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Abstract

This thesis is devoted to study of the connection between extremal black holes and

topological strings. Important ingredient of this connection is the relation between

Hartle-Hawking wave function associated to black holes and topological string parti-

tion function. This leads to a natural entropy functional defined on the moduli space

of string compactifications. We discuss several examples of such entropy functionals.

We start by proposing a wave function for scalar metric fluctuations on S3 em-

bedded in a Calabi-Yau. This problem maps to a study of non-critical bosonic string

propagating on a circle at the self-dual radius. This can be viewed as a stringy toy

model for a quantum cosmology. Then we formulate an entropy functional on the

moduli space of Calabi-Yau compactifications. We find that the maximization of

the entropy is correlated with the appearance of asymptotic freedom in the effective

field theory. The points where the entropy is maximized correspond to points on

the moduli which are maximal intersection points of walls of marginal stability for

BPS states. We then turn to study of the entropy functional on the moduli space of

two dimensional conformal field theories captured by the gauged WZW model whose

target space is an abelian variety. This gives rise to the effective action on the mod-

uli space of Riemann surfaces, whose critical points are attractive and correspond

iii
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to Jacobian varieties admitting complex multiplication. The partition function is a

generating function for the number of conformal blocks in rational conformal field

theories. Finally, we study non-supersymmetric, extremal 4 dimensional black holes

which arise upon compactification of type II superstrings on Calabi-Yau threefolds.

We propose a generalization of the OSV conjecture for higher derivative corrections to

the non-supersymmetric black hole entropy, in terms of the one parameter refinement

of topological string introduced by Nekrasov. We also study the attractor mecha-

nism for non-supersymmetric black holes and show how the inverse problem of fixing

charges in terms of the attractor value of Calabi-Yau moduli can be explicitly solved.
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Chapter 1

Introduction and Summary

One of the major problems in theoretical physics is formulating a quantum theory

of gravity, a theory that would unify quantum mechanics and general relativity. Over

the years, string theory has proved to be the most reliable candidate for such a theory.

In particular, string theory provides a microscopic description of the entropy of certain

types of black holes through the counting of D-brane bound states. Black holes are

the simplest solutions of the general relativity that reveal quantum properties due to

the Hawking radiation, and understanding the quantum physics of the black holes is

an important step towards formulating a quantum theory of gravity.

The predictions of the string theory include not only a confirmation of the leading

semi-classical black hole entropy formula of Bekenstein and Hawking, which was first

confirmed in [150] (see, e.g. [145, 49] for a review and references), but also all the

subleading quantum gravitational corrections, which was proposed by Ooguri, Stro-

minger and Vafa in [142] (building on the work of [35, 37, 38, 36, 33]). These higher

derivative corrections have been confirmed by explicit microscopic enumeration in a

1



Chapter 1: Introduction and Summary 2

number of examples [159, 5, 46, 4, 47, 153].

As it was shown in [142], the accounting of the black hole entropy is deeply

connected with the topological strings, which, roughly speaking, capture the super-

symmetric sector of the string theory. In particular, using supergravity results [142]

conjectured a simple relation of the form ZBH = |Ztop|2 between the (indexed) entropy

of a four-dimensional BPS black hole in a Type II string Calabi-Yau compactification,

and topological string partition function, evaluated at the attractor point on the mod-

uli space. Viewed as an asymptotic expansion in the limit of large black hole charges,

this relation predicts all order perturbative contributions to the black hole entropy

due to the F -term corrections in the effective N = 2 supergravity Lagrangian. Over

the last few years, this led to significant progress in understanding the spectrum of

D-brane BPS states on compact and non-compact Calabi-Yau manifolds, and gave

new insights on the topological strings and quantum cosmology [146].

Chapter 2: A Stringy Wave Function for an S3 Cosmology

The notion of the wave function of the universe, in the mini-superspace descrip-

tion a la Hartle-Hawking [94], has recently been made precise in the context of a

certain class of string compactifications [143]. In particular, this work provided an

explanation for the appearance of a topological string wave function in the conjecture

of [142] relating the entropy of certain extremal 4d black holes with the topological

string wave function. It is natural to ask whether we can extend this picture in order

to obtain a more realistic quantum cosmology within string theory.

In Chapter 2, we take a modest step in this direction by proposing wave function

for scalar metric fluctuations on S3 embedded in a Calabi-Yau. Then we use the
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relation between topological B model on T ∗S3 and non-critical bosonic string theory

on a circle of self-dual radius to compute the wave function for local volume fluctu-

ations on S3 and some n-point correlation functions. We also discuss some possible

toy model cosmologies based on S3.

The arguments presented in this chapter were obtained in collaboration with Sergei

Gukov and Cumrun Vafa [91]

Chapter 3: The Entropic Principle and Asymptotic Freedom

There is little doubt that there exist a large number of consistent superstring

vacua. This fact is not new: it has been well known for a while in the context

of supersymmetric vacua. More recently, there has been some evidence that the

multitude of vacua continues to exist even without supersymmetry (for introduction

and references see [106, 65]). Of course, one can stop here and resort to the standard

philosophy of physics: choose the theory to be in accord with observation. However,

in the context of string theory being a unified theory of all matter, it is natural to

explore whether one can say a little more about the selection criteria. In particular,

it is desirable to have some sort of a weight function on the space of possible vacua.

This question typically arises in quantum gravity, where one is interested in com-

paring different possible universes (vacuum states) M and choosing the ‘preferred’

ones. The original suggestion of Hartle and Hawking [94] is to weigh each vacuum

by the probability of creation from nothing (see also recent discussion in [95]). This

gives some measure on the landscape of vacua. In [143], this proposal was interpreted

in the context of string compactification with fluxes on AdS2 × S2 ×M , where M is

a Calabi-Yau threefold, using the OSV conjecture [142]. The weight, associated to a
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given M , is the norm of the Hartle-Hawking wave-function, which is related to the

entropy Sp,q of the dual black hole, obtained by wrapping a D3 brane with magnetic

and electric charges (p, q) on M . This is called the entropic principle [143]:

〈Ψp,q(M)|Ψp,q(M)〉 ∼ exp(Sp,q) (1.1)

The complex moduli of M are fixed by the charges (p, q) via the attractor mechanism

[76, 155, 35, 124].

In Chapter 3 we further explore this idea and formulate an entropy functional on

the moduli space of Calabi-Yau compactifications. We find that the maximization of

the entropy is correlated with the appearance of asymptotic freedom in the effective

field theory. The points where the entropy is maximized correspond to points on

the moduli which are the maximal intersection points of walls of marginal stability

for BPS states. We also find an intriguing link between extremizing the entropy

functional and the points on the moduli space of Calabi-Yau three-folds which admit

a ‘quantum deformed’ complex multiplication.

The results in this chapter were obtained in collaboration with Sergei Gukov and

Cumrun Vafa [90]

Chapter 4: Abelian Varieties, RCFTs, Attractors, and Hitchin Functional

in Two Dimensions

The entropic principle implies that one can define corresponding quantum mechan-

ical problem on the moduli space MM by summing over all Calabi-Yau manifolds M

with the weight (1.1). This path integral can be used, for example, for computing

correlation functions of the gravitation fluctuations around the points on the moduli
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space that correspond to ”preferred” string compactifications. This approach can

help us shed some light on the fundamental physical problems, such as quantum

cosmology and string landscape.

The entropic principle in general can be formulated by saying that the entropy

function is the Euler characteristic of the moduli space, associated with the problem.

It is expected that the critical points of the entropy function on the moduli space

correspond to special manifolds with extra (arithmetic) structures, such as complex

multiplication, Lie algebra lattices, etc. There is also a hidden integrality involved

coming from the quantization of (at least partially) compact moduli space. As a

result, we expect appearance of the nice modular functions and automorphic forms

at the critical points of the entropy function.

It was noted in [58, 133, 81] that some new geometric functionals introduced by

Hitchin [97, 98] might be useful for the formulation of this problem in the context of

topological strings. There are several reasons why the approach based on the Hitchin

functional is attractive. Since it is a diffeomorphism-invariant functional depending

only on the cohomology classes of some differential forms, it is a proper candidate for

the description of topological degrees of freedom. It can also be used for incorporating

the generalized geometry moduli. Moreover, at the classical level it reproduces the

black hole entropy.

In Chapter 4 we apply the entropy functional idea to the two-dimensional toy

model, that has many interesting features which are expected to survive in higher

dimensions. We find a two-dimensional sibling of the Hitchin functional, formulate

an analog of the entropic principle in 1C + 1 dimensions, and describe correspond-



Chapter 1: Introduction and Summary 6

ing quantum theory. It involves a generating function for the number of conformal

blocks in rational conformal field theories with an even central charge c on a genus

g Riemann surface. We study a special coupling of this theory to two-dimensional

gravity. When c = 2g, the coupling is non-trivial due to the gravitational instantons,

and the action of the theory can be interpreted as a two-dimensional analog of the

Hitchin functional for Calabi-Yau manifolds. This gives rise to the effective action

on the moduli space of Riemann surfaces, whose critical points are attractive and

correspond to Jacobian varieties admitting complex multiplication. The theory that

we describe can be viewed as a dimensional reduction of topological M-theory.

The advantage of taking digression to the two dimensions is that in this case

(almost) everything becomes solvable. It turns out that this way we find a uni-

fied description of all two-dimensional topologies. Moreover, the study of the two-

dimensional model leads to a natural generalization of the six-dimensional Hitchin

functional, which may be useful for understanding of the topological M-theory at a

quantum level. The analysis of this model supports the idea that the quantum parti-

tion function of the topological M-theory is given by a generalized index theorem for

the moduli space. In particular, this implies that the OSV conjecture [142] should be

viewed as a higher dimensional analog of the E. Verlinde’s formula for the number of

conformal blocks in a two-dimensional conformal field theory.

Chapter 5: Non-supersymmetric Black Holes and Topological Strings

An important feature of extremal black hole solutions in N = 2, 4, 8 supergravity

in four space-time dimensions is that some of the scalar fields (lowest components of

the vector multiplets) acquire fixed values at the horizon. These values are determined
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by the magnetic and electric charges (pI , qI) of the black hole and does not depend

on the asymptotic values of the fields at infinity. The so-called attractor mechanism,

which is responsible for such fixed point behavior of the solutions, was first studied

in [76, 155, 73, 74] in the context of the BPS black holes in the leading semiclassical

approximation. Later, the attractor equations describing these fixed points for BPS

black hole solutions were generalized to incorporate the higher derivative corrections

to N = 2 supergravity Lagrangian (see [123] for a review).

Recently, the interest toward accounting the entropy of non-supersymmetric ex-

tremal black holes spiked again. The attractor behavior of a non-supersymmetric

extremal black hole solutions is similar to the BPS black hole case, since it is a con-

sequence of extremality rather than supersymmetry [72]. Therefore, it is natural to

look for an extension of the OSV formula (5.2) that can be applied simultaneously to

both BPS and non-BPS extremal black holes and will describe corrections to their

entropy due to higher derivative terms in the Lagrangian as a perturbative series in

the inverse charge. Recently, several steps in this direction have been taken from the

supergravity side. A general method (the entropy function formalism) for computing

the macroscopic entropy of extremal black holes based on N = 2 supergravity action

in the presence of higher-derivative interactions was developed in [151, 152].

In Chapter 4 we propose a generalization of the OSV formula [142] that predicts

degeneracies of both supersymmetric and non-supersymmetric extremal black holes

using topological string partition function. Moreover, we conjectured that correspond-

ing corrected (non-supersymmetric) extremal black hole entropy needs an additional

ingredient: Nekrasov’s extension of the topological string free energy F (XI , ε1, ε2).
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We also study the attractor mechanism for non-supersymmetric black holes and show

how the inverse problem of fixing charges in terms of the attractor value of CY moduli

can be solved. Explicit solution of the inverse problem in one-modulus Calabi-Yau

case is presented.

The results in this chapter were obtained in collaboration with Cumrun Vafa [150].



Chapter 2

A Stringy Wave Function for an S3

Cosmology

The notion of the wave function of the universe introduced by Hartle and Hawking

[94], has reappeared recentely [143] in the context of flux compactifications of type

II string theory on a Calabi-Yau three-fold times S2 × S1, where a wave function

on moduli space of Calabi-Yau and the overall size of S2 was defined. In particular

for a given choice of flux in the Calabi-Yau, labeled by magnetic and electric fluxes

(P I , QI), we have a wave function, ψP,Q(ΦI), depending on (real) moduli of Calabi-

Yau. This wave function is peaked at the attractor values of the moduli of the

Calabi-Yau. Also, in general, this wave function depends only on the BPS subspace

of the field configurations which thus yields a rather limited information about the

full Calabi-Yau wave function. One would like to have a wave function which depends

on more local data of the Calabi-Yau geometry, rather than just global moduli. This

may seem to be in contradiction with the requirement that the data depends only on

9
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BPS quantities. However this need not be the case, as we will now explain.

For concreteness, let us take type IIB superstring compactified on a Calabi-Yau

three-fold and consider the shape of a particular special Lagrangian 3-cycle L inside

the Calabi-Yau. For instance, this may be a natural setup for a toy model of our

universe obtained by wrapping some D-branes on L. In this setup, the question

about the wave function as a function of the shape of L translates into the wave

function for our universe. In general, varying the moduli of Calabi-Yau will induce

changes in the shape of L. So, at least we have a wave function on a subset of the

moduli of L. More precisely, since Calabi-Yau space has a 3-form which coincides

with the volume form on special Lagrangian submanifolds, we are effectively asking

about a wave function for some subset of local volume fluctuations on L. On the other

hand, since the issue is local, we can consider a local model of Calabi-Yau near L,

which is given by T ∗L. In this context, global aspects of Calabi-Yau will not provide

any obstruction in arbitrary local deformations of the shape of L. We could thus

write a wave function which is a function of arbitrary local volume fluctuations of L.

In particular, if we know how to compute topological string wave function on T ∗L

we will be able to write the full wave function for arbitrary local volume fluctuations

(scalar metric perturbations) of L.

A particularly interesting choice of L is L = S3. Not only is this the most natural

choice in the context of quantum cosmology, but luckily it also turns out to be the case

already well studied in topological string theory: As is well known, the topological B

model on the conifold T ∗S3 gets mapped to non-critical bosonic string propagating on

a circle of self-dual radius [82]. Hence, we can use the results on the c = 1 non-critical
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bosonic string theory to write a wave function for scalar metric fluctuations of the

S3. This is the main goal of this chapter. We will show how the known results of

the non-critical bosonic strings can be used to yield arbitrary 2-point fluctuations. In

particular we find the following result

〈φ~kφ−~k〉 ∼ g2
s |~k| (2.1)

where φ~k denotes the Fourier modes of the conformal rescalings of the metric, which

differs from the scale invariant spectrum in the standard cosmology:

〈φ~kφ−~k〉 ∼ |~k|−3 (2.2)

One can also in principle compute arbitrary n-point fluctuations. However, in gen-

eral, for this one would need to know arbitrary momentum and winding correlation

functions of the non-critical bosonic string which are not yet available (see, however,

the recent work [121]). Nevertheless, from the known results about the correlation

functions of the momentum modes of c = 1 string theory we can obtain arbitrary

n-point fluctuations for scalar fluctuations on a large circle S1 ⊂ S3.

The organization of this chapter is as follows: In section 2.1, we review the notion

of the wave function for topological strings and its relation to the wave function for

moduli of a Calabi-Yau in flux compactifications [143]. In section 2.2, we review

non-critical bosonic string theory on a circle of self-dual radius and its relation to

the topological B model on T ∗S3. In section 2.3, we use these relations to compute

the wave function for local volume fluctuations on S3 and compute some n-point

correlation functions. We also discuss some possible toy model cosmologies based

on S3.
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2.1 Stringy Hartle-Hawking Wave Function

In this section we briefly review the work of [143]. Consider a flux compactification

of type IIB string on a Calabi-Yau space M times S2×S1, with a 5-form field strength

flux threading through S2 and a 3-cycle of M . We choose a canonical symplectic basis

for the three cycles on M , denoted by AI , B
J . In this basis, the magnetic/electric

flux can be denoted by (P I , QJ). The wave function of the “universe” in the mini-

superspace will be a function of the moduli of M and the sizes of S2 and S1. It turns

out that it does not depend on the size1 of the S1 and its dependence on the size of

S2 can be recast by writing the wave function in terms of the projective coordinate

on the moduli space of M .

The moduli space of a Calabi-Yau is naturally parameterized by the periods of

the holomorphic 3-form Ω on the 3-cycles. In particular, if we denote the periods by

∫

AI

Ω = XI (2.3)

∫

BJ
Ω = FJ (2.4)

we can use the XI as projective coordinates on the moduli space of the Calabi-

Yau (in particular special geometry implies that FJ is determined in terms of XI as

gradients of the prepotential F0, i.e. FJ = ∂JF0(X
I)). However, as observed in [143],

XI and X
I

do not commute in the BPS mini-superspace. Therefore, to write the

wave function we have to choose a commuting subspace. A natural such choice is to

parameterize this subspace by either real or imaginary part of XI . Let us call these

1If we change the boundary conditions on the fermions to be anti-periodic, then the wave function
does depend on the radius of S1 and its norm increases as the value of the supersymmetry breaking
parameter increases [60].
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variables ΦI . Then, the wave function is given by

ψP I ,QJ
(ΦI) = ψtop(P

I +
iΦI

π
) exp(QJΦJ/2) (2.5)

where

ψtop(X
I) = exp(Ftop(X

I)) (2.6)

is the B-model topological string partition function. For compact case there are only

finite number of moduli, but for the non-compact case, which we are interested in

here, there are infinitely many moduli and I runs over an infinite set. It should be

understood that this expression for the wave function is only an asymptotic expansion

(see [57] for a discussion of non-perturbative corrections to this). The overall rescaling

of the charges is identified with the inverse of topological string coupling constant and

we assume it to be large, so that the string expansion is valid. The wave function is

peaked at the attractor value where

ReXI = P I , (2.7)

ReFJ = QJ . (2.8)

We will be interested in a non-compact Calabi-Yau space, where the same for-

malism continues to hold (one can view it, at least formally, as a limit of a compact

Calabi-Yau). In this case, we will have an infinite set of moduli. This is similar to

[5, 4], where the incorporation of the infinitely many moduli in the non-compact case

was shown to be crucial for reproducing the conjecture of [142]. Specifically, in this

paper we will be considering the conifold, T ∗S3. In this case, we can turn on a set of

fluxes which result in a round S3 at the attractor point, and then consider the fluc-

tuations of the metric captured by the topological string wave function. Before we
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proceed to this analysis, let us review some aspects of the topological strings on the

conifold and its relation to non-critical bosonic strings on a circle of self-dual radius.

2.2 Topological Strings on the Conifold and Non-

critical c=1 String

In this section we review the B-model topological string on the conifold

xy − zw = µ (2.9)

deformed by the terms of the form ε(x, y, z, w). The canonical compact 3-cycle of the

conifold is S3. If we rewrite 2.9 as

x2
1 + x2

2 + x2
3 + x2

4 = µ (2.10)

using appropriate change of the variables the real slice is exactly this S3 with the

radius equal to
√

Reµ.

Let us recall that these deformations are in 1-to-1 correspondence with spin (j, j)

representations of the SO(4) ∼= SU(2)×SU(2) symmetry group [167, 174, 113]. Here,

the variables xi transform in the (1
2
, 1

2
) representation of the SU(2) × SU(2). Thus,

we can write xi as xAA′ where A,A′ = 1, 2 are the spinor indices. In these notations,

infinitesimal deformations of the hypersurface (2.9) can be represented by monomials

of the form

ε(x) = tA1A2...An;A′1A′2...A′nxA1A′1xA2A′2 . . . xAnA′n (2.11)

where the deformation parameters tA1A2...An;A′1A′2...A′n are completely symmetric in all
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Ai and all A′
i:

x2
1 + x2

2 + x2
3 + x2

4 = µ + ε(x) (2.12)

We shall label a generic deformation of the form (2.11) by its quantum numbers:

tA1A2...An;A′1A′2...A′n → t|j,j;m,m′〉. (2.13)

where j = n/2 and

m =
n∑

i=1

(Ai − 3/2) (2.14)

m′ =
n∑

i=1

(A′
i − 3/2) (2.15)

As is well known [82, 64, 129], topological B-model partition function of the coni-

fold Ztop considered as a function of the deformation parameters (2.13) can be identi-

fied with the partition function of the c = 1 non-critical bosonic string theory at the

self-dual radius

Ztop(t) = Zc=1(t) (2.16)

The partition function (2.16) of the c = 1 theory is a generating functional for all

correlation functions and has a natural genus expansion in the string coupling constant

gs. From the point of view of the conformal algebra the equation (2.9) describes a

relation among four generators of the ground ring [167], and “cosmological constant”

µ is interpreted as the conifold deformation parameter. Moreover the SU(2)×SU(2)

used in classifying deformation parameters of the conifold get identified with the

SU(2) × SU(2) symmetry of the conformal theory of c = 1 at the self-dual radius.

Turning on only the momentum modes leads to deformations which depend on two
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of the parameters ε(x, y), whereas turning on the winding modes corresponds to

deformations of the other two variables ε(z, w). Turning on all modes corresponds to

an arbitrary deformation of the conifold ε(x, y, z, w), captured by (2.11).

The most well studied part of the amplitudes of c = 1 involves turning on mo-

mentum modes only. This corresponds to deformation

xy − zw = µ +
∑

n>0

(tnx
n + t−nyn) + . . . (2.17)

Here the dots stand for the terms of higher order in tn which are only a function

of x and y. The deformations tn, associated with momentum n states, have the

SU(2)× SU(2) quantum numbers

tn ←→ ||n|
2

,
|n|
2

;
n

2
,
n

2
〉 (2.18)

where n runs over all integers.

The partition function (2.16) for this subset of deformations is equal to the τ -

function of the Toda hierarchy. In particular, it depends on infinite set of couplings

which are sources for the amputated tachyon modes2

〈Tn1 . . . Tnk
〉 =

∂

∂tn1

. . .
∂

∂tnk

Fc=1(t)|t=0 (2.19)

where on the left hand side we have connected amplitudes. The conservation of

momentum implies that the sum of n’s in each non-vanishing amplitude should be

equal to zero,

〈Tn1Tn2 . . . Tnk
〉 = 0 unless

k∑

i=1

ni = 0 (2.20)

2Here, Tn = Γ(|n|)
Γ(−|n|)Tn where Tn =

∫
d2σe(2−|n|)φ/

√
2einX/

√
2 is the standard tachyon vertex. (We

follow the conventions in [125, 59], which are slightly different from the conventions used in [87, 112].)
For n ∈ ZZ, the vertex operator Tn is a linear combination of a “special state” and the tachyon vertex
[126, 125].
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The tachyon correlators (2.19) can be computed using the W1+∞ recursion rela-

tions of 2D string theory [59]. For example, for genus 0 amplitudes we have

〈TnT−n〉 = −µ|n|
g2

s

1
|n|

〈TnTn1Tn2〉 = 1
g2

s
µ

1
2
(|n|+|n2|+|n3|)−1

〈Tn1Tn2Tn3Tn4〉 = 1
g2

s
µ

1
2
(|n1|+|n2|+|n3|+|n4|)−2(1−max{|ni|})

. . .

(2.21)

The genus expansion of the free energy has the form

Fc=1 =
∞∑

g=0

( µ

gs

)2−2gFg(t) (2.22)

This is a good expansion in the regime µ >> gs. Usually, it is convenient to absorb

the string coupling constant in the definition of µ, and make a suitable redefinition

of the tn’s. However, in our case it is convenient not to do this; the advantage is that

tn’s appear in the deformed conifold equation (2.17) without any extra factors.

It is instructive to note that, in this set of conventions, all the parameters µ, gs,

and tn are dimensionful:

µ ∼ [length]2

gs ∼ [length]2

tn ∼ [length]2−|n|

(2.23)

In particular, the ratio ( µ
gs

) is dimensionless, and tn has the same dimension as µ1− |n|
2 .

Since the genus-g term in the free energy (5.192) should be independent of gs, it follows

that Fg(t) depends on tn only via the combination tnµ
|n|
2
−1. This is consistent with

the fact that when all the tn’s are zero Fg is just a number

Fg(tn = 0) =
(−1)g+1B2g

2g(2g − 2)
, g > 1 (2.24)
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In general, Fg(t) has the following structure [125, 112]

Fg(t) =
∑
m

Pm
g (ni)

m∏

i=1

tni
µ
|ni|
2
−1 (2.25)

where Pm
g (ni) is a polynomial in the momenta ni of fixed degree depending on m and

g. For example, degP 2
g (ni) = 4g − 1 and

P 2
1 (n) =

1

24
(|n| − 1)(n2 − |n| − 1) (2.26)

Also, Pm
0 (ni) is a linear polynomial and for m > 2 is given by

Pm
0 (ni) = (−1)m−1µm−2

m!

(
ψm−2 +

max{|ni|}
2

m−3∑

r=1

(m− 2)!

r!(m− 2− r)!
ψm−2−rψr

)
, (2.27)

where ψr := ( d
dµ

)r
log µ. Notice that these expressions for P 3

0 (ni) and P 4
0 (ni) agree

with (2.21). Thus, the leading genus zero terms have the following form

Fc=1 = − 1

g2
s

∑

n>0

1

n
µntnt−n +

1

3!g2
s

∑

n1+n2+n3=0

µ
1
2
(|n1|+|n2|+|n3|)−1tn1tn2tn3 + . . . (2.28)

It is easy to check that all the terms in this formula scale as µ2. It also leads to the

tachyon correlation functions (2.19) consistent with the KPZ scaling [114] (see also

[87, 112]):

〈Tn1Tn2 . . . Tnk
〉g ∼ µ2(1−g)−k+

1
2

∑k

i=1
|ni| (2.29)

2.3 Local Volume Form Fluctuations on S3

We are interested in making a toy model of quantum cosmology. In this regard

we are interested in the quantum metric fluctuations of an S3 inside the Calabi-Yau.

More precisely, we take the nine-dimensional spatial geometry as

M9 = S1 × S2 × T ∗S3
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and study the fluctuations of the metric on S3 ⊂ T ∗S3. Usually we view the Calabi-

Yau scales as much smaller than the macroscopic scales S1 and S2, but nothing in

the formalism of Hartle-Hawking wave function prevents us from considering larger

Calabi-Yau. In particular we will be assuming that S3 has a very large macroscopic

size, which we wish to identify with our observed universe. One may view our world,

in this toy model, as for example coming from branes wrapped over this S3, as we

will discuss later in this section. For the purposes of this section we assume we have

certain fluxes turned on, such that the classically preferred geometry for S3 is a large,

round metric, and we study what kind of fluctuations are implied away from this

round metric, in the context of Hartle-Hawking wave function in string theory. We

ask, for example, if the metric fluctuation spectrum implied by this wave function is

scale invariant?

From the point of view of the flux compactification considered in section 2.1 we

set all electric fluxes to zero and turn on only one magnetic flux:

QI = 0, (2.30)

P I 6=0 = 0, (2.31)

P 0 = N (2.32)

Then the value of µ is fixed by the attractor mechanism:

Reµ =
1

2
Ngs (2.33)

We will fix N À 1 leading to Reµ/gs À 1. Note that in this limit the topological

string partition function has a well defined perturbative expansion.
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Figure 2.1: Fluctuations of the S3 inside a Calabi-Yau.

Now, let us consider a 3-sphere, S3, defined by the real values of the xi, which

satisfy (2.10). For non-zero (real) value of the deformation parameter µ and zero

values of the t’s, the induced metric on the S3 is the standard round metric, g(0)
µν . The

fluctuations of the moduli, δt, lead to perturbations of the Calabi-Yau metric on the

conifold (2.10), and thus to perturbations of the metric, gµν , induced on the 3-sphere

δt −→ δgµν (2.34)

In the topological B-model, the theory depends only on the complex structure de-

formations. This in particular means that not all deformations of the metric are

observable. However, we recall that in the B-model the fundamental field is the holo-

morphic 3-form Ω and its variations. Moreover, on a special Lagrangian submanifold
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the volume form coincides with the restriction of a real form of Ω. In particular, an

analog of the scalar fluctuations would be a fluctuation of the “conformal factor” φ,

where

Ω = eφΩ0 (2.35)

In particular the field φ and its fluctuations on a Lagrangian submanifold would be

observable in our wave function induced from the B-model topological string. In

particular we would be interested in the fluctuations of the field φ on the special

Lagranigan S3 inside the conifold. Before discussing how we do this in more detail,

let us return to what kind of cosmological models would this question be relevant for.

2.3.1 Toy Models of S3 Cosmology

So far we have discussed a supersymmetric (morally static) situation, where we

ask the typical local shape of an S3 inside a Calabi-Yau. It is natural to ask if we can

make a toy cosmology with this data, where the fluctuations we have studied would

be observed as some kind of seed for inhomogeneity of fluctuations of matter.

In order to do this we need to add a few more ingredients to our story: First

of all, we need to have the observed universe be identified with what is going on in

an S3. The most obvious way to accomplish this would be in the scenario where we

identify our world with some number of D3 branes wrapping S3. In this situation

the inhomogeneities of the metric on S3 will be inherited by the D3 brane observer.

A second ingredient we need to add to our story would be time dependence. This

would necessarily mean going away from the supersymmetric context–an assumption

which has been critical throughout our discussion. The least intrusive way, would be
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to have our discussion be applicable in an adiabatic context where we have a small

supersymmetry breaking. In particular we imagine a situation where time dependence

of the fields which break supersymmetry is sufficiently mild, that we can still trust a

mini-superspace approximation in the supersymmetric sector of the theory.

To be concrete we propose one toy model setup where both of these can in principle

be achieved. We have started with no D3 branes wrapped around S3. In the context

of attractor mechanism this means that

Reµ̂ = P

Re
i

2π
µ̂log

µ̂

Λ
= Q = 0

(where µ̂ = 2µ/gs) which we realize by taking µ̂ to be real and equal to P and Λ to

be real. The value of Λ is set by the data at infinity of the conifold. Let us write

Λ = Λ0exp(iϕ)

and imagine making Λ time dependent by taking a time dependent ϕ(t). This can be

viewed as a “time dependent axion field” induced from data at infinity. This leads to

creation of flux corresponding to D3 brane wrapping S3 as is clear from the attractor

mechanism. Indeed each time ϕ goes through 2π the number of D3 branes wrapping

S3 increases by P units. This in turn can nucleate the corresponding D3 branes.

To bring in dynamics leading to evolution of radius of S3 we can imagine the

following possibilities: Make the magnetic charge P time dependent by bringing in

branes from infinity in the same class (or perhaps by the magnetic brane leaving

and annihilating other magnetic anti-branes, leading to shrinking S3). This can in

principle be done in an adiabatic way, thus making our story consistent with a slight



Chapter 2: A Stringy Wave Function for an S3 Cosmology 23

time dependent µ. Another possibility which would be less under control would

be to inject some energy on the D3 branes. It is likely that this leads to some

interesting evolution for S3, though this needs to be studied. In particular, this can

be accomplished by making the ϕ(t) undergo partial unwinding motion. In this way

we would create some number of anti-D3 branes which would annihilate some of the

D3 branes. It is interesting to study what kind of cosmology this would lead to.

Keeping this toy model motivation in mind we now return to the study of volume

fluctuations in the supersymmetric model.

2.3.2 Setup for Computation of Volume Fluctuations

In principle if we know the full amplitudes of the c = 1 theory at the self-dual

radius we can compute all correlation functions of φ. However the full amplitudes

for c = 1 are not currently known (see [121] for recent work in this direction). We

thus focus on the amplitudes which are known, which include the momentum mode

correlations, as discussed in section 2.2. For two point correlation functions, as we will

note below, the general amplitudes can be read off from this subspace of deformations,

due to SU(2)× SU(2) symmetry of S3.

The momentum induced deformation of the 3-sphere in the conifold geometry

(2.17) is obtained by specializing to a real three-dimensional submanifold, described

by the equation

p + x2
3 + x2

4 = µ + ε(p, θ) (2.36)

where x3, x4 are real and without loss of generality, µ is assumed to be real and

x = p1/2eiθ (2.37)
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y = p1/2e−iθ (2.38)

In these variables, the restriction of the holomorphic 3-form Ω to the hypersurface

(2.36), which is the volume form on it, is given by

Ω =
dx3dx4dθ

1− ∂pε(p, θ)
, (2.39)

In particular, in the linear approximation

ε(p, θ) ≈ Re
∑

n6=0

p|n|/2einθtn (2.40)

The fluctuations of the “conformal factor” are given by

φ = log
Ω

Ω0

= − log(1− ∂pε) = ∂pε + 1
2
(∂pε)

2 + . . . (2.41)

Now let us look at the absolute value squared of the Hartle-Hawking wave function

(2.6). Remember that relation between the c = 1 theory at the self-dual radius

and the B-model topological string on the conifold (2.16) implies Ftop(t) = Fc=1(t).

