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Abstract

The Muon Ionisation Cooling Experiment (MICE) was designed to provide the first

demonstration of muon ionisation cooling by passing a muon beam through a cooling

channel consisting of low-Z absorber material as well as radio-frequency (RF) cavities,

with the net effect of a reduction in transverse momentum spread at constant total

momentum. The performance that can be achieved in such a cooling channel depends

on both energy loss and multiple coulomb scattering in the absorber, the latter of which is

currently not understood to very high precision for muons. Verification of muon multiple

scattering algorithms – especially in low-Z materials – is therefore crucial for accurate

modelling of a muon ionisation cooling channel, which would be used in future facilities

such as a Neutrino Factory or a Muon Collider.

A track matching algorithm was implemented in order to combine locally recon-

structed detector output for further processing and analysis. Multiple coulomb scattering

of muons in the lithium hydride (LiH) MICE absorber has been studied in the presence

of magnetic fields using a convolution method, which has the advantage over typically

used deconvolution methods in that it does not depend on the chosen value of the reg-

ularisation strength parameter. It does, however, only allow comparison between data

and Monte Carlo, rather than direct extraction of the “true” scattering distributions.

The presence of magnetic fields – while providing significantly superior momentum res-

olution – introduces additional systematic errors, mainly due to the uncertainties the

field maps used.

The results of this analysis provide support for the use of convolution methods and

suggest that scattering algorithms in GEANT4 have significantly improved since the time

of MuScat (which was an experiment designed specifically to measure muon scattering in

a variety of materials). There is some indication, that they may have changed from vastly

overestimating to slightly underestimating large angle scatters though the uncertainties

on the final results are insufficiently small to make definite statements on this point.
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Chapter 1

Introduction

“Physics is really nothing more than a search for ultimate simplicity, but so

far all we have is a kind of elegant messiness.”

Bill Bryson

1.1 History of the Neutrino

1.1.1 Prediction & Discovery

The neutrino was first postulated by Wolfgang Pauli in a letter to colleagues at a physics

conference in Tübingen dated 4 December 1930[1]. In it, he proposed a new fundamental

particle – which at the time he dubbed the neutron – in order to explain the continuous

energy spectrum of β decay. He himself referred to the postulation as a desperate resort

to save the principle of conservation of energy as well as what is now known as the Pauli

Exclusion Principle and stated that at the time he did not dare to publish his idea before

receiving feedback about the feasibility of proving the existence of such a particle.

Further study of the energy spectrum of β decay in the following years – specifi-

cally evidence for a strict cut-off of the electron energy – provided growing support for

the existence of a neutrino, but it took another 26 years to achieve detection of neutri-

nos. In the Cowan-Reines neutrino experiment[2], antineutrinos from a nuclear reactor

interacted with protons in water tanks via the interaction

νe + p→ n + e+ (1.1)

with the resulting positron annihilating with an electron producing two gamma rays.

Additionally, the neutron was captured by cadmium in the water, producing a third

1



gamma ray. By timing the coincidence of the 3 gamma rays, it was possible to conclu-

sively determine the presence of neutrinos, a result that won Frederick Reines the Nobel

Prize in physics in 1995.

In 1962, Lederman, Schwartz, and Steinberger demonstrated the existence of the

muon neutrino by showing that the interaction of neutrinos from muon decays with

nucleons produced muons, but never electrons. This discovery earned them the Nobel

Prize in 1988.[3]

The tau neutrino finally was discovered in 2000 by the DONUT (Direct Ob-

servation of the NU Tau) experiment at Fermilab.[4] ντwere primarily produced from

DS → τ +ντ as well as the subsequent τ decays, and observed by the characteristic kink

from the decay of the τ produced in the interaction of the
(−)
ντ with the detector.

This discovery completed the set of 6 Standard Model leptons, as experimental

evidence strongly suggests the existence of exactly three neutrino flavours with mν <

mZ/2 (the combined fit from the experiments ALEPH, DELPHI, L3, and OPAL lies at

2.984±0.008)[5]. It is however still possible that additional types of neutrinos exist that

are either sterile (i.e. don’t participate in weak interactions), very heavy, or both.

1.1.2 The Solar Neutrino Problem & Neutrino Oscillation

The Homestake Experiment[6] in the late 1960 was one of the first experiments designed

to count the solar neutrinos produced in fusion reactions in the Sun’s interior. Located

4,400 m underground in the Homestake gold mine at Lead, South Dakota it used a de-

tector containing 390,000 litres of liquid tetrachloroethylene (C2Cl4) to detect neutrinos

from the capture reaction
37Cl + νe → 37Ar + e− (1.2)

The argon produced was extracted by bubbling the tank with helium and then separated

out via gas chromatography.

The experiment found a neutrino count significantly smaller than what was ex-

pected from experimental models, a result that was confirmed by experiments such as

Kamiokande-II[7], SAGE[8], GALLEX[9], Super-Kamiokande[10], and SNO[11], which

consistently measured rates between half and a third of what would have been expected

from the Standard Solar Model (SSM), a phenomenon that was named the “Solar Neu-

trino Problem”.

Additionally, studies of muon neutrinos from cosmic rays also found a deficit,

which the Super-Kamiokande experiment demonstrated to be a function of the zenith-

angle[12], i.e. the ratio of the number of detections from cosmic ray events on the far
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and the near side of the planet was significantly lower than expected.

All these results provided more and more support for neutrino oscillations – neu-

trinos changing their flavour as they propagate. The most crucial piece of evidence then

came from SNO in 2002[13]. Using a heavy water Cherenkov detector, the experiment

was able to detect three neutrino flavours via three different interactions, charged current

(CC), neutral current (NC), and elastic scattering (ES):

νe + d→ p+ p+ e− (1.3)

νx + d→ p+ n+ νx (1.4)

νx + e− → νx + e− (1.5)

where x = e, µ, τ .

While the CC interaction probed by SNO only occurs for νe, the NC interaction

has equal sensitivity for all flavours, whereas the ES interaction has reduced sensitivity

to νµ and ντ with respect to νe. By comparing the relative detection rates for the three

channels, SNO demonstrated the existence of non-νe solar neutrinos at a confidence level

of 5.3 σ, with the total number of detected neutrinos consistent with predictions from

the SSM[13]. As there is no known process by which the Sun would produce νµ or ντ ,

this provided proof for neutrino oscillation and solved the solar neutrino problem.

1.2 Neutrino Oscillations & Mass

The discovery of neutrino oscillations carried with it a significant implication for the

nature of neutrinos – that they must have non-zero mass. This is because oscillations

require that a neutrino propagates as a mass state that is not identical to its flavour

state. Thereby the flavour of the neutrino detected can differ from the flavour at creation

of the neutrino. In the following description, which follows [14], we will first calculate the

transition amplitude for the n flavour case and then proceed to the transition probability

in the case of n = 3.

For an arbitrary number n of orthonormal eigenstates we can relate the n flavour

eigenstates |να〉 to the n mass eigenstates |νi〉 via a single unitary mixing matrix U :

|να〉 =
∑
i

Uαi |νi〉 (1.6)
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conversely

|νi〉 =
∑
α

(
U †
)
iα
|να〉 =

∑
α

U∗αi |να〉 (1.7)

For antineutrinos:

|να〉 =
∑
i

U∗αi |νi〉 (1.8)

The mass eigenstates then propagate with time and position dependence as

|νi (x, t)〉 = e−ixµp
µ |νi (0, 0)〉 (1.9)

where

xµ = (t,x) , pµ = (E,p) (1.10)

As neutrinos are created and detected as pure flavour eigenstates, we can write

the state of a neutrino created as |να〉 at t = 0 using equations 1.6, 1.7, 1.9, and 1.10 as

|ν (x, t)〉 =
∑
i

Uαi |νi (x, t)〉

=
∑
i

Uαie
−iEit |νi (x, 0)〉

=
∑
i

Uαie
−iEiteipx |νi (0, 0)〉

=
∑
i,β

UαiU
∗
βie

i(px−Eit) |νβ〉

(1.11)

As can be seen from the phase factor ei(px−Eit), the flavour content of the neutrino

state changes as it propagates, as long as the masses of the |νi〉 states differ. Hence, as

mentioned above, oscillation implies that neutrinos have non-zero mass or more specifi-

cally, all mass states must have different masses i.e. at least two of the three mass states

have non-zero mass (see also equation 1.14).

We can thus write the transition amplitude between flavour states νανβ as

A (α→ β) (t) = 〈νβ|ν (x, t)〉 =
∑
i

U∗βiUαie
i(px−Eit)

=
∑
i

U∗βiUαi exp

(
−im

2
i

2

L

E

) (1.12)

where for the second line we have used the fact that neutrinos are ultra-relativistic and
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hence

Ei =
√
m2
i + p2i ' pi +

m2
i

2pi
' E +

m2
i

2E
(1.13)

and L = x = ct is the distance between neutrino source and detector.

The transition probability can then be calculated from |A (α→ β)|2 which for

the three-flavour case is given by

P (να → νβ) = δαβ − 4
3∑

i>j=1

< (Kαβ,ij) sin2

(
∆m2

ijL

4E

)

+ 4
3∑

i>j=1

= (Kαβ,ij) sin

(
∆m2

ijL

4E

)
cos

(
∆m2

ijL

4E

)
(1.14)

where Kαβ,ij = UαiU
∗βiU∗αjUβj and ∆m2

ij = m2
i −m2

j .

The matrix U is the Pontecorvo–Maki–Nakagawa–Sakat matrix UPMNS, with a

common parameterisation (for Dirac neutrinos; the case of Majorana neutrinos requires

two additional complex phases) given by:

UPMNS =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

iδCP

0 1 0

−s13eiδCP 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12s23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13


(1.15)

where the shorthand

sij = sin (θij) cij = cos (θij) (1.16)

has been used.

This matrix denotes the relationship between neutrino flavour and mass states asνeνµ
ντ

 = UPMNS

ν1ν2
ν3

 (1.17)

UPMNS is defined by a total of four parameters, which in the above representation

are the mixing angles θ12, θ13, and θ23, as well as the CP-violating phase δCP which as
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of yet has not conclusively been shown to be non-zero, though a best fit on current data

slightly favours sin (δCP) ' −0.9 and disfavours sin (δCP) ' +0.9 at almost 3 σ[15].

Due to the way the parameters appear in the oscillation equations, the sign of the

mass difference between to given neutrino mass states (∆m) is lost in the measurement.

As a consequence of this, the so-called mass hierarchy of neutrinos is currently unknown,

it could either be normal with small m1 and m2 and large m3 or inverted with small m3

and large m1 and m2 (see figure 1.1). Determination of the mass hierarchy is possible due

to the way it affects the relative oscillation rates of νµ → νe and νµ → νe while passing

through matter (which contains a vast excess of electrons as opposed to positrons) and

the normal hierarchy is favoured by recent results at ∼ 2.0 σ[16].

1.3 Current Experiments

2
1m

2
2m

2
3m

2
1m

2
2m

2
3m

?

2
12 m∆

2
23 m∆

?

2
12 m∆

2
13 m∆

eν

µν

τν

normal hierarchy inverted hierarchy

Figure 1.1: Illustration of normal and in-
verted neutrino mass hierarchy and flavour
content of mass states. ∆m2

13 � ∆m2
12, so

∆m2
13 ≈ ∆m2

23. Flavour composition drawn
as sin2 (θ12) = 0.304, sin2 (θ13) = 0.0219,
sin2 (θ23) = 0.51.

In the last two decades, the field of neu-

trino physics has grown significantly, both

in number and scope of active experi-

ments. The main focus of the field is

currently in the following areas: Precise

measurement of the neutrino mixing an-

gles, mass squared differences ∆m2
21 and

∆m2
31, and the CP violating phase δCP

(supported by neutrino cross section mea-

surements), determination of the absolute

neutrino mass scale and the neutrino mass

hierarchy (figure 1.1), and the question

whether the neutrino is a Dirac or Ma-

jorana particle (i.e. whether it is its own

antiparticle).

1.3.1 Neutrino Oscillation Parameters

Table 1.1 shows current global best fit neutrino oscillation parameters. In order to probe

the full parameter space, it is necessary to combine results from various experiments, as

no current experiment has sufficient sensitivity in all regions of interest. The following

description of the sources for the data on which the fit is based is based on [15].

sin2(θ12) and ∆m2
21 are primarily constrained by results from the KamLAND
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Parameter Best Fit (NH) Best Fit (IH)

sin2(θ12) 0.304± 0.014
sin2(θ13) (2.19± 0.12)× 10−2

sin2(θ23) 0.51± 0.05 0.50± 0.05
∆m2

21 (7.53± 0.18)× 10−5 eV2

∆m2
32 (2.44± 0.06)× 10−3 eV2 (2.51± 0.06)× 10−3 eV2

Table 1.1: Global best fit oscillation parameters as per [5]. NH and IH stand for normal
and inverted mass hierarchy respectively.

(Kamioka Liquid Scintillator Antineutrino Detector) experiment[17], an 18 meter diam-

eter liquid scintillator detector, whose νe flux primarily comes from 56 Japanese nuclear

power reactors surrounding it; as well as various solar neutrino experiments and the

SNO experiment.

Bounds on all three mixing angles, sin2(θ12), sin2(θ13), and sin2(θ23) as well as

both ∆m2
21 and ∆m2

32 can be obtained by combining this with data from long baseline

neutrino experiments, in particular from T2K[18, 19] and NOνA[20, 21]. T2K (Tokai

to Kamioka) uses a 295 km baseline between J-PARC in Tokai and Super-Kamiokande,

a 50 kt water Cherenkov detector. Two near detectors, one on-axis (INGRID) and one

off-axis (ND280) are used and the far detector is aligned 2.5° off-axis in order to achieve

a fairly narrow 0.6 GeV peak neutrino energy [22, 19]. NOνA uses a longer baseline (810

km) and higher energies (1-3 GeV) with a 14 kt far detector made of polyvinyl chloride

(PVC) extrusions filled with liquid scintillator. Both the far and the near detector are

aligned 0.84° off-axis.[20]

Significantly tighter bounds on sin2(θ13) and ∆m2
32 come from short baseline

reactor experiments, especially Daya Bay and RENO, both of which use gadolinium

doped liquid scintillator detectors to pick up the neutrino flux from nearby (less than

2 km) nuclear reactors.[23, 24] The combined dataset also allows some probing into the

phase space of δCP.

A further improvement finally comes from adding in atmospheric neutrino results

from Super-Kamiokande – the detector also used for the T2K experiment – and IceCube

DeepCore, a densely instrumented subsection of the IceCube detector in Antarctica

sensitive to lower energies than most of IceCube. These results predominantly help

constrain sin2(θ23) and ∆m2
32, but also provide some indication concerning the other

oscillation parameters.[25, 26]
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Figure 1.2: The DUNE beamline[28]

1.4 Next Generation Oscillation Experiments

Four next generation experiments are currently under development, designed to probe

the neutrino oscillation parameters at unprecedented precision, two long baseline (DUNE

and Hyper-Kamiokande), one medium baseline (JUNO), and one for atmospheric neu-

trinos (PINGU):

1.4.1 Deep Underground Neutrino Experiment (DUNE)

DUNE will send an extremely high intensity neutrino beam from the Long Baseline Neu-

trino Facility (LBNF) at Fermilab to a liquid argon time-projection chamber (LArTPC)

detector with a total fiducial mass of 40 kt at the Sanford Underground Research Facility

(SURF) – a beamline length of 1300 km. The near detector design is currently under

consideration. With regard to neutrino oscillations, DUNE’s primary aims are measure-

ment of θ23 and δCP, as well as the determination of the neutrino mass hierarchy. Within

the first 15 years of datataking, DUNE is expected to resolve θ23 to within 1° resolution

for the entire possible parameter range and δCP to within 5 %. A 5 σ result on the

neutrino mass hierarchy should be available after at most 8.5 years of data-taking for

the least favourable values of δCP.[27, 28]

1.4.2 Hyper-Kamiokande

Hyper-Kamiokande will use the same neutrino source, near detector, and 295 km beam-

line setup as T2K, though upgrades to the existing, or even new near detectors are

under review. The main upgrade with respect to T2K will be the far detector: One or

8



Figure 1.3: Schematic design of the first tank of the Hyper-Kamiokande detector. The
second tank (if constructed) may be placed at a different site.[30]

two tanks, each holding 258,000 tons of ultra-pure water and instrumented by 40,000

20” diameter PMTs, with an additional surrounding layer more sparsely instrumented

by 8” PMTs. The expected discovery potential for the scenario where a second detector

is build at a separate site in Korea 1.5° off-axis is a 5 σ result on CP violation for 60 %

of the possible values of δCP and rejection of the wrong mass ordering at 5 σ for all

possible values of δCP within 20 years at 1.3 MW beam power. More details regarding

the discovery potential for various possible scenarios can be found in [29].

1.4.3 Jiangmen Underground Neutrino Observatory (JUNO)

JUNO is a reactor neutrino experiment with an unusually long baseline of 53 km to

be constructed in Jiangmen, China. The detector design is not finalised, though one

proposed option can be seen in figure 1.4, using 20 kt of a linear alkylbenzene based

liquid scintillator as the main detector volume. A significant and currently unresolved

technical challenge is the required energy resolution of 3 %/
√
E(MeV). If successfully

constructed, 6 years of running will provide a 3 − 4 σ result on the neutrino mass

hierarchy, as well as better than 1 % resolution on sin2 θ12, ∆m2
21, and

∣∣∆m2
31

∣∣.[31]
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Figure 1.4: One proposed detector design for JUNO[31]

1.4.4 Precision IceCube Next Generation Upgrade (PINGU)

A relatively low-cost (compared to other next generation experiments) upgrade to Ice-

Cube, PINGU will add several thousand additional optical modules within the IceCube

DeepCore region to achieve higher particle rates and sensitivity to significantly lower

energy threshold (< 5 GeV). It aims to measure θ23 and ∆m2
32, as well as determine the

mass ordering to 3 σ within the first four years of operation. Within that time, a 90 %

C.L. for the octant of θ23 can be achieved for 0.46 . sin2 θ23 . 0.55 given a normal mass

hierarchy and 0.44 . sin2 θ23 . 0.57 given an inverted mass hierarchy.[32]

1.5 The Neutrino Factory

Current neutrino experiments – and even the next generation accelerator-based exper-

iments described above – are subject to limitations which severely limit performance

both in terms of statistics and systematic errors. These limitations are related to the

typical method of producing neutrinos: Protons are fired into a target producing a spray

of pions, which is sign-selected and focussed. The pions decay to muons and neutrinos

at which point the muons are filtered out of the beam by a beam dump. The neutri-

nos – mostly unimpeded – continue on to the detector(s). A neutrino beam produced

in this way has a very large transverse momentum spread and thus – especially for a
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Figure 1.5: Layout for a 25 GeV neutrino factory[33]

baseline of hundreds to thousands of kilometres – the neutrino flux at the detector will

be fairly low. Additionally, the exact spectrum of pions produced in proton interactions

with the target is somewhat poorly understood, which makes accurate calculations of

the produced neutrino spectrum difficult.

