

2( , , ) AE n m
n

= −  .     (8) 

 
 
 
 
 
 
 
Figure 9. The spectrum of the 
hydrogen atom is shown as an 
example of SO(4) dynamic 
symmetry in atoms. States are 
labeled by their spectroscopic 
notation, 1s, 2s, 2p, etc. 

 
This type of symmetry assumed an important role in physics with the introduction of flavor symmetry, 
SUf (3), by Gell’Mann and Ne’eman in 1962 [2]. The mass spectrum of particles known at that time 
appeared to be well described by the Gell’Mann-Okubo mass formula 

[ ] 2
1 2 1

1( (1)) ( (2)) ( (1))
4

M a b C U c C SU C U⎡ ⎤= + + −⎢ ⎥⎣ ⎦
    (9) 

producing an explicit expression of the masses in terms of quantum numbers (figure 10) 
2

3
1( , , ) ( 1)
4

M Y I I a bY c I I Y⎡ ⎤= + + + −⎢ ⎥⎣ ⎦
.    (10) 

 
 
 
 
 
 
Figure 10. The 
spectrum of the baryon 
decuplet, 410, is shown 
as an example of SUf(3) 
dynamic symmetry in 
hadrons. 

 
A major discovery of the 2nd part of the 20th Century has been that dynamic symmetries are pervasive 
in physics. An example is atomic nuclei. The constituent of nuclei, neutrons and protons appear to 
bind in pairs with angular momentum 0 and 2 (s and d pairs). Pairs behave as bosons, hence the name 
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Interacting Boson Model given to the model that describes the systems (Iachello, 1974; Arima and 
Iachello, 1976) [3]. The algebraic structure of the model is u(6) and its dynamic symmetries, obtained 
by breaking u(6) into its subalgebras, are 
 

(6) (5) (5) (3) (2)
(6) (3) (3) (2)
(6) (6) (5) (3) (2)

u u so so so
u su so so
u so so so so

⊃ ⊃ ⊃ ⊃
⊃ ⊃ ⊃
⊃ ⊃ ⊃ ⊃

   (11) 

 
When a dynamic symmetry occurs, all properties of the system can be calculated in explicit analytic 
form. In particular, the energies of the states are given in terms of quantum numbers. For the three 
symmetries of Eq.(11), the explicit expressions are 
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The various terms in these expressions are the eigenvalues of the Casimir operators in the appropriate 
irreducible representations. In the last 30 years, many examples of dynamic symmetries in nuclei have 
been found. One of them is shown in figure 11. 
 
                    

 
 
 
 
 
 
 
Figure 11. The spectrum of 156Gd is shown 
as an example of SU(3) dynamic symmetry 
in nuclei. 

 
Another example is molecules. Spectra of molecules can be built from elementary excitations, called 
vibrons. The corresponding model is called vibron model and, in the case of diatomic molecules, has 
algebraic structure u(4) (Iachello, 1980) [4]. Dynamic symmetries in this model are obtained by 
breaking u(4) into its subalgebras 
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(4) (3) (3) (2)
(4) (4) (3) (

u u so so
u so so so

⊃ ⊃ ⊃
⊃ ⊃ ⊃ 2)

    (13) 

Several examples of dynamic symmetries in molecules have been found an example of which is 
shown in figure 12. 
 
                      

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The spectrum of the H2 molecule is 
shown as an example of SO(4) dynamic 
symmetry in molecules. 

 

4.  Supersymmetry in physics 
In the 1970’s, in an attempt to further unify the laws of physics, a new concept was introduced: 
supersymmetry [5]. In Sect. 3.2 when discussing permutational symmetry, bosons and fermions were 
introduced. The symmetry operations described in the previous section pertain to systems of bosons or 
of fermions. The symmetry operations change bosons into bosons or fermions into fermions. In 
supersymmetry, in addition to those symmetry operations there are others which change bosons into 
fermions and vice-versa. This very strange type of symmetry is appropriate for mixed systems of 
bosons and fermions. It is difficult to visualize supersymmetry. The drawing of Escher in figure 13 
conveys the spirit. Supersymmetry implies that the figure be invariant under interchange of pair of fish 
with individual fish. 
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Figure 13. M.E. Escher, Fish, circa 1942. 
(‘ M.C. Escher Heirs, c/o Cordon Art, Baarn, 
Holland) 

 
Also in the 1970’s the mathematical language needed to describe supersymmetry, Graded Lie algebras 
and groups was developed and a classification of these algebraic structures given [6]. Supersymmetry 
and its language, Graded Lie algebras and groups, is used today in a variety of ways. One of them is 
the use of the algebra of supersymmetry as a tool to solve problems in quantum mechanics, called 
Supersymmetric Quantum Mechanics (Witten, 1970’s) [7]. Most importantly, supersymmetry has 
become a guiding principle in constructing theories of Nature. 
 