Therefore,

|Ψ|2 = exp
(
− 1

g2
s

∑
n>0

2
n
µnRe(tnt−n) + 1

3g2
s

∑
n1+n2+n3=0 µ

1
2
(n1+n2+n3)−1Re(tn1tn2tn3) + . . .

)

(2.42)

We are going to use this wave function density to evaluate correlation functions of

the form:

〈φ1φ2 . . . φn〉 =

∫ Dt(φ1φ2 . . . φn)|Ψ(t)|2∫ Dt|Ψ(t)|2 (2.43)

where φk = φ(p = µ, θk) is the conformal factor at a point on the “large circle” of

the S3, defined by (2.36) with x3 = x4 = 0. As we already noted, a computation
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of more general correlations functions (where φk are in general position on the S3)

would require the information about the correlation functions of both momentum

and winding modes of the c = 1 model. The reason for this is that p 6= µ implies

x2
3 +x2

4 6= 0 and, therefore, leads to generic deformations ε(p, θ, x3, x4) in (2.36). Since

from now on we will always consider only the correlation functions of the conformal

factor on the large circle, p = µ, we shall often write φ(µ, θ) = φ(θ). We will now turn

to the two point function for which the momentum correlation functions are sufficient

to yield the general correlation function due to SU(2)× SU(2) symmetry.

2.3.3 2-point Function at Tree Level

We start with evaluating a two point correlation function:

〈φ1φ2〉

Because of the SO(4) symmetry of the S3, one can always assume that φ1 and φ2 are

evaluated at two points on the large circle p = µ. To the leading order in gs/µ, one can

keep only the linear terms in (2.41). The contribution of non-linear terms in (2.41)

is suppressed by gs and will be discussed later. Thus, in the linear approximation to

(2.41) and substituting (2.40),

〈φ(θ)φ(0)〉 =
1

4µ2

∑
n,m

|nm|µ |n|+|m|
2 einθ〈tntm〉 (2.44)

where we used the fact that tn and t−n are complex conjugate after reduction to the

3-sphere.

Similarly, restricting (2.42) to the 3-sphere, we get

|ΨS3(t)|2 = exp

(
− 2

g2
s

∑

n>0

µ|n|

|n| tnt−n +
1

3g2
sµ

∑

n1+n2=−n3

µ
|n1|+|n2|+|n3|

2 tn1tn2tn3 + . . .

)
(2.45)
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1 n

θ

2 . . .

Figure 2.2: n points on the large circle of the S3.

In particular, it gives

〈tntm〉 =

∫ Dt|ΨS3(t)|2tntm∫ Dt|ΨS3(t)|2 =
|n|
2

g2
sµ

−|n|δn+m,0 +O((µ/gs)
−|n|−2) (2.46)

Evaluating the path integral we treat non-quadratic terms in (2.45) as perturbations.

In general, this will give a highly non-trivial theory with all types of interactions.

However, using scaling properties (2.23), one can show that contribution from the k-

tuple interaction vertex is proportional to (gs/µ)k−2 (see discussion below). Therefore,

all loop corrections to the leading term are suppressed in the limit of large S3 radius

and small string coupling, gs. As a result, using (2.46) we find

〈φ(θ)φ(0)〉 =
g2

s

8µ2

∑
n

|n|3einθ + . . . (2.47)
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or, equivalently,

〈φnφ−n〉 =
g2

s

8µ2
|n|3 (2.48)

where

φn :=
1

2π

∫ 2π

0
dθeiθnφ(θ) (2.49)

This has to be compared with the usual Fourier transform, given by a 3-dimensional

integral

〈φ~kφ−~k〉 ∼
∫

d3xei~k·~x〈φ(~x)φ(0)〉 (2.50)

∼ g2
s |~k| (2.51)

Note that a scale invariant power spectrum would correspond to |k|−3 fluctuation

correlation. Thus the fluctuation spectrum we have on S3 is not scale invariant.

After performing the summation over n in (2.48), we get the 2-point function

〈φ(θ)φ(0)〉 =
g2

s

32µ2

cos θ + 2

sin4 θ/2
(2.52)

in the coordinate representation. Although this expression appears to have a singu-

larity at θ = 0, as we explain in the next subsection, our approximation cannot be

trusted at large momenta or, equivalently, small θ <
√

gs/µ.

2.3.4 General Structure of gs Corrections

There are three sources for the gs corrections to the 2-point function: i) one due to

higher genus terms in the free energy expansion (5.192), ii) corrections due to loops

made from the k-point vertices (with k > 2) in the “effective action” F(t) as well as
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due to non-linear terms in the expansion (2.41) of φ in terms of ε, and iii) corrections

due to non-linear relation between ε and the deformation parameters tn induced by

the deformations of the geometry [59, 6]:

xy = µ− x2
3 − x2

4 +
∑

n>0

(tnx
n + t−nyn)− 1

2µ

∑
m>0
n>0

tnt−mmxnym + . . . (2.53)

It is easy to check that all kinds of corrections are suppressed by powers of (gs/µ)2.

In the case i) this is manifest from the form of (5.192). In the case ii), iii), this can

be seen in the language of the Feynman diagrams for the fluctuating fields tn, that

follow from the effective action (2.45):

propagator : 1
2
g2

s |n|µ−|n| + . . . (2.54)

k ≥ 3 vertex :
2

g2
sk!

µ
|n1|+...+|nk|

2
+2−kP k

0 (ni) + . . . (2.55)

Here P k
0 (ni) is a linear polynomial (2.27) in momenta ni, and the dots stand for

higher-genus terms. In particular, a genus-g contribution comes with an extra factor

of (gs/µ)2g.

In general, we find that the genus-g contribution (contribution from g loops) to

the 2-point function looks like

〈φnφ−n〉g ∼
(gs

µ

)2g+2|n|4g+3 (2.56)

where φn is defined in (2.49). We can read off the higher genus corrections to the

propagator 〈tnt−n〉 from the quadratic terms in (2.25):

〈tnt−n〉|tree =
1
2
g2

s |n|µ−|n|
1 +

∑
g≥1

(gs/µ)2g|n|P 2
g (n)

(2.57)
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Notice that degP 2
g (n) = 4g−1 and therefore for large momenta we have an asymptotic

expansion of the form:

〈tnt−n〉|tree =
1
2
g2

s |n|µ−|n|
1 +

∑
g≥1

pg

(
n2gs

µ

)2g
+ . . .

(2.58)

where constants pg are determined by the polynomial P 2
g (n) and dots stand for the

terms suppressed by powers of n. Now it is clear that the good expansion parameter

is n2gs

µ
rather than gs

µ
which means that our approximation is valid only for momenta

n small compared to µ/gs. In other words, we should fix some high-energy cut-off

parameter Λ2 < µ/gs and consider only deformations with momentum number n < Λ.

Now let us incorporate corrections due to loops in Feynman diagrams generated

by (2.54). For example, if we take into account genus one corrections and one-loop

corrections we get the following expression for the propagator:

++ + . . . =
1
2
g2

s |n|µ−|n| + . . .

1− |n|
24

(
gs

µ

)2
(|n| − 1)(n2 − |n| − 1) + . . .

(2.59)

Notice that due to (2.56) g-loops corrections dependence on momenta is similar to

the genus g corrections. Thus, the general structure of the 2-point function is given

by:

〈φnφ−n〉g =
g2

s

8µ2
|n|3

1 +
∑
g

bg(
n
Λ
)
(

Λ2gs

µ

)2g
+ . . .

1 +
∑
g

pg

(
n2gs

µ

)2g
+ . . .

(2.60)

where the polynomials bg depend on the ratio n/Λ, which should be small in order

for the perturbation theory to be valid.
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2.3.5 n-point Function for the Perturbations on the Large

Circle of S3

Here we briefly discuss the structure of n point function. Unlike the 2-point func-

tion where we could compute the general case, for n point functions with the present

technology, we can only compute correlations restricted to taking the fluctuations at

points on a large circle. Using the Feynman rules (2.54), we find that the contribution

of a tree Feynman diagram to a k-point function scales as (to avoid cluttering, we

omit polynomials in ni which do not affect the gs behavior):

〈tn1 . . . tnk
〉0 ∼ g2k−2

s µ−
|n1|+...+|nk|

2
+2−k (2.61)

Now, let us consider a g-loop contribution to the k-point function. As we discussed

earlier, such contributions come from the vertices with a total of k+2g legs, k of which

are connected by propagators to the external legs of the k-point function, and 2g of

which are pairwise connected by internal propagators. Notice that, for the internal

momenta nj, the factors µ
|nj |
2 cancel out and we get

〈tn1 . . . tnk
〉g ∼ g2k+2g−2

s µ−
|n1|+...+|nk|

2
+2−k−2g (2.62)

Comparing this expression with (2.61), we see that a g-loop contribution to the k-

point correlation function is suppressed by the same factor (gs/µ)2g as the contribution

from a genus-g term in the free energy (5.192). For the k-point function of the fields

φn this implies

〈φn1 . . . φnk
〉g ∼ µ

|n1|+...+|nk|
2

−k〈tn1 . . . tnk
〉g ∼

(gs

µ

)2k+2g−2
, (2.63)
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where we used (2.62). Notice, this structure is consistent with our results (2.48) for

the 2-point function. For an example of higher point function we now turn to a

discussion of the leading correction to the 3-point function.

2.3.6 3-point Function

Now, let us look more carefully at the structure of the 3-point function. Unlike

the 2-point function where we studied the general case, since the topological string

amplitudes are not known for arbitrary deformations of the conifold, we restrict our

attention to the ones corresponding to momentum modes. This means that we con-

sider 3-point functions where all three points lie on the large circle of the S3. To the

leading order in (gs/µ)2, from (2.41) we find

〈φ(θ1)φ(θ2)φ(θ3)〉 =
1

8µ3

∑

n,m,l

|nml|µ |n|+|m|+|l|
2 einθ1+imθ2+ilθ3〈tntmtl〉 (2.64)

In the momentum representation, this looks like

〈φnφmφl〉 =
1

8µ3
|nml|µ |n|+|m|+|l|

2 〈tntmtl〉 (2.65)

According to (2.45),

〈tntmtl〉 =
g4

s

4
δn+m+l,0|nml|µ− |n|+|m|+|l|2

−1 (2.66)

which gives

〈φnφmφl〉 =
1

32

(gs

µ

)4|nml|2δn+m+l,0 (2.67)

This is to be compared with the three point function of fluctuations in the inflationary

cosmology [120].



Chapter 3

The Entropic Principle and

Asymptotic Freedom

Consider, following [143], a flux compactification on AdS2 × S2 ×M , where M is

a Calabi-Yau threefold (and where for simplicity we ignore a ZZ-identification). The

norm of the Hartle-Hawking wave function associated with this background can be

interpreted holographically as the black hole entropy. In particular, the flux data on

the AdS2×S2 geometry is mapped to the charge of the dual black hole, and the norm

of the wave function satisfies

〈ψ|ψ〉 = exp(S) (3.1)

where S denotes the entropy of the corresponding black hole. For a fixed flux data,

the wave function ψ can be viewed as a function over the moduli space of the Calabi-

Yau, together with the choice of the normalization for the holomorphic 3-form, where

the overall rescaling of the holomorphic 3-form corresponds to the overall rescaling

of the charge of the black hole. Clearly the entropy of the black hole increases as

32
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we rescale the overall charge. However, to obtain a wave function on the Calabi-Yau

moduli space, one would like to get rid of this extra rescaling. The main purpose of

this chapter is to suggest one mechanism of how this may be done: We simply fix one

of the magnetic charges, and its electric dual chemical potential. In this way, as we

shall argue, the wave function becomes a function on the geometric moduli space of

the Calabi-Yau and one can see which Calabi-Yau manifolds are “preferred”.

It turns out that this problem can be formulated for both compact and non-

compact Calabi-Yau manifolds. It is a bit more motivated in the non-compact case,

since in this case there is a canonical choice of the fixed charge (D0 brane in the type

IIA context). We find that the condition for a maximum/minimum corresponds to

the points of intersection of walls of marginal stability. Moreover we find a set of

solutions in various examples. One type of solutions we find corresponds to points

on moduli space which admit a complex multiplication type structure. We also find

examples where extrema correspond to the appearance of extra massless particles. We

find that in these cases the norm of the wave function ψ is maximized in correlation

with the sign of beta function: Asymptotically free theories yield maximum norm for

the wave function.

The organization of this chapter is as follows: we start in section 3.1 with the

formulation of the problem. Then, in section 3.2, we find the conditions for max-

ima/minima of the wave function. We also explain why this favors asymptotically

free theories in local examples where there are massless fields. In section 3.3 we give

examples of our results and in section 3.4 we end with conclusions and some open

questions.
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3.1 General Formulation of the Problem

Consider compactifications of type IIB superstrings on AdS2 × S2 × M where

M is a Calabi-Yau threefold, which may or may not be compact. In addition we

consider fluxes of the 4-form gauge field along AdS2 × S2 and 3-cycles of M . Let

Fp,q = pIαI + qJβJ denote the flux through M , where αI and βJ form a canonical

symplectic basis for integral 3-form cohomology H3(M, ZZ). According to [143], the

results of [142] can be interpreted in terms of a Hartle-Hawking type wave function

ψp,q for this geometry on the minisuperspace, with the property that

〈ψp,q|ψp,q〉 = exp S(p, q) (3.2)

Here S(p, q) denotes the entropy of the dual black hole obtained by wrapping a D3

brane with magnetic and electric charges p and q.

In the limit of large fluxes,

(p, q) → λ(p, q) (3.3)

where λ >> 1, the entropy S(p, q) has a classical approximation, given by the

Bekenstein-Hawking formula. In this limit, the curvature of AdS2 × S2 becomes

small, and the entropy of the black hole is equal to 1
4
A(S2). In particular, the attrac-

tor mechanism [76] will freeze the complex structure moduli of the Calabi-Yau space

M , so that there exists a holomorphic 3-form Ω on M with the property

Re(Ω) = Fp,q (3.4)

Moreover, in this limit the entropy is given by

S(p, q) =
A(S2)

4
= −i

π

4

∫

M
Ω ∧ Ω
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where Ω fixed by (3.4). Furthermore, in this limit, ImΩ plays the role of the chemical

potential.

Suppose we wish to ask the following question: In type IIB compactification on

IR4 × M , which Calabi-Yau M is “preferred”? One way to tackle this question is

to embed it in the geometry AdS2 × S2 × M where the complex structure of M

is determined by the fluxes, through the attractor mechanism. Then, the question

becomes: For which values of the complex structure moduli the norm of the wave

function is maximized or, in other words, for which attractor Calabi-Yau the entropy

of the corresponding black hole is maximized? In this formulation of the question,

we can view IR4 as a special limit of AdS2 × S2 where the charge of the black hole is

rescaled by an infinite amount λ →∞. Thus AdS2×S2 can be viewed as a regulator

geometry for IR4.

However, this way of asking the question leads to the following pathology: The

entropy of the black hole for large λ scales as λ2. Therefore, in order to get a reason-

able function on the moduli space of M we need to fix the normalization of Ω. One

way to do this is to fix the value of
∫

Ω ∧ Ω so that it is the same at all points in

moduli; however this is precisely the entropy that we wish to maximize. If we fixed

the normalization of Ω in this way, we would obtain, tautologically, a flat distribution

on the moduli space of M . In this sense there would be no particular preference of one

point on the moduli of M over any other. Instead we consider the following mathe-

matically natural alternative: We choose a 3-cycle A0 ⊂ M and fix the normalization

of Ω by requiring it to have a fixed period along A0,

∫

A0

Ω = fixed (3.5)
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Since the overall scale of Ω does not affect the extremum point on the moduli space

of M , with no loss of generality we can fix the above period to be 1. Then, we can

consider maximizing the entropy, which now depends only on the geometric moduli

of M . Thus our problem becomes

Maximize
∣∣∣
∫

Ω ∧ Ω
∣∣∣ subject to

∫

A0

Ω = 1. (3.6)

Physically, what this means is that we fix one of the charges of the black hole, say

the magnetic charge p0 = 1, and the corresponding electric chemical potential φ0 = 0

(determined by the imaginary part of Ω).

Strictly speaking, the above problem is well defined on the moduli space of Calabi-

Yau manifolds together with a choice of a 3-cycle. This, in general, is a covering of the

moduli space. Nevertheless, any particular maximization of the entropy functional

on this covering space will descend to a particular choice of the complex structure

moduli of M (by forgetting on which sheet the function is maximized). Of course, it

would be interesting to find out whether or not this covering of the moduli space is a

finite covering or not. We will discuss some aspects of this in section 3.4. We should

point out, however, that there is a canonical choice of the cycle A0 in the mirror

type IIA problem, where one is studying even-dimensional D-branes wrapped over

even-dimensional cycles of a non-compact Calabi-Yau manifold. In this case, one can

choose A0 to be a point on M and consider a fixed number of D6 branes with zero

chemical potential for D0 branes. We also note that, in the type IIA setup, fixing one

of the periods can be interpreted as fixing the topological string coupling constant

X0 =
4πi

gs

(3.7)

In what follows, we consider both compact and non-compact examples.
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3.2 General Conditions for Maxima/Minima

In this section, we derive equations for the critical points of the constrained vari-

ational problem described in the previous section, and discuss maxima of the entropy

functional

S = −i
π

4

∫

M
Ω ∧ Ω (3.8)

It turns out that the critical points of (3.8) are described by equations of the form

ImaD − τ Ima = 0,

where (a, aD) denote “reduced” periods of the Calabi-Yau and τ = daD

da
is the coupling

constant matrix. The points on the moduli space where the entropy is maximized are

those where Imτ > 0 and all but one of the Calabi-Yau periods have equal phase. As

we explain below, these are also the points where the maximal number of the walls

of marginal stability for BPS states meet together. Notice, the restriction Imτ > 0

implies that the effective field theory for the extra massless particles appearing at the

maximum point can be decoupled from the gravity. This is a necessary condition for

the asymptotically free effective theories.

3.2.1 Critical Points

In order to extremize the functional (3.8) we need to introduce coordinates on the

moduli space of a Calabi-Yau manifold with one fixed 3-cycle. Given the symplectic

basis of 3-cycles {AI , B
J}I,J=0,...,h2,1 , such that #(AI , B

J) = δ J
I , the periods of the

holomorphic 3-form are

XI =
∫

AI

Ω (3.9)
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FI =
∫

BI
Ω (3.10)

In particular, one can use XI as the projective coordinates on the Calabi-Yau moduli

space, and express the B-periods as derivatives of the prepotential:

FI(X) =
∂F0(X)

∂XI
(3.11)

We choose the fixed 3-cycle to be A0. Then the normalization of Ω is fixed by the

condition

X0 =
∫

A0

Ω (3.12)

As we discussed earlier, we can always set X0 = 1. However, in what follows it will

be useful to keep the dependence on X0 which, in the type IIA context, determines

the topological string coupling constant, cf. (3.7).

It is natural to use the following coordinates on the moduli space of Calabi-Yau

manifolds with a fixed 3-cycle:

ai =
X i

X0
, i = 1, . . . , h2,1 (3.13)

Also, we introduce the “dual” variables

aD
i =

Fi

X0
(3.14)

and a “rigid” prepotential

F (a) = (X0)−2F0(X(a)) (3.15)

Then, using the fact that F0 is a homogeneous holomorphic function of degree two,

we find

F0 = X0(2F − aiaD
i ) (3.16)
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Therefore, the functional (3.8) can be written as1

S = i
π

4
|X0|2{2(F − F )− (ai − ai)(aD

i + aD
i )} (3.17)

This is, of course, the standard expression for the Kähler potential S = π
4
e−K , written

in terms of the special coordinates, see e.g. [29].

Extremizing the action (3.17) with respect to ai and ai, we obtain the following

system of equations:

ImaD
i − τijImaj = 0 (3.18)

where the coupling constant matrix τij is given by

τij =
∂2F

∂ai∂aj
≡ ∂2F0

∂X i∂Xj
(3.19)

Solutions to the equations (3.18) define critical points on the Calabi-Yau moduli

space. Our goal will be to study these points and to understand their physical and/or

geometric meaning.

Before we proceed, let us make a few general comments about the form of the

equations (3.18). First, note that (3.18) is a system of non-linear complex equa-

tions. Even though these equations are not differential, finding their solutions is a

challenging and interesting problem. To see this, let us write (3.18) in the following

form

Im ∂iF − (∂i∂jF )Imaj = 0 (3.20)

where we expressed aD
i and τij in terms of the single function F (ai). For a given

Calabi-Yau space M and a choice of the 3-cycle, the function F (ai) is fixed; it

1Here we used the Riemann bilinear identity
∫

M
α ∧ β =

∑
I

( ∫
AI

α
∫

BI β − ∫
AI

β
∫

BI α
)
.
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is generically a non-trivial transcendental function. Therefore, (3.18) (equivalently

(3.20)) represents a system of n = h2,1 complex equations for n complex variables

ai, i = 1, . . . , n. Therefore one expects that solutions to these equations are isolated

points in the moduli space.

Let us note that Calabi-Yau manifolds which correspond to these points admit

special structures, analogous to the complex multiplication. The notion of complex

multiplication for higher dimensional varieties goes back to the work of Mumford

[130]; in the context of Calabi-Yau three-folds it was studied by Borcea [26]. In the

physics literature, it appears in the study of black hole attractors [124] and rational

conformal field theories [92]. Let us recall the attractor equations [76]

2Imai = pi (3.21)

2ImaD
i = qi (3.22)

where (p, q) ∈ ZZn denote magnetic and electric fluxes. One says that a Calabi-Yau

manifold admits complex multiplication if the Jacobian T = Cn/(ZZn+τZZn) associated

with the coupling constant matrix τij admits complex multiplication. This occurs if

τij satisfies the following second order matrix equation:

τCτ + Aτ − τD −B = 0 (3.23)

where A,B,C,D are some integer matrices. It is straightforward to check that this is

indeed the case for a suitable choice of the integer matrices2. Therefore, any Calabi-

Yau with moduli fixed by the attractor mechanism (3.21) and satisfying equation

(3.18) admits complex multiplication. Notice, that Jacobian T for this Calabi-Yau is

singular, since (3.18) implies that there are fixed points under the ZZn + τZZn action.

2For example, A = n~q ⊗ ~q, B = 0, C = m~p⊗ ~p− n~p⊗ ~q, D = m~p⊗ ~q
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Solutions to (3.18) fall into three families, which can be characterized by the

imaginary part of the coupling constant matrix τij. To see this, notice that the

imaginary part of extremum equations (3.18) is given by

Imτij · Imaj = 0 (3.24)

Therefore, if Imτij is non-degenerate (that is if det||Imτij|| 6= 0), the only possible

solution is Imai = 0. Moreover, assuming that τij remains finite3, it also follows that

ImaD
i = 0. We shall refer to this family of solutions as solutions of type I:

Imai = 0, ImaD
i = 0, i = 1, . . . , n (3.25)

The expression for the entropy functional calculated at the critical point of type I

turns out to be very simple:

S∗ = i
π

2
|X0|2(F − F ) (3.26)

If we go to the conventional topological string notations

Ftop = i(2π)3F, Z = exp
1

g2
s

Ftop (3.27)

and use (3.7), we see that the probability function for the Calabi-Yau at the critical

point is given by the square of the topological wave function Ψtop = Z, in accordance

with [143, 142]:

eS∗ = |Ψtop|2 (3.28)

Solutions of type II correspond to det||Imτij|| = 0. They can be expressed in terms

of real eigenvectors vi of the coupling constant matrix, Imτij · vj = 0,

Imai = vi, ImaD
i = τijv

i, i, j = 1, . . . , n (3.29)

3or if τ ∼ a−α, where α < 1
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Finally, solutions of type III correspond to divergent coupling constant matrix:

Imai = 0, ImaD
i = lim

Imai→0
Reτij · Imai 6= 0, i = 1, . . . , n (3.30)

All types of the solutions represent some special points on the Calabi-Yau moduli

space.

3.2.2 Conditions for Maximum/Minimum

It is natural to ask which of these critical points are maxima and which are minima.

The former correspond to theories which are preferred, while the latter correspond to

the theories which are least likely, according to the entropic principle. Therefore, our

main goal is to search for the maximum points.

In order to answer this question, we need to look at the second variation of the

action at the critical point:

δ2S = −π

2
|X0|2(Imτij)δa

iδaj +
π

4
|X0|2Imai(cijkδa

jδak + cijkδa
jδak) (3.31)

where cijk are defined as

cijk =
∂3F

∂ai∂aj∂ak
(3.32)

The bilinear form Imaicijkδa
jδak does not have a definite signature. This means that

if it is non-zero, the critical point is neither minimum nor maximum. Therefore, a

necessary condition for the critical point to be a local maximum is

cijkImak = 0 (3.33)

Let us concentrate on the first term in (3.31), assuming that this condition is satisfied.

Remember that reduced coupling constant matrix τij is part of a full matrix τIJ .
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Imaginary part of this matrix has signature4 of type (h2,1, 1), as follows from the

expression

ImτIJ =
i

2

∫
∂IΩ ∧ ∂JΩ (3.34)

and decomposition ∂IΩ ∈ H2,1(M)⊕H3,0(M). Therefore, the signature of the reduced

matrix τij is either (h2,1, 0) or (h2,1 − 1, 1). In the first case the form (Imτij)δa
iδaj is

positive definite and therefore, the entropy functional has

maximum, if Imτij > 0 (3.35)

In the second case generically we have a saddle point, and a minimum if h2,1 = 1.

Thus we conclude that, in general, Calabi-Yau models with Imτij > 0 are preferred.

The extremum conditions (3.18) are very restrictive, but it is hard to find a so-

lution in general case. However, if we want to satisfy constraint (3.33), which is

necessary for maximization of the entropy, the problem simplifies. Assuming that cijk

is not of special degenerate form, a general solution to this constraint is Imai = 0,

and therefore we should look at the type I solution

Imai = ImaD
i = 0 (3.36)

Physically, this is a particularly natural choice and we can explain it in yet another

way: The extremum of the probability density given by the entropy functional, should

naturally pick attractor fixed points. In our problem the electric chemical potential

is set to zero and the magnetic charge is fixed in one particular direction. It is not

4The simplest illustration is a toy model with the cubic prepotential, F0 = − 1
3

(X1)3

X0 . It is easy to
check that the signature of ImτIJ in this example is (1,1). Notice, that there is a difference between
the physical coupling constant matrix, including the graviphoton coupling, and τIJ . The physical
coupling constant matrix is always positive definite (see [43]).
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surprising that this means that the rest of the charges are set to zero at the extremum.

In particular the equation (3.36) can naturally be interpreted as the attractor point

with this set of charges.

Another way to derive (3.36) is to notice that imaginary part of the coupling

constant matrix enters the second variation of the action (3.31) and therefore it

should be non-degenerate at the local minimum or maximum point:

det||Imτij|| 6= 0 (3.37)

Combining this with the imaginary part of extremum equations (3.24), we get Imai =

0.

One of the interesting examples of the maximum entropy solutions is the one with

the logarithmic behavior of the coupling constant matrix (explicit examples of this

are discussed in the next section):

τ = τ0 + iβ log
a2

Λ2
(3.38)

near the critical point a = 0. From the point of view of the corresponding effective

field theory in four dimensions this expression describes an RG flow of the couplings,

and β is the one-loop beta function of the effective field theory near the point a = 0.

Combining this with the maximum condition Imτij > 0 discussed earlier, we conclude

that for the theories with β < 0, that is, for asymptotically free theories the probability

density is maximized.
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3.2.3 Marginal Stability Curves and the Entropy

As we will explain below, the conditions (3.36) imply that the points where the

entropy is maximized correspond to points on the moduli space which are maximal

intersection points of the marginal stability walls for BPS states. The solutions to

(3.36) can be characterized in purely geometric terms. Let us consider the type IIB

setup and look at the periods (3.9) - (3.10) of the Calabi-Yau. Since we used the

gauge X0 = 1, the condition (3.25) means that exactly 2h2,1 + 1 periods, namely

(X0, X i; Fi) are real. However, the last period F0 = 2
X0F0 − Xi

X0 Fi does not have to

be real, since the phase of the prepotential is not fixed by the phase of its derivatives.

In fact, if all of the periods were real, the holomorphic volume of the Calabi-Yau

∫
Ω ∧ Ω = (XIF I − X

I
FI) would be zero. Considering such singular Calabi-Yau

would hardly make sense, as it implies that Ω is pointwise zero on the Calabi-Yau.

Fortunately, this is not the case since F0 is not real. Thus the geometry of periods is

as given in Figure 3.1.

F0

X . . .X
0 1

Fn

Figure 3.1: Calabi-Yau periods at the maximum entropy point on the moduli space.
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Note that a point where all periods but one are aligned is a point where a maximal

number of walls of marginal stability for BPS states meet together. In fact, this is the

strongest condition we can have; generically, it is impossible to have all periods aligned

as the number of constraints would be one higher than the number of parameters. So,

the condition for a maximum for the probability is the same as maximal marginality

for BPS bound states.

One can actually relax the condition X0 = 1, and introduce an arbitrary phase

X0 = eiφ instead. This will accordingly rotate all other periods, resulting in an

equivalent Calabi-Yau manifold. Therefore, we can formulate an alternative max-

imum criterion: The entropy functional is maximized for the points on the moduli

space where all but one of the Calabi-Yau periods are aligned on the complex plane,

and Imτij > 0.

Suppose now that we can find such a point, where exactly (2h2,1+1) of the periods

are aligned. We should stress that for a given prepotential these aligned periods can

actually be some linear combinations of the canonical A and B periods (3.9) -(3.10).

Is there a freedom to choose, which of them we should use to fix the normalization of

Ω in the maximization problem (3.6), or there is a canonical choice of the cycle A0?

The answer to the last question is positive: the cycle A0 is dual to the 3-cycle which

is not aligned with the rest of the 3-cycles. In other words, A0 corresponds to the

null vector in the space of (2h2,1 + 1) aligned cycles with respect to the intersection

pairing. Thus, given the point on the moduli space where all but one of the Calabi-

Yau periods are aligned, the cycle A0 is determined uniquely. In the next section, we

will illustrate this with a simple example of the quintic three-fold.
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Similarly, in the type IIA setup, we can consider bound states of D0, D2, and

D4 branes with charges n0, ~n2, and ~n4, respectively. The BPS mass of such states is

given by the standard formula

MBPS = |Z| = |n0 + ~n2 · ~a + ~n4 · ~aD| (3.39)

Since in our case Imai = ImaD
i = 0, it follows from the BPS formula (3.39) that the

critical points of type I are precisely the points in the moduli space, where all bound

states of D0, D2, and D4 branes become marginal,

MBPS(n0, ~n2, ~n4) = MBPS(n0, 0, 0) + MBPS(0, ~n2, 0) + MBPS(0, 0, ~n4) (3.40)

3.3 Examples

In this section we will discuss two types of examples, corresponding to non-

compact and compact Calabi-Yau cases. There is a crucial difference between these

two cases in the type IIA setup. Namely, on a compact Calabi-Yau manifold M , the

cycles undergo monodromies as one goes around singularities in the moduli space,

while on a non-compact Calabi-Yau there always exists at least one cycle (0-cycle in

the type IIA frame) which does not undergo monodromy. Therefore, this is a canon-

ical cycle to fix the period. However, as we will see, the general approach based on

(3.6) works in both cases.

As we discussed in the previous section, the problem of finding the maximum

points on the moduli space is equivalent to the problem of finding the points where

all but one of the Calabi-Yau periods are aligned. Unfortunately, at the moment it

is unknown how to find all such points for a given class of Calabi-Yau manifolds.
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Our approach below is to look at the well known special points on the moduli space

(singularities, large complex structure, etc.) as potential candidates. Therefore, our

list of examples is far from complete and serves just as an illustration of the general

idea. We find two types of solutions: Solutions which correspond to points on Calabi-

Yau moduli which admit a structure similar to complex multiplication. The other

type of solutions corresponds to points on the moduli space where we have massless

particles. In the non-compact case the only set of examples where we actually find a

maximum, as opposed to minimum or other extremum points, is when we have extra

massless fields which lead to an asymptotically free gauge theory.