The proposed solution for these problems is the Neutrino Factory – a facility

that can produce well-defined neutrino beams of unparalleled intensity. Rather than

filtering out the muons produced in the pion decays and using the neutrinos, a neutrino

factory collects, focusses and accelerates the muons before placing them in a storage

ring. Neutrinos are then obtained from muon decay:

µ− → e− + νe + νµ µ+ → e+ + νe + νµ (1.18)

There are a number of significant technical challenges associated with the con-

struction of a neutrino factory – primarily the target system and cooling channel – which

are and have been the subject of significant R&D efforts. The neutrino factory baseline

as envisaged by the International Design Study for the Neutrino Factory (IDS-NF)[34]

is outlined below. The specifications have been optimised to produce 1014 decays of

∼ 25 GeV muons per second.
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Figure 1.6: Concept design for the liquid mercury jet target system[34]

1.5.1 Proton Driver

The proton driver for a neutrino factory needs to deliver a 4 MW beam of 5–15 GeV

protons to the target. Additionally, a specific timing structure is imposed, consisting of

three very short (1–3 ns RMS length) bunches separated by about 120 µs, which requires

a dedicated bunch compression system. Three proton driver designs are proposed, for

construction of a neutrino factory at CERN, FNAL, and RAL respectively. At CERN,

the beam would be delivered by a 5 GeV upgrade of the Superconducting Proton Linac

(SPL). FNAL would require an upgrade of the proposed Project X linac, which at base

specifications will have a beam power significantly lower than required. At RAL, the

neutrino factory would not be fed by a linac, but by an upgrade of the ISIS accelerator

ring.

1.5.2 Target

The significant required input beam power of a neutrino factory would quickly destroy

most conventional target systems. A free liquid mercury jet was proposed [35] to mitigate

this issue, with the mercury cycling through and being collected in a pool which at the

same time serves as a proton beam dump. In order to allow for the capture of both signs

of charged pions, the target system uses solenoid magnets creating a field that tapers

from 20 T to 1.5 T within a total target assembly length of 15 m. A side effect of the

strong magnetic field is a mitigation of the jet disruption created by the incident proton

beam, allowing for the desired 50 Hz repetition rate.

The total mercury flow speed is 20 m/s at a jet diameter of 8 mm, resulting in a

12



flow rate of 1.0 l/s. At this speed, the jet curvature due to gravity is negligible compared

to the jet diameter over two nuclear interaction lengths (≈ 30 cm) and each new beam

pulse (at a 20 ms separation) will encounter at least two nuclear interaction lengths of

target material undisturbed by the previous pulse.

1.5.3 Muon Front-End

The pions produced in the target travel along a decay and drift channel of 57.7 m length

where they decay as

π+ → µ+ + νµ π− → µ− + νµ (1.19)

with the analogous decay to electrons / positrons having a near-zero branching fraction

due to helicity suppression.

Additionally, the originally very tight pion bunches disperse due to their large

energy spread, resulting in a position-energy correlation of both pions and daughter

muons. The expected rate of muons at the end of the decay channel is about 0.4 of each

sign per incident 8 GeV proton.

The decay channel is followed by a buncher – which forms the muons into a bunch

train using RF cavities – and a phase-energy rotator. The latter exploits the position-

energy correlation created in the drift length to reduce the longitudinal momentum

spread by decelerating earlier bunches and accelerating later ones.

The final component of the muon front-end is the cooling channel. In it, the

emittance of the muon beam (a measure for the the phase-space volume it occupies) is

reduced by passing it through alternating layers of a low-Z absorber, which reduces the

beam momentum in all directions, and RF cavities, which increase the momentum in

beam-line direction only. This technique, called ionisation cooling, is used as conven-

tional cooling methods are too slow compared to the 2.2 µs lifetime of the muons and

is described in more detail in section 2.2. A neutrino factory requires the beam to be

cooled in 4 phase-space dimensions (i.e. transverse cooling), whereas for a muon collider

(see section 1.6), 6D cooling is required.

1.5.4 Acceleration

When exiting the cooling channel, the muons have a mean energy of 0.24 GeV. A linac

increases this to 0.9 GeV, making the muons strongly relativistic (γ ∼ 8.6), preparing

them for efficient acceleration in the following stages.

Next, the muons enter a set of two recirculating linear accelerators (RLAs) via

two double chicanes, increasing the energy to 3.6 and 12.6 GeV respectively. The RLAs

13
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have a “dog-bone” shape (see figure 1.5), facilitating the simultaneous acceleration of

muons of both charge signs. In each RLA, 4.5 acceleration passes are performed, with

each pass in RLA 1 providing 0.6 GeV and each pass in RLA 2, 2.0 GeV.

Final acceleration to the desired 25 GeV occurs in a fixed-field alternating gra-

dient accelerator (FFAG), where the muons perform a total of 11 passes before being

extracted by kicker magnets and passed into the storage ring.

1.5.5 Storage / Decay Ring

The storage / decay ring (see figure 1.7) is the final segment of the neutrino factory. One

of the straight segments is pointed at the far detector (angled into the ground at 18° (36°)
for a baseline length of 4000km (7500km)), whereas along the return straight the muons

undergo collimation, RF, and tune control. Alternative designs under consideration

allow counter-rotating µ+ and µ− beams, or use a triangular shape for two neutrino

beam directions. In addition to the challenging optical properties of the storage ring

arising from the requirement that the angular divergence of the muon beam be much

smaller (∼ 0.4 mrad) than the natural divergence of the resulting neutrinos due to

the kinematics of muon decay, precise instrumentation is also required to measure the

muon energy and polarisation, as well as beam divergence and current. For the beam

current, standard beam current monitors are sufficient, but the details regarding the

other measurements are still under investigation.

Design efforts for a strongly simplified version of a Neutrino Factory, a facility

called νSTORM (Neutrinos from Stored Muons), are currently ongoing. νSTORM would

rely entirely on established technology (most notably omitting the cooling channel) to

generate neutrino beams with similar characteristics as a Neutrino Factory (though of

course significantly lower intensity).[36]

14



1.6 Muon Colliders

Muon cooling can not only tremendously benefit the field of neutrino physics, it can

also be used to significantly push the boundaries of collider physics. For the probing

of electroweak interactions, lepton colliders offer a significant advantage over hadron

colliders in that they collide elementary particles with exactly defined initial states.

This leads to much cleaner collisions and thus higher precision measurements, as well

as having the entire particle energy – rather than only the parton energy – available for

interactions. In the case of electrons / positrons however, as is the case with all current

lepton colliders, this comes with a substantial drawback, as the energy achievable in

a lepton collider of realistic size is severely limited by synchrotron radiation, with the

classical energy loss per revolution δE[5] given by

δE =
4π

3

e2

R
β3γ4, (1.20)

where e is the particle charge, R is the radius of the accelerator ring, and β, γ are v
c and

the Lorentz factor, respectively, or

δE(MeV) ≈ 0.0885
[E(GeV)]4

R(m)
(1.21)

for the specific case of ultrarelativistic electrons or positrons. Hence to keep the energy

loss at feasible levels, one can either increase the radius of the ring (problematic due to

a high dependence of cost on the radius) or the mass of the lepton (as the factor of γ4

provides a mass dependence of m−4). Hence the idea of a muon collider, which – due to

the significantly higher mass of the muon – reduces synchrotron radiation by almost a

factor of 2× 109 with respect to an electron-positron collider of the same energy.

As mentioned in section 1.5.3, muon colliders and neutrino factories share the

problem that due to the short muon lifetime, single-pass cooling is necessary before the

muons can be accelerated to suitable energy, and in fact both facilities are essentially

identical up to the initial cooling step (see figure 1.8). A muon collider requires additional

6D cooling, and the acceleration requirements differ, but the overlap is large enough that

a neutrino factory can be considered the first stage of the construction of a muon collider.

A muon collider can also serve as a Higgs factory and would be uniquely suitable to

provide a precision measurement of the width and shape of the standard model Higgs

resonance [37], with the µµ → H cross section enhanced by a factor of
(
mµ
me

)2
with

respect to ee→ H.
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Figure 1.8: Conceptual block diagrams for a neutrino factory and a muon collider[37],
demonstrating the high proportion of shared elements. Note that a lower energy neutrino
factory than the International Design Study is depicted, and for an IDS-NF, there would
also be significant overlap in the acceleration segment (see also figure 1.5).
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Chapter 2

MICE

“We are stuck with technology when what we really want is just stuff that

works.”

Douglas Adams

An integral part of both a muon collider and a neutrino factory is the cooling

channel, a beamline segment that reduces the phase-space volume occupied by the muon

beam (i.e. its emittance) before it is injected into the storage ring or accelerator. The

Muon Ionisation Cooling Experiment (MICE) was constructed in order to demonstrate

a viable method of muon cooling in order to lay part of the groundwork for future

construction of such facilities.

2.1 Beam Emittance

The following discussion of beam emittance is based on information from [38, 39].

Particles in a beamline can be represented by their six-dimensional phase space

coordinates, e.g. as (x, px, y, py, s, E), where px, py are the transverse momenta, s is the

spatial coordinate along the particle’s trajectory, and E is the particle energy. Other

parameterisations are possible, and may be more convenient depending on the applica-

tion (e.g. using x′ and y′, the trajectory slopes, rather than px and py, and cp rather

than E). In linear beam dynamics, the coupling between the horizontal, vertical, and

longitudinal plane is typically sufficiently small to ignore, which allows us to treat the

three corresponding 2D phase spaces as independent. We can describe such a 2D phase

space as an ellipse (see figure 2.1) described by the equation

γtx
2 + 2αtxx

′ + βtx
′2 = ε (2.1)

17



where αt, βt, and γt are the Twiss parameters (also known as Courant-Snyder functions,

the subscript t is used to distinguish them from the relativistic β and γ) and ε (in units

of mm · rad) is the beam emittance and corresponds to the area of the ellipse divided by

π (some conventions include the factor of π in ε).

A special case of the emittance ellipse, namely for a quadrupole magnet, where

the tilt of the ellipse is 0, can be derived from Hill’s equation:

x′′ + k (s)x = 0 (2.2)

where k(s) is a coefficient describing the distribution of focusing strength and is periodic

on the scale of a beamline cell. This has a solution of the form

x =
√
β(s)ε cos [φ(s) + φ0] (2.3)

where β(s) and ε are equivalent to βt and ε from equation 2.1, φ′ = β−1, and φ0 is a

constant phase. Differentiating with respect to s, we obtain

x′ = − ε

β(s)
sin [φ(s) + φ0] +

[
β′(s)

2

]√
ε

β(s)
cos [φ(s) + φ0] (2.4)

Taking β′(s) = 0, this describes an ellipse with no tilt, semi-axes
√
εβt and

√
ε/βt

and area πε, corresponding to the shape of the general ellipse in figure 2.1, with αt = 0.

As transverse momentum decreases, transverse position increases and vice versa, i.e. a

focussing/defocussing effect.

From the geometry of ellipses it can be shown that the Twiss parameters are

correlated as

βtγt − α2
t = 1 (2.5)

According to Liouville’s Theorem [39], a beam that is only subject to conservative

forces – such as e.g. from multipoles or solenoids – has a constant phase-space (and

therefore constant ε). The individual values of the Twiss parameters are functions of

s (the position along the direction of the beamline), causing the ellipse to rotate and

skew, but the area of the ellipse is unaffected. The correlation between position and

momentum is set by the parameter α and is defined such that for α > 0 the beam

is converging and for α < 0 the beam is diverging. The physical size of the beam is

described by β: a larger β increases the physical extent of the beam but reduces its

momentum spread. γ is determined by α and β as given by equation 2.5. In a beam

transport lattice, the parameters are periodic, i.e. at equivalent points in each lattice
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Figure 2.1: A phase-space ellipse described by the parameters αt, βt, and γt. x is the
transverse spatial dimension and x′ its derivative with respect to the beamline direction.

cell, the values of all parameters will be identical.

When dealing with accelerated beams, since the coordinates x and x′ are not

canonical (i.e. they do not fulfil the fundamental Poisson bracket relations of Hamil-

tonian mechanics, which Liouville’s description is based on), Liouville’s Theorem does

not hold for the definition of emittance given in equation 2.1: the emittance appears

to shrink as the beam is accelerated. For this reason, an alternate definition of the

emittance, the normalised emittance εn is sometimes used, defined as

εn = βγε (2.6)

where γ is the Lorentz factor, and β = v
c . εn will remain constant even under accelera-

tion1.

2.1.1 RMS Emittance

Real particle beams are generally not sharply defined but have density distributions

which appear Gaussian. It is therefore useful to work with the RMS emittance εrms

which describes a phase-space ellipse containing all particles out to a certain number

of standard deviations of that Gaussian distribution. In the case of protons, εrms by

1Note that in the case of electrons in a typical accelerator, ε will not be constant as the particles will
radiate significant energy when accelerated and therefore Liouville’s theorem does not apply.
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convention describes a 2 σ spread. Since for electron machines safe aperture sizes are

much larger and more variable, 1 σ was the chosen convention to avoid ambiguity. This

is the convention that will be used in this document.

We define the RMS emittance as

εrms =

√
〈x2〉 〈x′2〉 − 〈xx′〉2 (2.7)

and the normalised RMS emittance as

εrms,n = βγεrms (2.8)

2.2 Ionisation Cooling

Beam cooling – i.e. a reduction of the beam emittance – is a requirement for many

particle accelerators and depending on the exact requirements and setup, a number of

different cooling methods can be used, such as stochastic cooling, electron cooling, or

laser cooling:

Stochastic cooling measures the displacement of the centre of charge of a beam at

one location in the beamline and then use this measurement to control a kicker

magnet at another location to counteract this displacement.

Electron cooling uses an electron beam of well-defined momentum to cool a proton

beam, as energy exchange between the two particle species results in the proton

beam converging to the momentum of the (constantly renewed) electron beam.

Laser cooling uses a laser tuned to a Doppler-shifted difference between two ion energy

levels to explicitly target particles of specific momenta.

Muon cooling presents a unique challenge, however, in that the short mean life-

time of the particles (∼ 2.2 µs) renders most methods (that aren’t already excluded for

other reasons, such as laser cooling which only works with ions) unusable, as a significant

fraction would decay before appreciable cooling has taken place. The proposed solution

is ionisation cooling, whereby the muons are passed through a low-Z absorber, where ion-

isation energy loss causes a reduction of all momentum components, and re-accelerated

by radio-frequency (RF) cavities, increasing the longitudinal momentum only. The net

effect is then a reduced transverse momentum spread at constant total momentum (see

figure 2.2). Longitudinal cooling can also be achieved, by dispersing a beam across a

wedge absorber, such that higher momentum muons will pass through more absorber
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Figure 2.2: Illustration of the mechanism of ionisation cooling. The dashed black arrow
represents the particle’s momentum vector before cooling, the green arrow the resulting
vector due to the indicated physical processes.

material. Ionisation cooling is not feasible for most other particles, as hadronic interac-

tions in the material (for hadrons) and bremsstrahlung (for electrons) would adversely

affect cooling performance.[39]

While the absorber material is chosen in order to minimise multiple scattering,

some degree of beam heating (i.e. an increase in emittance) in the absorber is unavoid-

able. The net cooling effect is thus determined by the interplay of cooling and heating

in the absorber, and is given by the ionisation cooling equation (first put forward in [40],

used in the MICE technical design report [41], and with a fit parameter of 13.6 MeV

taken from [5]):

dε

ds
=

(
−ε
β2E

〈
dE

ds

〉)
cooling

+

(
β⊥ (13.6 MeV)2

2β3EmµX0

)
heating

(2.9)

where E is the beam energy, β = v
c , β⊥ is the transverse beta function (i.e. one of the

Twiss parameters, described above), mµ is the muon mass, and X0 is the radiation length

of the material. The parameter of 13.6 MeV comes from a Gaussian approximation to

a Coulomb scattering fit according to the Molière theory (discussed in more detail in

section 4.1.3).

From this we can obtain the equilibrium emittance of the beam where dε
ds = 0, i.e.

the lowest possible emittance that can be achieved with the given absorber and beam

parameters:

εeq = −β⊥ (13.6 MeV)2

2βmµX0

〈
dE
ds

〉 (2.10)

Hence to optimise the performance of the cooling channel (achieve maximal focussing),

we want to maximise radiation length and energy loss in the absorber (which prescribes

low-Z absorber materials) and minimize the transverse beta function of the beam. It

should be noted that if longitudinal beam emittance is a concern, an additional heating
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factor due to energy straggling has to be considered.

