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Abstract

In this thesis the numerical calculation of non-Gaussianity from inflation

is discussed. Despite a strong interest in non-Gaussianity from inflation

models in recent years, not much attention has been devoted to its numerical

computation. Calculating the inflationary bispectrum in an efficient and

accurate manner will become more important as observational constraints

on primordial non-Gaussianity continue to increase.

Despite this, attention given to numerically calculating the primordial

bispectrum has been relatively low. The approach presented here differs

from previous approaches in that the Hubble Slow-Roll (HSR) parameters

are treated as the fundamental parameters. This allows one to calculate the

bispectra for a variety of scales and shapes in the out-of-slow-roll regime

and makes the calculation ideally suited for Monte-Carlo sampling of the

bispectrum.

The work is further extended to include potentials with features and non-

canonical kinetic terms, where the standard squeezed limit consistency re-

lation is demonstrated even for models which produce large fNL in the

equilateral limit. The method presented here is also independent of the

standard field redefinition used in analytic calculations, removing the need

for delicate cancellations in the super-horizon limit used in other numerical

methods.
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1. A Brief History of Nearly

Everything

Compound interest is the most powerful force in the universe.

– Albert Einstein

Cosmology is the study of the history and structure of the universe. From

the first moments of the Big Bang, throughout its 13.6 billion year history

most of it can be explained by well understood and tested physics. Most of

it, except for the first fractions of a second and it is these earliest moments

that will be the subject of this thesis.

Looking at the visible universe one of it’s most striking features is it’s

large scale isotropy, that the universe looks roughly the same in all direc-

tions. As we have no reason to believe we’re in a special place either, we

naturally conclude that the universe appears isotropic to observers in other

galaxies too. This isotropy and homogeneity only holds for scales larger

than about 100 Mpc [5, 6]. On scales smaller than this, such as the size of

individual galaxies and planets, the universe is obviously not homogeneous

and isotropic.

Clearly, attempting to explain all the objects in the universe on the small-

est scales is outside the bounds of reality. Therefore Cosmology tends to

focus on only the largest scales in the universe (those greater 100 Mpc) and

many of the non-linearities can be neglected. As it is impossible to model

all possible galaxy clusters, observations and predictions tend to focus on

statistical properties of the universe. If a theory of the universe can suc-

cessfully predict properties such as the average density of the universe, its

variance etc. then we know we must be on the right track.

These basic observations form the basis of the so-called “Cosmological

Principle” where we assume to a first approximation, the universe is ho-

mogeneous and isotropic. These basic assumptions, a theory of gravity and
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some initial initial conditions, form the Hot Big Bang model (now more com-

monly referred to as ΛCDM) and from it the entire history of the universe

can be derived.

One such prediction is that everywhere in the universe will be bathed

in left-over radiation, a relic from the Big Bang. These photons have been

streaming towards us for the past 13.2 billion years and have an average tem-

perature of roughly TCMB = 2.72548 ± 0.00057K [7]. This is referred to as

the Cosmic Microwave Background (CMB) and it has a perfect black body

spectrum and is probably the most important discovery made in Cosmology.

It was first postulated by Gamow [8] in 1946 with the first temperature cal-

culation made by Alpher and Herman in 1950 [9]. It was first discovered in

1964 [10] by Arno Penzias and Robert Wilson who initially found a residual

temperature at roughly 3.5K higher than expected when calibrating their

antenna and published their work along with an explanation from Dicke,

Peebles, Roll and Wilkinson suggesting its Cosmological origin [11].

Using the ΛCDM model and well understood physics we can reconstruct

most of the universe’s history. At roughly 10−10 − 10−14s the Standard

Model of particle physics is a good approximation, the electroweak gauge

symmetry is broken and the gauge bosons obtain mass. The density of the

universe at this time is dominated by radiation. At 10−5s quarks and gluons

become confined forming protons and neutrons. At 0.2s primordial neutri-

nos decouple and free stream while the neutron-to-proton ratio freezes out.

When the universe is 1s old electrons and positrons begin to annihilate re-

sulting in a small amount of leftover electrons. Protons and neutrons begin

forming light elements at 200 − 300s and the ratio of these elements is yet

another confirmation of the Hot Big Bang. At 10000 years the density of

matter equalises with that of radiation and at 380000 years neutral Hy-

drogen is formed allowing photons to free stream throughout the universe.

Any fluctuations in the density of the universe at this point are preserved

by these photons, therefore the CMB is effectively a photograph of the uni-

verse when it was 380000 years old. It is not possible to look back to older

times in this way as the universe becomes opaque due to electron-photon

interactions. This is known as the surface of last scattering. Finally, at

109 − 1010 years initial matter inhomogeneities grow into galaxy clusters

from their gravitational attraction [12].

Despite most of the universe’s timeline being filled in, there remains a
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few unanswered but important questions. Why is so much of the universe

made of dark matter and dark energy? What are they? Currently our best

guess for dark energy is the cosmological constant but this should involve

huge corrections from quantum mechanics so what cancels them out? At

t = 1s, electrons and positrons annihilate resulting a few left over electrons

today. What caused this asymmetry and why are there any electrons left

at all?

With the recent releases from the Planck satellite [6, 13–19], and espe-

cially the recent attention surrounding BICEP2 [20–28], the majority of

Theoretical Cosmologists have been concerned with explaining the statisti-

cal properties of the CMB. By far their most commonly accepted explana-

tion is called the Inflationary Paradigm and, as it takes place at the very

beginning of time before Electroweak symmetry breaking, it is arguably the

most fascinating puzzle in Cosmology. On one hand, it takes place at such

high temperatures, we can never come close to recreating its conditions in

a particle accelerator. Fortunately due to the way inflation imprints on the

CMB, its most important predictions are almost completely unaffected by

the intermediate particle physics. This is a double edged sword as it means

currently we have very little knowledge on how inflation ends. On the other

hand as it takes place at such high energies, leaving an imprint on the CMB,

this could be one of the only ways to test theories of Quantum Gravity.

Inflation was first proposed by Guth in the 1980’s [29] as a solution to

certain fine-tuning problems in Cosmology by postulating an early phase of

rapid exponential expansion for the universe. Even though this possibility

of exponential expansion was first postulated by Starobinsky [30], it wasn’t

until Guth showed how it could solve outstanding several outstanding Cos-

mology questions, that Inflation really gained momentum in Theoretical

Physics. It wasn’t long before cracks started to appear and the paradigm

had to be re-thought. This reboot was provided by Linde, Andreas, Albrecht

and Steinhardt [31,32].

Inflation now explains many fine-tuning problems in the universe and the

anisotropies in the CMB with an early period of accelerated expansion. One

more consequence is that these inflation models predict inflation should con-

tinue forever with our observable universe being one out of an infinite set of

emergent bubble universes [33,34]. While this at first sounds like an absurd

scenario, from a string theory perspective there are ∼ 101000 metastable

13



vacuum-like states [35], each with different laws of physics. Therefore infla-

tion provides a potential mechanism for populating these states and hence

explains why the laws of physics are the way they are. While inflation is

the most widely accepted explanation of the issues outlined above there is

still some disagreement and while alternatives have been proposed, it can

remain a heated topic of discussion [36–44].

Inflation’s greatest experimental success is also its greatest weakness. The

dependence of the variance of the primordial density fluctuations on scale

has recently been measured to remarkable precision by the Planck satellite.

The current bounds on the relevant parameter, referred to as the spectral

index (or tilt) of the primordial scalar perturbation, are ns = 0.968± 0.006

[18]. This value is very close to 1 implying the variance has very little scale

dependence, while at the same time decisively rules out ns = 1 exactly.

This is in full agreement with standard inflation predictions which state

|ns − 1| ≈ O(10−2) and ns < 1. Unfortunately this measurement only

fixes one parameter of any given inflationary model meaning we need more

information if we are to determine how inflation functions. Attempting to

resolve this degeneracy is now a major task in Theoretical Cosmology.

To shed more light on inflation we need more measurements and more

predictions. The first candidate is the scale dependence of ns. Unfortunately

this is predicted by inflation to be of order (ns − 1)2, so very small, and so

far all its measurements are consistent with 0 [18], so this doesn’t help. The

next possibility is gravitational waves. Inflation produces a small amount of

gravitational waves which ultimately alter the polarisation of the CMB (so

called B-mode polarization). Despite initial excitement from the BICEP2

result there is no evidence of this polarisation effect so far [18, 20]. This is

not completely fruitless though. Even if no B-modes are detected, this will

continue to place limits on existing inflation models and some progress can

be made.

One promising direction is non-Gaussianity. The anisotropies in the CMB

are well described by almost-scale-invariant, Gaussian fluctuations, and to

a first approximation this is what inflation predicts. However inflation nec-

essarily involves gravity and gravity, in particular General Relativity, is a

non-linear theory. This means non-Gaussianities will always be generated,

albeit very small. Constraints on primordial non-Gaussianity are often given

in terms of a parameter fNL [45, 46]. Current observations still show that
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fNL is consistent with 0 [19]. However, unlike gravitational waves, the the-

oretical predictions involve much more intensive calculations and if primor-

dial non-Gaussianity is ever detected our calculations need to be robust

and accurate. A flexible and accurate numerical calculation of primordial

non-Gaussianity from inflation is the subject of this thesis.

To begin with the basic building blocks of Cosmology are summarised

in Chapter 2 along with the various fine-tuning problems of the universe.

Chapter 3 introduces inflation as the solution to these problems and dis-

cusses how it predicts the primordial power spectrum. Chapter 4 gives a

detailed discussion of how we define primordial non-Gaussianity and outlines

the methods used to calculate this from the theory side. Chapter 5 describes

the numerical calculation of the bispectrum in a Monte-Carlo setting while

Chapter 6 discusses non-Gaussian signals from models that would’ve been

required to match the BICEP2 results. Chapter 7 extends this formalism

to allow the perturbations to propagate at arbitrary but constant sound

speeds and Chapter 8 combines these results with the recent Planck data

to put constraints on the inflaton potential.

In this thesis units are used such that c = ~ = kB = 1 and M2
pl =

(8πGN)−1.
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2. Review of basic cosmology ideas

Today Einstein’s General Relativity (GR) is our best theory of gravity. How-

ever, it is only a theory, and in particular a classical theory. This means

quantum mechanical effects are not taken into account in its description and

therefore it is only an approximation. In particular if we study the universe

at the beginning of the Big Bang, the temperatures will be so high GR will

break down and we need a theory of Quantum Gravity. Currently this is

out of our reach. Nevertheless, our understanding of Cosmology is based on

the framework of GR so it is of crucial importance.

2.1. FRW metric

GR is a metric theory of gravity, meaning Einstein’s equations dictate how

the metric of spacetime evolves when we provide a distribution of energy

or matter Tµν . Given the metric tensor, one can completely describe the

motion of particles under gravity as they must follow geodesics on this space-

time. If we observe the universe on large enough angular scales to a good

approximation it looks homogeneous (invariant under spacial translations)

and isotropic (invariant under rotations). Therefore we can expect to find

solutions to the Einstein equations where the spacial parts are homogeneous

and isotropic. One possibility is simply flat Euclidean space:

ds2 = gijdx
idxj

= δijdx
idxj

= dx2 + dy2 + dz2

(2.1)

However it is not the only possibility. If the space has a constant (i.e. does

not vary with position) curvature, K (this still agrees with homogeneity and
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isotropy), then, in polar coordinates, the spacial metric must take on the

form:

ds2 =
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2 (2.2)

If K = 0 this simply becomes equation (2.1). Therefore the full spacetime

metric must be the spacial metric above multiplied by an arbitrary function

of time a(t).

ds2 = gµνdx
µdxν

ds2 = dt2 − a(t)2

[
dr2

1−Kr2
+ r2dθ2 + r2 sin2 θdφ2

]
(2.3)

Throughout this thesis i, j, k, . . . indices are summed only over spacial

dimensions whereas µ, ν, ρ, . . . indices are summed over all space-time. This

metric is in comoving coordinates, meaning that galaxies will keep their

radial and angular coordinates fixed (provided there are no other forces)

but the physical distance will increase as a(t) increases i.e. the galaxies will

“move with the expansion”. The constant K has units (mass)2 and can be

0, positive or negative. The function a(t) is called the ”scale factor” and is

a rough indication of the size of the universe.

When we can neglect small inhomogeneities and anisotropies (e.g. stars,

galaxies etc.), spacetime is then well described by the metric in equation

(2.3) called the Friedmann-Robertson-Walker (FRW) metric. Our symme-

try principles fixed the form of the FRM metric but so far the function

a(t) is arbitrary and undetermined. Many problems in Cosmology, such as

calculating the age of the universe, come down to determining the function

a(t).

All particles follow geodesics in curved spacetime, representing the path

of shortest proper distance, ds, between two events. For photons ds2 = 0

while for non-relativistic particles ds2 > 0. This path can be found by

solving the geodesic equation

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0, (2.4)

where Γµαβ is the affine connection. Given the FRW metric, the affine

17



connection components can then be easily derived for an arbitrary scale

factor. The only none vanishing ones are:

Γρµν =
1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν)

Γ0
ij = aȧ

(
δij +

Kxixj
1−Kx2

)
= aȧg̃ij

Γi0j = δij
ȧ

a
(2.5)

= δijH

Γijk = Γ̃ijk

= Kxig̃jk,

where gµν is the inverse metric satisfying gµαgαν = δµν , g̃ is the purely

spacial metric and Γ̃ are its affine connections [47]. The quantity H is

called the Hubble parameter and Hubble’s Law says that the recessional

velocity of a galaxy, resulting from the expansion of the universe, is pro-

portional to the distance from us. This can be seen from the following

simple argument. At any point in time, the physical distance between

two objects is d(t) = a(t)
a(t0)d(t0), where d(t0) is the known distance at

some earlier time. The velocity of this object is then just v(t) = ḋ(t) =
ȧ(t)
a(t0)d(t0) = ȧ(t)

a(t)
a(t)
a(t0)d(t0) = H(t)d(t). This simple relationship was con-

firmed by Hubble in 1929. Today, the Hubble parameter has a measured

value of H0 = 67.8± 0.9 km s−1 (Mpc)−1 [17].

2.2. The Stress-Energy Tensor

The evolution of the universe is of course dictated by gravity, which in

turn depends on the energy content of the universe. In general, matter

and radiation (including ultra-relativistic particles whose masses can be

neglected) will both contribute to the total energy content of the universe

in a different ways. One useful description (like many other astrophysical

problems) is to describe the universe as a fluid. The stress-energy tensor
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for a relativistic perfect fluid is given by

Tµν = (ρ+ P )uµuν − Pgµν , (2.6)

where ρ and P are the homogeneous and isotropic density and pressure

respectively and uµ is the 4-velocity field of the fluid. This must satisfy the

energy-momentum conservation equation:

∇µTµν = ∂µT
µν + ΓµµαT

αν + ΓνµαT
αµ = 0 (2.7)

These equations give the Navier-Stokes equation after taking the non-

relativistic limit, while contracting the the equation with uν produces the

continuity equation.

If we are considering scales where the above assumptions of isotropy and

homogeneity hold true the universe is well described a perfect fluid. This

means the stress energy tensor of the universe only depends on its rest

frame energy density ρ and its isotropic pressure p. Quantities such as shear

stresses and viscosities are neglected but arise naturally when considering

perturbations.

For example it can be shown that a scalar field φ(x) with a potential V (φ)

has the following stress-energy tensor

Tµν = ∂µφ∂νφ− gµν
(

1

2
∂σφ∂

σφ− V (φ)

)
. (2.8)

Equating equations (2.8) and (2.6) we can see immediately from the term

proportional to the metric that

p =

(
1

2
∂σφ∂

σφ− V (φ)

)
(2.9)

The only 4-vector fields available are uµ and ∂µφ so they must be pro-

portional to each other. But we also know the 4-velocity must always be

normalised such that uµuµ = 1, this condition then demands that

uµ =
∂µφ√
∂σφ∂σφ

(2.10)

It is then straightforward to equate the remaining terms and deduce that

a scalar field is a perfect fluid by making the following identifications:
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• uµ =
∂µφ√
∂σφ∂σφ

• p = 1
2∂σφ∂

σφ− V (φ)

• ρ = 1
2∂σφ∂

σφ+ V (φ)

Taking the time component of (2.7) determines how the energy density

of the fluid evolves in time:

ρ̇+ 3H(ρ+ p) = 0. (2.11)

Homogeneity was implicitly assumed here so the ρ and p only depend on

time. As ρ and p are both scalars we can always write the fluids equation of

state as p(t) = w(t)ρ(t). If w is a constant, equation (2.11) gives an exact

solution:

ρ ∝ a−3(1+w) (2.12)

provided w 6= −1. For the two special cases mentioned above, w = 0 and

w = 1
3 . This means for radiation and matter, the energy densities scale as

ρrad ∝ a−4 and ρmat ∝ a−3 respectively, implying the matter dominated

era comes later. w = −1 is another very important special case in which

Tµν = −ρgµν . Energy conservation then dictates ∂µρ = 0 (as ∇ρgµν =

0) and so the energy density of this fluid must be constant. This case is

particularly important when it comes to inflation.

None of this information dictates how a(t) evolves in time. So far our

equations only show how the energy density evolves in a background FRW

metric. We need to supplement this with the Einstein equation.

2.3. The Einstein Equation

The last ingredient is the Einstein equation [48]:

Rµν −
1

2
gµνR =

Tµν
M2
pl

(2.13)

or equivalently

Tµν −
1

2
gµνT = M2

plRµν (2.14)

Mpl is the Planck mass, defined here as M2
pl = 1

8πGN
= 2.4× 1018 GeV.

GN = 6.67384(80)× 10−11m3kg−1s−2 is Newton’s constant [49]. The Ricci
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tensor is:

Rµν = ∂νΓλλµ − ∂λΓλµν + ΓλµσΓσνλ − ΓλµνΓσλσ (2.15)

and the Ricci scalar is R = gµνRµν and T = gµνT
µν . This can be derived

from the Einstein-Hilbert action:

S =

∫ (
M2
pl

2
R+ Lmatter

)
√
−g d4x (2.16)

with

Tµν =
2√
−g

δSmatter
δgµν

(2.17)

Using equation (2.5) these quantities can then be calculated:

R00 = 3
ä

a
(2.18)

Rij = −(2K + 2ȧ2 + aä)g̃ij (2.19)

where g̃ij is the purely spacial (excluding a(t), so δij in Cartesian coordinates

when K = 0). It is not necessary to calculate R0i as it is a 3-vector and

must vanish because of isotropy (no preferred direction) [47].

Using equation (2.6) (in a comoving frame where uµ = (1,0)) the Einstein

equations become:

6M2
pl

ä

a
= −(3p+ ρ) (2.20)

3M2
plH

2 = ρ−
3M2

plK

a2
(2.21)

These are known as the Friedmann equations. The second arises after

substitution of the (0,0) equation into the (i,j) one (which is proportional

to the metric). They can be combined to obtain equation (2.11).

Equation (2.20) tells us that (if ρ is positive) the universe will only stop

expanding if K > 0. With this in mind, it is useful to define a quantity

called the critical density

ρ0,crit = 3M2
plH

2
0 = 1.878× 10−26h2kg m−3 (2.22)

0 subscripts indicate the present day quantity and h is H in units of 100

km s−1 Mpc −1 (i.e. ≈ 0.7). We define the time-dependent critical density
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as simply ρcrit(t) = 3M2
plH

2(t).

Using the solutions for ρ(a) described above, we can then use the Friedmann

equations to calculate the function a(t) to see how the universe expands with

time. With K = 0 (the universe is very close to being flat), the scale factor

grows:

• a ∝ t
2

3(w+1)

• a ∝ t
2
3 matter dominated

• a ∝ t
1
2 radiation dominated

• a ∝ eHt vacuum dominated (H is a constant in this case)

Therefore the universe is always expanding and there will have been time

when a = 0, unless the energy density is purely from the vacuum (known

as a de Sitter Universe). With this in mind, coupled with how ρ scales with

a, if we consider the early time behaviour, its clear that ρ = ρm + ρr will

become very large and will dominate over the curvature term at very early

times. Therefore, ρ(t) → ρcrit(t) as a(t) → 0. The problem is that today,

the total energy density has been measured to be very close to the critical

density, even after billions of years. This is known as the “flatness problem”

and will be explained in more detail later.

By expressing ρ as a linear combination of all its possible constituents we

can re-write the Friedmann equation in a very useful form by dividing out

the critical density today. This naturally defines the following quantities:

ΩK =
−K
H2

0

(2.23)

ΩΛ =
ρΛ,0

3M2
plH

2
0

(2.24)

Ωm =
ρm,0

3M2
plH

2
0

(2.25)

Ωr =
ρr,0

3M2
plH

2
0

(2.26)

So the last three Ω’s are the corresponding fractions to the critical density

measured today. The Friedmann equation then becomes:(
H

H0

)2

= ΩΛ +
ΩK

a2
+

Ωm

a3
+

Ωr

a4
(2.27)
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This is a simple ODE which we can solve for a(t) with the condition

a(0) = 0. Evaluated at the present day, we obtain the condition 1 =

ΩΛ + ΩK + Ωm + Ωr and therefore we only need to measure the fractions of

the three energy densities relative to the critical density. With these values

measured, we can solve equation (2.27) for a(t) and hence the dynamics of

the homogeneous universe are completely specified. In particular, we can

invert a(t) or solve for a(t0) = 1 and age of the universe will be a function

of the four numbers ΩΛ,ΩK , Ωr and H0.

2.4. Problems with the cosmological model

From the time of Electro-Weak Unification (≈ 1 TeV) to present day, the

universe is described by experimentally verified and well understood physics,

particularly with the recent discovery of a Higgs-like particle [50, 51]. For

times earlier than this, we can only speculate. We believe that at a high

enough energy, Supersymmetry (SUSY) will come in to play, there will be a

grand unification of the strong force with the Electro-Weak and at the the

Planck scale we know General Relativity must break down and quantum

gravity effects must come into play. The exact natures of all of these things

are completely unknown and right now the LHC has yet to see any signs of

SUSY (the lowest energy phenomenon of those mentioned).

However, everything in Cosmology from the Electro-Weak Unification era

onwards is well described by GR supplemented with some initial condi-

tions. In particular we should specify the initial amplitudes of the primor-

dial scalar and tensor perturbations. From these values one can calculate

the anisotropies of the CMB, its polarization etc. As we were obviously

not around at the very beginning of the radiation era, and this period is

not visible to us as the photons were strongly interacting with matter so

the universe was opaque, we cannot really know what they were. What

we can do though is measure all the relevant quantities today and evolve

the universe backwards in time to see what initial conditions our universe

is compatible with. This is where cracks start to appear our Cosmological

model [47,52].
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2.4.1. The Flatness Problem

The first of these problems is the so-called “Flatness Problem”. At the end

of section 2.3 the quantities Ωi were defined as the ratio of energy density

ρi to the critical density today with the condition 1 = ΩΛ + Ωm + Ωr +

ΩK . The best constraints ΩK are currently ΩK ≈ −0.052+0.049
−0.055 implying

it is a small but non-zero value with K being positive. So far all the Ωs

are time independent quantities, ratios of energy densities measured today.

We now generalise this definition for all time. The critical energy density

is ρcrit(t) = 3M2
plH

2(t) and Ω(t) = ρ(t)
ρcrit(t)

. With these definitions, the

Friedman equation becomes:

ΩK = 1− Ω =
−K
a2H2

(2.28)

Now if we take the scale factor to be a power law a(t) ∝ tn, such as in the

radiation or matter era, periods of the universe which are well understood,

trivially:

ΩK =
−Kt2(1−n)

n2
(2.29)

In the radiation and matter epochs, n is always less than one and there-

fore ΩK will have been growing since the beginning of the radiation era.

Therefore to obtain a small value for ΩK now, an even smaller value must

have been specified at some earlier time. To get an idea of how small, it is

simpler to work with temperature instead of time: a ∝ T−1 ∝ tn. It is then

straightforward to calculate how ΩK has grown over time [47]

ΩK(T0)

ΩK(Tpl)
=

ΩK(T0)

ΩK(Teq)

ΩK(Teq)

ΩK(Tpl)

=
T 2
pl

T0Teq

=

(
Tpl
T0

)2 Ωr

Ωm

where T0, Teq and Tpl ∼ 1032K are today’s temperature, the temperature

of matter-radiation equality and the Planck temperature respectively and

Ωr ≈ 10−5Ωm. The important point here is that even though ΩK(TPl)

clearly must have been tiny, it cannot have been zero. That would mean
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K = 0 and hence ΩK = 0 for all time. At this point it becomes convenient to

introduce a new time parameter N referred to as the number of e-folding.

It is defined as a1 = a0e
N1−N0 or equivalently dN

dt = H. Differentiating

ΩK = 1−Ω with respect to this parameter and using equations (2.11) and

(2.20) yields the following differential equation [52]:

dΩ

dN
= (1 + 3w)Ω(Ω− 1) (2.30)

One can easily see that Ω = 1 is an unstable fixed point if (1 + 3w) > 0.

Ideally one would desire Ω = 1 to be attractor solution. This is the “flatness

problem”. Why is ΩK(t0) so small but yet non vanishing? The only way

Ω = 1 can be an attractor solution is if (1 + 3w) < 0.

2.4.2. The Horizon Problem

Two types of horizons exist called “particle” and “event” horizons. They

both set an upper limit on how far light can have travelled since within a

particular time (mostly t = 0) and are given by the integral [47]:

d(t2, t1) = a(t2)

∫ t2

t1

1

a(t)
dt (2.31)

The differences between the two horizons are the integral limits. Particle

horizons measure the maximum distance light may have travelled since the

big bang. Event horizons measure how far light may travel from now to a

future time. For a(t) ∝ tn with n < 1, d(t2, t1) can easily be calculated.

d(t2, t1) =
t1

1− n

(
t2
t1
−
(
t2
t1

)n)
(2.32)

At the time of last scattering, tL, the universe had evolved through a

radiation dominated era, so n = 1/2. The particle horizon then at the time

of last scattering with tL � t1 is then simply

dH = 2tL = 2
tL
t0
t0, (2.33)

where t0 is the time today. At the same time an “angular diameter

distance” can be defined. An object at a comoving radial coordinate r emits

light at a time t is observed to subtend a small angle θ. The particle (such
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as a galaxy) at this time will have a length of L = a(t)rθ. The “angular

diameter distance” dA is defined so the usual Euclidean relation is true [47]:

θ =
L

dA
. (2.34)

Therefore dA = a(t)r where t is the time light is emitted, i.e. tL. The

angular diameter distance to the surface of last scattering is therefore

dA =
a(tL)

a(t0)
a(t0)r =

(
tL
t0

)2/3

a(t0)r. (2.35)

r the comoving distance to surface of last scattering. It can be easily

calculated from the null geodesics of photons travelling towards us from

that time, i.e.

ds2 = dt2 − a2(t)dr2 → a(t0)r = a(t0)

∫ t0

tL

dt

a(t)
= 3t0. (2.36)

This gives dA = 3t0(tL/t0)2/3 for the angular diameter distance. With

these two results the angle the horizon at the surface of last scattering

subtends is dH/dA ∼ (tL/t0)1/3 ∼ 10−2 as tL ∼ 105 years and t0 ∼ 1010

years. This angle is of order 1o so physical interactions during the evolution

of the universe (up to last scattering time) can only have smoothed out

inhomogeneities for patches in the sky a few degrees across. This is in stark

contrast to the fact that the sky is roughly isotropic. This is the “horizon

problem”. The universe appears to be in a state of thermal equilibrium

despite only small patches are in causal contact with each other. More

explicitly, equation (2.31) can be written as an integral over the comoving

Hubble radius:

d =

∫ a

0

1

aH
d(ln a) (2.37)

If the universe is dominated by a fluid with an equation of state given by

w, the integrand is [52]:

1

aH
= H−1

0 a
1
2

(1+3w) (2.38)

Calculating the particle horizon for this equation of state yields
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d =
2

H0(1 + 3w)

[
a

1
2

(1+3w) − ã
1
2

(1+3w)
]

=
2

H0(−1)(1 + 3w)

(
1

ã

)− 1
2

(1+3w)
[

1−
(
ã

a

)− 1
2

(1+3w)
]
.

(2.39)

Here a and ã are two arbitrary scale factors with a � ã. The factor

(1 + 3w) appears again. From the first line we can see that if (1 + 3w) > 0

the first term will dominate. This is the case for radiation or matter domi-

nated universes. Using this relation results in the horizon problem.

The second line is simply the same quantity but is more helpful when

(1 + 3w) < 0. One can now see the particle horizon is dominated by

the scale factor at early times, ã, and we can make the particle horizon as

large as we like simply by going to sufficiently early times when ã→ 0.

2.4.3. The Monopole Problem

As stated above there is a general consensus that at energies around E ≈
1016 GeV, a local gauge symmetry is spontaneously broken to Standard

Model gauge group SU(3)× SU(2)× U(1). In all of these possible models

the symmetry breaking mechanism results in an abundance magnetic of

monopoles. One can deduce a quick order of magnitude estimate from

dimensional grounds. As we have already seen the horizon is roughly t

(equation (2.31) when t2 � t1). We also know that at all times a ∝ T−1

as the Planck distribution is preserved. This holds true even during the

matter dominated era as the number of photons vastly outnumbers the

number of baryons. Because at these early times the universe is radiation

dominated (so a ∝ t1/2) the horizon is going to be roughly t ≈ Mpl/T
2.

Assuming one monopole per causal patch the number density would be

t−3 evaluated at symmetry breaking energy E, giving t−3 ≈ E6/M3
pl. The

photon energy density is proportional to T 4 so the number density at this

time will be around E3. This ratio of monopole density to photon density

will be around
(

E
Mpl

)3
which is of order 10−9. The problem this there are

atleast 109 photons per nucleon today, meaning we expect one monopole per

nucleon. This is clearly wrong. Of course, as everything above the Electro-
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Weak scale is mostly just speculation, one may wonder if this is indeed a

problem at all. However, it is mentioned as this problem was one of the

main reasons people began to take an interest in inflation [47].

From the three main problems outlined above, the horizon and flatness

problems are the most serious. It is easy to see that the evolution of the

scale factor, determined w, is inherently linked to both of these problems.

