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In this paper, we investigate the effects of space noncommutativity
and the generalized uncertainty principle on the stability of circular orbits
of particles in Schwarzschild spacetime. We show that, up to first order
of noncommutativity parameter, an angular momentum dependent extra
term will appear in effective potential which affects the stability of circular
orbits. In the case of large angular momentum, the condition for stability
of circular orbits will change considerably relative to commutative case.
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1. Motivations and preliminaries

An important consequence of quantum gravity scenarios such as string
theory is the possible noncommutativity of spacetime structure at very short
distances [1–4]. This noncommutativity leads to the modification of Heisen-
berg uncertainty relations in such a way that prevents one from measuring
positions to better accuracies than the Planck length. In low energy limit,
these quantum gravity effects can be neglected, but in circumstances such
as very early universe or in the strong gravitational field of a black hole
one has to consider these effects. The modifications induced by the gener-
alized uncertainty principle on the classical orbits of particles in a central
force potential firstly has been considered by Benczik et al. [5]. The same
problem has been considered within noncommutative geometry by Mirza
and Dehghani [6]. The main consequence of these two investigation is the
constraint imposed on the minimal observable length and noncommutativity
parameter in comparison with observational data of Mercury. Here we are
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going to proceed one more step in this direction. We study the effects of the
space noncommutativity and the generalized uncertainty principle on the
stability of circular orbits of particles in Schwarzschild geometry. We obtain
a noncommutative effective potential which up to first order of noncommu-
tativity parameter, contains an extra angular momentum dependent term
and this new term affects the conditions for stability of circular orbits of
particles seriously. In fact space noncommutativity shows itself by such an
angular momentum dependent term. For large values of angular momentum,
the effect of space noncommutativity is considerable.

1.1. Noncommutative effective potential

Recently, motivated by string theory, the effects of noncommutative ge-
ometry have been studied in various physical problems. Considering space
noncommutativity, the usual quantum mechanical commutation relations
should be modified in the following manner [1–4]

[x̃i, x̃j ] = iθij , [p̃i, p̃j ] = 0 , [x̃i, p̃j ] = i~δij , (1)

where θij is an anti-symmetric matrix whose elements have dimension of
(length)2. One can show that there is a new coordinate system defined by
the following transformations

xi = x̃i +
1

2
θij p̃j , pi = p̃i , (2)

where these new variables satisfy the following canonical commutation rela-
tions

[xi, xj ] = 0 , [xi, pj ] = i~δij , [pi, pj ] = 0 . (3)

In a noncommutative space, the Hamiltonian for a particle in a central force
potential has the following form

H =
p̃2

2m
+ V (r̃) , r̃ =

√

x̃ix̃j , (4)

where using the coordinate transformation (2) we find

V (r̃) = V

(

√

(

xi −
θijpj

2

)(

xi −
θikpk

2

)

)

= V (r)−
~θ · ~L
2r

∂V

∂r
+O(θ2) . (5)

Up to the first order of noncommutativity parameter we find

V (r̃) = V (r) −
~θ · ~L
2r

∂V

∂r
, (6)

where we have used the following definitions: θij = 1
2
ǫijkθk, Lk = ǫijkxipj,

~θ = Σ3
i=1θiêi, ~L = Σ3

i=1Liêi and ǫijrǫiks = δjkδrs − δjsδrk. Equation (6)
will play an important role in our forthcoming calculations.



Stability of Circular Orbits in Noncommutative Schwarzschild Spacetime 2869

1.2. Stability of circular orbits in commutative Schwarzschild geometry

Now consider the geometry of Schwarzschild spacetime with the following
metric(with c = 1)

ds2 = −
(

1 − 2GM

r

)

dt2 +

(

1 − 2GM

r

)

−1

dr2 +r2
(

dϑ2 +sin2 ϑdϕ2
)

. (7)

The geodesics of this spacetime are given by the following equations [7]

d2t

dλ2
+

2GM

r(r − 2GM)

dr

dλ

dt

dλ
= 0 . (8)

d2r

dλ2
+
GM

r3
(r − 2GM)

(

dt

dλ

)2

− GM

r(r − 2GM)