2.3 MICE Target & Beamline

2.3.1 The ISIS Proton Synchrotron

ISIS is fed by an ion source that produces H− ions, which are then passed into a

202.5 MHz radio-frequency quadrupole (RFQ) to shape the beam into discrete bunches

with a separation of 4.94 ns. The following linac uses RF cavities to accelerate the beam

to 70 MeV, providing 200 µs pulses to the synchrotron, where an aluminium oxide foil

strips off all electrons. Once the ring is filled, the RF system shapes the beam into two

bunches which are then accelerated to 800 MeV over about 10,000 orbits and finally

sent to the two ISIS target stations by a kicker magnet. The whole process occurs at a

repetition rate of 50 Hz, so the ring is filled and emptied every 20 ms.[42]

2.3.2 The Target

MICE runs parasitically off the ISIS proton beam by dipping the MICE target – a

cylinder of inner radius 2.275 mm and outer radius 2.975 mm forming the end of a 528

mm long titanium rod – into the ISIS beam halo. In order to only sample protons at

close to maximum energy, the target may enter the beam only for the last 1-2 ms of the

10 ms beam cycle. Due to the shrinking of the beam during the cycle as well as the
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dip depth necessary to create the required muon flux, this results in a minimum travel

distance of 24 mm at an acceleration of around 900 ms−2. The required driving force is

Figure 2.4: Schematic of the MICE target
assembly[43]

provided by a linear actuator consisting of

sintered neodymium-iron-boron magnets

on the target shaft placed inside a twenty-

four coil stator.

Operation under these parameters

can cause significant wear, frictional heat-

ing, and dust-production, thus minimis-

ing the coefficient of friction between shaft

and bearings is crucial. As an added

complication, the vacuum environment of

the target prohibits the use of lubricating

films. Vespel® SCP-5000 – a radiation-

hardened polyimide – was chosen for the

bearings, while the contact surfaces on

the target shafts itself were coated in

Diamond-like carbon (DLC).

The position of the target is measured via an optical vane read out by three

fibre-coupled solid state lasers. The vane has 157 slots of width 0.3 mm providing

a measurement resolution of 150 µm. Using this readout, the dip depth can be set

remotely via a parameter referred to as beam centre distance (BCD) – the distance of

the tip of the target from the nominal beam centre. Detailed information about the

MICE target can be found at [44].

A single dip of the target will typically result in tens of particles being captured

in the MICE beamline, though these are then separated out by the trigger system into

triggers containing usually only a single particle (see also section 3).

2.3.3 Beam Magnets

Particles produced in the target are captured by a quadrupole triplet (Q1–3) and pass

through two dipole magnets (D1 & D2) for momentum selection which sandwich the so-

called decay solenoid (DS). Transport to the cooling channel then occurs via two further

sets of quadrupole triplets (Q4–9). A summary of the beamline positions, effective

lengths, and maximum fields/field gradients for the magnets is given in table 2.1 and a

schematic of the beamline in figure 2.3.
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Quadrupoles

Q1–3 are Type-IV quadrupoles originally used in the NIMROD synchrotron between

1964 and 1978. They feature an effective circular aperture of 101.5 mm radius and are

each powered by a 200 A, 30 V power supply. The section of the beamline passing

through Q1-3 is contained within an aluminium vacuum pipe.

The other two sets of quadrupole triplets, Type QC quadrupoles, were previously

used on DESY. They are powered by 400 A, 70 V power supplies and each have an

effective circular aperture of 176 mm radius.

Dipoles

D1 & D2 are NIMROD Type-1 dipoles with horizontal and vertical apertures of 508 mm

and 152 mm respectively. Together, they are used to select the momenta of both the

particles (mostly pions) entering, and those (mostly muons) exiting the decay solenoid.

D1 bends the beam by about 60° and is powered near yoke saturation by a power supply

limited to 440 A, 240 V. D2 bends the beam by a much shallower angle (∼ 30°) and is

powered by a significantly weaker 200 A, 100 V supply. By changing the relative field

strengths of the two dipoles, it is also possible to select between pion mode – where

the momentum selection of both dipoles is the same – and muon mode – where the

momentum selection of D2 is about half of that of D1 – which only select backwards-

decayed muons and almost entirely eliminates pion contamination:

For a backwards-decaying muon from pion decay, the momentum in the lab frame

is given by (in natural units):

p′µ = γ (vπEµ − pµ)

=

√
p2π +m2

π

mπ

 pπ√
p2π +m2

π

m2
π +m2

µ

2mπ
−

√(
m2
π +m2

µ

2mπ

)2

−m2
µ

 (2.11)

where the order of terms in the Lorentz transform has been reversed from the common

form to account for the relative directions.

MICE operates in a pion momentum range roughly around mπ < pπ < 3.5mπ.

Setting pπ = xmπ (where x is a scaling variable), and evaluating the constant terms, the

above equation simplifies to

p′µ ≈
√

1 + x2
(

x√
1 + x2

109.8 MeV − 29.8 MeV

)
(2.12)
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Magnet
Distance from target Leff Max field/gradient

(mm) (mm) (T) (T/m)

Q1 3000.0 888 - 1.6
Q2 4400.0 888 - 1.6
Q3 5800.0 888 - 1.6
D1 7979.1 1038 1.6 -
DS 12210.7 5000 5.7 -
D2 15808.1 1038 0.85 -
Q4 17661.6 660 - 2.3
Q5 18821.6 660 - 2.3
Q6 19981.6 660 - 2.3
Q7 25293.7 660 - 2.3
Q8 26453.7 660 - 2.3
Q9 27613.7 660 - 2.3

Table 2.1: Summary of the MICE beamline magnets.[43] The distance from target is
measured along the nominal beam axis.

For the aforementioned momentum range, this implies 0.48pπ . p′µ . 0.56pπ,

i.e. a momentum selection of D2 approximately half that of D1. Due to some technical

issues causing a reduced particle rate such as the failure of one of the tracker matching

coils (see section 2.5.4) and intermittent availability of the decay solenoid, MICE is

currently operated in pion mode, which provides higher statistics while the increased

pion contamination can be compensated for due to the stronger time-of-flight separation

between muons and pions compared to muon mode.

Decay Solenoid

The decay solenoid (DS) is the only superconducting magnet in MICE outside of the

cooling channel. Its purpose is to increase the muon flux by decreasing the amount of

particles that will exit the beamline transversely. Originally used in the µE4 beam (a

low energy muon beam at the Paul Scherrer Institute in Switzerland), the solenoid has

an aperture radius of 57.5 mm and in MICE is typically operated at a current of 870 A,

well below its rating of 1000 A, to produce a 5 T operating field.

Detailed information about the MICE beam magnets can be found at [43].

2.3.4 Proton Absorber

When running with positive beam polarity, a significant proton flux can reach as far

down the beamline as the first time-of-flight detector, TOF0, resulting in a large proton
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background in the detector. To reduce this background, borated polyethylene sheets

can be lowered into the beamline between the decay solenoid and D2 in order to absorb

protons (as well as some neutrons), while having a limited effect on pions and muons

due to their differing energy loss behaviour in the material. There are four sheets of

thicknesses 15 mm, 29 mm, 49 mm, and 54 mm, which can be independently lowered

into the beamline thereby providing a range of total thicknesses up to 147 mm of material,

depending on the expected momentum ranges due to the settings of D1 & D2. 147 mm

of borated polyethylene are sufficient to stop protons with momenta of up to ∼ 500

MeV/c. [43]

2.3.5 Diffuser

Irises

Optical
sensors Pneumatic

actuators

Figure 2.5: Model of the MICE Diffuser[43]

As the aim of MICE is to measure a re-

duction in beam emittance, it is important

that the emittance of the incoming beam

can be accurately controlled. For this

purpose, a diffuser consisting of 4 irises

that can be individually opened and closed

is placed in the beamline just before the

first scintillating fibre tracker (see section

2.5.4). The materials and thicknesses of

the irises (2.97 mm brass, 5.94 mm brass,

2.80 mm tungsten, 5.60 mm tungsten) are

chosen such that the total material inserted into the beamline can be set to up to 3 radi-

ation lengths (X0) in steps of 0.2 X0. The diffuser is operated by an air-driven actuator,

as operation by electric motors would not be possible in the 4 T field of the upstream

spectrometer solenoid (see section 2.5.4) in which it is located.[43]

2.3.6 Partial Return Yoke

To mitigate the stray fields produced by the spectrometer solenoids housing the scin-

tillating fibre trackers (section 2.5.4), a partial return yoke encloses the entire cooling

channel, including both tracker assemblies on four sides (i.e. except for top and bottom,

hence “partial” return yoke) in around 60 tonnes of low carbon steel.
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Figure 2.6: Design of the MICE partial return yoke[45]

2.4 Cooling Channel

2.4.1 Step IV Configuration

The Step IV configuration of MICE does not provide for re-acceleration of muons and

only contains a single absorber station. The absorber can be switched out between runs,

so that data taking can proceed with both liquid hydrogen (contained in a 21 litre,

thin aluminium vessel, figure 2.7a) and lithium hydride (in the form of a 65 mm disk,

figure 2.7b). The possibility of inserting a wedge-shaped absorber, which would allow 6D

cooling, is under investigation. Due to the difficulty of manufacturing a lithium hydride

absorber in this shape, the wedge absorber would consist of polyethylene, which offers

slightly worse cooling performance.

The so-called absorber focus coil (AFC) (figure 2.7a) actually consists of two

superconducting magnet coils in an assembly designed to both house the absorber itself

and – in the case of the liquid hydrogen absorber – provide the connection to the liquid

hydrogen system. The coils themselves can have their polarities set individually, thus

allowing MICE to run both in “solenoid mode” – where the direction of the magnetic field

is uniform throughout the beamline – and “flip mode” – where the direction flips in the

centre of the absorber (with the downstream tracker solenoid consequently switching

polarity as well). Solenoid mode requires lower currents to operate at sufficient field

strength, but for an extended cooling channel consisting of many cells (as would be

required in a neutrino factory of muon colider) it would result in canonical angular

momentum growth and thus a mismatch of the beam to the lattice.
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(a) Schematic of the absorber focus coil assem-
bly with the liquid hydrogen absorber [46]

(b) Lithium Hydride absorber disk

Figure 2.7

μ

μ

μ

Figure 2.8: MICE steps IV, V, and VI as originally planned where each step after VI
adds an additional absorber as well as an RF module consisting of four RF cavities.

2.4.2 Demonstration of Ionisation Cooling

In order to demonstrate sustainable muon ionisation cooling, i.e. a loss in emittance

without an associated loss in total momentum, re-acceleration of the muons is required.

To that end, MICE was originally envisaged to culminate in what was designated Step

VI, with a cooling channel consisting of three absorbers and two RF cavity modules

28



Primary
lithium-hydride

absorber

Secondary
lithium-hydride

absorber

201 MHz
cavity

201 MHz
cavity

Secondary
lithium-hydride
absorber

Electron
Muon

Ranger
(EMR)

Pre-shower
KLOE light (KL)

ToF 2

Time-of-flight
hodoscope (TOF)

(ToF 0)

Cherenkov
counters
(CKOV)

ToF 1

MICE
Muon
Beam
(MMB)

Upstream
spectrometer module

Downstream
spectrometer module

Focus-coil
module

Scintillating-fibre
tracker

Variable thickness
high-Z diffuser

Focus-coil
module

Scintillating-fibre
tracker

4th January 2017

MICE

M1 M2 E1 E2C

M1M2E1E2 C

Figure 2.9: “Demonstration of Ionisation Cooling” configuration of the MICE
beamline[47]

(figure 2.8). A number of delays, partly due to faulty components, as well as the US

Department of Energy’s decision to cease US involvement in MICE in 2017, followed by

decisions of other agencies not to extend funding of MICE, resulted in a redesign of the

beamline for the planned “Demonstration of Ionisation Cooling” (figure 2.9). The new

design contains two single RF cavities and three lithium hydride absorber disk, placing

the focus coil modules that would have been used for two liquid hydrogen targets in

between the absorber disks.

Primary

lithium-hydride

absorber
201 MHz

cavity

Secondary

lithium-hydride

absorber

Electron

Muon

Ranger

(EMR)

ToF 2
Focus-coil

module

Scintillating-fibre

tracker

Figure 2.10: Downstream section of the de-
scoped “Demonstration of Ionisation Cool-
ing” configuration of the MICE beamline[47]

The failure of one of the matching

coils in the downstream tracker led to the

design of a descoped version of this con-

figuration (figure 2.10) which entirely re-

moves the downstream tracker coils and

could provide a cooling demonstration at

very low cost. This descoped beamline

would contain a single RF cavity as well

as one of the focus coil modules, sand-

wiched between two lithium hydride ab-

sorber disks. The downstream tracker

would be modified to only consist of three

stations without a magnetic field and the

KL (see section 2.5.5) would be removed to improve the momentum reconstruction of the

EMR, since the straight tracks in the downstream tracker would provide no momentum

information. Funding for either of these configurations is currently being sought.
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2.5 Detectors

2.5.1 Luminosity Monitor

The luminosity monitor is the only MICE detector not actually placed in the MICE

beamline but inside the ISIS ring 10 meters from the target and at an angle to it equal

and opposite to that of the first section of the MICE beamline (see figure 2.11b). It

provides a measurement of the particle rate in MICE independent of the beam loss

monitors installed in the ISIS ring. The monitor itself consists of two scintillator pairs

read out by photomultiplier tubes, separated by a 150 mm thick sheet of polyethylene

that shields out low-energy protons and pions. Coincidence counts of both pairs, as well

as of the whole four scintillator system are recorded to determine the particle rate.[48]

2.5.2 Time-of-Flight Detectors

The time-of-flight detectors (TOFs) primarily provide PID discrimination by measuring

the particle speed which – together with the approximate momentum as set by the

dipole magnets (section 2.3.3) as well as the measured momentum in the upstream

tracker (section 2.5.4) – can be used to estimate the particle mass and thus particle

type. Furthermore, TOF1 is typically used as a trigger, though if needed other detectors

can be used for this purpose as well.

All TOFs have a similar layout, consisting of two planes of 25 mm thick scintillator

bars (40 mm wide for TOF0, 60 mm wide for TOF1 & TOF2) arranged horizontally and

vertically, respectively (see figure 2.12). Flat fish-tail PMMA lightguides are then used

to direct the scintillation light into R4998 Hamamatsu photomultiplier tubes (PMTs) at

both sides of each bar.[49, 50].

The TOF detectors all provide timing resolutions between 50 and 60 ps.[51]
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(a) The MICE Luminosity Monitor, adapted from [48]
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(b) The position of the Luminos-
ity Monitor in the beamline (c.f.
figure 2.3)

Figure 2.11
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Figure 2.12: Schematic of the time-of-flight detectors. From left to right TOF0, TOF1,
TOF2
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2.5.3 Cherenkov Detectors
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Figure 2.13: Cherenkov threshold curves for elec-
trons, muons, and pions in both detectors. Four mo-
mentum ranges are marked which provide different
PID separation. Figure adapted from [41]

The Cherenkov detectors are pri-

marily designed to provide µ-π

separation in the higher momen-

tum ranges, where TOF separa-

tion is not sufficient for conclu-

sive particle identification. In

order to provide separation over

a large range of momenta, two

aerogel Cherenkov detectors (Ck-

ovA & CkovB) with refractive in-

dices n = 1.07 and n = 1.12 are

used. They are each read out by

four 200 mm EMI9356KA PMTs

and placed directly one after an-

other in the beamline. Their re-

spective thresholds provide dif-

ferent responses in four distinct

momentum ranges (see figure

2.13). Below the CkovB muon

threshold of about 209 MeV/c,

where there is no µ-π separa-

tion, the TOFs provide good sep-

aration (e.g. ∆tTOF1/0 ≥ 2ns)

whereas the momentum range above the CkovA pion threshold (≈ 306 MeV/c) is outside

of the MICE running parameters.[41]

2.5.4 Scintillating Fibre Trackers

The scintillating fibre trackers on either side of the cooling channel form the most com-

plex and important part of the detector system. They provide precise position and

momentum information, thereby allowing the emittance of the beam before and after

the cooling channel to be calculated.

Each tracker consists of five scintillating fibre stations (see figures 2.14a and

2.14b) mounted on a carbon fibre frame at varying spacing (20, 25, 30, and 35 cm) in

order to eliminate degeneracy in the path reconstruction, placed inside a 4 T magnetic
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field.

The field is provided by a number of superconducting coils; a centre coil flanked

on both sides by end coils, producing a field inside the detector volume uniform to within

0.3 %, and two matching coils two match the field to that of the absorber focus coils

(see section 2.4.1). The magnet assembly of each detector consists of a total of 55,346

m of superconducting wire inside a 1390 kg cold mass, cooled to 4.2 K by two cryogenic

coolers. Due to a fault in one of the matching coils of the downstream tracker in 2016,

the downstream matching coils are not powered, resulting in lower transmission.

Station 5
Station 4

Station 3
Station 2

Station 1

yt

xt

zt

(a) Schematic of a tracker frame. The z-orientation corresponds to that of the downstream
tracker. [52]

(b) Schematic of the arrangement of the tracker planes and coils. Coils are black, fibre planes
light blue. The centre coil is surrounded by two end coils and there are two matching coils at the
end of the tracker assembly facing the cooling channel. Total distance between the outermost
fibre planes is 110 cm.

Figure 2.14

Every tracker station contains three doublet layers of 350 µm scintillating fibres,

doped with (by mass) 1.25 % para-terphenyl (pT) and 0.25 % 3-hydroxflavone (3HF).

The layers are oriented at 120° towards each other, producing a partially degenerate

internal coordinate system (see figure 2.15a). The arrangement of the fibres within a
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(a) The arrangement of the
layers in a tracker plane
forming the u-v-w internal
coordinate system. [53]

213.5

627.3

277.3
350
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(b) Cross-section of part of a tracker plane. Marked are
fibre-spacing and pitch as well as the the pattern of the
seven-fibre grouping read out by a single light-guide. [53]

Figure 2.15

layer which can be seen in figure 2.15b ensures there is no dead inactive area within

the layer that a particle could pass through. Every doublet layer consists of a total of

1491 fibres (1477 for the “u” view) connected in groups of 7 to a single 1.05 mm clear-

fibre light guide, resulting in 213 (211 for “u” view) channels per layer and a 470 µm

spatial resolution per layer. The instrumented radius is approximately 160 mm with a

fiducial radius of 150 mm. The fibres are mirrored on the other end to maximise light

yield. Layers are separated by 25 µm Mylar sheets to eliminate cross-talk between them.