This suggests that a possible solution would be to postulate some new type

of matter with an appropriate equation of state, setting up inflation.
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3. Inflation as the solution of the

cosmological problems

With the horizon and flatness problems, the main issue arises because the

comoving Hubble radius, 1/(aH) increases with time. Therefore the so-

lution to these problems is simple: make 1/(aH) decrease with time [52].

This is the fundamental idea behind inflation and in particular, if “enough”

(which we will define shortly) inflation occurs to solve the horizon problem,

it automatically solves the other two problems as well [29,31,32]. For these

reasons we will focus mainly on how inflation solves the horizon and flatness

problems.

3.1. Accelerated Expansion

The key to causing 1/(aH) decrease with time is evident from equation

(2.38). We need the quantity (1 + 3w) < 0. This is exactly equivalent to

saying the expansion of the universe accelerated via equation (2.20). Al-

ternatively one can simply differentiate 1/(aH) = 1/(ȧ). Another way of

parametrizing this is to define a so-called “slow-roll parameter” ε. Sim-

ply from the definition of H, one can relate ä to Ḣ through the following

equation:

ä

a
= H2

(
1 +

Ḣ

H2

)
(3.1)

ä

a
= H2 (1− ε) (3.2)

This equation defines ε. It also gives a condition for when inflation has to

end i.e. when ε = 1. So inflation is a period in the universe’s history such

that the following (completely equivalent) conditions hold [52]:

• d
dt

(
1
aH

)
< 0
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• ä > 0

• 1 + 3w < 0

• ε = − Ḣ
H2 = −d lnH

dN < 1

If this is the case, the comoving Hubble radius will decrease, ΩK = 0

becomes an attractor solution and the horizon integral will be dominated

by earlier times. We can be more quantitative though. Let us suppose

inflation lasts N e-foldings. That is to say aend = eNastart. Let us also

suppose that ΩK = −K
a2H2 is initially of order one. Then, by the end of

inflation ΩK will have decreased by roughly a factor of e−2N = |K|
a2endH

2
end

.

Using this to solve for K, for today we can say

|ΩK | = e−2N

(
aendHend

a0H0

)2

(3.3)

As we desire this quantity to be less than one, the flatness problem ceases

to be an issue if

eN >
aendHend

a0H0
(3.4)

To make further progress we have to make an assumption about the end

of inflation, in particular that aendHend ≈ aradHrad, the quantities don’t

change much from the end of inflation to the beginning of the radiation era.

This is a risky assumption as we have very little idea about what happens

during the end of inflation. It is important to note though that this is only a

lower bound on how long inflation can last so as long as aH does not reduce

too much, the bound should still be valid. During the radiation-matter era

the Hubble rate can be written as [47]:

H =
Heq√

2

√(aeq
a

)3
+
(aeq

a

)4
(3.5)

where the quantities are evaluated at matter-radiation equality. They can

easily be expressed in terms of Ωm and Ωr as aeq = a0Ωr/Ωm and H2
eq =

2H2
0 Ωm(a0/aeq)3. Using these relations, equation (2.20) and taking the limit

arad << aeq one can show

eN > Ω1/4
r

√
Hrad

H0
>

(
Ωrρrad

ρ0,crit

) 1
4

=
ρ

1
4
rad

0.037heV
(3.6)
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So ρrad is the energy density at the beginning of the radiation dominated

era. We know from the nucleosynthesis that the energy density has to be

greater than that at the beginning of neutron-proton conversion which is

approximately (1MeV)4. Therefore from this argument we can see that in-

flation must have lasted atleast 17 e-foldings. Alternatively if ρend ≈ M4
pl

then inflation must have lasted around 68 e-foldings [47].

The quantity 1/(aH) shrinks during inflation. We need it to shrink enough

so that, eventually, the distance 1/(aH) covers a smooth patch. After infla-

tion ends 1/(aH) will grow, enveloping larger and larger scale perturbations

over time. The amount of inflation required is determined by the fact that,

observable scales re-entering the horizon today are smooth too. In other

words, the effect of inflation will be to “zoom in” on a small smooth patch.

The horizon is given by equation (2.31) and as discussed in section 2.4.2

is much too small with just the usual radiation and matter eras. Let us

assume that it is dominated by a period of inflation, such that the scale

factor increases more or less exponentially, with N = Hend(tend − tstart). It

is easy to show that

d(tL) =
a(tL)

aendHend

(
eN − 1

)
(3.7)

To solve the horizon problem we need d(tL) > dA(tL) > a(tL)/(H0a0). This

yields exactly the same condition as before:

eN >
aendHend

a0H0
(3.8)

3.2. A scalar field

It is therefore clear that to solve the three cosmological puzzles we need a

period in the universe’s history, before the radiation era, where the universe

accelerates. This requires the universe to be dominated by a fluid with an

equation of state satisfying 1 + 3w < 0, or p < −ρ/3, a fluid with negative

pressure. What fluids exhibit a negative pressure? We have already come

across a fluid with w < −1
3 in the form of vacuum energy. With this case

Tµν = ρgµν with ρ constant. This clearly satisfies the acceleration condition

already discussed with an exponentially growing scale factor a(t) ∝ eHt.

While it is simple and elegant if it could explain both inflation and dark
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energy, there needs to be a mechanism which “turns off” inflation and “re

activates” it again in the present day.

A much more common way to generate these conditions is to invoke a scalar

field φ called the inflaton. The simplest possibility is to have a universe

where φ is the dominant source of Tµν . For all practical purposes the action

is then

S =

∫ (
M2
pl

2
R+

1

2
∂µφ∂

µφ− V (φ)

)
√
−g d4x (3.9)

where V (φ) is an arbitrary potential in the sense that it essentially defines

the inflationary model one is considering. This of course is not the only

possibility but it is referred to as a minimally coupled. This ofcourse is

not the only possibility. Many inflation models arise from possibly more

fundamental theories such as string theory or supergravity [53–55]. From

these theories one can postulate many different exotic generalisations of our

simple model. Many of these theories naturally predict a large number of

scalar fields and so multiple-field inflation has attracted a lot of attention

in recent years [56–58]. Multiple field inflation models allow inflation to

occur even if their fields individually do not meet the requirements. They

also allow natural mechanisms for inflation to end Another possibility is

an inflaton field having non-canonical kinetic terms. These type of models

generally come with a sound speed cs 6= 1 which can vary over the course

of inflation [59–63]. Again, many of these types of models are string theory

motivated where the non-canonical kinetic terms arise from brane dynamics.

People have of course considered models combining both these concepts [64].

Effective Field Theory has been a valuable tool for theoretical physicists

and has had much success in particle and condensed matter physics. It

has been successfully applied to Inflation and in a sense unifies all possible

single [65,66] and multi [67] field models into a single framework. Inflation

models can also arise from modified gravity [68] the Einstein-Hilbert action

R is replaced by something more complicated. Many of these can be related

back to scalar field models by a conformal transformation as one can see

there a huge number of possibilities of modelling inflation so devising a way

to systematically select out the best theories would be incredibly useful.

Continuing with the single, canonical scalar field case, the stress energy

32



tensor takes the form (2.8) and one can easily read off the value for w.

w =
p

ρ
→

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
(3.10)

The last statement occurs, as when we take the homogeneous limit, the

spacial derivatives disappear. With these identifications, its fairly obvious

that a scalar field provides an easy way to get negative pressure. In fact, if

the potential energy were to dominate over the kinetic term w → −1. This

system then obeys the following differential equations:

φ̈+ 3Hφ̇+
dV

dφ
= 0 (3.11)

3M2
plH

2 =
1

2
φ̇2 + V (φ) (3.12)

3M2
pl

ä

a
= V (φ)− φ̇2 (3.13)

As before one of these equations can be derived from the other two. They

can be arranged into various forms, for example one particularly useful

equation is:

Ḣ = − φ̇2

2M2
pl

(3.14)

Recalling that we can write the acceleration of expansion in terms of a

slow roll parameter ε, we can see that ε = 0 corresponds to the de-Sitter

limit. This comes purely from the fact that ε is proportional to the derivative

of H. This corresponds to the case when the potential energy of the scalar

field dominates over its kinetic energy:

φ̇2 � V (φ) (3.15)

In this limit, w → −1 trivially. On the other hand, accelerated expansion

needs to be sustained long enough, therefore the acceleration term cannot

contribute too much either:

|φ̈| � |3Hφ̇|, |dV
dφ
| (3.16)

33



This can be quantified by introducing another slow roll parameter

η = − φ̈

Hφ̇
(3.17)

When calculating results from inflationary models one often uses a “slow-

roll” approximation, i.e. ε, |η| � 1 as the calculations can become extremely

complicated. Under this approximation the equations of motion become

3Hφ̇+
dV

dφ
= 0 (3.18)

3M2
plH

2 = V (φ) (3.19)

We can also see in this limit

ε ≈
M2
pl

2

(
V ′(φ)

V (φ)

)2

(3.20)

η + ε ≈ M2
pl

V ′′(φ)

V (φ)
(3.21)

And one can calculate how long inflation lasts via

N = ln
aend
a

=

∫ tend

t
H dt =

∫ φend

φ

H

φ̇
dφ ≈

∫ φ

φend

V

M2
plV
′(φ)

dφ (3.22)

We need this value to be atleast greater than about 60, the exact value

will depend on the exact nature of how the inflationary phase ended, which

is still relatively unknown. The slow-roll approximation though tells us that

this last integral must be much greater than |φ−φend|/(
√

2Mpl). Therefore

the slow-roll condition provides the required number of e-foldings if φ expe-

riences changes on order of the Planck scale.

It is worth emphasising at this point that, just because φ is of order Mpl,

this does not mean General Relativity is no longer an approximation and

we need Quantum Gravity. For Quantum Gravity effects to be important

V (φ) ≈M4
pl ,(the potential energy is dominant in this case). This can easily

be satisfied by just having arbitrarily small coupling constants. This does

not invalidate the slow-roll approximation as for many cases in this limit,

the parameters ε and η are independent of these values. This can easily be

seen by considering a power law potential V (φ) = gφα.
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We can take an exponential potential as an example.

V (φ) = ge−λφ (3.23)

One exact solution to the equations of motion can be deduced by the

ansatz φ = a ln(bt). This gives the following solution:

φ(t) =
1

λ
ln

(
gε2t2

M2
pl(3− ε)

)

ε = η =
M2
pl

2
λ2 (3.24)

a ∝ t1/ε.

Therefore in this case, both slow roll conditions are satisfied if ε � 1.

This does not depend on the value of g or φ. It is also clear from this solu-

tion that if ε < 1 the expansion accelerates and if ε > 1 it decelerates.

3.3. The Power Spectrum

Inflation has two main successes. The first is solving the three cosmolog-

ical puzzles already explained in section 2.4. This is solved essentially by

construction in section 3.1. Inflation’s second major success is linking the

initial cosmological perturbations to microscopic quantum fluctuations of

the the field φ.

3.3.1. ADM formalism and the Scalar Power Spectrum

Working in the ADM formalism [48,69] the metric takes the form:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (3.25)

and the action

S =
1

2

∫ (
NM2

plR
(3) +

M2
pl

N
(EijE

ij − E2)

+N−1(φ̇−N i∂iφ)2 −Nhij∂iφ∂jφ− 2NV (φ)
)√

hd4x (3.26)
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where

Eij =
1

2
(ḣij −∇iNj −∇jNi)

E = hijEij

h = det(hij) (3.27)

R(3) = hijR
(3)
ij

Repeated i, j, k... imply summation over 1,2,3. The system is then per-

turbed to second order around a homogeneous (in space) solution. So

φ(t,x) = φ̄(t) + δφ(t,x) etc. So far a gauge has not been specified. Fol-

lowing [70] and focusing on scalar perturbations the gauge used here will

be

δφ = 0, hij = a2e2ζδij . (3.28)

The quantities Eij ,Γ
i
jk etc. can be calculated exactly in terms of the

curvature perturbation ζ. Varying the action with respect to N and N i,

remembering φ is homogeneous, yields two equations:

R(3) − 2V − 1

N2
(EijE

ij − E2)− 1

N2
φ̇2 = 0, (3.29)

∇i
(

1

N
(Eij − Ehij)

)
= 0. (3.30)

We are perturbing around an FRW metric. One can see by inspection

that N = 1, N i = 0 and hij = a2(t)δij correspond to the FRW metric.

Indeed, plugging in these values trivially satisfies the second equation (as

nothing depends on x) and the first yields the Friedmann equation. In this

case R(3) obviously vanishes and H enters through the ḣij dependence in

Eij .

The strategy then is to perturb these equations to 1st order, plug the

solutions back into the action and expand the action up to 2nd order. One

may be concerned that, in that case, we should really be expanding these

equations up to second order for the perturbation expansion to be valid.

This is unnecessary as the second order terms will necessarily be multiplied

by 0th order terms which must vanish by the equations of motion [70].
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So expanding both to 1st order, then taking the divergence of the second

equation yields:

N = 1 +N1

Ni = ∂iψ

N1 =
ζ̇

H

∂2ψ = a2εζ̇ − ∂2ζ

H
(3.31)

Many of the affine connections can be ignored at this order as they are

order ζ so will only contribute to second order. We then insert these expres-

sion into the action and expand up to 2nd order. After some work, which

is left to the appendix, one arrives at

S = M2
pl

∫
d4x aε

(
a2ζ̇2 − (∂ζ)2

)
(3.32)

and we can see that the second order action is of order ε.

As discussed previously, ideally one would like top predict ζ(t,x) at ev-

ery point in the universe. This is obviously completely intractable so we

choose to make statistical predictions. To this end we model ζ(t,x) as a

random field and aim to calculate 〈ζ(t,x)ζ(t,y)〉. 〈ζ(t,x)〉 is obviously zero

as we are perturbing around a homogeneous background. These averages

are technically ensemble averages over many different realisations of the uni-

verse. As we only have one universe to observe this could potentially be a

problem however, under reasonable assumptions, the Ergodic Theorem [47]

states that these are ensemble averages become the same as averages over

position.

At this point it is useful to recall some basic facts about Gaussian random

fields [12]. Any real random function f(x) can be written as a Fourier

transform.

f(x) =
1

(2π)3

∫
fke

ik.x d3k (3.33)

The coefficients are complex fk = ak + ibk but a reality condition imposes

ak = a−k and bk = −b−k. A Gaussian random field is then defined to be

a random field where the coefficients ak, bk are drawn from uncorrelated

normal distribution. Because we need to randomly draw each Fourier mode

this will necessarily involves functional integrals over ak and bk. We can
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define the following quantity

Z[M ] = C

∫
DakDbke−

1
2

∫
d3k

∫
d3k′M(k,k′)(akak′+bkbk′ ) =

1

detM
(3.34)

where C is an arbitrary normalisation constant and detM is the functional

determinant of the symmetric matrix M(k,k′), which is so far arbitrary.

Dak represents an infinite product of integrals over ak, one for each Fourier

mode k. This represents a Gaussian distribution for the coefficients ak,bk

and at the moment they are not necessarily uncorrelated between the various

Fourier modes. Gaussianity is not a statement about correlation. Function-

ally differentiating Z[M ] with respect to M(k,k′) produces the following

expectation value.

−2

Z[M ]

δZ[M ]

δM(k,k′)
= 〈akak′ + bkbk′〉 = 2M−1(k,k′) (3.35)

M−1(k,k′) is the inverse of the matrix M(k,k′). We are interested in the

quantity 〈fkfk′〉

〈fkfk′〉 = 〈akak′ − bkbk′ + i (akbk′ + bkak′)〉 (3.36)

= 〈aka−k′ + bkb−k′〉

= 2M−1
(
k,−k′

)
Choosing M(k,k′) ∝ δ(3)(k − k′) so the Fourier modes are uncorrelated

produces our key result with a scale dependant variance σ2
k

〈fkfk′〉 = (2π)3 δ(3)
(
k + k′

)
σ2
k (3.37)

Statistical isotropy is encoded by demanding σ2
k as opposed to σ2

k. Higher

order statistical moments can be calculated by further functional differen-

tiating with respect to M(k,k′). This produces Wick’s theorem while odd

statistical moments trivially vanish. The two-point correlation, defined as

ξf (|x− y|) = 〈f(x)f(y)〉 is then

ξf (|x− y|) = ξf (r) =

∫
σ2
kk

3

2π2

sin(kr)

kr

dk

k
(3.38)

The quantity σ2
k is the power spectrum while σ2

kk
3/(2π2) is the dimension-
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less power spectrum. On scales 1/k the dimensionless power spectrum rep-

resents the squared amplitude of the fluctuations. A scale invariant power

spectrum means the two-point function must be invariant under x → λx

for λ > 0. This implies σ2
k ∝ k−3. Any even-point correlation function will

expressed as sums of products of the two-point correlation function while

any odd-point function will vanish. Therefore the power spectrum encodes

all the statistics of the random function f(x).

Returning to our second order action, equation (3.32), we wish quantize

the curvature perturbation ζ and use the methods of quantum field theory

to calculate the two-point correlation function. The most illuminating way

to do this is to make the substitution v = zζ with z = Mpla
√

2ε. Swapping

to conformal time, defined as a(t)dτ = dt, the action then takes the form

of a scalar field with a time-dependant mass

S =
1

2

∫ (
(v′)2 − (∂v)2 +

z′′

z
v2

)
dτd3x (3.39)

Varying this action with respect to v and performing a Fourier transform

gives the Mukhanov-Sasaki equation [71,72]

v′′k + (k2 − z′′

z
)vk = 0 (3.40)

The function z′′/z will be proportional to a2H2 multiplied by some long

expression in slow roll parameters.

z′′

z
= a2H2(2 + 2ε− 3η + 2ε2 + η2 − 4εη + ξ) (3.41)

η and ξ are related to the first and second derivative of ε. They will be

defined more precisely but for now it sufficient to say they are of order ε

and ε2 respectively. As we know inflation ends when ε = 1, unless the slow

roll parameters behave extremely erratically, z′′/z ≈ 2a2H2. If we look at

early enough times, H ≈ const and the scale factor will shrink exponentially.

For each mode k, there will be some early enough time where the scale of

the perturbation is deep within the horizon i.e 1/λ2 ≈ k2 � z′′/z. In

this limit vk will behave like a simple harmonic oscillator. At the other

extreme if k � z′′/z we can see v will grow rapidly. To be more precise,

it is the ζ variable which becomes constant very quickly. For this case it is
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more convenient to work with the ζ variable. Then the Mukhanov-Sasaki

equation is

ζ ′′k + 2
z′

z
ζ ′k + k2ζk = 0 (3.42)

In the de Sitter limit, if k is very small, ζ ′k will decay like z−2 and so ζk will

rapidly become a constant. With the v variable the sub horizon behaviour is

more apparent while for super-horizon behaviour the ζ variable is better. It

is more straightforward to quantize in the v variable as it is just a free scalar

field with a time-dependant mass and its early time behaviour is simpler.

We quantise in the usual way by promoting v to an operator and writing it

as a Fourier transform.

v(τ,x) =

∫
d3k

(2π)3

[
vk,cl(τ)âke

ik.x + v∗k,cl(τ)â†ke
−ik.x

]
(3.43)

If we were just dealing with a free scalar field, the functions vk,cl(τ)

would simply be the solutions of v′′k + ωkvk = 0 i.e vk(τ) = e−iωkτ with

ωk =
√
k2 +m2. So our quantum field is a sum of the classical solutions

of the equations of motion. The only difference is that now our field is a

collection of simple harmonic oscillators with time-dependant masses so in

the expansion above, the functions vk(τ) are the classical solutions of the

equation of motion, equation (3.40).

The annihilation and creation operators a, a† will again satisfy the usual

commutation relations [
âk, â

†
k′

]
= (2π)3δ(3)(k− k′) (3.44)

If we use this to calculate [x̂, p̂] = i we obtain:

[
v(τ,x), v′(τ,y)

]
=

∫
d3k

(2π)3

(
vkv
′?
k − v′kv?k

)
eik·(x−y) = iδ(3)(x− y) (3.45)

The only difference here is the factor i(v?kv
′
k − v′?k vk) which we can set to

1 [52]. The cl subscripts and τ dependence have been dropped to simplify

the notation. This fixes one of the boundary conditions of the Mukhanov-

Sasaki equation.

We have already seen that in the limit k � aH, the classical solutions be-

have like simple harmonic oscillators. We can therefore choose the standard
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Minkowski vacuum for comoving observers in the far past because all the

modes deep within the horizon at a given time are effectively in flat space.

To this end we define the vacuum state âk|0〉 = 0 in the usual way and then

calculate the Hamiltonian density acting on the ground state [52]:

H|0〉 =

∫
d3k

(2π)3

[(
v′2k + k2v2

k

)?
â†kâ

†
−k

+(2π)3δ(3)(0)
(
|vk|2 + k2|vk|2

)]
|0〉

(3.46)

If we require the ground state to be an eigenstate of the Hamiltonian the

first term must vanish. For modes deep inside the horizon this gives

v′k = ±ikvk (3.47)

Therefore we specify the initial conditions by demanding that v(τ,x) is a

free quantum scalar field, satisfying the usual commutation relations and

require the ground state to be an eigenstate of the Hamiltonian at very early

times. Combining these equations picks out the minus sign and gives the

following Bunch-Davies initial conditions [73]

lim
τ→−∞

vk,cl =
e−ikτ√

2k
. (3.48)

This completely fixes all the classical solutions vk. We can then compute

the power spectrum using the basic methods of quantum field theory.

〈0|v(τ,x)v(τ,y)|0〉 =

∫
|vk(τ)|2k3

2π2

sin(kr)

kr

dk

k
(3.49)

We can therefore identify σ2
k = |vk,cl(τ)|2. If we know the exact analytic

solution for equation (3.40) the power spectrum is then

〈ζk(τ)ζk′(τ)〉 = (2π)3δ(3)(k + k′)
|vk(τ)|2

2a2ε
= (2π)3δ(3)(k + k′)|ζk,cl(τ)|2

(3.50)

The time that the classical solution is evaluated at is such that the mode

is well outside the horizon, k � aH. But because the mode perturbations

freeze out so quickly, one can effectively evaluate this at horizon crossing.

This freeze out is important as it means the spectrum of perturbations will

be conserved until each mode re-enters the horizon in the radiation era,
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regardless of the physics of reheating [47,70,74,75].

Only one analytic solution for ζk(τ) exists and that is when the slow-roll

parameters are constant. However one can use this as an approximation for

more general potentials. In reality the slow-roll parameters are only ever

constant when η = ε, ξ = ε2 but we can neglect this small change under

most circumstances. ζk(τ) then becomes a Hankel function:

ζk(τ) =
H

2Mpl

√
π

2

(1− ε)√
εk3

(−kτ)
3
2H(1)

ν (−kτ)ei
π
2

(ν+ 1
2

) (3.51)

H
(1)
ν (x) has the following limits:

lim
x→∞

H(1)
ν (x) →

√
2

πx
exp

(
i
(
x− νπ

2
− π

4

))
(3.52)

lim
x→0

H(1)
ν (x) → − i

π
Γ(ν)

(x
2

)−ν
. (3.53)

The first limit picks out the solution and normalisation of ζ when we impose

Bunch-Davies initial conditions. Using the second limit and the slow-roll

approximation one can calculate the power-spectrum as series in slow roll

parameters [76].

Pζ(k) = (1 + (2− ln 2− γ)(2ε+ η)− ε)2 H2

4M2
plk

3ε
(3.54)

Here γ is the Euler-Mascheroni constant. This is the dimensionful power-

spectrum. The dimensionless power spectrum is defined as

∆ζ(k) =
Pζ(k)k3

2π2
(3.55)

In the slow roll approximation the power spectrum is approximately given

by a power law and can be parametrized by

∆ζ(k) ∝ kns−1 (3.56)

Alternatively we can define a parameter called the “tilt” of the power

spectrum as

ns(k?) = 1 +
d lnPζ(k)

d ln k

∣∣∣∣
k=k?

, (3.57)

where k? is a pivot scale usually taken to be k = 0.05 Mpc−1. This quantity
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Figure 3.1.: A typical solution to equation (3.40) with some arbitrary nor-
malisation. The imaginary part of ζ behaves in a similar fash-
ion. The freeze-out time N is roughly proportional to ln(k)
assuming H is roughly constant. For typical inflationary back-
grounds the functional form of ζ doesn’t change much.

can be calculated as a series in slow-roll parameters, for example [76]

ns ≈ 1− 4 ε+ 2 η − 2 (1 + C) ε2 − 1

2
(3− 5C) ε η +

1

2
(3− C) ξ (3.58)

C = 4(ln 2+γ)−5 ≈ 0.08. What is important is that in the slow-roll limit the

power spectrum becomes nearly scale-invariant. The observational bounds

on ns are currently ns = 0.968 ± 0.012. This is another justification for

assuming the slow-roll parameters to be small.

3.3.2. Tensor Power Spectrum

Inflation also produces a small amount of gravitational waves proportional

to the slow-roll parameter ε. As tensor perturbations are not the main focus

of this thesis we summarize the calculation below, emphasizing where the

normalisation differences come from [70,76]. The calculation is proceeds in

much the same way but we can ignore scalar perturbations and choose the
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following gauge:

hij = a2 (δij + 2γij) . (3.59)

The second order action becomes

S2 =
M2
pl

8

∫
dτd3x a2

(
γ′ijγ

′
ij − ∂kγij∂kγij

)
(3.60)

We decompose the gravitational waves as

γij =
2∑

λ=1

∫
d3k

(2π)
3
2

hk,λ(τ)eij(k, λ)eik·x (3.61)

and the polarisation tensor satisfies

eij = eji, eii = 0, kieij = 0, (3.62)

eij(k, λ)e?ij(k, ρ) = δλρ, (3.63)

eij(−k, λ) = e?ij(k, λ). (3.64)

We also make the change of variables 2vk,λ = Mplahk,λ so it looks like a

familiar scalar field. With this substitution the second order action becomes

S2 =
1

2

∫
dτd3k

(
|u′k,λ|2 −

(
k2 − a′′

a

)
|uk,λ|2

)
(3.65)

Now uk,λ = u?−k,λ from our polarisation conditions and requiring γij to be

real. We quantise in the same way as before

ûk,λ(τ) = uk(τ)âk,λ + u?k(τ)â†−k,λ (3.66)

uk(τ) satisfies a similar Mukhanov equation with identical Bunch-Davies

conditions

u′′k +

(
k2 − a′′

a

)
uk = 0 (3.67)

producing a similar solution. uk is now normalised with an extra factor of

1/2 relative to vk for the scalar case as the action was originally proportional

to M2
pl/8. When calculating the contribution to the power spectrum this

becomes a factor of 4. In addition each polarisation λ contributes to the

total tensor power in an identical way giving an extra factor of 2 for a total
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of 8. The tensor-to-scalar ratio is thus [76]

r =
Ph
Pζ

= 8
|hk,λ|2

|ζk|2
≈ 16 ε

[
1 +

1

2
(C − 3)(ε− η)

]
(3.68)

We now have good analytical approximations for some key inflation results.

The current Planck constraints on these observations are ns = 0.968±0.006

and r < 0.11 [18]. To first order this gives two linear equations r = 16ε

and ns = 1− 4ε+ 2η which we can solve for ε, η which in turn will give us

information about the inflation potential. Unfortunately no gravitational

waves have been detected yet so we can only use the equation for r to put

limits ε.

3.4. Formalising slow-roll

The first part of the calculation involves integrating essentially the Fried-

mann equations numerically to obtain the background solutions. However,

the formalism behind the equations needs some explanation, in particular

the definitions and relations between the slow roll parameters need to be

more precise. What will now be discussed is called the “Hamilton-Jacobi”

formulation [77–79].

We start be re-writing the Friedmann equations into an equivalent form

φ̇ = −2M2
plH

′(φ)

3M2
plH(φ)2 = 2M4

pl

[
H ′(φ)

]2
+ V (φ). (3.69)

All the variables are now functions of φ and primes denote derivatives

with respect to φ. Obviously when solving the Friedmann equations each

potential V (φ) along with a set of initial conditions (φ(t0), φ̇(t0)) will specify

a unique evolution of the background H(t), φ(t). Writing the Friedmann

equations this way means that its easy to do the reverse. That is, specifying

a background function H(φ) trivially produces the corresponding potential

V (φ) which is what we wish to constrain when comparing to observations.

For example if H(φ) is linear, this will correspond to a quadratic potential.

The usual conditions for ä > 0 can be derived as usual like before this means
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that a slow-roll parameter εH < 1 which is defined as

εH = 2M2
pl

(
H ′(φ)

H(φ)

)2

(3.70)

The subscript H indicates that this is a Hubble Slow Roll (HSR) param-

eter as opposed to the Potential Slow Roll (PSR) [78] parameter defined

as

εV =
M2
pl

2

(
V ′(φ)

V (φ)

)2

(3.71)

The two are only equivalent in the slow roll limit and importantly, infla-

tion ends when εH = 1 or εV ≈ 1. One can find a simple relation between

the two.

εV = ε

(
3− η
3− ε

)2

(3.72)

η is defined as

η = 2M2H
′′(φ)

H(φ)
. (3.73)

We have dropped the subscript H as these will be the parameters we will be

from now on. It is easy to see that ε = −Ḣ/H2 by the chain rule. There-

fore we can already see that the HSR parameter will be a more convenient

quantity to work with numerically. We can then define an infinite hierarchy

of slow roll parameters [78]:

ε = 2M2
pl

(
H ′(φ)

H(φ)

)2

(3.74)

lλ =
(
2M2

pl

)l (H ′)l−1

H l

d(l+1)H

dφ(l+1)
(3.75)

We will also define η = 1λ and ξ = 2λ and for consistency one can take

1 = 0λ and ε−1 = −1λ. One can easily check that η = −φ̈/(Hφ̇).

