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We study pairing correlations by analyzing the coherence length in a HF+BCS
formalism with various types of pairing potentials. We compare the density dependent
delta (DDD) pairing interaction to effective Gaussian interactions with different width
parameters. We then generalize the discussion to quartet correlations, and finally we
evaluate the importance of proton-neutron correlations.
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Coherence is an ubiquitous concept in the study of many-body systems, in
particular nuclei. For example, collective excitations are microscopically described
by a superposition of creation pair operators acting on the ground state, described by
a coherent state within the Random Phase Approximation. Ground state properties
of even-even nuclei are well reproduced by a pairing type interaction [2—4] and the
wave function within the BCS approach is also of a coherent type [1].

A great amount of information about nuclear correlation can be obtained by
looking at the coherence properties of the spatial distribution of the two-particle den-
sity [5, 6]. The main physical quantity that describes the coherence property is the
coherence length, defined as the root mean square relative distance averaged over the
density (the pairing density for superfluid nuclei). Previous studies [7-9] show that
this quantity is relatively large, of the order of the nuclear size inside the nucleus and
smaller around the nuclear surface.

In this work we first shall compare the coherence length given by the density
dependent delta (DDD) pairing interaction to that of the Gaussian interaction with va-
rious width parameters. Then, we will generalize to quartet correlations, and analyze
the corresponding quartet coherence length.
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1. THEORETICAL BACKGROUND

The most important two-body correlations beyond the mean field in even-even
nuclei are given by the pairing interaction. We describe such systems within the stan-
dard HF+BCS approach, where the averaged particle number is conserved, separa-
tely for protons and neutrons. We consider in our basis bound sp states with negative
energy, as well as relatively narrow sp resonances with positive energy up to €,,q, =
10 MeV with a decay width I' < 1 MeV (the background contribution is not relevant
[13, 14]), given by a Woods Saxon central field with universal parameterization [16].

The information about the spatial properties of pairing correlations is contained
in the anomalous density k(ry,s1;r2,82) = (BC’S!A{&(rl,sl)d}(rz,sz)}]BCS).
After expanding in our basis of states and recoupling from the j-j to the L-S scheme,
we retain only largest singlet component, k1(rq,r2). By passing to the relative
r = rj — rp and center of mass coordinate R = (r1 +r2)/2 and averaging over their
relative angle @ one obtains the averaged pairing tensor &3 (r, R). We define the co-
herence length to be the relative distance averaged over this pairing tensor:

&(R) = de rt R \//dr r2 w(r,R) (1

dTTQK T‘R
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2. NUMERICAL APPLICATION AND RESULTS

We analyzed all even-even nuclei with 20 < Z < 100 and known experimen-
tal pairing gaps, determined by the binding energies of neighboring nuclei [15]. We
solved the BCS equations by using two types of nucleon-nucleon pairing interac-
tions. The use of the density dependent delta (DDD) interaction [12], v(r,r') =

ug 6(r —r’) (1 —pn(r)/ pg\?)) , given in terms of the nuclear density px and its cen-

tral value ,0( ), is motivated by the fact that the strength of the effective pairing in-
teraction depends upon the local density [11, 18]. The widely used Gaussian inter-
action is defined by v(r12) = —voe_[”?/ ro]® depending on the relative radius 71s.
For the in-medium effective interaction there is no a priori reason to consider that
its parameters are equal to those of the bare interaction. We can compare the cases
ro=2 fm, corresponding to the singlet “bare” value in the free space with the larger
ro = Ry = 1.2AY/3, corresponding to the nuclear geometrical radius. An extended
radial dimensions of the pairing interaction also gives better results for the experi-
mental a-decay widths [10]. The strength vg is chosen as for the Fermi level gap to
reproduce the experimental gap.

In Fig. 1, we see large gap values for states below the Fermi level for the bare
Gaussian. The values of the gaps given by the DDD interaction below the Fermi level
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Fig. 1 — Paring gap versus sp energy e in °2Fe for Fig. 2 — Proton coherence length divided

DDD potential (diamonds) and Gaussian potentials by geometrical radius versus cm radius di-

with rg= 2 fm (squares), rqg = Ry (circles). vided by geometrical radius in 52Fe for DDD
potential (solid line) and Gaussian potentials
with 9= 2 fm (long dashes), ro = R (short
dashes).

are significantly smaller than the Fermi gap and are similar with those given by the
ro = Ry Gaussian. We note that the corresponding coherence lengths are all very
close in shape for all considered interactions, and in agreement with Ref. [7].

A systematic analysis for even-even nuclei with 20 < Z < 100 revealed that the
strength of the o = 2fm Gaussian has almost the singlet “bare” value in the free space
vg ~ 35 MeV for very light nuclei and as a result of the renormalization, the effective
strength decreases down to vg ~ 20 MeV for heavy nuclei, except in the regions
around magic numbers. For the bare Gaussian, the ratio of the coherence length to
the nuclear radius decreases from 1.4 for light nuclei down to around unity for heavy
nuclei. As a general trend, the coherence length is larger for neutrons, but the shell
effects are stronger for protons. We then investigated the density dependent pairing
interaction and we concluded that the strengths of the two analyzed interactions have
similar properties for Z > 40.