(

dr

dλ

)2

−(r − 2GM)
[

(

dϑ

dλ

)2

+ sin2 ϑ

(

dϕ

dλ

)2
]

= 0 , (9)

d2ϑ

dλ2
+

2

r

dϑ

dλ

dr

dλ
− sinϑ cos ϑ

(

dϕ

dλ

)2

= 0 , (10)

d2ϕ

dλ2
+

2

r

dϕ

dλ

dr

dλ
+ 2cot ϑ

dϑ

dλ

dϕ

dλ
= 0 , (11)

where λ is an affine parameter. There are four conserved quantities asso-
ciated with Killing vectors: magnitude of angular momentum(one compo-
nent), direction of angular momentum(two components) and energy. The
two Killing vectors which lead to conservation of the direction of angular mo-
mentum imply that ϑ = π

2
. The other two Killing vectors are corresponding

to energy and the magnitude of the angular momentum. The Killing vector
associated with energy is ∂t or

Kµ =

(

−
(

1 − 2GM

r

)

, 0, 0, 0

)

(12)

and for the magnitude of angular momentum the Killing vector is ∂ϕ or

Lµ =
(

0, 0, 0, r2 sin2 ϑ
)

. (13)

So along the geodesics, the two corresponding conserved quantities are
(

1 − 2GM

r

)

dt

dλ
= E , (14)

and

r2
dϕ

dλ
= L , (15)
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respectively, where E and L are energy and angular momentum of the par-
ticle per its unit mass.

Along an affinely parameterized geodesic (time-like, space-like or null)
the scalar quantity

ε = −uαuα

is a constant since

dε

dλ
= (uαuα);βu

β = (uα
;βu

β)uα + uα(uα;βu
β) = 0 .

If we chose λ to be proper time or proper distance, then we find ε = ±1.
For a null geodesic ε = 0. Generally, one can write

ε = −gµν
dxµ

dλ

dxν

dλ
. (16)

We chose λ = τ (the proper time) and expand this equation. In equatorial
plane (ϑ = π

2
) we find

−
(

1 − 2GM

r

)(

dt

dλ

)2

+

(

1 − 2GM

r

)

−1(
dr

dλ

)2

+ r2
(

dϕ

dλ

)2

= −ε , (17)

where multiplying by (1− 2GM
r

) and using equations (14) and (15), we obtain

−E2 +

(

dr

dλ

)2

+

(

1 − 2GM

r

)(

L2

r2
+ ε

)

= 0 . (18)

This relation can be rewritten as follows

1

2

(

dr

dλ

)2

+ V (r) =
1

2
E2 , (19)

where we have defined

V (r) =
1

2
ε− ε

GM

r
+
L2

2r2
− GML2

r3
(20)

which is the effective potential in Schwarzschild spacetime. Figure 1 shows
the variation of this effective potential versus radius for different angular mo-
mentum. In terms of the Schwarzschild radius, one can rewrite this equation
as follows

V (r) =
1

2
ε− ε

GM

r
+
L2

2r2

(

1 − rs

r

)

, (21)

where rs is the Schwarzschild radius. We use this relation in our forthcoming
arguments.
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Fig. 1. Commutative effective potential of particles in Schwarzschild spacetime

versus the radius for different values of angular momentum. This figure shows the

effect of angular momentum on the values of effective potential.

In classical general relativity, the particle could have a circular orbit at
rc if

(

dV

dr

)

r=rc

= 0

which leads to the following condition

εGMr2c − L2rc + 3GML2γ = 0 , (22)

where γ = 0 in Newtonian regime and γ = 1 in general relativity [7]. Let us
consider two possible cases separately. Firstly, for γ = 1 and ε = 0 (photons)
we have

rc = 3GM . (23)

Secondly, for γ = 1 and ε = 1 (massive particles) we find

rc =
L2 ±

√
L4 − 12G2M2L2

2GM
. (24)

For L→ ∞, there exist a stable circular orbit at L2

GM
which goes farther and

farther away and an unstable one at 3GM . For small L, at L =
√

12GM two
circular orbits coincide at rc = 6GM and disappear entirely for smaller L.
Therefore, 6GM is the smallest possible radius of a stable circular orbit
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in Schwarzschild metric. In brief, Schwarzschild solution in commutative
space possesses stable circular orbits for r > 6GM and unstable ones for
3GM < r < 6GM . Now we consider the effects of space noncommutativity
on the stability of circular orbits of particles in Schwarzschild geometry.