Now our slow-roll hierarchy is defined it becomes convenient to use e−foldings

N as our time variable. We know inflation lasts atleast roughly 60 e−folds

at it is dimensionless so is more natural numerically. Recall it is effectively

defined as a(N) = a0e
N . So

dN

dt
= H (3.76)

In the literature it is sometimes defined with a minus sign calculating back-

wards from the end of inflation. We define it this way as it is conceptually
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simpler to have it increasing with time. However as all our variables are

now functions of φ we use the chain rule and the equations of motion to get

dφ

dN
= −Mpl

√
2ε (3.77)

With this relation there is a sign choice when substituting for
√
ε relating

to which direction φ rolls down its potential. With this last ingredient the

slow-roll parameters then satisfy an infinite set of differential equations:

dH

dN
= −εH (3.78)

dε

dN
= 2ε(ε− η) (3.79)

d lλ

dN
= [lε− (l − 1)η] lλ− l+1λ (3.80)

These differential equations, with a set of initial conditions, will define

a trajectory in slow-roll parameter space. No slow roll approximation has

been made so far so this system is an infinite set of differential equations.

These equations could alternatively be taken to be the definition of lλ.

3.4.1. Correspondence with a potential and some analytical

solutions

The slow-roll hierarchy defined above, the set of differential equations and

some initial conditions will completely define an inflationary model.

From this perspective the parameters that define an inflationary model

will be the initial conditions of the slow-roll parameters and H. Therefore

there will be a mapping between H(N = 0), ε(N = 0), η(N = 0)... and the

potential function V (φ). This is best illustrated with some examples.

Exponential Potential

We can first solve equation (3.69) analytically. Unfortunately the non-linear

nature of equation (3.69) makes it difficult to solve for general V (φ). The

47



easiest case is the exponential potential V (φ) = Λegφ with the solution

H(φ) =

√
2Λ

M2
pl(6−M2

plg
2)
e−gφ/2

ε =
M2
pl

2
g2

l λ = εl (3.81)

φ(t) = −1

g
ln

(
Λε2 (t− t0)2

(3− ε)M2
pl

)
φ(N) = −Mpl

√
2ε(N −N0)

for some arbitrary constants t0, N0. This is the only solution where ε is a

constant and our Hankel function solutions for the power spectrum apply

exactly. For the case ε = 3, V (φ) = 0 for all t which is the kinetic dominating

limit, the opposite limit of interest for inflation. Assuming g > 0 we choose

φ̇ to be negative so in the inflaton rolls down the potential.

Quadratic Potentials

We know the exponential potential solution cannot be real (atleast exactly)

because ε is constant so inflation would never end. We are therefore in-

terested in finding solutions where the slow-roll parameters are dynamical

variables. The simplest case is then to set l λ = 0 for l > 0 leaving the simple

equation

dε

dN
= 2ε2 (3.82)

with the solution

ε(N) =
ε0

1− 2ε0N
. (3.83)

ε0 = ε(N = 0). Setting ε(Nf ) = 1 where Nf > 60 is the e−folds gives a

rough limit of ε < 1/121 ≈ 0.008. From the definition of ε we can immedi-

ately write down H(φ) = αφ + β and map α, β to some initial conditions

which will produce a quadratic potential

V (φ) = M2
plH

2
0

[
3− ε0 + 3

√
2ε0

(
φ− φ0

Mpl

)
+
ε0
2

(
φ− φ0

Mpl

)2
]
.(3.84)
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φ0 = φ(N = 0). This simple model shows how choosing initial conditions on

the slow-roll parameters maps to some potential V (φ) when solving equa-

tions (3.69). Note while we can choose φ0 so that either the constant or the

linear term disappears (and the background evolution remains unchanged),

we can’t choose to model a pure m2φ2 in this manner. We can use the first

order relations for ns and r to conclude that it will be very difficult for this

simple model to be valid as the tensor power spectrum it produces is too

strong.

Quartic Potentials

We can also obtain some analytic results for quartic potentials. In a similar

manner we truncate the slow-roll parameter hierarchy so that the only non-

vanishing parameters are ε(N), η(N). Our equations become

dε

dN
= 2ε(ε− η) (3.85)

dη

dN
= εη (3.86)

These two equations become the linear differential equation

dε

dη
= 2

ε

η
− 2 (3.87)

which has the family of solutions

ε(η) = 2η + αη2 (3.88)

where α is an integration constant. We can use our initial condition on φ

to choose H(φ) = aφ2 + c. Using the definitions of our slow-roll parameters

as derivatives with respect to φ the potential is then

V (φ) = Λ +
m2

2
φ2 +

λ

4!
φ4 (3.89)

Λ = 3M2
plH

2
0 (1 + αη0)2

m2 = −H2
0η0 (3 + (3α+ 1)η0)

λ =
9H2

0η
2
0

2M2
pl

.
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In this case the simple relation H(N)η(N) = H0η0 is quite helpful. The 0

subscript indicates the initial conditions evaluated at any desired time. The

time dependence of η, and hence all other quantities can be solved exactly,

although solving for η(N) produces an non-invertible function.

η =
2η0

(2 + αη0)e−η0H0(t−t0) − αη0
(3.90)

Looking at the early/late time limits when t → ∞, η → −2/α and when

t→ −∞ η → 0. In both cases ε→ 0. Therefore for inflation to end in this

model we need ε to have some maximum value εmax > 1. One easily arrives

at εmax = −1/α telling us that if this model can support enough e−folds by

itself, −1 > α. Demanding ε > 0 therefore fixes η > 0.

At this point one could easily do a more complex analysis looking at the

precise dependence of the solutions on α and η0. However our slow-roll

formulae are only valid when ε,η are very small. Deviating from this as-

sumption would require us to solve the power spectrum numerically anyway

so there is little value in pursuing this avenue here.

With this in mind we assume the scales observable today exit the horizon

at a time where we can neglect the non-linear term and assume ε ≈ 2η.

Using the first order results for ns to fix η gives r ≈ 0.17. Therefore assuming

the result doesn’t drastically change when varying α and η0 it is safe to say

that this model is ruled out too.

Other Potentials

Finally we consider a potential which has an infinite number of slow-roll

parameters, but unlike the exponential potential, they are all dynamic. We

look for solutions of the form lλ = alε
l. Plugging this expression into equa-

tions (3.69) gives the following recursion relation

al+1 = al (α(l + 1)− l) (3.91)

with α = a1 and ε has the time dependence.

ε =
ε0

1− 2(1− α)ε0N
. (3.92)
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α = 0 gives our earlier simple quadratic potential. α = 1 gives the expo-

nential potential.

Using ε = αη and their definitions as derivatives with respect to φ gives

a simple differential equation for H(φ). Solving this gives the following

potential for real α 6= 1

V (φ) = 3M2
plH

2
0 ε0

(
3

ε0
x2 − 1

)
x

2α
(1−α) (3.93)

x = (1− α)

√
ε0
2

φ

Mpl
(3.94)

Again using the first order results for ns and r as well as η = αε gives the

constraint α < −0.33.

It is clear then that specifying the initial conditions for the slow roll pa-

rameters and H is enough to completely determine the inflation model we

are working with, sometimes referred to as a trajectory. The advantage of

this method is then very apparent when modelling large numbers of po-

tentials. To model a specific potential it is simpler to work with equations

(3.11). However, if one is considering many potentials, one will have to

modify equations (3.11) for every potential. With the Hamilton-Jacobi for-

malism, one merely needs to specify many initial conditions. It also easy to

deduce which trajectories are physically viable as inflation ends when ε = 1

and it must last for atleast 60 e−foldings. Many quantities of interest are

also easily expressed as functions of the slow roll parameters such as z in

the Mukhanov equation.

The first aim of the project then is to generate large numbers of tra-

jectories (or potentials) by randomly selecting the initial conditions. The

slow-roll parameters as a function of N are then solved exactly. Any tra-

jectory for which inflation lasts atleast 60 e-foldings but still ends (ε → 1)

are stored for further calculation. Any others are discarded. For example

trajectories where the slow-roll parameters shrink to zero are eliminated as

inflation will never end.

Technically we must include the whole infinite hierarchy of slow-roll pa-

rameters. This obviously cannot be done numerically but if we truncate the

hierarchy at a finite order L, the generated solutions will still be exact but

will only cover a subset of the total number of solutions. One might wonder
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how one might take into account exponential-like potentials, which require

an infinite series. We know for inflation to occur though that ε < 1 and

since lλ = εl we know this will be a good enough approximation for high

enough L. Of course a pure exponential potential is ruled out anyway as

inflation will never end as the slow-roll parameters remain constant.

3.4.2. Anisotropies from the Primordial Power Spectrum

Ultimately we are concerned with predicting statistical properties of the

universe and in particular, the CMB. Experiments such as WMAP [80–85]

and more recently PLANCK [6,13,14] have mapped the CMB temperature

variations with astonishing detail.

We can expand the temperature variations Θ(θ, φ) = δT (θ, φ)/TCMB in

terms of spherical harmonics Ylm(θ, φ), defining the complex coefficients

alm [12, 52,86]

Θ(θ, φ) =

l=∞∑
l=0

m=l∑
m=−l

almYlm(θ, φ). (3.95)

Averaged over position, in an isotropic and homogeneous universe the vari-

ance of alm takes on the simple form

〈alma?l′m′〉 = Clδll′δmm′ . (3.96)

The quantity Cl is called the angular power spectrum and is a clear analogue

to the primordial power spectrum Pζ(k) calculated earlier. We would expect

in the realm of linear perturbation theory that Θ ∼ ζ so any variations in

temperature are ultimately sourced from the curvature perturbation. It

follows that Cl should be a linear functional of Pζ(k)

Cl =
2

π

∫ ∞
0

k2Pζ(k)∆2
T l(k) dk. (3.97)

This defines the transfer function ∆2
T l(k) [86]. It is a complicated function

which takes into account projecting the perturbations as a function of 3 di-

mensional space onto the two dimensional surface of a sphere. This necessar-

ily involves integrating out the radial component and requires evolving the

initial perturbations over the history of the universe by solving the linearised

Einstein-Boltzmann equations. Needless to say, calculating ∆2
T l(k) in detail
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would take half a textbook [12,47,86] and most of the time it is calculated

numerically using programs like CMBFAST [87,88] and CAMB [89,90].

When comparing the CMB to theoretical predictions Pζ(k) is often parametrised

in the form Ask
ns−4 and the recent PLANCK results [17, 18] confirm that

this form is in excellent agreement the observations. In summary inflation

predicts the function Pζ(k) from the initial quantum fluctuations ζ, the rest

of the ΛCDM model produces the function ∆2
T l(k) which depends on cos-

mological parameters such as H0,Ωi etc. and the theoretical prediction for

the angular power spectrum is given by equation (3.97).

Of course to arrive at this prediction we initial expanded the Einstein-

Hilbert action, equation (3.26), to second order. Because there is no reason

why all the higher order contributions should vanish this generates small

deviations from Gaussianity in the primordial curvature perturbation. This

leads us into non-Gaussianity, a major prediction of inflation and a subject

of great theoretical interest in recent years.
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4. What is non-Gaussianity?

In the previous chapter it was shown how to computer the power spectrum,

or scale dependant variance, for the fluctuations of the scalar perturbations

in inflation. These perturbations become the seeds for the initial perturba-

tions in the radiation era, for which, the rest of Cosmology is well explained

by the Λ-CDM model. The fluctuations are, to a high degree of accuracy,

Gaussian fluctuations. Over the next few years though, non-Gaussianity

will become a crucial tool to help us understand two important areas of

cosmology and astrophysics [91]:

• The physics of inflation and how it created the primordial perturba-

tions of the universe at early times, leading to large-scale structure

formation

• How gravitational instability and gas physics leads to the growth of

these structures at late times

We will be focusing on how non-Gaussianity can help to probe the physics

of inflation. Non-Gaussianity, is simply the deviations from a pure Gaussian

distribution. A pure Gaussian distribution implies that all of the statistical

information is encoded in its variance, the two-point correlation function,

and all odd correlation functions must vanish. Therefore, for a non-Gaussian

distribution, there will be some contribution to higher order correlation

functions other than the variance, or the odd - correlation functions will be

non-vanishing.

For inflation this is best understood in terms of quantum fields, as this is

how we derived the power spectrum. If we have a non-interacting quantum

field, its action is quadratic and we can calculate its two-point function ex-

actly which is obviously just the propagator. Because its action is quadratic

this is equivalent to a Gaussian probability distribution. If we wish to cal-

culate higher order correlation functions we know, because there are no

interactions, all odd-functions vanish while all even functions are various
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combinations of the propagator, in line with summing up Feynman dia-

grams. We know though from section 8.9, that to second order in scalar

perturbations, ζ is equivalent to a free quantum field with a time dependant

mass. So to lowest order we expect the scalar fluctuations to be Gaussian

as there are no interaction terms.

It is clear then that if there are interaction terms in the action for the scalar

perturbations, these will induce non-Gaussianity. For example, if there is

a ζ3 term, this will provide a 3-point vertex and hence a non-vanishing 3-

point function. Furthermore, if we expand the action up to third order,

as we should if we desire a more accurate calculation, this will necessarily

induce interaction terms. Therefore we expect deviations from a Gaussian

distribution simply because we have no reason to suspect all higher order

terms in the perturbation expansion to magically vanish after second order.

4.1. A probe of inflationary models

We expect inflation to leave residual non-Gaussian corrections to the tem-

perature and density distributions. How is this is a useful probe on infla-

tionary physics? The answer is in two parts.

The first reason is, as outlined in Section 3.3, the power spectrum is

largely independent of the inflationary model. There exists a huge degen-

eracy between the observed power spectrum and the inflationary models

which predict it. We arrived at the second order action assuming very little

about the inflaton field. When expanding the action to third order we start

including more terms from the same model using the same parameters, for

example the slow-roll parameters which are ultimately related to the infla-

ton potential. So far the scalar and tensor power spectrum constrains two

of these parameters so observations of higher order moments will provide

more measurements to constrain more parameters.

The second reason is simply because the 3-point function, or bispectrum,

as a third-order moment provides a much more information than the power

spectrum. The power spectrum is a function of two momenta k and k′.

Because of homogeneity or momentum conservation, a Dirac delta function

enforces the condition k + k′ = 0. So the power spectrum is immediately

reduced to a function of a single vector k. Isotropy removes any preference

in direction and so the power spectrum is a function of just a single number
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k.

Equivalently consider the 3-point function as a function of three momenta

k1,k2 and k3. Statistical isotropy means we expect the bispectrum to be a

scalar under rotations. There are only 6 rotational invariants we can form:

k2
1, k

2
2, k

2
3, k1 · k2, k1 · k3 and k2 · k3 so the bispectrum must be a function

of these 6 numbers. Homogeneity implies that the three vectors must form

a closed triangle due to momentum conservation, fixing the vector k3 and

reducing the bispectrum dependence down to: k2
1, k

2
2 and k1 · k2. Using

the cosine rule to eliminate the dot product we can reduce the bispectrum

down to a function of the three scales k1, k2, k3. We therefore parametrise

the bispectrum as [52]

〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3)B(k1, k2, k3). (4.1)

If we also assume scale invariance, as the power spectrum is close to

being scale invariant, the bispectrum will no longer depend on the size of

the triangle. This means the 3-point function is now a function of the shape

of the triangle i.e S(x1, x2) where x1,2 = k1,2/k3. A function of two numbers

gives a lot more information than a function of a single variable.

For single-field slow-roll inflation we expect the level of non-Gaussianity

to be small and effectively non-observable. A “large amount” (which we

will define shortly) of non-Gaussianity can be produced however if any of

the following are violated [91]:

• Initial Vacuum State When calculating the power spectrum, we

needed to supply some initial conditions to the Mukhanov-Sasaki

equation, demanding that at early times all modes were effectively

Minkowski space. This vacuum state is called the Bunch-Davies vac-

uum.

• Slow Roll We have frequently referred to slow roll parameters and

provided some results based on these parameters being small. While

there is some justification for these parameters being small we only

need inflation to last a certain number of e−foldings to solve certain

problems. The simplest way to achieve this is by assuming the slow-

roll approximation is valid, although there is no strict reason this has

to be true.
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• Canonincal Kinetic term The Lagrangian for the inflaton may con-

tain more derivatives than the standard (∂φ) appearing in most La-

grangians. Allowing flexibility in the kinetic term will necessarily relax

constraints on the inflaton potential as we are necessarily adding more

parameters.

• Multiple Fields In addition to all the above there is no reason to

expect the inflation period to be dominated by a single scalar field.

4.1.1. Defining fNL

The amount of non-Gaussianity inflation generates is related to its 3-point

correlation function which will take on the form

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = (2π)3δ(3)(k1 + k2 + k3)B(k1, k2, k3) (4.2)

An early way of parametrizing non-Gaussianity was through a parameter

fNL [45, 52,92–94]

ζ(x) = ζg(x) +
3

5
f local
NL

(
ζg(x)2 − 〈ζg(x)2〉

)
. (4.3)

This parametrisation is referred to as local non-Gaussianity. Here ζg is a

pure Gaussian field and satisfies

〈ζ(t,k1)ζ(t,k2))〉 = (2π)3δ(3)(k1 + k2)P (k). (4.4)

After a straightforward calculation one can show

B(k1, k2, k3) =
6

5
f local
NL [P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)] . (4.5)

Assuming P (k) ∝ kns−4 f local
NL peaks in the “squeezed limit” where k3 � k1 ≈ k2

and

B(k1, k2, k3 → 0) =
12

5
f local
NL P (k1)P (k3) (4.6)

In this limit it is possible to prove for single field inflation models f local
NL

is merely given by the tilt of the power spectrum [70,95,96]

f local
NL = − 5

12
(ns − 1). (4.7)
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The proof relies on the fact that when k3 � k1, k2, the mode ζk3 freezes

out long before the other two modes and hence acts as a an effective back-

ground for them, so

〈ζ(k1)ζ(k2)ζ(k3)〉 ≈ 〈〈ζ(k1)ζ(k2)〉ζ̄ ζ̄(k3)〉. (4.8)

We therefore need P (k1) evaluated with a perturbed background ζ̄ which

takes into account all the relevant frozen modes. Following [96] we can

absorb this background into a rescaling of the coordinates

x̃i = eζ̄xi. (4.9)

In position space the correlation function takes the form

〈ζ(x2)ζ(x3)〉 =

∫
d3k

(2π)3
P (k)eik·(x2−x3) = ξ (|x2 − x3|) (4.10)

We need to evaluate this function in the rescaled coordinates x̃. If the ζ̄

is small we can express these as

x̃2 − x̃3 =
(
1 + ζ̄(xm)

)
(x2 − x3). (4.11)

Assuming ζ̄ is roughly constant it is convenient to evaluate it at the midpoint

xm = (x2 + x3)/2. The the two point function becomes

ξ (|x̃2 − x̃3|) = ξ (|x2 − x3|) + ζ̄(xm)∇ξ (|x2 − x3|) · (x2 − x3). (4.12)

We can then evaluate the three-point function in position space
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〈ζ(k1)ζ(k2)ζ(k3)〉 ≈
∫

d3x1

∫
d3x2〈〈ζ(x1)ζ(x2)〉ζ̄ ζ(k3)〉ei(k1·x1+k2·x2)

=
1

(2π)3

∫ ∫ ∫
d3x1d3x2d3k〈ζ(k3)ζ(xm)〉P (k)×

(x2 − x1) · ∇eik·(x2−x1)ei(k1·x1+k2·x2)

=
1

(2π)3

∫ ∫ ∫
d3x1d3x2d3k〈ζ(k3)ζ(xm)〉P (k)×

ki
∂

∂ki
eik·(x2−x1)ei(k1·x1+k1·x1)

= − 1

(2π)3

∫ ∫ ∫
d3x1d3x2d3k〈ζ(k3)ζ(xm)〉P (k)×

d ln k3P (k)

d ln k
eik·(x2−x1)ei(k1·x1+k1·x1)

= −(2π)3δ(3)(k1 + k2 + k3)P (k3)P (k)
d ln k3P (k)

d ln k

∣∣∣∣
k=k̄

,

with k̄ = |k1 − k2|/2.In integrating by parts with respect to k we have

neglected a boundary term proportional to P (k) which decays as k → ∞.

In the limit k3 → 0, k1 and k2 become equal in magnitude and opposite in

direction.

Equation (4.5) suggests a much more convenient way to parametrise the

bispectrum. We define a k−dependent fNL as

fNL(k1, k2, k3) = −5

6
B(k1, k2, k3)/ [P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)] .

(4.13)

Our definition of fNL is different to that which is observationally con-

strained1. Estimating CMB non-Gaussianity is numerically very challeng-

ing and assuming the bispectrum can be written as a product of factorisable

functions provides a significant simplification [94,97,98]. In [16,19] various

“shape templates” are considered, each with their corresponding fNL:

1In particular our definition of fNLdiffers by a minus sign from that which is commonly
found in the literature.
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Blocal(k1, k2, k3) = 2A2
sf

local
NL

[(
1

k1k2

)4−ns
+ 2 perm.

]

Bequil(k1, k2, k3) = 6A2
sf

equil
NL

[
−2

(
1

k1k2k3

)2(4−ns)/3

−

((
1

k1k2

)4−ns
+ 2 perm.

)
+

((
1

k1k2
2k

3
3

)(4−ns)/3
+ 5 perm.

)]

Bortho(k1, k2, k3) = 6A2
sf

ortho
NL

[
−8

(
1

k1k2k3

)2(4−ns)/3

−3

((
1

k1k2

)4−ns
+ 2 perm.

)
+ 3

((
1

k1k2
2k

3
3

)(4−ns)/3
+ 5 perm.

)]
.

(4.14)

The current bounds on the various bispectra are [19]

f local
NL = 0.8± 5.0,

f equil
NL = −4± 43,

fortho
NL = −26± 21. (4.15)

This is analogous to assuming for the power spectrum, k3P (k) = Ask
ns−1,

as opposed to the more general definition of the spectral index

ns(k) = 1 +
d ln k3P (k)

d ln k
(4.16)

where P (k) is in principle an arbitrary function of k.

The shape functions given in equations (4.14) are chosen to be sums of

factorisable functions to aid data analysis and are a good approximation to

the bispectra expected from various theoretical models.

For example multi-field models of inflation generally give bispectra which

can be well approximated by the local type and peak in the squeezed limit

(k3 � k1 ≈ k2) [94, 99–106]. Single field models generally give bispectra

that can be well approximated by either the equilateral or orthogonal type
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and peak in the equilateral limit(k1 ≈ k2 ≈ k3) [61,65,107–110].

4.2. The Bispectrum from Inflation

In Section 3.3.1 we showed how general models on Inflation predict pri-

mordial power spectrum by relating it to the quantum fluctuations of the

primordial curvature perturbation ζ. This was done by simply evaluating

the quantum expectation value of ζ at late times.

〈ζk1ζk2〉 = 〈0 |ζk1ζk2 | 0〉 (4.17)

Naively performing the same procedure for the bispectrum gives 0 because

we now have unequal â and â† operators in each term, annihilating the

vacuum in each case. This is because when calculating the power spectrum

we are implicitly assuming the field is Gaussian by truncating the action to

second order so all non-Gaussian contributions trivially vanish. We therefore

have two problems to address before we can calculate the bispectrum.

First of all we need to know what interaction terms arise when expanding

the inflationary action to higher orders. This is a non-trivial calculation

highly prone to error so will be dealt with in the next section. This calcu-

lation was first done by Maldacena [70] for the basic single canonical scalar

field and has since been generalised to many different models [111,112]. It is

important to note that we only need to expand up to third order as higher

order terms only contribute via loops. Such terms are typically negligible as

they are higher order in both the slow-roll parameters and H/Mpl [113–119].

We expect higher order moments to be smaller still and indeed for even mo-

ments they will be dominated by the Gaussian contribution from Wick’s

Theorem.

Secondly, given the interaction terms, we need to know how to perform

the calculation correctly. The method in question is most commonly re-

ferred to as the “In-In Formalism” [120–123]. It was first used by Jordan,

Calzetta and Hu [124,125] for Cosmological calculations but it wasn’t until

Maldacena first used it in the same paper [70] that it became the stan-

dard method for calculating quantum corrections to cosmological perturba-

tions [108,111–113,115–117,126–129].
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4.2.1. The In-In Formalism

The naive approach to the bispectrum is

〈ζk1(t)ζk2(t)ζk3(t)〉 = 〈0 |ζk1(t)ζk2(t)ζk3(t)| 0〉. (4.18)

This is only correct at zero-th order because we need to take into account

how the vacuum changes in time. We impose our Bunch-Davies initial

conditions on ζ at very early times which makes use of the free vacuum state

|0〉. What we would like to do is evaluate the bispectrum at a time t when all

relevant scales have exited the horizon which means evaluating the vacuum

expectation value of ζ3 with the true vacuum state |Ω(t)〉 6= |0〉. Unlike

flat-space QFT the vacuum is time-dependent because we are perturbing

around a time-dependant background. We therefore need to look at the

effect of the Hamiltonian in more detail.

In addition we would like to use our solutions to equation (3.40) to deter-

mine the time evolution of ζ. Similarly to standard QFT we want to define

an “interaction picture” and the interaction Hamiltonian. We follow [113]

dealing with a general field φ(t,x) and look at its quantum perturbation

δφ(t,x) around a classical background φ̄(t,x).

φ(t,x) = φ̄(t,x) + δφ(t,x) (4.19)

In our case φ̄(t,x) will represent quantities like a(t), H(t) etc. while δφ(t,x)

will become ζ(t,x). There is a corresponding conjugate momenta.

π(t,x) = π̄(t,x) + δπ(t,x) (4.20)

φ̄ and π̄ satisfy Hamilton’s equations while δφ and δπ satisfy the usual

commutation relations. Expanding the Hamiltonian in powers of δφ and

δπ, it can be shown they satisfy Heisenberg’s equations of motion. For

example
˙δφ(t,x) = i

[
H̃[δφ(t), δπ(t); t], δφ(t,x)

]
. (4.21)

H̃ contains only terms in δφ and δπ which are quadratic and higher. The

explicit time dependence arises from the classical background fields. We
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now separate the quadratic part of H̃, H0 from the interaction terms HI :

H̃[δφ(t), δπ(t); t] = H0[δφ(t), δπ(t); t] +HI [δφ(t), δπ(t); t]. (4.22)

The “interaction picture” is then defined so that the evolution of the oper-

ators δφI is given by the free Hamiltonian H0:

˙δφI(t,x) = i [H0[δφ(t0), δπ(t0); t], δφI(t,x)] , (4.23)

with initial conditions δφI(t0) = δφ(t0) and δπI(t0) = δπ(t0). This allows

to use solutions of equation (3.40) to calculate the bispectrum as opposed

to solving a non-linear partial differential equation.

The solutions of equations (4.21) and (4.23) can be written in terms of

some unitary operators U(t, t0) and U0(t, t0). They are

δφ(t) = U−1(t, t0) δφ(t0)U(t, t0) (4.24)

δφI(t) = U−1
0 (t, t0) δφ(t0)U0(t, t0) (4.25)

Eliminating δφ(t0) gives

δφ(t) = F−1(t, t0) δφ(t)F (t, t0) (4.26)

F (t, t0) = U−1
0 (t, t0)U(t, t0) (4.27)

where F (t, t0) satisfies

d

dt
F (t, t0) = −iHI(t)F (t, t0), F (t0, t0) = 1. (4.28)

HI(t) is the interaction Hamiltonian where the fields are evaluated in the

interaction picture. The solution for F (t, t0) can be written as a time-

ordered exponential

F (t, t0) = T exp

(
−i
∫ t

t0

HI(t) dt

)
. (4.29)

Putting it all together gives

〈Q(t)〉 =

〈[
T exp

(
−i
∫ t

t0

HI(t) dt

)]†
QI(t)

[
T exp

(
−i
∫ t

t0

HI(t) dt

)]〉
(4.30)
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where QI(t) refers to the operator Q(t) evaluated in the interaction picture.

We impose our initial conditions when the relevant modes are deep inside

the horizon so we typically take t0 → −∞. For our purposes we are only

interested in the first order result due to higher orders being negligible as

mentioned earlier. Also as mentioned earlier we will only expand the action

up to third order. Our first order expression for bispectrum is then

〈ζk1(t)ζk2(t)ζk3(t)〉 = −i
∫ t

−∞
dt′
〈[
ζk1(t)ζk2(t)ζk3(t), HI(t

′)
]〉
, (4.31)

The curvature perturbations inside the commutator are evaluated at t and

not t′ and HI(t
′) will be cubic in ζ(t′). All mode functions ζk(t) will satisfy

equation (3.40) with Bunch-Davies initial conditions. The whole expression

is to be evaluated at a time t when all three modes have exited the horizon.

4.2.2. The Third Order Action

Equation (4.31) is our main formula for the bispectrum expressed in terms of

the solution of equation (3.40). Calculating the last ingredient HI [ζ(t,x)]

will be the focus of this section. We will follow the original calculation

in [70].

To begin with the procedure is identical to that outlined in Section 3.3.1.

This time however we will completely ignore tensor perturbations. As we

have yet to measure the primordial tensor power spectrum we expect 3-point

functions involving tensor perturbations to be unobservable. We therefore

decompose the action using the ADM formalism and focus only the scalar

perturbations. There are two gauges we can consider. We define gauge 1 as

φ(t,x) = φ(t), hij = a2(t)e2ζ(t,x)δij , (4.32)

and gauge 2 as

φ(t,x) = φ(t) + ϕ(t,x), hij = a2(t)δij . (4.33)

These two gauges are related by a complicated gauge transformation. Start-

ing from gauge 2, one can perform a time re-parametrization t → t′ =

t + T (t,x) to set ϕ = 0 from an arbitrary initial ϕ(t,x). This change of

coordinates produces a new metric. Writing the metric in the form of gauge
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1 requires a further spacial re-parametrization. This leaves the inflaton field

unaffected as it is now homogeneous. Performing these steps allows us to

write a lengthy expression for ζ in terms of ϕ.

