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Abstract

We present a reformulation of the U(1) gauge theory by eliminating the redundancy inherent in the
conventional approach. Our reformulation is constructed on the basis of local field interaction
approach to electrodynamics. The gauge symmetry in our framework is associated with a physical
transformation, which represents the invariance of the equation of motion of a charged scalar field
under the change in the distribution of electromagnetic field at a distance. We demonstrate that all
physical properties of the U(1) gauge theory are preserved with the removal of redundancy in the
gauge field. In addition, our reformulation provides a generalization of the Byers-Yang theorem to
open systems.

Introduction

Gauge theory is one of the greatest pillars in modern physics. It provides a universal framework to understand a
wide range of phenomena ranging from the field theories of electromagnetism to the standard model of
elementary particles and forces. Despite its great success, gauge theory consists of a disturbing feature; it is
constructed based on redundancy of description rather than the physical symmetry (see e.g., p.189 of [1]). The
simplest example is classical electrodynamics. A point charge e with four-velocity 7, under the four-potential A"
is described by the Lagrangian:

L=Lo+ Z#,A0, (1)
[

where L, is the kinetic part of the particle. Gauge symmetry in this Lagrangian implies the invariance of the
equation of motion for the particle under transformation

Al Al = A — RN ©)

with any scalar function A(x). Notably, this transformation is not associated with the symmetry of two physical
states that have the same properties. Instead, it indicates that A and A'# represent the same physical state. In
other words, it is impossible, even in principle, to make a gauge transformation of the system in a laboratory,
unlike other physical transformations, e.g., translation, rotation, and the Lorentz transformation.

This property of gauge theory is closely related to the ‘nonlocality’ of electromagnetic interaction because the
local interaction of the particle with the gauge field (equation (1)) includes a certain degree of arbitrariness (see
equation (2)). Recently, it was found that this arbitrariness of the interaction can be removed by adopting the
local field interaction (LFI) approach [2—5]. The LFI theory successfully reproduces the classical electrodynamics
and topological Aharonov—Bohm (AB) effect [2, 3]. This implies that we can describe quantum theory involving
electromagnetic interaction that does not rely on the potential, in contrast to the conventional viewpoint.
However, one may inquire whether the approach without redundancy of A" removes the ubiquity of gauge
theory. We need to clarify the manifestation of ‘gauge symmetry’ in this redundancy-free description. In this
paper, we resolve this question and reveal the gauge symmetry intrinsic in the LFI approach. The gauge
symmetry in this framework is associated with a physical transformation without mathematical redundancy,
while preserving other properties of U(1) gauge theory. We discuss the gauge symmetry in this framework for
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both a point charge and charged scalar field. In addition, applying this gauge symmetry to a system without a
closed loop, we derive a generalized Byers-Yang theorem [6, 7] and show that it can be experimentally verified in
asuperconducting point contact.

Gauge invariance as a physical symmetry in classical electrodynamics

A particle with charge e and mass m under external electric (E) and magnetic (B) fields can be described by the
Lagrangian:
L=1Lo+ L, 3)

where

Lo=—mcyc? —1 -7 (4)

is the kinetic part, and
1
L= — [Fopvax, )
8w

represents the interaction between the field generated by the particle and the external field (represented by the
field tensors F;ﬁ} and F", respectively). This interaction Lagrangian is derived from the Lorentz-covariant LFI
approach [2, 3], and can be rewritten in the form
Li, = #,,IIM, (6a)
In this description, redundancy of the potential A, in equation (1) is eliminated and the particle’s motion is
coupled with the ‘field-momentum four vector’, II* = (I1°, II), defined as
1

II°= — | E, - Ed, (6b)
47c

II = L E. x B d&°x, (6¢)
47c

where E, is the electric field generated by charge e. Mathematically, IT* in equation (6) plays the same roleas A *
in the potential-based Lagrangian in equation (1). This Lagrangian successfully reproduces the classical equation
of motion and the topological quantum phase. In addition, it demonstrates the locality of the interaction which
can be tested in real experiments. For its details, see [2—5].

We aim to demonstrate the appearance of gauge symmetry in the absence of redundancy in the gauge field.
For a given system configuration, the Lagrangian of equation (3) is unique; if IT* is different in L;,,, it represents a
different configuration of the external E and B. The Lagrangian possesses a symmetry under this condition. For
the transformation

" — I’ = II* — O*A (7)
the Lagrangian is transformed as
L—-L=L- ﬂ ®
dt

This indicates that the equation of motion for the particle is invariant under the ‘gauge transformation’ of
equation (7) because a total time derivative dA /dt does not affect the Lagrange equation of motion (see e.g.,
section 2 of [8]). From the Lagrangians (3), (4), and (6), we obtain the gauge-invariant equation of motion:

dpt
b _ GW@, (9a)
dt dt
where p* is the momentum 4-vector of the particle and
G = QrIIY — 9V = SFm, (9b)
c

is proportional to the electromagnetic field tensor F**. Equation (9) is equivalent to the one obtained from the
standard potential-based approach (seee.g., [9]) and can be rewritten as