3.3.1 The Local CP1

Let us start with the two simplest local models for a non-compact Calabi-Yau

manifolds, the total space of O(−1)⊕O(−1) → CP1 (conifold singularity), and the

total space ofO(0)⊕O(−2) → CP1. (The exact stringy wave function for the conifold

model with an infinite set of non-normalizable deformations was studied in [91].) It is

instructive to look first at the infinite product representation of the topological string

partition function on the A-model side [85]. For the conifold we have5:

Z(−1,−1) =

∞∏
n=1

(1− qnQ)n

∞∏
n=1

(1− qn)n
(3.41)

5Here we use topological string conventions: t = 2π(J−iB). Sometimes an alternative convention
t = B + iJ is used in the literature, since then the mirror map is given by t = X1

X0 . In notations
(3.13) then we have a = B + iJ .



Chapter 3: The Entropic Principle and Asymptotic Freedom 49

where q = e−gs and Q = e−t, while for O(0)⊕O(−2) → CP1 case:

Z(0,−2) =

∞∏
n=1

(1− qn)n

∞∏
n=1

(1− qnQ)n
(3.42)

In the semiclassical limit q → 1, which is the limit we are most interested in, the

above expressions depend on Q only. Moreover, the first expression decreases while

the second increases rapidly as Q → 1. And as we will see in a moment, the entropy

functional has a minimum for the conifold, and a maximum for O(0) ⊕ O(−2) →

CP1 at t = 0. Indeed, since Z = exp ( 1
g2

s
Ftop), the entropy functional (3.17) in this

representation is given by

eS = |Z|2e− 1
2
(t+t)( ∂

∂t
log Z+ ∂

∂t
log Z) (3.43)

As expected, the second variation of the functional at the extremum is equal to

δ2S

δtδt
= −2π

g2
s

Imτ (3.44)

where

τ = i
g2

s

2π

∂2

∂t2
log Z (3.45)

At the conifold point we have t = tD = 0. Therefore (3.25) is satisfied and the conifold

point is an extremum. Moreover, near t = 0 we have

τ =
i

2π
log t + . . . (3.46)

Hence, Imτ < 0, which means that the conifold point is a minimum. On the contrary,

since the infinite product expression (3.42) for the total space ofO(0)⊕O(−2) → CP1

is given by the inverse of (3.41), in this case we have Imτ > 0 at t = 0. Therefore,

this is a maximum point.
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One can arrive to the same conclusion by looking at the genus-zero prepotential,

which is equivalent to the approach based on the infinite-product formula (3.41). For

example, for the conifold, we have

F 0
top =

1

12
t3 − π2

6
t + ζ(3)−

∞∑

n=0

e−nt

n3
(3.47)

and therefore

τ =
i

2π
log(1− e−t) + . . . (3.48)

in agreement with (3.46). For the total space of O(0) ⊕ O(−2) → CP1 we get the

same expression with an extra minus sign.

The difference between these two examples is very instructive: At the conifold

point, where the entropy in minimized, we have extra massless hypermultiplet, while

at t = 0 locus of O(0) ⊕ O(−2) → CP1, where the entropy in maximized, an ex-

tra massless vector multiplet appears. The morale of the story is that Calabi-Yau

manifold providing the vector multiplet is preferred.

Let us conclude with a few general remarks. Suppose we use topological strings to

obtain information about the effective supersymmetric four-dimensional gauge theo-

ries with matter fields and interactions which, in principle, can have applications to

phenomenological models of particle physics. This can be done, for example, in the

context of the geometrical engineering program in string theory. Here, topological

strings provide a nice laboratory, since many exact results for the topological string

partition function are available.

In the example we just studied, the distinction between these two cases directly
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corresponds to whether or not the effective field theory is asymptotically free. In par-

ticular, the appearance of a vector multiplet, which corresponds to an asymptotically

free theory, is preferred over the non-asymptotically free theory, where we have an

extra massless hypermultiplet. From the effective field theory viewpoint, this is trans-

lated into the statement that asymptotically free effective theories are preferred. One

can also study other special points in moduli space, such as points which correspond

to conformal fixed points. In general, these will involve more moduli parameters, and

one might expect that in these cases we will have a mixture of the above results: along

some directions the probability for conformal fixed point is maximized and along oth-

ers it is minimized. In other words, it is an extremum for the entropy functional,

but not a definite maximum or minimum. In fact we will discuss an explicit example

which corresponds to a multi-parameter model where one finds that it is an extremum

but not a pure maximum or a minimum (see sec. 3.3.4 below).

3.3.2 Large Complex Structure Limit

Below we will argue that near the large complex structure limit in the one-

parameter Calabi-Yau models there is an infinite family of solutions to the extremum

equations (3.18), labeled by an integer number. Namely, for the values of the com-

plexified Kähler parameter t, such that Ret = 0 and Imt À 1, there are infinitely

many points where exactly three of the periods are aligned. In a sense, these are

the points where the Calabi-Yau admits a deformed complex multiplication. Indeed,

at these points, to the leading approximation, τ satisfies a quadratic equation with

integer coefficients. The entropy functional (3.8) has a maximum for all such points.
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Let us start with a simple model with the cubic prepotential

F0 = −1

3

(X1)3

X0
(3.49)

This model captures the leading behavior of all one-parameter Calabi-Yau models in

the large complex structure limit. It can also be viewed as the exact prepotential

for some parts of the CY moduli which receive no quantum corrections (such as the

Kähler moduli of T 2’s inside CY threefolds). The vector of periods is given by




X0

X1

F1

F0




=




X0

X1

−(X1)2/X0

1
3
(X1)3/(X0)2




(3.50)

Let us consider these periods on the subspace ImX0 = 0 and ReX1 = 0. In other

words, let us set the B-field to zero6. Then, two of the periods (namely, X1 and F0)

are purely imaginary, and two (X0 and F1) are real. However, at the points where

(X1

X0

)2
= n (3.51)

for some (negative) integer n, the linear combination of the periods F 1+nX0 vanishes!

This means that at these points the following three periods are aligned: (X1, F0, F
1 +

nX0); they take purely imaginary values, while X0 is real. According to our general

principle, these points are extremum points of the entropy functional. The main

question now is whether this extremum is a minimum or a maximum.

In order to answer this question we need to identify the 3-cycle A0, to find the

resulting prepotential, and to calculate the imaginary part of the coupling constant.

6We use conventions, where t = a = X1

X0 = B + iJ .
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We use SL(4, ZZ) transformation to bring the periods into the following form




X0

X1

F1 + nX0

F0 + nX1




=




1 0 0 0

0 1 0 0

n 0 1 0

0 n 0 1







X0

X1

F1

F0




(3.52)

As we discussed in subsection 3.2.3, the cycle A0 corresponds to the null direction in

the space spanned by the aligned periods. In the present case, it is easy to see that

the period corresponding to this 3-cycle is F0+nX1. Therefore, normalizing the value

of the period of Ω over this 3-cycle to unity, as in (3.6), is equivalent to rescaling of

all the periods by (F0 + nX1)−1. Then, the period vector takes the form:




−2F̃0 + X̃1F̃1

−F̃1

X̃1

1




=




1
nt+t3/3

t
nt+t3/3

−t2+n
nt+t3/3

1




(3.53)

where t = X1

X0 and F̃0 is the prepotential in the new basis. In these variables, the

coupling constant is given by τ = ∂F̃1

∂X̃1
. Straightforward calculation gives:

τ =
i

4
√
|n|

(3.54)

at the critical point (3.51), where t = i
√
|n|. Thus, all the solutions from the infinite

family (3.51) have Imτ > 0 and correspond to the maxima of the entropy functional.

This simple example illustrates the behavior of a one-parameter Calabi-Yau near the

large complex structure limit, Imt À 1. In this limit, prepotential receives small

instanton corrections and contains subleading quadratic and linear terms. However,

in principle one could still find the infinite family of aligned periods by solving ap-
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propriately modified equation (3.51):

ReF1 + nX0 = 0, (3.55)

since the periods X1 and F0 in general case are imaginary along the zero B-field

line ReX1 = 0, ImX0 = 0. These will correspond, in the large Imt limit to small

perturbations of the solutions we have already discussed above.

However, we do not get interesting effective field theories at such points, and the

relative weight (”probability”) of such points is much smaller than that of the maxima

where new massless degrees of freedom appear, because of the logarithmic behavior

(3.46) of the coupling constant at the singular points.

3.3.3 The Quintic

Let us consider, following [30], the type IIA superstrings on the well studied

compact Calabi-Yau manifold with h2,1 = 1, which is the mirror of the quintic hyper-

surface in CP4. It can be obtained as a (ZZ5)
3 quotient of the special quintic

5∑

i=1

z5
i − 5ψ

5∏

i=1

zi = 0 (3.56)

The complex moduli space is CP1, parameterized by z = ψ−5, with three special

points:

z = 0 : large complex structure limit

z = 1 : conifold point

z = ∞ : Gepner point

(3.57)

The four periods undergo monodromy about these three points. It is convenient to

use the basis of the periods corresponding to the BPS state in the mirror A-model
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labeled by the (D6, D4, D2, D0)-brane charges: (ΠD0, ΠD2, ΠD4, ΠD6). These periods

provide corresponding D-brane tensions. The general expression for the prepotential

is

F (t) = −5

6
t3 − 11

4
t2 +

25

12
t− 25i

2π3
ζ(3) + i

∞∑

k=1

dk

(2πk)3
e2πikt (3.58)

where

t =
ΠD2

ΠD0

=
1

2πi
log z + . . . (3.59)

is a mirror map, and dk are instanton amplitudes (Gromov-Witten invariants), related

to the number nk of rational curves of degree k embedded in the quintic, as

∞∑

k=0

dke
2πikt = 5 +

∞∑

k=1

nkk
3

1− e2πit
e2πikt (3.60)

We are interested in the solutions to the extremum equations (3.18). As was discussed

before, we expect an infinite family of such solutions at zero B-field in the large

complex structure limit. Indeed, the periods in the basis (3.9)-(3.10) are given by



X0

X1

F1

F0




=




1

t

−5
2
t2 − 11

2
t + 25

12
− ∞∑

k=1

dk

(2πk)2
e2πikt

5
6
t3 + 25

12
t− 25i

π3 ζ(3) +
∞∑

k=1
(2i + 2πkt) dk

(2πk)3
e2πikt




(3.61)

Therefore, at the special set of points, where Ret = 0 and a deformed CM-type

equation holds:

5

2
t2 − 25

12
+

∞∑

k=1

dk

(2πk)2
e2πikt = n (3.62)

the following three periods are aligned: (X1, F0, F
1 + nX0), where n is an integer. It

is clear that when n À 1 the instanton corrections in (3.62) are small and general
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behavior is similar to the cubic prepotential case. Therefore, we conclude that this

infinite set of solutions describes local maxima of the entropy functional.

As we discussed earlier, the conifold point z = 1 is a potential candidate for a

critical point of the entropy functional. Let us then look at the periods and try to

find out which of them are aligned. The periods satisfy corresponding Picard-Fuchs

differential equation of hypergeometric type:

[
θ4

z − (θz +
1

5
)(θz +

2

5
)(θz +

3

5
)(θz +

4

5
)
]
Πi = 0 (3.63)

where θz = z d
dz

. We use the conventions of ([52]) to write down the basis of the

solutions to (3.63) as follows:

Π0(z) = U0(z)

Π1(z) = U1(z) if Imz < 0, U1(z) + U0(z) if Im z > 0

Π2(z) = U2(z)

Π3(z) = U3(z) if Imz < 0, U3(z) + U2(z) if Im z > 0

(3.64)

where Ui are given in terms of the Meijer G-function [70]

U0(z) = c G1,4
0,3


−z

∣∣∣∣∣∣

4
5

3
5

2
5

1
5

0 0 0 0




U1(z) = c
2πi

G2,4
1,2


z

∣∣∣∣∣∣

4
5

3
5

2
5

1
5

0 0 0 0




U2(z) = c
(2πi)2

G3,4
1,1


−z

∣∣∣∣∣∣

4
5

3
5

2
5

1
5

0 0 0 0




U3(z) = c
(2πi)3

G4,4
1,0


z

∣∣∣∣∣∣

4
5

3
5

2
5

1
5

0 0 0 0




(3.65)

and

c =
1

Γ(1
5
)Γ(2

5
)Γ(3

5
)Γ(4

5
)

(3.66)
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Near z = 0 the periods Πj behave as (log z)j. One can go to another natural basis,

corresponding to (D6, D4, D2, D0)-brane state with the help of the following trans-

formation matrix



ΠD6

ΠD4

ΠD2

ΠD0




=




0 5 0 5

0 1 −5 0

0 −1 0 0

1 0 0 0







Π0

Π1

Π2

Π3




(3.67)

The intersection form in the new basis is defined by

#(D6 ∩D0) = 1, #(D2 ∩D4) = 1.

Straightforward calculation at the conifold point7 z = e−i0 with the help of the

Mathematica package gives:




ΠD6

ΠD4

ΠD2

ΠD0




=




0

5α− 7iβ

2iβ

γ




(3.68)

where (α, β, γ) are real constants:

α = −
√

5
16π4 Re G3,4

0,1


−1

∣∣∣∣∣∣

1
5

2
5

3
5

4
5

0 0 0 0


 ≈ −1.239

β =
√

5
16π3 G2,4

0,2


1

∣∣∣∣∣∣

1
5

2
5

3
5

4
5

0 0 0 0


 ≈ 0.646787

γ = 4F3(
1
5
, 2

5
, 3

5
, 4

5
; 1, 1, 1; 1) ≈ 1.07073

(3.69)

From (3.68) we see that it is possible to align three periods by choosing appropriate

7We fix this choice of the branch cut by requiring that D6 brane become massless at the conifold
point.
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linear transformation. For example, we can take



2 0 0 0

0 2 7 0

0 0 1 0

0 0 0 1







ΠD6

ΠD4

ΠD2

ΠD0




=




2ΠD6

2ΠD4 + 7ΠD2

ΠD2

ΠD0




=




0

10γ

2iβ

α




(3.70)

Therefore, the conifold point in the quintic is a solution to the extremum equations

(3.18) if we fix appropriate 3-cycle. In particular, the choice (3.70) corresponds to

fixing X0 = 2ΠD4 + 7ΠD2.

3.3.4 A Multi-parameter Model

Finally, we consider an example of a non-compact Calabi-Yau manifold with sev-

eral moduli fields. Such models exhibit some new phenomena. For example, there

can be points in the moduli space where several different periods vanish, and the

corresponding BPS states become massless. In general, one might expect such points

to be saddle points for the entropy functional (neither maxima nor minima). This is

indeed what we find in a specific example considered below.

Figure 3.2: The toric diagram of the 3-parameter model.

Consider a 3-parameter model studied e.g. in [3]. It has three 2-cycles, whose
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Kähler parameters we denote8 by t1, t2, and r. The prepotential has the form:

F 0
top =

∑
n

e−nt1

n3

∑
n

e−nt2

n3
+

∑
n

e−nr(1− e−nt1)(1− e−nt2)

n3
(3.71)

and the dual variables are

tD1 =
1

4π2

∑
n

e−nt1(1− e−nr(1− e−nt2))

n2
(3.72)

tD2 =
1

4π2

∑
n

e−nt2(1− e−nr(1− e−nt1))

n2
(3.73)

rD =
1

4π2

∑
n

e−nr(1− e−nt1)(1− e−nt2)

n2
(3.74)

The coupling constant matrix τij is given by (3.45) and has the following entries

(symmetric in i, j = 1, 2, 3):

τ11 = − i
2π

log (1−e−t1)(1−e−(r+t1+t2))

(1−e−(r+t1))

τ22 = − i
2π

log (1−e−t2)(1−e−(r+t1+t2))

(1−e−(r+t2))

τ12 = − i
2π

log(1− e−(r+t1+t2))

τ13 = − i
2π

log (1−e−(r+t1+t2))

(1−e−(r+t1))

τ23 = − i
2π

log (1−e−(r+t1+t2))

(1−e−(r+t2))

τ33 = − i
2π

log (1−e−r)(1−e−(r+t1+t2))

(1−e−(r+t1))(1−e−(r+t2))

(3.75)

Consider taking the limit (t1, t2, r) → 0 along the imaginary line, such that the ratios

t1/r and t2/r are kept fixed. Then imaginary parts of the dual variables (3.72) are

zero. Therefore, it is a particular solution to the extremum equations (3.25).

In order to determine the behavior of the entropy functional near this extremum,

we should diagonalize imaginary part of the matrix τij and look at the eigenvalues.

8In notations (3.13), they are given by t1 = −2πia1, t2 = −2πia2, r = −2πia3.
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It is easy to see that in this limit it is given by:

Imτ = − log | r|
2π




1 +O(x) 1 +O(x) O(x)

1 +O(x) 1 +O(x) O(x)

O(x) O(x) −1 +O(x)




(3.76)

where x ∼ log−1 | r|. To solve the diagonalization problem to the leading order in x,

it is enough to consider the matrix of the form




1 1 a

1 1 b

a b −1




(3.77)

where a ¿ 1 and b ∼ a. The eigenvalues of this matrix are given by (1, 1
2
(a−b)2,−2) to

the leading order. Therefore, the imaginary part of the coupling matrix (3.76) near

the extremum point has one large positive eigenvalue of order log | r|, one positive

eigenvalue of order 1, and one large negative eigenvalue of order log | r|. Notice that

sign(Imτ) = (2, 1) and therefore, this is an example of a signature of type (h2,1−1, 1).

In this case we are having a saddle point of the entropy functional.

3.4 Conclusions and Further Issues

In this chapter we discussed the behavior of the stringy wave function on the mod-

uli space of a Calabi-Yau manifold. It became a meaningful quantity once we fixed a

particular combination of charge/chemical potential for one of the magnetic/electric

charges of the black hole. The square of this wave function can be interpreted as a

measure for string compactifications. As we discussed, the solution to finding max-

ima/minima of this function has a nice geometric meaning: they correspond to points
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on the moduli space where all but one period of the holomorphic 3-form Ω have equal

phase. The formulation of this geometric problem involves a choice of a 3-cycle

A0 ∈ H3(M, ZZ), whose period we denote X0 (or, a choice of A0 ∈ Heven(M, ZZ) in type

IIA theory).

While it appears to be a rather challenging problem to obtain a complete solution

to these equations, we managed to find a certain class of solutions. They fall into

two families: They either correspond to ‘quantum deformed’ complex multiplication

points on the moduli space of a Calabi-Yau manifold, or to points with extra massless

particles. Moreover, for the examples with extra massless degrees of freedom the

maxima that we found correspond to the points where the effective field theory is

asymptotically free.

As discussed above, in order to write down our wave function, we need to choose

a particular direction in the charge lattice. In the type IIB case, this corresponds to

choosing an integral 3-cycle. It is natural to ask how our conclusions depend on this

choice (for the type IIA on non-compact CY there is a natural direction of the charge

lattice which corresponds to D0 brane charge). For a compact manifold M there is

no natural choice of A0 ∈ H3(M, ZZ). In fact, even for a particular choice of A0, there

is an ambiguity related to the monodromy action on H3(M, ZZ). To classify these

choices we need to study the monodromy group action on H3(M, ZZ). For a Calabi-

Yau manifold M , the monodromy group H is a subgroup of G = Sp(2h2,1 + 2, ZZ),

so that the number of distinct choices of a 3-cycle is given by the index [G : H].

The calculation of [G : H] for a compact Calabi-Yau space is an interesting and

challenging problem. By analogy with the mapping class group of a genus-g Riemann
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surface [164], we may expect that [G : H] is finite. In fact, the monodromy group

H can be generated by two elements, which correspond to monodromies around the

conifold point and infinity. For example, for the quintic threefold, we have

Mc =




1 0 0 0

0 1 0 0

−1 0 1 0

0 0 0 1




M∞ =




1 −1 5 −3

0 1 −8 −5

0 0 1 0

0 0 1 1




In this case, it is easy to see that [G : H] > 1.

Another important question that deserves further study is classification of the

extremum points on the moduli space, as solutions to the equations (3.25). In math-

ematical terms, the problem is to find all the points on the moduli space where all

but one of the Calabi-Yau periods are aligned.

Finally it would be interesting to understand more physically what it means to

fix a charge/chemical potential, and why that is natural. It is conceivable that this

becomes natural in the context of decoupling gravity from gauge theory. In particular

a preferred direction may be the direction corresponding to the graviphoton charge.

It is worthwhile trying to dynamically explain such a formulation of the problem.



Chapter 4

Abelian Varieties, RCFTs,

Attractors, and Hitchin Functional

in Two Dimensions

In this chapter we study a two-dimensional toy model of the topological M-theory

[58, 133] in order to gain some insights on its plausible quantum description. The

analysis of this model supports the idea that quantum partition function of the topo-

logical M-theory is given by a generalized index theorem for the moduli space. In

particular, this implies that the OSV conjecture [142] should be viewed as a higher

dimensional analog of the E. Verlinde’s formula for the number of conformal blocks

in a two-dimensional conformal field theory.

63
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4.1 Universal Partition Function and Universal In-

dex Theorem

Below we briefly sketch some relatively old ideas that provide a motivation for

this picture. This introductory section is inspired by the talks of R. Dijkgraaf [56]

and A. Gerasimov [80].

It is well known that many generic features of topological theories can be nicely

described using the category theory. Roughly speaking, the translation between the

category theory and quantum mechanics language goes as follows (for more details

and references see, e.g. [55]). One starts with associating a wave-function |Ψ0(M)〉

to a d-dimensional manifold M :

M

= |Ψ0(M)〉. (4.1)

A natural generalization is assigning some additional structures E (bundles, sheaves,

gerbes, etc.) to M : |Ψ0(M)〉 → |ΨE(M)〉. In the language of physics, this is equiva-

lent to putting some branes and/or fluxes on M . The morphisms in the category of

(d + 1)-dimensional manifolds with extra structures are bordisms E → F :

E F

= 〈ΨE(M)|ΨF (M)〉, (4.2)

interpreted as quantum mechanical propagators between the states E and F . The

composition law of two bordisms given by ”gluing” two boundaries is a basic feature

of the functional integral:

〈ΨE|ΨG〉 =
∫
DF 〈ΨE|ΨF 〉〈ΨF |ΨG〉. (4.3)
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These pictures, of course, mimic the well-known operations with the world-sheets in

string theory. The universal partition function ZM×S1 is assigned to the manifold of

the form M × S1:

M   Sx 1

= TrE〈ΨE(M)|ΨE(M)〉. (4.4)

Roughly speaking, it counts the number of topological (massless) degrees of freedom,

or (super) dimension of the corresponding Hilbert space. Relation (4.4) is a mani-

festation of the equivalence between the Lagrangian and Hamiltonian formulation of

the path integral. In the framework of geometric quantization, the Hilbert space is

given by the cohomology groups of the moduli space ME of E-structures on M , with

coefficients in the (prequantum) line bundle L. Therefore, the universal partition

function is associated with the corresponding index: ZM×S1 = IndDE, where1

IndDE =
∑
n

(−1)ndimHn(ME,L). (4.5)

In many interesting cases higher cohomology groups vanish, and the partition function

computes the dimension of the Hilbert space: dimHilbME
= dimH0(ME,L). On the

other hand, the partition function can also be computed via the universal index

theorem:

IndDE =
∫

ME

ch(L)Td(TME), (4.6)

where the integral over the moduli space arises after localization in the functional

integral2.

1In a more general setup dimH• is substituted by TrH•DE .
2This formula is very schematic, and its exact form depends on the details of the problem. For

example, twisting by K1/2 will result in appearance of Â instead of the Todd class.
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Moreover, since one can think of the wave-function (4.1) as of a partition function

itself: ZM = |Ψ(M)〉, the definitions (4.2)-(4.4) imply the quadratic relation of the

form

ZM×S1 ∼ ZMZ∗
M . (4.7)

If M is a (generalized) complex manifold, this can be true even at the level of the

Lagrangian for the local (massive) degrees of freedom. Indeed, in the functional

integral formalism we are dealing with the generalized Laplacian operator ∆E =

D†
EDE constructed from the generalized Dirac operator DE. The square factor for

the local degrees of freedom arises from the Quillen theorem:

det′∆E = e−A(DE)|det′DE|2. (4.8)

Here A(DE) is the holomorphic anomaly: ∂∂A(DE) 6= 0. It is natural to assign this

anomaly to the integration measure over the moduli space, and then interpret the

deviation from the quadratic relation (4.7) as a quantum correction.

Below we list some examples that illustrate these phenomena, which sometimes

is referred to as the bulk/boundary correspondence (for more examples, see, e.g.,

[58, 133, 172, 128]).
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Dimension Correspondence Index Theorem

5C + 1 M-theory/Type IIA ZM ∼ ZL
IIAZR

IIA

4C + 1 ?/8d Donaldson-like theory ?

3C + 1 G2/CY3 in topological M-theory ZBH ∼ |Ztop|2

2C + 1 5d SYM/Donaldson-Witten theory ZSYM ∼ ZDWZ∗
DW

1C + 1 Chern-Simons theory/CFT ZCS ∼ |ZCFT|2

0C + 1 2d quantum gravity/2d topological gravity Zqg ∼ Z2
tg

Table 1: Examples of the bulk/boundary correspondence.

Relation of the type (4.7) is known in the context of the matrix models (0C + 1

dimensions) as a manifestation of the correspondence between the quantum gravity

and topological gravity in two dimensions (see, e.g. [166, 122]). Another form of

this relation is τ =
√

Zqg, where τ is a tau-function of the KdV hierarchy [63]. The

index formula (4.6) represents computation of the Euler characteristic of Mg,h via

the Penner matrix model.

In 1C + 1 dimensions (4.7) is the famous relation between the Chern-Simons

theory and two-dimensional conformal field theory [165]. The index theorem in this

case gives the E. Verlinde’s formula for the number of conformal blocks [161]. It will

be the subject of primary interest of this chapter.
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In 2C + 1 dimensions (4.6) and (4.7) express computation of the Gromov-Witten

invariants from the counting of the BPS states in the five dimensional supersymmetric

gauge theory [132, 117].

In 3C + 1 dimensions relation (4.7) is known as the OSV conjecture [142]. The

exact formulation of the index theorem (4.6) in this case is not known, and the

question about the non-pertubative (quantum) corrections to (4.7) is very important

for clarifying the relation between the topological strings and the black holes entropy.

It is expected that the answer can be given in the framework of the topological M-

theory [58] (which was called Z-theory in [133], see also [81, 136, 86, 16, 50, 9, 25, 61]

for a discussion on the related issues).

Not much is known about the 4C +1 dimensional example, apart from its relation

to the Donaldson-like theory in eight dimensions [133].

The M-theory/Type IIA relation (topological version of which is the 5C + 1 di-

mensional example) was a source of tremendous progress in string theory over the last

decade. Needless to say, there are many subtle details involved in this correspondence

(see, e.g. [54]).

The 5C +1 dimensions is not the end of the story, it probably continues to higher

dimensions (F-theory, etc.). Also, it is worth mentioning that there are many signs

for the (hidden) integrability in these theories, which is intimately related to the free

fermion representation. It allows for a tau-function interpretation of the partition

function and is responsible for the appearance of the integrable hierarchies.

Finally, let us note that the theories in different dimensions from Table 1 are

connected (apart from the obvious dimensional reduction) via the generalized trans-
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gression and descent equations (at least at the classical level), which allow for going

one complex dimension up or down. From the geometry-categoric viewpoint this is

related to the sequence of d-manifolds serving as a boundaries for d + 1-manifolds:

0 → M1 → . . . → Md → Md+1 → . . .

By analogy with [133], one can call the theory unifying these theories in different

dimensions the Z-theory.

4.1.1 The Entropic Principle and Quantum Mechanics on

the Moduli Space

So far we discussed theories describing topological invariants of some structures

living on a fixed d-manifold M . It is interesting to ask how these invariants, captured

by the universal partition function (4.4), change if we vary M within its topological

class. For example, we can talk about transport on the moduli space of genus g

Riemann surfaces Mg or even fantasize about the moduli space of ”all” Calabi-Yau

threefolds MCY3 .

In this chapter we take a modest step in this direction by applying this idea to the

two-dimensional toy model, that has many interesting features which are expected

to survive in higher dimensions. The advantage of taking digression to the two di-

mensions is that in this case (almost) everything becomes solvable. Our goal is to

find a two-dimensional sibling of the Hitchin functional, formulate an analog of the

entropic principle in 1C + 1 dimensions, and describe corresponding quantum theory.

It turns out that this way we find a unified description of all two-dimensional topolo-

gies. Moreover, study of the two-dimensional model leads to a natural generalization
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of the six-dimensional Hitchin functional, which may be useful for understanding of

the topological M-theory at quantum level.

The rest of this chapter is organized as follows: In section 4.2 we review the Hitchin

construction for Calabi-Yau threefolds and formulate the problem of describing the

moduli space of Riemann surfaces in terms of the cohomology classes of 1-forms, in the

spirit of Hitchin. In section 4.3 we construct a two-dimensional analog of the Hitchin

functional and comment on quantization of the corresponding theory. In section 4.4

we show that this functional can be related to the gauged WZW model with a target

space an abelian variety. In section 4.5 we describe corresponding quantum theory

and interpret its partition function (which as a generating function for the number

of conformal blocks in c = 2g RCFTs) as an entropy functional on the moduli space

of complex structures. The non-perturbative coupling to two-dimensional gravity

generates an effective potential on the moduli space, critical points of which are

attractive and correspond to Jacobian varieties admitting complex multiplication.

We end in section 4.6 with conclusions and discussion on the possible directions for

future research.

4.2 The Hitchin Construction

The problem of characterizing a complex manifold in terms of the data associated

with closed 1-forms on it goes back to Calabi [28]. In the context of Riemann surfaces,

the non-trivial information encoded in a closed 1-forms reveals itself in the ergodicity

and integrability of the associated Hamiltonian systems, which have been extensively

studied since 1980s by the Novikov school (see, e.g. [141] and the references therein).
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Kontsevich and Zorich observed an interesting relation between these systems and

c=1 topological strings [115]. A new twist to the story became possible after Hitchin

[97, 98] discovered some diffemorphism-invariant functionals on stable p-forms.

The critical points of these topological functionals yield special geometric struc-

tures. For example, the Hitchin functional on 3-forms defines a complex structure

and holomorphic 3-form in 6 dimensions, and G2 holonomy metrics in 7 dimensions.

Hitchin’s construction provides an explicit realization of the idea that geometrical

structures on a manifold can be described via the cohomology class of a closed form

on this manifold. In this approach, geometric structures arise as solutions to the

equations obtained by extremizing canonical topological action.

In this section we review Hitchin’s approach to parameterizing complex structures

on a Calabi-Yau threefold, and formulate the problem of describing the moduli space

of genus g Riemann surfaces in a similar manner.

4.2.1 Stable forms in Six Dimensions

Let us describe the Hitchin construction, using a Calabi-Yau threefold M as an

example. We present below a Polyakov-like version of the Hitchin functional [133] (see

also [58, 81]), although originally it was written in a Nambu-Goto-like form [97, 98].

The reason why we need the Polyakov-like version is that it is quadratic in fields, and

therefore is more suitable for quantization. We will also extend the construction of

[133] in order to incorporate the generalized geometric structures [99].

Let us introduce a (stable) closed poliform ρ, which is a formal sum of the odd

differential forms ρ = ρ(1) +ρ(3) +ρ(5) on a compact oriented six-dimensional manifold
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M . If we fix the cohomology class [ρ] of this poliform, it defines a generalized Calabi-

Yau structure on M as follows. Consider the functional

S = −π

2

∫

M

(
σ(ρ) ∧ J ςυΓςυρ +

√−1λ tr(J 2 + Id)
)
, (4.9)

where σ(ρ(k)) = (−)[k/2]ρ(k) transforms the standard wedge pairing between the differ-

ential forms into the Mukai pairing [88], the 6-form λ serves as a Lagrange multiplier,

ς, υ = 1, . . . , 12 are indices in TM ⊕ T ∗M , the matrix Γςυ = [Γς , Γυ] is defined by

the gamma-matrices Γς of Clifford(6, 6), and the tensor field J ∈ End(TM ⊕ T ∗M).

After solving the equations of motion and using the constraint imposed by λ, this

field becomes a generalized almost complex structure on M : J 2 = −Id. Hitchin [99]

proved that this almost complex structure is integrable and can be used to reduce

the structure group of TM ⊕ T ∗M to SU(3, 3). This endows M with a generalized

Calabi-Yau structure.