5.  Some of the ways of supersymmetry 

5.1.  Space-time (fundamental) supersymmetry 
This type of supersymmetry is a generalization of Lorentz-Poincare’ invariance. In addition to space-
time coordinates x,t , which are bosonic, there are super space-time coordinates, θ, which are 
fermionic, i.e. Grassmann varaiables. The supersymmetry transformations mix x,t and θ. The 
mathematical framework to describe these supesrsymmetries is the SuperPoincare’ group. A 
consequence of supersymmetry is that to each particle there corresponds a superparticle (quarks-
squarks, etc.) 

5.2.  Gauge supersymmetry 
This type of supersymmetry fixes the form of the equations satisfied by the fields. An example is the 
Wess-Zumino Lagrangean [5] 

B F BL L L L F= + +     (14) 
with 

     

( ) ( )
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μ
μψ γ ψ ψ ψ

ψ γ ψ

= − ∂ − ∂ − −

⎡ ⎤ ⎡ ⎤− + − +⎣ ⎦ ⎣ ⎦

= − ∂ −

= − −

x

    (15) 

 
In this Lagrangean, written in terms of two scalar fields A(x) and B(x) and a spinor field ψ(x), all 
couplings are given in terms of a single coupling constant g. To each bosonic field there corresponds a 
fermionic field (gluons and gluinos, etc.). Fundamental space-time and gauge supersymmetries are one 
of the most active areas of research in particle physics at the present time. The Large Hadron Collider 
(LHC) has been built to search, in part, for supersymmetric partners of the known particles. LHC is 
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now (2010) operative and we will know (hopefully soon) if fundamental and gauge supersymmetries 
exist. 

5.3.  Dynamic supersymmetry 
This supersymmetry fixes the boson-boson, fermion-fermion and boson-fermion interaction in a mixed 
system of bosons and fermions. It determines the spectral properties of mixed systems of bosons and 
fermions. The corresponding Hamiltonian 

B F BH H H V= + + F      (16) 
is invariant under Bose-Fermi transformations. An example of this type of supersymmetry is provided 
by atomic nuclei (Iachello, 1980; Balantekin, Bars, Iachello, 1980) [8]. In nuclei some of the 
constituents bind in pairs (s and d pairs, bosons) while others remain unpaired (fermions). The 
corresponding model, called Interacting Boson-Fermion Model [9] has a graded algebraic structure, 
u(6/Ω). A consequence of dynamic supersymmetry is that all properties of mixed systems of bosons 
and fermions can be calculated in explicit analytic form, and all states can be classified in a given 
irreducible representation of a supergroup. Dynamic supersymmetries in the Interacting Boson-
Fermion Model are obtained by breaking u(6/Ω) into its subalgebras (graded or not). An example is 
shown in figure 14. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Spectra of 190Os and 191Ir nuclei 
are shown as an example of U(6/4) 
supersymmetry in nuclei. 

 
Dynamic supersymmetries in nuclei, discovered in 1980, have been confirmed recently (2000) in a 
series of experiments involving several laboratories worldwide, especially the Ludwig Maximilians 
Universität in München, Germany [10]. This is the only experimentally confirmed example of 
supersymmetry in physics. 

6.  Recent developments 
New mathematical frameworks have been developed in recent years to enlarge the application of the 
concept of symmetry in physics. 

6.1.  Infinite dimensional Lie algebras (Kac-Moody) 
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These have been used to construct fundamental theories in elementary particle physics (fundamental 
symmetries). The use of this mathematical construction to study dynamic symmetries remains to be 
done. 