Read-out is done by high-gain visible light photon counters cooled to 9 K.

For details about track reconstruction in the MICE trackers, see section 2.6.3.

For additional information about their design and construction, refer to [53].

2.5.5 KLOE-Light Calorimeter
1.35 mm

0
.9

8
 m

m

1 mm

Lead             Fibre

Figure 2.16: Schematic layout of
scintillating fibres and extruded
lead in the KL

The KLOE-Light Calorimeter (KL) is a sampling

calorimeter based on the design of the electromag-

netic calorimeter of the KLOE experiment in Italy

[54]. It consists of scintillating fibres sandwiched

between extruded lead foils in a volume ratio of

∼ 2 : 1 (see figure 2.16) using significantly thinner

lead foil than in the KLOE detector – hence the

name KLOE-Light.

The fibres are arranged in 21 horizontal cells
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(thus also providing very coarse y position information) read out on both sides by Hama-

matsu R1355 PMTs. The KL’s main purpose is to distinguish between muons and decay

electrons, though at lower energies, the discrimination is relatively poor.[51, 55]

2.5.6 Electron Muon Ranger

(a) The active volume of the EMR [56]

(b) Arrangement of the triangular
EMR bars. In the centre of each bar
is a wavelength-shifting fibre glued in
with epoxy. [57]

Figure 2.17

The Electron Muon Ranger (EMR) is a fully active scintillating tracking calorime-

ter which constitutes the downstream end of the MICE beamline. Its main purpose is

to distinguish between electrons and muons, though for low- and medium-energy muons

which are stopped in the detector, it also provides an energy estimate from the range.

Two main discrimination variables are used, plane density (i.e. what proportion of EMR

planes between the first and the last hit contain hits from a particle) and shower spread;

with especially the former displaying excellent performance. In a multivariate analysis

of both, the averaged muon selection efficiency over typical MICE beam settings was

found to be > 99% with a purity > 99.8%.[57] The EMR has a total active volume of

nearly 1 m3, consisting of 48 planes, alternating between horizontal and vertical orien-

tation, each made up of 59 tessellated triangular scintillator bars. A pixel can thus be

reconstructed from hits in two adjacent planes, providing the x and the y coordinate

respectively. Each bar contains a wavelength-shifting (WLS) fibre and is read out on

one end by a pixel of a 64-channel multi-anode photo-multiplier tube (MAPMT), on the

other end jointly with all other bars in the plane by a conventional PMT.[57]
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2.6 Software Framework

The MICE Analysis User Software (MAUS) is a bespoke software framework used by

MICE and replaces the previously used G4MICE.

2.6.1 Software Elements

MAUS is intended as a full-featured package, designed to handle Monte Carlo (MC)

simulation and digitisation, detector reconstruction for both MC and real data, as well

as analysis:

Beam Generation

Simple beams can be created using a number of different configuration options to spec-

ify the constituent particle species, as well as momentum distributions. More complex

beams can be created by using an external package such as G4Beamline to generate par-

ticles at the target and propagate them all the way to the beginning of the instrumented

section of the beamline, at which point the output file can be read in by MAUS for

further processing. It should be noted that measurements in MICE are mostly decou-

pled from the large uncertainties of current hadronic models, as particles in the beam

are individually measured before and after the cooling channel, making the initial pion

distribution at the target largely irrelevant.

Geometry

MICE geometries are stored in an online configuration database (CDB) from which

specific geometries can be retrieved by run number or by a combination of geometry ID

and tags to specify the magnet currents and cooling channel. The geometries themselves

are generated from CAD drawings and survey data (with the detector geometries created

manually), and are stored in Geometry Description Markup Language (GDML), a subset

of XML developed specifically for particle physics geometries. Internally, the geometries

are also converted into a MAUS-specific geometry format.

Simulation

Simulation of beams within MAUS is performed by GEANT4, which is included as a

third party library. Particles are propagated individually through the beamline geometry

and MC truth data stored for every propagation step within a detector volume and at

virtual planes which can be defined in the geometry. Both the physics model for particle
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interactions with beamline material and the physics processes particles will be subjected

to during propagation are configured using MAUS settings.

Detector responses are simulated to convert energy deposition into an analogue

signal equivalent to that produced by real data, taking into account physics processes

occurring both in the optical material (photon yield, attenuation) and in the readout

electronics.

Reconstruction

At the reconstruction step, detector output – whether from simulations or real data – is

converted into space points (containing a subset of parameters defining the hit depending

on the detector) and – in the case of Trackers and EMR – tracks made up of several

points including momentum parameters derived from the properties of the track. Global

track reconstruction – described in detail in chapter 3 – then determines which space

points and tracks belong to the same particle and produces tracks spanning the entire

instrumented beamline.

During data-taking, online reconstruction processes the raw data as it is being

recorded and produces histograms to enable short-turnaround diagnostics of possible

issues.

Analysis

Analysis on processed datasets can be performed either directly in MAUS or with exter-

nal scripts which selectively load only the required MAUS components.

2.6.2 Framework Design

Data Structure

Data in MAUS is grouped into spills where for real data, one spill corresponds to one

dip of the target. Depending on the type of data (real or simulated) and to what degree

it has been processed, a spill can contain DAQ data or a number of MC events, as well

as reconstructed events. Each of these then branches off into events for the different

detectors, hits, coordinates, etc., as appropriate.

Modular Architecture

At its core, MAUS is made up of modules and uses a dataflow similar to the map-reduce

[58] model. There are four types of modules in MAUS:
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Inputters create spills, either from existing data in an input file, or empty spills to be

filled by MAUS’ internal beam generation.

Mappers modify spills on a spill-by-spill basis (allowing parallelised reconstruction).

MC simulation, as well as local and global reconstruction are all performed via

mappers.

Reducers act on a collection of spills to produce histograms and other aggregated data

sets.

Outputters output processed data in the chosen data format.

Programming Languages

MAUS is written in Python and C++. Python provides the frontend (configuration files,

executables, etc.) as well as some high-level algorithms, while the bulk of processing code

is written in C++ to maximise performance.

Data Formats

Two main data formats are supported by MAUS: ROOT (binary) and JSON (ASCII).

Conversion is handled in such a way that all references between objects are maintained.

Originally, JSON was used to pass data between modules as well, though this was phased

out in favour of the internal C++ data format in order to avoid costly string conversions.

2.6.3 Detector Reconstruction

Following is a description of the local reconstruction performed by the various detectors

along the MICE beamline. A detailed description of global track reconstruction can be

found in chapter 3.

TOFs

First, the TOF reconstruction evaluates slab hits and discards any hits that do not have

a readout from the PMTs on both sides. For hits that pass this condition, readouts

from both sides are averaged to determine the time and charge deposit associated with

the hit. All possible combinations of hits in x and y slabs are then considered as space

point candidates and calibration corrections used to determine which of these will pass

as valid space points.
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Cherenkov Detectors

For each charge deposition pulse, the Cherenkov reconstruction identifies the times t1

and t2 where the ADC value crosses a threshold, i.e. the approximate beginning and end

times of a pulse, and then integrates the charge deposit for t1 − 8 ns ≤ t ≤ t2 + 16 ns.

A photoelectron count is then obtained from the charge deposit by pedestal subtraction

and normalisation.[59]

Trackers

Tracker reconstruction proceeds in five steps: First, ADC data is recorded and channel-

by-channel calibrations applied to form digits, i.e. hits in individual tracker channels.

Digits in neighbouring channels are then combined by a clustering algorithm and aver-

aged to determine a plane coordinate in the corresponding tracker view (u, v, or w, see

section 2.5.4).

Next, space points – with a z coordinate provided by the location of the tracker

plane and the x and y coordinates calculated from the view coordinates – are recon-

structed from clusters in the three views of the tracker. Initially, all possible triplet

space points (i.e. formed from clusters in all three views) are determined by using the

geometric fact that the sum of channel numbers for any triplet space point will be the

same.2 Remaining clusters are then formed into doublet space points (which can still

provide full spatial coordinates, though at a lower precision).

Pattern recognition is then performed on the created spacepoints by fitting straight

lines (in the absence of magnetic fields in the spectrometer solenoids) or helices to the

space points and returning the track candidate with the smallest χ2. Pattern recognition

will first only look for tracks with hits in all five tracker stations, followed by tracks with

hits in only four tracker stations.

Finally, a track fit is performed using a custom Kalman fitter, taking into con-

siderations physical processes such as energy loss and multiple Coulomb scattering.[60]

2This can be shown by writing in polar coordinates

u+ v + w = r

[
cosφ+ cos

(
2π

3
− φ

)
+ cos

(
4π

3
− φ

)]
= 0

which implies that the sum of the fibre numbers corresponding to any point in the tracker plane is equal
to the sum of the fibre numbers of the central fibres in the plane.
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KL

KL reconstruction is similar to TOF reconstruction, though due to the KL only being

segmented in the y coordinate, a spacepoint is created whenever there is a readout from

the PMTs on both sides of a slab. During global reconstruction, if a trigger contains

spacepoints in multiple slabs, adjacent spacepoints are combined with the y position of

the resulting spacepoint being the average of the constituent points weighted by charge

deposition.

EMR

Each hit in an EMR slab provides two spatial coordinates (yz or xz depending on

whether the hit is in a horizontal or a vertical plane), given by the centre of gravity

of the triangular slab which recorded the hit. A polynomial fit is used to generate

tracks from the recorded hits and some additional information is extracted from the hit

distribution, most notably the plane density which shows the proportion of planes along

the path of a particle that contain hits. It is a strong PID variable for distinguishing

between electrons and muons, as muons will produce plane densities near one, whereas

the shower nature of electron interactions result in significantly lower plane densities.

2.7 Outlook

MICE Step IV has been consistently producing large amounts of data for over two years

now. While the most crucial part of the experiment is evaluating the behaviour of the

beam inside an absorber, to fulfil its physics goals of demonstrating sustainable muon

ionisation cooling, it is necessary to include re-acceleration in the MICE beamline. Two

beamline configurations with different associated costs, risks, and performance have been

proposed and funding is currently being sought.
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Chapter 3

Global Track Reconstruction

“If debugging is the process of removing bugs, then programming must be the

process of putting them in.”

Edsger W. Dijkstra

A high precision – O(10%) – measurement of a change in beam emittance, which

isn’t possible with conventional bulk measurement techniques, requires MICE to operate

as a single particle experiment, i.e. each trigger should contain detector hits from only a

single particle. This provides significantly more detailed information about the particle

behaviour in the beamline, but comes at the cost of having to ensure that detector hits

are only produced by a single particle. Since the stochastic nature of the beam results

in a nonzero chance of multiple particles within a trigger window, tracks from multiple

particles have to be separated from each other before identification and fitting can be

performed. Global track reconstruction thus consists of three steps, track matching

(section 3.2), particle identification (section 3.3), and track fitting (section 3.4).

3.1 Global Data Structure

As every detector provides a different set of measurements, each detector group devised

their own data structure in order to represent the various data provided by the detector

and/or generated by the local reconstruction routines. For producing global tracks, it

then becomes necessary to insert the locally reconstructed data into a uniform data

structure that can contain all the information relevant for analysis. The following is a

brief overview of this data structure. Details can be found in the MAUS documentation

[61].

41



Track Points correspond to the state of a particle at a specific location in the beam-

line. There will typically be one track point for each of TOF0-2, KL, and the

Cherenkovs. A track point contains four-vectors for position and momentum, as

well as which detector it belongs to and some detector-specific information (e.g.

charge deposition).

Tracks are collections of several track points together with some additional information

that applies to the track, such as PID, range in the EMR, or the p-value from the

tracker fit. They can also contain references to constituent tracks for book-keeping

purposes (e.g. an upstream matched track will reference the upstream tracker

track whose track points it contains).

Primary Chains were set up to allow tracing back the steps of global track recon-

struction, i.e. looking at the state of tracks and track points at every stage of

global reconstruction. They contain all the information that is associated with an

individual particle in the beamline, including the tracks that are produced by track

matching, PID, and track fitting.

3.2 Track Matching

Track matching determines whether hits in different detectors come from

the same particle by propagating a particle’s position-momentum vector

(t, x, y, z, E, px, py, pz) between detectors and checking for agreement (in most cases

in x and y). Matching tolerances depend on the respective detector granularity, as well

as the propagation distance and material in the path, to account for multiple scattering

and the uncertainty on the original measurement that is propagated. The MICE track-

ers (see section 2.5.4) are chosen as the detectors to propagate from, as they are the

most indispensable for a cooling measurement (only they can measure the emittance)

and provide the most complete, accurate, and precise subset of the particle’s phase-space

coordinates – namely (x, y, z, px, py, pz), including the finest granularity in position.

Propagation is performed outward from the outermost tracker plane – i.e. upstream

from the most upstream plane of the upstream tracker and downstream from the most

downstream plane of the downstream tracker – towards the detectors on each side. Thus,

separate upstream and downstream tracks are obtained which are then matched via a

simple time-of-flight cut. Since at the time of track matching the particle ID has not

been determined yet, matching is performed separately for all feasible particle hypothe-

ses (typically e, µ, π with the charge corresponding to the run’s beamline polarity) and
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the correct track is subsequently picked out by the PID algorithm (section 3.3). An

illustration of track matching can be seen in figure 3.2, a listing of the default tolerances

for matching in table 3.1.

3.2.1 Propagation Method

Propagation itself is performed using a 4th order Runge-Kutta (RK4) numerical inte-

gration method. Runge-Kutta methods [62] calculate a step using a weighted average

of increments along the step and the 4th order – also called the classical Runge-Kutta

method – is the most widely used of those, as it is the highest order one where the

required number of evaluations per step does not exceed its order. For an initial value

problem specified as

ẏ = f (t, y) , y (t0) = y0, (3.1)

where t is the independent coordinate, i.e. the coordinate along which stepping occurs,

y is the dependent coordinate, and ẏ its derivative with respect to t; with a step-size of

h, the value of y at step n+ 1 is defined as

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (3.2)

where k1,2,3,4 are increments based on the slope of the function at the beginning, twice

at the midpoint, and at the end of the interval, given by

k1 = f (tn, yn) ,

k2 = f

(
tn +

h

2
, yn +

h

2
k1

)
,

k3 = f

(
tn +

h

2
, yn +

h

2
k2

)
,

k4 = f (tn + h, yn + hk3) ,

(3.3)

Track matching uses an implementation of the RK4 method from the GNU Scien-

tific Library (GSL). Electric and magnetic field values are obtained at every step directly

from the defined geometry and included in the equations of motion passed to the inte-

gration method. Stepping occurs with respect to the z coordinate, with the equations

of motion (i.e. ẏ = f (t, y) in the RK4 algorithm) given by
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dt

dz
=

E

pzc

dx

dz
=
px
pz

dy

dz
=
py
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dz

dz
= 1

dE

dz
= qEx

dx

dz
+ qEy
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+ qEz

dz

dz
dpx
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= qc

(
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dz
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dz
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By

)
+ qEx
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dz
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= qc

(
dz
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dx

dz
Bz

)
+ qEy

dt

dz

dpz
dz

= qc

(
dx

dz
By −

dy

dz
Bx

)
+ qEz

dt

dz

(3.4)

where q and c are the particle’s charge and the speed of light, respectively. For MICE

Step IV, which does not include RF cavities, there are no electric fields in the beamline

which simplifies the bottom 4 equations, noticeably yielding dE
dz = 0, though energy loss

from interactions with materials is treated separately. At each step, the energy loss in

the material is calculated from the Bethe-Bloch equation[5]

−
〈

dE

dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax

I2
− β2 − δ (βγ)

2

]
(3.5)

where K = 4πNAr
2
emec

2 = 0.307075 MeV g−1 cm2, NA is Avogadro’s number, me and

re are the electron mass and classical electron radius, Z and A are atomic and mass

numbers of the traversed material, I is the material’s mean excitation energy in eV,

δ (βγ) is the material’s density correction (dependent on βγ), and Tmax is the maximum

kinetic energy that can be imparted to a free electron in a single collision, defined by

Tmax =
2mec

2β2γ2

1 + 2γme/M + (me/M)2
(3.6)

where M is the mass of the propagated particle.

The inclusion of energy loss requires care when approaching material boundaries

– as the material is only sampled once in the middle of each step – as well as when

traversing materials with high stopping power – as a large step in a strong magnetic

field would result in underestimating the step distance due to the discrepancy between

linear and curved distance between start and end point (see figure 3.1). The step-size

behaviour in such situations was fine-tuned to ensure that errors from the propagation

algorithm itself remain negligible while minimising the number of steps – and therefore

the computing time – required.
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Actual path length of step

Linear distance between
start and end point

Figure 3.1: Illustration of the difference between true path length and distance between
start end end point of a step for curved tracks

3.2.2 TOF1 & TOF2

For TOF1 and TOF2, the tracker track is propagated to the centre (in z) of the respective

detector and matched by agreement in the x and y coordinates. ∆t between trackers

and TOFs cannot be used for this, as the trackers currently do not produce useful timing

information. Successful matching is very important here, as both are required in order

to match tracks through the cooling channel (section 3.2.7) and a TOF1 match is also

required to match to TOF0 (section 3.2.3).

3.2.3 TOF0

Due to the distance and beam optics between TOF0 and TOF1, TOF0 cannot be

matched in the same way as TOF1. The uncertainties on the phase-space coordinates

from the tracker expand to such a degree during propagation that suitable matching

allowances would include a majority of the detector, and furthermore the propagation

distance would cause a significant performance penalty. Instead, the particle is propa-

gated to the upstream end of TOF1 and an approximate expected travel time between

TOF0 and TOF1 is calculated and compared to the actual difference between the times-

tamps at the two detectors. To account for energy loss in the air between the two

detectors, the travel distance is estimated as p
pz
× d (where p is the total momentum, pz

the momentum in beamline direction, and d the z distance between the detectors) and

energy loss for half that thickness of air calculated (to obtain an average energy between

the two detectors). The material in the Cherenkov detectors is not taken into account

as it is located very close to TOF0 and therefore – when propagating backwards from
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TOF1 – has a very small impact on total travel time. The expected average velocity

between the two detectors is then calculated as E
pz
× c, where E is calculated from the

momentum reconstructed in the tracker and the mass of the particle type for which

matching is performed.