It is perhaps more illuminating to see how this construction gives rise to the

ordinary Calabi-Yau structure, when ρ is a stable closed 3-form: ρ = ρ(3). The

Polyakov-like version [133] of the Hitchin functional has the form3

S = −π

2

∫

M

(
ρ ∧ ıKρ +

√−1λ tr(K2 + Id)
)
. (4.10)

Here K ∈ EndTIRM is a traceless vector valued 1-form. We denote it as K in order

to distinguish it from the generalized complex structure J . Also, ρ = ρ(3) is a closed

3-form in a fixed de Rham cohomology class. It can be decomposed as ρ = [ρ] + dβ,

where [ρ] ∈ H3(M, IR) and β ∈ Λ2T ∗M . The equations of motion, obtained by

3The coefficient −π/2 in front of the integral can be fixed after comparing the Hitchin action
with the black hole entropy functional (see, e.g., [58, 91]). It is tempting to speculate that this
normalization factor can also be determined from the topological considerations, similarly to the
way the coefficient −1/8π in front of the WZW functional is fixed.
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varying β in the functional (4.10), accompanied by the closeness condition for ρ, take

the form

dρ = 0, d ıKρ = 0. (4.11)

The Lagrange multiplier λ imposes the constraint trK2(ρ) = −6 on the solution of

the equation of motion for the field K, which in some local coordinates on M can be

written as Kb
a ∼ εba1a2a3a4a5ρa1a2a3ρa4a5a. This allows to identify K(ρ) as an almost

complex structure: K2(ρ) = −Id. Moreover, it can be shown [97], that this almost

complex structure is integrable. Therefore, solutions of (4.11), parameterized by the

cohomology class [ρ], define a unique holomorphic 3-form on the Calabi-Yau manifold

M , according to

Ω = ρ +
√−1ıK(ρ)ρ. (4.12)

We can use the periods of (4.12) to introduce local coordinates on the complex moduli

space of Calabi-Yau. Then, a holomorphic 3-form Ω, viewed as a function of the

cohomology class [ρ], gives a map between an open set in H3(M, IR) and a local

Calabi-Yau moduli space [97]. We will call it the Hitchin map. After integrating out

the field K we arrive at the original Hitchin functional [97], written in the Nambu-

Goto-like form:

S = −π

2

∫

M
ρ ∧ ∗ρ ρ. (4.13)

Here ∗ρ denotes the Hodge star-operator for the Ricci-flat Kähler metric on M , com-

patible with the complex structure K(ρ). Finally, the value of the Hitchin functional

(4.10) calculated at the critical point (4.11) can also be written in terms of the holo-
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morphic 3-form (4.12) as follows:

S = −i
π

4

∫

M
Ω ∧ Ω. (4.14)

4.2.2 Riemann Surfaces and Cohomologies of 1-forms

We want to find an analog of the Hitchin construction for the two-dimensional

surfaces. It is natural to expect that the role that was played by the closed 3-forms in

3C dimensions, in 1C dimensions will be played by the closed 1-forms. Therefore, we

want to construct a functional, depending on closed 1-forms in a fixed cohomology

class, critical points of which will determine the complex structure on a genus g

Riemann surface Σg. In fact, a two-dimensional version of the Hitchin functional

was already discussed in [133, 81]. There, it was pointed out that it is very similar

to Polyakov’s formulation of the bosonic string as a sigma model coupled to the

two-dimensional gravity.

However, before discussing the explicit form of this functional, we want to ex-

plain why a naive carry-over of the Hitchin idea from six to two dimensions will

not work. First, the very existence of the Hitchin map is based on the fact that in

the case of Calabi-Yau threefold M the dimension of the intermediate cohomology

space dimH3(M, IR) coincide with the dimension of the moduli space of calibrated

Calabi-Yau manifolds4, which is equal to 2 + 2h2,1. In the case of a genus g Riemann

surface dimH1(Σg, IR) = 2g, but dimension of the moduli space Mg for g > 1 is

dimMg = 6g− 6. Therefore, the cohomology class of a closed 1-form on Σg does not

4The calibrated Calabi-Yau manifold is a pair: (M, Ω), where M Calabi-Yau threefold and Ω
is a fixed non-vanishing holomorphic 3-form on M . Hitchin construction naturally gives calibrated
Calabi-Yau manifolds.
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contain enough data to describe the moduli space. This is, of course, not surprising,

as it is well known that natural parameterization of the moduli space Mg is given

in terms of the Beltrami differentials µ, which are dual to the holomorphic quadratic

differentials χ ∈ H0(Σg, Ω
⊗2). In particular, dimH0(Σg, Ω

⊗2) = 6g − 6, as it should

be. One could then try to use H0(Σg, Ω
⊗2) instead of H1(Σg, IR), but if we go by this

route, we will lose the ”background independence” on the complex structure on Σg,

which is a nice feature of the Hitchin construction. The relevant set-up in this case

seems to be provided by the theory of beta-gamma systems [118, 134]. However, it

turns out that it is hard to write down an analog of the Hitchin functional for (µ, χ)

system with decoupled conformal factor.

The only exception, when the dimension of the moduli space coincides with the di-

mension of the first cohomology space, is the elliptic curve Σ1, which is in fact a direct

one-dimensional analog of the Calabi-Yau threefold. In this case, dimH1(Σ1, IR) =

2 = dimM1 and therefore we might expect that one closed 1-form can play the role of

ρ in two dimensions. However, as it was noted in [133], one needs at least two closed

1-forms in order to write down a two-dimensional analog of the Hitchin functional.

In a certain sense, it is a lower dimensional artefact, as there just don’t happen to be

enough indices to write down a non-zero expression.

Clearly, some modification of the Hitchin construction is needed in the two-

dimensional case. We suggest the following extension that preserves the spirit of

the original construction. First, we will use complex cohomologies instead of the real

ones:

H1(Σg, IR) → H1(Σg,C). (4.15)
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Second, for a genus g surface we will consider g closed 1-forms:

H1(Σg,C) → (H1(Σg,C))⊗g. (4.16)

As we will see, this will allow us to define close analog of the Hitchin functional.

4.3 Construction of the Lagrangian

The case of interest for us in this section is a complex valued 1-forms on a two

dimensional compact surface Σg of genus g. We will not assume that Σg is endowed

with any additional structures, such as a metric or complex structure. Instead, in

the spirit of Hitchin, we would like to construct a functional, critical points of which

will define a complex structure on Σg, making it a Riemann surface. In order to

keep the presentation self-contained and to fix the notations, we start with a brief

review of the basics of Riemann surfaces. Then we proceed to the construction of

the functional on the space of closed 1-forms, the critical points of which in a fixed

cohomology class are harmonic 1-forms. The complex structure on Σg will arise from

the cohomology classes of these 1-forms. We will also briefly discuss the quantization

of the corresponding theory.

4.3.1 Mathematical Background on Riemann Surfaces

We summarize below some basic facts from the theory of compact Riemann sur-

faces [11, 73]. Let Σg be a topological surface with g handles, that is a compact

connected oriented differentiable manifold of real dimension 2. The number of han-

dles g is the genus of Σg. Topologically, Σg is completely specified by the Euler
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number χ(Σg) = 2− 2g. In particular, the dimensions of the homology groups are

dimH0(Σg) = 1, dimH1(Σg) = 2g, dimH2(Σg) = 1. (4.17)

On Σg one can choose the canonical symplectic basis of 1-cycles {AI , BI}, I = 1, . . . , g

for H1(Σg), with the intersection numbers

#(AI , AJ) = 0, #(AI , BJ) = δIJ , #(BI , BJ) = 0. (4.18)

This basis, however, is not unique. The ambiguity is controlled by the Siegel modular

group Γg = Sp(2g, ZZ) preserving symplectic pairing (4.18):




B

A


 →




B

A



′

=




a b

c d







B

A


 ,




a b

c d


 ∈ Γg (4.19)

Once we have chosen a homology basis {AI , BI}, or “marking” for Σg, we can cut

surface along 2g curves homologous to the canonical basis and get a 4g-sided polygon

with appropriate boundary identifications. This representation of Σg in terms of the

polygon is very helpful in deriving some important identities. For example, one can

show that for any closed 1-forms η and θ on Σg

∫

Σg

η ∧ θ =
g∑

I=1

( ∮

AI

η
∮

BI

θ −
∮

AI

θ
∮

BI

η
)
, (4.20)

which is called the Riemann bilinear identity. The scalar product of two closed 1-forms

η and θ on Σg is given by the Petersson inner product:

〈η, θ〉 =
i

2

∫

Σg

η ∧ θ. (4.21)

As follows from the Riemann bilinear identity, this scalar product depends only on

the cohomology class of the closed forms: 〈η, θ〉 = 〈[η], [θ]〉. The canonical symplectic



Chapter 4: Abelian Varieties, RCFTs, Attractors, and Hitchin Functional in Two
Dimensions 78

form

S(η, θ) =
∫

Σg

η ∧ θ (4.22)

for closed 1-forms also depends only on the cohomology class: S(η, θ) = S([η], [θ]).

Let us introduce the basis {αI , βI}, I = 1, . . . , g for H1(Σg, IR), which is dual to

the canonical homology basis (4.18):

∮

AI

αJ = δIJ ,
∮

BI

αJ = 0 (4.23)
∮

BI

βJ = δIJ ,
∮

AI

βJ = 0. (4.24)

The ambiguity of this basis is controlled by an exact 1-forms on Σg. Therefore, we

can think of {αI , βI} as of some fixed representatives in the de Rham cohomology

class. A natural way to fix this ambiguity is to pick some Riemann metric h on Σg

and require {αI , βI} to be harmonic:

d ∗h αI = 0, d ∗h βI = 0 (4.25)

where ∗h is a Hodge ∗-operator defined by h. This choice provides a canonical basis

for H1(Σg, IR), associated with the metric h. We will always use Euclidean signature

on Σg.

Topological surface Σg endowed with a complex structure is called a Riemann

surface. Let us recall that an almost complex structure on Σg is a section J of a

vector bundle End(TIRΣg) such that J2 = −1. Here TIRΣg is a real tangent bundle

of Σg. If we pick some (real) local coordinates {xa}, a = 1, 2 on Σg, then J can be

represented by a real tensor field which components Ja
b obey

Ja
bJ

b
c = −δa

c (4.26)



Chapter 4: Abelian Varieties, RCFTs, Attractors, and Hitchin Functional in Two
Dimensions 79

Here and in what follows, a sum over the repeating indices is always assumed. We

reserve the indices {a, b, c, . . .} that range from 1 to 2, for the world-sheet (Riemann

surface), and indices {I, J,K, . . .} that range from 1 to g, for the complex coordinates

on the target (first cohomology) space. The indices {i, j, k, . . .} label real coordinates

on the target space and range from 1 to 2g. We do not distinguish between the upper

and lower indices. In particular, we do not use any metric to contract it. We will also

sometimes omit indices and use matrix notations in the target space for shortness.

According to the Newlander-Nirenberg theorem J, is an integrable complex struc-

ture if it is covariantly constant:

∇aJ
b
c = 0. (4.27)

In fact, any almost complex structure on a topological surface is integrable, and

therefore below we will just call it a complex structure. In particular, we will be

interested in a complex structure compatible with the metric h. In local coordinates

the metric has the form

h = habdxa ⊗ dxb, (4.28)

and the corresponding complex structure is given by

J(h)a
b =

√
det‖hdf‖ εbch

ca, (4.29)

where ε11 = ε22 = 0, ε12 = −ε21 = 1. It is straightforward to check that this complex

structure indeed obeys (4.26)-(4.27). Notice that complex structure (4.29) depends

only on the conformal class of the metric, since it is invariant under the conformal

transformations:

h → eϕh, J(h) → J(h). (4.30)
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The complex coordinates z, z on Σg associated with (4.29) are determined from the

solution of the Beltrami equation

Ja
b

∂z

∂xa
= i

∂z

∂xb
. (4.31)

Given a marking for Σg, there is a unique basis of holomorphic abelian differentials

of the first kind ωI ∈ H0(Σg, Ω), normalized as follows

∮

AI

ωJ = δIJ . (4.32)

Here ωI = ωI
zdz. Holomorphic 1-differentials span −i eigenspace of the Hodge ∗-

operator for the metric compatible with the complex structure:

∗ω = −iω, (4.33)

ω = +iω. (4.34)

The period matrix of Σg is defined by

τ IJ =
∮

BI

ωJ . (4.35)

If we apply the Riemann identity (4.20) to the trivial 2-form ωI ∧ ωJ = 0, we find

that the period matrix is symmetric:

τ IJ = τJI . (4.36)

The imaginary part of the period matrix can be represented as follows:

Im τ IJ =
i

2

∫

Σg

ωI ∧ ωJ . (4.37)

If we use the fact that the norm (4.21) of the non-zero holomorphic differentials of the

form ν = νIω
I is positive: 〈ν, ν〉 > 0, we find that the period matrix has a positive
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definite imaginary part:

Im τ > 0. (4.38)

Now we can express the holomorphic abelian differentials (4.32)-(4.35) via the canon-

ical cohomology basis (4.23) of harmonic 1-forms (4.25) on Σg as follows

ω = α + τβ, (4.39)

where we used the matrix notations. Under the modular transformations (4.19) the

period matrix transforms as

τ → τ ′ = (aτ + b)(cτ + d)−1, (4.40)

while the basis of abelian differentials transforms as

ω → ω′ = (τcT + dT )−1ω. (4.41)

The space of a complex g × g matrices obeying (4.36), (4.38) is the Siegel upper

half-space Hg. We will call it the Siegel space, for short. Torelli’s theorem states

that a complex structure of Σg is uniquely defined by the period matrix up to a

diffeomorphism. Moreover, to each complex structure there corresponds a unique

point in the fundamental domain of the modular group

Ag = Hg/Γg. (4.42)

Unfortunately, for higher genus surfaces the converse is not true (Schottky’s problem).

This is easy to see, since for g > 3 the dimension of (4.42) dimCAg = g(g+1)
2

is bigger

than the dimension of the complex structures moduli space dimCMg = 3g − 3.



Chapter 4: Abelian Varieties, RCFTs, Attractors, and Hitchin Functional in Two
Dimensions 82

4.3.2 The Canonical Metric

There is a canonical Kähler metric on a Riemann surface, the so-called Bergmann

metric. Sometimes it is also called the Arakelov metric in literature. It can be written

in terms of the abelian differentials (4.32) as

hB
zz = (Im τ)−1

IJ ωI
zω

J
z . (4.43)

This metric has a nonpositive curvature. If g ≥ 2, the curvature vanishes at most in

a finite number of points, and by an appropriate conformal transformation (4.43) can

be brought into a metric of constant negative curvature (see, e.g. [105]). The Kähler

form corresponding to the Bergmann metric is given by

$B =
i

2
(Im τ)−1

IJ ωI ∧ ωJ . (4.44)

It is easy to see that the volume of the Riemann surface in this metric is independent

of the complex structure and is equal to the genus:

∫

Σg

$B = g. (4.45)

The special role of the Bergmann metric will become clear if we consider the pe-

riod map z → ξI from the Riemann surface Σg into its Jacobian variety Jac(Σg) =

Cn/(ZZn ⊕ τZZn):

ξI =
∫ z

z0

ωI . (4.46)

Here z0 is some fixed point on Σg, the exact choice of which is usually not important.

Jacobian variety, being a flat complex torus, is endowed with a canonical metric,

which is induced from the Euclidian metric on Cn. The Bergmann metric (4.43) is
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nothing but a pull-back of this canonical metric from Jac(Σg) to Σg under the period

map (4.46).

The metric (4.43) does not depend on the choice of a basis5 in a space of holomorpic

differentials H0(Σg, Ω). In particular, it is invariant under the modular transforma-

tions (4.40)-(4.41). If we consider ωI as a set of g closed 1-forms on Σg in a fixed

cohomology class, parameterized by the period matrix τ ∈ Ag, then (4.43) combined

with (4.29) gives an explicit realization of the Torelli’s theorem, by providing the map

Ag → Mg. This should be viewed as a two-dimensional analog of the Hitchin map

[97, 98] from the cohomology space of the stable forms on a compact six-dimensional

manifolds to the moduli space of the calibrated Calabi-Yau threefolds.

Indeed, let us recall that the space of all metrics on a genus g surface Σg is

factorized as follows

Met(Σg) = Mg ×Diff(Σg)× Conf(Σg). (4.47)

Once we fixed the cohomology class of ωI , we are not allowed to do the conformal

transformations, since this will spoil the closeness of ωI . Therefore, expression (4.43)

provides a unique representative among the conformal structures on Σg. This takes

care of the Conf(Σg) factor in (4.47). Moreover, since diffeomorphisms do not change

the cohomology class, the Bergmann metric (4.43) is invariant under the action of

the Diff(Σg) group, and we end up on the moduli space of genus g Riemann surfaces

Mg.

5In the orthonormal basis {ωI
o = ωI

ozdz : 〈ωI
o , ωJ

o 〉 = δIJ}, the metric takes the canonical form:

hzz =
g∑

I=1

∣∣ωI
oz

∣∣2.
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4.3.3 An analog of the Hitchin Functional in Two Dimensions

As we discussed earlier, the problem in defining an analog of the Hitchin functional

in two dimensions is that the cohomology class of only one 1-form is not enough to

parameterize the moduli space of complex structures. However, if we take g closed

1-forms on a genus g surface, this can be done. In fact, this will give us even more

degrees of freedom than we need (g2 complex parameters instead of 3g− 3), but it is

a minimal set of data that we can start with, because of the Schottky problem. The

functional that we will use is a direct generalization of [133, 81]. The fields of the

theory are

• ζI : g closed complex valued 1-forms, dζI = 0

• K : real traceless vector valued 1-form, K ∈ End(TIRΣg)

• λ : imaginary 2-form

The Lagrangian has the form

L =
kπ

4
〈ζI , ζJ〉−1

∫

Σg

(ζI ∧ ıK ζJ + ζJ ∧ ıK ζI)− i
kπ

4

∫

Σg

λ tr(K2 + Id), (4.48)

where k is a coupling constant, 2-form λ serves as a Lagrange multiplier, and Id is

a unit 2 × 2 matrix. Hermitian g × g matrix 〈ζI , ζJ〉−1 is an inverse of the scalar

product (4.21) for 1-forms. We assume that cohomology classes of 1-forms [ζI ] are

linear independent. In order to discuss classical equations of motion for the action

(4.48) and their solutions it is useful to write is explicitly in components:

L =
kπ

4

∫

Σg

(
〈ζI , ζJ〉−1(ζI

aζJ
c + ζI

c ζJ
a )Kc

b −
i

2
λ(x)εab(Kd

cKc
d + 2)

)
dxa ∧ dxb, (4.49)
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where ζI = ζI
adxa, K = Ka

b
∂

∂xa ⊗ dxb, λ = 1
2
λ(x) εabdxa ∧ dxb, and ε11 = ε22 = 0,

ε12 = −ε21 = 1. The equations of motion for K give

Ka
b =

i

2λ(x)
〈ζI , ζJ〉−1(ζI

b ζJ
c + ζI

c ζJ
b )εca, (4.50)

where ε11 = ε22 = 0, ε12 = −ε21 = −1, such that εacεcb = δa
b. Variation with respect

to λ imposes the constraint

Ka
bKb

a = −2, (4.51)

which is solved by setting6

λ(x) = ±i
√

det‖hab‖, (4.52)

where, by definition, det‖hab‖ = 1
2
habhcdε

acεbd, and hab is the metric induced on Σg:

hab =
1

2
〈ζI , ζJ〉−1(ζI

aζJ
b + ζI

b ζJ
a ). (4.53)

We choose the “+” sign in (4.52) by requiring positivity of the Lagrangian (4.49)

after solving for K and λ:

L =
kπ

2

∫

Σg

√
det‖hab‖. (4.54)

The corresponding solution

Ka
b =

1√
det‖hdf‖

hbcε
ca = −

√
det‖hdf‖ εbch

ca (4.55)

represents the action of the complex structure, compatible with the metric (4.53), on

the cotangent bundle T ∗
IRΣg:

K = J−1 = −J. (4.56)

6Notice that it is possible for λ to vanish at some points, if the determinant of the induced metric
becomes zero. In this case, expression (4.50) is not well defined, and potentially is singular. Later
we will see, that in order to give well-defined complex structure, the cohomologies [ζI ] should lie in
the Jacobian locus in the Siegel upper half-space.
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This should be compared with (4.29). Let us introduce the notation ∗ζ for a Hodge

star operator, defined by the metric (4.53). For example, the Hodge dual of a 1-form

θ = θadxa is given by

∗ζθ = θa

√
det‖hdf‖habεbcdxc. (4.57)

This Hodge ∗-operator acts on 1-forms exactly as the field K (4.50):

∗ζθ = ıKθ. (4.58)

Therefore, we can rewrite the action (4.48) in yet another form:

L =
kπ

4
〈ζI , ζJ〉−1

∫

Σg

ζI ∧ ∗ζ ζJ + h.c. (4.59)

This expression is similar to the Hitchin functional (4.13) and relation between (4.48)

and (4.59) is very much like relation between the Polyakov and Nambu-Goto actions

in string theory, as was noted in [133, 81].

Following the idea of Hitchin, we should restrict this functional to the closed forms

on Σg in a given de Rham cohomology class, and look for the critical points. In order

to parameterize variations of ζI in a fixed cohomology class [ζI ] ∈ H1(Σg,C), we

decompose it as

ζI = [ζI ] + dξI , (4.60)

where ξI is a proper function Σg →Cg. By varying ξI in (4.48), we get

d ∗ζ ζI = 0. (4.61)

Thus, the critical points of the functional (4.59) correspond to the harmonic forms

on Σg. The complex dimension of the space of harmonic 1-forms on Σg is equal to
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g. Since initial conditions (4.60) are parameterized by g linear independent vectors

[ζI ], solution to (4.61) will give us a basis in the space of harmonic 1-forms. We can

parameterize cohomology classes [ζI ] using their periods over the A and B-cycles:

[ζI ] = AIJαJ + BIJβJ , (4.62)

where AIJ and BIJ are g× g complex matrices. We impose some natural restrictions

on the form of these matrices. First, since the action (4.48) is invariant under the

linear transformations

ζI → M IJζJ , M IJ ∈ GL(g,C), (4.63)

we can always set AIJ = δIJ by using this transformation with M = A−1. Then,

(4.62) becomes

[ζI ] = αI + ΠIJβJ , (4.64)

where Π = A−1B. The fact that all cohomology classes [ζI ] are linear independent

means that

rank Π = g. (4.65)

The second restriction comes from the fact that the matrix of the scalar products of

1-forms

〈ζI , ζJ〉 =
i

2
(Π† − Π)IJ (4.66)

should be invertible and positive definite for the theory, based on the action (4.48),

to be well-defined. Moreover, it is natural to require that cohomology classes [ζI ] do
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not intersect7

∫

Σg

ζI ∧ ζJ = ΠIJ − ΠJI = 0. (4.67)

Let us recall that this intersection number is essentially the canonical symplectic form

S(ζI , ζJ) on H1(Σg,C), defined in (4.22). Therefore, from the perspective of future

quantization of the cohomology space, it is necessary to require that the points [ζI ]

in the configuration space commute. This requirement is similar to considering only

commuting set of the periods in quantum mechanics of the self-dual form (see, e.g.,

[173]).

Therefore, instead of dealing with all non-degenerate matrices Π ∈ GL(g,C), we

can concentrate only on the matrices that obey

ΠT = Π, ImΠ > 0. (4.68)

In other words, we parameterize cohomology classes [ζI ] by the points on the Siegel

upper half-space Hg. In fact, Hg is the smallest linear space where we can embed

Jacobian variety Jac(Σg) without knowing its detailed description, which is unavail-

able for g > 4 because of the Schottky problem. There is a natural action of the

symplectic group on Hg. We will denote this ”target” modular group as Sp(2g, ZZ)t,

in order to distinguish it from the ”world-sheet” modular group Sp(2g, ZZ)ws acting

on the cover of the moduli space of Riemann surfaces.

Given the solution to (4.61), the complex structure on Σg is uniquely determined

by the corresponding cohomology class via (4.53)-(4.50), very much in the spirit of

7This condition can be imposed, for example, by adding a term of the form iAIJ

∫
Σg

ζI ∧ ζJ to
the action (4.48) and integrating out antisymmetric matrix AIJ . This term is purely topological (it
is not coupled to K and depends only on the cohomology classes), so it does not affect the ordinary
Hitchin story.
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Hitchin. The map ζI → ∗ζζ
I globally defines a decomposition of ζI on components of

type (1, 0) and (0, 1) with respect to this complex structure. For example, the (1, 0)

component of the solution to (4.61)

ζI
(1,0) = ζI + i ∗ζ ζI , (4.69)

being a harmonic, must be a linear combination of the abelian differentials (4.32).

This observation allows us to express the period matrix as a function of the cohomol-

ogy classes:

τ IJ =
∑

K

( ∮

AK

ζI
(1,0)

)−1
∮

BJ

ζK
(1,0). (4.70)

In practice, however, we will have to solve the equation (4.61) in order to compute

corresponding period matrix via (4.70). This should be as hard to do as to solve the

Schottky problem. Furthermore, the complex structure (4.50), that we will get, will

in general be different from the background complex structure on the abelian variety

T (Π), that we use to parameterize the cohomologies. Only if we start from a point8

on the Siegel space that corresponds to the Jacobian variety T (Π) = Jac(Σg(τ)), the

critical point of the functional (4.48) will give us the same complex structure on the

world-sheet as on the target space. In this case harmonic maps (4.61) are promoted

to the holomorphic maps, and (4.70) gives τ = Π. The metric (4.53) then is the

Bergmann metric (4.43). This will happen on a very rare occasion, since Jacobian

locus has measure zero in the Siegel space. However, in general there is no obstruction

for the map Hg →Mg defined by (4.70), since all almost complex structures on Σg

are integrable.

8To be precise, we can also use any point that can be obtained from this one by the action of the
modular group Sp(2g, ZZ)t.
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Formally, this is the end of the ordinary Hitchin story in two dimensions. However,

a new interesting direction for study emerges if we allow the cohomology classes [ζI ]

to vary. In this case we will be dealing with the effective quantum mechanics of g

points on the Siegel space Hg defined by the functional (4.48).

Let us discuss the dependence of this functional on the ”massless” degrees of

freedom encoded in Π and K. We choose some complex structure on Σg, which is

equivalent to fixing the corresponding value of the field K. Modulo diffeomorphisms,

it is defined by the corresponding period matrix τ . This is equivalent9 to choosing

a set of the abelian differentials of the first kind (4.32). Then, we can express the

cohomology class (4.64) as follows:

[ζ] = (Π− τ)
1

τ − τ
ω − (Π− τ)

1

τ − τ
ω. (4.71)

The background dependence on the complex structure on Σg is encoded in the period

matrix τ . Let ∗ be the Hodge star-operator compatible with this complex structure:

ıK → ∗. Using the identity

ζI ∧ ∗ ζJ = iζI ∧ ζJ − i

2
(ζI − i ∗ ζI) ∧ (ζJ + i ∗ ζJ) (4.72)

and assuming that the classical equations of motion (4.61) are satisfied, we get the

following expression for the functional (4.48):

L(Π, τ) = kgπ +
kπ

4
Tr

1

ImΠ
(Π− τ)

1

Imτ
(Π− τ). (4.73)

It is clear that this expression has a maximum at the point Π = τ on the Siegel plane.

Moreover, it is straightforward to check, using the symmetry of the matrices Π and

9We assume that some marking for Σg is fixed, and discuss the modular group Sp(2g, ZZ)ws issues
later.
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τ , and the positivity of Imτ , that

Π = τ (4.74)

is the only solution10 of the corresponding equation of motion

∂L(Π, τ)

∂Π
= 0. (4.75)

Therefore, if we allow the cohomology classes in the theory with Lagrangian (4.48)

to fluctuate, we find the following picture. For the generic period matrix Π, param-

eterizing the cohomology classes, solution to the equation of motion (4.61) for the

”massive” degrees of freedom (scalars ξI in (4.60)) give harmonic maps ζ : Σg → Hg.

Further extremization with respect to Π picks up only the holomorphic maps that

correspond to the Jacobian variety Jac(Σg(τ)) ∈ Hg of the Riemann surface Σg(τ)

with the period matrix τ .

Another important feature of the expression (4.73) is that it is invariant under

the diagonal subgroup of the group Sp(2g, ZZ)t × Sp(2g, ZZ)ws, which acts as follows

Π → Π′ = (aΠ + b)(cΠ + d)−1 (4.76)

τ → τ ′ = (aτ + b)(cτ + d)−1. (4.77)

This can be easily checked using the basic relations for the Sp(2g, ZZ) matrix




a b

c d


:

adT − bcT = aT d− cT b = 1Ig×g

abT − baT = cdT − dcT = 0

aT c− cT a = bT d− dT b = 0.

(4.78)

10There is also a nonphysical solution Π = τ , that does not lie on the Siegel upper-space, since
ImΠ < 0 in this case.
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This, in particular, implies that after integrating e−L(Π,τ) over the Siegel space Hg

we will get a modular invariant function of τ . As we will see shortly, this gives an

interesting topological quantum mechanical toy model on Mg. However, this toy

model can hardly be interpreted from the entropic principle perspective. Therefore,

further refinement of the functional (4.48) will be needed.

4.3.4 Towards the Quantum Theory

Consider the following partition function defined by the functional(4.48):

Zg(k, τ) =
∫ DΠDξ

detImΠ
e−L, (4.79)

where the canonical modular invariant measure is used. It is assumed that we have

fixed the value of the field K, corresponding to the complex structure on a Riemann

surface Σg(τ) with the period matrix τ . After performing the Gaussian integral over

ξ and using (4.73), we find

Zg(k, τ) = e−kgπ
∫
DΠ exp

(
−kπ

4
Tr

1

ImΠ
(Π− τ)

1

Imτ
(Π− τ)

)
. (4.80)

The canonical modular invariant measure on Hg is

DΠ = (detImΠ)−g−1
g∏

I≤J

|dΠIJ |2 (4.81)

Since we know that the exponent in (4.80) has only one minimum (4.74), for large k

we can study the perturbative expansion of the matrix integral (4.80) near Π = τ . It

is convenient to describe the fluctuations by introducing the matrix H as follows

Π = τ − ImτH. (4.82)
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Then (4.80) becomes

Zg(k, τ) = e−kgπ
∫
DH exp

(
− kπ

4
Tr HH

1

1− ImH

)
. (4.83)

As we discussed earlier, because of the invariance of the exponent (4.73) in (4.80)

under the diagonal modular action (4.76), the partition function Zg(k, τ) is a modular

invariant function of τ . Therefore, it descends to a function on the moduli space Mg

of genus g Riemann surfaces. Notice that expression (4.83) does not depend on τ at

all. Therefore, the modular invariant function that we will get is actually a constant11.

The integral in (4.83), as a function of k, can be expressed in terms of the 1-matrix

model. Let us split the matrix H into its real and imaginary parts

H = H1 + iH2. (4.84)

Then we can rewrite (4.83) as

Zg(k, τ) = e−kgπ
∫
DH2

∫
DH1 exp

(
− kπ

4
Tr (H2

1 + H2
2 )

1

1−H2

)
, (4.85)

where we integrate over the symmetric matrices, and the matrix measures are defined

in accordance with (4.81)

DH1 =
g∏

I≤J

dHIJ
1 , DH2 = (detH2)

−g−1
g∏

I≤J

dHIJ
2 (4.86)

The integral over H1 is Gaussian, and gives ( 2
kπ

)
g(g+1)

2 det(1−H2)
g+1
2 , up to a numerical

constant. Then, (4.85) becomes

Zg(k, τ) = (
2

kπ
)

g(g+1)
2 e−kgπ

∫ g∏

I≤J

dHIJ
2

(
det

1−H2

H2
2

) g+1
2 e

− kπ
4

Tr
H2

2
1−H2 . (4.87)

11Here we ignored possible contribution from the boundary terms. On the boundary of the moduli
space, when detImΠ = 0 and detImτ = 0, the integral (4.80) needs to be carefully regularised. This
could result in a non-trivial τ -dependence, but such effects are beyond the scope of this chapter.
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It is unclear, however, whether this expression has any interesting interpretation.

In principle, we could use an alternative definition of the partition function, where

the canonical measure is multiplied by some function of Π, instead of (4.79). Morally,

this is equivalent to adding corresponding topological terms (depending only on the

cohomology classes [ζ], without coupling to K) to the action (4.48). This will bring

us into the realm of the matrix models. However, it looks like just a digression to

0C + 1 theory, and we are looking for the links with the higher dimensional theories.

