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Abstract
Wepresent a reformulation of theU(1) gauge theory by eliminating the redundancy inherent in the
conventional approach.Our reformulation is constructed on the basis of localfield interaction
approach to electrodynamics. The gauge symmetry in our framework is associatedwith a physical
transformation, which represents the invariance of the equation ofmotion of a charged scalarfield
under the change in the distribution of electromagnetic field at a distance.We demonstrate that all
physical properties of theU(1) gauge theory are preservedwith the removal of redundancy in the
gauge field. In addition, our reformulation provides a generalization of the Byers-Yang theorem to
open systems.

Introduction

Gauge theory is one of the greatest pillars inmodern physics. It provides a universal framework to understand a
wide range of phenomena ranging from the field theories of electromagnetism to the standardmodel of
elementary particles and forces. Despite its great success, gauge theory consists of a disturbing feature; it is
constructed based on redundancy of description rather than the physical symmetry(see e.g., p.189 of [1]). The
simplest example is classical electrodynamics. A point charge ewith four-velocity rṁ under the four-potentialA

μ

is described by the Lagrangian:

L L
e

c
r A , 10= + m

m˙ ( )

where L0 is the kinetic part of the particle. Gauge symmetry in this Lagrangian implies the invariance of the
equation ofmotion for the particle under transformation

A A A 2 ¢ = - ¶ Lm m m m ( )

with any scalar functionΛ(x). Notably, this transformation is not associatedwith the symmetry of two physical
states that have the same properties. Instead, it indicates thatAμ and A¢m represent the same physical state. In
otherwords, it is impossible, even in principle, tomake a gauge transformation of the system in a laboratory,
unlike other physical transformations, e.g., translation, rotation, and the Lorentz transformation.

This property of gauge theory is closely related to the ‘nonlocality’ of electromagnetic interaction because the
local interaction of the particle with the gaugefield (equation (1)) includes a certain degree of arbitrariness (see
equation (2)). Recently, it was found that this arbitrariness of the interaction can be removed by adopting the
localfield interaction (LFI) approach [2–5]. The LFI theory successfully reproduces the classical electrodynamics
and topological Aharonov–Bohm (AB) effect [2, 3]. This implies that we can describe quantum theory involving
electromagnetic interaction that does not rely on the potential, in contrast to the conventional viewpoint.
However, onemay inquire whether the approachwithout redundancy ofAμ removes the ubiquity of gauge
theory.We need to clarify themanifestation of ‘gauge symmetry’ in this redundancy-free description. In this
paper, we resolve this question and reveal the gauge symmetry intrinsic in the LFI approach. The gauge
symmetry in this framework is associatedwith a physical transformationwithoutmathematical redundancy,
while preserving other properties ofU(1) gauge theory.We discuss the gauge symmetry in this framework for
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both a point charge and charged scalar field. In addition, applying this gauge symmetry to a systemwithout a
closed loop, we derive a generalized Byers-Yang theorem [6, 7] and show that it can be experimentally verified in
a superconducting point contact.

Gauge invariance as a physical symmetry in classical electrodynamics

Aparticle with charge e andmassmunder external electric (E) andmagnetic (B)fields can be described by the
Lagrangian:

L L L , 3in0= + ( )

where

L mc c r r 40
2= - - ˙ · ˙ ( )

is the kinetic part, and

L F F d x
1

8
, 5in

e 3òp
= mn

mn ( )( )

represents the interaction between the field generated by the particle and the externalfield (represented by the
field tensors F e

mn
( ) and Fmn , respectively). This interaction Lagrangian is derived from the Lorentz-covariant LFI

approach [2, 3], and can be rewritten in the form

L r a. 6in = Pm m˙ ( )

In this description, redundancy of the potentialAμ in equation (1) is eliminated and the particleʼsmotion is
coupledwith the ‘field-momentum four vector’, ,0 PP = Pm ( ), defined as

c
d bE E x

1

4
, 6e

0 3òp
P = · ( )

c
d cE B x

1

4
, 6e

3òp
P = ´ ( )

where Ee is the electric field generated by charge e.Mathematically,Πμ in equation (6) plays the same role asAμ

in the potential-based Lagrangian in equation (1). This Lagrangian successfully reproduces the classical equation
ofmotion and the topological quantumphase. In addition, it demonstrates the locality of the interactionwhich
can be tested in real experiments. For its details, see [2–5].