T = −ϕ
φ̇
− φ̈ϕ2

φ̇3
+
ϕ̇ϕ

φ̇2
(4.34)

∂2χ = −Mplε
d

dt

(
H

φ̇
ϕ

)
(4.35)

ζ = HT +
1

2
ḢT 2 − 1

4a2
(∂T )2 +

1

2
∂iχ∂iT (4.36)

+
1

4a2
∂−2∂i∂j(∂iT∂jT )− 1

2
∂−2∂i∂j(∂iχ∂jT )

This expression is important for checking the third-order action we calcu-

late is correct. In calculating our expressions for the third order action we

only need to find N and Ni up to first order. Any third order terms would

necessarily multiply the zero-th order constraints, in this case the Fried-

mann equations, meaning the term would subsequently vanish. Similarly

any second order terms would appear in combination with the first order

constraints which again vanish for the same reasons. Expanding the action

up to third order in gauge 1 then yields

S3

M2
pl

=

∫
d4x

[ a
H

(
H + ζ̇

) (
−2∂2ζ − (∂ζ)2

)
eζ +Ha3εζ̇2

(
H − ζ̇

)
e3ζ

+
1

a2

(
1

2H
(∂i∂jψ∂i∂jψ − (∂2ψ)2)(H − ζ̇)− 2∂iψ∂ζ∂

2ψ

)
e3ζ

]
ψ = a2εζ̇ − ∂2ζ

H
(4.37)

Doing the equivalent calculation in gauge 2 gives:

S3 =

∫
d4x a3

[
− φ̇

4M2
plH

ϕϕ̇2 − 1

a2

φ̇

4M2
plH

ϕ(∂ϕ)2 − ϕ̇∂iχ∂iϕ

+

(
3

4
Hε− Hφ̇ε

4M2
pl

− φ̇V ′′

4M2
plH
− V ′′′

6

)
ϕ3 +

φ̇ε

2M2
pl

ϕ2ϕ̇+
Hε

2
ϕ2∂2χ

φ̇

4H

(
(∂2χ)2 − ∂iχ∂jχ∂iχ∂jχ

)
ϕ

]
(4.38)

∂2χ = ε
d

dt

(
−Hϕ

φ̇

)
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Comparing these two results one can see that the action is zero-th order

in ε for gauge 1 whereas in gauge 2 it is of order ε2 after using the first

order relation between ζ and ϕ. In gauge 1 we know ζ is conserved outside

the horizon whereas in gauge 2 it is not obvious any quantity is conserved

because the ϕ3 terms will typically lead to evolution outside the horizon.

Therefore the action in the two different gauges appear inconsistent.

To resolve this apparent inconsistency one has take the third order action

for ζ and integrate by parts many many times dropping all total space and

time derivatives. This can potentially be a cyclic calculation but our target

form is to keep only terms proportional to ε2 and higher. We also introduce

the second order equation of motion

a3εζ̈ = aε∂2ζ −Ha3ε (3 + 2ε− 2η) ζ̇ − 1

2

δL2

δζ
(4.39)

which is used to eliminate any terms proportional to ζ̈ when we integrate

by parts. After performing all these steps we find

S3 = M2
pl

∫
d4x

[
a3ε2ζ̇2ζ + aε2(∂ζ)2ζ − 2a3εζ̇∂iχ∂iζ

−1

2
a3ε3ζ̇2ζ + a3ε

d

dt
[ε− η] ζ2ζ̇ +

1

2
a3ε∂i∂jχ∂i∂jχζ

+f(ζ)
δL2

δζ

]
, (4.40)

f(ζ) = −1

2
[ε− η] ζ2 − 1

H
ζ̇ζ +

1

4H2a2
(∂ζ)2 − 1

2H
∂iχ∂iζ

− 1

4H2a2
∂−2∂i∂j(∂iζ∂jζ) +

1

2H
∂−2∂i∂j(∂iχ∂jχ),

∂2χ = εζ̇.

The action is now of order ε2 with some excess terms proportional to the

equations of motion. Any interaction term can be removed by performing

a suitable field redefinition but at the cost of producing higher order in-

teraction terms. As we are limiting the calculation to third order, this is

not a problem for us so we can remove all the terms proportional to the

equations of motion by performing a field redefinition. In this case the field

redefinition is especially simple and takes the form

ζ = ζn − f(ζn). (4.41)
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The terms involving ∂−2 are reminiscent of the gauge transformation, equa-

tion (4.34) and this leads us to make the identification

ζn = −H
φ̇
ϕ. (4.42)

With this identification, performing the field redefinition then converts equa-

tion (4.40) to equation (4.38) and is equivalent to the gauge transformation

given in equation (4.34) [70]. In both cases the action is second order in the

slow-roll parameters. It is also apparent that while ζ stays constant outside

the horizon, ζn does not.

The outline of this field redefinition was important for several reasons.

First of all it establishes a consistency check for a calculation which is

highly prone to error and at first glance appears inconsistent. In [70], the

author makes numerous field redefinitions. The first, outlined here, serves

as a consistency relation and is not used in subsequent calculations. When

calculating the bispectrum the author introduces another field redefinition

defined via

ζ = ζc +
1

2

φ̈

φ̇H
ζ2
c +

1

4
εζ2
c +

1

2
ε∂−2(ζc∂

2ζc) + . . . (4.43)

where the dots indicate terms higher in slow-roll or vanish outside the hori-

zon. This allows the author to simplify the action so that at leading order

in slow-roll it becomes a single term.

We are interested in calculating the bispectrum for ζ, not ζn or ζc, there-

fore if we do a field redefinition we need to include an extra term in our

calculations. If ζ = ζc + λζ2
c then the bispectrum becomes

〈ζ(x1)ζ(x2)ζ(x3)〉 = 〈ζc(x1)ζc(x2)ζc(x3)〉+λ [〈ζc(x1)ζc(x2)〉〈ζc(x1)ζc(x3)〉+ . . . ]

(4.44)

where the dots refer to all the permutations expected from applying Wick’s

Theorem. These extra terms are important because only the field redefi-

nition terms involving derivatives of ζ vanish at late times when all scales

have exited the horizon. Many authors use field redefinitions of this manner

to remove the terms proportional to the equation of motion in order to sim-

plify calculations, for example [111, 112, 127, 130]. At this point we depart

from the usual literature and not do a field redefinition at all.
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First of all performing a non-linear field redefinition in quantum field the-

ory has several non-trivial effects, see [131] and its corresponding references

for details. These effects arise from operator-ordering issues or the Jaco-

bian when one changes variables in the path-integral which generally give

rise to extra terms in the action. The situation is non-trivial at best even

for simple toy models with explicitly local field redefinitions. For our case

where there are complex derivative interactions and necessarily non-local

field redefinitions it is no doubt much worse. This then casts doubt on

weather performing the field redefinition and quantising ζn really produces

the same results for ζ as quantising ζ itself. It could be that these issues

can be argued away on grounds of renormalisation but this is not obvious

and is certainly not emphasised in the literature.

Secondly the terms removed by the field redefinition are those propor-

tional to the equation of motion(by construction). To calculate the bispec-

trum we use the “In-In” formalism and to this end we work in the interaction

picture so the interaction Hamiltonian is expressed in terms of the interac-

tion picture fields. By definition the interaction picture fields will satisfy

the equation of motion. Therefore in perturbation theory whenever a term

arises proportional to the equation of motion it must vanish by construc-

tion. This leads us to conclude that any interaction term proportional to the

equation of motion provides no contribution to all orders in perturbation

theory and so removing them achieves nothing.

In summary performing the usual field redefinition does nothing to make

the bispectrum calculation easier, possibly introduces non-trivial quantum

field theory effects and requires us to calculate more terms in the spirit of

equation (4.44). It seems then we can just simply ignore the f(ζ) term in

equation (4.40) and proceed with our calculation. Unfortunately this is not

the case.

In equation (4.40) there is a single term,

a3ε
d

dt
[ε− η] ζ2ζ̇, (4.45)

which causes problems. It can be easily shown that outside the horizon ζ

tends to a constant and ζ̇ decays as a−2. Therefore this whole term grows

like a implying the bispectrum doesn’t converge outside the horizon. We

could argue away such a contribution if we restrict ourselves to background
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models where the time derivative vanishes but this is counter-productive to

calculating the bispectrum for general potentials.

This terms appears when integrating by parts equation (4.37) to obtain

(4.40) so we can easily compare the action in two different gauges. This

diverging term is therefore cancelled by an appropriate boundary term.

At this point we generalise our action to the case k−inflation [59,132] to

prove a simple general result. k−inflation, see Chapter 7 for more details,

involves generalising the kinetic term in single field inflation models. Instead

of simply L = X − V (φ) where X = 1
2∂µφ∂

µφ, the Lagrangian is now a

general function P (X,φ). The key new feature is that the perturbations

now propagate with a general time dependent sound speed cs 6= 1.

The third order action for this class of models was derived in [111] and

takes the form [111,112]

S3 = M2
pl

∫
d4x

[
2a3ε

3Hc2
s

((
1

c2
s

− 1

)
− g
)
ζ̇3

+
a3ε

c2
s

(
ε

c2
s

+ 3

(
1− 1

c2
s

))
ζζ̇2 +

aε

c2
s

(ε− 2εs + 1− c2
s)ζ(∂ζ)2

−2a3ε2

c4
s

(
1− ε

4

)
ζ̇∂iζ∂i∂

−2ζ̇ +
a3ε3

4c4
s

∂2ζ∂i∂
−2ζ̇∂i∂

−2ζ̇

+
a3ε

2c2
s

d

dt

(
ε̇

Hεc2
s

)
ζ2ζ̇ + f(ζ)

δL

δζ

]
, (4.46)

δL

δζ
=

d

dt

(
a3ε

c2
s

ζ̇

)
− aε∂2ζ ,

f(ζ) =
ε̇ζ2

2Hεc2
s

+ . . . .

g and εs are terms which vanish for constant cs 6= 1, so in this thesis they are

unimportant, and the dots indicate terms which vanish outside the horizon.

We are concerned with the final line in the above action. According to [133]

there is a single total time derivative equal of the form∫
d4x

d

dt

(
− a3ε̇

2Hc4
s

ζ2ζ̇

)
, (4.47)

which also contributes to the bispectrum. Noting the similarity between this

term and the last line in the third order action we consider all the terms as
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a single contribution and integrate by parts.

a3ε

2c2
s

d

dt

(
ε̇

Hεc2
s

)
ζ2ζ̇ − d

dt

(
a3ε̇

2Hc4
s

ζ2ζ̇

)
+ f(ζ)

δL

δζ
(4.48)

= − a3ε̇

Hc4
s

ζ̇2ζ − aε̇

2Hc2
s

ζ2∂2ζ + f ′(ζ)
δL

δζ
. (4.49)

The new function f ′(ζ) now only contains terms which vanish outside the

horizon. They can be removed by a field redefinition as before but as we

are evaluating the bispectrum after horizon exit, there will be no new con-

tributions. Alternatively we can include the terms in the action but they

will also give no contribution when we use the In-In formalism to evaluate

the Hamiltonian on the solutions of the Mukhanov equation. We can there-

fore simply ignore the terms proportional to the equation of motion and,

specialising to the case of constant cs, write the action as

S3 = M2
pl

∫
d4x

[
2a3ε

3Hc2
s

(
1

c2
s

− 1

)
ζ̇3 +

a3ε

c2
s

(
2η − ε
c2
s

+ 3

(
1− 1

c2
s

))
ζζ̇2

+
aε

c2
s

(ε+ 1− c2
s)ζ(∂ζ)2 +

aε

c2
s

(η − ε)ζ2∂2ζ

−2a3ε2

c4
s

(
1− ε

4

)
ζ̇ξi∂iζ +

a3ε3

4c4
s

∂2ζξ2

]
, (4.50)

=

∫
dt L3 ,

ξi = ∂i∂
−2ζ̇ .

From this action it is straightforward to work out the interaction Hamil-

tonian H3 = −L3.

4.2.3. The tree-level calculation

Taking the equations (4.50), (4.31) and (3.43) we can evaluate the 3-point

correlation function.

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = (2π)3δ(3) (k1 + k2 + k3) [iζ?1ζ
?
2ζ

?
3 I + c.c.]

(4.51)
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with

I = Iζ̇3 + Iζ̇2ζ + Iζ(∂ζ)2 + Iζ2∂2ζ + Iζ̇ξi∂iζ + I∂2ζξ2

Iζ̇3 = −
∫ t

−∞
dt

2a3ε

3Hc2
s

(
1

c2
s

− 1

)
× 6 ζ̇1ζ̇2ζ̇3

Iζ̇2ζ = −
∫ t

−∞
dt
a3ε

c2
s

(
3

(
1− 1

c2
s

)
+

2η − ε
c2
s

)
× 2

(
ζ1ζ̇2ζ̇3 + 2 perm.

)
Iζ(∂ζ)2 = −

∫ t

−∞
dt aε

(
1− 1

c2
s

− ε

c2
s

)
× 2 (k1 · k2 + 2 perm.) ζ1ζ2ζ3

Iζ2∂2ζ = −
∫ t

−∞
dt
aε

c2
s

(ε− η)× 2
(
k2

1 + k2
2 + k2

3

)
ζ1ζ2ζ3

Iζ̇ξi∂iζ = −
∫ t

−∞
dt (−2)

a3ε2

c4
s

(
1− ε

4

)(k2 · k3

k2
2

ζ̇1ζ̇2ζ3 + 5 perm.

)
I∂2ζξ2 = −

∫ t

−∞
dt
a3ε3

4c4
s

(
k2

1

k2
2k

2
3

(k2 · k3) ζ1ζ̇2ζ̇3 + 5 perm.

)
, (4.52)

where ζi = ζ(t, ki) and t is to be taken as any time after all 3 modes have

exited the horizon [112,128,129].

We can then make the identification B(k1, k2, k3) = iζ?1ζ
?
2ζ

?
3 I+ c.c. Writ-

ing the bispectrum as the imaginary part, =, of a complex number Z, rescal-

ing by 5/3 and converting to e−foldings N allows us to write fNL as

fNL = − =[Z]

(P1P2 + 2 perm.)
(4.53)

Z = ζ?1ζ
?
2ζ

?
3

∫ N

−∞
dN

[
g1ζ
′
1ζ
′
2ζ
′
3 + g2ζ1ζ2ζ3 + (g3(k1, k2, k3)ζ1ζ

′
2ζ
′
3 + 2 perm.)

]
.
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The functions gi are defined as

g1 =
20Ha3ε

3c2
2

(
1− 1

c2
s

)
g2 =

10aε

3H

[(
1

c2
s

− 1 +
ε

c2
2

)
(k1 · k2 + k2 · k3 + k1 · k3)

+
(η − ε)
c2
s

(k2
1 + k2

2 + k2
3)

]
g3(k1, k2, k3) =

5Ha3ε

3c2
s

[
6

(
1

c2
s

− 1

)
+

(ε− 2η)

c2
s

− ε2

2c2
s

k2
1

k2
2k

2
3

k2 · k3

+
2ε

c2
s

(
1− ε

4

)
k1 ·

(
k2

k2
2

+
k3

k2
3

)]
,

with ζ ′ = dζ/dN . This provides us with a formula to calculate fNL for

arbitrary triangle shapes. At this point we specialise to isosceles triangles

with k1 = k2 = k and k3 = βk. In this notation β = 0, 1, 2 corresponds to

the squeezed, equilateral and folded limits respectively. This covers most

shapes of interest for single field inflation models [52]. In the squeezed limit

all single field models the consistency relation [70, 95, 96]. |fNL| generally

peaks in the equilateral limit for single field models and theories with excited

initial states generally peak in the folded limit [61, 108, 134]. Restricting

ourselves to this set of shapes gives the final equation for the variable Z

Z(N) = ζ?1ζ
?
2ζ

?
3

∫ N

−∞

5Ha3ε

3c2
s

(
f1ζ
′2ζ ′β + f2ζ

2ζβ + f3ζζ
′ζ ′β + f4ζ

′2ζβ
)
,

f1 = 4u ,

f2 =
(
2 + β2

)( csk
aH

)2(
u+

1

c2
s

(2η − 3ε)

)
, (4.54)

f3 = 12u− 2

c2
s

(
4η + (1− β2)ε+

(
β2

4
− 1

)
ε2
)
,

f4 = 6u− 1

c2
s

(
4η + 2(β2 − 1)ε+

(
β2

4
− 1

)
β2ε2

)
,

from which we can calculate fNL. In equation (7.26) ζ = ζk and ζβ = ζβk.

The remainder of this thesis focuses on solving this equation numerically

in the context of a Monte-Carlo approach. In particular all the numerical

integration was carried out using a 5th order Rung-Kutta Cash-Karp algo-

rithm [135,136]. Unfortunately evaluating this integral numerically is quite
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challenging and is the focus for the rest of the thesis with the remaining

chapters based on papers released during the PhD [1–4,137].

Chapter 5 provides a detailed overview on how to evaluate the bispectrum

in the context of Monte Carlo sampling inflationary trajectories. Chapter

6 focuses on models motivated by the recent BICEP2 results [20]. Chapter

7 extends the Monte Carlo framework to non-canonical models and chapter

8 reconstructs the inflaton potential from the Planck 2013 results [15,16].

While it is only mentioned in passing in Chapter 5, the nature of the

Monte-Carlo approach means that each bispectrum calculation is indepen-

dent and therefore can be easily parallelised. This, in combination with

the large number of samples makes it an environment for utilising Graphics

Processing Units (GPUs) for the computation. To achieve this the code

was written using C++AMP [138], a set of libraries included in the free

Microsoft Visual Studio compiler. The advantage of this over more popular

choices is that it is hardware independent while maintaining a fairly simple

code interface. Excluding this, the code written to perform the calculations

of the bispectrum was completely self contained.
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5. Non-Gaussian signatures of

general inflationary trajectories

5.1. Introduction

The recent results from Planck satellite have confirmed that the universe is

well described by the ΛCDM model [13,15]. A cornerstone of this model is

the behaviour of the primordial perturbations to the background homoge-

neous model which seed the formation of structure in the observed universe.

The model assumes the perturbations are almost Gaussian and very close to

but not exactly independent of scale. The latter statement following from

the observational bounds on the scalar-spectral index ns = 0.9603± 0.0073

[15].

A period of accelerated expansion in the very early universe driven by the

potential energy of a slowly evolving scalar field, the inflaton, [29–32,71,139–

145] is the most commonly accepted explanation for the near scale invariance

of the primordial perturbations on scales larger than the Hubble length.

The inflation scenario also explains why the universe is very homogeneous,

isotropic and devoid of monopoles. Inflation has been criticised on the

grounds of requiring fine tuning [41–44] and alternatives have been proposed

(see e.g. [36–40]), however none are as simple as the basic inflation scenario

involving a single scalar field.

This statement is simultaneously Inflation’s greatest strength and weak-

ness since the observational bounds on ns can be satisfied easily by a large

selection of potentials defining even the simplest single field model. To pin

down the exact model of inflation more precise observations that can con-

strain higher order statistics of the perturbations will be required. This is

particularly important if even more complicated models requiring multiple

fields are to be constrained.

A wealth of information could be gained by measuring the non-Gaussianity
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Figure 5.1.: The evolution of ζ and fNL as a function of e-fold N for a typ-
ical random trajectory. The curves are normalised arbitrarily
for the purpose of visualisation. The green (solid) line shows
the real part of ζ for a mode that crosses the horizon at N ∼ 6.
ζ converges to a constant shortly after horizon crossing as ex-
pected. The blue (dotted) and red (dashed) curves show the
evolution of the real and imaginary parts of the integral in
(5.47). Only the imaginary part that converges after horizon
exit contributes to the value of fNL whilst the real, diverging
component is discarded.

of the perturbations. If Inflation did occur then the deviations from scale-

independence and a pure Gaussian distribution are inherently linked. In

the simplest cases both are small and of order the slow-roll parameter ε,

representing deviations from pure de-Sitter space [70,76]. Non-Gaussianity

is encoded in the bispectrum, or 3–point function of the perturbations. The

bispectrum has a much richer structure than the power spectrum as it is,

in principle, a function of three different scales and therefore contains a lot

more information. It may therefore be a very effective tool for breaking the

degeneracy of inflationary models. The bispectrum is often parametrised by

the dimensionless quantity fNL [45]. Most often fNL is quoted in some limit

for the configuration of the mode triangle involved in the 3–point function

and in addition it is usually assumed to be very nearly scale invariant. Thus

fNL is usually regarded as a single amplitude for a particular configuration

of the 3–point function.

The calculation of fNL from inflationary models has received a lot of
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Figure 5.2.: This figure shows how fNL for different shape parameter β de-
pends on the integration start scale parameter A. Each of the
curves is generated from the same HSR trajectory for compar-
ison. The parameter A represents how deep inside the horizon
the mode smallest k in the triangle was at the start of the in-
tegration. fNL converges for all shapes as A becomes large,
signifying earlier start times with respect to horizon exit. Note
that, as expected, fNL peaks at roughly β ∼ 1. Typically when
A ∼ 400 fNL has converged with only residual numerical noise
at the a level of . 1%. The source of the residual noise is the
early-time oscillatory integral approximation (see below).

attention in recent years [46]. In particular much focus has been placed

on models which generate a large value of fNL yet retain the near scale

invariance of the observed power spectrum [60, 61, 103, 105, 112]. It was

hoped that a large fNL could be observed, potentially confirming any theory

matching the amplitude and shape dependence of fNL, or at the very least,

ruling out all the models which do not. Unfortunately, this did not happen

with the Planck satellite results which showed that fNL as measured from

Cosmic Microwave Background (CMB) anisotropies, is consistent with zero

with standard deviation of O(10) in all “types” of fNL [16]. This means the

simplest models of inflation are still perfectly consistent with observations.

Despite this, an accurate calculation of fNL will still be valuable in fu-

ture as bounds get stronger and stronger. This is particularly important

for comparisons with future Large Scale Structure (LSS) surveys that may
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constrain fNL∼ O(1) (see e.g. [146, 147]). Obtaining accurate estimates of

the bispectrum and its scale dependence for generic inflationary solutions

will be important for these comparisons. This work will require a numerical

evaluation of the primordial bispectrum arising from higher-order correla-

tions of the curvature perturbations. The full numerical treatment of the

bispectrum has received little attention over the years, most calculations

being analytical and relying on various approximations. Most numerical

work carried out so far has been concerned only with specific potentials

with features that are known to result in large non-Gaussianity and still

rely on slow-roll approximations to simplify the calculations [128–130,148].

This paper describes the full numerical calculation of non-Gaussianity for

inflationary, single-field trajectories generated in the Hamilton-Jacobi (HJ)

formulation [77]. Initial results from this treatment were reported in [137].

The numerical treatment allows the calculation of non-Gaussianity in cases

where the field is not in the slow-roll regime, but still in the perturbative

regime where the higher-order interaction couplings are still � 1. It also

allows us to calculate the contribution to all possible “shapes” and “types”

of non-Gaussianity.

In this framework large ensembles of inflating solutions, or trajectories,

can be generated. These are related to a large class of single field potentials

and can, in principle, be compared to observations without restrictions on

the the model of inflation [4]. Here we examine the resulting distribution

in various shapes of local type non-Gaussianity and verify the well-known

consistency relation for squeezed, single-field inflation [70,95]. We also con-

firm that the equilateral configuration of the bispectrum follows a similar

distribution.

The paper is organised as follows. In Section 5.2 we outline the HJ ap-

proach and the analytical framework we are using for our computations.

In Section 5.3 we describe our computational method, recapping the cal-

culation of the power spectrum, followed by the subtleties involved in the

calculation of the bispectrum. In Section 5.4 we outline the main results

of the paper and verify them through some simple consistency checks. We

discuss our results in Section 5.5.
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5.2. Hamilton Jacobi approach to inflationary

trajectories

We start by briefly reviewing the HJ approach to inflationary trajectories

where we consider the Hubble-Slow-Roll (HSR) parameters to be the fun-

damental quantities of interest, as opposed to the frequently used Potential-

Slow-Roll (PSR) parameters [77,78,149,150].

If φ is a monotonic function of time, we can change the independent

variable in the Friedmann equations from t to φ and consider all quantities

as functions of φ. The Friedmann equation and the inflaton’s equation of

motion then take on the following form

φ̇ = −2M2
plH

′(φ) , (5.1)[
H ′(φ)

]2 − 3

2M2
pl

H(φ)2 = − 1

2M4
pl

V (φ) , (5.2)

where overdots and primes denote a derivative with respect to t and φ re-

spectively, H is the Hubble rate, and M2
pl = (8πG)−1. One of the advantages

of performing this change of variable is that one can merely pick a function

H(φ) and this will correspond to an exact solution of a corresponding po-

tential V (φ). It is straightforward to verify that inflation will occur if the

following condition holds

ε = 2M2
pl

[
H ′(φ)

H(φ)

]2

≡ − Ḣ

H2
≡ φ̇2

2M2
plH

2
< 1 . (5.3)

This relation is exact, unlike the equivalent expression for the PSR param-

eter εV ∝ (V ′/V )2 < 1 which is only approximate.

We can define an infinite hierarchy of HSR parameters labelled by index

l

lλ =
(
2M2

pl

)l (H ′)l−1

H l

d(l+1)H

dφ(l+1)
. (5.4)

From these we can define η ≡ 1λ = −(φ̈/Hφ̇) and ξ ≡ 3λ. The last

ingredient required is the number of e-foldings N specifying the change in

scale factor a during the inflationary phase ln(a) = N . It is useful to relate

this to the Hubble rate as
dN

dt
= H . (5.5)
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Combining all of these equations produces the following set of differential

equations dictating the evolution of the background

dH

dN
= −εH ,

dε

dN
= 2ε(ε− η) , (5.6)

dlλ

dN
= (lε− (l − 1)η) lλ− l+1λ .

This is the most natural set of variables to use when describing a general

inflationary trajectory. These equations will be the starting point of our fNL

calculation. The HSR parameters will evolve in time and each particular

inflation model with a particular set of initial conditions will correspond

to a distinct trajectory in HSR-space. In other words, specifying the HSR

parameters at some particular time and solving the system (8.5) is precisely

equivalent to specifying φ(t0), φ̇(t0), and V (φ) and solving the Friedmann

equations.

The HJ system (5.6) is an infinite hierarchy of equations that describe all

possible background solutions. For the purpose of computing observables

the system is usually truncated by fixing lλ = 0 for l ≥ lmax. The trun-

cated system still describes exact solutions for the background quantities

but restricts the space of solutions to a subset of the infinite system.

Relating the HSR picture to a specific model is straightforward for the

simplest cases. For example if we set lλ = 0 for all l > 1 the only remaining

non-zero HSR parameters are ε and η. This implies H(φ) = aφ2 + bφ + c

is a quadratic function and hence V (φ) is quartic. If one specifies an initial

condition H0 this fixes the potential V (φ) up to a constant shift φ→ φ+C.

This shift will have no impact on observations because the energy scale is

specified by H0. We can use this symmetry to remove the linear term in

H(φ) and write the potential as

V (φ) =
λ

4!
φ4 +

m2

2
φ2 + Λ . (5.7)

If one specifies ε0 and η0 at the same time as H0 this is then equivalent to
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solving for the model parameters and initial conditions

φ0 = ±
√

2ε0
η0

Mpl ,

φ̇0 = ∓
√

2ε0H0Mpl ,

λ

4!
=

3H2
0η

2
0

16M2
pl

, (5.8)

m2

2
=

H2
0

2
(3η0 −

3

2
ε0 − η2

0) ,

Λ =
2

27
λM4

pl

(
1 +

27

2

m2

λM2
pl

)2

.

Note that although we have three degrees of freedom we cannot specify λ,

m2, and Λ independently. This is simply because we have used our freedom

in initial condition φ0 to write H as H(φ) = aφ2 +c. This leaves two degrees

of freedom to specify λ, m2 and Λ. In practice, if one only requires the shape

of the potential V (φ) it is much simpler to solve for φ(N), H(N), and ε(N)

and use the relation

V (φ) = 3M2
plH

2
(

1− ε

3

)
. (5.9)

The only remaining information that needs to be specified in the model

above is the total number of e-foldings ∆N . When integrating the Fried-

mann equations for a given potential V (φ) there is no clear way of ensuring

inflation ends, or if it provides enough inflation. Inflation ends exactly when

ε = 1. The only constraint on the length of inflation is that it must last at

least roughly 60 e-foldings [15] in order for all scales up to the present Hub-

ble scale to have been inflated to super horizon scales before the deceleration

phase of the standard Big Bang picture. Converting this into some length

in time necessarily requires some knowledge of H (which may vary signif-

icantly over the whole of inflation) so N is clearly the most natural time

variable to use. These constraints on inflation are then easy to implement

using the HSR parameter system - to ensure inflation ends we choose the

initial condition ε(Ntot) = 1. To ensure inflation provides enough e-foldings

we integrate back in time from Ntot → N = 0 where Ntot ∼ 60. In practice

the exact value of Ntot is not known due to uncertainties in the physics of

reheating. When generating random trajectories ∆N can be drawn from a
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proposal density distribution to account for this uncertainty.

To generate large ensembles of random inflationary trajectories we can

then draw the remaining HSR parameters lλ at the end of inflation from

proposal densities. In the following the proposal densities are uniform over

a specified range in each HSR but could also take different forms e.g. nor-

mal distribution. The choice of proposal shape and where the boundary

conditions are drawn can lead to significant differences in the distributions

of the final observable quantities. A number of different choices have been

made in the literature [150–153].

It is important to emphasise that the evolution of these trajectories need

not have anything to do with inflationary dynamics as H(φ) can be com-

pletely decoupled from the system. One is perfectly able to solve for ε(N),

η(N) . . . without mentioning inflation. The key ingredients to connect with

inflation are H(N) and V (φ) or (8.8), both of which only require an input

function ε(N). The HSR parameters themselves, along with their differen-

tial equations, only provide an efficient tool for generating valid functions

ε(N) which may then be correctly interpreted as inflationary models [153].

5.2.1. Monte Carlo generation of HJ trajectories

The generation of large ensembles of consistent inflationary trajectories in

the HJ formalism lends itself to Monte Carlo Markov Chain (MCMC) com-

parisons of the inflationary model space with observations such as the Planck

CMB measurements. The HSR definition is particularly useful since in the

slow roll limit the proposal parameters are closely related to the observables

such as ns, the tensor-to-scalar ratio r, running dns/d ln k etc. For example,

at second order in HSR parameters

ns = 1− 4 ε+ 2 η − 2 (1 + C) ε2 − (5.10)

1

2
(3− 5C) ε η +

1

2
(3− C) ξ ,

r = 16 ε

[
1 +

1

2
(C − 3)(ε− η)

]
, (5.11)

nt = −2 ε+ (3 + C) ε2 + (1 + C) ε η , (5.12)

where C = ln 2 + γ − 2 and γ is the Euler-Mascheroni constant [76]. As

described below we calculate all observables numerically and use (5.10)-
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(5.12) for comparison.