2. Noncommutative space considerations

In Schwarzschild spacetime, with ε = 1 (the case of time-like geodesics)
we find from (20)

V (r) =
1

2
− GM

r
+
L2

2r2
− GML2

r3
. (25)

Considering the effects of space noncommutativity as given by (6), this re-
lation changes to the following form

V (r̃) =
1

2
−GM

r
+
L2

2r2
−GML2

r3
−Lθ cosψ

2

[

GM

r3
− L2

r4
+

3GML2

r5

]

, (26)

where ψ is the angle between ~L and ~θ. This noncommutative effective po-
tential has been plotted in figures 2 and 3 for two different values of angu-
lar momentum. As these figures show, increasing the value of the particle
angular momentum increases the difference between commutative and non-
commutative effective potentials. In other words, large angular momentum
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Fig. 2. The difference between commutative and noncommutative effective poten-

tial for L = 1 (in arbitrary units). Lower curve shows noncommutative case. For

small values of L or large values of r, the difference is not considerable.



Stability of Circular Orbits in Noncommutative Schwarzschild Spacetime 2873

0.2

6
0

420

V

r

1

10

0.8

0.6

8

0.4

Fig. 3. The difference between commutative and noncommutative effective poten-

tial for L = 5 (in arbitrary units). Lower curve shows noncommutative case. For

large values of L, the difference is considerable.

enhances the effect of space noncommutativity. So space noncommutativity
couples with angular momentum. This point has its origin on the algebraic
structure of theory on noncommutativity level.

The particle could have a circular orbit at rc if

(

dV

dr

)

r=rc

= 0

or

GM

r2c
− L2

r3c
+

3GML2

r4c
− Lθ cosψ

2

[−3GM

r4c
+

4L2

r5c
− 15GML2

r6

]

= 0 . (27)

This can be simplified to find

GMr4c −L2r3c + 3GML2r2c −
Lθ cosψ

2

[

− 3GMr2c + 4L2rc − 15GML2
]

= 0.

(28)
This is the condition for existence of circular orbits in noncommutative
Schwarzschild geometry up to first order of noncommutativity parameter.
Comparing this equation with equation (22) (with γ = 1 and ǫ = +1) for
commutative case, shows the importance of noncommutativity effect. Since
noncommutativity parameter is very small, this effect can be neglected in
ordinary circumstances but for large angular momentum the situation differs
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considerably. The dependence of this modification to angular momentum is
a pure noncommutative effect which goes back to the algebraic structure of
the theory.

The condition for the stability of the circular orbits is

(

∂2V

∂r2

)

r=rc

> 0 . (29)

Applying this condition to the potential (26), we find

−2GM

r3c
+

3L2

r4c
− 12GML2

r5c
− Lθ cosψ

2

[

12GM

r5c
− 20L2

r6c
+

90GML2

r7c

]

> 0 .

(30)
Combining this equation with equation (28), we find the following condition
for the stability of the circular orbits in noncommutative space

GMr4c − 3GML2r2c − Lθ cos(ψ)

2

[

3GMr2c − 8L2rc + 45GML2
]

> 0 . (31)

Figure 4 shows the condition for stability of circular orbits of particles in
Schwarzschild geometry and in the presence of space noncommutativity. In
this figure we have plotted the left hand side of relation (31) versus r = GM .
As this figure shows, in the case of noncommutative space, particles could
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With Space Noncommutativity
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Fig. 4. The condition for stability of circular orbits for commutative and non-

commutative Schwarzschild spaces. For L = 5, in commutative case particles

could have stable circular orbits for r ≥ 6GM while for noncommutative case

r ≥ (6.139234690)GM . Space noncommutativity increases the radius of stable

circular orbits.
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have stable circular orbits for r ≥ (6.139234690)GM which is greater than
commutative result of r ≥ 6GM . Therefore, stable circular orbits have
greater radius in noncommutative spaces.