Thus, we suggest a natural generalization of the theory, that comes from the

following observation. If we concentrate only on the massive modes in the functional

(4.48), described by the free non-compact fields ξ, it looks very much like the action

for the string propagating on a complex torus T g

C = Cg/ZZg ⊕ ΠZZg with the period

matrix Π. Indeed, as we discussed earlier, the metric (ImΠ)−1 is a canonical metric

induced on the torus from the flat Euclidian metric on Cg. Therefore, from the

stringy point of view the non-compact scalars ξ : Σg → Cg can be promoted to the

maps φ : Σg → T g

C with non-trivial winding numbers. Then, the cohomology class

[ζ] in the combination ζ = [ζ] + dξ can be interpreted as a background abelian gauge

field on the torus: [ζ] → A. Therefore, we want to substitute

ζ → dφ +A (4.88)

in the functional (4.48) and study resulting quantum theory. This modification will

give us a new insight on the gauged WZW model for abelian varieties, coupled to the

complex structure on Σg in the specific way (4.48).
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4.4 Gauged WZW Model for Abelian Varieties and

the Hitchin Functional

In this section we argue that in order to use quantum theory based on the Hitchin

functional for computing topological invariants, one has to incorporate stringy effects

into it. In particular, the target space has to be compactified, and in accordance

with that one has to consider topologically non-trivial maps Σg → T g

C, instead of

Σg → Cg. Here T g

C is a complex g-torus, viewed as a principally polarized abelian

variety. Moreover, the translation group of the target space has to be gauged, so that

a two-dimensional stringy version of the Hitchin functional becomes the gauged WZW

model with an abelian gauge group. It is well known that the partition function of

this model, representing the number of conformal blocks in corresponding toroidal

CFT, is independent of the complex structure on Σg. However, as we will see, in the

Hitchin extension of the model the coupling to the two-dimensional gravity appears

non-perturbatively via the instanton effects.

Before describing the topological extension of Hitchin functional in two dimen-

sions, we will recall some general aspects of the gauged Wess-Zumino-(Novikov)-

Witten model. This theory was extensively studied in the literature, see e.g. [78, 77,

154, 168, 24, 79, 170, 23], therefore below we just summarize basic features of the

model, following [168, 170, 23]. We will also use some facts about the abelian Chern-

Simons theories with the gauge group U(1)d, which has been discussed recently in

great details in [89, 21]. We will be particularly interested in the case d = 2g, and

focus on viewing gauge group as a complex algebraic variety.
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4.4.1 Review of the Gauged WZW Model

Let G be a compact Lie group. The group G acts on itself by left and right

multiplication, which is convenient to view as the action of GL × GR. For any sub-

group HL × HR ⊆ GL × GR consider a principal HL × HR bundle X over Riemann

surface Σg, with connection (AL,AR). Let J be a complex structure on Σg. As we

discussed earlier, it determines the action of the Hodge ∗-operator, corresponding to

the Riemann metric compatible with this complex structure, on 1-forms. Consider

the functional:

I(AL,AR; g) = − 1

8π

∫

Σg

Tr(g−1dAg ∧ ∗ g−1dAg)− iΓ(g) + (4.89)

+
i

4π

∫

Σg

Tr(AL ∧ dgg−1 +AR ∧ g−1dg +AR ∧ g−1ALg), (4.90)

where dA is the gauge-covariant extension of the exterior derivative:

dAg = dg +ALg − gAR, (4.91)

and Γ(g) is the topological WZNW term:

Γ(g) =
1

12π

∫

B: ∂B=Σg

Tr(g−1dg)∧ 3. (4.92)

Here Tr is an invariant quadratic form on the Lie algebra LieG of the group G,

normalized so that Γ(g) is well-defined modulo 2πZZ. The field12 g is promoted from

the map g : Σg → G to a section of the bundle X×HL×HR
G, where G is understood as

a trivial principal G bundle over Σg. We are interested in the non-anomalous gauging,

which is only possible if for all t, t′ ∈ Lie(HL ×HR)

TrLtt′ − TrRtt′ = 0 (4.93)

12not to be confused with the genus g of Σg.
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where TrL and TrR are traces on LieHL and LieHR. The standard choice for a non-

abelian group is HL = GL and HR = GR, with diagonal action g → h−1gh. This

gives the G/G gauged WZW model.

Consider the following propagator

〈ΨAL
(Σg)|ΨAR

(Σg)〉 =
∫
Dge−kI(AL,AR;g). (4.94)

This should be compared to (4.2). In order to simplify the notations, we will often

write ΨA instead of ΨA(Σg), when the dependence on the complex structure of Σg is

not essential. We will use the notation ΨA(Σg(τ)) if we want to stress dependence on

the complex structure, parameterized by the period matrix τ of Σg.

By performing the change of variables g → g−1 in the functional integral (4.94),

we find that the propagator has the necessary property

〈ΨAL
|ΨAR

〉 = 〈ΨAR
|ΨAL

〉. (4.95)

Furthermore, using the Gaussian integration and the Polyakov-Wiegmann formula

I(0, 0, gh) = I(0, 0, g) + I(0, 0, h)− 1

4π

∫

Σg

Tr g−1dg ∧ dhh−1, (4.96)

it is easy to check that propagator (4.94) satisfies the ”gluing” condition (4.3). It is

also straightforward to obtain the relation

I(Ah
L,Ah̃

R; h−1gh̃) = I(AL,AR; g)− iΦ(AL; h) + iΦ(AR; h̃), (4.97)

where the gauge transformed connection is

Ah
L = h−1ALh + h−1dh, Ah̃

R = h̃−1ARh̃ + h̃−1dh̃, (4.98)
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and the cocycles

Φ(A; h) =
1

4π

∫

Σg

TrA ∧ dhh−1 − Γ(h) (4.99)

are independent of the complex structure (metric) on Σg, and satisfy

Φ(A; hh′) = Φ(Ah; h′) + Φ(A; h). (4.100)

Infinitesimal form of these global gauge transformations, combined with a direct vari-

ation over ALz in the functional integral (4.94), leads to the following set of the

equations for the propagator

D

DALz

〈ΨAL
|ΨAR

〉 = 0 (4.101)

(
DL

a

D

DALa

+
ik

4π
εabFL

ab

)
〈ΨAL

|ΨAR
〉 = 0 (4.102)

where we introduced a connection D
DAL

on the line bundle Lk over the space of HL-

valued connections

D

DALz

=
δ

δALz

+
k

4π
ALz (4.103)

D

DALz

=
δ

δALz

− k

4π
ALz, (4.104)

and covariant derivatives on the principal HL bundle over Σg

DL
a = ∂a + [AL, . ], (4.105)

with the curvature form

FL = [DL, DL] = dAL +AL ∧ AL. (4.106)

Connections (4.103) obey canonical commutation relation

[ D

DALz(z)
,

D

DALw(w)

]
= +

k

2π
δ(z, w) (4.107)
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The propagator (4.94) also satisfies a set of conjugate equations that describe its

dependence on AR. These equations are obtained from (4.101)-(4.107) by a change

of the indices and signs, according to

L ↔ R, +k ↔ −k. (4.108)

Geometrically, it means that the propagator 〈ΨAL
|ΨAR

〉 is an (equivariant) holomor-

phic section of the line bundle LL = Lk ⊗ L−k.

The quantum field theory with Lagrangian L = kI(A,A; g), k ∈ ZZ+ is conformal

and gauge invariant and is called the G/G gauged WZW model for the non-abelian

group G at level k:

Zk(G/G; Σg) =
∫ DgDA

vol(Gauge)
e−kI(A,A;g). (4.109)

It is a two-dimensional sigma model with target space G gauged by a non-anomalous

subgroup diag(GR × GR). The partition function of the G/G gauged WZW model

can be also written as

Zk(G/G; Σg) = TrA〈ΨA(Σg)|ΨA(Σg)〉 =
∫ DALDAR

vol2(Gauge)

∣∣∣〈ΨAL
|ΨAR

〉
∣∣∣
2
, (4.110)

where we used (4.95). This should be compared to (4.4), with the identification

Zk(G/G; Σg) = ZΣg×S1 . After performing the Gaussian integration, applying the

Polyakov-Wiegmann formula and relation (4.97), we indeed get (4.109).

The gauged WZW functional (4.89) allows one to connect three-dimensional Chern-

Simons theory and its dual two-dimensional rational conformal field theory in a simple

and effective way. The partition function of the WZW model is

Zk(G; Σg) =
∫
Dge−kI(0,0;g). (4.111)
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The holomorphic factorization of the WZW model into the conformal blocks can be

explained by observing [168] that (4.111) can also be written as

Zk(G; Σg) = 〈Ψ0(Σg)|Ψ0(Σg)〉 = ||Ψ0(Σg)〉|2 =
∫ DA

vol(Gauge)
|〈Ψ0|ΨA〉|2. (4.112)

The WZW model is a rational conformal field theory if it is constructed from a finite

number of conformal blocks13. In this case the conformal blocks of the WZW model

are in one-to-one correspondence with the states in a Hilbert space14, obtained from

canonical quantization of the Chern-Simons theory on Σg×IR [165, 68]. A geometrical

interpretation of this Hilbert space (achieved in the framework of the geometrical

quantization [14]) is that it is a space Vg,k(G) of (equivariant) holomorphic sections

of k-th power of the determinant line bundle L over the moduli space of (semistable)

holomorphic GC-connections on Σg, which by the Narasimhan-Seshadri theorem is

the same as the moduli space MG of flat connections on the principal G-bundle over

Σg. Thus, the Hilbert space is given exactly by the holomorphic sections that satisfy

(4.101).

Let sγ(A; τ), γ = 1, . . . dimH0(MG,Lk) be an orthonormal basis in the space

H0(MG,Lk) of holomorphic sections. Then we can write the propagator in (4.112)

as

〈Ψ0(Σg(τ))|ΨA(Σg(τ))〉 =
dimH0(MG,Lk)∑

γ=1

Fγ(τ) sγ(A; τ). (4.113)

The coefficients Fγ(τ) in (4.113) are the conformal blocks of the WZW model. Of

course, the dimensions of the space Vg,k(G) of conformal blocks and the space H0(MG,Lk)

of holomorphic sections coincide. After plugging (4.113) into (4.112) and using the

13There are many definitions of RCFT, but this one is the most convenient for our purposes.
14For simplicity we are not considering marked points on Σg.
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orthonormality of the basis sγ(A; τ), we obtain

Zk(G; Σg(τ)) =
dimVg,k∑

γ=1

|Fγ(τ)|2. (4.114)

The propagator (4.94) can now be written as

〈ΨAL
(Σg(τ))|ΨAR

(Σg(τ))〉 =
dimVg,k∑

γ=1

sγ(AL; τ)sγ(AR; τ), (4.115)

which is a unique solution to the equations (4.101) (and conjugate equations (4.108))

obeying the ”gluing” condition (4.3). After plugging this into (4.139) we find

Zk(G/G; Σg) = dimVg,k(G) = dimH0(MG,Lk). (4.116)

Therefore, the partition function of the gauged WZW model computes the dimension

of the Chern-Simons Hilbert space Vg,k(G), which coincides with the number of con-

formal blocks in the corresponding RCFT. This can be viewed as an example of the

universal index theorem (4.5) for the universal partition function (4.4) of Σg × S1,

which in this case is equal to Zk(G/G; Σg). The higher cohomology groups vanish

since we are dealing with the integrable representations of RCFT.

Another way to explain (4.116) is to observe [79, 170] that the propagator (4.94)

is exactly the free propagator of the Chern-Simons theory multiplied by the projector

on the gauge invariant subspace, enforcing the Gauss law. In other words, equation

(4.109) is equivalent to Zk(G/G; Σg) = Tr 1, which yields (4.116).

¿From the CFT algebra viewpoint, the number of conformal blocks dimVg,k(G) is

given by the E. Verlinde’s formula [161]. For example, when G = SU(2),

dimVg,k(SU(2)) =
(k + 2

2

)g−1
k∑

j=0

sin2−2g (j + 1)

k + 2
π. (4.117)

The gauged WZW model provides a constructive method of computing the dimension

of the Verlinde algebra via the localization of the functional integral [24, 79].
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4.4.2 Abelian Case

We are particularly interested in the case when G is an abelian group: G ∼ U(1)2g.

Moreover, we want to view it as an algebraic complex variety with a fixed complex

structure. Therefore, we will describe G as a g-dimensional complex torus T , which

is a principally polarized abelian variety: T = Cg/Λ, Λ = ZZg ⊕ ΠZZg. Sometimes

we will use the notation T (Π) to show the explicit dependence of T on the defining

period matrix Π.

Let us first describe an analog of the functional (4.89) for the case of abelian group

T ∼ U(1)2g. In complex coordinates, it has the form15

I(AL,AR; φ) =

= πGIJ

2

∫
Σg

dAφI ∧ ∗ dAφJ + i(AI
L +AI

R) ∧ dφJ + i(AI
L +AI

R) ∧ dφJ −

−iπGIJ

2

∫
Σg

(AI
L ∧ AJ

R +AI
L ∧ AJ

R) − iΓ(φ),

(4.118)

where (AL,AR) are connections on a principal bundle TL × TR over Σg, and the

scalar fields φ ∼ φ + ZZ + ΠZZ describe the maps Σg → T , which, after coupling

to the gauge fields, are promoted to the corresponding sections, with the covariant

derivative defined as

dAφI = dφI +AI
L −AI

R. (4.119)

The role of the trace operator Tr in (4.89) now is played by the matrix GIJ = ( 1
ImΠ

)IJ ,

15We should be careful with the expression (4.89) in the case of U(1)2g abelian group. Naively,
it looks like we can take 2g copies of the WZNW term (4.92) for U(1) group, but this expression
vanishes for abelian group element g = eiϕ. The analog of this term in the abelian group case is
Γ(φ) = πGIJ

∫
Σg

dφI ∧dφJ , which can be interpreted a B-field. It is crucial for a global identification
with the corresponding three-dimensional Chern-Simons theory.
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that defines a canonical metric on T :

G(φ, φ) =
1

2
GIJ(φI ⊗ φJ + φI ⊗ φJ). (4.120)

The analog of the topological WZNW term is

Γ(φ) = πGIJ

∫

Σg

dφI ∧ dφJ , (4.121)

which obey the corresponding Polyakov-Wiegmann formula

Γ(φ + ψ) = Γ(φ) + Γ(ψ) + πGIJ

∫

Σg

dφI ∧ dψJ − dφI ∧ dψJ . (4.122)

Under the small gauge transformations

Aψ
L = AL + dψ, Aψ̃

R = AR + dψ̃, (4.123)

the change of the functional (4.118) depends on AL,R but not on φ or the complex

structure of Σg:

I(Aψ
L,Aψ̃

R; φ + ψ̃ − ψ)− I(AL,AR; φ) = (4.124)

= i
GIJπ

2

∫

Σg

AI
R ∧ dψ̃J +AI

R ∧ dψ̃J −AI
L ∧ dψJ −AI

L ∧ dψJ . (4.125)

This should be compared to (4.97). There are certain restrictions [68, 27] on the

possible choice of the period matrix Π of the torus T (Π). First, in order for the

functional (4.118) to be a well defined modulo 2πiZZ, the lattice Λ = ZZg ⊕ΠZZg has

to be integral. Second, modular invariance requires Λ to be even lattice. Therefore,

ZZg ⊕ ΠZZg ∈ Γ2ZZ
2g . (4.126)

where Γ2ZZ
2g denotes the moduli space of even integral 2g-dimensional lattices. The

dual conformal field theory in this case is rational.
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Let us define the propagator as

〈ΨAL
|ΨAR

〉 =
∫
Dφ e−kI(AL,AR;φ). (4.127)

Notice that interactions in (4.118) are such that φ is coupled only to ALz, via the

term dφI ∧ (i − ∗)AJ
L, and to ARz, via the term dφI ∧ (i + ∗)AJ

R. Moreover, ”left”

and ”right” gauge fields interact only via the coupling AI
Rz ∧ AJ

Lz, and its complex

conjugate. This observation, combined with the Ward identity, that follows from

(4.124), leads to the following set of equations16, which the propagator obeys:

D

DAI
Lz

〈ΨAL
|ΨAR

〉 = 0 (4.128)

D

DAI
Rz

〈ΨAL
|ΨAR

〉 = 0 (4.129)

(
∂a

D

DAI
La

+ ikπGIJεab∂aAJ
Lb

)
〈ΨAL

|ΨAR
〉 = 0 (4.130)

(
∂a

D

DAI
Ra

− ikπGIJεab∂aAJ
Rb

)
〈ΨAL

|ΨAR
〉 = 0 (4.131)

Here we introduced a connection

D

DAI
Lz

=
δ

δAI
Lz

+ kπGIJAJ
Lz,

D

DAI
Lz

=
δ

δAI
Lz

− kπGIJAJ
Lz, (4.132)

D

DAI
Rz

=
δ

δAI
Rz

− kπGIJAJ
Lz,

D

DAI
Rz

=
δ

δAI
Rz

+ kπGIJAJ
Lz, (4.133)

on the line bundle Lk × L−k over the space A of TL × TR-valued connections on Σg.

The geometrical interpretation of the equations (4.128) is very simple. We pick a

standard complex structure on the space A of connections induced from the complex

structure on Σg. In this complex structure, ALz and ARz are holomorphic, and ALz

and ARz are antiholomorphic. Then the propagator 〈ΨAL
|ΨAR

〉 is a holomorphic

16We treat AL,R and AL,R as independent variables, and there is also a corresponding set of
equations with AL,R → AL,R.
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section of the line bundle LL = Lk⊗L−k, equivariant with respect to the action of the

abelian group TL × TR.

It is well-known (see, e.g., [14, 158]) that the basis in the corresponding space

H0(MT ,Lk) of the gauge invariant holomorphic sections of Lk is provided by the

level k Narain-Siegel theta-functions Θγ(A; τ |Λ, k), associated with the lattice Λ,

that defines the torus T = Cg/Λ. We will not need an explicit expression for

Θγ(A, τ |Λ, k) (it can be found, for example, in [89, 21]). What is important for

us is that the linear independent Narain-Siegel theta-functions are labelled by the

index γ ∈ (Λ∗/kΛ)⊗g, where Λ∗ is the dual lattice. ¿From the viewpoint of the

three-dimensional abelian Chern-Simons theory, these theta-functions are exactly the

wave-functions: Ψγ(A; τ) ∼ Θγ(A; τ |Λ, k). Therefore, the dimension of the corre-

sponding Hilbert space is

dimHilbCS(Λ, k) = |Λ∗/kΛ|g. (4.134)

We can repeat the steps that we did in the non-abelian case, and connect abelian

Chern-Simons theory and its dual CFT via the functional (4.118) and the propagator

(4.143. The property of the functional (4.118)

I(AL,AR; φ) = I(AR,AL;−φ) (4.135)

guarantees that the propagator (4.143) is hermitian:

〈ΨAL
|ΨAR

〉 = 〈ΨAR
|ΨAL

〉, (4.136)

since we can always change the variables φ → −φ in the functional integral (4.143).

Moreover, it is straightforward to show that the propagator obeys the gluing condition
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(4.3

〈ΨAL
|ΨAR

〉 =
∫ DA

vol(Gauge)
〈ΨAL

|ΨA〉〈ΨA|ΨAR
〉, (4.137)

by performing the Gaussian integral over A, using the Polyakov-Wiegmann formula,

and the fact that
∫ Dφ = vol(Gauge). This allows us to write down the following

expression for the propagator in terms of the Narain-Siegel theta-functions:

〈ΨAL
|ΨAR

〉 =
∑

γ∈(Λ∗/kΛ)⊗g

Θγ(AL; τ |Λ, k)Θγ(AR; τ |Λ, k) (4.138)

The partition function of the gauged WZW model for abelian group T at level k

is defined as

Zk(T /T ; Σg) =
∫ DφDA

vol(Gauge)
e−kI(A,A;φ) = TrA〈ΨA|ΨA〉 (4.139)

Using (4.138) and orthonormality of the Narain-Siegel theta-functions

∫ DA
vol(Gauge)

Θγ(A; τ |Λ, k) Θγ′(A; τ |Λ, k) = δγγ′ , (4.140)

it is easy to see that the partition function (4.139) indeed computes the dimension of

the Chern-Simons theory Hilbert space

Zk(T /T ; Σg) = |Λ∗/kΛ|g. (4.141)

4.4.3 Hitchin Extension of the Abelian GWZW Model

Now we are ready to discuss the Hitchin extension of the gauged WZW functional

(4.118) for abelian group. We want to introduce non-trivial coupling to the complex

structure on Σg by using the operator ıK instead of the Hodge ∗-operator, and adding
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the term iλ tr(K2 + 1I) to the action. This leads to the following functional

I(AL,AR; φ|λ,K) = GIJπ
4

∫
Σg

dAφI ∧ ıK dAφJ + dAφI ∧ ıK dAφJ − 4
√−1dφI ∧ dφJ+

+
√−1π

2
GIJ

∫
Σg

(AI
L +AI

R) ∧ dφJ + (AI
L +AI

R) ∧ dφJ−

−
√−1π

2
GIJ

∫
Σg

(AI
L ∧ AJ

R +AI
L ∧ AJ

R)−
√−1π

4

∫
Σg

λ tr(K2 + Id).

(4.142)

The Hitchin extension of the propagator (4.143) formally is given by

〈Ψ(AL|λ,K)|Ψ(AR|λ,K)〉 =
∫
Dφ e−kI(AL,AR;φ|λ,K). (4.143)

However, this expression can be interpreted as a propagator only for the ”on-shell”

values of the field K, such that

K2 = −Id. (4.144)

In this case K defines a complex structure on Σg, and we can glue together two prop-

agators defined in the same complex structure, according to the gluing rule (4.137).

Moreover, if we define a ”partition function” as

Zk(T |λ,K) =
∫ DφDA

vol(Gauge)
e−kI(A,A;φ|λ,K), (4.145)

then formally we can write

∫
Dλ Zk(T |λ,K) = |Λ∗/kΛ|g δ(trK2 + 2). (4.146)

The meaning of this expression is that perturbatively the Hitchin extension (4.142)

is equivalent to the ordinary gauged WZW model (4.118). There is no non-trivial K

dependence in (4.146), and after performing the integration over DK we will just get
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some multiplicative constant, depending on g. This should not be surprising. After

all, the gauged WZW model computes the number of conformal blocks (the dimension

of the corresponding Hilbert space), and this number does not depend on the choice

of the complex structure on Σg, which is controlled by the field K.

However, the very new feature of the Hitchin extension is that dependence on K

can be restored non-perturbatively. Indeed, if the action kI(A,A; φ|λ,K) has non-

trivial critical point, we have to do expansion around this point in the functional

integral. In this case, the answer will depend on the value Kmin of the complex

structure tensor at the minimal point of the action.

4.4.4 Attractor Points and Complex Multiplication

Therefore, we have to study the critical points of the functional

I(A,A; φ|λ,K) = GIJπ
4

∫
Σg

(dφI ∧ ıK dφJ + dφI ∧ ıK dφJ − 4
√−1dφI ∧ dφJ)+

+
√−1πGIJ

∫
Σg

(AI ∧ dφJ +AI ∧ dφJ)−
√−1π

4

∫
Σg

λ tr(K2 + Id).

(4.147)

Let us recall that in the functional integral (4.145) we integrate over the exact parts

ϕI of the fields dφI = [dφI ] + dϕI and sum over non-trivial maps [dφI ] ∈ H1(Σg, Λ).

After dividing by the gauge transformations, we need to integrate only over the space

of gauge inequivalent flat gauge fields AI ∈ H1(Σg,C
g)/H1(Σg, Λ). Therefore, in the

functional (4.147) the exact part of dφ couples only to the term ıK dφ. By varying ϕ,

we get a classical equation of motion, analogous to (4.61):

dıK dφI = 0. (4.148)
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After solving the constraint trK2 = −2, imposed by the Lagrange multiplier λ, the

equations of motion for K give

Ka
b =

GIJ

2
√

det‖h‖
(dφI

bdφJ
c + dφI

cdφJ
b )εca, (4.149)

where h is the metric induced on Σg. If we recall that GIJ = ( 1
ImΠ

)IJ , this metric

takes the form

hab =
( 1

2ImΠ

)
IJ

(dφI
adφJ

b + dφI
bdφJ

a ). (4.150)

Expressions (4.149 and (4.150) should be compared with (4.50) and (4.53).

For generic choice of the matrix Π ∈ Hg and cohomology vectors [dφI ] ∈ H1(Σg, Λ)

expression (4.149) for the complex structure can be singular at some points on Σg.

Those are the points where the determinant of the metric (4.150 vanishes17. However,

it is easy to find a family of non-singular solutions (4.149). Let us compare(4.150)

with the expression (4.43) for the canonical Bergmann metric on the Riemann surface

Σg(τ)

hB
ab =

( 1

2Imτ

)
IJ

(ωI
aω

J
b + ωI

bω
J
a ). (4.151)

The complex structure on Σg(τ) is defined by the period matrix τ , and is such that

the differentials ωI are holomorphic. If we set

dφI = ωI , (4.152)

and choose the torus T , for which

Π = τ, (4.153)

17For example, the metric hzz = |ω1
z |2 vanishes at zeroes of the abelian differential ω1. Strictly

speaking, even in this singular case it is possible to define complex structure globally on Σg via ap-
propriate conformal transformation and analytical continuation, but the resulting complex structure
will not be given by (4.149).
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then the metric (4.150) coincides with the Bergmann metric: h = hB, and therefore

the complex structure defined by K coincides with the complex structure defined by

τ .

In order to parameterize general non-singular complex structure solutions (4.149

we proceed as follows. Suppose that some K, given by (4.149, provides a globally well-

defined complex structure on Σg. All complex structures on Σg are parameterized by

the period matrices. Therefore, there is the period matrix τ that defines the same

complex structure on Σg as K. Then K must be equal to the corresponding Bergmann

complex structure: K = KB(τ), which is a canonical complex structure compatible

with the metric hB (4.151). This gives

√
det‖h‖B

( 1

ImΠ

)
IJ

(dφI
bdφJ

c + dφI
cdφJ

b ) =
√

det‖h‖
( 1

Imτ

)
IJ

(ωI
bω

J
c + ωI

cω
J
b ).(4.154)

Since the 1-forms dφ are harmonic, we can express them in terms of the abelian

differentials:

dφ = Mω + Nω, (4.155)

where M and N are certain g×g complex matrices representing non-trivial mappings

Σg(τ) → T (Π). If A and B are the period matrices of the 1-forms:

AIJ =
∮

AJ

dφI , BIJ =
∮

BJ

dφI , (4.156)

then

M = (B − Aτ)
1

τ − τ
, N = −(B − Aτ)

1

τ − τ
. (4.157)

We stress that (4.155) is an exact expression for the 1-forms dφ, that solves classical

equations of motion, as opposed to (4.71), that captures only the cohomology class.



Chapter 4: Abelian Varieties, RCFTs, Attractors, and Hitchin Functional in Two
Dimensions 111

Once the cohomology class [dφ] of the 1-forms is fixed, the exact part dφ − [dφ] is

uniquely determined by (4.148), which states that dφ is a linear combination of the

harmonic representatives.

Combining the ωI
bω

J
c terms in (4.154), we find

MT 1

ImΠ
N = 0, (4.158)

which means that either N = 0 or M = 0, since ImΠ is non-degenerate. The terms

of the form ωI
bω

J
c give

Tr
(
ωT

b MT 1

ImΠ
Mωc

)
+ Tr

(
ωT

b NT 1

ImΠ
Nωc

)
=

√√√√ det‖h‖
det‖hB‖ Tr

(
ωT

b

1

Imτ
ωc

)
. (4.159)

Thus, the only way to satisfy (4.158)-(4.159) is to set N = 0, and

MT 1

ImΠ
M =

1

Imτ
. (4.160)

This equation implies that detM 6= 0, since the matrices ImΠ and Imτ are not

degenerate. Moreover, in this case we also have h = hB. ¿From (4.157) we see, that

the condition N = 0 is equivalent to

B = Aτ, (4.161)

so that

M = A. (4.162)

The columns of the matrix A (4.156) are the vectors of the lattice Λ = ZZg ⊕ ΠZZg.

We can write it as A = PZZ + ΠQZZ , where PZZ and QZZ are integral g × g matri-

ces. Therefore, the complex structures K∗ corresponding to the critical points of the
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functional (4.147) can be parameterized by the period matrices τ , obeying

1

Imτ
= (P T

ZZ + QT
ZZΠ)

1

ImΠ
(PZZ + ΠQZZ). (4.163)

This equation puts additional constraint on the period matrix, which according to

(4.161) can be written as τ = A−1B. Since the columns of the matrix B are also the

vectors of the lattice Λ, we can write it as B = P ′
ZZ + ΠQ′

ZZ , where P ′
ZZ and Q′

ZZ are

integral g × g matrices. Then (4.161) takes the form

τ =
1

PZZ + ΠQZZ

(P ′
ZZ + ΠQ′

ZZ). (4.164)

Equations (4.163)-(4.164) can be interpreted as a two-dimensional analog of the at-

tractor equations [76, 155, 35, 124]. In the 3C-dimensional case attractor equations

define complex structure of the Calabi-Yau threefold in terms of the integral coho-

mology class, given by the magnetic and electric charges of the associated black hole.

In 1C-dimensional case equations (4.163) - (4.164) define the complex structure of the

Riemann surface Σg(τ) in terms of the integral matrices PZZ , QZZ , P ′
ZZ , and Q′

ZZ .

The critical points (4.149) minimize the value of the functional (4.147), viewed as

a function on the moduli space of complex structures. Indeed, the second variation

of the functional at the critical point is

δ2I(A,A; φ|λ,K)

δK2

∣∣∣∗ = −iπ

2
λ∗ =

π

2

√
det‖hB‖ > 0. (4.165)

If we perform functional integration over DK with the weight e−kI(A,A;φ|λ,K), the main

contribution will come from these critical points. Therefore, from the point of view

of the corresponding quantum mechanical problem on the moduli space of complex

structures, these points are attractive. We will denote a set of these points on the

moduli space of genus g Riemann surfaces as Attrg.
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For the particular choice PZZ = Q′
ZZ = 1I, and QZZ = P ′

ZZ = 0 the attractor equa-

tions (4.163)-(4.164) reduce to (4.152)-(4.153). This allows us to generate all solutions

to (4.163)-(4.164) from (4.152)-(4.153) by an appropriate symplectic transformation.

Indeed, a compatibility of (4.163) and (4.164), combined with the symmetry require-

ment τT = τ imposes certain restrictions on the possible choice of the integer matrices.

After some algebra one finds that these restrictions are equivalent to relations (4.78)

for the symplectic group, with the identification: a = Q′T
ZZ , b = P ′T

ZZ , c = QT
ZZ , d = P T

ZZ .

Therefore,




Q′T
ZZ P ′T

ZZ

QT
ZZ P T

ZZ


 ∈ Sp(2g, ZZ), (4.166)

and all solutions to (4.163)-(4.164) for a given Π correspond to the same Riemann

surface, with a different choices of the symplectic basis. To summarize, we find that

the critical points of the functional (4.147) on the moduli space of complex structures

Mg are given by the intersection of the Jacobian locus Jac(Σg) ⊂ Hg with a set Γ2ZZ
2g

of abelian varieties generated by the even integer 2g-dimensional lattices:

Attrg = Jac(Σg) ∩ Γ2ZZ
2g . (4.167)

There is another interesting property of the critical points defined by (4.161)

and (4.163): the corresponding Riemann surface Σg(τ) admits a non-trivial endo-

morphism, known as the complex multiplication (CM). The notion of the complex

multiplication appears in the study of black hole attractors and rational conformal

field theories (see, e.g., [124, 92] for more details and references). In particular, it was

shown in [91], that the critical attractor points of the Calabi-Yau holomorpic volume

functional (4.14) (which is morally the higher-dimensional analog of the functional
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(4.147)) lead to the abelian varieties (associated with the coupling constant matrix)

admitting complex multiplication.

In order to illustrate the CM-property of the critical points (4.149), we will use a

simple criterion [92]) that says that an abelian variety defined by the period matrix

τ admits complex multiplication, if τ obeys a second order matrix equation

τnτ + τm− n′τ −m′ = 0, (4.168)

for some integer g × g matrices m,n, m′, n′, with rank(n) = g. It is straightforward

to show that any solution to the attractor equations (4.163) -(4.164) also obeys the

CM-type equation (4.168). After using (4.157), the equation (4.160) takes the form

(BT − τAT )
1

ImΠ
(B − Aτ) = 4Imτ. (4.169)

By substituting τ = τ − 2iImτ into the real part of (4.169), we find

τRe(AT 1

ImΠ
A)τ − τRe(AT 1

ImΠ
B)− Re(BT 1

ImΠ
A)τ + Re(BT 1

ImΠ
B) = 0,(4.170)

where we used (4.161) and the attractor equation (4.163) in the form AT 1
ImΠ

A = 1
Imτ

.