We aim to demonstrate the appearance of gauge symmetry in the absence of redundancy in the gauge field.
For a given system configuration, the Lagrangian of equation (3) is unique; ifΠμ is different in Lin, it represents a
different configuration of the external E and B. The Lagrangian possesses a symmetry under this condition. For
the transformation

7P  P¢ = P - ¶ Lm m m m ( )

the Lagrangian is transformed as

L L L
d

dt
. 8 ¢ = -

L ( )

This indicates that the equation ofmotion for the particle is invariant under the ‘gauge transformation’ of
equation (7) because a total time derivative dΛ/dt does not affect the Lagrange equation ofmotion(see e.g.,
section 2 of [8]). From the Lagrangians (3), (4), and (6), we obtain the gauge-invariant equation ofmotion:

dp

dt
G

dr

dt
a, 9=

m
mn n ( )

where pμ is themomentum4-vector of the particle and

G
e

c
F b, 9º ¶ P - ¶ P =mn m n n m mn ( )

is proportional to the electromagnetic field tensor Fmn . Equation (9) is equivalent to the one obtained from the
standard potential-based approach(see e.g., [9]) and can be rewritten as

d

dt
e

d

dt
e

e

c
r E

p
E r B, , 10


= = + ´˙ · ˙ ( )

where p, , and ṙ are the energy,momentum, and velocity of the particle, respectively.
The invariance of the equation ofmotion under the gauge transformation ofΠμ (equation (7)) is not

associatedwith the redundancy of description becauseΠμ is a physical quantity without arbitrariness. Variations
in E and B transformΠμ as one can find in equation (7). A constraint in this transformation is that the local

2

J. Phys. Commun. 3 (2019) 105008 KKang



value offield tensor Fmn remains unchanged. In other words, the ‘gauge transformation’ ofΠμ represents a
change in distribution in the external E and B, while their local values remain unchanged at the position of the
particle. Therefore, the gauge symmetry in the Lagrangian for a point charge (equations (3)–(6)) implies that its
equation ofmotion is invariant under any change in the external field distribution at a distance.This invariance is
evident because the equation ofmotion is local, although the conventional gauge theorywithAμ does not
consider the problem in this way.

U(1) gauge invariance as a physical symmetry

Let us consider electrodynamics with charged scalar fieldf. Applying the canonical transformation of the
Lagrangian (equations (3)–(6))with the introduction off, we obtain theKlein–Gordon equation:

i i m c
0. 11

2 2

2  
f- ¶ - P ¶ - P + =m m

m m
⎡
⎣⎢

⎤
⎦⎥( )( ) ( )

It should be noted thatwemaywork on theDiracfield for the electron, but it gives the same result for theU(1)
gauge symmetry. TheKlein–Gordon equation (equation (11)) forf is generated by the Lagrangian:

m
i i mc F F

1 1

16
. 122* * *  f f f f f f

p
= - ¶ - P ¶ + P - -m m

m m
mn

mn( )( ) ( )

Themathematical structure of this Lagrangian is equivalent to that given by the standard approachwhereΠμ

is replaced by eA cm . Therefore, exploring theU(1) gauge symmetry is straightforward and it produces the
following results. First, Lagrange equations for thefieldsf andΠμ lead toKlein–Gordon(11) andMaxwell
equations, respectively. Second, andmost importantly, the gauge symmetry ismanifested in the invariance of 
under the transformation

e , , 13i f f f ¢ = P  P¢ = P - ¶ Lm m m m
- L ( )

with an arbitrary scalar functionΛ. Similar to the case of the point particle discussed above, this transformation
does not include any redundancy of description. It is a physical symmetry associatedwith differentΠμ, or
equivalently, with different distributions of external E and B. The gauge symmetry in  indicates that the
equation ofmotion forf (equation (11)) is invariant under the change of the external electromagnetic field at a
distance. Finally, the charge conservation is derived from the symmetry via theNötherʼs theorem. In our
framework, it is expressed in terms of continuity equation:

j 0, 14¶ =m
m ( )

for the four-charge current,

j i
m

D D , 15* *


f f f f= - -m m m( ) ( )

where the covariant derivative is given by

D
i

. 16


f f= ¶ - Pm m m( ) ( )