3.2.4 Cherenkov Detectors

As the Cherenkov detectors do not have sufficient timing resolution (each signal window

is tens of nanoseconds long), as well as no spatial segmentation to separate multiple

hits within a trigger, they never produce more than a single point each. Hence, these

are added to tracks without checks, which can result in (unavoidable) errors in the

Cherenkov photoelectron count associated with a track if the photoelectrons originated

from multiple particles.

3.2.5 KL

Track matching to the KL detector works just like propagation to TOF1 and TOF2

(section 3.2.2), except that as the detector is only segmented in the y coordinate, track

matching only compares positions in a single spatial dimension.

3.2.6 EMR

The EMR produces tracks, so matching is performed with the most upstream point

of the primary track produced. While the local reconstruction of the EMR produces

variable position uncertainties, matching is still performed against a fixed threshold, as

uncertainties in the tracker momenta as well as scattering in the lead of the KL dominate

over the relatively fine detector granularity.

3.2.7 Through the Absorber

Matching through the absorber is performed by a cut on the travel time between TOF1

and TOF2, so it can only be done if both detectors have been successfully matched

to their respective tracker tracks. For the purposes of an emittance measurement, the

absorber must essentially be treated as a black box, therefore it is important to not make

any assumptions about the physical processes within during track matching. Hence, the

cut only verifies that a particle passing through both detectors would have travelled

subluminally but not significantly slower than would be realistic in the beamline.
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Track
Hit (    = not matched)

match by Δt

match by Δt

Figure 3.2: Illustration of the track matching process. The pictured detectors are (from
left to right): TOF0, Cherenkovs, TOF1, Upstream Tracker, Downstream Tracker,
TOF2, KL, EMR.

Detector Matched by Detector Granularity Tolerance

TOF0 t negligible∗ 2 ns
TOF1 x, y 60 mm† 60 mm
TOF2 x, y 60 mm† 50 mm
KL y 44 mm† 50 mm
EMR x, y varies‡ 75 mm
US/DS βz — 0.5 ≤ βz ≤ 1.0

Table 3.1: Default tolerances for track matching (can be modified via configuration
datacards)

If matching through the absorber fails (or isn’t possible e.g. due to failed TOF1

or TOF2 matching), upstream and downstream tracks are still stored for analysis. Fur-

thermore, if multiple upstream tracks are matched to a single downstream track (or vice

versa), the resulting tracks are marked as being mutually exclusive so that the analyst

can choose whether to remove them from the sample or subject them to further checks.

3.2.8 Performance

The performance of track matching is influenced by a range of factors:

• Precision of the algorithm itself

∗The TOFs have timing resolutions of ∼ 50 ps but this is negligible compared to the uncertainties
arising from the matching method (see section 3.2.3)
†Granularity given is the slab width, i.e. twice the maximum difference between real and reconstructed

hit assuming perfect reconstruction
‡Uncertainties on EMR track points are calculated from a track fit but are of secondary importance

for matching (see section 3.2.6)
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• Non-deterministic processes, such as multiple scattering (which is not accounted for

in the propagation algorithm at all) and energy loss (which can only be accounted

for in terms of the mean energy loss)

• Quality of the local reconstruction in all involved detectors

• Accuracy of the geometry files, especially of the magnetic field maps

• Particle decays (i.e. π+ → µ+ + νµ and µ+ → e+ + νe + νµ)

Additionally, there is an interdependence between efficiencies of some of the de-

tectors:

• No matching can occur without a tracker track on the corresponding side (upstream

or downstream) of the beamline, as hits are always matched to a tracker track (with

the exception of TOF0, see above)

• TOF0 matching can only occur with TOF1 successfully matched

• Matching through the absorber can only occur with TOF1 and TOF2 successfully

matched

While the strong sensitivity to the accuracy of the virtual geometry is a potential

source for errors, it also makes track matching a valuable tool for debugging purposes, as

residual plots (as seen in figures 3.5–3.10) produced by this module have helped identify

a number of problems including geometry misalignments and rotations in the tracker

reconstruction.

Due to the aforementioned factors, some of which will differ from run to run,

matching tolerances (default values for which are given in table 3.1) are not hardcoded,

but can be varied as required. This also means that figures for the efficiency of the

algorithm are merely illustrative of the performance of the matching algorithm, rather

than figures that would factor directly into measurement results. For run 8373, the

default tolerances yield an efficiency of 98% for matching through the absorber (which

requires prior matching to TOF1 and TOF2) running over production MC data, which

should be representative of high quality runs at 170 MeV/c. Specifically, this means that

98% of particles that produced tracks and space points in the local reconstruction of both

trackers as well as TOF1 and TOF2 had at least those two TOFs correctly matched and

also succeeded in through-matching. Since the particle ID needs to be known in order

to determine whether matching should have occurred, efficiency can only be calculated

for MC data.
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Figure 3.3: Position residuals for MC truth propagation in the downstream tracker
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Figure 3.4: Transverse momentum residuals for MC truth propagation in the downstream
tracker

The propagation method itself can be verified by propagating MC truth rather than

reconstructed data, thereby eliminating several of the factors listed above, most notably

the local reconstruction and the accuracy of the geometry files. Figures 3.3 and 3.4 show
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residuals for propagation of MC truth data from one end of the upstream tracker to

the other. The residuals measure the difference between propagated and MC truth (in

the following section between propagated and reconstructed) coordinates. The left hand

figures, which are generated from production MC (i.e. the “official” simulation used in

analyses), show a fairly small but still quite noticeable residual spread, which is primarily

driven by scattering and the stochastic nature of energy loss. The figures on the right

are generated from MC where interaction with materials is restricted to mean energy

loss only, and as would be expected (assuming that the propagation implementation is

physically accurate), the residuals shrink to almost zero (tens of microns and tens of

keV).

Track matching Residuals

Figures 3.5–3.10 show track matching residuals for run 8373 in both MC and data with

red lines denoting the matching tolerances. Note that the MC residuals were produced

with a PID cut, so that only muons are contained in them whereas the data residuals

were not, so there is contamination from non-muons present (as can be seen for example

in the pion peak in figure 3.5b), hence a larger spread is expected. It should be noted

that for this run, there is a severe discrepancy between MC and data for the KL and even

more so for the EMR, which suggests that there are still (as of this writing) noticeable

problems with the downstream section of the geometry used, likely in the downstream

fringe fields of the downstream tracker.

3.3 Particle Identification (PID)

Particle Identification was implemented by Celeste Pidcott and is described in detail in

[63]. It is PDF-based, meaning that it works by running Monte-Carlo simulations of the

beam in question and generating probability density functions (PDFs) for each particle

species for a number of different PID variables (such as TOF0 to TOF1 time-of-flight or

plane density in the EMR). For each particle in data, the same PID variables are then

calculated, and log-likelihoods (LLX) assigned by comparing the values to the PDFs. A

PID is then assigned to the track if the confidence level (CLX) for a certain PID,

CLX =
expLLX∑
i expLLi

× 100 (3.7)

exceeds a configurable confidence level threshold. Since global track matching produces

separate tracks for each PID hypothesis, a track is then only passed on as being success-
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Figure 3.5: Track matching residuals for TOF0. The secondary peak in the figure for
data corresponds to a pion population which in MC was filtered out.
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Figure 3.6: Track matching residuals for TOF1. Note the different z scale due to higher
statistics in the MC.
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Figure 3.7: Track matching residuals for TOF2
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Figure 3.8: Track matching residuals for the KL
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Figure 3.9: Track matching residuals for the EMR
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Figure 3.10: Track matching residuals through the absorber. In data, the electron and
pion peaks can be seen.
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fully PID’d, if the assigned PID matches the PID hypothesis provided by track matching.

The PID algorithm was not used in the analysis in this thesis, as the low-level nature of

the analysis made a cut-based PID (which sacrifices efficiency but reduces overhead and

makes significantly fewer model assumptions) more appropriate.

3.3.1 PID Variables

A wide range of PID variables was implemented, probing the various detectors as well

as some combinations of detectors. These variables are grouped into two sets, one

for field-on (i.e curved) tracks, and one for field-off (straight) tracks, as the available

information that is useful to particle identification differs between the two cases. The

field-off PID was primarily intended for commissioning, when the magnets were not

yet trained and no absorber was present, and was thus not subject to the constraint

that particle identification should be independent between upstream and downstream

parts of the beamline. Therefore, PID variables that cross the cooling channel were

implemented to compensate for the lack of tracker momentum measurement. A list of

the PID variables, as well as their associated efficiencies and purities can be found in

[63].

3.4 Track Fitting

Track fitting is currently in development and is being implemented by Chris Rogers. It

is based on the Kalman filter that was originally developed for the local tracker recon-

struction (see section 2.6.3). A Kalman filter can improve the accuracy and precision of

data points in a set by combining the measurement (incl. uncertainties) with external

constraints (such as the laws of physics) into a weighted average. The global track fitter

uses a similar propagation method as the one used in track matching, with the main

difference being that it propagates not only the position and momentum, but an entire

covariance matrix in order to determine the weighting that should be used. This allows

the weighting to be influenced not only by the uncertainties in the measurements them-

selves, but also by how for instance passage through materials will increase uncertainties

in position and momentum due to random scatters, with a prediction that has been

propagated through significant amounts of material given a lower weight. While track

fitting is not yet fully implemented in MAUS, the global data structure (section 3.1) has

been set up with a later inclusion of track fitting in mind.
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3.5 Conclusion

Global track reconstruction combines and processes the output from the various MICE

detectors and provides a unified data structure for high level analysis. The global data

structure as well as track matching were implemented by the author and designed in

such a way that PID and track fitting can be included in global processing in a modular

manner. Track matching shows excellent performance (subject to an accurate virtual

geometry) as outlined in section 3.2.8.
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Chapter 4

Multiple Scattering in the MICE

Absorbers

“Research is so unpredictable. There are periods when nothing works and all

your experiments are a disaster and all your hypotheses are wrong.”

Francis Collins

4.1 Physics of Multiple Scattering

When passing through a medium, charged particles will experience deflection due to

scattering off the Coulomb potentials of nuclei in the medium. Scattering off electrons

does also occur, though it only forms a considerable contribution when the mass of the

incident particle and the atomic number Z of the target material are low. Accurate

modelling of the potential is one of the challenges in devising scattering models and

forms one of the key distinctions between scattering models, for example in whether

and in what way nuclear screening is considered. Over the last century, many models

have been devised, sometimes building on previous models, other times approaching the

derivation from quite different angles (no pun intended).

Treatment of scattering can fall into three different domains, single, plural, and

multiple scattering:

4.1.1 Single Scattering

Single scattering describes the behaviour for very thin materials (i.e. with a thickness

much less than the interaction length), where the probability of more than one scattering
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event is negligible. It is a random process that can be described by a scattering cross

section, which was first derived by Rutherford[64] as

dσ

dΩ
=

(
zZe2

8πε0mv20

)2

csc4
θ

2
, (4.1)

where z and Z are the charge numbers of the incident and target particle, m and v0

are the mass and initial speed of the incident particle, and θ is the scattering angle.

The Rutherford cross section breaks down, however, at extremely small angles, where it

tends to infinity. In 1926, Wentzel[65] published a cross section which includes nuclear

screening by the orbiting electrons:

dσ

dΩ
=

(
zZe2

8πε0mv20

)2(
sin2 θ

2
+

1

4k2a2

)−2
, (4.2)

where k is the incident particle’s wave number and and a = 0.885a0Z
− 1

3 (where a0 is the

Bohr radius) is the Thomas-Fermi radius – the radius of the electron cloud effectively

screening the nucleus. It can be seen that for all but the smallest angles – where the term

involving a becomes comparable to the scattering angle – this reduces to the Rutherford

cross section.

4.1.2 Plural and Multiple Scattering

Plural scattering applies when the number of interactions in the target material is larger

than one but not high enough for the effects to become stochastic, whereas multiple

scattering deals with large numbers of interactions. The exact boundary between plural

and multiple scattering is somewhat arbitrary, typically taken somewhere around 30

scattering events, but the stochastic nature of multiple scattering makes it feasible to

perform significant simplifications. Specifically it is usually sufficient to approximate the

central 98 % of the angular distribution as a Gaussian distribution with an RMS width

of

θ0 =
13.6 MeV

βcp
z
√
x/X0 [1 + 0.038 ln (x/X0)] (4.3)

where z is the charge number of the incident particle and x/X0 is the thickness of the

traversed medium in radiation lengths. The equation comes from a fit to the Molière

theory – which is also the origin of the 13.6 MeV term in the ionisation cooling equation

(equation 2.9) – and according to the Particle Data Group is accurate to within less than
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11 % between 0.001 and 100 radiation lengths.[5] It should be noted that the origins of

this equation – while it is widely used and cited – are not well-known. A discussion of

this can be found in section 5.3 of [66].

4.1.3 The Molière Theory

Molière’s multiple scattering theory [67] forms the basis of many of the scattering im-

plementations used today. Entirely analytical in nature, it reduces the description of

scattering to a single parameter, the screening angle, defined as

χa =
λ

a

√
1.13 + 3.76a2 (4.4)

where λ is the particle’s de Broglie wavelength and a is the Thomas-Fermi radius (see

section 4.1.1).

The thickness of the scattering medium is described by the unit probability angle,

χc =
√

4πNte4Z2z2/pv (4.5)

where N is the material’s atomic number density, t is the product of thickness and

density of the material, and p and v are the momentum and speed of the incident

particle. Physically, it describes the angle for which there is (on average) only a single

collision with scattering angle χ > χc.

The angular scattering distribution is then only a function of the ratio of χc and

χa. Specifically (following Bethe’s description[68]), by defining

eb =
χ2
c

1.167χ2
a

, (4.6)

a parameter B given by the transcendental equation

B − lnB = b, (4.7)

and

ϑ =
θ

χcB
1
2

, (4.8)

the distribution can be written as a power series:

f(θ)dθ = ϑdϑ
[
f (0)(ϑ) +B−1f (1)(ϑ) +B−2f (2)(ϑ) + . . .

]
, (4.9)
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where f (n)(ϑ) are functions of ϑ.

The original formulation of the Molière theory ignored scattering off atomic elec-

trons, which for low-Z materials becomes a significant factor. Bethe[68] attempted to

correct this by replacing Z2 with Z(Z+ 1) in the equation for χc. This was criticized by

Fano[69] for the implicit incorrect assumption that the low-angle cutoff is identical for

elastic and inelastic collisions. Fano instead suggested only using a factor of Z(Z+ 1) in

the case of incident electrons, as well as some smaller tweaks to better account for the

the inelastic scattering component.

4.1.4 Other Scattering Theories

The Lewis theory[70] uses a similar formalism as Molière scattering but avoids the small-

angle approximation inherent in the latter. It forms the basis of the standard multiple

scattering algorithm in GEANT4[71], though details of the implementation beyond the

model-agnostic description in section 4.1.5 are not documented.

An alternative scattering model, devised by Goudsmit and Saunderson[72], has

recently been added to GEANT4, but is computationally more intensive and currently

only implemented for electrons and positrons[73].

4.1.5 Algorithms

The following is a brief description of the multiple scattering algorithm implemented in

GEANT4 [71].

Δy

θ

Figure 4.1: Illustration of the bulk effect of
multiple single scatters in a material (mod-
ified from [5]). Many individual scatters re-
sult in a total scattering angle θ and a dis-
placement in where the particle exits the
material of ∆y.

Multiple scattering algorithms can

be classified depending on whether they

simulate collisions one by one, or consider

the total effect after a step, i.e. whether

they are detailed or condensed. A hy-

brid between the two, mixed algorithms,

simulate large angle scatters individually

but use a condensed method for the bulk

of scattering events, since for simulating

scattering in anything other than thin foils

or gases, a detailed treatment tends to be

computationally unfeasible. The current

default scattering algorithm for muons in

GEANT4 as of version 9.3.0 – WentzelVI – is mixed, wheras previous versions used the
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condensed Urban algorithm.

GEANT4 uses transport mean free paths, which are moments of the scattering

angle χ, to calculate the scattering parameters. The k-th transport mean free path, λk,

is defined as

1

λk
≡ 2πna

∫ 1

−1
[1− Pk (cosχ)]

dσ(χ)

dΩ
d (cosχ) (4.10)

where na is the atom number density, Pk (cosχ) is the k-th Legendre polynomial, and

dσ(χ)/dΩ is the scattering differential cross section. The first two transport mean free

paths are involved in GEANT4’s scattering calculations, though λ2 only as the parameter

κ = λ1/λ2, which – since it varies extremely slowly with energy – is assigned a constant

value of 2.5. The inverse of the first transport mean free path is – in analogy with

stopping power – sometimes referred to as the scattering power of a material.

As illustrated by figure 4.1, there is a difference between the geometrical path

length (which is either a straight or curved line, depending on the presence or absence

of magnetic fields), indicated by a dashed line, and the true path length, indicated by

a solid line, of a step as the particle traverses the material. The conversion between a

given true path length t and a corresponding mean geometrical path length, 〈z〉, is given

by

〈z〉 = λ1

[
1− exp

(
− t

λ1

)]
(4.11)

Back-and-forth conversions between 〈z〉 and t have to be performed to determine

the step length in GEANT4, since for physics processes the true path length is relevant

whereas the transportation occurs in terms of the geometrical path length.