€ _ip gy i, (10
dt dt c
where &, p, and t are the energy, momentum, and velocity of the particle, respectively.
The invariance of the equation of motion under the gauge transformation of IT* (equation (7)) is not
associated with the redundancy of description because I1* is a physical quantity without arbitrariness. Variations
in E and B transform IT" as one can find in equation (7). A constraint in this transformation is that the local
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value of field tensor F** remains unchanged. In other words, the ‘gauge transformation’ of TT* represents a
change in distribution in the external E and B, while their local values remain unchanged at the position of the
particle. Therefore, the gauge symmetry in the Lagrangian for a point charge (equations (3)—(6)) implies that its
equation of motion is invariant under any change in the external field distribution at a distance. This invariance is
evident because the equation of motion is local, although the conventional gauge theory with A* does not
consider the problem in this way.

U(1) gauge invariance as a physical symmetry

Let us consider electrodynamics with charged scalar field ¢. Applying the canonical transformation of the
Lagrangian (equations (3)—(6)) with the introduction of ¢, we obtain the Klein—-Gordon equation:

i . m?c?
[—(8u - EHH)(& - %H”) + i ]¢= 0. (11)
It should be noted that we may work on the Dirac field for the electron, but it gives the same result for the U(1)
gauge symmetry. The Klein—-Gordon equation (equation (11)) for ¢ is generated by the Lagrangian:

£ = =006 = ilL,O)(h"G* + TG — m’g*6 — —F, P (12)
m ™

The mathematical structure of this Lagrangian is equivalent to that given by the standard approach whereII,,
isreplaced by eA,, /c. Therefore, exploring the U(1) gauge symmetry is straightforward and it produces the
following results. First, Lagrange equations for the fields ¢ and IT , lead to Klein—-Gordon (11) and Maxwell
equations, respectively. Second, and most importantly, the gauge symmetry is manifested in the invariance of £
under the transformation

6 — ¢ = pe M T, - I0, = 11, — 9,4, (13)

with an arbitrary scalar function A. Similar to the case of the point particle discussed above, this transformation
does not include any redundancy of description. It is a physical symmetry associated with different I ,, or
equivalently, with different distributions of external E and B. The gauge symmetry in £ indicates that the
equation of motion for ¢ (equation (11)) is invariant under the change of the external electromagnetic field at a
distance. Finally, the charge conservation is derived from the symmetry via the Nother’s theorem. In our
framework, it is expressed in terms of continuity equation:

Bujt = 0, (14)
for the four-charge current,
i = —ilg*Dro — gDre") (15)
where the covariant derivative is given by
Dro = (@ ~ LT, (16)

Generalized Byers-Yang theorem

An intriguing consequence of the U(1) gauge symmetry is the Byers-Yang theorem [6]. It states that all physical
properties of a doubly connected system (an annulus) enclosing a magnetic flux ® (see figure 1(a)) are periodic in
® with period &y = hc/e. Here, we show that the theorem can be extended to an open system (figure 1(b)) with
our formulation. We also propose an experimental arrangement to confirm the generalized theorem using the
superconducting point contact. In our framework of the LFI approach, the eigenfunction ¢ of a charged particle
in both systems (figures 1(a), (b)) satisfies the wave equation

L (CinV - IPg + % = g, (17)
2m
in thelimitv/c < 1 of equation (11). For many particles, the energy eigenfunction ¢ satisfies

LZ(—I';W,- — H(rj))zw + Vi) = Eg. (18)
2m i

The magnetic field vanishes in the region of nonzero ¢, B = (¢/e) V x Il = 0 (Note that itis the spatial part of
equation (90)). Therefore we can write IT = VA, and IT can be gauged away. Under the transformation
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Figure 1. (a) Doubly connected system of conductor (gray region) with external magnetic flux ® pierced inside closed loop. (b)
Similar, but open, conductor with external ®. In both systems, gauge symmetry provides periodicity of energy eigenvalues as a
function of ®.

—(i/h) Y Ar)
Y — Y = e i
II—-II'=1II1 - VA =0, (19)
the wave equation (18) reduces to
S SR + VI = B, (20)
j

implying that IT is removed from the wave equation with a modified boundary condition in ¢'.

Consider the boundary condition of a doubly connected system. For any specific coordinates of a particle,
say r;, that circulates around the loop once while keeping the other coordinates fixed, 1/’ acquires a phase factor
by the transformation (19) as

wl N w/e*iﬁn'dl‘/ﬁ — ¢/€7i(6®/m). 1)

Because the wave equation (20) is independent of IT, the IT-dependence of E is determined by the boundary
condition (21), which constitutes the original Byers-Yang theorem: all physical properties of the loop are
periodic in ® with its period &, = hc/e.