GeneralizedByers-Yang theorem

An intriguing consequence of theU(1) gauge symmetry is the Byers-Yang theorem [6]. It states that all physical
properties of a doubly connected system (an annulus) enclosing amagnetic fluxΦ (see figure 1(a)) are periodic in
Φwith period hc e0F = . Here, we show that the theorem can be extended to an open system (figure 1(b))with
our formulation.We also propose an experimental arrangement to confirm the generalized theoremusing the
superconducting point contact. In our framework of the LFI approach, the eigenfunctionf of a charged particle
in both systems (figures 1(a), (b)) satisfies thewave equation

m
i c

1

2
, 172 0  f f fP-  - + P =( ) ( )

in the limit v/c=1 of equation (11). Formany particles, the energy eigenfunctionψ satisfies

m
i V Er

1

2
. 18

j
j j

2å y y yP-  - + =( ( )) ( )

Themagnetic field vanishes in the region of nonzeroψ, c eB 0P=  ´ =( ) (Note that it is the spatial part of
equation (9b)). Thereforewe canwriteP = L, andP can be gauged away.Under the transformation
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e ,

0, 19

i r
j

j
y y y
P P P

 ¢ =
 ¢ = - L =

å- L

( )

( ) ( )

thewave equation (18) reduces to

m
i V E

1

2
, 20

j
j

2å y y y-  ¢ + ¢ = ¢( ) ( )

implying thatP is removed from thewave equationwith amodified boundary condition in y¢.
Consider the boundary condition of a doubly connected system. For any specific coordinates of a particle,

say ri, that circulates around the loop oncewhile keeping the other coordinates fixed, y¢ acquires a phase factor
by the transformation (19) as

e e . 21i d i e cr  y y y¢  ¢ = ¢P- - F∮ ( )· ( )

Because thewave equation (20) is independent ofP, theP-dependence ofE is determined by the boundary
condition (21), which constitutes the original Byers-Yang theorem: all physical properties of the loop are
periodic inΦwith its period hc e0F = .

Our analysis on the periodicity can also be applied to an open system (figure 1(b)). For a specific coordinate
of a particle, ri, let Ly¢ ( Ry¢ ) be the asymptotic value of thewave function at the left (right) infinity of ri such that

r r, . 22L i R iy y y y¢ º ¢  -¥ ¢ º ¢  ¥( ) ( ) ( )

From the gauge transformation (equation (19)), we obtain

e , 23L

R

i dr òy
y

a
¢
¢
= P

-¥

¥

( )·

where the constantα is independent ofP. Because the eigenvalue E is determined by thewave equation (20) and
the boundary condition (23), we have:

Theorem. (The energy eigenvalues are periodic in dr ò P
-¥

¥
· with period 2π.) Therefore all physical properties

show the same periodicity, implying that the Byers-Yang theorem is extended to an open system.

Before discussing a realistic example that demonstrates the Byers-Yang theorem for an open system, let us
point out some important facts. First, there are no observable effects of the external flux in a normal conductor
in the configuration offigure 1(b), because the boundary condition does not alter the physics of the open system.
However, the situation is different for a superconductor withmacroscopic quantum coherence. This is analyzed
below in detail. Second, the standard approachwith vector potential A fails to describe the periodicity in the
open system. In the potential-based approach, the boundary condition of equation (23) is replaced by

e , 24L

R

i e c dA r òy
y

a
¢
¢
= -¥

¥

( )( ) ·

and its phase factor remains ambiguous as the integral dA rò-¥

¥
· is not awell-defined quantity for an

open path.