Let us now recall that Λ = ZZg⊕ΠZZg is an even integral lattice. This guarantees that

the corresponding three-dimensional abelian Chern-Simons theory is well-defined, and

the associated two-dimensional conformal field theory is rational. Therefore, for any

two vectors a,b ∈ Λ a scalar product, defined as

(a,b) = Re(aI(ImΠ)−1
IJ bJ) (4.171)

is an integer, and the norm of any vector of the lattice Λ is an even number:

(a,b) ∈ ZZ, a 6= b; (a, a) ∈ 2ZZ. (4.172)
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We can write the period matrices (4.156) in terms of the lattice vectors, as A =

(a1, . . . ag), and B = (b1, . . .bg). Then all elements of the matrices

n = Re(AT 1

ImΠ
A), m = −Re(AT 1

ImΠ
B),

n′ = Re(BT 1

ImΠ
A), m′ = −Re(BT 1

ImΠ
B), (4.173)

according to (4.172) are integral, and thus equation (4.170) is indeed of the CM-

type (4.168). This fact should not be surprising. As was proven recently in [42], the

complex multiplication on abelian variety is equivalent to the existence of the rational

Kähler metric. This is, of course, true in our case, since we consider abelian varieties

generated by the even integer lattices. The fact that the associated CFT in this case

is rational, fits nicely with the observations of Gukov and Vafa [92].

4.5 Quantization and the Partition Function

In this section, we define a generating function for the dimension of the space of

conformal blocks in a family of toroidal c = 2g RCFTs on a genus g Riemann surface.

We use Hitchin construction to introduce coupling to two-dimensional gravity. The

universal index theorem in the context of the Chern-Simons/CFT correspondence

is a computation of the number of conformal blocks via the gauged WZW model.

After coupling to two-dimensional gravity it gives, according to the entropic principle,

the effective entropy functional on the moduli space of complex structures. The

functional is peaked at the attractor points. We will be interested in the fluctuation

of the complex geometry around the gravitational instanton solution corresponding

to these points. It gives some version of the two-dimensional Kodaira-Spencer theory
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of gravity.

4.5.1 Generating Function for the Number of Conformal Blocks

and Attractors

We learned that the Hitchin extension I(A,A; φ|λ,K) of the abelian gauged WZW

model gives rise to effective potential on the moduli space of the complex structures,

whose critical points (4.167) correspond to Jacobians of Riemann surfaces admitting

complex multiplication. In order to describe all such points we have to sum over

all even integer lattices {Λ(Π) = ZZg ⊕ ΠZZg : Λ(Π) ∈ Γ2ZZ
2g }. This discrete sum

is basically a sum over the moduli space18 of the toroidal rational two-dimensional

conformal field theories:

Zg,k(Θ|λ,K) =
∑

Π:Λ(Π)∈Γ2ZZ
2g

eiTrΘΠ
∫ DφDA

vol(Gauge)
e−kI(A,A;φ|λ,K). (4.174)

We perform a sum with the weight factor exp(iTrΘΠ), where Θ is an auxiliary sym-

metric matrix, so that Zk(Θ|λ,K) can be interpreted as a generating function cap-

turing all the relevant information about the theory. In principle, we can go one step

further and sum over the theories at different levels k as well:

Zg(q, Θ|λ,K) =
∞∑

k=1

qkZg,k(Θ|λ,K). (4.175)

If we compute (4.175) at any classical valueK∗ : K2
∗ = −Id, the functional I(A,A; φ|λ,K∗)

describes the ordinary gauged WZW model, and therefore (4.175) becomes a gener-

18To be more precise, the moduli space of a 2g-dimensional torus is SO(2g,2g)
SO(2g)×SO(2g)×SO(2g,2g,ZZ) .

We are interested in the subspace of the complex algebraic tori Sp(2g)
U(g)×Sp(2g,ZZ) in this moduli space,

and moreover, consider only the tori generated by the even integral lattices.
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ating function19 for the number of conformal blocks in c = 2g RCFTs

Zk(q, Θ|λ,K∗) =
∑

k

∑

Π: Λ(Π)∈Γ2ZZ
2g

qkeiTrΘΠ|Λ∗(Π)/kΛ(Π)|g. (4.176)

Let us discuss the quantum aspects of the theory on the moduli space of the

complex structures that arises after averaging the generating function (4.176) over

the fluctuations of the fields K and λ, according to

Zg,k(Θ) =
∫ DKDλ

vol(Diff(Σg))
Zg,k(Θ|λ,K). (4.177)

The measure for the vector-valued 1-form K can be defined as follows. Let us first

notice that for any 1-form θ on Σg

θ ∧ ıK−trKθ = θ ∧ ıKθ − (trK) θ ∧ ıIdθ = θ ∧ ıKθ, (4.178)

since θ ∧ ıIdθ = θ ∧ θ = 0. Therefore, trK does not couple to the scalars φ in the

action (4.147). This is the reason why we can integrate only over the traceless tensor

fields trK = 0. In this case the measure on the space of the fields K is induced from

the following metric:

‖δK‖2 =
∫

Σg

d2x (trK2)−
3
2 tr(ıKδK)2. (4.179)

In order to motivate this choice of the metric, we note that on-shell, K is linearly

related to the Riemann metric h on Σg: Ka
b ∼ hbcε

ca. Traceless vector-valued 1-form

Ka
b contains 3 local degrees of freedom, the same amount as the symmetric metric

19The simplest example of such generating function corresponds to the U(1)k theory, describing
the free boson at k times the self-dual radius. The holomorphic wave-functions of the dual Chern-
Simons theory are the level k Jacobi theta-functions. The dimension of the corresponding Hilbert
space is kg. Therefore, on this case Zg(q) =

∑∞
k=1 qkkg = Li−g(q).
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tensor hab. However, K and h scale differently under the conformal transformations.

This can be taken care of by introducing a conformal factor σ, such that

Ka
b =

hbc√
deth

eσεca. (4.180)

Then it is easy to see that the metric (4.179) for the variations of K that does not

involve change of trK2, coincides with the standard metric [147] on the space of

Riemann metrics

‖δh‖2 =
∫

Σg

d2x
√

dethhachbdδhabδhcd, (4.181)

for the variations of h that does not involve conformal transformations. In order to

parameterize general variations, we follow the standard procedure [17], and introduce

complex coordinates on Σg, in terms of which the metric takes the conformal form

h = hzzdz ⊗ dz. The group Diff(Σg) is generated by the coordinate transformations

z → z + ε(z, z). Then the metric (4.179) takes the form

‖δK‖2 =
∫

Σg

d2xeσ((δσ)2 + ∂ε∂ε) +
3g−g∑

i,j=1

δmi(N
−1
2 )ijδmj (4.182)

where mi are coordinates on the moduli space of Riemann surfaces Mg, and N2 is the

matrix of scalar products of the quadratic holomorphic differentials on Σg. Therefore,

the measure in the functional integral (4.177) is given by

DK = vol(Diff(Σg))
det′∆−1

detN2

dσdm (4.183)

where ∆j denotes the Laplace-Beltrami operator acting on the space of the holomor-

phic j-differentials, Nj is the matrix of scalar products of holomorphic j-differentials,

and the volume form on the moduli space is dm =
3g−g∏
i=1

dmi ∧ dmi. We see that σ
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plays the role of the Liouville field (the conformal factor of the metric). In particular,

we can compute the σ-dependence of the determinant in (4.183) using the standard

formula

det′∆j

detNj detN1−j

= |det∂j|2 e−
cj
12π

SL[σ], (4.184)

where cj = 6j2 − 6j + 1 and SL[σ] is the Liouville action. However, because of

the choice of the parameterizaton (4.180), the conformal field σ enters the Hitchin

extension of the gauged WZW model (4.147) in a special way. The relevant terms of

the functional (4.147) have the form:

GIJπ
∫

Σg

d2xeσ∂φI∂ φJ +
iπ

2

∫

Σg

λ(eσ − 1) (4.185)

The additional factor eσ makes this theory at the quantum level very different from

Polyakov’s bosonic string. Let us recall that the quantum theory (4.177) is defined

as an expansion around the attractor point

K = K∗ + δK, λ = λ∗ + δλ. (4.186)

This means that we should expand (4.185) around σ = 0. If we formally do this

expansion, in perturbation series we will encounter terms of the form

∑

n>0

1

n!

∫

Σg

d2xσn〈∂φI∂ φJ〉. (4.187)

These terms are singular, since 〈φ(z)φ(w)〉 ∼ log |z −w|, and we are taking the limit

z → w, σ → 0. Therefore, for this theory to make sense, (4.187) has to be regularized

in some way.

However, in the classical (weak coupling) limit k → ∞ we can ignore this regu-

larization ambiguity. If we neglect possible contributions from the boundary of the
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moduli space, in this limit the main contribution to (4.177) comes from the attractor

points (4.167):

Zg,k(Θ)|k→∞ =
∑

Π∈Attrg

eiTrΘΠ
(
|Λ∗(Π)/kΛ(Π)|g + . . .

)
. (4.188)

¿From the viewpoint of the entropic principle (1.1), it means that the wave-function

(4.1) on the moduli space of the complex structures Mg is peaked at the attractor

points (4.167).

There is one physically natural way to resolve the regularization ambiguity in

(4.185). We would like to think about the corresponding theory as of a 1C-dimensional

analog of the Kodaira-Spencer theory of gravity [22]. In the 3C-dimensional case, the

target space KS action [22] also suffers from the regularization ambiguities. However,

there the topological string B-model provides a natural regularization. Unfortunately,

the higher genus topological string amplitudes vanish if the target manifold has dimen-

sion different from the critical dimension ĉ = 3, so we can not view 1C-dimensional

analog of KS theory as a topological strings on Σg. Instead, we can define it by re-

quiring that a generating function (4.177) should be identified with the corresponding

computation in the dimensional reduction of the Kodaira-Spencer theory of gravity

[22] from six to two dimensions.

4.5.2 Dimensional Reduction of the Topological M-Theory

Let us discuss the relation between the two-dimensional Hitchin model studied

above, and the dimensional reduction of the topological M-theory20. At the moment,

20We thank C. Vafa and E. Witten for raising the question about the relation between Hitchin
functionals in different dimensions.
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there is no consistent quantum definition of the topological M-theory [58]. However,

many ingredients of the theory can be identified at the classical level. In particular,

a seven-dimensional topological action

S7 =
1

2π

∫

M7

H ∧ dH, (4.189)

which is a U(1) Chern-Simons theory for 3-form H plays an important role in in-

terpreting the topological string partition function as a wave-function (see, e.g.,

[58, 133, 81, 169] and references therein).

On the other hand, it is well-known [162], that we can get a 1C + 1-dimensional

abelian Chern-Simons theory from (4.189) via dimensional reduction on the manifold

of the form M7 = M4×Σg × IR. Using the ansatz H =
∑

αiA
i, where αi are integral

harmonic 2-forms on M4, we obtain:

1

2π

∫

M4×Σg×IR

H ∧ dH → Kij

2π

∫

Σg×IR

Ai ∧ dAj. (4.190)

Here Kij is an intersection form for harmonic 2-forms on M4. If we use the spin

manifold, this form is an even integral, and therefore the dual conformal field theory

is rational. In this chapter, we studied a special case of such compactifications, with

the form Kij defining an abelian variety. In general case, Kij is an integral form, and

if b+ 6= b−, we get lattices of various signatures. It would be interesting to understand

how these lattices can be embedded in our framework, given that the relevant abelian

(spin) Chern-Simons theories has been recently classified [21].
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4.6 Conclusions and Further Directions

In this chapter we studied Hitchin-like functionals in two dimensions. They lead

to topological theories of a special kind: the metric is not required for constructing

the theory. Instead, it arises dynamically from the topological data, characterized by

particular choice of the cohomologies. We considered the cases of non-compact and

compact cohomologies. In both cases the theory generates a map between the coho-

mologies H1(Σg,C)⊗g of genus g Riemann surface Σg and moduli space Mg of the

complex structures on Σg, in the spirit of the original Hitchin construction [97, 98].

The Hitchin parameterization of the moduli space in terms of the cohomologies has

several useful features. The fact that we can use simplicial complexes for the descrip-

tion of cohomologies is a natural source of the modular group appearance. Although

explicit calculations may involve a choice of a symplectic basis, the action is mod-

ular invariant and therefore provides a laboratory for generating modular invariant

objects. Moreover, the symplectic structure on the cohomology space allows one to

perform canonical quantization of the moduli space via the Hitchin map.

The geometric picture that arises in this approach is shown on Fig. 4.1. The coho-

mology space in question is parameterized by the Seigel upper half-space Hg. It can

also be viewed as a space of a complex g-dimensional principally polarized abelian va-

rieties. The Hitchin map classically is just the Torelli map between Mg and Jacobian

locus Jac(Σg) ∈ Hg. In the spirit of the Kodaira-Spencer theory [22], we can start at

some ”background” point τ on the moduli space Mg and study resulting quantum

mechanical problem on the Seigel upper half-space. The corresponding wave-function

is then peaked at Π = τ , and classical trajectories Π → Π′ on Hg are obtained from
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Figure 4.1: Transport on the moduli space and the Hitchin map.

trajectories τ → τ ′ on Mg via the Torelli map.

In the dual approach, we start at some point Π ∈ Hg and study resulting quantum

mechanical problem on the moduli space of Riemann surfaces. We find that in this

case it is convenient to integrate over the part of the cohomology space given by

the complex torus T (Π) = Cg/ZZg ⊕ ΠZZg. Then the effective theory on Mg can

be interpreted as the abelian gauged WZW model coupled to the two-dimensional

gravity in a special way. Furthermore, the choice of the classical starting points Π is

then restricted to those that correspond to the even integral lattices. The classical

solutions of the gauged WZW model correspond to the harmonic maps Σg → T .

After coupling to the two-dimensional gravity, variation with respect to the complex

structure implies that these maps are holomorphic with respect to both complex
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structures on Σg(τ) and T (Π). This is only possible if T is equivalent to the Jacobian

of some Riemann surface, up to the modular transformation. In this special case the

wave function in the corresponding quantum mechanical problem on Mg is peaked

at the attractor point (4.167) τ = Π∗. Otherwise, the wave function is extremized at

the boundary of the moduli space ∂Mg.

The probability/entropy function that we get by squaring the wave function has

special value at the attractor point: it is equal to the dimension of the Hilbert space

in the associated three-dimensional Chern-Simons theory with the abelian group T∗.

Therefore, the Hitchin construction allows us to effectively organize the moduli space

of c = 2g RCFTs by introducing canonical index/entropy function that weights dif-

ferent points on the moduli space Mg according to the number of conformal blocks

in corresponding RCFT.

It is widely believed that there is a vast landscape of consistent theories of quantum

gravity, that can be realized in string theory. It was recently suggested [160] that this

landscape is surrounded by the huge area of consistent looking effective theories, that

cannot be completed to a full theory, called the swampland. On the abelian varieties

side, an analog of the string landscape is the Jacobian locus in the Siegel upper

half-space, and the ”swampland” is a vast area of non-geometric points in Siegel

space, which do not correspond to any Riemann surface. By extremizing the Hitchin

functional, we land on a special set of points in the Jacobian locus, corresponding

to the surfaces admitting complex multiplication. On the string theory side, similar

phenomena occur [124] if the complex moduli of the compactification manifolds are

fixed by the attractor mechanism [76, 155, 35]. Moreover, in both situations we have
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an entropy/index weight function assigned to those points on the moduli space. This

gives us an interesting analogy between the moduli space of string compactifications

and the moduli space of abelian varieties. Very schematically, it is shown on Fig. 4.2.

It would be interesting to develop this analogy further.

0

Entropy

"Landscape"

"Swampland"

Attractor points

0

CM−points

Intermediate
Jacobian

Non−geometric points

Index

Abelian Varieties

String Theory

Figure 4.2: A similarity between the moduli spaces of string compactifications and
abelian varieties, arising if the framework of Hitchin theory.

In particular, it is worth mentioning that there is a direct analog of the non-geometric

locus Hg\Jac(Σg) in Siegel space for a Calabi-Yau threefold M described in terms of

the cohomologies H3(M, IR). The Hitchin theorem [97] states that the critical points

of the functional (4.10) on a fixed cohomology class [ρ] ∈ H3(M, IR) define complex

structure on a Calabi-Yau three-fold only if there is a stable solution ρ∗ : trK2(ρ∗) < 0
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everywhere21. From the viewpoint of the attractor equations, the boundary of the

stability region in H3(M, IR) corresponds to the black hole solutions with classically

vanishing entropy. There is no classical solutions outside of the stability region, but

it can be probed in quantum theory. Apart form the obvious physical importance, to

describe and classify the stability regions in H3(M, IR) is a challenging mathematical

question. To the best of our knowledge, the answer to this question is not known even

in the simple case of one-parametric Calabi-Yau threefolds. This can be thought of

as the Schottky problem for Calabi-Yau threefolds.

In this chapter, we only considered non-degenerate Riemann surfaces and concen-

trated on the massless degrees of freedom. The next natural step is to incorporate

punctures and holes into the story, and study contributions from the boundary of the

moduli space. This way, one could control not only the fluctuations of the geometry,

but also the change of topology. By concentrating on the local degrees of freedom

at the punctures it should be possible to find a connection with the Kodaira-Spencer

theory on a local Calabi-Yau geometries, following [1]. Another interesting direc-

tion for further study is incorporating supersymmetry and considering more general

curved target spaces, for example, non-abelian groups and βγ-systems.

It is likely that the analysis of the Hitchin functionals performed in the chap-

ter can be extended from two to six dimensions. The insight that we get from

studying the two-dimensional toy model (4.142) is that the six-dimensional Hitchin

functional (4.10) should be viewed as an analog of the gauged WZW model for the

seven-dimensional Chern-Simons theory. Then the OSV conjecture [142] will have an

interpretation in terms of the corresponding index theorem.

21The importance of this condition was stressed to us by C. Vafa.



Chapter 5

Non-supersymmetric Black Holes

and Topological Strings

We start with discussion on the relation between the black hole entropy and

topological strings proposed in [142]. Define a mixed partition function for a black

hole with magnetic charge pI and electric potential φI by

ZBH(pI , φI) =
∑
qI

Ω(pI , qI) e−φIqI , (5.1)

where Ω(pI , qI) represent supersymmetric black hole degeneracies for a given set of

charges (pI , qI). Then the OSV conjecture [142] reads

Ω(pI , qI) =
∫

dφIeqIφI |Ztop(p
I , φI)|2. (5.2)

As was already mentioned in [142], expression (5.2) needs some additional refinement.

In particular, rigorous definition of (5.2) requires taking care of the background depen-

dence of the topological string partition function Ztop, governed by the holomorphic

127
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anomaly [22]. Also, the integration measure, as well as the choice of a suitable in-

tegration contour needs to be specified. Some of these issues were investigated in

[46, 47, 153, 163, 143], see [53] for a recent discussion of these and other subtleties.

In this chapter we will address an even more fundamental ambiguity in (5.2)

that is present already at the semiclassical level (without considering higher genus

topological string corrections). The problem is that although the right hand side of

(5.2) can be defined for any set of charges (pI , qI), it is well known [124] that not for

all such (pI , qI) a supersymmetric spherically symmetric black hole solution exists.

Typically, there is a real codimension one ‘discriminant’ hypersurface D(pI , qI) = 0

in the space of charges, such that supersymmetric black hole solutions exist only

when D(pI , qI) < 0. Therefore, in this case Ω(pI , qI) on the left hand side of (5.2),

representing a suitable index of BPS states of charge (pI , qI), is zero.

This phenomenon can be illustrated by several examples. Consider compactifica-

tion of Type IIB string theory on the diagonal T 6 = Στ ×Στ ×Στ [124, 15], where Στ

is the elliptic curve with modular parameter τ , with D3-brane wrapping a real 3-cycle

on T 6. This can be viewed as part of the Calabi-Yau moduli when we orbifold T 6. In

this chapter when we refer to the diagonal T 6 we have in mind the corresponding locus

in the moduli of an associated Calabi-Yau 3-fold with N = 2 supersymmetry where

part of the homology of the CY 3-cycles is identified with the charges (pI , qI). Let

the charge configuration be invariant under the permutation symmetry of the three

elliptic curves Στ . Note also that the diagonal T 6 model is a good approximation

to the generic behavior of Type IIB compactification on a one-modulus Calabi-Yau

threefold in the large radius limit. If we label homology of 3-cycles on T 6 accord-
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ing to the mirror IIA D-brane charges as (u, q, p, v) = (D0, D2, D4, D6), the leading

contribution to the corresponding black hole degeneracy takes the form

Ωsusy(p, q, u, v) ≈ exp
(
π

√
−D(p, q, u, v)

)
, (5.3)

where the discriminant is D(p, q, u, v) = −(3p2q2 + 4p3u + 4q3v + 6pquv− u2v2). It is

clear that for some sets of charges this quartic polynomial can become positive (for

example, it is always the case for D0 −D6 system, where D(0, 0, u, v) = u2v2), and

(5.3) breaks down. Similar situations occurs in N = 2 truncation of the heterotic

string on T 6, the so-called STU model, where D becomes Cayley’s hyperdeterminant

[66]) that can also be either positive or negative. Another example of this phenomenon

arises in Type IIB compactification on K3 × T 2. This leads to N = 4 supergravity

in four dimensions, and corresponding expression for the degeneracy [74, 45, 44]

Ωsusy(p
I , qI) ≈ exp

(
π

√
(P · P )(Q ·Q)− (P ·Q)2

)
. (5.4)

breaks down when (P ·Q)2 > (P · P )(Q ·Q).

Thus, the OSV formula (5.2) needs to be modified even at the semiclassical level.

One remedy one may think is to sum in (5.1) only over the charges that support

BPS states: ZBH(pI , φI) =
∑

qI :D(pI ,qI)≤0

Ωsusy(p
I , qI) e−φIqI . This, however, will not

work because the inverse transform of the topological string partition function would

have to automatically give zero when (pI , qI) are non-supersymmetric. This however

turns out not to be the case, and one gets the naive analytic continuation of the

BPS case (leading to imaginary entropy!). Instead, we can use an observation that

in many examples studied recently in the literature [157, 109, 109, 75, 18, 20] there

exists a non-supersymmetric extremal black hole solution for those sets of charges
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that do not support a BPS black hole: D(pI , qI) > 0. The attractor behavior of a

non-supersymmetric extremal black hole solutions [107, 84, 83, 19, 108, 32, 13, 8] is

similar to the BPS black hole case, since it is a consequence of extremality rather than

supersymmetry [72]. Moreover, in the simplest examples, the macroscopic entropy

of a non-supersymmteric extremal black holes is proportional to the square root of

the discriminant: Sn−susy
BH ≈ π

√D, so that a general expression for the extremal black

holes degeneracy takes the form

Ωextrm(pI , qI) ≈ exp
(
π

√
|D(pI , qI)|

)
, (5.5)

which is valid both for supersymmetric D ≤ 0 and non-supersymmetric D > 0 solu-

tions.

Therefore, it is natural to look for an extension of the OSV formula (5.2) that

can be applied simultaneously for both BPS and non-BPS extremal black holes and

obtain corrections to their entropy due to higher derivative terms in the Lagrangian

as a perturbative series in the inverse charge. Recently, several steps in this direction

were taken from the supergravity side. A general method (the entropy function

formalism) for computing the macroscopic entropy of extremal black holes based

on N = 2 supergravity action in the presence of higher-derivative interactions was

developed in [151, 152], and applied for studying corrected attractor equations and

corresponding entropy formula for non-supersymmetric black holes in [41, 148, 7, 12,

71, 149, 34, 48, 31]. A five-dimensional viewpoint on higher derivative corrections to

attractor equations and entropy, based on the c-function extremization, was developed

in [116, 39]. Black hole partition function for non-supersymmetric extremal black

holes was discussed in [7, 144].
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In this chapter we propose a generalization of (5.2) motivated by the topological

string considerations as well as the work SS: It was observed in [148] that the higher

order corrections to the non-supersymmetric black hole entropy needs higher deriva-

tive corrections in the N = 2 theory which are not purely antiself-dual in the 4d sense,

because unlike the BPS case, the radii of AdS2 and S2 factors of the near horizon

geometry are not the same. Thus, more information than F -terms computed by topo-

logical strings, which only capture antiself-dual geometries, is needed. Indeed if one

considers only the antiself-dual higher derivative corrections to the 4d action, there is

already a contradiction with the microscopic count of the non-supersymmetric black

hole at one loop [148]. Instead it is natural to look for an extension of topological

string which incorporates non-antiself-dual corrections as well. Such a generaliza-

tion of topological strings, in the context of geometrically engineered gauge theories

have been proposed by Nekrasov [139], where the string coupling constant is replaced

by a pair of parameters (ε1, ε2) which roughly speaking capture the strength of the

graviphoton field strength in the 12 and 34 directions of the 4d non-compact space-

time respectively. In the limit when ε1 = −ε2 = gtop one recovers back the ordinary

topological string expansion. However when ε1 6= −ε2 this refinement of the topolog-

ical string partition function computes additional terms in the 4d effective theory, as

appears to be needed for a correct accounting of the entropy for non-supersymmetric

black holes. This includes a term proportional to R2 which as was found in [149]

is needed to get the correct one loop correction which is captured by the refined

topological string partition function, but not the standard one.

Motivated by this observation and identifying (ε1, ε2) with physical fluxes in the
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non-supersymmetric black hole geometry, and motivated by the computations in [148]

we propose a conjecture for the partition function of an OSV-like ensemble which

includes both BPS and non-supersymmetric extremal black holes. We conjecture

Ωextrm(pI , qI) =
∫

dφIeqIφI ∑

susy,n−susy

∣∣∣e iπ
2
G(pI ,φI)

∣∣∣
2
, (5.6)

where G(pI , φI) is obtained from the G-function

G =
1

2
(P I

ε −XI)(P J
ε −XJ)F IJ(X, ε) + (P I

ε −XI)FI(X, ε) + F (X, ε) +

+
1

2
(ε1 + ε2)X

IFI(X, ε)− 1

2
(ε1 + ε2)(ε1∂ε1 − ε2∂ε2)F (X, ε) +O(ε1 + ε2)

2 ,

P I
ε = −ε2p

I +
i

π
ε1φ

I ,(5.7)

by extremizing ImG with respect to the parameters ε1,2 and (extended) Calabi-Yau

moduli XI , and then substituting corresponding solution ε1,2 = ε1,2(p, φ), XI =

XI(p, φ) back into G (5.7). The sum in (5.6) is over all such solutions to the extremum

equations ∂ε1,2ImG = ∂IImG = 0, one of which ends up being the supersymmetric one

given by XI(p, φ) = pI + i
π
φI , reproducing the OSV conjecture for this case. The

function F (X, ε) ≡ F (XI , ε1, ε2) in (5.7) denotes Nekrasov’s refinement of the topo-

logical string free energy1. Depending on the choice of the charges (pI , qI), integration

over φI near the saddle point picks out supersymmetric or non-supersymmetric black

hole solution. In the supersymmetric case it reduces to the OSV formula. In the non-

supersymmetric case the corrections have the general structure suggested by [148]

(however the exact match cannot be made because [148] only consider higher deriva-

tive terms captured by standard topological string corrections).

1Supersymmetric solution corresponds to ε1 = −ε2 = 1, in this case we use the same conventions
as in [142], and find Gsusy(pI , φI) ≡ F (pI + i

π φI , 256). Nekrasov’s extension of the topological string
is discussed in subsection 5.7.1 below.
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The above conjecture is the minimal extension of OSV needed to incorporate

non-supersymmetric corrections. It is conceivable that there are further O(ε1 + ε2)
2

corrections to this conjecture. Such corrections will not ruin the fact that supersym-

metric saddle point still reproduces the OSV conjecture.

The rest of the chapter is organized as follows: In section 5.1 we review the

attractor equations and entropy formula for supersymmetric and non-supersymmetric

extremal black holes of d = 4, N = 2 supergravity arising in the leading semiclassical

approximation. In section 5.2 we discuss an alternative formulation of the attractor

equations which helps us to treat supersymmetric and non-supersymmetric black

holes in a unified way, suitable for using in an OSV-like formula. In section 5.3 we

formulate the inverse problem that allows us to find magnetic and electric charges of

the extremal black hole in terms of the values of the moduli in vector multiplets fixed

at the horizon. We give a solution to this problem for a general one-modulus Calabi-

Yau compactification. In section 5.4 we present explicit solutions of the inverse and

direct problems relating the charges and corresponding attractor complex structures

for the diagonal T 6 model. In section 5.5 we discuss semiclassical approximation

to the generalized OSV formula for extremal black holes. In section 5.6 we review

the results [148, 7, 31] for a corrected black hole entropy in N = 2 supergravity

with higher-derivative couplings, obtained using the entropy function formalizm. In

section 5.7 we observe that matching with the supergravity computations requires

replacing the string coupling constant with two variables on the topological string

side, and identify these variables as an equivariant parameters in Nekrasov’s extension

of the topological string. This allows us to formulate a generalization of the OSV
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entropy formula which is conjectured to be valid asymptotically in the limit of large

charges both for the supersymmetric and non-supersymmetric extremal black holes.

We conclude in section 5.8 with a discussion of our results and directions for future

research.

5.1 The Black Hole Potential and Attractors

Let us review the attractor equations for extremal black holes in d = 4, N = 2

supergravity, arising in the context of type IIB compactification on a Calabi-Yau

manifold M . We start by choosing a symplectic basis of 3-cycles (AI , BI)I=0,...h2,1 on

M , such that

XI =
∫

AI
Ω, FI = ∂IF =

∫

BI

Ω, (5.8)

where Ω is a holomorphic 3-form and F is the prepotential of the Calabi-Yau manifold.

We also choose a basis of 3-forms (αI , β
I) ∈ H3(M, ZZ) dual to (AI , BI). The Kähler

potential is given by2

K(X, X) = − log
(
− i

∫

M
Ω ∧ Ω

)
= − log i(XIFI −XIF I). (5.9)

It defines the Kähler metric gij = ∂i∂jK. Let us introduce the superpotential

W =
∫

M
Ω ∧H, (5.10)

where

H = pIαI + qIβ
I (5.11)

2We use the Einstein convention and always sum over repeated indices in this chapter.
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is the RR 3-form, parameterized by a set of (integral) magnetic and electric charges

(pI , qI). The central charge is defined by

Z = e
K
2 W . (5.12)

Attractor points are the solutions minimizing the so-called black hole potential [73,

74, 72, 40]

VBH = |Z|2 + |DZ|2. (5.13)

Here D is a fully covariant derivative3, and |DZ|2 = gijDiZDjZ. Notice that for a

fixed complex structure on Calabi-Yau the central charge (5.12) is linear in the charges

(pI , qI), and therefore the black hole potential (5.13) is quadratic in the charges.

We are interested in describing the extremum points of the potential (5.13). These

points correspond to the solutions of the following equations [72]

∂iVBH = 2ZDiZ + gkj(DiDkZ)DjZ = 0,

∂iVBH = 2ZDiZ + gjk(DiDkZ)DjZ = 0. (5.14)

There are two types of the solutions, which can be identified as follows. From the

second equation in (5.14) we find, assuming Z 6= 0

DjZ = −glk(DjDkZ)

2Z
DlZ. (5.15)

By substituting this into the first equation in (5.14), we obtain4

M j
i DjZ = 0, (5.16)

3On the objects of Kähler weight w it acts as D = ∂ + w∂K + Γ, where Γ is the Levi-Civita
connection of the Kähler metric. For example, DZ = ∂Z + 1

2Z∂K.
4Similar expression was derived in [19], see eq. (3.5). However, the matrix Mij used in [19]

is not well defined when DiZ = 0, which makes it difficult to analyze supersymmetric and non-
supersymmetric solutions at the same time.
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where

M j
i = 4|Z|2δ j

i − (DiDkZ)gkm(DmDnZ)gnj (5.17)

Now it is clear that there are two types of solutions to (5.16):

susy : detM 6= 0, DiZ = 0

non− susy : detM = 0, DiZ = vi, (5.18)

where vi are the null-vectors: M j
i vj = 0 of the matrix (5.17).

Solutions to the extremum equations (5.14) minimize the black hole potential

(5.13), if the Hessian

Hess(VBH) =




∂i∂jVBH ∂i∂jVBH

∂i∂jVBH ∂i∂jVBH


 , (5.19)

computed at the extremal point, is positive definite: Hess(VBH)|∂VBH=0 > 0. We will

refer to such solutions as attractor points. According to the classification (5.18), these

attractors can be supersymmetric or non-supersymmetric. It is easy to show that all

supersymmetric solutions (5.18) minimize the black hole potential. This is, however,

not true in general for the non-supersymmetric solutions, see e.g. [157, 20, 19] for

some examples.

The black hole potential (5.13) is related to the Bekenstein-Hawking entropy of

the corresponding black hole in a simple way. In the classical geometry approximation

(at the string tree level) the entropy is just π times the value of the potential (5.13)

at the attractor point

SBH = πVBH|∂VBH=0. (5.20)
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After appropriate modification of the black hole potential this formula gives correc-

tions to the classical Bekenstein-Hawking entropy in the presence of higher derivative

terms. This can be effectively realized using the entropy function formalism [151, 152].