The mean scattering angle θ after a step of true step length t is given by

〈cos θ〉 = exp

[
− t

λ1

]
(4.12)

and its variance as

σ2 =
〈
cos2 θ

〉
− 〈cos θ〉2 =

1 + 2e−2κτ

3
− e−2τ (4.13)

where τ = t/λ1 and κ as described above. The angle after the scattering step is then

sampled from a model distribution constructed such that equations 4.12 and 4.13 are

satisfied.
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Figure 4.2: The MuScat detector[74]

A number of multiple scattering theories and models have been developed that

aim to reduce the (in many cases prohibitively) immense computational burden that

would arise from simulating every scattering event individually for particles passing

through matter. While generally fairly successful, algorithms have – at least until re-

cently – failed to accurately describe scattering in low-Z materials (see section 4.2).

Thus experimental verification remains a crucial factor in the continued development of

scattering simulations.

4.2 Previous Scattering Measurements

MuScat[74] was an experiment located at TRIUMF in British Columbia, designed to

characterise multiple scattering of moderate momentum (pmean = 172 ± 2.0 MeV/c)

muons in several different (mostly low-Z) materials. Scattering distributions were mea-

sured by collimating a muon beam before incidence on the target and then measuring

the deflection in a finely segmented scintillating fibre tracker on the target’s far side.

The target system consists of a cryogenic liquid hydrogen vessel that could be inserted
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Figure 4.3: MuScat scattering distribution for 0.24 mm of iron [74]. Red error bars
include statistical errors only, blue error bars indicate statistical plus systematic errors.

in two different orientations to present either 109 or 159 mm of target material to the

beam, as well as a wheel that could be rotated to place any of 12 target disks into the

beam. The target materials were lithium (6.40 mm, 6.43 mm, 12.72 mm, 12.78 mm),

beryllium (0.98 mm, 3.73 mm), polyethylene (4.74 mm), carbon (2.50 mm), aluminium

(1.5 mm), and iron (0.24 mm, 5.05 mm), which together with an empty slot in the disc

as well as the possibility of running with an empty liquid hydrogen vessel (again in two

orientations) provided a total of 16 different targets.

Examples of the scattering distributions found by MuScat for 0.24 mm of iron and

159 mm of liquid hydrogen can be seen in figures 4.3 and 4.4. The figures show unfolded

data from measurements with two curves superimposed based on the Molière theory, one

using a Z dependence of Z2, the other of Z × (Z + 1). This is compared with simulated

data points from GEANT4 (G4.7.0p1) and – in the case of liquid hydrogen – from the

ELMS model (a recent scattering model derived from photo-absorption spectra[75]).

For iron, where the difference between the Z terms is < 4%, the curves are practically

identical and there is good agreement between theory, simulation, and data, though a

small excess at large angles is visible in the GEANT4 simulation. For liquid hydrogen

however, the difference between the two Molière curves is quite pronounced. The data

follows the Z2 line for most of the large angle ranges which are dominated by large single

scatters and the Z×(Z + 1) line for the centre of the distribution which is dominated by

62



10
-3

10
-2

10
-1

1

10

10 2

-0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1

y angle, radians

P
ro

ba
bi

li
ty

 p
er

 r
ad

ia
n Moliere Z*(Z+1)

Moliere Z2

ELMS

G4.7.0p1

Unfolded Data

Figure 4.4: MuScat scattering distribution for 159 mm of liquid hydrogen [74]. Red error
bars include statistical errors only, blue error bars indicate statistical plus systematic
errors.

multiple scattering. Furthermore, the GEANT4 model strongly overestimates scattering,

with a factor of 4 discrepancy in the large angle bins. In all but the largest angle bins

where the errors are largest, there is a very strong agreement between data and the

ELMS model.

These measurements demonstrate that in the low-Z region – which is of particular

interest for muon cooling – either form of the Molière theory is inadequate to explain

the scattering distributions and that the simulation algorithms used by GEANT4 at the

time vastly overestimate large angle scatters.

4.3 Scattering Measurements in MICE

While muon scattering measurements are not the primary aim of MICE, they do play

an important role in the experiment, both in their own right and in order to better

characterise the cooling performance of the MICE absorbers.

MuScat provided valuable data on muon scattering at 172 MeV/c and how it

compares with different models, but it is not necessarily a given that agreements and

disagreements will hold equally at other momentum ranges. In contrast to MuScat,

MICE – though it will only run with liquid hydrogen and lithium hydride as absorbers
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– can scan across a fairly broad range of muon momenta and thus fill in an image that

MuScat sampled at a single point, as agreement between model and data at one specific

momentum does not necessarily translate to other momentum ranges.

4.4 Measurement Strategy

Different scattering analyses have been performed with MICE, described e.g. in [66], [63],

and a MICE paper currently in preparation. These analyses have generally approached

the calculation of scattering angle distributions using deconvolution methods, where

a “true” distribution is obtained from a measured one by an iterative process using

a so-called “response matrix” generated from simulation. One weakness of such an

approach is that the deconvolution methods used are heavily affected by a parameter

called the regularisation strength – a measure for the weight put on data vs. prediction

in order to prevent overfitting – the choice of which is difficult to empirically justify

[76]. Additonally, it introduces a model dependence due to assumptions about the input

beam.
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Figure 4.5: Normalised distributions of the maximum radial displacement from the
beamline centre in the upstream tracker for 140 MeV/c beams with (blue) and without
(red) absorber, demonstrating the equivalence between input beams.

For this analysis, a convolution approach was taken, which though it cannot

produce a “true” scattering distribution, enables a direct comparison of modelled and

measured distributions without the involvement of regularisation parameters. Rather

than attempting to remove effects such as detector responses from the data, it measures

them directly and then adds them to the prediction. It also makes only one assumption
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Figure 4.6: An illustration of the propagation required to calculate scattering angles in
MICE in the presence of a magnetic field[66].

about the input beams, namely that they are equivalent between runs with and without

absorber (see figure 4.5).

This analysis uses data taken in September and October 2016, both with and

without the lithium hydride absorber, at 4 different momentum settings for each config-

uration (subdivided for analysis into 3 momentum slices each). For data-taking without

an absorber (hereinafter referred to as “empty” data), the decay solenoid could not be

used due to technical problems, resulting in samples of significantly fewer events.

Since both the trackers and the absorber are located within a magnetic field,

it is not possible to simply calculate the angles between the momentum vectors of the

tracker tracks as it would be when analysing field-off data. Instead, the muons’ phase-

space coordinates in either tracker have to be propagated (using the method described

in section 3.2.1) to the centre of the absorber. The two-dimensional scattering angles

are then calculated as

θx,y = arctan

(
q′x,y
q′z

)
− arctan

(
p′x,y
p′z

)
, (4.14)

where p′ and q′ are the momentum vectors at the centre of the absorber propagated from

the upstream and downstream end, respectively (see figure 4.6).

For each momentum slice analysed (120, 130, 140, 150, 160, 170, 180, 190, 200,

220, 230, 240 MeV/c, with each slice having a momentum range of the stated momentum

±5 MeV/c, see also figure 4.14 to illustrate the momentum selection), three scattering

distributions were produced: From both absorber and empty data, distributions were

extracted as described above. The third distribution came from a Monte-Carlo simula-

tion including the absorber, where rather than taking reconstructed phase-space vectors

at the trackers, MC truth information just upstream and downstream of the absorber

was used for the propagation, yielding a scattering angle distribution for only the ab-

sorber itself, without any effects from scattering in other beamline elements or the finite
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reconstruction resolution of the trackers. A convolution between this absorber-only dis-

tribution with the “empty” distribution is then compared to the distribution generated

from the absorber data. Whether a discrepancy exists between the two exceeding what

would be expected from statistical variation and systematic errors then indicates how

reliable the GEANT4 scattering algorithms are in LiH for the momentum ranges in ques-

tion. An analysis of liquid hydrogen data was planned, but had to excluded from this

thesis since data-taking was delayed until (expected) October 2017. ELMS predictions

were not included, as they are not currently available for LiH.

4.4.1 The Convolution Approach

The convolution approach used in this analysis differs substantially from the deconvolu-

tion methods used in previous scattering measurements in MICE as well as MuScat. A

discussion is presented below, both from a mathematical point of view and using a toy

Monte Carlo simulation.

Mathematical Background

For clarity, this section assumes a two-dimensional system x− z where z is the direction

along the beamline. Assume, for simplicity, that the input beam is a pencil beam with

N particles as given by

f in(x, θ) = Nδ(x)δ(θ − θi), (4.15)

where the incoming particles interact with the absorber at a single point (x = 0) and θi

is the angle with respect to the z axis of the incoming beam. For a particle scattering

by an angle θs, the input and output angles are then related by θo = θi + θs.

The angular distribution in the downstream detector can then be described as the

convolution of the scattering model with the input beam (where θi = 0 by construction in

the equation below as the scattering angle is measured from the input particle direction

on a particle-by-particle basis):
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fout(θo) = f in(x, θ) ∗ h(θs)

=

∫ ∫
h(θo − θ)f in(x, θ)dθdx

=

∫ ∫
h(θo − θ)Nδ(x)δ(θ)dθdx

= N

∫
δ(x)dx

∫
h(θo − θ)δ(θ)dθ

= Nh(θo)

= Nh(θs)

(4.16)

i.e. the output distribution (Nh(θo)) is a measure of the scattering model (h(θs)), which

is the impulse response of the absorber. In a real-world experiment, there is of course

an additional distribution arising from the finite detector granularity, but due to the

commutativity of convolutions, this can be added into the equations at any point. The

same is true of small scattering effects in minor beamline elements such as windows or

even air. The spatial distribution of a real (non-pencil) beam can be integrated out, as

long as the input beam distributions are identical in shape.

A complication arises due to the finite aperture size in the downstream detector,

which introduces an acceptance effect ε(x, θo), i.e. the probability of a particle being

observed at the downstream detector depends on both the transverse position where the

scatter occurred and the output scattering angle. This effect, which was first observed in

toy Monte-Carlo studies (see section 4.4.2), is strongly dependent on the ratio between

upstream and downstream fiducial volume cut: the tighter the downstream cut with

respect to the upstream one, the more pronounced the effect becomes. This is due to

the fact that particles with a high transverse amplitude, which in the “empty” dataset

are still captured in the downstream tracker, may be scattered out of the fiducial volume

when an absorber is present. Hence the efficiency in large scattering angle bins is sup-

pressed in the absorber dataset with respect to the “empty” one. In order to compensate

for this effect, a transmission-derived correction was applied to the absorber-only MC

truth data before the convolution.

Assuming, again, that the input beams are identical in shape (which should be

valid given that installation / removal of the absorber does not alter the upstream beam-

line), we can integrate out the spatial dependence, and write the acceptance efficiency

as ε(θs), i.e. as only a function of scattering (rather than output) angle.

Now consider a general form of the input beam f in. Including the efficiency effect,
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we now have

fout(θo) = f in(x, θ) ∗ [h(θs)ε(θs)] (4.17)

and more specifically

fLiH(θo) = f in(x, θ) ∗
[
hLiH(θs)ε

LiH(θs)
]

(4.18)

f empty(θo) = f in(x, θ) ∗
[
hempty(θs)ε

empty(θs)
]

(4.19)

We can furthermore write hLiH(θs) as g ∗ hLiH′(θs), where g is a scattering dis-

tribution that includes effects such as scattering in beamline windows etc, and hLiH
′

describes the scattering in the absorber disk only. Using the same convention for the

empty distribution yields hempty(θs) = g, as hempty′ = 1 (there is no notable amount of

scattering in a slab of air the thickness of the absorber disk). The efficiency can also

be split into two terms, such that h(θs)ε(θs) = gε0 ∗ h′(θs)ε′(θs), where the unprimed

and primed terms characterise effects due to everything except for the absorber and

scattering in the absorber respectively.

The goal of the analysis is to compare the theoretical scattering prediction inside

the absorber hLiH
′,th with the real scattering distribution inside the absorber hLiH

′
, so

we convolute hLiH
′,th with the empty absorber distribution. We can now see, that while

ε0 is applied by the detector to both distributions, the fact that hempty′ = 1 implies that

ε′(θs) is missing from the theoretical prediction (since ε′(0) = 1), i.e. we have

fLiH(θo) = f in(x, θ) ∗ gε0 ∗
[
hLiH

′
(θs)ε

LiH′(θs)
]

(4.20)

fLiH,th(θo) = f in(x, θ) ∗ gε0 ∗
[
hLiH

′,th(θs)
]

(4.21)

This can finally be corrected by applying an efficiency correction εLiH
′,th, derived from

the same MC as hLiH
′,th(θs), to that distribution, yielding

fLiH(θo) = f in(x, θ) ∗ gε0 ∗
[
hLiH

′
(θs)ε

LiH′(θs)
]

(4.22)

fLiH,th(θo) = f in(x, θ) ∗ gε0 ∗
[
hLiH

′,th(θs)ε
LiH′,th(θs)

]
(4.23)

4.4.2 Verification with Toy Monte Carlo

A toy Monte Carlo simulation was implemented from scratch in order to verify the basic

principles of the method under exclusion of systematic effects. The geometry for this

simulation consisted of a LiH disk sandwiched between two aluminium sheets surrounded

by a vacuum, all in a constant 4 Tesla magnetic field. For the empty distribution, the
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Figure 4.7: Toy MC scattering distributions without absorber, absorber-only, and the
convolution of the two.
LiH disk was removed but the aluminium sheets remained. Particles were generated from

Gaussian distributions in (x, y, px, py, pz) centred around nominal values (all 0 except for

pz which was set to 160 MeV/c to correspond to a typical beamline momentum in MICE).

To simulate detector responses, these coordinates were then smeared by Gaussian distri-

butions with widths comparable to the errors reported by the tracker reconstruction in

MICE, both at the beginning and at the end of the beamline. The true coordinates were

propagated between the nominal detector planes (2 metres upstream and downstream

of the absorber). For propagation through material, 1 mm steps were taken, where for

every step, the transverse momentum components were modified by a scattering angle

randomly drawn from a Gaussian with a width given by equation 4.3.

Scattering distributions were then calculated by propagating coordinates back

into the centre of the absorber disk:

• The absorber-only distribution used exact coordinates on each edge of the LiH disk

as the input into the propagation.

• “Empty” and reference distributions (incl. the absorber) used smeared coordi-

nates from each end of the beamline from the dataset generated without and with

absorber respectively.

• Absorber-only and “empty” distribution were convolved (figure 4.7) and compared

to the reference distribution.
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Figure 4.8: Comparison of scattering distributions with absorber and without absorber
convolved with absorber-only scattering prediction for wide (left) and tight (right) down-
stream fiducial volume cut in the toy Monte Carlo. Distributions are scaled to identical
peak values.

Fiducial volume cuts were introduced both upstream (75 mm, 150 mm, and

400 mm – the latter being effectively infinite given the beam distribution) and down-

stream (varied between 50 and 200 mm) of the absorber to evaluate their impact on the

result.

As can be seen in figure 4.8, for a downstream fiducial volume cut that is wide

compared to the beam, the agreement is perfect within statistical errors, which for the

central part of the distribution are tiny, as the Toy MC was run for 5,000,000 accepted

particles for most combinations of apertures (note that the red distribution is smoothed

out due to the convolution). If the downstream cut is tightened, however, large angle

scatters in the absorber distribution are suppressed, which provides the motivation for

the efficiency correction described above.

4.5 Selection Criteria

A number of cuts were applied to the data in order to ensure high quality data sets

with little contamination by pions and positrons. The different cuts and selections are

outlined below. An investigation of possible systematic effects arising from them can

be found in section 4.6. Illustrations of the cuts and selections on the parameters in
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question using the LiH 170 MeV/c dataset can be seen in figures 4.9–4.15. The number

of events remaining after each cut for the different datasets can be seen in tables 4.1–4.4.

4.5.1 Number of Tracker Tracks and TOF0/1 Space Points

In order to calculate the scattering angle, it is necessary to have tracks in both trackers

which can then be propagated to the centre of the absorber.

Since the momentum in the trackers compared to the time of flight between TOF0

and TOF1 is the strongest PID indicator available (as the particle mass can be calculated

from speed and momentum), it is also required to have space points in both.

Due to the low-level nature of the analysis, using track matching in order to pull

apart events with multiple particles would add significantly to the systematics. Hence,

exactly one track in each tracker and one space point in each of TOF0 and TOF1 was

required for inclusion of an event.