Andreev bound states and gauge symmetry

Nowwe discuss themanifestation of the Byers-Yang theorem for an open systemwith the boundary condition of
equation (23) in a realistic system. The systemunder consideration is a Josephsonweak link that connects the
two regions of a superconductor with an externalmagnetic flux at a distance of the superconductor (see figure 2).
The type of the junction is insignificant here. It can be described by the Bogoliubov-deGennes equation [10]:

Figure 1. (a)Doubly connected systemof conductor (gray region)with externalmagnetic fluxΦ pierced inside closed loop. (b)
Similar, but open, conductor with externalΦ. In both systems, gauge symmetry provides periodicity of energy eigenvalues as a
function ofΦ.
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e
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D
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⎞
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⎛
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⎛
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( )
( )

( )

where the components of theHamiltonian in our framework is given by

H
m

i U x

H
m

i U x b

1

2
,

1

2
. 25

e

e

2

2*





P

P

= -  - +

=  - +

( ) ( )

( ) ( ) ( )

P can be gauged away by the following transformation to the ‘primed’ functions:

u ue v ve

e

0
, ,

, 26

i i

i2

 



P P¢ = - L =
¢ = ¢ =

D¢ = D

- L L

- L ( )

and thus, we obtain

H x

x H

u x

v x
E

u x

v x
a, 27e

e*

¢ D¢

D¢ - ¢
¢
¢

=
¢
¢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )
( )

( )
( )

( )

where

H
m

U x b
2

. 27e

2
2¢ = -  + ( ) ( )

This transformation reveals the periodicity of the physical properties of the system. The eigenvalue E is
determined by equation (27) and the boundary condition ofD¢ (represented in its phase shift)

aarg , 28L R B0j j jº D¢ D¢ = +( ) ( )

where xLD¢ º D¢  -¥( ) and xRD¢ º D¢  ¥( ) are the boundary values of xD¢( ) at each lead.
L R0j j j= - is the intrinsic phase difference between the two sides of the superconductor, andjB is theflux

dependence of the phase given by

d
e

hc
br

2 2
, 28B  òj

qP= = F
-¥

¥
· ( )

where θ is the angle formed in the geometry of the system (see figure 2). Therefore, the eigenvalues are periodic
functions ofΦwith period hc e2 2p q( ) and all physical properties display the same periodicity. Notably, for
θ=2π,jB reduces to the Aharonov–Bohmphase e c2 F ( ) associatedwith theCooper pair charge 2e.

As an example, we consider a delta-function potentialU x U x0d=( ) ( ) and a constant gap function
Δ(x)=Δ0. The latter condition givesj0=0 in equation (28a). A solution inside the gap (−Δ0<E<Δ0),
known as the Andreev bound state, can be determined by solving the Bogoliubov-deGennes equation (27)with
the boundary condition of xD¢( ) equation (28) [11, 12].We obtain

E T1 sin 2 , 29B0
2 j= D - ( ) ( )

whereT Z1 1 2= +( ) is the transmission probability across the point contact with the parameter
Z mU kF0

2º ( ) (kF being the Fermiwave vector). Considering that the Andreev bound states and their phase
dependence have beenwell confirmed in experiments with superconducting hybrid junctions, theflux
dependence of the bound-state energy (equation (29)) can also be observed in real experiments. The bound-state
energymay be directly probed by spectroscopicmeasurements(see e.g., [13, 14])with variations in themagnetic

Figure 2. Superconducting point contact with externalmagnetic fluxΦ. Andreev bound state energies depend on the phase difference
jL−jR between two superconductors,Φ, and angle θ formed in the geometry of the system.
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flux. To confirm the generalization of the Byers-Yang theorem, the superconductor should not form a closed
loop that circulates around theflux to avoid observation of the ordinary ABphase e c2 F .

Conclusion

In conclusion, we have presented a reformulatedU(1) gauge theory on the basis of physical symmetry. The
symmetry transformation corresponds to a change in the electromagnetic field in the inaccessible region of the
charged scalar field (f) alongwith a change in the phase factor off. This reformulation preserves all properties
of theU(1) gauge theory but eliminates the redundancy inherent in the conventional approach. This also implies
that quantum electrodynamics can be definedwithout relying onAμ. In addition, our formulation provides a
generalization of the Byers-Yang theorem to an open system,which can be confirmed in an experiment for the
Andreev bound states of a superconducting point contact.
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