Here, we explore the proposal densities for observables resulting from

the HJ formalism and including non-Gaussianity. The use of the proposal

densities for comparison with the data will be explored in [4]. As a simple

assumption for the proposal densities from which to draw HSR boundary

conditions we use uniform distributions in the range

lλ = [−1, 1]e−s l , (5.13)

for l > 0 and where s is a suitable suppression factor. Our boundary

conditions will be imposed at the end of inflation so ε = 1 and Ntot is

also drawn from a uniform distribution Ntot = [60, 80]. In our formulation

N increases with time so N ∼ 0 represents the time at which the largest

scales observable today were exiting the horizon and N = Ntot is the end

of inflation. The observable window spanned by e.g. CMB observations

corresponds approximately to the interval N ∼ 0 → N ∼ 10. Note that

the normalisation of H does not affect the evolution of the parameters so

we may specify the initial condition for H at any time in order to correctly

normalise the amplitude of perturbations. In practice we have to truncate

the HSR series for some finite value of l = lmax − 1 (so lmax = 3 implies ε,

η, ξ are non-zero) 1.

5.3. Computational method

5.3.1. Computation of the power spectrum

We introduce a comoving curvature perturbation ζ(t,x) and work in a

gauge where the spatial part of the perturbed metric is given by gij =

a2 (t)e2ζ(t,x)δij and the inflaton perturbation vanishes everywhere δφ(t,x) =

0. The primordial power spectrum of the curvature perturbations is related

to the variance of the Fourier expanded mode ζk

〈ζk1ζ
?
k2〉 = (2π)3δ(3)(k1 + k2)Pζ(k1) , (5.14)

1An alternative “model-independent” method is to parametrise the potential via a Taylor
expansion of a certain order as done in [15]. The two method are complementary.
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where k is the Fourier wavevector and k ≡ |k|. The mode ζk(t) satisfies the

Mukhanov-Sasaki equation [71, 72]. Expressed in terms of N instead of t

this equation becomes

d2ζk
dN2

+ (3 + ε− 2η)
dζk
dN

+
k2

a2H2
ζk = 0 . (5.15)

In this form it is trivial to see that outside the horizon the derivative of ζk

decays exponentially with respect to N or as a−2 so ζk quickly goes to a

constant. The power spectrum of interest is then related to the freeze-out

value of ζk on scales k � aH

Pζ(k) = |ζk�aH |2 . (5.16)

The initial conditions for the solutions to (5.15) can be set when the mode

is much smaller than the horizon k � aH and takes on the Bunch-Davies

form [73]

ζk →
1

Mpl

e−ikτ

2a
√
kε
, (5.17)

where τ is conformal time defined by dN/dτ = aH.

For our fNL calculation we are interested in solving this equation for an

observable range of 10−5 < k < 10−1 in units of (Mpc)−1 for each infla-

tionary trajectory obtained via the HJ system. Each background model is

completely defined from the solutions of (5.6) up to an overall normalisation

of H. To choose this normalisation we need to look at our calculation of ζk

more closely.

We integrate (5.15) from a time satisfying k = AaH to k = B aH where

A � 1 and B � 1 representing sub and super-horizon times respectively.

Whatever units we wish to work in, we can fix the normalisation of a so

that at N = 0 the following condition is satisfied

kmin = AaH . (5.18)

Here kmin represents the smallest k of interest, in practice the mode corre-

sponding to the largest scales observable today. For this particular mode

one can then approximate the time of horizon crossing as Nc ≈ lnA (this is

exact if H is exactly constant and is the only time we use this approxima-

tion). The initial condition on H will have a direct effect on the amplitude
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of the power spectrum. Therefore during the background integration of the

flow parameters we fix the initial condition on H to be

H(Nc) = 4π
√

2πε(Nc)MplAs , (5.19)

where As is the normalisation of the canonical form of the dimensionless

primordial curvature perturbation

k3 Pζ(k) = As k
ns−1 , (5.20)

and is typically of the order of 10−5 to reproduce typical density fluctuations

amplitudes.

We also need to increase the total number of e−folds Ntot → Ntot + lnA.

If this was ignored, as A increases the mode would start deeper inside the

horizon but the initial conditions on the HSR parameters would remain

constant. This would effectively change the trajectory so the HSR values

at horizon crossing would be different. Shifting the total e−folds by lnA

and enforcing (5.19) ensures that H and the HSR parameters, evaluated at

horizon crossing, are independent of A (how deep the modes start inside the

horizon). Neglecting these effects would affect the convergence of the power

spectrum as A→∞.

A simpler way of normalising H would be to specify the initial condition

at the end of inflation (with all the other HSR parameters) but that choice

is not as physically transparent. In addition, H may vary by orders of

magnitudes during the approximately 60 e-foldings of evolution. This can

lead to a large variation in the overall normalisation of the primordial power

which can lead to numerical problems if one wishes to use the results as the

input to standard boltzmann codes such as CAMB [154].

To be consistent we require (5.17) to be satisfied for each k. Therefore in

order for each mode to start “equally deep” inside the horizon we integrate

the background forward in time (from N = 0) until k = AaH for every

mode of interest. Applying (5.17) we integrate the background and (5.15)

until each mode crosses the horizon and satisfies k = B aH. This ensures

the modes have sufficiently converged to their super-horizon values. In prac-

tice it was found that, for the calculation of the bispectrum, the solutions

converged for A ≈ e6 and B ≈ 0.1. Larger values of A significantly added
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to computational time due to the erratic early time behaviour of ζk with no

real benefit.

This completely determines the mode evolution and hence their value on

super-horizon scales. We can then calculate physical observables such as ns

and r from their definitions directly without resorting to any approximations

ns(k?) = 1 +
d ln

[
k3Pζ(k)

]
d ln k

∣∣∣∣∣
k=k?

(5.21)

r(k?) = 2
Ph(k?)

Pζ(k?)

where we evaluate the quantities at a scale k? normally chosen to be the

largest mode in the system. Ph is the power spectrum of either the tensor

mode polarisations h+ and h×. The factor of 2 accounts for the fact that

in parity invariant models both polarisations contribute the same exact

power. Solutions for both gravitational wave polarisations can be obtained

by integrating an equation similar to (5.15)

d2hk
dN2

+ (3− ε)dhk
dN

+
k2

a2H2
hk = 0 , (5.22)

with initial condition

hk →
1

Mpl

e−ikτ

a
√

2k
, (5.23)

in the limit where k � aH.

It is worth noting that choosing B = 1 (terminating exactly at hori-

zon crossing) produces the the best agreement between equations (6.9) and

(5.10)-(5.12) and for very small values of B the results can disagree by O(ε).

This is purely because the slow-roll parameters evolve while the power spec-

trum remains constant and so the slow-roll formula (which is specified at

horizon-crossing) ceases to be valid for sufficiently small B. This gives us

confidence in our numerical results.

It is important to stress that our choice of priors (in particular our choice

of location for the priors) typically generates trajectories where the HSR

parameters become small during the time we calculate Pk. But the method

outlined above works for arbitrary values of these parameters. We could

specify the initial conditions at the beginning of inflation to begin with,

easily breaking slow roll, but we cannot guarantee the trajectory will provide
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enough inflation.

5.3.2. Computation of the bispectrum

The non-Gaussianity of the primordial curvature perturbations is encoded in

the third order moment of ζk which, in the isotropic limit, is a function of the

wavenumbers of three wavevectors forming closed triangles in momentum

space

〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3)B(k1, k2, k3) . (5.24)

For convenience the bispectrum B is re-written in a dimensionless form

fNL(k1, k2, k3) by dividing it by different combinations of the squares of the

power spectra of the three modes. fNL is defined in terms of the bispectrum

[45]

fNL(k1, k2, k3) =
5

6
B(k1, k2, k3)/

(
|ζk1 |2|ζk2 |2+

|ζk1 |2|ζk3 |2 + |ζk2 |2|ζk3 |2
)
, (5.25)

and the 5/6 factor has been introduced by convention.

The weighting introduced in (5.25) is often called the “local” type and

others have also been used when motivated by the expected signal-to-noise of

different shaped triangles in the observations. In particular [16] analysed the

data with respect to two additional weightings - equilateral and orthogonal.

The limits reported in [16] are f local
NL = 2.7±5.8 , f equil

NL = −42±75, fortho
NL =

−25± 39.

The fNL function is normally reduced to a single, scale invariant amplitude

for a particular shaped triangle, as above. This motivates the different

choice of weightings in analysing observations and reporting results. In our

case we will consider the k1, k2, k3 dependence of fNL explicitly and the

choice of weighting in relating the bispectrum to the dimensionless fNL is

irrelevant. Throughout this work we use (5.25) as the definition of fNL even

when we take the limit of different shaped triangles.

In order to calculate fNL the third order correlator of (5.24) needs to be

calculated at late times in the super-horizon limit. To do this we consider

the expansion of the action for ζ at third order which in terms of the HSR

parameters can be written as [70,103,112]
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S3 = M2
pl

∫
d4x

[
a3ε2ζζ̇2 + aε2ζ(∂ζ)2

−2a3ε2
(

1− ε

4

)
ζ̇∂iζ∂i∂

−2ζ̇ +
a3ε3

4
∂2ζ∂i∂

−2ζ̇∂i∂
−2ζ̇

+a3ε
d

dt
(ε− η) ζ̇ζ2 + 2f(ζ)

δL

δζ

]
,

where ∂i ≡ ∂/∂xi, ∂
2 and ∂−2 are the Laplacian and inverse Laplacian

operators respectively, and δL/δζ is the equation of motion (5.15)

δL

δζ
= a

(
d

dt

(
a2εζ̇

)
+Ha2εζ̇ − ε∂2ζ

)
. (5.26)

The function f(ζ) is

f(ζ) =
ε− η

2
ζ2 +

1

H
ζζ̇ +

1

4a2H2

(
−(∂ζ)2 − ∂−2 (∂i∂j(∂iζ∂jζ))

)
+

ε

2H

(
∂ζ∂∂2ζ̇ − ∂−2

(
∂i∂j(∂iζ∂j∂

−2ζ̇)
))

, (5.27)

which gathers terms proportional to the equation of motion δL/δζ that do

not contribute to the third order action.

In analytical estimates of fNL it is helpful to introduce a number of

field redefinitions that simplify the calculations by suppressing the terms

proportional to δL/δζ explicitly and isolate the dominant contributions to

(5.26) [70,103]. The redefinitions are not strictly required when calculating

the contributions numerically and introduce slow-roll approximations which

are against the approach being taken here. The approach described below

is equivalent but avoids making some assumptions inherent in the slow-roll

limit.

We are interested in calculating the bispectrum using the “in-in” formal-

ism. At tree-level this requires the calculation of [70,103,115]

〈ζ3(t)〉 = −i
∫ t

−∞
dt′〈
[
ζ3(t), Hint(t

′)
]
〉 , (5.28)

where Hint, the interaction Hamiltonian, is essentially S3 without the inte-

gral over time. Each of the terms in S3 contribute separately to the cor-
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relation (5.28) and can be considered individually. We are treating ζ as a

quantised curvature perturbation that is expanded in term of a time depen-

dent amplitude and standard momentum space creation and annihilation

operators

ζ(t,x) =

∫
d3p

(2π)3

(
ζp(t) ap + ζ∗−p(t) a†−p

)
eip·x . (5.29)

Here ζp(t) is by definition the solution of equation (5.15) or (5.26) in Fourier

space. Therefore any interaction term proportional to (5.26) will necessarily

vanish and give no contribution because we are expanding in terms of the

solutions to that equation.

Since ζ on super-horizon scales converges at late times we should expect

both power spectra and bispectra to converge too. This is not obvious from

the form of the action (5.26) as it requires all terms in S3 to converge fast

enough at late times. After horizon crossing ζ̇ ∝ a−2 therefore the a3ζζ̇2

terms in S3 decay like a−3 and a−1 at late times respectively. The same

is true for the terms involving ∂−2ζ̇. The aζ(∂ζ)2 → ak2ζ3
k term grows

like a at late times however. This appears problematic but it will turn out

that this divergence gives no contribution to fNL and will ultimately be

discarded.

The final term ∝ a3ζ̇ζ2 is problematic. It grows like a at late times and

unlike the aζ(∂ζ)2 term we are not be able to disregard it. One may neglect

this term if one assumes certain certain conditions2 on ε − η but this goes

against the spirit of the HSR approach.

The HSR approach also requires a more thorough treatment of boundary

terms that have previously been assumed to vanish. Several total derivatives

arise from integration by parts during the derivation of the action in the form

of (5.26) and while all the total spatial derivatives can be safely ignored,

one total time derivative may give a non-vanishing contribution [133]. The

contribution, in terms of HSR parameters, is

−
∫

d4x
d

dt

[
(ε− η)εa3ζ2ζ̇

]
, (5.30)

Noting the similarity between the boundary term, the apparently diver-

2For example if ε− η is sufficiently constant as assumed in analytical approximations or
if it decays rapidly enough at late times as done in [128,129].
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gent a3ζ2ζ̇ term, and the first term in f(ζ), we write the final line in (5.26)

as ∫
d4x

[
a3ε

dt

dt
(ε− η) ζ2ζ̇ + a(ε− η)

δL

δζ
−

d

dt

(
a3ε(ε− η)

)
+ f ′(ζ)

δL

δζ

]
. (5.31)

Here the function f ′(ζ) contains only derivatives of ζ. It is then straight-

forward to verify that several cancellations occur in the first three terms

resulting in

−2a3ε(ε− η)ζζ̇2 − aε(ε− η)ζ2∂2ζ . (5.32)

The divergent ζ2ζ̇ disappears in exchange of ζ2∂2ζ which can be dealt with

in the same manner as the ζ(∂ζ)2 term as described below3 We can then

finally write the action as

S3 =

∫
d4x a3ε

[
(2η − ε) ζζ̇2 +

1

a2
εζ(∂ζ)2

−(ε− η)ζ2∂2ζ − 2ε
(

1− ε

4

)
ζ̇∂iζ∂i∂

−2ζ̇

+
ε2

4
∂2ζ∂i∂

−2ζ̇∂i∂
−2ζ̇

]
, (5.33)

where we have dropped terms proportional to the first order equation of

motion.

Numerical Calculation of fNL

Using (5.33) to define the interaction Hamiltonian one can use equations

(5.28) and (5.29) to calculate the bispectrum. It can be written in the

general form

B(k1, k2, k3) = I
[
ζ∗1ζ
∗
2ζ
∗
3

∫ N2

N0

dN Z(N)

]
, (5.34)

where I[z] distinguishes the imaginary part of z, N2 and N0 are defined

e-folds (times) defined such that all modes are deep inside and far outside

3Note also that the remaining terms proportional to the equation of motion contain only
derivatives of ζ and can be disregarded exactly at the boundary (late times) in the
approach taken by [70].
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the horizon respectively (using the previously defined A and B parameters),

ζi = ζki . There is a contribution to Z(N) for each term in the action. For

example, the ζ(∂ζ)2 and ζ2∂2ζ terms give the following contribution

10

3H

[
aε2(k1 · k2 + k1 · k3 + k2 · k3)+

aε(η − ε)(k2
1 + k2

2 + k2
3)
]
ζ1ζ2ζ3 . (5.35)

From (8.20), these are the only terms which do not obviously converge.

However, we know at late times ζk → Ak + Bk
a2

for some k-dependant con-

stants. Considering the case k = k1 = k2 = k3 for simplicity

ζ∗3k

∫
dN aζ3

k ≈ |A|6
∫
dN a+ . . . , (5.36)

where . . . denote terms that converge at late times like a−1. Only the real

part of this expression diverges and we are only interested in the imaginary

part for the bispectrum. Therefore these terms cause no issues at late times,

unlike the a3ζ2ζ̇ term.

We now specialise to the case where k1 = k2 = k and k3 = βk. This

allows us to parametrise most shapes of interest via the parameter β sepa-

rately from the overall scale dependence given by wavenumber k. Squeezed,

equilateral and folded limits correspond to β = 0, 1 and 2 respectively. In

terms of this classification we can write down our full expression for fNL as

fNL =
1

|ζ|2 (|ζ|2 + 2|ζβ|2)
×

I
[
ζ∗2ζ∗β

∫ N2

N0

dN f1ζ
2ζβ + f2ζζ

′ζ ′β + f3ζβζ
′2
]
, (5.37)

where ζ = ζk, ζβ = ζβk and ζ ′ = dζ/dN . The functions fi are given by

f1 =
5k2aε

3H
(2 + β2)(2η − 3ε) ,

f2 = −10Ha3ε

3

[
4η + (1− β2)ε+

(
β2

4
− 1

)
ε2
]
, (5.38)

f3 = −5Ha3ε

3

[
4η + 2(β2 − 1)ε+

(
β2

4
− 1

)
β2ε2

]
.

The last remaining difficulty lies with the early time behaviour of the
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integrand. At very early times (N0 → −∞, a → 0, A → ∞) ζ oscillates

very rapidly and has a growing amplitude, but the fNLintegral formally

converges. At early times the integrand becomes proportional to∫ N

−∞
dN f(H, ε, . . . )

(
k

aH

)n
e−i(2+β) k

aH , (5.39)

for some integer n. By rotating slightly into the imaginary plane, (k/aH)→
(1 − iδ)(k/aH) one can obtain a finite answer independent of the cut-off

time. Numerically one cannot integrate to infinity and in it’s present form

the integral does not converge numerically. To resolve this one can add

a damping factor to the integrand (similar to the above procedure) how-

ever this tends to systematically underestimate the final integrals and the

optimum damping factor δ differs from mode to mode [128,129].

A better method is to use the early time approximation for ζ and then

integrate by parts. We are interested in calculating an integral of the form

I =

∫ N

−∞
dN f(N) ζ2ζβ . (5.40)

Using (5.17) we can write ζ2ζβ at early times as

ζ2ζβ →
1

Γ

d

dN
(ζ2ζβ) , (5.41)

where

Γ = −
[
i(2 + β)

k

aH
+ 3(1 + ε− η)

]
. (5.42)

Inserting this into (5.40) and integrating by parts yields

I →
[
f(N)

Γ
ζ2ζβ

]N
−∞
−
∫ N

−∞
dN

d

dN

(
f(N)

Γ

)
ζ2ζβ . (5.43)

The resulting integral is now more convergent than before as 1/Γ →
aH/k. One can repeat the process until the final integrand converges in the

limit a→ 0 and all divergences are transferred to the boundary term. These

divergences can be removed by using the same contour as before, but now

the terms vanish for any finite δ. The boundary term evaluated at N = −∞
can then be safely ignored.

To apply this procedure to the calculation of fNLwe first split the integral
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into two parts ∫ N2

N0

dN =

∫ N1

N0

dN +

∫ N2

N1

dN , (5.44)

where N0 and N2 are times when k = AaH and k = B aH respectively with

A � 1 and B � 1. N1 is any time when (5.17) is a good approximation

for both modes. The late time contribution remains unchanged and we

perform the “approximate then integrate by parts” procedure to the early

time contribution. The early time contribution, E, then takes the form

E =
5Ha3ε

3(2 + β)3

[
B1Γ + · · ·+ B−4

Γ4

]
ζ2ζβ

∣∣∣∣
N1

−∫ N1

N0

dN
5Ha3ε

12(2 + β)3

[
A−2

Γ2
+ · · ·+ A−6

Γ6

]
ζ2ζβ , (5.45)

where Ai and Bi are polynomials of the HSR parameters and β. For example

B1 = (2 + β)2 [(4 + β(2β − 3)) ε−

2(2 + β)η + β

(
1− β2

4

)
ε2
]
. (5.46)

We omit the full list of the complicated polynomials for brevity. The second

term in (5.45) gives a completely negligible contribution to the final value

of fNL as it is roughly a factor of Γ3 smaller and we are in the regime where

Γ >> 1. The early time contribution is therefore given completely by the

boundary term in (5.45).

This method was first used in [129]. However the authors choose to focus

on particular inflation models such as those with a feature whereas this

paper takes a much more general approach. Dealing with the late time

divergence from ζ2ζ ′ also received little attention. The best explanation on

how to deal with this is in [130] where the authors demonstrate a fortunate

cancellation between the troublesome term and the field redefinition.

Here we explicitly keep all terms to all orders in slow-roll. Most of the

computational effort is spent dealing with the oscillatory nature of ζ so not

much is gained by a slow-roll approximation. This allows a much broader

range of models to be analysed which in turn leads to Monte Carlo treatment

in the next section. We do drop the early time integration in (5.45) but this

is an approximation relying on the behaviour of ζ in the limit k � aH, not

an explicit slow-roll approximation. Finally, to our knowledge, this is the
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first time the third order action has been presented in the form of (5.33)

and used in a calculation. This form provides a much more efficient way

to perform the numerical calculation without having to rely on fortuitous

cancellations of terms after the integration.

In summary fNL, to a good approximation with respect to the early time

oscillatory integral, is given by the following expression

fNL =
[
|ζ|2

(
|ζ|2 + 2|ζβ|2

)∣∣
N2

]−1
× (5.47)

I
[
ζ∗2ζ∗β

∣∣
N2

∫ N2

N1

dN
(
f1ζ

2ζβ + f2ζζ
′ζ ′β + f3ζβζ

′2)
+ ζ∗2ζ∗β

∣∣
N2

5Ha3ε

3(2 + β)3

[
B1Γ + · · ·+ B−4

Γ4

]
ζ2ζβ

∣∣∣∣
N1

]
.

5.4. Results

As a check of our method we have verified that our results converge on

super-horizon scales and with respect to early-time integration limits. The

first condition is illustrated in Figure 5.1 for a typical random trajectory

drawn from the ensemble generated by our method using the end-of-inflation

random boundary conditions on the HSRs. A typical trajectory in these en-

sembles will be deep in the slow-roll regime when modes of interest cross

the horizon. The green line is the real part of ζ while the red and blue lines

represent the real and imaginary parts of fNLas a function of N . fNL oscil-

lates roughly three times quicker than ζ as it is proportional to ζ3. The real

part diverges due to the k2aζ3/H term discussed previously however it does

not contribute to the amplitude of the correlator in the in-in formalism and

can be safely ignored. The imaginary part (the value of interest) converges

when the mode exits the horizon. The results shown in figure 5.1 does not

include the contribution of the boundary term in (5.47) as it contributes

only a constant.

The next step is to verify our results do not depend sensitively on the early

time cut-off. Figure 5.2 shows the dependence of fNL as the integration is

started at earlier and earlier times. The color represents the value of β, our

shape parameter for the k1+k2+k3 triangle. The value of fNL converges

for all shapes when the parameter A, which sets how much smaller than the

horizon the mode with the smallest k in the triangle k1+k2+k3 has to be
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at the start of integration, is approximately 400. This is larger than what

would be required for an accurate calculation of the corresponding power

spectrum statistic due to the diverging oscillatory behaviour of the terms

contributing to the fNL integration.

It is also important to verify convergence with respect to the choice of

integration split point N1, or cut-off time, introduced in (5.44).The choice is

parametrised by the variable X defined by X = k/aH, again this condition

is imposed on the smallest k in the triangle k1+k2+k3. fNL as a function

of X is shown in figure 5.3. If X is too small, the split point is too close

to the time of horizon exit and the early time approximation used in (5.41)

will not be valid. If X ∼ A → ∞, this is equivalent to (5.37) i.e. doing

no regularisation procedure at all. Therefore if X is too large relative to A

one would expect the early time contribution to be unable to compensate

for the increasingly divergent integral. This is the origin of the noise seen

in figure 5.3. There is an optimal region for the value of X which minimises

the combined contribution from both sources of numerical error. From

figure 5.3 it can be seen that lnX ≈ 4 − 5 is a good choice for “folded”

shapes β → 2 (left-panel). There optimal position for the split-point is

somewhat shape dependent as shown in the right-panel of figure 5.3 which

shows ten “squeezed” cases for the same HSR trajectory but in both cases

for ln ∼ 4 the inaccuracies are very small (� 1%). For the following we

chose the values lnA = 6, lnX = 5, and B, the parameter that sets the

required size of the largest k in the k1+k2+k3 triangle with respect to the

horizon at the end of the integration, is set to 0.01.
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Figure 5.3.: Top Panel: Dependence of fNL on the position of the in-
tegral split point parameter X. The ten lines are for fNL

from 10 “equilateral” shape configurations (β = [0.95, 1.05])
for the same HSR trajectory. If the split point is too late,
X = k/aH → 1 then the WKB approximation used to calcu-
late the early contribution from the diverging, oscillating inte-
grand breaks down. If the split point is too early then inac-
curacies in the numerical integration of the oscillatory function
start to dominate. The optimal value of the split point is found
to be lnX = 4 → 5 where the total noise is � 1%. Bottom
panel: same but for the ten most “squeezed” triangles (i.e. with
β = [0.1 − 0.2]). The optimal value for X is slightly lower in
this case but still small for the choice lnX = 4→ 5.
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We generate ensembles of trajectories for two different HSR boundary

conditions. The first is the “end-of-inflation” setup where the HSR are

drawn from uniform distributions with a given range at the end of inflation

defined by the time when ε = 1. The second, “early-time” case is one where

the HSR, including ε in this case, are drawn from uniform distributions

at the time when the largest scale of interest is crossing the horizon. For

this case ε is drawn from the range [0, 0.4] and the system is evolved back

lnA = 6 e-folds to the start of the mode integration and then forward for

the required number of total e-folds to cover horizon exit of all observables

scales.

For both cases we used lmax = 4 and s = 1.5 as defined in (5.13) to impose

a hierarchical prior. For the “end-of-inflation” ensemble this choice is wide

enough to give a proposal distributions in the observables ns, r, etc. that

are wider than the current, parametric constraints obtained from the recent

Planck analysis [15]. For each trajectory the number of e−folds was chosen

from a uniform distribution in the range be Ntot = [60, 80] + lnA. The

factor of lnA is important to maintain convergence in the limit of A → ∞
as discussed previously. Each ensemble includes some O(105) trajectories.

In figure 5.4 we show fNL as a function of shape parameter β and overall

scale k for a selection 30 trajectories from the “end-of-inflation” ensemble.

For this ensemble we expect that at the time when observable quantities

are evaluated the HSRs are going to be in the deep slow-roll limit with
iλ � 1. This is due to the fact that the system is evolved back from the

wide proposal at the end of inflation towards a slow-roll attractor at early

times when the observable scales are exiting the horizon. The results for

this ensemble should therefore agree with the slow-roll approximations and

consistency conditions. Figure 5.4 shows that the scale dependence is very

mild and that for trajectories where there is shape dependence |fNL| peaks

close to the equilateral configuration β = 1. It is also known that fNL should

be near scale-invariant in the slow-roll limit and peak in the equilateral

configuration. In addition, fNL must also satisfy the well known consistency

condition in the squeezed limit given by fNL ≈ (5/12)(ns − 1) [70,95].
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Figure 5.4.: Shape (top) and scale (bottom) dependence of fNL for a selec-
tion of trajectories from the “end-of-inflation” boundary condi-
tion ensemble. The curves have been normalised with respect
to their value at β = 1 and k? = 10−5(Mpc)−1 respectively.
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Figure 5.5.: r vs ns scatter plot for 105 trajectories generated as part of the
HSR ensemble. Colour represents relative difference from the
second order slow-roll formula for ns. k∗ = 10−5(Mpc)−1. The
distribution clearly shows the typical inflationary “attractor”
for trajectories with r > 0.

As a consistency check we also make scatter plots for the ensembles in

the ns vs r and ns vs fNL planes. We do this by plotting the values of

ns, r, and fNL from the largest scale for each trajectory in the ensembles.

In the slow-roll limit the ns vs r plane should show a clear “inflationary”

attractor [77, 78]. The fNL consistency condition should also appear as a

strong attractor in the squeezed β ∼ 0 shape case.

Figure 5.5 shows the “end-of-inflation” ensemble scatter plot for ns vs r.

The inflationary attractor is clearly visible. The colour coding in the figure

depicts the difference between the numerical ns and second order slow-roll

approximation n̄s given by (5.10) and defined δns = |(ns − n̄s)/ns|. This

shows that the numerical and slow-roll results for ns agree very well when

the trajectory lies close to the attractor.

The equivalent of the slow-roll expressions (5.10)-(5.12) for fNL is

f̄NL =
5

12
(n̄s − 1 + f(β) n̄t) , (5.48)

where n̄t is the slow-roll approximation for the tensor spectral index and

f(β) is a function of the shape with f(β) → 0 as β → 0 and f(β) = 5/6

98



when β = 1. Even though this formula was derived only at first order in ε,

η we used the second order formulae for ns and nt. Figure 5.6 shows the

trajectories in the ns vs fNL plane for both the squeezed and equilateral.

The 5/12ns dependence is clear in both cases but the equilateral case has

an additional dependence on nt which dominates when ns → 1 in analogy

with Figure 5.5. The figure also shows the difference between the slow-roll

approximation for fNL and the value obtained numerically. The two agree

to within a few percent except when fNL� 10−2.