3. The effect of GUP

Now we consider the effect of the generalized uncertainty principle on
the stability of circular orbits of particles in Schwarzschild spacetime. With
the generalized uncertainty principle, the standard commutation relations
transform to the following general form [5, 8]

[xi, pj] = i~(δij + βp2δij + β′pipj) ,
[pi, pj] = 0 , (32)

and

[xi, xj ] = i~
(2β − β′) + (2β + β′)βp2

(1 + βp2)
(pixj − pjxi) . (33)

we set β′ = 0 so the corresponding Poisson brackets are

{xi, pj} = δij(1 + βp2) , {pi, pj} = 0 , {xi, xj} = 2β(pixj − pjxi) .
(34)

The modified canonical equations now take the following forms

ẋi = {xi,H} , ṗi = {pi,H} , (35)

where

H =
p2

2m
+ V (r) (36)

is the Hamiltonian of the system. The deformed angular momentum which
is given by

Lij =
xipj − xjpi

(1 + βp2)
(37)

is conserved due to the rotational symmetry of the Hamiltonian. For the
circular orbits of particles in a general central force problem we have the
constraints ṙ = 0 and ṗr = 0 [8]. These conditions will lead us to

L =
pr

(1 + βp2)
. (38)

The radius of orbit r and the magnitude of the momentum p =
√

p2 are
now the constants of the motion.
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Now in Schwarzschild spacetime the effective potential is given by equa-
tion (25). We substitute the value of L from (39) in this potential to find

V (r̃) =
1

2
− GM

r
+

p2

2(1 + βp2)
− GMp2

r(1 + βp2)
(39)

so the condition for a circular orbit with radius r to be stable in the frame-
work of GUP is

GMr2c − p2r3c
(1 + βp2)2

+
3GMp2r2c
(1 + βp2)2

≥ 0 . (40)

We emphasize that presence of β is a quantum gravitational effect which has
origin on the fractal structure of spacetime at very short distances (string
scale). The situation is much similar to the case presented in figure 4 with
dotted curve. The effect of space noncommutativity is much similar to the
effect of generalized uncertainty principle. These two concept are common
features of quantum gravity era where there exists a minimal observable
length of the order of Planck length.

4. Summary and conclusion

In this paper we have studied the effect of space noncommutativity and
the generalized uncertainty principle on the stability of circular orbits of
particles in Schwarzschild geometry. We have found the effective potential
in the case of noncommutative Schwarzschild space. When the angular mo-
mentum of a particle is small, the effect of space noncommutativity can be
neglected. In this case we find r ≥ 6GM for the stability of circular or-
bits in commutative Schwarzschild space. The situation differs considerably
with commutative prescription when one considers space noncommutativ-
ity. For the case of large angular momentum, the condition for stability of
circular orbits in noncommutative Schwarzschild space for L = 5 becomes
r ≥ (6.139234690)GM which differs from commutative result, r ≥ 6GM .
Since the effect of space noncommutativity in first order approximation is
the presence of angular momentum in orbital equations, we conclude that
space noncommutativity changes conditions for stability of the circular orbits
in an angular momentum dependent manner. This feature provides an op-
erative approach for investigation of the spacetime geometry, although this
effects are so small that current experimental devices cannot detect them.
We have also calculated the effect of the generalized uncertainty principle on
the stability of circular orbits of particles. GUP is a quantum gravitational
effect and has effect much similar to space noncommutativity on the plan-
etary orbits of particles. It is important to note that arguments presented
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in this paper are important in situations such as TeV black hole thermo-
dynamics. Finally, we should emphasize that modification of the standard
dispersion relations and therefore local Lorentz invariance violation is a di-
rect consequence of spacetime noncommutativity which recently has been
considered seriously (see [9] and references therein). Any possible detection
of Lorenz invariance violation will provide an indirect test of spacetime non-
commutativity. Ultra-High Energy Cosmic Rays (UHECRs) [10] and other
probes such as modified Compton effect [11] provide experimental basis of
testing these noncommutative effects.
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