The renormalization procedure for the realistic interaction like Bonn or Paris
potentials [17] should determine which is the actual size of strength and width para-
meters of the effective pairing interaction.

Next we turn to quartet correlations. By considering the overlaps of the proton-
proton and respectively neutron-neutron wave functions with the two-proton and res-
pectively two-neutron part of the a-particle wave-function, we construct the quar-
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Fig. 3 — Quartet (a) and alpha (b) coherence _.
lengths in 180y Fig. 4 — Quartet (a) and alpha (b) correla-

tion tensors kg (ra, Ra)? and ka(ra, Ro)?.
Quartet (c) and alpha (d) correlation densi-
ties wq,a (ra, Ra) defined as in Eq. (1), for
220,

tet tensor kg(Ry, Ry) = (ki (r1,12)| 000" (1)) - (ki (r3,14) |00/ ? (r,,)), where
Ty, =T13—T24, Ry, = (r13+1r24)/2 an B, ~ 0.5fm 2. This plays the role
of the pairing tensor in the quarteting case. By proceeding similarly with the pair-
ing case (see Eq.1) we may now define the quartet coherence length §, which is
shown in Fig. 3 for *Cr as a function of the center of mass of the two pairs
R.=(R:+R))/2.

By taking into account proton-neutron correlations, described by the part in
the a-particle wave function dependent on the relative distance r, = R; — R, we
may also define the so-called alpha coherence length. The corresponding correlation
tensor is ko (7o, Ra) = kq(ra, Ra) gga)(ra), and the coherence length is ., (R,,).

We see from Fig.3 that the quartet coherence length bears some resemblance to
the pairing coherence length, being larger in the internal region. Taking into account
proton-neutron correlations significantly alters its shape, as the a-coherence length
oscillates about the geometrical dimension of the a-particle of 1.9 fm.

We also present the shapes of the quartet and « correlation tensors and densities
(defined as in Eq.1) in Fig.4. We note that while in the quartet case the quantities are
significant also at large distances, in the « case the pn correlations only allow nonzero
values at a small 7.



726 V.V. Baran, D.S. Delion 5

3. CONCLUSIONS

We have performed an analysis of the coherence length for various types of
pairing interaction. We compared DDD potential to various parameterizations of the
Gaussian interaction. We have shown that the strength of the bare width Gaussian
for light nuclei is close to the singlet “bare” value in the free space vy ~ 35 MeV
and decreases for heavy nuclei. Also, a larger width Gaussian has similar properties
to the commonly used density dependent pairing potential, the closest being the case
with 7o = Ry.

It turns out that the coherence length has similar properties for all considered
interactions. It is larger than the geometrical radius for light nuclei and approaches
this value for heavy nuclei.

We also presented the generalization from pairing to quarteting correlations,
and analyzed the quarteting correlation tensor and density that give the quarteting
coherence length. It turns out that proton-neutron correlations are very important, as
they give a completely different shape for the corresponding «-coherence length.

Acknowledgements. This work has been supported by the project PN-II-ID-PCE-2011-3-0092
and NuPNET-SARFEN of the Romanian Ministry of Education and Research.

REFERENCES

Ring P and Schuck P 1980 The Nuclear Many Body Problem (Springer-Verlag, New York-Berlin).
Dean D J and Hjorth-Jensen M 2003 Rev. Mod. Phys. 75 607

Zelevinsky V and Volya A 2004 Nucl. Phys. A 731299

Yoshida S and Sagawa H 2008 Phys. Rev. C 77 054308

Ferreira L, Liotta R J, Dasso C H, Broglia R A and Winther A 1984 Nucl. Phys. A 426 276
Hagino K and Sagawa H 2005 Phys. Rev. C 72 044321

Pillet N, Sandulescu N and Schuck P 2007 Phys. Rev. C 76 024310

Pillet N, Sandulescu N, Schuck P and Berger J-F 2010 Phys. Rev. C 81 034307

Vinas X, Schuck P and Pillet N 2010 Phys. Rev. C 82 034314

Delion D S 2010 Theory of Particle and Cluster Emission, (Springer-Verlag, New York-Berlin)

. Bertsch G and Esbensen H 1991, Ann. Phys. (N.Y.) 209 327

Dobaczewski J, Nazarewicz W, Werner T R, Berger J F, Chinn C R and Decharge J 1996 Phys.
Rev. C 53 2809

13. Betan R Id, Dussel G G and Liotta R J 2008 Phys. Rev. C 78 044325

14. Betan R Id 2012 Nucl. Phys. A 879 14

15. Moller P and Nix J R 1995 Nucl. Phys. A 272 502

16. Dudek J, Nazarewicz W and Werner T 1980 Nucl. Phys. A 341 253

17. Delion D S, Baldo M and Lombardo U 1995 Nucl. Phys. A 593 151

18. Borycki P J, Dobaczewski J, Nazarewicz W and Stoitsov M V 2006 Phys. Rev. C 73 044319

A e AR AN o e

_—
N - o