4.5.2 Tracker Track Fit χ2/NDF

Tracks with a poor track fit in the tracker were excluded by requiring that the reduced

χ2 from the fit be below 5.0 (see figure 4.9, the value was chosen by recommendation

from one of the tracker experts).
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Figure 4.9: χ2/NDF distribution before (blue) and after (red) the cut for the 170 MeV/c
absorber dataset. Note that the slight reduction in the area that is not cut is due to
events that are removed due to the cut in the respective other tracker.
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Remaining Events
With Absorber Without Absorber

Before Cuts 1290076 210835
Require Tracks in both Trackers 486953 77823
Exactly one SP in TOF0/1 386979 43933
Exactly one Track in each Tracker 376926 42803
χ2/NDF Cut 343703 39377
Minimum Number of Tracker Clusters 306442 36050
Minimum pt 214442 23922
No Energy Gain in Absorber 212897 22444
Fiducial Volume Cut 147092 15818

Momentum Selection (MeV/c) 120 130 140 120 130 140

Momentum Selection 4950 47101 68384 1644 5697 5174
PID Cut 2901 38137 52826 798 4629 4511

Table 4.1: Remaining events after cuts for runs with 140 MeV/c nominal beam momen-
tum

Remaining Events
With Absorber Without Absorber

Before Cuts 1359825 260264
Require Tracks in both Trackers 441012 98405
Exactly one SP in TOF0/1 353823 50740
Exactly one Track in each Tracker 347621 49617
χ2/NDF Cut 315533 45499
Minimum Number of Tracker Clusters 285342 41462
Minimum pt 207564 26968
No Energy Gain in Absorber 206421 25327
Fiducial Volume Cut 138402 17465

Momentum Selection (MeV/c) 150 160 170 150 160 170

Momentum Selection 25981 42814 37777 2731 5647 5200
PID Cut 8173 30956 32326 1099 4543 4179

Table 4.2: Remaining events after cuts for runs with 170 MeV/c nominal beam momen-
tum
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Remaining Events
With Absorber Without Absorber

Before Cuts 2452656 320666
Require Tracks in both Trackers 342441 49175
Exactly one SP in TOF0/1 260006 30418
Exactly one Track in each Tracker 255706 29778
χ2/NDF Cut 234063 27454
Minimum Number of Tracker Clusters 218250 25874
Minimum pt 179685 21452
No Energy Gain in Absorber 177174 18576
Fiducial Volume Cut 93465 8712

Momentum Selection (MeV/c) 180 190 200 180 190 200

Momentum Selection 16021 34784 23475 1844 3212 1744
PID Cut 7104 23972 19752 785 2343 1500

Table 4.3: Remaining events after cuts for runs with 200 MeV/c nominal beam momen-
tum

Remaining Events
With Absorber Without Absorber

Before Cuts 1517367 305387
Require Tracks in both Trackers 331984 69568
Exactly one SP in TOF0/1 248613 37685
Exactly one Track in each Tracker 246617 37342
χ2/NDF Cut 229973 34817
Minimum Number of Tracker Clusters 221326 33664
Minimum pt 185611 28381
No Energy Gain in Absorber 182345 25201
Fiducial Volume Cut 83467 10076

Momentum Selection (MeV/c) 220 230 240 220 230 240

Momentum Selection 12768 27667 24376 1625 3426 2734
PID Cut 5344 14388 16151 612 1697 1880

Table 4.4: Remaining events after cuts for runs with 240 MeV/c nominal beam momen-
tum
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4.5.3 Number of Tracker Clusters

Since each tracker has 5 stations, each comprised of 3 planes, a well-reconstructed tracker

event will consist of 15 tracker clusters. A lower number of tracker clusters results in

lower quality of the reconstructed track, due to the larger position errors on planes with

2 rather than 3 clusters and/or entire planes missing from the input to the track fit. A

minimum of 12 clusters for both upstream and downstream tracks is imposed in order

to reject tracks with a low reconstruction quality (see figure 4.10)
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Figure 4.10: Number of Tracker Clusters before (blue) and after (red) the cut for the
170 MeV/c absorber dataset. Note that the reduction in the area that is not cut is due
to events that are removed due to the cut in the respective other tracker.

4.5.4 Minimum Transverse Momentum in the Upstream Tracker

The longitudinal momentum of tracks in the tracker is calculated from the pitch of the

helix that describes the particles’ motion in the magnetic field of the trackers. This

results in a strong dependence of the precision of the longitudinal momentum recon-

struction on the transverse momentum as shown in figure 4.11. A minimum transverse

momentum of 15 MeV/c was chosen to keep the error in the longitudinal momentum

component less than half the bin size of 10 MeV/c chosen for the analysis (see figure

4.11).
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Figure 4.11: Uncertainty in pz as a function of pt for the 170 MeV/c absorber dataset.
The red line indicates the cut, events to the left of it are removed.

4.5.5 No Energy Gain in Absorber

While the exact amount of energy loss in the absorber for a given particle cannot be

predicted due to the stochastic nature of the processes involved, absorber traversal can

never result in an energy gain, i.e. apparent energy gain in the absorber points to very

poorly reconstructed momentum in one or both of the trackers. In order to account

for the possibility of very low energy loss in the absorber, a positive error in the up-

stream momentum reconstruction and a negative error in the downstream momentum

reconstruction (while noting that the probability of all 3 coinciding at the most extreme

values is very small), a requirement was imposed that the reconstructed total momentum

in the downstream tracker cannot be more than 5 MeV/c (approximately the tracker

momentum resolution) larger than that in the upstream tracker (see figure 4.12).

4.5.6 Fiducial Volume Cut

There are two main motivations for fiducial volume cuts in the trackers. In both trackers

we want to avoid particles that came very close to the edge of the bore (i.e. the tracker

housing’s inner radius), both to cut out particles that may have scraped the tracker

housing, and because the magnetic fields far away from the bore centre are less well

understood.

A more stringent cut comes from the diffuser at the entry of the upstream tracker.

As particles that passed through the diffuser housing rather than its aperture would be
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Figure 4.12: Reconstructed momentum in the downstream tracker as a function of re-
constructed momentum in the upstream tracker for the 170 MeV/c absorber dataset.
The red line indicates the cut, events above it are removed (retained in the plot).

subject to significantly less-predictable energy loss, inclusion of such particles would

decrease the performance of the PID cut.

Finally, a tighter fiducial volume cut upstream than downstream mitigates to

some degree the efficiency issues mentioned in section 4.4.1, thus requiring a less severe

efficiency correction.

The fiducial volume cut is achieved by performing a simple least-squares circle

fit on the transverse positions of the tracker track points and determining the maximum

distance from the beamline centre of any point on the perimeter of the circle. In the

upstream tracker this cut was placed at a radius of 70 mm as at that size, the afore-

mentioned efficiency effect is relatively small (and the cut lies well within the diffuser

aperture), while at the same time there is no significant loss of total particle rate after

all cuts. In the downstream tracker, the cut was placed at 150 mm, i.e. the tracker’s

nominal fiducial volume (see figure 4.10).

4.5.7 Momentum Selection

Since scattering angles are dependent on the particle momentum, ideally a dataset would

have a very narrow momentum spread. However, in this case, the error associated with

the momentum measurement (especially pz), as well as statistical considerations, require

a relatively coarse momentum binning. A width of 10 MeV/c was chosen for the mo-
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Figure 4.13: Maximum transverse position of the path inside the tracker before (blue)
and after (red) the cut for the 170 MeV/c absorber dataset. Note that the reduction in
the area to the left of the cut is due to events that are removed due to the cut in the
respective other tracker.

mentum selection, as this is significantly larger than the uncertainty on the momentum

for most of the particles in the beamline, retains relatively high statistics for each mo-

mentum slice, and allows coverage of most of the momentum space of the runs analysed

(which had nominal beam momenta of 140, 170, 200, and 240 MeV/c). Figure 4.14

illustrates the selection of a specific momentum range from the distribution of the data

set. Note that since the momentum distribution of the input beam is not uniform, the

labels used below for a given momentum slice do not necessarily correspond to the mean

momentum of that slice, but rather indicate the momentum range (nominal value ± 5

MeV/c) contained within it.

4.5.8 PID Selection

Pions and electrons were removed from the sample by making a cut on the TOF0-

TOF1 time-of-flight, which given the narrow momentum range in the selected sample is

a strong indicator of particle mass. Due to a slight (currently unexplained) offset in the

parameter between data and Monte Carlo, MC truth information could not be reliably

used to determine the appropriate values for the cuts. Instead, Gaussians were fitted to

the peaks corresponding to the different particle species and the selection range placed 4
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Figure 4.14: Momentum distribution in the upstream tracker before (blue) and after
(red) momentum selection for the 170 MeV/c absorber dataset.
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Figure 4.15: TOF0–TOF1 time-of-flight distribution before (blue) and after (red) PID
selection for the 170 ± 5 MeV/c momentum slice. The three peaks (from left to right)
correspond to positrons, muons, and pions respectively, the population between the muon
and the pion peak was found from MC to consist of pions that decayed to muons between
TOF0 and TOF1. For the depicted momentum selection, the (Gaussian fit derived) cut
used was between 28.39 and 29.79 ns.

standard deviations from the centre of the muon peak. There exists a small population

of particles spread between the pion and muon peaks. Using MC truth information (the

aforementioned shift between MC and data was not an issue in this case, as this was

a qualitative rather than quantitative question), it was found to consist of muons from
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pion decays that occurred between TOF0 and TOF1. Since this population is very small

compared to the peak itself, and the particles in it were not special other than in the

fact that their parent pions decayed after as opposed to before TOF0, the exact location

of the cut within that population is essentially irrelevant (see figure 4.15).

4.6 Systematic Errors

A number of potential sources of systematic errors were identified, based on the cuts

mentioned above as well as various uncertainties regarding the MICE beamline. For

each, the first step was to determine whether the given source has a measurable effect

on the scattering distribution. Unless specifically stated otherwise below, this was done

by varying the parameter in question in the Monte Carlo and then comparing sets with

different values; depending on the type of variation either the standard value and a varied

one, or one value varied upwards and the other one downwards (below referred to as An

and Bn where n ∈ {1, 2}). For example, in the case of the cut on the number of tracker

clusters, distributions were produced where the the imposed minimum was placed at

either 11 or 13 (see section 4.6.2). To achieve statistical independence, the dataset was

cut into two halves, which produced two pairs of data, where the n indicates the first

or second half of the data. Data pairs were then compared via a χ2 (using ROOT’s

Chi2Test() implementation based on [77]) and the parameter considered to not have a

measurable systematic effect if the p-value calculated from the χ2 values from comparing

those data sets that varied the parameter (i.e. A1, B2, and A2, B1, respectively) was

not noticeably lower than from those that varied only statistically (i.e. A1, A2, and B1,

B2, respectively).

If an effect was found, a covariance matrix encoding the variance and correla-

tions betweens bins of the scattering distribution was generated by running a number of

simulations while varying the respective parameter according to a Gaussian distribution

with width defined by the value of the systematic error. Correlations between system-

atic errors (likely existing e.g. between the upstream and downstream magnetic field

uncertainties) were not taken into account, making the resulting error estimation con-

servative. Since this method is highly computationally intensive, the number of samples

taken had to be kept as small as possible while still being representative in order to keep

the processing time involved (even on a computing cluster) at a reasonable level. For

this purpose, rather than directly drawing the variations randomly from a Gaussian with

the appropriate width, a much higher number of random values was generated, sorted,

and then every n-th entry drawn, yielding a distribution that follows the Gaussian much
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Figure 4.16: Illustration of the sampling smoothing used for evaluation of systematic
uncertainties. Sample of size 500 (blue), sample of size 50 (red) drawn from a sample of
size 10,000,000 and Gaussian distribution for reference (green).

more closely than would usually be the case for a similarly low number of samples (see

figure 4.16). In order to include covariances between the x and y projections of the

scattering angle, θx and θy, the two distributions were appended to each other for cal-

culating the covariance matrix, yielding bimodal distributions with twice the number of

bins. The following potential sources of systematic errors were considered:

4.6.1 Tracker Track Fit χ2/NDF Cut

The χ2/NDF cut was varied between 4.0 and 10.0 by recommendation from one of the

tracker experts. No measurable systematic effect was found.

4.6.2 Number of Tracker Clusters Cut

The minimum number of tracker clusters required to pass the cut was varied between

11 and 13 (nominal value 12, values below 11 would result in a high probability of entire

planes missing resulting in significantly degraded reconstruction quality). No measurable

systematic effect was found.
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4.6.3 Minimum Transverse Momentum in the Upstream Tracker Cut

The value of the minimum transverse momentum cut was varied by ±1.5 MeV/c, which

was representative of the combined error of the transverse momentum components in

the vicinity of the cut as reported by the tracker reconstruction (see section 2.6.3). No

measurable systematic effect was found.

4.6.4 No Energy Gain in Absorber Cut

The cut was varied by ±4 MeV/c, which was representative of the combined error

of all momentum components of tracks in both trackers as reported by the tracker

reconstruction. No measurable systematic effect was found.

4.6.5 Fiducial Volume Cut

Since the fiducial volume cut is based on a circle fit, it was first necessary to evaluate

by how much this circle fit could vary based on the detector resolution. The x and

y coordinates of the track points in a random selection of tracks were varied by the

errors reported by the tracker reconstruction and the spread of the resulting largest

distance from the beamline centre calculated. The spread was found to be approximately

Gaussian, with a width of less than 1 mm in most of the sample that was considered.

The fiducial volume cut was then varied by ±2 mm. No measurable systematic effect

was found for either the upstream or the downstream cut.

4.6.6 Momentum Selection

Similarly to the minimum transverse momentum cut (see section 4.6.3), the selection

boundaries were varied by an amount representative of the combined errors of the mo-

mentum components (±2.5 MeV/c). A sample covariance matrix for the systematic

effect can be seen in figure 4.17, with matrices for all datasets in appendix A.

4.6.7 PID Selection

As mentioned in section 4.5.8, the exact location of the time-of-flight PID cut has minimal

impact. From the uncertainties on the time-of-flight measurements (see section 2.5.2),

it was calculated that the resolution of the cut could only vary the number of particles

included by around 0.05 % as very few particles are contained within the areas a few

tens of picoseconds on either side of the cut. This could not contribute a measurable

systematic effect.
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Figure 4.17: Sample covariance matrix for the momentum selection systematic for LiH
data at 170 MeV/c. Bin numbers 1–21 and 22–42 represent the θx and θy ranges respec-
tively between -0.2 and 0.2 radians in this and all following covariance matrices.

4.6.8 Amount of Absorber Material

The amount of absorber material in the beamline is a potential source of systematic

errors since this would increase or decrease the width of the scattering distribution for the

absorber itself obtained from the Monte Carlo simulation. The errors on mass, diameter,

and thickness of the absorber are 0.5 g, 0.05 cm, and 0.05 cm, resulting in an error on the

density of 0.72 %. For the actual scattering distribution, the relevant parameter is the

product of density and width however, which, since the errors on thickness and density

partially cancel, has an error of only 0.44 %. Using this uncertainty with equation 4.3

yields a final error on θ0 of only 0.056 % – on the order of a few µrad, which is orders of

magnitude below the levels that could be measured in MICE.

The atomic makeup of the absorber was measured with an uncertainty of 0.01 %,

far too small to have a measurable effect.

4.6.9 Beamline Alignment

The transverse position of the downstream tracker was varied by ±1 mm and its rotation

by ±1 mrad, which should be conservative estimates for the actual misalignment. Sample

covariance matrices for the systematic effects can be seen in figure 4.18, with matrices
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for all datasets in appendix A.
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(a) Alignment shift of ±1 mm
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(b) Alignment rotation of ±1 mrad

Figure 4.18: Sample covariance matrices for alignment and rotation systematics for LiH
data at 170 MeV/c

4.6.10 Alignment Correction
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Figure 4.19: Scattering distributions for 180 (black), 200 (red), and 220 (green) MeV/c
before shift correction, showing the momentum-dependent shift of the distributions.
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Figure 4.20: MC-based momentum-dependent shift
in reconstructed scattering angle as result of a 5 mm
spatial misalignment of the downstream tracker
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Figure 4.21: Shift correction graph for the dataset
with a nominal beamline momentum of 200 MeV/c

When first analysing the data, it

was discovered that in general,

especially in the LiH dataset, the

scattering distributions were not

centred at 0. Moreover, the mean

of the distributions actually var-

ied as a function of momentum.

Since there is no known physics

(rather than reconstruction) ef-

fect that could cause such a shift,

this triggered an investigation re-

garding the possibility of this be-

ing the result of a misalignment,

i.e. a discrepancy in position be-

tween the actual beamline com-

ponents and the geometry. To

determine whether a simple mis-

alignment could cause such an ef-

fect, a Monte Carlo simulation

was performed in which a pen-

cil beam varying only in longitu-

dinal momentum was generated

just ahead of the most down-

stream tracker plane in the up-

stream tracker. Scattering was

turned off to eliminate as much

random variation as possible and

propagation back into the ab-

sorber was performed from MC

truth rather than reconstructed

coordinates. The downstream co-

ordinates were shifted by 5 mm in

x before propagation. As can be

seen in figure 4.20, this does indeed produce a significant shift in reconstructed scattering

angle which varies with input momentum.

It should be noted that since a spatial mismatch between the propagated tracks
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does not factor into the calculated scattering angle, this effect can only occur because

the magnetic fields are not completely uniform radially, since otherwise the propagation

helix would only shift in the direction of the misalignment but not change its shape (and

therefore still point in the exact same direction at the point where the scattering angle

is calculated).
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Figure 4.22: Sample covariance matrix for the alignment correction systematic for LiH
data at 170 MeV/c

Ensuring that the scattering distributions are appropriately centred is important

in order to numerically compare the LiH distribution with the convolution. Additionally,

the momentum dependence may introduce a slight broadening. A full alignment study

was not possible within the timeframe for this thesis: In its simplest form, it would have

involved taking data without magnetic fields in the exact same beamline arrangement

as was done for the used data, but since the beamline had been modified since, this

was not possible. A field-on alignment study – i.e. using the data from this analysis –

would be very involved as displacement and rotational misalignments cannot be treated

independently, so a fit would have to be performed in at least 10 dimensions (three for

displacement, two for rotation in each of the trackers). Hence the following method was

used to mitigate the observed effect: Data was processed in two passes. In the first pass,

angular distributions were binned by momentum (at 6 MeV/c per bin somewhat finer

than the binning for the final plots) and for each bin, the mean scattering angle (i.e.

the mean offset from 0) was calculated. In the second pass, the scattering angle of each

event was corrected by interpolating between the previously corrected means in order to

determine the appropriate correction at that specific momentum point. To determine
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the systematic effect, multiple corrected samples were produced where in each case, for

each particle the momentum used to determine the correction was varied randomly by a

Gaussian with a width corresponding to the mean error on the momentum to simulate

the distribution broadening that can still occur due to the uncertainty in momentum.

A constant value for this mean error was used, as while it depends strongly on pz (see

figure 4.11), there is little dependence on the magnitude of the total momentum. A

sample covariance matrix for this can be seen in figure 4.22. The fairly low covariances

(statistical variances for the dataset pictured in figure 4.22 peak at around 0.017, see

also figure A.21a) calculated for both this and the alignment systematics (for which the

correction – without random variation – was also used) indicate that this approach is

very effective in mitigating alignment problems.