Figure 5.7 shows what happens to the equilateral fNL distributions in

the case where the trajectories are generated using the “early-time” priors

on the HSR parameters. In this case, if the proposal ranges for the HSR

are wide enough, the largest scales considered will be crossing the horizon

when the trajectory is typically still in the out-of-slow-roll regime. At later

times the trajectory will typically end up in a slow-roll attractor and the

situation will revert to a picture much closer to that seen in figure 5.6. The

squeezed distribution remains unchanged but the equilateral case can have

fNL values much larger than that allowed by the 5/12ns scaling. Typically

the value of ns for the scale where we are sampling fNL is also large but we

have filtered the trajectories to include only ones where 0.946 < ns < 0.976

at the smaller scale k = 10−2(Mpc)−1 where observational constraints are

much tighter. The filter imposes a severe cut on the trajectories with only

a fraction ∼ 10−3 of trajectories satisfying the constraint on ns on smaller

scales. For this subset of trajectories the power spectrum, on the largest

scales, has a strong scale dependence. This may be preferred by observations

of the CMB where there are indications of lower than expected power on

the largest scales.
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Figure 5.6.: ns vs fNL scatter plot for 105 trajectories generated with “end-
of-inflation” priors. The top panel is for the squeezed limit
β = 0.1 and the bottom panel is for the equilateral case β = 1.
The colour scale represents the ln of the relative difference from
the slow-roll approximation for fNL. The values of ns and fNL

are sampled for a scale corresponding to k? = 10−5(Mpc)−1.
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Figure 5.7.: Histogram of fNL values equilateral bispectra for the large scale
mode k? = 10−5(Mpc)−1 in both “end-of-inflation” (top) and
“early-time” (bottom) ensembles. Both ensembles have been
filtered such that all trajectories have 0.946 < ns < 0.976 at the
smaller scale k = 10−2(Mpc)−1 in order to agree roughly with
observations at the 2σ level. The “early-time” proposal of HSR
parameters allows for significant variation in the parameters
while the largest scales are crossing the horizon leading to fNL

about an order of magnitude larger than in the other case.
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5.5. Discussion

We have outlined a full numerical calculation of the bispectrum of primor-

dial curvature perturbations arising from generalised inflationary trajecto-

ries. The bispectrum has been evaluated in terms of a scale dependent

fNL(k1,k2,k3). The calculation is valid in the out-of-slow-roll regime as

long as the weak coupling limit is maintained. This is of interest in models

where there is significant evolution of slow-roll parameters during inflation

that can lead to observational features in both power spectrum and bispec-

trum.

We have explored the generation of inflationary ensembles via the HJ

formalism using HSR parameters and calculated the distribution of the bis-

pectrum fNL for various configurations of the k1 +k2 +k3 triangle. In doing

so we have verified the consistency relation for the squeezed limit and the

equilateral configurations in the slow-roll regime. We have shown that, in

the out-of-slow-roll limit, fNL equilateral has a much wider distribution due

to the scale dependence of the perturbations and has values that are typi-

cally an order of magnitude larger than in the slow-roll limit. These types of

trajectories can be viable with respect to observations since on smaller scales

the perturbations become near scale invariant due to the HSR asymptoting

to small values.

The generation of inflationary ensembles including the calculation of the

bispectrum will be useful for HSR parameter explorations using future data.

fNL observational constraints are currently far from the regime where they

can affect the shape of trajectories and consequently add to our knowledge of

the shape of the inflaton potential. However future observations may probe

a regime that could constrain any out-of-slow-roll features in the trajecto-

ries. This would in turn constrain any significant feature in the single field

inflation scenario. Even if features do not exist, probing fNL to O(10−2)

by a combination of future LSS observations would be a powerful probe of

inflationary physics, particularly in scenarios where no tensor perturbations

are detected.
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6. BICEP’s Bispectrum

6.1. Introduction

The recent results from Bicep2 [20], hinting at a detection of primordial

B-mode power in the Cosmic Microwave Background (CMB) polarisation,

place the inflationary paradigm on much firmer footing. This result, in

combination with the Planck total intensity measurement [13], imply that

primordial perturbations are generated from an almost de-Sitter like phase

of expansion early in the Universe’s history before the standard big bang

scenario.

At first glance there is potential tension between the polarisation mea-

surements made by Bicep2 and Planck’s total intensity measurements.

Planck’s power spectrum is lower than the best-fit ΛCDM models at mul-

tipoles ` . 40 and Bicep2’s high B-mode measurement exacerbates this

since tensor modes also contribute to the total intensity. The tension is

indicated by the difference in the r ∼ 0.2 value implied by Bicep2’s mea-

surements and the 95% limit of r < 0.1 implied by the Planck data for

ΛCDM models. Many authors have pointed out how the tension can be

alleviated by going beyond the primordial power-law, ΛCDM paradigm by

allowing running of the spectral indices, enhanced neutrino contributions

(see for examples [23–26]) or more exotic scenarios [27]. However the sim-

plest explanation, that also fits the data best, is one where there is a slight

change in acceleration trajectory during the inflationary phase when the

largest modes were exiting the horizon. This was shown by [24] where a spe-

cific model was used to generate a slightly faster rolling trajectory at early

times. The effect of such a “slow-to-slow-roll” transition is to result in a

slightly suppressed primordial, scalar power spectrum that fits the Planck

data despite the large tensor contribution required by Bicep2. In [155] the

author analyses generalised accelerating, or inflating, trajectories that fit

the combination of Bicep2 and Planck data and conclude that the sup-
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pression is required at a significant level and the best-fit trajectories are all

of the form where the acceleration has a slight enhancement at early times.

An alternative explanation is that the B-mode power observed by Bicep2

is not due to foregrounds and is not primordial. This possibility has been

discussed by various authors [21,22] who point out that more measurements

on the frequency dependence of the signal are required to definitively state

whether we have detected the signature of primordial tensor modes. These

measurements will be provided in part by the Planck polarisation analysis

and Bicep2’s cross-correlation with further KECK data [20].

If the Bicep2 result stands the test of time then the signal we point out

in the analysis below is expected to be present if the simplest models of in-

flation driven by a single, slow-rolling scalar field are the explanation behind

the measurements. In this case a measurement of tensor mode amplitude,

or r, is a direct measurement of the background acceleration since r ∼ 16ε

and the tension between Bicep2 polarisation and Planck total intensity

measurements implies a change in the acceleration at early times. In turn,

the change in acceleration enhances the non-Gaussianity on scales that were

exiting the horizon while the acceleration was changing.

In this paper we construct a simple toy-model inspired by the best fitting

trajectories found in [155] and calculate its bispectrum numerically. At small

scales, as one would expect, the non-Gaussianity is small O(10−2) [70, 95]

but at large scales, where the scalar power spectrum is suppressed, the non-

Gaussianity can be significantly larger, O(10−1). The results are compared

against the slow-roll approximation in the equilateral configuration and the

squeezed limit consistency relation. Whilst at small scales there is excep-

tional agreement with the slow-roll approximation, at large scales the results

can deviate by up to 10%.

This paper is organised as follows. We outline the calculation of the scalar

and tensor power spectra in Section 6.2 and summarise the calculation of

the bispectrum in Section 8.16. Our results are presented in Section 7.4 and

we discuss their implications in Section 7.5.

6.2. Computation of the scalar power spectrum

The calculation is best performed in a gauge where all the scalar perturba-

tions are absorbed into the metric such that gij = a2 (t)e2ζ(t,x)δij and the
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inflaton perturbation δφ(t,x) = 0. The primordial power spectrum is then

simply given by:

〈ζk1ζ
?
k2〉 = (2π)3δ(3)(k1 + k2)Pζ(k1) , (6.1)

where k is the Fourier wavevector and k ≡ |k|. The mode ζk(t) satisfies the

Mukhanov-Sasaki equation [71,72]

d2ζk
dN2

+ (3 + ε− 2η)
dζk
dN

+
k2

a2H2
ζk = 0 . (6.2)

In the above N is the number of e−folds which increases with time or

alternatively

H =
ȧ

a
=
dN

dt
, (6.3)

and ε and η are the usual slow-roll variables defined by

ε = − Ḣ

H2
, η = ε− 1

2H

d ln ε

dt
. (6.4)

Outside the horizon ζk quickly goes to a constant and the power spectrum

is then related to the freeze-out value of ζk on scales k � aH

Pζ(k) = |ζk�aH |2 . (6.5)

The initial conditions for the solutions to (6.2) can be set when the mode

is much smaller than the horizon k � aH and takes on the Bunch-Davies

form [73]

ζk →
1

Mpl

e−ikτ

2a
√
kε
, (6.6)

where τ is conformal time defined by dN/dτ = aH.

An identical calculation can be performed for the tensor power spectrum

Ph(k) = |hk�aH |2 with hk satisfying the following differential equation

d2hk
dN2

+ (3− ε)dhk
dN

+
k2

a2H2
hk = 0 , (6.7)

with initial condition

hk →
1

Mpl

e−ikτ

a
√

2k
, (6.8)

in the limit where k � aH. Solving for Pζ(k) and Ph(k) numerically we
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can calculate ns, r and nt directly from their definitions:

ns(k?) = 1 +
d ln

[
k3Pζ(k)

]
d ln k

∣∣∣∣∣
k=k?

(6.9)

r(k?) = 8
Ph(k?)

Pζ(k?)

nt(k?) =
d ln

[
k3Ph(k)

]
d ln k

∣∣∣∣∣
k=k?

The factor of 8 comes from how the tensor perturbations are normalised in

the second order action.

The above procedure outlines the general calculation of the primordial

power spectrum from inflation. In this work we are interested in specifying

a background model favoured by the recent Bicep2 + Planck data. In

particular we choose a function for ε, then η and H are easily obtained by

its derivative and integral respectively.

Instead of a direct function of time or N though we specify ε(x) where x =

ln(k′/kmin). k′ is the mode crossing the horizon at e−foldings N (k′ = aH)

and kmin ∼ 10−5(Mpc)−1 is the largest scale observable today. In addition

to being proportional to r this condition allows one to easily specify how the

background should evolve in our observational window. For concreteness we

require ε to be relatively large, but still satisfying the slow-roll limit, at large

scales and then to flatten out into another slow-roll regime with a smaller

value. To this end we adopt a simple toy-model for ε as a function of x

ε = {ε1 tanh [(x− x0)] + ε2} (1 +mx) , (6.10)

where the coefficients ε1, ε2, m, and x0 are chosen to give a final power

spectrum with the required suppression and position (∼ 26% and 1.5×10−3

Mpc−1 respectively [24]) and ns ∼ 0.96 on small scales. Fig. 6.1 shows ε

and η as a function of N for this toy-model and the resulting power spectra

are shown in Fig. 8.9.
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Figure 6.1.: Background functions ε (red, solid) and η (blue, dashed) of our
toy-model plotted as a function of e−folds N . The grey vertical
line indicates roughly the time when the first observable mode
crosses the horizon.

6.3. Computation of the bispectrum

The largest contribution to primordial non-Gaussianity will come from the

bispectrum of the curvature perturbation

〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3)B(k1, k2, k3) . (6.11)

The quantity that is often quoted in observational constraints is the dimen-

sionless, reduced bispectrum

fNL(k1, k2, k3) =
5

6
B(k1, k2, k3)/

(
|ζk1 |2|ζk2 |2+

|ζk1 |2|ζk3 |2 + |ζk2 |2|ζk3 |2
)
, (6.12)

The analytical calculation is much simpler if we consider the equilateral

configuration fNL(k, k, k) however this is not a directly observed quantity

as the estimator requires B(k1, k2, k3) to be factorizable [97]. This is not

true for the general case, which we are considering. However the overall

amplitude of the reduced bispectrum gives a good indication of the size of

the expected observable fNL.

All theories of inflation will produce a non-zero bispectrum. This is sim-

ply because gravity coupled to a scalar field is a non-linear theory and will
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Figure 6.2.: Top: Scalar (red, solid) and tensor (blue, dashed) dimensionless
power-spectra. The tensors have been multiplied by a factor of
25 for comparison. Bottom: r (red, solid) and ns−1 as functions
of k. The parameters in the toy-model were chosen to give a
good match to the Planck and Bicep2 data.

contain interaction terms for the primordial curvature perturbation ζ(t,x).

These interaction terms will source the bispectrum with the largest contrib-

utors coming from tree-level diagrams associated with the cubic interaction

terms. The bispectrum can then be calculated using the “in-in” formal-

ism [70,103,115], which to tree level becomes

〈ζ3(t)〉 = −i
∫ t

−∞
dt′〈
[
ζ3(t), Hint(t

′)
]
〉 , (6.13)

where Hint is the interaction Hamiltonian associated with the following third
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order action

S3 =

∫
d4x a3ε

[
(2η − ε) ζζ̇2 +

1

a2
εζ(∂ζ)2

−(ε− η)ζ2∂2ζ − 2ε
(

1− ε

4

)
ζ̇∂iζ∂i∂

−2ζ̇

+
ε2

4
∂2ζ∂i∂

−2ζ̇∂i∂
−2ζ̇

]
, (6.14)

The numerical calculation of the bispectrum is technically challenging and

is described in more detail in [1]. Briefly, for the equilateral configuration

it requires the calculation of the following integral

fNL =
1

3|ζ|4
× I

[
ζ∗3
∫ N1

N0

dN (f1ζ
3 + f2ζζ

′2)

]
, (6.15)

where ζ = ζk, ζ
′ = dζ/dN , and I represents the imaginary part. The

background functions fi are given by

f1 =
5k2aε

H
(2η − 3ε) ,

f2 = −5Ha3ε

(
4η − 3

4
ε2
)
. (6.16)

The times N0 and N1 correspond to when the mode is sufficiently sub-

and super-horizon respectively. For calculating the shape dependence we

restrict ourselves to the case of isosceles triangles so we parametrise our

modes in the following way. |k1| = |k2| = k, |k3| = βk. This covers most

configurations of interest (β = 0 is squeezed, β = 1 is equilateral, β = 2 is

folded) and is simple to interpret.

6.4. Results

For the toy-model given in (6.10) the non-Gaussianity amplitude is plotted

in Fig. 6.3. For comparison, as well as a consistency check, we plot the

full-numerical calculation (blue-dashed) as well as the the slow-roll approx-

imation (red-solid) which, in the equilateral limit, is given by [70]

fNL(k) =
5

12

(
ns(k)− 1 +

5

6
nt(k)

)
. (6.17)
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In applying this formula we used the exact values of ns and nt given

by equations (6.9). As can be seen from Fig. 6.3, if values close to r ∼
0.2 are confirmed from polarisation measurements, the non-Gaussianity on

large scales are likely to be an order of magnitude larger than expected.

This is simply because r ∝ ε but on smaller scales ε is constrained to be

lower by the total intensity measurements. The only way to reconcile the

two regimes is by having ε change to a lower value at later times and this

results in an enhancement of non-Gaussianity being generated as the value

is changing. Fig. 6.3 also shows that, even with strong scale dependence,

there is remarkable agreement between the full numerical results and the

Maldacena formula, with deviations only occurring at the largest scales.

Fig. 6.4 shows the complete scale and shape dependence of fNL.

6.5. Discussion

Models of inflation that contain a feature causing the background accel-

eration to change can reconcile Planck and Bicep2 observations of the

CMB total intensity and polarisation power spectra. We have shown that

these models result in enhanced non-Gaussianity at scales corresponding to

the size of the horizon at the time when the acceleration is changing. The

level of non-Gaussianity at these scales is an order of magnitude larger than

what is expected in the standard case with no feature and is strongly scale

dependent.

Whilst the effect was illustrated using a simple toy-model of the back-

ground evolution H(t), ε(t), etc, we expect the non-Gaussian enhancement

to be present in any model where the acceleration changes relatively quickly

in order to fit the Planck and Bicep2 combination. The exact form of

non-Gaussianity will obviously be model dependent.

It is not clear that this level of non-Gaussianity will be observable since it

corresponds to scales ` ∼ 2→ 80 where there may not be a sufficient number

of CMB modes on the sky to ever constrain fNLto O(10−1). However cross-

correlation with other surveys of large scale structure may help to constrain

non-Gaussianity on these scales. In particular it may be possible to detect

any anomalous correlation of modes induced by the non-Gaussianity.

The biggest question at this time however is whether or not the claimed

detection of primordial tensor modes by Bicep2 is correct. This will be
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addressed in the near future as the polarisation signal is observed at more

frequencies at the same signal-to-noise levels reached by the Bicep2 exper-

iment.
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Figure 6.3.: fNLas a function of k for equilateral (top) and squeezed (bot-
tom) configurations. The blue (dashed) curves represents
the numerical calculation. The red curves represent the slow
roll approximation (6.17) (top) and the consistency condition
5/12(ns − 1) (bottom). It is not possible to calculate the ex-
act squeezed configuration numerically so a configuration with
β = 0.1 was used to approximate the squeezed limit.
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Figure 6.4.: fNLas a function of scale k and shape β. There is a mild peak in
the equilateral limit, β = 1. For all shapes the non-Gaussianity
peaks around the scales corresponding to the size of the horizon
at the time when the background acceleration is changing.
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7. Sound-Speed Non-Gaussianity

7.1. Introduction

Current observations of the universe suggest that its density perturbations,

to a good approximation, can be considered as a realisation of a corre-

lated Gaussian statistic and are very close to but not exactly scale indepen-

dent [13,15,18,19]. This scale dependence is characterised by the measure-

ment of the scalar spectral index ns = 0.968± 0.006 [18] which agrees well

with the framework of the early universe undergoing a phase of quasi-de

Sitter expansion that resulted in correlated, super-horizon scaled curvature

perturbations to the background metric. The standard, and the most com-

monly accepted, explanation for both the origin of the perturbations and

the reason for the quasi-de Sitter expansion is the presence of a scalar field

known as the inflaton whose potential energy dominates the Hubble equa-

tion and whose spatial fluctuations seed the curvature perturbations that

later drive all structure formation [29–32,71,139–145].

One of the main issues facing efforts aimed at understanding the nature

and origin of the inflaton is that many classes of different inflationary mod-

els predict observables such as ns and r that are in broad agreement with

observations (see for example [53–55, 60, 61, 105]). With the final analysis

of Planck data imminent and the combined Planck-BICEPII/Keck analy-

sis [28] confirming that r was in fact not detected in the BICEPII data [20]

this situation may become the status quo for the foreseeable future. This

will be the case unless tensor modes, in the form of r 6= 0, are detected by the

next generation of sub-orbital Cosmic Microwave Background (CMB) ex-

periments, or, non-Gaussianity is measured. In the former case, discernment

between different inflationary models may also require the measurement of

the spectral tilt of tensor modes nt which is challenging due to the cosmic

variance effect on the largest scales where the tensor mode signal is clearest.

A detection of non-Gaussianity, in the form of a non-zero bispectrum
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[46, 91] or un-connected contributions to higher order moments, may then

provide the key to uncovering the origin of the inflaton. Non-Gaussianity

is necessarily present in the universe since general relativity is a non-linear

theory and even if the inflation were driven by a single, free, scalar field it

would still interact with gravity giving rise to a non-zero bispectrum. In

general, the non-Gaussianity of less standard models of inflation, particu-

larly ones that predict low tensor contributions with r → 0, tends to be

large and potentially measurable in the near future.

The bispectrum is the third-order moment of the curvature perturbation

in Fourier space and is expected to be the easiest non-Gaussian signal to

measure as it is both the lowest order component in the perturbation and

has no Gaussian counterpart. Observational bounds are often quoted in

terms of the scale-free amplitude fNL [45], a dimensionless quantity which

is typically of order the Slow-Roll (SR) parameter ε ∼ 10−2 for simple

inflationary models [70, 76]. For more complicated models, it is possible to

generate a larger fNL while maintaining ns ≈ 1 and much effort has been

spent constructing such models in the hope that a large non-Gaussianity is

detected (see [46,60,61,103,105,112] for some examples).

Within the context of single field models, there are a couple of possibili-

ties. One is to break the slow-roll approximation temporarily by introducing

a feature [128,129], such as a bump, in the inflaton potential V (φ). A second

is to use a non-canonical kinetic term for the scalar field [60, 103, 112, 156].

This involves adding extra derivatives ∂µφ as interactions for the field. One

physical consequence of this is that the scalar perturbations typically prop-

agate at a new sound speed cs < 1 and it is these models that will be

considering in this work.

In this work, for simplicity, we restrict ourselves to the case of a con-

stant cs 6= 1, reserving arbitrary time-dependent sound speeds for future

work. We calculate the bispectrum of these models numerically, allowing

for high values of c−2
s − 1 and combine this with a Monte Carlo approach

for sampling inflationary models. We analyse in detail the exact scale and

shape dependence of such models, verifying our results by demonstrating the

squeezed-limit consistency relation for very small sound speeds and large SR

parameters.

This paper is organised as follows; In Section 7.2 we summarise the frame-

work and parameters required for the calculation of the bispectrum and

115



briefly discuss the Monte Carlo generation of inflationary trajectories using

the Hamilton-Jacobi formalism discussed in more detail in [1]. In Section

7.3.1 we give an overview of the numerical calculation of the power spectrum

before proceeding to the calculation of the bispectrum in Section 7.3.2. We

summarise our results and consistency checks in Section 7.4 before finally

concluding in Section 7.5.

7.2. Monte-Carlo approach to sampling

trajectories

This Hamilton-Jacobi (HJ) formalism [77, 78, 149, 150], and its role in nu-

merical inflation was discussed at length in [1] and we refer the reader to

that work for an extended discussion. Here we summarise the method. In

the HJ formalism the dynamics of an inflating cosmology can be captured

entirely by considering the Hubble parameter, H(φ) as a function of the

inflaton field value φ and by considering a hierarchy of Hubble Slow-Roll

(HSR) parameters defining the hierarchy if derivatives of H with respect to

φ.

We extend this formalism by introducing an arbitrary, but constant sound

speed cs 6= 1. Following [103,112,132] we consider actions of the form

S =

∫
d4x
√
−gL , (7.1)

L =
M2
pl

2
R+ P (X,φ) , (7.2)

X =
1

2
gµν∂µφ∂νφ , (7.3)

where Mpl is the Planck mass, R is the Ricci scalar, and gµν is the inverse

space-time metric. The Lagrangian density L in the action above describes

a perfect fluid with pressure P (X,φ) and energy density ρ = 2XPX − P
where PX = ∂P/∂X. The speed of sound, cs, is defined as

c2
s =

PX
ρX

=
PX

PX + 2XPXX
. (7.4)

For constant cs this can be treated as a differential equation for P (X,φ).
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Using the initial condition P (X,φ) = X − V (φ) when cs = 1 one obtains

P (X,φ) =
2c2
s

1 + c2
s

X
1
2

(1+ 1

c2s
) − V (φ) . (7.5)

The equation of motion for φ differs from the canonical case so the original

definitions of the HSR parameters in the HJ formalism should be altered

accordingly. However, one can still define e−foldings N , the Hubble rate

H(t) and its time derivatives independently of the dynamics of the inflation.

That is

a(N) = eN , (7.6)

H(N) =
ȧ

a
=

dN

dt
, (7.7)

ε(N) = −d lnH

dN
, (7.8)

where a is the scale factor and overdots denote differentiation with respect

to cosmic time t. The HSR parameters can now be defined so that they

correspond to the HJ formalism HSR parameters in the limit where cs = 1

dlλ

dN
= [lε+ (1− l)η] lλ− l+1λ , (7.9)

where 1λ = η, 2λ = ξ.

The values of lλ at the end of inflation at N = Ntot can be drawn ran-

domly to sample the distribution of consistent inflationary trajectories as

described in [1]. The sound speed will not affect the time dependence of

these parameters so it will not play an explicit role in the sampling of tra-

jectories . In practice the random sampling is achieved by drawing the

following set of parameters with uniform distributions (flat prior) in the

intervals

lλ = [−1, 1]xe−sl (7.10)

Ntot = [60, 80] + lnA , (7.11)

where l > 0. In addition since we draw samples at the end of inflation we

fix the value of the l = 0 HSR parameter 0λ ≡ ε(Ntot) = 1.

In (7.10), x and s are parameters that specify the scaling of the uniform
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prior range with l and can be used to investigate the dependence of our final

results on the assumed priors. The random sampling of Ntot represents the

uncertainty in the total duration of the post-inflationary reheating phase

and the constant A is related to the normalisation of H which will be dis-

cussed shortly. Formally one would need to evolve an infinite number of lλ

parameters to sample the space of all possible H(N) functions. In practice

this is not possible and one must truncate the series at some finite order

Lmax. We define Lmax such that Lmax HSR parameters includes ε(N) e.g.

Lmax = 2 corresponds to ε(N) and η(N) with all other lλ = 0 identically.

Once random values of lλ have been drawn the entire inflationary trajec-

tory can be obtained by integrating the background equations of motion

sufficiently far back in the past to cover the required number of e-foldings

given by Ntot.

7.3. Computational method

The calculation of the bispectrum relies on the same basic building blocks

as the calculation of the primordial power spectrum. In addition the bis-

pectrum is often compared to the spectral tilt of the power spectrum and

the squeezed limit consistency condition is a valuable tool for checking the

numerical method. We therefore give a brief review the calculation of the

power spectrum as the first step in the numerical calculation of the bispec-

trum.

7.3.1. Computation of the power spectrum

We choose a gauge where the inflaton perturbation δφ(t,x) = 0 and the

spatial metric is given by gij = a2(t)e2ζ(t,x)δij . This defines the comov-

ing curvature perturbation ζ(t,x). The primordial power spectrum of the

curvature perturbation is then

〈ζk1ζ∗k2〉 = (2π)3δ(3)(k1 + k2)Pζ(k1) , (7.12)

where k is the wavevector of the Fourier mode and k = |k|. These modes

satisfy the Mukhanov-Sasaki equation [71, 72] which, with our choice of
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variables becomes

d2ζk
dN2

+ (3 + ε− 2η)
dζk
dN

+

(
csk

aH

)2

ζk = 0 . (7.13)

To obtain the power spectrum we simply require the freeze-out value of

ζk when the mode crosses the sound-horizon, i.e.

Pζ(k) = |ζ|2
∣∣
csk�aH (7.14)

notice that for theories where the speed of sound and light are not equivalent

the horizon set by the speed of sound is the relevant scale beyond which

freeze-out occurs.

We apply the usual Bunch-Davies initial conditions [73] when the mode

is deep inside the sound-horizon

ζk →
1

2Mpla

√
cs
kε
e−icskτ , (7.15)

where τ is conformal time defined through dN/dτ = aH.

We impose initial conditions (7.15) at different e-folds for each mode k.

This ensures all modes are sufficiently deep inside the sound-horizon at the

start of the forward integration of (7.13). The starting e-folds, Nk, for

mode with wavenumber k is set by requiring that csk = AaH(Nk) where

A� 1. In practice this means that the integration is started at successively

later times as k increases. This avoids unnecessary computational steps at

smaller scales.
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Figure 7.1.: Dependence of fNL on the damping factor δ when n = 1 for
squeezed (top) and folded (bottom) configurations. For this
trajectory c−2

s = 3. The red-solid and blue-dashed lines show
kmin = 10−5 (Mpc)−1 and kmax = 10−2 (Mpc)−1 respectively.
For large δ the damping factor is too large affecting the horizon
crossing behaviour and the oscillations provide no contribution,
producing a smooth curve. For small δ the oscillations are not
sufficiently suppressed producing noise. Ideally fNL should con-
verge with decreasing δ in some sense to its true value before
the noise begins to dominate. There is an indication of this in
the right panel at δ ∼ 0.1. Unfortunately for the squeezed limit,
the amplitude of fNL is too small relative to the noise to extract
any reasonable result. To make matters worse, depending on
the shape the optimum δ changes by an order of magnitude.
Also note noise begins at larger δ for larger k.
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Figure 7.2.: Dependence of fNL on the damping factor δ when n = 3 for
squeezed (top) and folded (bottom) configurations. For this
trajectory c−2

s = 3. The red-solid and blue-dashed lines show
kmin = 10−5 (Mpc)−1 and kmax = 10−2 (Mpc)−1 respectively.
By choosing n > 1 the suppression is weighted more towards
the early time oscillations and less on the horizon crossing time.
Practically this pushes the noise back to very small values of δ
allowing fNL to converge to its true value. The acceptable range
of δ is also much wider solving the shape dependence problem.
One could choose n � 1 but most of the time csk/aH > 1.
Therefore to prevent damping at horizon crossing δ must be
reduced to compensate and this method can only be pushed so
far. In practice we found n = 3 to be sufficient. Note for large
k the noise still arises at larger δ.
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Assuming H(N) varies slowly enough, each mode will evolve for roughly

lnA e-folds before they cross the sound-horizon and freeze out. The earliest

mode of interest to freeze out will be kmin so we choose Nkmin
= 0, i.e.

N = 0 is defined such that cskmin = AaH(N = 0) and we then apply (7.15)

to this mode. This means the kmin mode will cross the sound-horizon at

Nc ≈ lnA and we can then use the standard analytical result relating H to

the amplitude of the power spectrum to normalise H. In practice, during

the backwards integration of the HSR parameters, we apply a normalisation

condition on H such that

H(Nc) = 2π
√

2 csε(Nc)AsMpl , (7.16)

where As is conventional the normalisation of the dimensionless primordial

curvature power spectrum. In the usual power law convention for the form

of the power spectrum As is employed as

k3Pζ(k) = A2
s

(
k

kmin

)ns−1

. (7.17)

A similar procedure can be carried out for the calculation of the gravi-

tational wave spectrum which is unaffected by cs. The analogues of (7.13)

and (7.15) are are identical to the standard case with cs = 1

d2hk
dN2

+ (3− ε)dhk
dN

+

(
k

aH

)2

hk = 0 , (7.18)

hk →
1

Mpl

e−ikτ

a
√

2k
. (7.19)

A complication that arises due to the sound and light horizon not being

the same is that scalar and tensor modes freeze out at different times so one

must be sure that the Bunch-Davies conditions are applied when both modes

are sufficiently deep inside their respective horizons. In principle the power

spectrum must converge in the limit A → ∞ therefore the answer should

not depend on whether the Bunch-Davies conditions are applied earlier to

one mode with respect to another as long as both modes are sufficiently

deep inside their respective horizons. In practice this means nothing needs

to be changed. If csk = AaH then we know k ≥ AaH as cs ≤ 1 so the

tensor mode is even deeper inside its respective horizon than the scalar
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mode is. The only concern is a penalty to computational efficiency as the

modes become highly oscillatory when they deep within their horizon.

With all the integration constants fixed, the full set of differential equa-

tions (7.6)-(7.9), (7.13) and (7.18) can be integrated until both the scalar

and tensor modes are well outside the sound and light horizons respectively.