5.2 An Alternative Form of the Attractor Equa-

tions

In this section we discuss an alternative form of the attractor equations describing

extremal black holes in d = 4,N = 2 supergravity coupled to nV vector multiplets

in the absence of higher derivative terms. We describe two versions of attractor

equations, one involving inhomogeneous and another involving homogeneous coordi-

nates on Calabi-Yau moduli space. A natural generalization of these equations in the

presence of higher derivative corrections will be introduced later in section 5.7.

It is convenient to start with the following representation of the black hole poten-

tial [72]

VBH = −1

2
(qI −NIJpJ)

( 1

ImN
)IJ

(qJ −N JKpK), (5.21)

where

NIJ = F IJ + 2i
Im(FIK)XKIm(FJL)XL

Im(FMN)XMXN
, FIJ =

∂2F

∂XI∂XJ
. (5.22)

Notice that NIJ is (nV + 1) × (nV + 1) symmetric complex matrix, and ImNIJ is a

negative definite matrix, as opposed to ImFIJ , which is of signature (1, nV ). This is

clear from the following identity [40]

−1

2

( 1

ImN
)IJ

= eK(XIXJ + gijDiX
JDjX

J). (5.23)
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One can use (5.23) and the defining relation [40])

FI = NIJXJ (5.24)

to bring (5.21) into the form (5.13). Indeed, since

(qI −NJIp
J)XI = qIX

I − pIFI = W , (5.25)

the black hole potential (5.21) takes the form

VBH = eK(WW + gijDiWDjW), (5.26)

which is equivalent to (5.13).

5.2.1 Attractor equations and inhomogeneous variables

Let us introduce an auxiliary field P I that later will be identified with the com-

plexified magnetic charge pI , and consider a modified black hole potential

VBH =
1

2
P IIm(NIJ)P

J − i

2
P I(qI −NIJpJ) +

i

2
P I(qI −N JKpK), (5.27)

where P I serves as a Lagrange multiplier. We want to describe the extrema of VBH.

Variation of (5.27) with respect to P I gives

P I = − i

ImNIJ

(qJ −N JKpK). (5.28)

By plugging this expression form P I back to (5.27) we obtain the original black hole

potential (5.21). It is straightforward to solve equations (5.28) in terms of the charges:

pI = Re(P I)

qI = Re(NIJP J)

(5.29)
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Variation of (5.27) with respect to the Calabi-Yau moduli ∂iVBH = 0 gives

P IP J∂iImNIJ + i(P I∂iNIJ − P J∂iN IJ)pJ = 0. (5.30)

After using the solution (5.29), we obtain

P I∂iNIJP J − P I∂iN IJP J = 0. (5.31)

This set of the extremum equations can also be written in a compact form as follows

∂iIm(P INIJP J) = 0.
(5.32)

For a fixed set of charges (pI , qI), solutions to the combined system of equations (5.29)

and (5.32) which minimize the modified potential (5.27) correspond to the extremal

black holes.

Among these, there is always a special solution of the form

P I = CXI , (5.33)

where C is the complex constant. Indeed, in this case extremum equations (5.32)

read

C2XIXJ∂iNIJ − C2XIXJ∂iN IJ = 0. (5.34)

The second term in (5.34) vanishes since XI∂iN IJ = ∂i(N IJXJ) = ∂iF I = 0 ac-

cording to (5.24). The first term in (5.34) vanishes because of the special geometry

relation

0 =
∫

M
Ω ∧ ∂iΩ = XI∂iFI − FI∂iX

I = XIXJ∂iNIJ . (5.35)
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The solution (5.55) describes supersymmetric attractors [76, 155, 73], since (5.29)

gives in this case the well-known equations




pI = Re(CXI)

qI = Re(CFI).

(5.36)

5.2.2 Attractor equations and homogeneous variables

Consider the following potential:

VBH = qIImP I + Im(FIJ)Re((P I −XI)(P J −XJ))− 1

2
Im(FIJP IP J). (5.37)

We will keep P I fixed (in particular, ReP I = pI) and vary XI . In order to get rid of

the scaling of XI let us introduce a new variable T by

XI = X̂IT, (5.38)

and integrate out T as follows:

eV̂BH ≈
∫

dTeVBH . (5.39)

The potential (5.37) is quadratic in T

VBH = qIImP I + Im(FIJ)Re(P IP J + X̂IX̂JT 2 − 2X̂IP JT )− 1

2
Im(FIJP IP J),(5.40)

since FIJ has zero weight under the rescaling (5.38). Variation with respect to T

gives:

T =
X̂IIm(FIJ)P J

X̂IIm(FIJ)X̂J
(5.41)

Therefore, the semiclassical approximation to (5.39) gives

V̂BH = qIImP I +
i

4
P INIJP J − i

4
P IN IJP J , (5.42)
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where

NIJ = F IJ + 2i
Im(FIK)X̂KIm(FJL)X̂L

X̂KIm(FKL)X̂L
. (5.43)

The expression (5.42) should be compared to the modified black hole potential (5.27),

which reduces to (5.42) if we use ReP I = pI .

The choice of the potential (5.37) can be motivated by looking at the N = 2 su-

pergravity action [51]. At tree level, the coupling of the vector fields can be described

as

8πStree
vec =

∫
d4x

( i

4
FIJF−I

µν F−Jµν +
1

4
Im(FIJ)XJF−I

µν T−µν−

− 1

32
Im(FIJ)XIXJT−

µνT
−µν + h.c.

)
. (5.44)

Then VBH − qIImP I in (5.40) can be interpreted as a zero-mode reduction of (5.44),

with the following identification:

F−I
µν → iP I

XI → X̂I

T−
µν → 4iT

∫
d4x → 1. (5.45)

Let us now discuss the attractor equations that describe the minima of the mod-

ified black hole potential (5.37). We can derive them in two equivalent ways. First,

we can vary (5.42) with respect to the Calabi-Yau moduli, which gives (5.32). Or,

second, we can vary the potential (5.37) with respect to the homogeneous coordinates

XI before we integrate out the overall scale T . This gives ∂IVBH = 0 and we obtain
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the following attractor equations:

− i
2
CIJKRe((P J −XJ)(PK −XK))− Im(FIK)(PK −XK) + i

4
CIJKP JPK = 0,

(5.46)

where

CIJK = ∂IFJK = ∂I∂J∂KF. (5.47)

Using the identity

CIJKXK = 0, (5.48)

which follows from the homogeneity relation XIFI = 2F , we can write (5.46) as

CIJK(P J −XJ)(PK −XK) = 4iIm(FIJ)(P J −XJ)
(5.49)

It is clear that XI = P I is the solution of (5.46). If we identify T → C, XI → X̂I ,

we obtain P I = CX̂I , which is the supersymmetric solution (5.55),(5.36). Moreover,

if we contract (5.49) with XI and use (5.48), we get

Im(FIJ)XI(P J −XJ) = 0. (5.50)

In the next section will use this relation to find all other solutions P I(X) of the

attractor equations (5.49) in the one-modulus Calabi-Yau case.

5.3 The Inverse Problem

For a given set of charges (pI , qI) solutions to the system (5.14) define the complex

structure on M . However, since these equations are highly non-linear, it is hard to



Chapter 5: Non-supersymmetric Black Holes and Topological Strings 143

write down solutions explicitly for a general Calabi-Yau manifold. On the other hand,

since the black hole potential (5.13) is quadratic in charges5 (pI , qI), we can try to

solve the inverse problem: For a given point ti on the Calabi-Yau moduli space,

find corresponding set of the charges (pI , qI) that satisfy (5.14). Similar techniques

were used in [96] to solve the inverse problem for metastable non-supersymmetric

backgrounds in the context of flux compactifications.

5.3.1 Inverse problem and inhomogeneous variables

Strictly speaking, the physical charges (pI , qI) are quantized, but in semiclassical

approximation in the limit of large charges we can ignore this integrality problem and

treat the charges as continuous coordinates. Another ambiguity in defining the inverse

problem is related to the fact that all sets of charges (pI , qI) connected by an Sp(2nV +

2, ZZ) transformations give the same point on the moduli space, since the black hole

potential (5.13) and hence the extremum equations (5.14) are symplectically invariant.

Therefore, we need to choose some canonical symplectic basis in H3(M,ZZ) and keep it

fixed. However, even including that, the inverse problem is not well-defined, since the

extremization of (5.13) gives only 2nV real equations (5.14) for 2nV +2 real variables

(pI , qI). In order to fix this ambiguity, we suggest to look only at the critical points

where the superpotential (5.10) takes some particular value:

W = ω, (5.51)

5This is clear from looking at the alternative representation (5.21) of the black hole potential.
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where ω is a new complex parameter. This can be viewed as a convenient gauge

fixing. Therefore, we are interested in solving the system of equations

∂iVBH = ∂iVBH = 0, W = ω. (5.52)

at some particular point ti on the Calabi-Yau moduli space. Then solution of this

inverse problem gives a (multivalued) map: (ti, ω) → (pI , qI).

Since
∫
M Ω ∧H = qIX

I − pIFI , the equation (5.51) can be written as

XI(qI −NIJpJ) = ω. (5.53)

If we then use (5.29), this gives XIIm(NIJ)P J = iω. Therefore, the solution of the

inverse problem is given by the following system of equations:

pI = Re(P I) ∂iIm(P INIJP J) = 0

qI = Re(NIJP J) XIIm(NIJ)P J = iω (5.54)

In other words, fixing Calabi-Yau moduli and the gauge (5.51) allows one to solve for

P I from the two equations on the right of (5.54). Then the charges are given by the

two equations on the left of (5.54).

Among the solutions to (5.54), there always is a supersymmetric solution (5.55),

that can be written as

P I = 2ieKωXI , (5.55)

where we used K = − log (− 2X · ImN ·X) to fix the constant C as

C = 2iωeK = 2i(qIX
I − pIF I)e

K = 2iZe
K
2 . (5.56)

An example of the explicit solution of the inverse problem in the diagonal T 6

model is presented in subsection 5.4.1.
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5.3.2 Inverse problem and homogeneous variables: one-modulus

Calabi-Yau case

We can think of the homogeneous variables XI as parameterizing extended space

M̃ of the complex structures on a Calabi-Yau threefold M . This space can also

be viewed as a total space M̃ of the line bundle L → M of the holomorphic 3-

forms H3,0(M,C) over the Calabi-Yau moduli space (to be precise, the Teichmüller

space) M. Let us comment on the dimension of the space of solutions to the system

(5.49). For a fixed extended Calabi-Yau moduli, this is a set of nV + 1 complex

quadratic equations for nV +1 complex variables P I . Therefore, this system can have

at most 2nV +1 solutions. One of them describes supersymmetric black hole and thus

there are at most 2nV +1 − 1 non-supersymmetric solutions.

Let us discuss the inverse problem for a one-modulus Calabi-Yau case, when

F = (X0)2f(τ), τ =
X1

X0
. (5.57)

The homogeneity relation gives F0 = 2X0f − X1f ′, where f ′ ≡ ∂τf , and we obtain

the following matrix of second derivatives

FIJ =




2f − 2τf ′ + τ 2f ′′ f ′ − τf ′′

f ′ − τf ′′ f ′′


 . (5.58)

an the matrix of third derivatives

C0IJ = −τC1IJ =
1

X0



−τ 3f ′′′ τ 2f ′′′

τ 2f ′′′ −τf ′′′


 (5.59)

To simplify expressions below, let us introduce the notation

yI = P I −XI . (5.60)
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Then the attractor equations (5.46) read





C0JKyJyK = 4iIm(F0J)yJ

C1JKyJyK = 4iIm(F1J)yJ .

(5.61)

Using the relation (5.59), we find from (5.133)

Im(F0I)y
I = −τ Im(F1I)y

I , (5.62)

which is equivalent to (5.50). To shorten the notations, let us define

XI ≡ XJImFJI . (5.63)

For example, X0 ≡ X0ImF00 + X1ImF10. Then we find from (5.62)

y1 = −X0

X1

y0. (5.64)

If we plug this back into (5.133), we obtain

(y0)2 = Yy0, (5.65)

where

Y = −4iX1
(X0)4det‖ImFIJ‖

f ′′′(XIXI)
2 (5.66)

For future reference, let us write down an explicit expression for the ingredients en-

tering (5.66), in terms of the holomorphic function f defining the prepotential (5.57):

X1 = X0(Imf ′ − Im(τ)f ′′)

XIXI = 2(X0)2(Imf − Im(τ)f ′ − i(Imτ)2f ′′)

det‖ImFIJ‖ = 2Im(f)Im(f ′′)− (Imf ′)2 + 2Im(τ)Im(f ′f ′′)− (Imτ)2|f ′′|2.

(5.67)



Chapter 5: Non-supersymmetric Black Holes and Topological Strings 147

In order to solve (5.65), we take the square of the complex conjugate equation and

then use (5.65). This gives

(y0)4 = Y2Yy0. (5.68)

Therefore, in terms of the original variables (5.60) we find the following four solutions:





P 0
(0) = X0

P 1
(0) = X1,

(5.69)

and 



P 0
(k) = X0 + (Y2Y)1/3e2πik/3

P 1
(k) = X1 − X0

X1
(Y2Y)1/3e2πik/3, k = 1, 2, 3.

(5.70)

where the first solution corresponds to a supersymmetric black hole and the other

three are non-supersymmetric. Corresponding black hole charges are given by





pI = ReP I

qI = Re(NIJP J).

(5.71)

5.4 The Diagonal Torus Example

Consider the case [124] when M = T 6 is the so-called diagonal torus:

M = Στ × Στ × Στ , (5.72)

where Στ = C/(ZZ + τZZ) is the elliptic curve with modular parameter τ . Let us

introduce complex coordinates dzi = dxi + τdyi, i = 1, 2, 3 on each Στ . As in [15] can

label the relevant 3-cycles of M according to their mirror branes in IIA picture:
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D0 → −dy1dy2dy3

D2 → dy1dy2dx3 + dy1dx2dy3 + dx1dy2dy3

D4 → dx1dx2dy3 + dx1dy2dx3 + dy1dx2dx3

D6 → −dx1dx2dx3 (5.73)

The intersection matrix of these 3-cycles is




0 0 0 −1

0 0 3 0

0 −3 0 0

1 0 0 0




. (5.74)

We denote the brane charge vector as (D0, D2, D4, D6) = (u, q, p, v). Then

W = u + 3qτ − 3pτ 2 − vτ 3. (5.75)

The black hole potential is

VBH = eK(|W|2 + gττ |∂W +W∂K|2) (5.76)

where

K ∼ log(Imτ)3, gττ =
3

4(Imτ)2
. (5.77)

Therefore, we have

VBH = 8
(Imτ)3

(
|u + 3qτ − 3pτ 2 − vτ 3|2 + 3|2iImτ(q − 2pτ − vτ 2)− u− 3qτ + 3pτ 2 + vτ 3|2

)
.

(5.78)
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5.4.1 Solution of the inverse problem

Let us decompose τ into the real and imaginary parts

τ = τ1 + iτ2, (5.79)

and introduce new variables α, β, γ that are real linear combination of the charges

α = W|τ2=0 = u + 3qτ1 − 3pτ 2
1 − vτ 3

1 ,

β = 1
3

∂W
∂τ

∣∣∣
τ2=0

= q − 2pτ1 − vτ 2
1 ,

γ = −1
6

∂2W
∂τ2

∣∣∣
τ2=0

= p + vτ1.

(5.80)

Using (5.108), we can rewrite the superpotential (5.75) as

W = α + 3iβτ2 + 3γτ 2
2 + ivτ 3

2 . (5.81)

Then (5.51) gives

α + 3γτ 2
2 = ω1, (5.82)

3βτ2 + vτ 3
2 = ω2, (5.83)

where ω = ω1 + iω2. The black hole potential (5.13) in new variables is given by

VBH =
32

τ 3
2

(α2 + 3β2τ 2
2 + 3γ2τ 4

2 + v2τ 6
2 ) (5.84)

The extremum equations ∂VBH

∂τ1
= ∂VBH

∂τ2
= 0 take the form:

αβ − 2βγτ 2
2 + vγτ 4

2 = 0, (5.85)

−α2 − β2τ 2
2 + γ2τ 4

2 + v2τ 6
2 = 0, (5.86)

If we express α and v in terms of β and γ using (5.82)

α = ω1 − 3γτ 2
2 , v =

ω2 − 3βτ2

τ 3
2

, (5.87)
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assuming τ2 6= 0, the first equation in (5.85) gives

β =
γω2τ2

8τ 2
2 γ − ω1

. (5.88)

Here we also assumed that 8τ 2
2 γ 6= ω1. We will discuss this special case later. The

second equation in (5.85) then takes the form

(4τ 2
2 γ − ω1)(128τ 6

2 γ3 − 96τ 4
2 γ2ω1 + 18τ 2

2 γω2
1 − 6τ 2

2 γω2
2 + ω1ω

2
2 − ω3

1) = 0. (5.89)

We immediately see that γ = ω1

4τ2
2
, and therefore

α =
ω1

4
, β =

ω2

4τ2

, γ =
ω1

4τ 2
2

, v =
ω2

4τ 3
2

, (5.90)

gives a solution to (5.85). In fact, it describes a supersymmetric branch of the ex-

tremum equations (5.14). The cubic equation for γ in (5.89) has three non-susy

solutions that can be described by the formula:

γ =
2Re(ω) + |ω|(|ω|/ω)1/3 + |ω|(|ω|/ω)−1/3

8τ 2
2

, (5.91)

where one can choose any of three cubic root branches. It is obvious that all solutions

(5.91) are real. Correspondingly, in this case

α = 1
4
Re(ω)− 3

8
|ω|(|ω|/ω)1/3 − 3

8
|ω|(|ω|/ω)−1/3,

β = Im(ω)
8τ2

· 2Re(ω)+|ω|(|ω|/ω)
1/3

+|ω|(|ω|/ω)
−1/3

Re(ω)+|ω|(|ω|/ω)
1/3

+|ω|(|ω|/ω)
−1/3 ,

γ =
2Re(ω)+|ω|(|ω|/ω)

1/3
+|ω|(|ω|/ω)

−1/3

8τ2
2

,

v = Im(ω)
8τ3

2
· 2Re(ω)+5|ω|(|ω|/ω)

1/3
+5|ω|(|ω|/ω)

−1/3

Re(ω)+|ω|(|ω|/ω)
1/3

+|ω|(|ω|/ω)
−1/3 . (5.92)

It is instructive to compute the values of the black hole potential (5.104) at the three

non-supersymmetric extremal points (5.92). Using the second equation in (5.85), we
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obtain

VBH =
64

τ2

(β2 + 2γ2τ 2
2 + v2τ 4

2 ). (5.93)

If we apply (5.87), after some algebra we find

β2 + 2γ2τ 2
2 + v2τ 4

2 =
128τ 8

2 γ4−32τ 6
2 γ3ω1 + 2τ 4

2 γ2ω2
1 + 26τ 4

2 γ2ω2
2 − 10τ 2

2 γω1ω
2
2 + ω2

1ω
2
2

τ 2
2 (8τ 2

2 γ − ω1)2
=

=
ω2

1 + ω2
2

2τ 2
2

+
τ 2
2 γ + ω1/2

τ 2
2 (8τ 2

2 γ − ω1)2
(128τ 6

2 γ3 − 96τ 4
2 γ2ω1 + 18τ 2

2 γω2
1 − 6τ 2

2 γω2
2 + ω1ω

2
2 − ω3

1).

(5.94)

The last term in the second line vanishes at the non-supersymmetric extremum point

due to (5.89), and we get a simple formula for the potential

V n−susy
BH = 32

|ω|2
τ 3
2

. (5.95)

Notice that the value of the potential is the same for all three points (5.92). At the

supersymmetric extremum point (5.90) we have

V susy
BH = 8

|ω|2
τ 3
2

, (5.96)

so that, as in [19])

V n−susy
BH = 4V susy

BH . (5.97)

Note that this relation is written in terms of Calabi-Yau moduli rather then in terms

of the black hole charges.

As we will see in a moment, all three non-supersymmetric extremum points provide

a minimum of the black hole potential. In order to show this, let us look at the Hessian

Hess(VBH) =




∂2VBH

∂τ2
1

∂2VBH

∂τ1∂τ2

∂2VBH

∂τ2∂τ1

∂2VBH

∂τ2
2


 . (5.98)
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Straightforward computation gives

Hess(VBH) =
192

τ 3
2




3β2 − 2αγ + (4γ2 − 2βv)τ 2
2 + v2τ 4

2 4γτ2(−β + vτ 2
2 )

4γτ2(−β + vτ 2
2 ) −β2 + 2γ2τ 2

2 + 3v2τ 4
2


 .

(5.99)

At the non-supersymmetic extremal point (5.92), using (5.87) and (5.89), we obtain

the following expression

M =
τ3
2

96
Hess(VBH) =

=




96τ4
2 γ2(2ω2

1+ω2
2)−8τ2

2 γω1(6ω2
1+ω2

2)+3ω4
1−ω2

1ω2
2

τ2
2 (8τ2

2 γ−ω1)2
8γ(4τ2

2 γ−ω1)ω2

8τ2
2 γ−ω1

8γ(4τ2
2 γ−ω1)ω2

8τ2
2 γ−ω1

32τ4
2 γ2(2ω2

1+5ω2
2)−8τ2

2 γω1(2ω2
1+7ω2

2)+ω4
1+5ω2

1ω2
2

τ2
2 (8τ2

2 γ−ω1)2




(5.100)

The eigenvalues h1,2 of the matrix (5.100) are solutions to the equation

0 = det

∥∥∥∥∥∥
M −




h 0

0 h




∥∥∥∥∥∥
= h2 − 4 |ω|

2

τ2
2

h + 3 |ω|
4

τ4
2
−

−8ω2
2(4τ2

2 γ−ω1)(16τ4
2 γ2+4τ2

2 γω1−ω2
1)

τ4
2 (8τ2

2 γ−ω1)4
(128τ 6

2 γ3−96τ 4
2 γ2ω1 + 6τ 2

2 γ(3ω2
1−ω2

2)+ω1ω
2
2−ω3

1)

(5.101)

The last line vanishes because of the extremum equation (5.89), and we get

h2 − 4
|ω|2
τ 2
2

h + 3
|ω|4
τ 4
2

= 0. (5.102)

Therefore, the eigenvalues of the matrix (5.100)

h1 = |ω|2
τ2
2
≥ 0

h2 = 3 |ω|
2

τ2
2
≥ 0 (5.103)

are always non-negative. Since τ2 > 0, this means that the eigenvalues of the Hessian

(5.99) are also positive if ω 6= 0, and thus the non-supersymmetric extremum points

minimize the potential.
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5.4.2 Solution of the direct problem

The black hole potential (5.78) is given by

VBH = 4
τ3
2
(u2 + 6quτ1 + 9q2τ 2

1 − 6puτ 2
1 − 18pqτ 3

1 − 2uvτ 3
1 + 9p2τ 4

1−

−6qvτ 4
1 + 6pvτ 5

1 + v2τ 6
1 + 3q2τ 2

2 − 12pqτ1τ
2
2 + 12p2τ 2

1 τ 2
2−

−6qvτ 2
1 τ 2

2 + 12pvτ 3
1 τ 2

2 + 3v2τ 4
1 τ 2

2 + 3p2τ 4
2 + 6pvτ1τ

4
2 + 3v2τ 2

1 τ 4
2 + v2τ 6

2 ).

(5.104)

Straightforward calculation gives

∂VBH

∂τ1
= 24

τ3
2

(
(q−2pτ1−vτ 2

1)(u+3qτ1−3pτ 2
1−vτ 3

1)−2(p+vτ1)(q−2pτ1−vτ 2
1 )τ 2

2 +(p+vτ1)vτ 4
2

)

(5.105)

and

∂VBH

∂τ2
= 12

τ4
2

(
− (u + 3qτ1 − 3pτ 2

1 − vτ 3
1 )2 − (q − 2pτ1 − vτ 2

1 )2τ 2
2 + (p + vτ1)

2τ 4
2 + v2τ 6

2

)
.

(5.106)

The extremal points are solutions to the equations ∂VBH

∂τ1
= ∂VBH

∂τ2
= 0. From (5.105)

we find that for a generic set of charges (assuming vγ 6= 0)

τ 2
2 =

βγ ±
√

βγ(βγ − vα)

vγ
, (5.107)

where

α = u + 3qτ1 − 3pτ 2
1 − vτ 3

1 ,

β = q − 2pτ1 − vτ 2
1 ,

γ = p + vτ1.

(5.108)

If we plug (5.107) into (5.106), we obtain

γ
√

βγ − vα(β
√

βγ(v2α− 3vβγ − 2γ3)∓ γ
√

βγ − vα(3vβ2 + vαγ + 2βγ2)) = 0.

(5.109)
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Let us look at the solution βγ − vα = 0 first. Due to (5.108) this is equivalent to

τ1 =
pq − uv

2(p2 + qv)
(5.110)

Then (5.107) gives, assuming τ2 > 0

τ2 =

√−D
2(p2 + qv)

(5.111)

where

D = −(3p2q2 + 4p3u + 4q3v + 6pquv − u2v2). (5.112)

This is the supersymmetric solution obtained in [124]. Note that there is no such

solution if the discriminant (5.112) is positive: D > 0.

The non-supersymmetric solution will emerge from the second branch:

β
√

βγ(v2α− 3vβγ − 2γ3) = ±γ
√

βγ − vα(3vβ2 + vαγ + 2βγ2) (5.113)

Without loss of generality we can take the square of this equation. Then, after

plugging in (5.108) we find massive cancellations, and obtain the following cubic

equation

(2p6 + 6p4qv + 3p2q2v2 − 4p3uv2 − 2q3v3 − 6pquv3 + u2v4)τ 3
1−

−3(p5q + 5p3q2v + 3p4uv + 5pq3v2 + 4p2quv2 − q2uv3 − pu2v3)τ 2
1−

−3(p4q2 + 2p5u + 2p3quv − 2q4v2 − 2pq2uv2 − p2u2v2)τ1 +

+(2p3q3 + 3p4qu + 3pq4v + 6p2q2uv + p3u2v + q3uv2) = 0.

(5.114)

The discriminant of this equation is equal to

∆ = 729D3(p2 + qv)6(2p6 + 6p4qv + 3p2q2v2 − 4p3uv2 − 2q3v3 − 6pquv3 + u2v4)2.

(5.115)
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Only one solution of this equation can be real, if D > 0, which implies ∆ > 0, but

this is exactly what we are looking for. It is given by

τ1 = 1
(2(p2+qv)3+v2D)

(
(p2 + qv)2(pq − uv)− vpD−

− 21/3(p2+qv)3D
(v(2p3+3pqv−uv2)D2+(2(p2+qv)3+v2D)D

√
D)

1/3 +

+p2+qv
21/3 (v(2p3 + 3pqv − uv2)D2 + (2(p2 + qv)3 + v2D)D√D)1/3

)
. (5.116)

Corresponding expression for τ2 is obtained by substituting (5.116) into (5.107).

5.4.3 Cubic equation

Consider a general cubic equation of the form

ax3 + 3bx2 − 3cx− d = 0. (5.117)

The discriminant of this equation is

∆ = −(3b2c2 + 4c3a + 4b3d + 6abcd− a2d2). (5.118)

The solutions are given by

x1 = − b
a

+ 21/3(b2+ac)

a(a2d−3abc−2b3+a
√

∆)
1/3 +

(a2d−3abc−2b3+a
√

∆)
1/3

21/3a
,

x2 = − b
a
− 21/3(1+i

√
3)(b2+ac)

2a(a2d−3abc−2b3+a
√

∆)
1/3 − (1−i

√
3)

21/32a
(a2d− 3abc− 2b3 + a

√
∆)1/3,

x3 = − b
a
− 21/3(1−i

√
3)(b2−ac)

2a(a2d−3abc−2b3+a
√

∆)
1/3 − (1+i

√
3)

21/32a
(a2d− 3abc− 2b3 + a

√
∆)1/3

(5.119)

We are interested in the case ∆ > 0, when there is one real root and a pair of complex

conjugate roots.
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5.5 Semiclassical Entropy in the OSV Ensamble

In this section we develop a semiclassical version of OSV formalism which applies

to both supersymmetric and non-supersymmetric black holes. We then illustrate it

using D0 − D4 system in the diagonal T 6 model as an example. This will serve as

a preparation for the discussions in section 6 and the conjecture in section 7 taking

into account perturbative corrections to the extremal black hole entropy.

We begin by recalling some basic ingredients of the OSV formalism. The for-

mula [142]

ZBH(pI , φI) =
∣∣∣eFtop(pI+ i

π
φI)

∣∣∣
2
. (5.120)

describes a relation between the mixed partition function of the supersymmetric

(BPS) black hole and topological string free energy. Here Ftop denotes the topo-

logical string free energy. It is well known [22] that the higher genus contributions

to Ftop depend non-holomorphically on the background complex structure. This de-

pendence, originally described in [22] as the holomorphic anomaly in the topological

string amplitudes coming from the boundary of the moduli space, was interpreted

in [169] as a dependence of the wave-function Ψtop = eFtop on the choice of the polar-

ization. This viewpoint on the topological string partition function as a wave-function

was further studied in [163, 62, 143].

As noted in [142], the formula 5.1 can be inverted, and resulting expression

Ω(pI , qI) =
∫

dχIe−iπχIqIΨ∗
top(p

I − χI)Ψtop(p
I + χI). (5.121)

can be interpreted as the Wigner function6 associated to the topological string wave

6Let us recall that in quantum mechanics the Wigner function defines the quasi-probablity mea-
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function. Here Ψtop(p
I) = 〈pI |Ψtop〉 represents the topological string wave function in

real polarization (see [93] for a comprehensive review and references), and the chemical

potentials are restored after deforming the integration contour as φI = −iχI .

5.5.1 Black hole potential and OSV transformation

Let us rewrite modified black hole potential (5.37) in the form

V
(0)
BH = qIImP I +

(
i
4
(P I −XI)(P J −XJ)F

(0)
IJ + i

2
(P I −XI)F

(0)
I + i

2
F (0) + c.c.

)
.

(5.122)

We put the superscript (0) to stress that the prepotential F (0) corresponds to a genus

zero part of the topological string free energy. As in the OSV setup [142], we can

parameterize the Lagrange multiplier P I (which can also be viewed as a complexified

magnetic charge) as

P I = pI +
i

π
φI , (5.123)

so that the first of the attractor equations (5.29) is automatically satisfied. At the

next step, we rewrite the semiclassical entropy S
(0)
BH = πV

(0)
BH as

S
(0)
BH = qIφ

I − πImG(0), (5.124)

where we introduced a function G(0) defined by

G(0) =
1

2
(P I −XI)(P J −XJ)F

(0)
IJ + (P I −XI)F

(0)
I + F (0). (5.125)

In order to compute the entropy in (5.124) we should find the values of φI and XI

that extremize the black hole potential (5.122). Extremization with respect to the

sure f(x, p) = 1
2π

∫
dye−iypψ∗(x− h̄

2 y)ψ(x+ h̄
2 y) on the phase space, see e.g. [175]. Here the canonical

commutation relation is [p̂, x̂] = −ih̄. In the topological string setup h̄ = 2
π .
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(extended) Calabi-Yau moduli ∂IV
(0)
BH = 0 gives the equations (5.49). Let us use the

index s to label all solutions to these equations, XI
s = XI

s (P ). There are two types of

these solutions, supersymmetric (s = susy) and non-supersymmetric (s = n − susy)

ones. In particular, the supersymmetric solution is given by XI
susy(P ) = P I . By

substituting these solutions in (5.125) we obtain the functions G(0)
s (P I) = G(0)

s (pI , φI).

In the supersymmetric case G(0)
susy(P

I) = F (0)(pI+ i
π
φI). Let us define a mixed partition

functions corresponding to each of the solutions XI
s = XI

s (P ) by

Z(0)
s (pI , φI) = ei π

2
G(0)

s (pI ,φI). (5.126)

For example, the supersymmetric mixed partition function

Z(0)
susy(p

I , φI) = ei π
2
F (0)(pI+ i

π
φI) (5.127)

describes the leading contribution to (5.120).

For a fixed charge vector (pI , qI) the extremal black hole degeneracy can be writ-

ten symbolically as Ωextrm = Ωsusy + Ωn−susy. Therefore, the leading semiclassical

contribution to Ωextrm is given by an OSV type integral

Ω
(0)
extrm(pI , qI) =

∫
dφIeqIφI ∑

s

|Z(0)
s (pI , φI)|2, (5.128)

where the sum is over all solutions to the extremum equations (5.49). We will discuss

perturbative corrections to this formula later in section 5.7, but before that let us

comment on the possible wave function interpretation of this expression.