4.6.11 Magnetic Field Strength

Comparison of the field map model with magnetic probes in the beamline yielded an

uncertainty of around 2% in the strength of the magnetic field inside the trackers’ fiducial

volumes. Field strengths in both trackers were separately varied by ±2%. Uncertainties

on the fields produced by the focus coils surrounding the absorber had been measured in

flip mode (see section 2.4.1) to be less than 0.2% (no field map fits for solenoid mode have

been made to date), so these fields were varied by ±0.2%. Sample covariance matrices

for the systematic effects can be seen in figure 4.23, with matrices for all datasets in

appendix A.

4.7 Results

Comparisons between the LiH scattering distributions and those resulting from a convo-

lution between “empty” data and the absorber-only distributions extracted from Monte-

Carlo can be seen in figures 4.25 to 4.36, a comparison of RMS widths of the distributions

across the entire momentum range in figure 4.24. The errors shown are calculated by

taking the square roots of the diagonals of the sum of all covariance matrices (including

those for statistical errors, which are diagonal matrices). The match between each two

datasets was also evaluated numerically by calculating the χ2/NDF value as

χ2 = (VLiH −Vconv)T C−1 (VLiH −Vconv) (4.24)

where VLiH is the histogram of the LiH data scattering distribution (with θx and θy

appended together as described above), Vconv is the histogram of the convolution of the
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Figure 4.23: Sample covariance matrices for magnetic field uncertainty systematics for
LiH data at 170 MeV/c

empty absorber scattering distribution with the MC derived absorber-only scattering

distribution, C is the sum of all covariance matrices for the dataset, and NDF , the

number of degrees of freedom, is the number of bins in the distribution (i.e. twice the

number of bins in the θx and θy distributions) minus 2 to account for the independent

scaling of θx and θy. The χ2/NDF values for all datasets can be seen in table 4.5.

As can be seen from the covariance matrices in appendix A, the errors for the

empty absorber datasets are dominated by statistical uncertainties, whereas for the

LiH datasets, uncertainties in the magnetic fields and momentum selection, as well as
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Momentum (MeV/c) 120 130 140 150 160 170
χ2/NDF (stat + sys) 0.3033 0.6516 0.7669 0.3453 0.9097 0.5905
χ2/NDF (stat only) 3.6426 13.8948 6.9199 1.1663 2.6374 2.4328

Momentum (MeV/c) 180 190 200 220 230 240
χ2/NDF (stat + sys) 0.2971 0.3724 0.5979 0.4901 0.3560 0.5478
χ2/NDF (stat only) 1.4401 2.4914 2.2661 1.2298 1.3587 0.9388

Table 4.5: χ2/NDF values for all momentum selections

statistics contribute comparable amounts.

In general – especially for higher momenta – LiH data and the convolution mostly

agree within errors, though the convolutions appear to be shaped slightly narrower, i.e.

fewer large angle scatters, especially in the low-momentum regions (see also figure 4.24).

This effect may at least partially be due to systematic effects, as especially those related

to alignment will generally result in a broadening of the distribution. LiH data, as

indicated by the larger covariances from the shift correction, appears to suffer from

more severe misalignment issues which therefore causes a more significant broadening

compared to the convolution. It should be noted however, that some previous analyses

in MICE have produced results consistent with a slight underestimation of large angle

scatters in GEANT4 (version 9.6 is used for MICE), while others have not seen such an

effect[63, 78].

Only in the very lowest momentum ranges, especially 120 MeV/c (see figure

4.25, this was also the dataset with the lowest overall statistics), was a relatively severe

discrepancy observed. Since scattering in this momentum range has never before been

measured in MICE (or MuScat), future analyses may want to investigate this end of the

momentum spectrum produced by MICE with higher statistics and potentially in the

absence of magnetic fields.

The results presented here suggest that the multiple scattering algorithms used by

GEANT4 have improved considerably in their treatment of low-Z materials since version

7.0 which was used in MuScat and which strongly overestimated large angle scatters.

Furthermore, this analysis has demonstrated the efficacy of using a convolution approach

to measure multiple scattering distributions. While this method cannot produce “true”

distributions as can be achieved with a deconvolution (since detector effects cannot

be removed from the data), it has a significant strength when comparing data to any

scattering model, as it has no dependence on the choice of a semi-arbitrary parameter

such as a regularisation strength. Additionally, this analysis represents the first time

that field-on scattering measurements have been performed in MICE (the only previous
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Figure 4.24: RMS widths of the scattering angle distributions for LiH data and convo-
lution between “empty” data and absorber-only MC scattering distribution. The lower
momentum range may indicate a slight underestimation of scattering by the GEANT4
scattering model. Note that the kink at 180 MeV/c corresponds to a dataset with large
systematic errors, which can broaden the distribution.

field-on scattering analysis[63] was performed using Monte Carlo only, as real field-on

data was not yet available at the time). While the presence of magnetic fields in the

trackers allows a significantly better momentum resolution than relying on time-of-flight

information (or even just beam settings) for the momentum selection, field uncertainties

and momentum selection will become the leading source of error if significantly better

statistics are available.

It is suggested that future multiple scattering measurements in MICE focus on

the low-momentum region, which may show a significant discrepancy between data and

Monte Carlo. If a convolution method is used in order to minimise the dependence on

beam models and the regularisation strength, such an analysis would require significantly

better statistics for no-absorber data. The most suitable approach in order to ensure

strong results may be separate field-on (with fine momentum binning) and field-off (with

coarse momentum binning) analyses, though the former would benefit from a detailed

study of the beamline alignment and magnetic field maps.
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Figure 4.25: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 120 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.26: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 130 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.27: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 140 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.28: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 150 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.29: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 160 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.30: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 170 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.31: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 180 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.32: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 190 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.33: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 200 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.34: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 220 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.35: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 230 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Figure 4.36: Comparison between LiH data (black) and convolution between “empty”
data and absorber-only MC scattering distribution (red) at 240 MeV/c. Distributions
are normalised to unit area. Total errors (i.e. statistical + systematic) are shown.
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Chapter 5

Summary

“We never are definitely right, we can only be sure we are wrong.”

Richard P. Feynman

The Muon Ionisation Cooling Experiment (MICE) was designed as a proof of

concept to demonstrate muon ionisation cooling – the reduction of the phase-space of

a muon beam by passing it through alternating layers of a low-Z absorber (such as

liquid hydrogen or lithium hydride) – which reduce its momentum in all directions – and

RF cavities – which increase the momentum in the beamline direction only. Ionisation

cooling is the only currently known method for muon cooling, as the short mean lifetime

of muons makes typical methods used for electron or proton beams infeasible; and is

an essential technology for the construction of a future Neutrino Factory and/or Muon

Collider.

A track matching algorithm (presented in chapter 3) was implemented in order

to combine locally reconstructed output from the various MICE detectors and present it

within a unified global data structure for further processing such as particle identification,

global track fitting, and finally analysis. Matching is performed by using a propagation

routine based on a 4th order Runge-Kutta method to determine whether a given tracker

track likely originated from the same particle as hits in the other detectors. Illustrative

efficiency calculations show a good performance of the track matching algorithm on

MICE data.

The efficacy of ionisation cooling is determined by the interplay of energy loss

and multiple coulomb scattering in the absorber, as the energy loss drives the cooling

whereas beam heating due to multiple scattering partially offsets this effect. The relative

strengths of these two processes determines the equilibrium emittance of the beam, i.e.
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the lowest emittance that can be achieved for a given input beam with a given absorber

material. An expression for this equilibrium emittance using a fit to the Molière theory

of scattering (section 4.1.3) can be seen in equation 2.10.

In order to be able to accurately model the cooling performance of an ionisation

cooling channel, it is vital to validate the accuracy of scattering models in simulations.

Results from the MuScat experiment[74] showed that GEANT4 at the time (in ver-

sion 7.0) vastly overestimated large angle scatters in low-Z materials. Previous scatter-

ing measurements in MICE[63, 78] show significant improvement in agreement between

GEANT4 and data (version 9.6 is used for MICE), but in some cases suggested that the

simulations now slightly underestimate large angle scatters.

The analysis presented in chapter 4 of this thesis demonstrates an alternative ap-

proach for the scattering angle calculations in order to provide independent confirmation

of these results. Whereas previous measurements used a deconvolution method, which

is dependent on the choice of the regularisation strength – a measure for the weight

put on data vs. prediction in order to prevent overfitting – a convolution method was

used, in which the scattering distribution (including all detector effects) from data taken

without an absorber present in the beamline is convolved with an MC derived scattering

distribution of only the absorber itself. The presented results support the validity of this

approach for future measurements.

Furthermore, previous measurements were taken in the absence of magnetic fields,

which makes calculation of the scattering angles significantly more straightforward but

suffers from very limited momentum resolution (as well as a loss of statistics due to lower

transmission rates). This analysis deals with field-on data which allows fairly accurate

momentum reconstruction, though at the cost of additional sources of systematic errors,

namely the uncertainties in the field maps. Beamline misalignments also become more

significant sources of errors in the presence of magnetic fields. Detailed alignment and

magnetic field studies may be advisable before further field-on scattering studies are

conducted on MICE data.

The results presented in section 4.7 support previous findings that the scattering

model used by GEANT4 has improved significantly since MuScat results were published

and lends tentative support to the presence of a slight bias in the opposite direction from

what was identified at the time, though the uncertainties in this analysis – primarily

driven by low statistics for the no-absorber data – result in an agreement between data

and convolution within errors for most of the momentum range studied. Further study

is warranted to confirm or refute the presence of this bias, and it is proposed that such

study is performed using a convolution approach on both field-on and field-off data.

97



Appendix A

Covariance Matrices

Numerical versions of the covariance matrices listed below are available for download at

http://micewww.pp.rl.ac.uk/projects/analysis/wiki/Jan_Greis_PhD_Analysis_

Supplementary_Data.
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A.1 Covariance Matrices for Individual Systematic Errors
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Figure A.1: Statistical and alignment covariance matrices for the 120 MeV/c LiH dataset
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Figure A.2: Momentum selection and field uncertainty covariance matrices for the 120
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.3: Statistical and alignment covariance matrices for the 120 MeV/c convoluted
dataset
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Figure A.4: Momentum selection and field uncertainty covariance matrices for the 120
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.5: Statistical and alignment covariance matrices for the 130 MeV/c LiH dataset
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(d) Focus coils magnetic field uncertainty

Figure A.6: Momentum selection and field uncertainty covariance matrices for the 130
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.7: Statistical and alignment covariance matrices for the 130 MeV/c convoluted
dataset
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Figure A.8: Momentum selection and field uncertainty covariance matrices for the 130
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.9: Statistical and alignment covariance matrices for the 140 MeV/c LiH dataset
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(d) Focus coils magnetic field uncertainty

Figure A.10: Momentum selection and field uncertainty covariance matrices for the 140
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.11: Statistical and alignment covariance matrices for the 140 MeV/c convoluted
dataset

109



✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✵✹−

✵✕✵✵✷−

✵

✵✕✵✵✷

✵✕✵✵✹

(a) Momentum selection uncertainty

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✶✺−

✵✕✵✶−

✵✕✵✵✺−

✵

✵✕✵✵✺

✵✕✵✶

✵✕✵✶✺

(b) Upstream magnetic field uncertainty

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✶✺−

✵✕✵✶−

✵✕✵✵✺−

✵

✵✕✵✵✺

✵✕✵✶

✵✕✵✶✺

(c) Downstream magnetic field uncertainty

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✹−

✵✕✷−

✵

✵✕✷

✵✕✹

✖−
✶✵×

(d) Focus coils magnetic field uncertainty

Figure A.12: Momentum selection and field uncertainty covariance matrices for the 140
MeV/c convoluted dataset

110



✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✖−

✵✕✵✹−

✵✕✵✷−

✵

✵✕✵✷

✵✕✵✹

✵✕✵✖

(a) Statistical errors

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✵✖−

✵✕✵✵✹−

✵✕✵✵✷−

✵

✵✕✵✵✷

✵✕✵✵✹

✵✕✵✵✖

(b) Alignment shift of ±1 mm

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✵✹−

✵✕✵✵✸−

✵✕✵✵✷−

✵✕✵✵✶−

✵

✵✕✵✵✶

✵✕✵✵✷

✵✕✵✵✸

✵✕✵✵✹

(c) Alignment rotation of ±1 mrad

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✶−

✵✕✵✵✺−

✵

✵✕✵✵✺

✵✕✵✶

(d) Momentum-dependent shift correction

Figure A.13: Statistical and alignment covariance matrices for the 150 MeV/c LiH
dataset
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Figure A.14: Momentum selection and field uncertainty covariance matrices for the 150
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.15: Statistical and alignment covariance matrices for the 150 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.16: Momentum selection and field uncertainty covariance matrices for the 150
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.17: Statistical and alignment covariance matrices for the 160 MeV/c LiH
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.18: Momentum selection and field uncertainty covariance matrices for the 160
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.19: Statistical and alignment covariance matrices for the 160 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.20: Momentum selection and field uncertainty covariance matrices for the 160
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.21: Statistical and alignment covariance matrices for the 170 MeV/c LiH
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.22: Momentum selection and field uncertainty covariance matrices for the 170
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.23: Statistical and alignment covariance matrices for the 170 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.24: Momentum selection and field uncertainty covariance matrices for the 170
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.25: Statistical and alignment covariance matrices for the 180 MeV/c LiH
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.26: Momentum selection and field uncertainty covariance matrices for the 180
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.27: Statistical and alignment covariance matrices for the 180 MeV/c convoluted
dataset

125



✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✶✺−

✵✕✶−

✵✕✵✺−

✵

✵✕✵✺

✵✕✶

✵✕✶✺

(a) Momentum selection uncertainty

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✖−

✵✕✵✹−

✵✕✵✷−

✵

✵✕✵✷

✵✕✵✹

✵✕✵✖

(b) Upstream magnetic field uncertainty

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✷−

✵✕✶−

✵

✵✕✶

✵✕✷

(c) Downstream magnetic field uncertainty

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✷−

✵✕✵✶✺−

✵✕✵✶−

✵✕✵✵✺−

✵

✵✕✵✵✺

✵✕✵✶

✵✕✵✶✺

✵✕✵✷

(d) Focus coils magnetic field uncertainty

Figure A.28: Momentum selection and field uncertainty covariance matrices for the 180
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.29: Statistical and alignment covariance matrices for the 190 MeV/c LiH
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.30: Momentum selection and field uncertainty covariance matrices for the 190
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.31: Statistical and alignment covariance matrices for the 190 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.32: Momentum selection and field uncertainty covariance matrices for the 190
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.33: Statistical and alignment covariance matrices for the 200 MeV/c LiH
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.34: Momentum selection and field uncertainty covariance matrices for the 200
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.35: Statistical and alignment covariance matrices for the 200 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.36: Momentum selection and field uncertainty covariance matrices for the 200
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.37: Statistical and alignment covariance matrices for the 220 MeV/c LiH
dataset
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Figure A.38: Momentum selection and field uncertainty covariance matrices for the 220
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.39: Statistical and alignment covariance matrices for the 220 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.40: Momentum selection and field uncertainty covariance matrices for the 220
MeV/c convoluted dataset

138



✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✖−

✵✕✵✹−

✵✕✵✷−

✵

✵✕✵✷

✵✕✵✹

✵✕✵✖

(a) Statistical errors

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✖−

✵✕✗−

✵✕✹−

✵✕✷−

✵

✵✕✷

✵✕✹

✵✕✗

✵✕✖

✘−
✶✵×

(b) Alignment shift of ±1 mm

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✖−

✵✕✗−

✵✕✹−

✵✕✷−

✵

✵✕✷

✵✕✹

✵✕✗

✵✕✖

✘−
✶✵×

(c) Alignment rotation of ±1 mrad

✮②�✱①�❇✁✂ ✂✄♠☎✆r ✝
✵ ✺ ✶✵ ✶✺ ✷✵ ✷✺ ✸✵ ✸✺ ✹✵

✞ ✟
✠
✡ ☛
✠

☞
✌✍
✍
✎
✏
✑
✒
✓
✔

✵

✺

✶✵

✶✺

✷✵

✷✺

✸✵

✸✺

✹✵

✵✕✵✵✷−

✵✕✵✵✶−

✵

✵✕✵✵✶

✵✕✵✵✷

(d) Momentum-dependent shift correction

Figure A.41: Statistical and alignment covariance matrices for the 230 MeV/c LiH
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.42: Momentum selection and field uncertainty covariance matrices for the 230
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.43: Statistical and alignment covariance matrices for the 230 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.44: Momentum selection and field uncertainty covariance matrices for the 230
MeV/c convoluted dataset
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(d) Momentum-dependent shift correction

Figure A.45: Statistical and alignment covariance matrices for the 240 MeV/c LiH
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.46: Momentum selection and field uncertainty covariance matrices for the 240
MeV/c LiH dataset
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(d) Momentum-dependent shift correction

Figure A.47: Statistical and alignment covariance matrices for the 240 MeV/c convoluted
dataset
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(d) Focus coils magnetic field uncertainty

Figure A.48: Momentum selection and field uncertainty covariance matrices for the 240
MeV/c convoluted dataset
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A.2 Combined Covariance Matrices
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Figure A.49: Combined (incl. statistical errors) covariance matrices 120 MeV/c
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Figure A.50: Combined (incl. statistical errors) covariance matrices 130 MeV/c
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Figure A.51: Combined (incl. statistical errors) covariance matrices 140 MeV/c
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Figure A.52: Combined (incl. statistical errors) covariance matrices 150 MeV/c
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Figure A.53: Combined (incl. statistical errors) covariance matrices 160 MeV/c
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Figure A.54: Combined (incl. statistical errors) covariance matrices 170 MeV/c
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Figure A.55: Combined (incl. statistical errors) covariance matrices 180 MeV/c
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Figure A.56: Combined (incl. statistical errors) covariance matrices 190 MeV/c
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Figure A.57: Combined (incl. statistical errors) covariance matrices 200 MeV/c
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Figure A.58: Combined (incl. statistical errors) covariance matrices 220 MeV/c
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Figure A.59: Combined (incl. statistical errors) covariance matrices 230 MeV/c
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Figure A.60: Combined (incl. statistical errors) covariance matrices 240 MeV/c
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