This requirement can be parametrised by a constant B � 1. Following the

same argument, if k = B aH, we have csk ≤ B aH as cs ≤ 1. In sum-

mary we integrate the mode equations from a time such that csk = AaH

until k = B aH with A � 1 and B � 1. When calculating the bispec-

trum (for isosceles triangles) we have a third horizon to consider for the

squeezed/folded mode. Similar arguments can be made and one should

take care to ensure all relevant modes exit their horizons and satisfy the

relevant initial conditions. we have We found the bispectrum to converge

when A ∼ 400 and B ∼ 1/100. Higher values of A significantly increased the

computation time due to the oscillatory nature of the mode functions while

providing no real benefit. Smaller values of B did not affect the accuracy

or computation time.
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Figure 7.3.: Dependence of fNL on δ on shape and sound speed for the
smallest scale k = kmax = 10−2 (Mpc)−1. The optimum delta
occurs when the relevant curve has converged. The top panel
shows how the δ dependence varies for each shape evaluated at
c−2
s = 3. There is a mild shape dependence in the optimum δ

where squeezed triangles require smaller δ values. As a conse-
quence, noise from folded configurations occurs at larger values
of δ so the optimum δ must lie between these two cases. The
bottom panel shows how the δ dependence varies with sound
speed dependence evaluated in the equilateral limit. There is
remarkably little dependence on cs even at very small sound
speeds.

124



With the scalar and tensor power spectra in hand, the observables ns and

r can be calculated directly following their definitions, either as a function

of scale k or at a specific “pivot” scale k? for comparison with conventional

models

ns(k?) = 1 +
d ln

(
k3Pζ(k)

)
d ln k

∣∣∣∣∣
k=k?

, (7.20)

r(k?) = 8
Ph(k?)

Pζ(k?)
, (7.21)

where the factor of 8 in the definition of r arise from the definition of the

tensor perturbations and from the fact that two independent polarisations

contribute to the total power.

7.3.2. Computation of the bispectrum

The bispectrum of ζ is the simplest, lowest-order moment, where we expect

to see deviations from a pure Gaussian statistic. It corresponds to a tree-

level three-point vertex for an interacting quantum field and will be the most

dominant form of non-Gaussianity as higher order moments are expected

to be suppressed by higher order terms in both the HSR parameters and

level of curvature perturbations with A
1/2
s ∼ 10−5. In the isotropic limit it

reduces to a function of three variables, the magnitudes of the wavevectors

k1, k2, and k3 making up the allowed, closed triangles in Fourier space

〈ζk1ζk2ζk3〉 = (2π)3δ(3)(k1 + k2 + k3)B(k1, k2, k3) , (7.22)

where the delta function imposes the closed triangle condition due to isotropy.

We define the reduced, dimensionless, scale and shape dependent bispec-

trum as

fNL(k1, k2, k3) = 5B(k1, k2, k3)/

6
(
|ζk1 |

2 |ζk2 |
2 + |ζk1 |

2 |ζk3 |
2 + |ζk2 |

2 |ζk3 |
2
)
, (7.23)

This is different to the usual fNL, scale free, amplitude for the bispectrum

quoted in the literature [45].
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Figure 7.4.: Shape dependence of fNL for several trajectories evaluated at
c−2
s = 1 (top) and c−2

s = 3 (bottom). All values of fNL are
normalised to their value at β = 1. Single field inflation mod-
els generically peak in the equilateral limit but because they
must follow the consistency relation in the limit β → 0 their β
dependence is much sharper.
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The weighting introduced in the definition of fNL (7.23) is known as the

“local” weighting. Other definitions are used in the literature depending

on the expected shape dependence of the signal. When observational con-

straints are obtained from data, such as with Planck [19] the various choices

of weighting are used to define limits on different types of fNL. These in-

clude equilateral and orthogonal weightings. The limits reported in [19] are

f local
NL = 0.8± 5.0 , f equil

NL = −4± 43, fortho
NL = −26± 21.

The most dominant contribution to the bispectrum comes from (7.1) ex-

panded to third order in ζ. Following [103, 112] the third-order action for

single field inflation with a constant sound speed cs is

S3 = M2
pl

∫
d4x

[
2a3ε

3Hc2
s

(
1

c2
s

− 1

)
ζ̇3

+
a3ε

c2
s

(
2η − ε
c2
s

+ 3

(
1− 1

c2
s

))
ζζ̇2

+
aε

c2
s

(ε+ 1− c2
s)ζ(∂ζ)2 +

aε

c2
s

(η − ε)ζ2∂2ζ (7.24)

−2a3ε2

c4
s

(
1− ε

4

)
ζ̇∂iζ∂i∂

−2ζ̇ +
a3ε3

4c4
s

∂2ζ∂i∂
−2ζ̇∂i∂

−2ζ̇

]
.

Section III.B of [1] discussed why the action is written in the form (7.24)

in order to deal with apparent divergences and we refer the reader to that

work for further detail. A cs 6= 1, and indeed, an arbitrary time-dependant

cs provides no further complications in dealing with the third-order action.

The ”In-In formalism” [70, 103, 112] is used to calculate the bispectrum

and ultimately fNL. Using (7.24) to define an interaction Hamiltonian and

treating ζ(t,x) as a scalar field with canonical commutation relations, the

bispectrum can be reduced to a single integral over N .

B(k1, k2, k3) = I
[
ζ?1ζ

?
2ζ

?
3

∫ N1

N0

dN Z(N)

]
. (7.25)

Here I[z] denotes the imaginary part of the imaginary number z. N0 and

N1 represent times when the largest and smallest scales are sufficiently deep

inside and far outside the sound-horizon respectively, using the same A and

B parameters as described above. Z(N) implicitly depends on the shape

and scale of the triangle but the function arguments have been omitted for
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brevity.

We now specialise to the case where k1 = k2 = k and k3 = βk where

0 < β ≤ 2. This simple parametrisation covers many cases of interest.

The squeezed, equilateral, and folded limits correspond to β = 0, 1 and 2

respectively. Z(N) then takes on the following form:

Z(N) =
5Ha3ε

3c2
s

(
f1ζ
′2ζ ′β + f2ζ

2ζβ + f3ζζ
′ζ ′β + f4ζ

′2ζβ
)
,

f1 = 4u ,

f2 =
(
2 + β2

)( csk
aH

)2(
u+

1

c2
s

(2η − 3ε)

)
, (7.26)

f3 = 12u− 2

c2
s

(
4η + (1− β2)ε+

(
β2

4
− 1

)
ε2
)
,

f4 = 6u− 1

c2
s

(
4η + 2(β2 − 1)ε+

(
β2

4
− 1

)
β2ε2

)
,

where ζ = ζk, ζ
′ = dζ/dN , ζβ = ζβk and u = 1− c−2

s . At early times in the

limit A → ∞, |Z(N)| → ∞. However we deform the integration contour

by a small, imaginary component iδ so that the oscillations arising from

(7.15) become exponentially suppressed. This is the usual choice of contour

one makes when calculating interacting correlation functions. In this limit

(7.15) becomes

ζk → lim
δ→0

1

2Mpla

√
cs
kε
e−icsk(1+iδ)τ , (7.27)

as τ → −∞ and the integral converges at very early times.
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Figure 7.5.: cs dependence of fNL for several trajectories evaluated at β = 1
(top) and β = 0.1 (bottom). All values of fNL are normalised
to their value at β = 1. For equilateral triangles the β depen-
dence is much stronger. In the squeezed limit the cs dependence
becomes much smaller but remains non-zero.
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Regulating the integral

To calculate the bispectrum we integrate (7.25) numerically. Analytically,

after performing the integral, one could take the limit δ → 0 to obtain an

answer that is well behaved. Unfortunately this is not possible numerically

and gives rise to large errors. We cannot integrate over an infinite range in

time, i.e. from A = ∞, a(N) = 0 or N = −∞, so there will always be a

sharp integration cutoff at very early times. Because of this sharp cutoff, the

oscillations in the integrand result in large fluctuations in the final answer

even though they should cancel out if the integration constant is formally

extended to −∞.

A solution o this problem is to add an exponential damping factor sim-

ilarly to the one introduced in (7.27). This was the first approach taken

by Chen et. al. in [128]. However there are some issues with this method.

Firstly the amplitude of the integrals tend to be suppressed resulting in an

underestimation of the bispectrum. In addition, the optimal value for the

damping factor δ needs to be fine tuned for each scale considered [128].

An alternative method exists which which does not suffer from these

issues. It was first used in [129] and then expanded on in [1]. We refer the

reader to [1] for the details. The method splits the integral into two parts

at an arbitrary split point defined by csk = XaH. X needs to be large

enough for (7.15) to be a good approximation for all three modes. Some

integration by parts is performed then X is chosen to minimise the error on

the bispectrum. Unfortunately this method does not work for cs 6= 1 because

of the new ζ ′3 term. The method still prevents the contributions from the

oscillations at early times from diverging but the ζ ′3 term still introduces

a large oscillatory signature to the final integral. We therefore adopted the

first method employing an improved exponential damping factor

Z(N)→ Z(N)e−δ(
csk
aH )

n

, (7.28)

in the numerical integration.

Fig. 7.1 shows the dependence of fNL on the suppression factor δ for n = 1

in both the squeezed and folded limits. For this figure, and all the other

δ dependence figures, a random trajectory was taken with s = 1.5, x = 1

and Lmax = 4, as defined in (7.10). We see that if δ is too small, the early

time oscillations are not sufficiently suppressed producing a large amount
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of noise. This noise is exaggerated for large values of k. Secondly, if δ is too

large, the damping factor will interfere with the time dependence around

the time of horizon crossing. This is the most dominant contribution to the

integral so it will no longer be a good approximation to the bispectrum. For

this choice of n = 1 it is hard to justify an optimal value of δ where fNL has

converged.

Another issue is that the optimal δ depends on the shape of the triangle.

Indeed, between the folded and squeezed cases the optimal δ drops by an

order of magnitude. This dependence can be reduced by adjusting the

value of n. csk/aH is very large at early times and of order 1 during horizon

crossing. Therefore increasing n will give stronger weighting to the damping

factor at early times, while interfering less with the horizon crossing time.

We found n = 3 to give the best results. The δ dependence for n = 3 is

shown in Fig. 7.2.

Most of the residual noise arises from large k modes, particularly in the

folded configuration. In contrast most results calculated in the equilateral

configuration are relatively clean. Fig. 7.3 shows how the δ dependence

varies with shape factor β and cs in the equilateral configuration. Fig. 7.2

motivates a choice of δ ≈ 0.005 and we use this suppression factor along

with n = 3 for the remainder of our calculations.
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Figure 7.6.: Monte Carlo plots for cs = 1 (left) and c−2
s = 3 (right). From top

to bottom the shape configurations are evaluated in the squeezed, equilateral and
folded limits respectively. The red-dashed line represents the consistency relation
5(ns − 1)/12. The colour of each trajectory illustrates the scale dependence of the
bispectrum, nfNL . For squeezed c−2

s = 3 (top-right) it was necessary to reduce
β = 0.02 to recover the squeezed limit as opposed to β = 0.1 for the cs = 1 case.
This increased computation time by roughly an order of magnitude.
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7.4. Results

One way to test our numerical results for robustness and consistency is by

comparison with the the squeezed limit consistency relation [70, 95]. For

any single field inflation model the following limit must hold

lim
k3�k1,k2

−〈ζk1ζk2ζk3〉 → (2π)3δ(3)(k1 + k2 + k3) (ns − 1)Pk1Pk3 (7.29)

or in our notation

lim
β→0

fNL →
5

12
(ns − 1) . (7.30)

It is important to emphasise here that this holds for all single field models

independent of the value of cs or the prior we choose for the initial conditions

of the background trajectories. However increasing the value of cs or the

HSR parameters typically increases the amplitude of fNL therefore we don’t

necessarily expect all models to tend to the squeezed limit at the same

rate. For example β = 0.1 might be “squeezed enough” for low values of

cs but not for higher values. We first analyse the shape and sound speed

dependence of the trajectories, elaborating on the consistency relation in

section 7.4.3. Unless stated otherwise, the trajectories are taken from a

prior with x = 1, s = 1.5 and Lmax = 4.

7.4.1. Shape dependence

Fig. 7.4 compares the shape dependence of trajectories evaluated at kmin =

10−5 (Mpc)−1 normalised to their equilateral values. As expected, for tra-

jectories with shape dependence |fNL| peaks in the equilateral configuration.

As cs reduces, the amplitude of |fNL| typically increases but the trajectories

must still obey the squeezed limit consistency relation where |fNL| ∼ 10−2.

This exaggerates the shape dependence of all the trajectories, even those

which appear flat when cs = 1.

It is worth noting that in the squeezed limit, the shape dependence is curved

in comparison to the roughly linear dependence in the folded limit. This

is in agreement with [96] where the authors show that corrections linear in

β drop out. Any terms linear in k3 must contract symmetrically with the

remaining two modes. As they have equal magnitudes in opposite direc-

tions they will cancel out leaving only quadratic corrections in k3. In the

133



folded limit this cancellation does not occur producing the linear dependence

shown in Fig. 7.4.

7.4.2. cs dependence

Fig. 7.5 compares the dependence of fNL on cs for equilateral and squeezed

triangles. These values are normalised to their values at cs = 1. To a

good approximation the dependence is linear in c−2
s and much stronger for

equilateral triangles. This shows that for fixed β = 0.1 one can still obtain

large fNL by choosing an arbitrarily small cs. At cs = 1, fNL is typically

small and negative so as cs → 0 fNL becomes large and positive. The close

linear dependence on c−2
s is not surprising and it clearly arises from the

functions fi in (7.26).

7.4.3. Monte Carlo Plots

The scale dependence is linear to a good approximation and can easily be

analysed. To this end we define nfNL
as

nfNL
(k?, β) =

dfNL(k, β)

d ln k

∣∣∣∣
k=k?

. (7.31)

As discussed in [106, 157, 158] it is possible to define a scale dependence

as long as the shape of the triangle is kept fixed. Our definition is different

to the usual definition of nfNL
which is the derivative of | ln fNL| and this is

simply to avoid difficulties arising when fNL ≈ 0. Recall, reducing cs often

in induces a sign change as can be seen in Fig. 7.5.

Fig. 7.6 shows numerous Monte Carlo plots for various sound speeds and

shapes. Each plot consists of 218 trajectories with their colour represent-

ing nfNL
. The top two figures show that all trajectories tend towards the

squeezed limit consistency relation even for small sounds speeds cs < 1. The

consistency relation 5(ns− 1)/12 is shown by the red-dashed line. To reach

the consistency relation in the c−2
s = 3 case, a much smaller β was required

(and consequently the value of δ had to be lowered, recall Fig. 7.2).

In the equilateral case one can see clearly how a small sound speed de-

forms the inflationary attractor. For example in the cs = 1 case, the con-

sistency relation acts as a firm upper limit for fNL. The deviation from the

consistency relation is simply proportional to ε > 0 and f(k) > 0 defined
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in [70]. A small cs < 1 clearly violates this relation deforming the distri-

bution significantly, resulting in a large positive fNL. In the folded limit,

the distribution is reduced back again to be parallel with the consistency

relation, although this time with a positive,cs dependent offset.

To illustrate the flexibility of the method Fig. 7.7 shows a distribution

with c−2
s = 100 with colour of the trajectories now representing the third

slow roll parameter ξ = 2λ evaluated shortly after horizon crossing and

the tensor-to-scalar ratio r. The dashed lines represent the current Planck

constraints on ns = 0.968 ± 0.006 [18]. Planck also constrains f equil
NL =

−4 ± 43 [19] although it is important to remember that there is not an

exact one-to-one correspondence between our fNL calculated here and the

one constrained by Planck [19] due to assumptions on scale-invariance.

For example in power law inflation ξ = ε2 and is often assumed to be

vanishingly small. However at these sound speeds, one can see that a small

variation in ξ can lead to an appreciable change in fNL even though it is

likely to be neglected.

From the right panel in Fig. 7.7 one can also see that for small cs tighter

constraints on r require larger |fNL|. From one perspective this is not sur-

prising as, to leading order, r ≈ 16 csε [132] so smaller sounds speeds natu-

rally induce smaller r. However one has to remember that the right panel

in Fig. 7.7 shows trajectories for fixed cs = 0.1. The changes in fNL and r

can only be induced by the slow-roll parameters (and H). More concretely

smaller values of ε are thus expected to produce more non-Gaussianity. This

is in contrast to the cs = 1 case where larger values in ε produce more non-

Gaussianity. Indeed it is often quoted that fNL ∼ ε. From the plots this

is fairly easy to explain. Increasing ε always contributes negatively to fNL.

It just so happens that at cs = 1, fNL is small and negative so they add

constructively. On the other hand reducing cs always contributes positively

to fNL eventually inducing a sign change. As soon as fNL changes sign,

increasing ε reduces the amount of non-Gaussianity.
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Figure 7.7.: Monte Carlo plot for a very small sound speed c−2
s = 100 evalu-

ated in the equilateral limit. The red-dashed lines represent the
recent Planck constraints on ns [18]. The top panel shows how
small variations in ξ can change fNL. The bottom panel shows
the corresponding tensor-to-scalar ratio r for each trajectory.
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7.5. Discussion

We have outlined a full, numerical calculation of the bispectrum with a

particular emphasis on single field models of inflation with non-canonical

speed of sound. The calculation is challenging due to the oscillatory nature

of the integrands involved which is exacerbated for the case with cs 6= 1 and

we have shown how regularising the integrals can lead to stable results with

the correct choice of numerical damping terms. The methods explored in

this work can be used to investigate the scale and shape dependence of the

bispectrum signal produced by an epoch of inflation.

For convenience we have adopted a more general description of bispectrum

signal than that normally quoted in the literature by re-defining a scale and

shape dependent fNL, which always tends to 5(ns − 1)/12 as the shape

parameter β → 0. For lower values of cs, |fNL| is typically much greater

and thus requires much smaller values of β to recover the squeezed limit

consistency relation.

If future observational surveys of the CMB or large scale structure become

accurate enough to constrain any scale dependence of the non-Gaussian

signal then our work could be applied to the calculation of accurate model

of the bispectrum to be used in likelihood evaluations of the data. This

is not currently possible as the strongest limit on non-Gaussianity come

from an ad-hoc analysis of Planck CMB maps assuming a scale-independent

and fixed shape templates for the bispectrum leading to constraints on a

single amplitude parameter. Whilst these results may be consistent with

the simplest model of inflation, if a non-zero amplitude for fNL were ever to

be measured, more accurate parametrisations of the non-Gaussianity will

be useful to try to gain a better understanding of the nature of the inflaton

and its connection with extensions to the standard model of particle physics.

This will particularly become a priority if primordial tensor modes are not

discovered at levels r ∼ 0.01− 0.1.
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8. Planck and WMAP constraints

on generalised Hubble flow

inflationary trajectories

8.1. Introduction

Recent Planck results [13] have confirmed, with the highest precision to

date, the existence of a spectrum of primordial curvature perturbations

on super-horizon scales with a power law with a spectral index close to

but not equal to unity. This picture has now been verified over roughly

three decades of scales probed by primary Cosmic Microwave Background

(CMB) anisotropies that can be related to the primordial curvature pertur-

bations on super-horizon scales via a well defined set of photon perturba-

tion transfer functions. The quoted value for the scalar spectral index of

ns = 0.9603 ± 0.0073 seems to be in good agreement with many models of

cosmological inflation [15]. The fact that ns is not compatible with unity is

also interpreted by many to support the actual existence of an inflationary

epoch in the very early universe.

The interpretation of the result, in the context of inflationary model se-

lection, is complicated by the large number of inflationary models that are

compatible with the CMB observations (see for example section 2 of [15]

for a review of the landscape of models). The models range from the sim-

plest chaotic model with a single scalar field to massively, multi-field models

inspired by dimensional compactification in string theory. A typical dis-

criminatory approach is to analyse the consistency of a particular model in

the space of parameters such as ns and tensor-to-scalar ratio r constrained

directly by the data. However it becomes readily apparent that this com-

bination does not refine the space of possible models to an extent at which

conclusions about the fundamental nature of the inflaton can be made. In-
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cluding higher-order parameters (in either slow-roll approximation or per-

turbation expansion) such as running of the spectral index with wavenumber

k dns/d ln k or non-Gaussianity amplitude fNL greatly enhances the ability

to reject or falsify models. However the data has not reached the sensitivity

to detect the expected higher-order signals.

An alternative method adopted here is known as the Hubble flow equation

method. This method [150–153] assumes inflation was driven by a single

scalar field and employs the Hamilton-Jacobi framework [77] to define a

hierarchy of differential equations that can be used to generate inflationary

trajectories consistent with any inflationary potential up to a certain order

in derivatives of the Hubble rate H with respect to the inflaton field value

φ. Within this framework one can dispense with proposing a single model

consisting of a parametrised potential and constrain directly the space of

allowed inflationary trajectories described by the evolution of the Hubble

parameter H ≡ ȧ/a.

This approach allows one to compare all possible inflationary trajectories

with a given complexity with no loss of accuracy. This is because, for a given

truncation of the hierarchy of differential equations, the value of the Hubble

rate during the inflationary epoch can be evaluated to arbitrary precision.

Once the history of H has been obtained it is then possible to calculate

all observable quantities to the desired precision irrespective of whether the

trajectory satisfies slow-roll conditions.

One can then use the hierarchy of Hubble flow parameters as the base

parameters being constrained. This has two advantages. Firstly, the space

of Hubble flow parameters explores the space of all inflationary potentials

allowed at a certain order consistently. Secondly, Bayesian model compari-

son is simplified for a given Hubble flow order since there is a single model

proposition which reduces the selection to a comparison of likelihood val-

ues for two different points in the Hubble parameter space with no need to

calculate Bayesian evidence.

In the work reported here Planck total intensity results, together with

WMAP polarisation results [159] are used to directly constrain the space

of Hubble flow parameters with priors given by the set of Assumptions 1-

4. The constrained space of Hubble flow parameters can then be related

to “conventional” parameters including ns, r, dns/d ln k, and fNL without

the need to redefine the model from a Bayesian perspective. The definition
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of detections of the conventional parameters ns − 1, r, dns/d ln k, and fNL

has no meaning within this analysis and the constraints can be viewed as

ranges allowed by the observations i.e. predictions given the underlying set

of assumptions.

This paper is organised as follows. In section 8.2 we review the Hubble

flow formalism and describe how to obtain observables to compare with data

in section 8.3. In section 8.4 we show the results obtained by constraining

Hubble flow trajectories using the latest CMB data. We also describe the

derived constraints on primordial spectral parameters and on the inflaton

potential. In section 8.5 we discuss our results and future extensions.

8.2. Hubble flow equations

The Hamilton-Jacobi approach to analysing the dynamics of inflation con-

sists of changing the independent variable in the Friedmann equations from

cosmological time t to the value of the inflaton scalar field φ. The only

assumption required for this change of variable is that φ is a monotonic

function of t. The Friedmann equation and the inflaton’s equation of mo-

tion then take on the following form

φ̇ = −2M2
plH

′(φ) , (8.1)[
H ′(φ)

]2 − 3

2M2
pl

H(φ)2 = − 1

2M4
pl

V (φ) , (8.2)

where dot denotes a derivative with respect to t, prime denotes a derivative

with respect to φ, H ≡ ȧ/a is the Hubble rate for the FRW scale factor

a(t), Mpl is the Planck mass and V (φ) is the inflaton potential. One of the

advantages of performing this change of of variables is that one can merely

pick a function H(φ) and this will correspond to an exact solution of a

corresponding potential V (φ) in (8.2).

The system can be further simplified by introducing an infinite hierarchy

of Hubble flow parameters 1

`λ =
(
2M2

pl

)` (H ′)`−1

H`

d(`+1)H

dφ(`+1)
. (8.3)

1Sometimes called Hubble-Slow-Roll (HSR) parameters to contrast with the Potential-
Slow-Roll (PSR) parameters.
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The first of these parameters, 0λ ≡ ε, is a proxy for the acceleration of the

scale factor and it is straightforward to verify that the relation

ε = 2M2
pl

(
H ′(φ)

H(φ)

)2

=
−Ḣ
H2

=
φ̇2

2M2
plH

2
< 1 , (8.4)

is a necessary and sufficient condition for the universe to be undergoing

inflation with ä/a > 0 2. The ` = 1 and 2 flow parameters can also be

identified with the usual slow roll parameter η = 1λ = −(φ̈/Hφ̇) and ξ = 3λ.

A further change of variable can be introduced by using the relation

between the rate of change in e-folds N = ln(a/ai), where ai is the value of

the scale factor at the beginning of inflation, and cosmological time t with

dN/dt = H. The entire system can then be re-cast as an infinite hierarchy

of differential “Hubble flow” equations with N as the independent variable

dH

dN
= −εH , (8.5)

dε

dN
= 2 ε (ε− η) , (8.6)

d λ̀

dN
= [` ε− (`− 1) η] `λ− `+1λ , (8.7)

with solutions H(N) and λ̀(N).

This is the most natural set of variables to use when constructing single

field inflationary trajectories and the solution of the infinite system provides

a complete set of exact solutions for the background evolution that are

consistent with single field inflation and monotonic time evolution of φ.

Truncating the hierarchy at `max provides an incomplete set of solutions

that are nonetheless still exact.

In practice a set of solutions for a given `max is obtained by integrat-

ing the system with a set of random initial conditions for H and λ̀ for

` = 0, 1, ..., `max. The system can be integrated forward or backwards to

obtain an exact solution describing the dynamics of the background within

a required window in e-foldings N .

2This is in contrast to the the PSR εV for which εV < 1 is only an approximate condition
for inflation.
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Figure 8.1.: Ten random trajectories drawn using the scheme described in
8.1. The evolution of η (top) and ξ (bottom) are plotted against
log(ε) from the end of inflation (ε = 1) back to a time when the
largest scale of interest k? was a few order of magnitude smaller
than the horizon scale. One of the trajectories also shows points
colour coded by e-folding number N as points colour coded with
respect to e-fold N . N = 0 corresponds a few e-folds before the
k? exits the horizon. All trajectories are evolving away (as N
increases) from a “slow-roll” attractor with ε � 1, η � 1, and
ξ � 1. For most trajectories observable scales exit the horizon,
when N ∼ O(1) → O(10) and the flow parameters are well
within the slow-roll limit. Trajectories with larger, negative
final η values are ones where the trajectory is furthest from the
slow-roll regime at early times.
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8.2.1. Hubble flow measure

The Hubble flow method of generating random inflationary trajectories has

a well known measure problem due to the seemingly arbitrary choice of

proposal density and location for the initial conditions in H and λ̀. The

existence of attractors in the phase space of the λ̀ complicates the interpre-

tation of the imposed measure and the nature of trajectories obtained.

A number of choices have been made in the literature [150–153]. These

include starting at arbitrary points and integrating forward or backwards

to select trajectories with enough e-folds. Different choices have been made

with regards to the encounters with fixed points in the HSR phase space

where ε asymptotes to a constant and λ` → 0 for λ > 1. These can be

interpreted as eternally inflating solutions that can be allowed or discarded

if only trajectories where inflation ends are to be allowed. In all cases the

proposal densities for the HSR have been uniform and the random draws

have been made wherever each trajectory’s integration was started.

In this work the simplest possible assumptions compatible with the data

are made to define the choice of location for the initial conditions

Assumption 1 A phase of accelerated expansion (inflation) with ä > 0

occurred before the radiation dominated, decelerating phase of the standard

big bang model.

Assumption 2 Inflation lasted a minimum number of e-folds such that

all scales that are sub-horizon sized today were super-horizon by the end of

inflation.

Assumption 3 Inflation ended when the universe stopped accelerating i.e.

ä switched sign.

Assumption 4 Inflation was driven by a single scalar field φ.

In line with these assumptions the initial conditions are drawn at the

end of inflation i.e. a fixed point where ε = 1. Only the remaining flow

parameters for ` = 1, .., `max are then drawn from uniform distributions

with fixed ranges. A value for N0 is drawn from a uniform distribution

and the system (8.5) is integrated backwards a total number of e-folds N0.

The e-folding N0 is interpreted as the e-folding where the largest mode k0
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in the observable window is sufficiently smaller than the horizon to allow

normalisation using the Bunch-Davies adiabatic limit [73]. This ensures that

the system is integrated far back enough for the calculation of all observables

required for comparison with data. In all cases considered in this work N0

is drawn with a uniform distribution in the range N0 = [60, 70], this allows

for the uncertainty in the total number of e-folds that occurred after the

end of inflation due to the details of reheating. The uncertainty impacts our

ability to connect a given scale exiting the horizon at a given time during

inflation with a physically observable scale that subsequently re-entered the

horizon during the decelerating epoch (see e.g. equation (24) of [15]).

8.2.2. Potential reconstruction

Each trajectory generated in this manner corresponds to a realisation of

inflation with particular initial conditions and potential V (φ). Given a

trajectory one can reconstruct the potential function probed during the

evolution as the solution to the Hubble flow system is equivalent to selecting

a solution by specifying a potential V (φ) and initial conditions for φ and φ̇.

For example if λ̀ = 0 for all ` > 0 then the only remaining non-zero

parameter is ε. This implies H(φ) is a linear function and hence V (φ) is

quadratic. The solutions for ε(N) and therefore H(N) and φ(N) can then

be obtained easily. The potential is obtained by combining (8.2) and (8.4)

to get

V [φ(N)] = 3M2
plH

2(N)

[
1− ε(N)

3

]
. (8.8)

8.3. Calculation of observables

8.3.1. Power spectrum

The evolution of background, homogeneous quantities during inflation is

fully determined by the Hubble flow trajectory. Background also determines

the evolution of the inflaton perturbations that end up as super-horizon

primordial curvature perturbations that seed structure formation after in-

flation. The power spectrum of primordial curvature perturbations can be

calculated numerically for any given Fourier wavenumber k ≡ |k|. This is

done by integrating the Mukhanov-Sasaki [72,141] equation for the Fourier
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Figure 8.2.: Hubble flow proposal densities projected into the space of derived
parameters ns, r, and fNL. The derived parameters are obtained from numerical
calculation of scalar and tensor power spectra and fNLand evaluated at the pivot
scale k? = 0.05 Mpc−1. The contours indicate the 68% and 95% confidence regions
in the ns-r plane from the PLANCKr reference fits [160]. Each point represents the
derived quantities at the pivot scale obtained for each of ∼ 10000 random Hubble
flow trajectories generated using the uniform sampling described in section (8.2.1).
The points are colour coded according to the random values η, ξ, and N0 used to
generate the trajectory. The inflationary attractor and the level of its correlation to
the underlying flow parameters is clearly visible in both ns-r and ns-fNLplanes. The
fNLattractor follows a consistency relation given by fNL ∼ 5

12 (ns−1) [1,137]shown
as the solid (magenta) line.
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Table 8.1.: Uniform MCMC priors for cosmological parameters and a short
description of each parameter. Planck Nuisance parameters
are not listed here but are included with the same prior settings
as used in [160]. The second block are derived parameters that
are not used to randomly sample trajectories.