Define

Ψ(X, P ) = exp
iπ

2

(1

2
(P I −XI)(P J −XJ)F

(0)
IJ + (P I −XI)F

(0)
I + F (0)

)
. (5.129)
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This is essentially the off-shell version of the partition function (5.126), since we have

not substituted the extremum solution XI
s = XI

s (P ) into (5.129) yet. This can be

achieved by integrating out the fields XI in the semiclassical approximation

∑
s

|Z(0)
s (pI , φI)|2 ≈

∫
dXIdXI

√
det‖ImFIJ‖Ψ(X,P )Ψ∗(X,P ). (5.130)

The function Ψ(X,P ) given in (5.129) is holomorphic in P I and non-holomorphic in

XI . It turns out that (up to some numerical factors due to a difference in conven-

tions) it coincides exactly with the DVV ‘conformal block’ [62] appearing in study

of the five-brane partition function! In particular, as was shown in [62], it satisfies

the holomorphic anomaly equation [22]. Using results of [93], it can be identified as

the intertwining function Ψ(X,P ) =(X,X)〈XI |P I〉 between the coherent state |P I〉 in

the real polarization and the coherent state |XI〉(X,X) in the holomorphic polarization

appearing in quantization of H3(M,C). The integral in (5.130) then can naturally be

interpreted as averaging over the wave function polarizations, thus effectively remov-

ing the background dependence. We should stress, however, that only semiclassical

approximation to this integral is needed for (5.128). This would be interesting to

develop further, especially in connection with the topological M-theory [58, 133] in-

terpretation of the black hole entropy counting.

We now turn to a simple example of the diagonal T 6 model, where semiclassical

formula (5.128) for extremal black hole entropy can be illustrated.
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5.5.2 Semiclassical entropy in the diagonal T 6 compactifica-

tion

Consider Type IIB compactification on the diagonal T 6 threefold [124]. The pre-

potential is

F =
(X1)3

X0
, f(τ) = τ 3, (5.131)

where the complex structure parameter τ = X1

X0 . We compute:

FIJ =




2τ 3 −3τ 2

−3τ 2 6τ


 , CIJ0 = − 6τ

X0




τ 2 −τ

−τ 1


 , CIJ1 = 6

X0




τ 2 −τ

−τ 1


 .

(5.132)

Let us denote yI = P I −XI . The attractor equations (5.49) read





C0IJyIyJ = 4iIm(F0I)y
I

C1IJyIyJ = 4iIm(F1I)y
I .

(5.133)

In order to compute the function G(0)(pI , φI), we need to find from these equations

a solution XI = XI(P ) of the direct problem. This can be done by inverting the

solutions of the inverse problem (5.69)-(5.70). However, it turns out that it is easier

to find XI = XI(P ) directly from (5.133).

According to (5.59) and (5.132), the third derivatives of the prepotential are re-

lated as C0IJ = −τC1IJ , and therefore (5.133) reduces to

2y0Im(τ 3)− 3y1Im(τ 2) = 3τy0Im(τ 2)− 6τy1Im(τ). (5.134)

Apart from the supersymmetric solution y0 = y1 = 0, this gives

y1

y0
= Reτ − i

3
Imτ, (5.135)
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If we recall that yI = P I −XI , we can solve (5.135) for X1:

X1 = X0 4Re(X0P 1)− 2P 1P 0 + P 1P 0

4Re(X0P 0)− |P 0|2 . (5.136)

Then we plug this into the second equation of (5.133) and find7

(X0 − P 0)2 = 3X0(X0 − P 0). (5.137)

This should be compared to (5.65). To solve the equation (5.137), is convenient to

work with the real and imaginary parts of X0 and P 0. Then (5.137) can be reduced

to a quartic equation for ReX0. For a generic choice of ReP 0 and ImP 0, two of the

roots of this quartic equation are complex, and two are real. These real roots lead to

the two solutions of the attractor equations (5.133), supersymmetric

X0 = P 0,

X1 = P 1, (5.138)

and non-supersymmetric one. Explicit expression for the non-supersymmetric solu-

tion depends on the signs of ReP 0 and ImP 0. For example, when ImP 0 > |ReP 0|, it

is given by8

ReX0 = 1
4
ReP 0 + 3

8
(ReP 0 + ImP 0)

2
3 (ImP 0 − ReP 0)

1
3−

−3
8
(ReP 0 + ImP 0)

1
3 (ImP 0 − ReP 0)

2
3 ,

ImX0 = 1
4
ImP 0 − 1

4

√
9(ImP 0)2 − 8(ReP 0)2 − 8Re(X0)Re(P 0) + 16(ReX0)2.

(5.139)

We can use these solutions and study a system of kD0 and ND4 branes on the

diagonal T 6. This corresponds to the charge vector of the form (k, 0, N, 0). In this case

7assuming Im
(
P 0P 1

) 6= 0.
8Corresponding solution for X1 is obtained by plugging this expression into (5.136).
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the discriminant D = −(3p2q2 + 4p3u + 4q3v + 6pquv−u2v2) reduces to D = −4kN3,

so that the system is supersymmetric when kN > 0 and non-supersymmetric when

kN < 0. Complexified magnetic charges are given by

P 0 =
i

π
ϕ, P 1 = N +

i

π
φ, (5.140)

and the black hole degeneracy (5.128) in this case reads

Ω
(0)
extrm(k,N) =

∫
dφdϕekϕ

(
e−πImG(0)

susy( i
π

ϕ,N+ i
π

φ) + e−πImG(0)
n−susy( i

π
ϕ,N+ i

π
φ)

)
. (5.141)

Let us now compute expressions for G(0)-functions entering into (5.141). Using

(5.138), we find from (5.125)

−πImG(0)
susy(

i

π
ϕ,N +

i

π
φ) =

N3π2 − 3Nφ2

ϕ
. (5.142)

The non-supersymmetric solution (5.139) in the case (5.140) reads

X0 = − i
2π

ϕ

X1 = 1
2
(N − i

2π
φ). (5.143)

Therefore, from (5.125) we obtain the following expression

−πImGn−susy(
i

π
ϕ, N +

i

π
φ) = −N3π2 − 3Nφ2

ϕ
. (5.144)

The integral over φ in (5.141) is quadratic, and (ignoring the convergence issue)

in the semiclassical approximation φ = 0 . The critical points in the ϕ direction are

given by

∂ϕ(kϕ− πImGsusy) = 0 ⇒ ϕsusy = π

√
N3

k
(5.145)
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for supersymmetric term, and

∂ϕ(kϕ− πImGn−susy) = 0 ⇒ ϕn−susy = π

√
−N3

k
(5.146)

for the non-supersymmetric term. Since we are integrating over the real axis, the

leading contribution to (5.141) comes only from one of the two terms, depending on

the sign of the ratio N
k
. This gives:

Ω
(0)
extrm(k, N) ≈ exp (2π

√
|N3k|), (5.147)

which is a correct expression for extremal black hole degeneracy, valid both in the

supersymmetric and non-supersymmetric cases. Using the same method, it is also

easy to obtain an expression Ω
(0)
extrm(N0, N6) ≈ exp (π|N0N6|) for the degeneracy of

D0−D6 system on diagonal T 6, which agrees with [69].

It is instructive to compare this prediction of (5.128) with the original OSV formula

[142]

Ω(pI , qI) =
∫

dφIeqIφI+F(pI ,φI). (5.148)

Because of our choice of the non-canonical D3-brane intersection matrix on T 6, we

have qIφ
I = −uφ0 − 3qφ. Also,

F(pI , φI) = −πIm

(
(p + i

π
φ)3

v + i
π
φ0

)
. (5.149)

In the semiclassical approximation, the leading contribution to ln Ω(u, q, p, v) can be

computed by extremizing the exponent in (5.148). This gives

2q = − (p+ i
π

φ)2

v+ i
π

φ0 − (p− i
π

φ)2

v− i
π

φ0 ,

2u =
(p+ i

π
φ)3

(v+ i
π

φ0)2
− (p− i

π
φ)3

(v− i
π

φ0)2
. (5.150)
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which essentially are the supersymmetric attractor equations (5.36). The general

solution to (5.150) is easy to write:

φ0 = ±π 2p3+2pqv−uv2√−D ,

φ = ∓π 2p2q+2q2v+puv√−D , (5.151)

where the discriminant D = −(3p2q2+4p3u+4q3v+6pquv−u2v2). The sign ambiguity

in (5.151) can be fixed by imposing physically natural condition

Imτ = Im
p + i

π
φ

v + i
π
φ0

> 0. (5.152)

Notice that the potentials (5.151) become pure imaginary when D > 0. Therefore, if

one is allowed to do the analytical continuation when computing the integral (5.148),

the answer for the microcanonical entropy reads

ln Ω(u, q, p, v) ≈ π
√

3p2q2 + 4p3u + 4q3v + 6pquv − u2v2. (5.153)

This expression, of course, becomes pure imaginary on the non-supersymmetric side

D > 0 of the discriminant hypersurface D = 0, which is meaningless. This thus

illustrates the shortcoming of OSV formalism in the context of non-BPS black holes.

5.6 Including Higher Derivative Corrections: The

Entropy Function Approach

The Wald’s formula provides a convenient tool for computing the macroscopic

black hole entropy in the presence of higher derivative terms. It can be written as

SBH = 2π
∫

H
d2x

√
h εµνελρ

δL
δRµνλρ

, (5.154)
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where L is the Lagrangian density and the integral is computed over the black hole

horizon. Sen [151, 152] showed that in the case of a spherically symmetric extremal

black holes with AdS2 × S2 near horizon geometry Wald’s formula simplifies dras-

tically. This gives an effective method for computing a macroscopic entropy of a

spherically symmetric extremal black holes in a theory of gravity coupled to gauge

and scalar fields, called the entropy function formalism.

In this section we briefly describe, following [123], a formulation of N = 2 su-

pergravity coupled to nV abelian gauge fields, in the presence of higher-derivative

corrections. Then we review recent computations of the extremal black hole entropy

in this setup [148, 7, 31], performed in the framework of the entropy function formal-

ism.

5.6.1 d = 4, N = 2 Supergravity with F -term R2 corrections

The Lagrangian density of N = 2 Poincare supergravity coupled to nV vector

multiplets can be conveniently formulated using the off-shell description [51]. The

idea is to start with an N = 2 conformal supergravity and then reduce it to Poincare

supergravity by gauge fixing and adding appropriate compensating fields. The ad-

vantage of working with N = 2 superconformal approach is that it provides many

powerful tools, such as superconformal tensor calculus and a general density formula

for the Lagrangian.

One introduces the Weil and matter chiral superfields

Wµν(x, θ) = T−
µν − 1

2
R−

µνλρεαβθασλρθβ + . . .

ΦI(x, θ) = XI + 1
2
F−I

µν εαβθασµνθβ + . . . (5.155)
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where T−
µν is an auxiliary antiself-dual tensor field9, and F−I

µν and R−
µνλρ denote the

anti-selfdual parts the field-strength and curvature tensors correspondingly. The con-

ventions are ∗Tµν = 1
2
εµνρσT

ρσ and T±
µν = 1

2
(Tµν ± i ∗ Tµν), so that T−

µν = T+
µν for

Minkovski signature. The superconformally covariant field strength

FI
µν = F I

µν − (
1

4
XIT−

µν + εijψ
i
[µγν]Ω

jI + εijX
Iψi

µψ
j
ν + h.c.) (5.156)

enters into the bosonic part of the Lagrangian through the combination F+I
µν − 1

4
XIT+

µν .

The F -terms can be reproduced from the generalized prepotential

F (XI ,W ) =
∑
g

F (g)(XI)W 2g, (5.157)

where F (g) can be computed from the topological string amplitudes [22, 10]. In

particular, the topological string free energy is given by

Ftop(X
I , gtop) =

∑
g

(gtop)
2g−2F (g)(XI). (5.158)

The function F (g) is homogeneous of degree 2− 2g, so that

F (λXI , λW ) = λ2F (XI ,W ). (5.159)

This homogeneity relation for the generalized prepotential (5.157) can also be written

as

XI∂IF + W∂W F = 2F. (5.160)

Notice that another notation

Â ≡ W 2, F (XI , Â) ≡ F (XI ,W ) (5.161)

9At tree-level this field is identified with the graviphoton by the equations of motion.
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is sometimes used in the supergravity literature.

The coupling of the vector fields to the gravity is governed by the generalized

prepotential (5.157) as follows

8πSvect = 8πStree
vect +

∫
d4xd4θ

∑∞
g=1 Fg(Φ

I)(WµνW
µν)g + h.c. =

= 8πStree
vect +

∫
d4x

∑∞
g=1 Fg(X

I)(R2
−T 2g−2

− + . . . ) + h.c. (5.162)

The terms in the Lagrangian density, relevant for the computation of the entropy

are [123]

8πL=− i
2

[
1
2
(F+I

µν − 1
4
XIT+

µν)(F+Jµν− 1
4
XJT+µν)F IJ + T+µν

4
(F+I

µν − 1
4
XIT+

µν)F I + Â
16

F−

−XIFIR− F
Â
Ĉ − h.c.

]
+ . . .

(5.163)

Here

Ĉ = 64R−
νµρσR−νµρσ + 16T−µνfρ

µT+
ρν + . . .

f ν
µ = −1

2
Rν

µ + 1
32

T−
µρT

+νρ + . . .

F = F (XI , Â), F
Â
≡ ∂

Â
F,

(5.164)

and . . . in (5.163)-(5.164) denotes the terms (auxiliary fields, fermions, etc.) that will

vanish or cancel out on the black hole ansatz.

5.6.2 Review of the entropy function computation

We are interested in a spherically symmetric extremal black hole solutions arising

in the supergravity theory defined by the Lagrangian (5.163). Consider the most

general SO(2, 1) × SO(3) ansatz [148] for a field configurations consistent with the

AdS2 × S2 near horizon geometry of the black hole
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ds2 = v1

(
− r2dt2 +

dr2

r2

)
+ v2(dθ2 + sin2 θdϕ2),

XI = xI , F I
rt = −φI

π
, F I

θϕ = pI sin θ, T−
rt = v1w, (5.165)

and all other fields presents in (5.163) are set to zero10. The entropy function [151]

is defined as

E = qIφ
I − 2π

∫

H
dθdϕ

√
−detgL

)
. (5.166)

This function depends on free parameters (xI , v1, v2, w, φI) of the SO(2, 1) × SO(3)

ansatz (5.165). The entropy of an extremal black hole is obtained as an entropy of a

non-extremal black hole in the extremal limit, when the function (5.166) is extremized

with respect to a free parameters

∂E
∂xI

= 0,
∂E
∂v1

= 0,
∂E
∂v2

= 0,
∂E
∂w

= 0,
∂E
∂φI

= 0. (5.167)

The black hole entropy (5.154) is given by the value of E at the extremum

SBH = E|∂E=0. (5.168)

The result of computation [148] reads

E = qIφ
I − iπv1v2

[
1
4

(
− φI

πv1
+ ipI

v2
− 1

2
xIw

)(
− φJ

πv1
+ ipJ

v2
− 1

2
xJw

)
F IJ+

+w
4

(
− φI

πv1
+ ipI

v2
− 1

2
xJw

)
F I + w2

8
F−

−( 1
v1
− 1

v2
)xIFI +

(
|w|4 − 8|w|2( 1

v1
+ 1

v2
) + 64( 1

v1
− 1

v2
)2

)
F

Â
− c.c.

]
,

(5.169)

where

Â = −4w2. (5.170)

10The dilaton is set to 1/3R, so that the combination D − 1/3R vanishes.
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Note that the entropy function (5.169) is invariant under the following rescaling

xI → λxI , w → λw, v1,2 → 1

λλ
v1,2, φI → φI , qI → qI , pI → pI , (5.171)

since the Lagrangian (5.163) was derived from a superconformally invariant expres-

sion. This means that there is a linear relation between the extremum equations

(5.167). One can switch to inhomogeneous variables to fix this symmetry.

The above form of the entropy function does not take into account all the relevant

higher derivative corrections needed for the non-supersymmetric black hole, as has

been observed in [148]. For example at least an R2 term is needed in certain cases.

We will come back to this point in the next section when we propose our conjecture.

To further motivate our conjecture, let us analyze the structure of the entropy

function (5.169). First of all, compared to the topological string partition function, it

depends on one more parameter. Indeed, using the scaling invariance of the entropy

function (inherited from the formulation in terms of the superconformal action) we

can gauge away w, and identify (XI ,W 2) ∼ (xI , Â). However, after that the entropy

function still depends on the relative magnitude of the variables v1 and v2, describing

correspondingly the radii squared of AdS2 and S2 factors in the black hole near horizon

geometry, and there is no such parameters in (5.122). Therefore, in order to match

with the macroscopic computations on the supergravity side we need a modification

of the topological string depending on an additional parameter. Moreover because of

the observations of [148, 149] this extension of topological string should be computing

additional higher derivative corrections, including extraR2 terms. These observations

naturally lead to our conjecture in the next section.
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5.7 A Conjecture

In the last section we saw that we need a one parameter extension of topological

string which captures non-antiself-dual 4d geometries, for higher derivative corrections

for non-supersymmetric black holes. In fact on the topological string side there is a

natural candidate that can be used for this purpose: a one parameter extension of the

topological string that appeared in the works of Nekrasov [139, 119, 135, 137, 138, 140]

on instanton counting in Seiberg-Witten theory. There, a function F (XI , ε1, ε2) was

introduced. In the special limit −ε2 = ε1 = gtop this function reduces to the ordinary

topological string free energy (5.158) according to

F (XI , ε1, ε2)
∣∣∣
ε1+ε2=0

= Ftop(X
I , gtop), g2

top = −ε1ε2, (5.172)

In order to make a connection with the supergravity ansatz (5.165) we will need to

identify the parameters as

ε1 =
16

|w|2v1

, ε2 = − 16

|w|2v2

. (5.173)

This is consistent with the fact that the field theory limit ε1,2 → 0 in the Nekrasov’s

approach corresponds to the flat space approximation in the ansatz (5.165).

Since the Nekrasov’s extension of the topological string may not be familiar, we

will first review the necessary background from [139, 138, 131]. Then we will be able

to make a proposal about the corresponding generalization of the OSV formula.
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5.7.1 Review of the Nekrasov’s extension of the topological

string

The instanton corrections to the prepotential of N = 2 gauge theory can be

computed by a powerful application of localization technique introduced by Nekrasov

[139]. This localization, in the physical context gets interpreted as turning on non-

antiself-dual graviphoton background,

T = ε1dx1 ∧ dx2 + ε2dx3 ∧ dx4. (5.174)

This reproduces theN = 2 prepotential by considering the most singular term as εi →

0, which scales as F (0)/ε1ε2. However there is more information in the localization

computation of Nekrasov: One can also look at the subleading terms and identify

their physical significance. For the case of ε1 = −ε2 there is a natural answer, as

this gets mapped to the N = 2 F -terms which capture (anti)-selfdual graviphoton

corrections, of the type studied in [22, 10]. In fact the two can get identified using

geometric engineering of N = 2 gauge theories [111, 110] by considering, in the type

IIA setup, a local Calabi-Yau given by ALE fibrations over some base space (e.g.

IP1). Thus Nekrasov’s gauge theory computation leads, indirectly, to a computation

of topological string amplitudes, upon the specialization ε1 = −ε2 = gtop:

lim
ε2→−ε1

F (XI , ε1, ε2) =
∞∑

g=0

(gtop)
2g−2F (g)(XI), gtop = ε1. (5.175)

It has been checked [104, 103, 100, 102] using the topological vertex formalism [2, 101]

that this indeed agrees with the direct computation of topological string amplitudes

in such backgrounds, see also [67, 156].
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However, it is clear that there is still more to the story: Nekrasov’s computation

has more information than the topological string in such backgrounds as it depends

on an extra parameter, which is visible when ε1 +ε2 6= 0. In fact Nekrasov’s extension

F (XI , ε1, ε2) satisfies the homogeneity condition

[
ε1

∂

∂ε1

+ ε2
∂

∂ε2

+ XI ∂

∂XI

]
F (XI , ε1, ε2) = 0. (5.176)

which means that it does depend on one extra parameter compared to the topological

strings. Below we will use a shorthand notation

F (X, ε) ≡ F (XI , ε1, ε2). (5.177)

Even though the exact effective field theory terms that F (X, ε) computes has not

been worked out, it is clear from the derivation that it has to do with constant, non-

antiself-dual configurations of graviphoton and Riemann curvature. The origin of first

such correction has been identified in [131] which we will now review. In general one

can expand F (X, ε) as follows [138, 140, 131]

F =
1

ε1ε2

F (0) +
ε1 + ε2

ε1ε2

H 1
2

+
(ε1 + ε2)

2

ε1ε2

G1 + F (1) +O(ε1, ε2). (5.178)

Let us discuss a geometrical meaning of the genus one terms in (5.178). Recall a

general relations

1

32π2

∫

X
TrR∧ ∗R = χ,

i

32π2

∫

X
TrR∧R =

3

2
σ, (5.179)

where χ is the Euler characteristic of a Euclidean 4-manifold X and σ is the signature.

The curvature tensor R in (5.179) is viewed as a 2-form Ra
b = Ra

bµνdxµ ∧ dxν with

values in Lie algebra of SO(4). As is clear from (5.162), the ordinary topological
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strings compute contributions to the effective action of the form11

1

16π2

∫

X
F (1)(X)R− ∧R− + higher genus =

1

2
F (1)(X)(χ− 3

2
σ) + higher genus.

(5.180)

On the other hand, more general couplings to χ and σ can be seen in the Donaldson

theory. As was explained by Witten [171], the low energy effective action of twisted

N = 2 supersymmetric Yang-Mills theory on an arbitrary four-manifold X contains

terms proportional to χ and σ. The Donaldson invariant Dξ in general has three

contributions

Dξ = Zu + Z+ + Z−, (5.181)

where Z± are Seiberg-Witten invariants defined via the moduli space of monopoles,

and Zu is non-zero when b+(X ) = 1 and is given by the u-plane integral [127]

Zu =
∫

u−plane
dadaA(u)χB(u)σepu+S2T Ψ. (5.182)

As shown in [131], the functions A and B are related to genus one terms in (5.178)

as

F (1) = ln A− 2

3
ln B, G1 =

1

3
ln B (5.183)

Note that the equivariant integral of the superfield Φ = Φ(0) + Φ(1)θ + . . . + Φ(4)θ4

in the case X = C2 is given by

∫

X
d4x

∫
d4θΦ =

Φ(0)(0)

ε1ε2

. (5.184)

11there is of course a similar antiholomorphic contribution starting with F (1)(χ− 3
2σ).
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It is also instructive to write down [131] the equivariant Euler number and signature

for C2:

χ(C2) = ε1ε2, σ(C2) =
ε2
1 + ε2

2

3
. (5.185)

Let us introduce another notation:

F̃ (1) = 4G1 + F (1), G1 =
1

4
(F̃ (1) − F (1)). (5.186)

Then (5.178) can be rewritten as

ε1ε2F = F (0) + (ε1 + ε2)H 1
2

+
1

2
(χ− 3

2
σ)F (1) +

1

2
(χ +

3

2
σ)F̃ (1) + ε1ε2O(ε1, ε2).

(5.187)

The term F̃ (1) = 4G1 + F (1) is not captured by the ordinary topological string!

Extra terms are needed to obtain a correct macroscopic entropy for non-supersym-

metric black holes in addition to the standard terms computed by the topological

strings [148, 149]. In fact the particular term needed, which is discussed in [149]

reduces, upon compactification to 4d, to the term of the form t ·TrR∧R for large t,

where t is the overall Kähler moduli of the CY. Such a correction is indeed captured

by the leading behavior of G1(t) for large t, as follows from (5.183). This gives us

further confidence about the relevance of Nekrasov’s extension of topological strings

for a correct accounting of the non-supersymmetric black hole entropy.

In general, as pointed out in [100] one would expect that implementation of

Nekrasov’s partition function for general Calabi-Yau will mix hypermultiplet and

vector multiplets. The case studied in [139] involved the case where there were no

hypermultiplets so the question of mixing does not arise. In the context of the con-

jecture in the next section, this would suggest that higher derivative corrections may
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also fix the vevs for the hypermultiplet moduli in the context of non-supersymmetric

black holes.

We now turn to a minimal conjecture for extremal black hole entropy which uses

Nekrasov’s extension of topological strings.

5.7.2 Minimal ε-deformation

Let us start with a semiclassical expression (5.125 for the G(0)-function

G(0) =
1

2
(P I −XI)(P J −XJ)F

(0)
IJ + (P I −XI)F

(0)
I + F (0), (5.188)

where F (0) = F (0)(X) is the Calabi-Yau prepotential, identified with genus zero topo-

logical string free energy, and P I = pI + i
π
φI . Our goal is to find an ε-deformation

G(0) → G of (5.188), such that corresponding extremum equations

∂ImG
∂ε1

=
∂ImG
∂ε2

=
∂ImG
∂XI

= 0 (5.189)

still admit a supersymmetric attractor solution

ε1 = 1, ε1 + ε2 = 0, XI = P I
ε = pI +

i

π
φI , (5.190)

and the extremum value of ImG computed using this solution is such that it describes

correctly corresponding contribution [142] to the supersymmetric black hole entropy

−ImGsusy(p
I , φI) = −ImF (pI +

i

π
φI , 256) = 2ReFtop(p

I +
i

π
φI). (5.191)

We will obtain this deformation of G-function in two steps. First, we will use

Nekrasov’s refinement of the topological string to deform the prepotential as

F (0)(X) → F (XI , ε1, ε2), (5.192)
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and at the same time, motivated from [148], deform the complexified magnetic charge

as12

P I → P I
ε = −ε2p

I +
i

π
ε1φ

I . (5.193)

Second, in order to satisfy conditions (5.189)-(5.191) after the deformation (5.192)-

(5.193), we will need to add some compensating terms to G. As we will see, there is

some freedom in choosing these terms, but there is a minimal choice that does the

job.

At the first step, after substituting (5.192)-(5.193) directly into (5.188), we obtain

G̃ =
1

2
(P I

ε −XI)(P J
ε −XJ)F IJ(X, ε) + (P I

ε −XI)FI(X, ε) + F (X, ε). (5.194)

This, however, is not the full answer, since the derivatives of ImG̃ with respect to ε-

parameters are not zero on the supersymmetric solution (5.190). This can be corrected

at the second step, by adding to G̃ two terms, proportional to ε1+ε2, so that the value

(5.191) of the potential is not affected when ε1 + ε2 = 0. This leads to the following

minimal ε-deformation

G = 1
2
(P I

ε −XI)(P J
ε −XJ)F IJ(X, ε) + (P I

ε −XI)FI + F (X, ε)+

+1
2
(ε1 + ε2)X

IFI − 1
2
(ε1 + ε2)(ε1∂ε1 − ε2∂ε2)F (X, ε)

(5.195)

We call (5.195) a minimal ε-deformation because we can also add to (5.195) any terms

proportional to (ε1 + ε2)
2 without affecting conditions (5.189)-(5.191):

G → G +O(ε1 + ε2)
2. (5.196)

12When ε2 = −ε1, this is just a rescaling of P I , while general deformation with ε2 6= −ε1 involves
a change of the complex structure in H3(M,C).
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It is straightforward to check, using the homogeneity condition (5.176) and the

relations

pI = − 1

2ε2

(P I
ε + P I

ε ), φI = − iπ

2ε1

(P I
ε − P I

ε ), (5.197)

which follow from the definition

P I
ε = −ε2p

I +
i

π
ε1φ

I , (5.198)

that the extremum equations (5.189) for (5.195) indeed admit a solution (5.190),

which corresponds to a supersymmetric BPS black hole. Moreover, in this case (5.191)

is also satisfied.

Expression qIφ
I−πImG should be compared to the entropy function (5.169). Then

our notations are related to those of [148] as follows. We identify

ε1 =
16

|w|2v1

, ε2 = − 16

|w|2v2

. (5.199)

The supersymmetric attractor equations of [148] read pI = − i
4
v2(wxI − wxI), while

in our conventions the supersummetric case is pI = ReXI . Therefore,

XI = − i

2
wxI , xI =

2i

w
XI . (5.200)

We also set in this case

ww = 16, v1 = v2 = 1. (5.201)

5.7.3 Putting it all together

Now we are ready to make a proposal about the extremal black holes entropy.

We want to write down a generalization of the semiclassical expression for the ex-

tremal black hole degeneracy from section 5, that would reduce to the OSV formula
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(5.2) for the supersymmetric charge vector (pI , qI). The expression (5.195) for the

deformed black hole potential provides a natural way to do this, and allows to treat

supersymmetric and non-supersymmetric cases simultaneously.

We introduce a function G = G(p, φ; X, ε) defined by

G =
1

2
(P I

ε −XI)(P J
ε −XJ)F IJ(X, ε) + (P I

ε −XI)FI(X, ε) + F (X, ε) +

+
1

2
(ε1 + ε2)X

IFI(X, ε)− 1

2
(ε1 + ε2)(ε1∂ε1 − ε2∂ε2)F (X, ε) +O(ε1 + ε2)

2,

(5.202)

where O(ε1 + ε2)
2 denotes an ambiguity that cannot be fixed just by requiring that

ImG gives correct description of the supersymmetric black holes. In the minimal

deformation case we set O(ε1 + ε2)
2 = 0. In general, there are two types of solutions

to the extremum equations

∂

∂XI
ImG =

∂

∂εi

ImG = 0, (5.203)

the supersymmetric one (5.190) XI = pI + i
π
φI , and non-supersymmetric ones (all

other). Let us denote the functions obtained by substituting these non-supersymmetric

solutions XI = XI(p, φ), ε1,2 = ε1,2(p, φ) into (5.202) as G(pI , φI). For supersymmet-

ric solution Gsusy(p
I , φI) = F (pI + i

π
φI). We conjecture the following relation for the

extremal black hole degeneracy

Ωextrm(pI , qI) =
∫

dφIeqIφI
(∣∣∣e iπ

2
F (pI+ i

π
φI)

∣∣∣
2
+

∑

n−susy

∣∣∣e iπ
2
G(pI ,φI)

∣∣∣
2)

(5.204)

which is expected to be valid asymptotically in the limit of large charges. The sum

in (5.204) runs over all non-supersymmetric solutions to the extremum equations
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(5.203). However, it is expected that for a given set of charges (pI , qI) only one solution

(supersymmetric or non-supersymmetric, depending on the value of the discriminant)

dominates, and contributions from all other solutions, including the ones with non-

positive Hessian, are exponentially suppressed.

As noted before, it is expected that for general non-toric Calabi-Yau compacti-

fications, which lead to hypermultiplets, the analog of Nekrasov’s partition function

would mix hypermultiplets with vector multiplets and therefore will fix their values

at the horizon. This would be interesting to develop further.

5.8 Conclusions and Further Issues

We studied the black hole potential describing extremal black hole solutions in

N = 2 supergravity and found a new formulation of the semi-classical attractor

equations, utilizing homogeneous coordinates on the Calabi-Yau moduli space. This

allowed us to solve the inverse problem (that is, express the black hole charges in terms

of the attractor Calabi-Yau moduli) completely in the one-modulus Calabi-Yau case.

We found three non-supersymmetric solutions in addition to the supersymmetric one.

In the higher dimensional case we found a bound #n−susy ≤ 2nV +1− 1 on the possible

number of non-supersymmetric solutions to the inverse problem.

We then investigated a generalization of the attractor equations and OSV formula

in the case when other corrections are turned on. We conjectured that corresponding

corrected extremal black hole entropy needs an additional ingredient: the Nekrasov’s

extension of the topological string free energy F (XI , ε1, ε2). We related this to the

black hole entropy using a minimal deformation conjecture given in (5.195),(5.204),
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that reduces to Ftop(X
I + i

π
φI) for the choice of the black hole charges that support a

supersymmetric solution. We were unable to fix the O(ε1 + ε2)
2 ambiguity in (5.202),

though it could be that the minimal conjecture is correct.

One important open question is how to test our conjecture. One possible test

may be using the local Calabi-Yau geometry for which Nekrasov’s partition function

is known. Another important question is to find out what is exactly computed by

Nekrasov’s partition function13 and how to extend it to the case where there are both

hypermultiplets and vector multiplets. Clearly there is a long road ahead. We hope

to have provided strong evidence that Nekrasov’s extension of topological string is a

key ingredient in a deeper understanding of non-supersymmetric black holes.

13for example, in the AdS2 × S2 setup of [148]), the ε-parameters corresponding to the radii of
AdS2 and S2 factors were real, but from the topological string viewpoints it is natural to consider
a complexification of ε1,2. This suggests that there should exist corresponding deformation of the
AdS2 × S2 near horizon geometry.
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