Our analysis on the periodicity can also be applied to an open system (figure 1(b)). For a specific coordinate
of a particle, 1;, let 1/, (1/;) be the asymptotic value of the wave function at the left (right) infinity of r; such that

YL =P — —00), Yr= Y1 — 0. (22)
From the gauge transformation (equation (19)), we obtain
/ oo
Yo gt e, (23)
R

where the constant « is independent of IT. Because the eigenvalue E is determined by the wave equation (20) and
the boundary condition (23), we have:

Theorem. (The energy eigenvalues are periodic in f_ O:o I1 - dr/h with period 2.) Therefore all physical properties
show the same periodicity, implying that the Byers-Yang theorem is extended to an open system.

Before discussing a realistic example that demonstrates the Byers-Yang theorem for an open system, let us
point out some important facts. First, there are no observable effects of the external flux in a normal conductor
in the configuration of figure 1(b), because the boundary condition does not alter the physics of the open system.
However, the situation is different for a superconductor with macroscopic quantum coherence. This is analyzed
below in detail. Second, the standard approach with vector potential A fails to describe the periodicity in the
open system. In the potential-based approach, the boundary condition of equation (23) is replaced by

/ . S
YL _ g/ [ mir (24)
Vr
and its phase factor remains ambiguous as the integral f ™ A - drisnotawell-defined quantity for an
— 00

open path.

Andreev bound states and gauge symmetry

Now we discuss the manifestation of the Byers-Yang theorem for an open system with the boundary condition of
equation (23) in a realistic system. The system under consideration is a Josephson weak link that connects the
two regions of a superconductor with an external magnetic flux at a distance of the superconductor (see figure 2).
The type of the junction is insignificant here. It can be described by the Bogoliubov-deGennes equation [10]:
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0) ® @

Figure 2. Superconducting point contact with external magnetic flux ®. Andreev bound state energies depend on the phase difference
¢r — @rbetween two superconductors, ®, and angle § formed in the geometry of the system.

He A\(u() (46
(A*(x) _H;)(V@)E(m)’ —

where the components of the Hamiltonian in our framework is given by

H, = (CihV — I + Ux),
2m

H*— Zi(iﬁv I+ U (25b)
m

IT can be gauged away by the following transformation to the ‘primed’ functions:
II'=II-VA=0

ul = ue—iME Yl — yeih/h
A = Ae—ziA/ﬁ’ (26)
and thus, we obtain
H A ! /
¢ W _ pfw') (27a)
A*x) —H, )\V'(x) v/(x)
where
/ e,
H,=—V*+ U(x). (27b)
2m

This transformation reveals the periodicity of the physical properties of the system. The eigenvalue E is
determined by equation (27) and the boundary condition of A’ (represented in its phase shift)

¢ = arg(A] /AR = ¢y + ©ps (28a)
where A = A/(x — —oco)and A, = A’(x — 00) are the boundary values of A’(x) at each lead.
Yy = ¥, — gistheintrinsic phase difference between the two sides of the superconductor, and g is the flux
dependence of the phase given by

2 > 2el
ws—gj:mﬂ-dr—h—c@, (28b)

where 0 is the angle formed in the geometry of the system (see figure 2). Therefore, the eigenvalues are periodic
functions of ® with period 27hc/ (2e6) and all physical properties display the same periodicity. Notably, for
0 = 2w, ppreduces to the Aharonov—Bohm phase 2e® / (fic) associated with the Cooper pair charge 2e.

As an example, we consider a delta-function potential U (x) = U6 (x) and a constant gap function
A(x) = Ag. The latter condition gives ¢, = 0in equation (28a). A solution inside the gap (—Ag < E < Ay),
known as the Andreev bound state, can be determined by solving the Bogoliubov-deGennes equation (27) with
the boundary condition of A’(x) equation (28) [11, 12]. We obtain

E = £Ag1 — Tsin*(5/2), (29)

where T = 1/(1 + Z?)is the transmission probability across the point contact with the parameter

Z = mU, / (W*kp) (kpbeing the Fermi wave vector). Considering that the Andreev bound states and their phase
dependence have been well confirmed in experiments with superconducting hybrid junctions, the flux
dependence of the bound-state energy (equation (29)) can also be observed in real experiments. The bound-state
energy may be directly probed by spectroscopic measurements (see e.g., [13, 14]) with variations in the magnetic
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flux. To confirm the generalization of the Byers-Yang theorem, the superconductor should not form a closed
loop that circulates around the flux to avoid observation of the ordinary AB phase 2e® /hc.

Conclusion

In conclusion, we have presented a reformulated U(1) gauge theory on the basis of physical symmetry. The
symmetry transformation corresponds to a change in the electromagnetic field in the inaccessible region of the
charged scalar field (¢) along with a change in the phase factor of ¢. This reformulation preserves all properties
of the U(1) gauge theory but eliminates the redundancy inherent in the conventional approach. This also implies
that quantum electrodynamics can be defined without relying on A*. In addition, our formulation provides a
generalization of the Byers-Yang theorem to an open system, which can be confirmed in an experiment for the
Andreev bound states of a superconducting point contact.
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