6.2.  Deformations of Lie algebras 
Also called “quantum groups”, these have been used to construct theories of elementary particles and 
as a tool to study dynamic symmetries. 

7.  The future of symmetry in physics 

7.1.  Fundamental symmetries: experimental verification of supersymmetry in particle physics 
Supersymmetry has been observed in nuclei. Important questions that need to be answered are: Is this 
observation an accidental fact? Does supersymmetry, even if badly broken, exists in particle physics? 
Does supersymmetry play a fundamental role in Nature? 

7.2.  Geometric symmetry: unravelling further the role of symmetry in complex materials 
As new materials are discovered, more and more the role of geometric symmetries becomes apparent. 
An example is shown in figure 15. 
 
                   

 

 
 
 
 
 
 
 
Figure 15. Crystal structure of a molybdenum 
oxide nanowheel. (H.N. Miras et al., Science, 
Vol. 327, 72 (2010)). 
(From the cover of Science, 1 Jan 2010. Image: 
Leroy Cronin, Ryo Tsunashima, Haralampos 
Miras, University of Glasgow). 

7.3.  Dynamic symmetry: application to complex systems. Simplicity in complexity program 
Most applications so far of dynamic symmetry have been in molecules, atoms, nuclei (figure 16) and 
hadrons. Are there other applications? Interesting systems for possible application of dynamic 
symmetry methods are: macromolecules, polymers, atomic (Bose and Bose-Fermi) condensates, 
biological molecules. 
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Figure 16. Classification of 
spectra of nuclei according to 
dynamic symmetry groups. 
(Figure from R.F. Casten and 
D.H. Feng, Physics Today 
37, 26 (1984)). 
(As adapted by F. Iachello, 
Rivista Nuovo Cimento 19, 1 
(1996)). 

   
At the macroscopic level, many forms of Nature, even the most complex, are often ordered (Figure 
17). Is there order in the bio-world at the microscopic level? 
 

                  

 
 
 
 
 
 
 
Figure 17. E. Haeckel, Kunstformen der Natur, 
Leipzig, 1899. Living forms of the family of 
Discoidea.  
(From F. Iachello, in Symmetries in Science VII, 
Edited by B. Gruber and T. Otsuka, Plenum 
Press, New York, 1994). 

 

8.  Conclusions 
Symmetry in its various forms has become a guiding principle in the description of Nature. The 20th 
Century has seen the development of space-time and gauge symmetries as a tool in determining the 
fundamental laws of physics. It has also seen the emergence of dynamic symmetry (and 
supersymmetry) as a way to classify the structure of physical systems. The 20th Century has also seen 
the development of new mathematical tools needed to describe symmetries (and supersymmetries). As 
Galileo Galilei wrote: The book of Nature is written in the language of mathematics. 
Nature and physics appear to display order at all levels: the fundamental laws of Nature are dictated by 
symmetry principles (space-time and gauge symmetries); spectra of quantum systems are often 
ordered as seen in molecules, atoms, nuclei, hadrons (dynamic symmetries); constituent particles often 
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aggregate in ordered structures (geometric symmetries). As Herman Weyl wrote: Nature loves 
symmetry. 
In the 21th Century, as the complexity of the phenomena that we are studying increases, symmetry 
may play an equally important role. In fact, one of the lessons we have learned is that the more 
complex the structure, the more useful is the concept of symmetry. Figure 18 shows how starting from 
the regular polyhedra introduced by the Greeks in the 5th Century B.C., we can construct more 
complex structures. 
 

 

 
 
 
 
Figure 18. Five regular tetrahedra whose 20 
vertices are those of a regular dodecahedron 
(From Table IX, no.11, Vielecke und Vielfläche, 
Dr. Max Brückner, Leipzig, B.G. Teubner, 1900, 
as copied by M.C. Escher, 1950). 

 
Symmetry helps unravelling this structure even if it of such a complexity that its properties are not 
self-evident, as in the case shown in figure 19. 
 

            

 
 
 
 
 
Figure 19. M.E. Escher, Circle Limit III, 1959. 
Tessellation of the hyperbolic Poincare’ plane. 
The symmetry group here is the tessellation group 
[6,4]. 
(‘ M.C. Escher Heirs, c/o Cordon Art, Baarn, 
Holland) 

 
The future of symmetry in physics is thus still open. 
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