Parameter Prior range Definition

ωb ≡ Ωb h
2 [0.005,0.1] Baryon density today

ωc ≡ Ωc h
2 [0.001,0.99] Cold dark matter density today

τ [0.01,0.8] Optical depth to reionisation

100 θMC [0.5,10.0] 100 × CosmoMC sound horizon to angular
diameter distance ratio approximation

ln(H̃inf) [2.5,3.5] Log of rescaled Hubble rate at
time of Horizon exit of scale k?

N0 [60,70] Number of e-folds for which trajectory is
integrated back from end of inflation

0λ ≡ ε 1.0 Flow parameter value at end of inflation

1λ ≡ η [-1.0,1.0] Flow parameter value at end of inflation

2λ ≡ ξ [-0.2,0.2] Flow parameter value at end of inflation

ns(k?) ... Scalar spectral index measured from trajectory
spectrum at scale k? = 0.05 Mpc−1

r(k?) ... Tensor-to-scalar ratio measured from trajectory
spectra at scale k? = 0.05 Mpc−1

nt(k?) ... Tensor spectral index measured from trajectory
spectrum at scale k? = 0.05 Mpc−1

fNL(k?) ... Equilateral non-Gaussianity amplitude at
scale k? = 0.05 Mpc−1

ε(k?) ... Flow parameter value shortly after mode k?
exits the horizon

η(k?) ... Flow parameter value shortly after mode k?
exits the horizon

ξ(k?) ... Flow parameter value shortly after mode k?
exits the horizon
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expanded comoving curvature perturbation ζ(k). The isotropic power spec-

trum is defines the variance of the curvature perturbations as

〈ζ(k)ζ(k′)〉 = (2π)3δ(3)(k + k′)Pζ(k)

≡ (2π)3δ(3)(k + k′)|ζ(k)|2k�aH , (8.9)

and is evaluated at a time when the amplitude of the mode has converged

on superhorizon scales (k � aH).

Expressed in terms of N the Mukhanov-Sasaki equation becomes

d2ζ(k)

dN2
+ (3 + ε− 2η)

dζ(k)

dN
+

k2

a2H2
ζk = 0 , (8.10)

from which it can also be seen that the amplitude of ζ(k) is conserved on

superhorizon scales.

The initial condition for integration of (8.10) is set when k � aH for each

mode being solved for in which case the adiabatic Bunch-Davies conditions

can be assumed and the mode asymptotes to the form

ζ(k)→ e−ikτ

2a
√
kε
, (8.11)

with τ the conformal time defined by dN/dτ = aH. The phase of ζ(k) is

irrelevant and only the rate of change for the initial condition on dζk/dN

is required such that the value of τ at when the mode is normalised need

never be evaluated explicitly.

In the following (8.10) is integrated for a range of modes of interest for

observational comparison; 10−5 < k < 10−1 in units of Mpc−1. This is

done for each flow trajectory drawn at random in order to compare the

resulting power spectrum to observations via calculation of CMB angular

power spectrum

CL =

∫
k2 dk Pζ(k) |∆L(k)|2 , (8.12)

where L here is the angular multipole and ∆L(k, η0) is the multipole ex-

panded radiation transfer function for the mode k integrated to the present.

The CMB angular power spectrum is evaluated using modified version of

CAMB [89] where Pζ(k| λ̀) is used as input to (8.12) instead of the conventional
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assumption

k3 Pζ(k) = As

(
k

k?

)ns(k?)+ 1
2
dns
d ln k

ln
(
k
k?

)
+ ...

, (8.13)

i.e. a power law with amplitude As and spectral index given by ns and higher

derivative contributions . The power spectrum of tensor modes Ph(k| λ̀) is

calculated in a similar fashion for the same range of wavenumbers and the

tensor contribution to the CMB angular power spectrum is also calculated.

In this case the full functional form of Ph(k| λ̀) replaces the parametrisation

in terms of the tensor-to-scalar ratio r and tensor spectral index nt.

It is important to note that the numerical integration of mode evolution

provides exact solutions (within numerical tolerances) without use of any

“slow-roll” assumptions. The results obtained are therefore valid also in

the case when the flow parameters are not small as long as other necessary

conditions of weak coupling and linearity are satisfied3.

The remaining stochastic parameter is the initial condition for H. This

value only affects the overall amplitude of the perturbation spectra and does

not modify the solution for the flow parameters. There is therefore more

freedom in choosing where to impose a normalisation. For this work a value

for ln(H̃inf) is drawn from a uniform distribution and used to normalise the

Hubble rate of the trajectory at a time when a chosen pivot scale k? has

been outside the horizon for a few e-foldings i.e. when it’s amplitude has

converged as

H|k?∼aH =
106

4π
√

2π
H̃inf . (8.14)

The value of H̃inf is then related linearly to the final amplitude of the cur-

vature power spectrum.

H(Nc) = 4π
√

2πε(Nc)MplAs (8.15)

8.3.2. Non-Gaussianity

The bispectrum is defined as

〈ζ(k)ζ(k′)ζ(k′′)〉 = (2π)3δ(3)(k + k′ + k′′)B(k, k′, k′′) , (8.16)

3For further details of our numerical integration scheme see [1]

148



where momentum conservation forces k, k′, k′′ to form a closed triangle

and isotropy implies B(k, k′, k′′) only depends on their magnitudes. It is

convenient to work with a dimensionless bispectrum, which is independent

of the power spectrum amplitude, often denoted as

fNL(k, k′, k′′) ≡ 5

6
B(k, k′, k′′)/[

Pζ(k)Pζ(k
′) + Pζ(k)Pζ(k

′′) + Pζ(k
′)Pζ(k

′′)
]
. (8.17)

There are many “type” of fNL with different weightings to Pζ(k) in the

denominator while the above definition is frequently called f localNL . The

calculation of the bispectrum relies on the “in-in” formalism to calculate

correlation-functions in time-dependent backgrounds for interacting quan-

tum fields.

〈ζ3(t)〉 = −i
∫ t

−∞
dt′〈
[
ζ3(t), Hint(t

′)
]
〉 , (8.18)

Just as in flat space when we express our fields as a sum of plane waves

(solutions to Klein-Gordon equation, Dirac equation etc.), here we express

ζ as a sum of solutions of (8.10).

ζ(t,x) =

∫
d3p

(2π)3

(
ζp(t) ap + ζ∗−p(t) a†−p

)
eip·x . (8.19)

ζp(t) by definition satisfies equation (8.10) with initial condition (8.11).

The interaction Hamiltonian Hint(t
′) is obtained from expanding the action

for ζ to third order which produces cubic interactions with time-dependent

coupling constants [1, 70,103,130,148].

S3 =

∫
d4x a3ε

[
(2η − ε) ζζ̇2 +

1

a2
εζ(∂ζ)2

−(ε− η)ζ2∂2ζ − 2ε
(

1− ε

4

)
ζ̇∂iζ∂i∂

−2ζ̇

+
ε2

4
∂2ζ∂i∂

−2ζ̇∂i∂
−2ζ̇

]
, (8.20)

Using this expression for Hint(t
′) in (8.18)) produces the following expres-
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sion for fNL

fNL =
1

3|ζ|4
×

I
[
ζ∗3
∫ N2

N0

dN f1ζ
3 + f2ζζ

′2
]
, (8.21)

where ζ = ζk, ζβ = ζβk and ζ ′ = dζ/dN . The functions fi are given by

f1 =
5k2aε

H
(2η − 3ε) ,

f2 = −5Ha3ε

(
4η − 3

4
ε2
)
, (8.22)

N0 and N2 are e-folds when ζk is deep inside and far outside the horizon re-

spectively. The subtleties involved for dealing with this integral numerically

are fully explored in [1].

8.4. Constraints on Hubble Flow trajectories

8.4.1. Base parameters

Having defined a measure for generating random Hubble flow trajectories

one can now ask whether the resulting observables i.e. scalar and tensor

power spectra are compatible with observations and/or gain constraints on

the allowed space of flow parameters. To do this the set of parameters defin-

ing the random trajectory N0, Hinf , and 1λ, 2λ, ..., `maxλ can be used as base

parameters in an MCMC exploration of the likelihood of CMB observations.

In this case the set of flow parameters replaces the conventional parametri-

sation of scalar and tensor primordial power i.e. As, ns, dns/d ln k, etc.,

and r, nt, dnt/d ln k, etc.

Here, the CosmoMC [154] code is used, together with a modified version of

CAMB, to explore the likelihood of the Hubble flow parameters with respect

to CMB observations. The parameter set used in the exploration in this case

is the combination of radiation transfer parameters ωb, the physical density

of baryons, ωc, the physical density of cold dark matter, θMC, the angular

diameter distance parameter used by CosmoMC [160], and τ , the optical depth

parameter, and the set of flow parameters N0, Hinf , and 0λ, 1λ, ..., `maxλ.

The flow parameters only affect the primordial scalar and tensor spectra
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Figure 8.3.: Comparison of 1d marginalised posteriors in the overlapping pa-
rameters between the reference PLANCKr run and the Hubble
flow case with `max = 2. There is no significant changes in the
constraints as expected. The Planck nuisance parameters are
not shown but also show no significant change in constraints.

and are therefore probed as fast parameters in CosmoMC runs. In practice at

each step in the MCMC we compute the trajectory resulting from the set of

proposed flow parameters and then numerically evaluate the corresponding

scalar and tensor power spectra. We also evaluate numerically the value

of fNL, the dimensionless amplitude of the bispectrum in the equilateral

configuration, for the pivot scale.

For CMB observations, the latest Planck temperature only results [14]

are used together with WMAP polarisation measurements. In all the runs

described in this work the Planck likelihood settings and nuisance param-

eters are set as in the standard “PLANCK+WP” combination ( see [160]

for details). The PLANCK+WP “base r planck lowl lowLike” (abbre-

viated to PLANCKr in the following) MCMC chains [154] using the con-

ventional parametrisation As, ns for the primordial scalar spectrum with a

tensor extension parametrised solely by r can be used as a reference run to

compare with the results reported below4.

4For the tensor spectral index the inflationary consistency relation is used to treat it is
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Figure 8.4.: 1d marginalised posteriors for the Hubble flow parameters.
These parameters replace the conventional As, ns, r, nt,
dns/d ln k, etc. Hinf is equivalent to the scalar amplitude pa-
rameter As and is well constrained, as expected, whereas the e-
folds parameter Ne is unconstrained. This is also expected since
there is little sensitivity in the observable to the total duration
of inflation and Ne can be regarded as an additional nuisance
parameter. The flow parameters have posteriors peaked around
0.

The conventional parameters As, ns, r, etc., can be calculated directly

from the power spectra obtained by numerical integration of the mode equa-

tions and can then be treated as derived parameters for each accepted flow

trajectory in the MCMC chains. fNLcan also be treated as a derived pa-

rameter to gain insight into the level of non-Gaussianity preferred by the

current data in the context of random Hubble flow proposal. It is instructive

to visualise how the Hubble flow proposal density used here projects into

the space of derived parameters. Figure 8.2 shows the scatter of trajectories

in the ns-r and ns-fNLplanes. The derived quantities are evaluated from the

numerically obtained spectra at a pivot scale k? = 0.05 Mpc−1. The points

are also colour coded according to the random value of η, ξ, and N0 used

to generate the trajectory. The value of the random flow parameters is

as a function of ns.
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Figure 8.5.: The 2d marginalised posterior for ξ and η, the base flow pa-
rameters for the Hubble flow `max = 2 run. The contours are
denote the 68% and 95% significance levels. The coloured scat-
ter plot indicates the value of r ∼ 16 ε(k?) for each sample in
the chain. The two base parameters are highly correlated and
the unconstrained, large positive η tail is correlated with larger
values of r.

highly correlated with the resulting values of ns, r, and fNLand the scatter

shows a strong “inflationary” attractor [150–153]. The attractor overlaps

the PLANCKr constraints for the ns-r combination in a corner of the region

between the 68% and 95% contours.

We consider a Hubble flow system with `max = 2 (i.e. including ε, η, and

ξ) for the MCMC exploration. This allows potentials that include up to

order 6 polynomials in φ. The uniform priors chosen for this run are shown

in Table 8.1 together with a description of each base and derived parameter.

The run uses seven base parameters which is the same number used for the

conventional PLANCKr run. The Planck nuisance parameters are omitted

for brevity.

The chains are run until the R−1 convergence parameter [154] falls below

0.1. Figure 8.3 shows the resulting 1-dimensional marginalised posterior

distribution for the conventional parameters that determine the form of the
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Figure 8.6.: Same as Figure 8.5 but for ξ and η values at the observationally
relevant scale k?. The red (dashed) line indicates the expected
value of η as r → 0 as given by the second order slow-roll
approximation.

radiation perturbation transfer functions. These shared by both PLANCKr

and the Hubble flow runs. The marginalised posteriors are very similar

between the two runs indicating that there is no tension in the transfer

parameters with respect to how the primordial perturbation spectrum is

sampled.

Figure 8.4 shows the marginalised posteriors for the flow parameters that

do not have counterparts in the conventional runs. The overall amplitude is

tightly constrained as expected - it takes the same role as the conventional

amplitude As. The total number of e-folds is unconstrained and acts an an

extra nuisance parameter which is marginalised in the given interval. The

two flow parameters whose values are allowed to vary at the end of inflation,

η and ξ have posteriors that are peaked around zero. The ξ parameter is

also well constrained with respect to its uniform prior. Positive values of η

are unconstrained and the posterior approaches a uniform distribution that

extends to the η = 1 limit of the uniform prior.

The two Hubble flow parameters are highly correlated as seen in Fig-

ure 8.5. The large η, negative ξ tail however is correlated with larger values

of r ∼ 16 ε(k?) and therefore lower upper limits on the tensor-to-scalar ratio
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Table 8.2.: Parameter constraints from the marginalised posteriors for both
Hubble flow `max = 2 and PLANCKr runs. Parameters marked
with † are derived ones in the Hubble flow run. Upper limits are
95% significance values.

Hubble Flow PLANCK r

Ωbh
2 0.02198+0.00028

0.00032 0.02207+0.00028
−0.00028

Ωbh
2 0.1206+0.0028

−0.0031 0.1193+0.0026
−0.0026

100θMC 1.04117+0.00063
−0.00069 1.04137+0.00063

−0.00063

τ 0.087+0.013
−0.015 0.089+0.012

−0.014

Hinf 1.164+0.017
−0.017 -

log(1010As) - 3.09+0.024
−0.027

†ns 0.9579+0.0072
−0.0090 0.9623+0.0075

−0.0075

†r < 0.143 < 0.126

† fNL −0.0205+0.0037
−0.0057 -

will help in eliminating the large η tail and break the degeneracy. The re-

sulting 2d posterior for the Hubble flow parameters at observable scales can

be seen in Figure 8.6 that also includes a line indicating the consistency of η

and ξ with the slow-roll limit expression in the limit that r ∼ 16 ε(k?)→ 0

and ns − 1→ −0.04.

Trajectories with positive η values, and hence positive derivative in ε at

the end of inflation approach the slow–roll limit very quickly as they are

evolved backwards towards the observable window. These therefore almost

always result in acceptable values for e.g. ns, r, etc. Negative values of

η are cutoff by the data at η ∼ −0.42. The reason for this strong cutoff

can be seen in Figure 8.1 where trajectories with larger negative values of

η at the end of inflation approach the slow-roll limit much slower, giving

values of |ns−1| that are typically larger and therefore in disagreement with

observations.

The best-fit sample in the chain for the `max = 2 Hubble flow run has a
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Figure 8.7.: The 2d marginalised posterior for ns and r. These are derived
at the pivot scale k? in the Hubble flow case. The same contours
for the PLANCKr run are shown for comparison. The cross and
square indicate the position of the best-fit sample for the Hubble
flow and PLANCKr run respectively. The Hubble flow case
prefers higher values of r due to the proposal density peaking
at r ∼ 0.075 for acceptable values of ns.

negative log-likelihood − lnL ≡ L = 4903.2521 compared to the PLANCKr

one of L = 4904.3370 giving a better fit by ∆L = 1.085. The two runs

have a comparable number of degrees of freedom since the Ne can be con-

sidered as an additional nuisance parameter. The marginalised constraints

on parameters in both Hubble flow and PLANCKr run are compared in

Table 8.1.

8.4.2. Derived parameters

It is useful to compare the marginalised posteriors in the derived r and ns

parameters between the Hubble flow run and the conventional PLANCKr

case. Figure 8.7 shows the 2d marginalised constraints for this combination

together with their respective best-fit sample location. The Hubble flow case

prefers higher values of r due to the proposal density peaking at r ∼ 0.075

for acceptable values of ns. Constraints on ns are similar in both cases

although the Hubble flow constraints disfavour relatively large values of ns

compared to PLANCKr.

156



Figure 8.8.: The 2d marginalised posterior for ns and fNLat the picot
scale k?. The cross indicates the location of fNLof the best-
fit sample. The line shows the slow-roll consistency condition
fNL≈ 5(ns − 1)/12.

A novel feature of this method is that existing data already constrains the

possible values of fNL. This is simply due to the fact that each trajectory has

a non-vanishing bispectrum and there fore the data will constrain this degree

of freedom too. Figure 8.8 shows the 2d marginalised constraints in the ns

vs fNLplane. Since most of the trajectories are in the slow–roll regime when

the pivot scale k? is leaving the horizon the posterior for fNLagree well with

the limiting consistency condition fNL≈ 5(ns − 1)/12 [1, 70]. This result,

of course, should not be interpreted as a detection of non-Gaussianity but

rather as an indication of what amplitudes of the bispectrum are consistent

with the general single field inflationary solutions for a Hubble flow system

with `max. If measurements of primordial non-Gaussianity ever reach the

sensitivity to constrain the level of fNL∼ 10−2 then the measurement will

provide a fundamental consistency check for single field inflation.

In Figure 8.9 we also show the approximately 200 best-fit power spectra

in the chains. The spectra are coloured and weighted by their ∆L with

respect to the best-fit sample to emphasise the best fitting curves. The best-

fitting spectra are very close to power laws with respect to ln k. The best

fitting spectra have very similar normalisations at the pivot scale k? = 0.05h

Mpc−1 as the normalisation of the primordial spectrum is one of the best
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Figure 8.9.: The primordial curvature power spectra for all samples within
∆L = 2 of the best-fit sample. This is an indication of all spec-
tra allowed within the 95% significance level. Each spectrum is
coloured and weighted on a scale given by ∆L and 1/(1−∆L)
respectively in order to emphasise the best-fitting spectra.

constrained parameters.

8.4.3. Inflaton potential

Each trajectory in the MCMC chain yields an individual potential and we

can therefore translate directly the constraints on our base parameters into

the space of allowed potentials using (8.8). For the `max = 2 Hubble flow

run the best-fit potential is one given by η ∼ ξ ∼ 0 i.e. with small curvature.

Figure 8.10 shows all the potentials in the MCMC chain that have ∆L = 2

with respect to the best-fit sample. There are some 200 samples within this

range. Each potential is weighted by its ∆L value so the darkest curves are

the most likely.

The range in η probed by the sample is large and extends from η ∼ −0.4

to η ∼ 1. This translates to potentials that are both convex and concave,

and those that include an inflection point. This is simply a feature of the

degeneracy in the contribution from both ε and η to the scalar tilt ns,

the only shape spectral parameter, aside from amplitude, that has been

constrained so far. If r were to be detected in future it would help to
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constrain the sign of the curvature of the potential in the observable regime

(∆φ ∼ 0).

An nth-order polynomial fit to the best-fit sample potential converges for

n = 5 and gives a potential V (ϕ)

V (ϕ) = V0

(
1 +

n=4∑
n=1

λn ϕ
n

)
, (8.23)

with ϕ = ∆φ, and V0 = 1.50 × 10−12, λ1 = 2.20, λ2 = 0.66, λ3 = −6.00 ×
10−2, λ4 = 1.78 × 10−3, and λ5 = −1.98 × 10−5. The best-fit sample

potential and the polynomial fit are shown in the left panel of Figure 8.10.

The coefficients λn for n ≤ 4 converge for higher order fits with n > 4 and

the potential does not change appreciably in the interval ϕ = 0 → O(10).

Note that given (8.8) an `max = 2 flow system allows for potentials that

include terms up to φ6.

8.5. Discussion

We have obtained constraints on generalised, single field inflation trajec-

tories using the Hamilton-Jacobi formalism. The Hubble flow system was

used as base parameters in an MCMC exploration of the likelihood with

respect to the latest CMB data. This allowed us to obtain marginalised

posteriors on the flow parameters that define the evolution of the Hubble

parameter H(N) as a function of e-folds N during inflation. Alternatively,

the constraints can be viewed as a selection in the space of inflaton potentials

V (φ).

Our method also includes the numerical calculation of primordial bis-

pectra and we obtained predictions based on current data of consistent

bispectrum amplitude fNL for the equilateral case.

Further exploration will be left for future work. In particular it will be

of interest to extend the system to higher `max to allow for more structure

in the trajectories. This is currently limited by the fact that the highly

correlated space of HSR parameters result in a very inefficient MCMC ex-

ploration. More work to explore the likelihood more efficiently or defining

new sets of HSR parameters may help in extending this line of work to

systems with higher `max.
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Future data from CMB and also large scale structure will also provide

deeper probes of non-Gaussianity which will provide tighter constraints in

the space of trajectories. This will be particularly important if the discovery

and characterisation of tensor modes will turn out to elude future CMB

polarisation measurements due to foreground contamination. In that case

non-Gaussianity measurements will possibly provide the only way to break

shape degeneracies and reveal the precise form of the inflaton potential over

the range of scales accessible to observations.
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Figure 8.10.: Top: All sampled potentials within ∆L = 2 of the best-fit
sample. This is an indication of all potential shapes and nor-
malisations allowed with the 95% significance level. The x-axis
shows the change in φ from the final value where inflation ends
(ϕ ≡ ∆φ = 0). Both φ and V are in units of Mpl = 1. The
weighting of curves is the same as in Figure 8.9. Bottom: The
best-fit sample potential (solid) and its 4th-order polynomial
fit (dashed).
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9. Conclusion

In this thesis, the numerical calculation of the bispectrum from inflation

was performed for a variety of different cases. With the recent Planck

results [18, 19], the constraints on inflationary models are being pushed

to new limits meaning an accurate and fast calculation of the primordial

bispectrum will continue to become more important. Even though current

measurements of fNL are still consistent with 0, placing stronger limits on

bispectrum will continue to rule out models and possibilities.

It was shown how the calculation can be applied to with features which

are difficult to include in the Monte Carlo sampling. The calculation was

further expanded to include more complex non-canonical models of inflation

where the perturbations propagate with slow sound speed cs 6= 1. Finally it

was shown how the bispectrum calculation can be naturally included when

one reconstructs the inflaton potential by comparing the numerical power

spectrum directly to data.

In Chapter 5 a detailed overview was given, combining the calculation

with Monte Carlo sampling of inflationary trajectories and reproducing

known consistency relations. We chose to specialise to equilateral triangles,

covering most shapes of interest with a single parameter. It was shown that

by considering different priors in the sampling of the slow-roll parameters,

it is possible generate larger levels of non-Gaussianity. However these mod-

els are highly suppressed probabilistically when a simple cut in ns−space is

imposed, making it difficult for these models to agree with observations.

Chapter 6 marks a unique point in the history of Cosmology when the

field was on the edge of a landmark discovery. Unfortunately the detec-

tion of primordial B-mode polarisation by BICEP2 [20] was ultimately in-

validated [28] but the paper Chapter 6 was based on was written in the

intermediate months. Had the BICEP2 result been verified, inflation mod-

els with a sudden change in acceleration would have been placed on much

firmer footing. These models predict a large peak in the bispectrum at large
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scales where the power is suppressed. Unfortunately it may not be possible

to constrain the bispectrum at these scales using CMB data alone but large

scale structure surveys provide better constraints.

Chapter 7 generalised results of Chapter 5 to more complex single field

inflation models, easily generating large amounts of non-Gaussianity. The

squeezed limit consistency relation was shown to hold for these more general

models and in the equilateral limit it was found that even small variations

of the slow-roll parameters could significantly change fNL. This further

justifies the need for a precise calculation of the bispectrum as observations

place tighter constraints on non-Gaussianity.

Combining the bispectrum calculation with data was done performed

in Chapter 8, where instead of sampling over ns, As, etc. one treats the

slow-roll parameters and H as fundamental parameters. Quantities such as

ns, r, fNL, etc. are then derived parameters and can be easily calculated. In

the very recent 2015 Planck results [18] a similar procedure was performed

where the authors sampled over the Hubble slow-roll parameters.

Since its introduction in the 1980s, inflation has been a huge topic in

Theoretical Physics and Cosmology. Now, as experiments are reaching un-

precedented levels of precision, and with the hope that large scale structure

surveys will shed even more light on primordial non-Gaussianity [161], we

may be finally getting close to understanding what happened at the begin-

ning of time.
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A. Appendix

A.1. More details for perturbing the ADM

formalism

After inserting the first order expressions for N and Ni some useful quanti-

ties are:

Γkij = 2δk(i∂j)ζ − δijδ
kl∂lζ (A.1)

Eij =
(
H + ζ̇

)
hij − ∂i∂jψ + 2∂(iψ∂j)ζ − δij∂kζ∂kψ (A.2)

EijE
ij − E2 = −6(H + ζ̇)2 + 4(H + ζ̇)

(
∂2ψ + ∂iψ∂iζ

) e−2ζ

a2
(A.3)

+hikhjl∂i∂jψ
(
∂k∂lψ − 4∂(kψ∂l)ζ

)
(A.4)

R(3) = − 2

a2

(
2∂2ζ + (∂ζ)2

)
e−2ζ (A.5)

Simply inserting these expressions into the action gives:

S =
1

2

∫
d4x

[
−2aeζ

(
1 +

ζ̇

H

)(
M2
pl

(
2∂2ζ + (∂ζ)2

)
+ V a2e2ζ

)
+

M2
pl

1 + ζ̇
H

(
EijEij − E2 +

φ̇2

M2
pl

)
a3ζ3ζ

] (A.6)

When performing these manipulations it is helpful to maintain the expo-

nential factors eζ for as long as possible as they are easier to keep track of

then the series expansion. For example the most complicated term above is
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a3e3ζ

1 + ζ̇
H

(EijE
ij − E2) = −6

(
1 +

ζ̇

H

)
a3e3ζ + 4Ha

(
∂2ψ + ∂iζ∂iψ

)
eζ

+
1

a
(

1 + ζ̇
H

) [∂i ((∂jψ∂i∂jψ − ∂iψ∂2ψ)e−4ζ
)
e3ζ − 4∂iζ∂iψ∂

2ψe−ζ
]

(A.7)

To arrive at this expression a 4th order term, which won’t contribute to

anything in this thesis, was dropped. Even though currently we are only

concerned with terms up to second order, we left the final third order term

here as it will be needed later. It can be safely dropped.

From now on the task is a combination of finding total derivatives, using

the zeroth order equations of motion and dropping higher order terms. In a

lot of cases it pays off dropping terms later rather than earlier. For example

the first line contains a total spatial derivative to all orders which can be

safely ignored.

4Ha
(
∂2ψ + ∂iζ∂iψ

)
eζ = 4Ha∂i

(
∂iψe

ζ
)

(A.8)

To second order then the final line is also a total derivative

a3∂i
(
∂iψ∂i∂jψ − ∂iψ∂2ψ

)
. (A.9)

This drastically simplifies our action to a more manageable form

S =
1

2

∫
d4x

[
−2aeζ

(
1 +

ζ̇

H

)(
M2
pl

(
2∂2ζ + (∂ζ)2

)
+ V a2e2ζ

)
−6M2

plH
2

(
1 +

ζ̇

H

)
a3e3ζ +

φ̇2

1 + ζ̇
H

a3e3ζ

] (A.10)

Replacing V (φ) with the Friedmann equation we find
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S =

∫
d4x

[
−M2

plae
ζ

(
1 +

ζ̇

H

)(
2∂2ζ + (∂ζ)2

)
+
(
φ̇2 − 6M2

plH
2
)
a3e3ζ − 6M2

plHζ̇a
3e3ζ

+
φ̇2

2H2

ζ̇2

1 + ζ̇
H

a3e3ζ

]
.

(A.11)

For the middle line, integrating the ζ̇ term by parts and using the equation

of motion φ̇2 + 2M2
plḢ = 0 leaves the following total time derivative which

can be dropped.

−2M2
pl

d

dt

(
Ha3e3ζ

)
(A.12)

The final term proportional to aeζ is the least obvious but it can be shown

to be a combination of time and spacial total derivatives.

−a

(
1 +

ζ̇

H

)
eζ
(

2∂2ζ − (∂ζ)2
)

= − 1

H

d

dt

(
aeζ
)(

2∂2ζ + (∂ζ)2
)

= +
d

dt

(
1

H

)
aeζ

(
2∂2ζ + (∂ζ)2

)
− d

dt

(
aeζ

H

)(
2∂2ζ + (∂ζ)2

)
= aε

(
−(∂ζ)2 + ∂i

(
∂iζe

ζ
))
− d

dt

(
aeζ

H

)(
2∂2ζ + (∂ζ)2

)
= −aε (∂ζ)2 eζ + aε∂i

(
∂iζe

ζ
)

− d

dt

(
aeζ

H

(
2∂2ζ + (∂ζ)2

))
+ 2

a

H
∂i

(
∂iζ̇e

ζ
)

(A.13)

These total derivatives can be dropped leaving us with the final action

S = M2
pl

∫
d4x aε eζ

(
a2ζ̇2 e2ζ

1 + ζ̇
H

− (∂ζ)2

)
, (A.14)

which is trivial to truncate to second order.
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