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Abstract

This PhD thesis describes issues and methodological aspects concern-

ing the first collaboration to search gravitational waves bursts with

non-homogeneous detectors. The work included in the thesis is rep-

resentative of a small number of individuals and is still under review

from the LSC and AURIGA collaboration, thus subject to possible

revision before publication.

The resonant gravitational wave detector AURIGA and the LIGO

interferometric observatories were simultaneously acquiring data for

the first time in a 2-weeks period from the end of 2003. The first

effort of the two collaborations towards a joint analysis forced us to

face the challenge of a coincidence between detectors with different

spectral sensitivity, bandwidth and antenna pattern.

I will start presenting a study of the directional sensitivity of the

network. In particular, different strategies have been compared to

combine the different antenna pattern of each detector and quantify

the directional sensitivity of the network as a whole. The study has

been completed considering the hypothesis of reorienting the bar. In

addition to the difference in directional sensitivity, another aspect

which must be taken into account in dealing with a network of non-

homogeneous detectors is the different sensitivity band. To overcome

the problem, a search strategy has been developed which performs a

broad-band cross correlation between the LIGO interferometers trig-

gered by AURIGA events in the 850-950 Hz band.

This work describes the analysis strategy and the results of the search.

It is important to stress that, because of non-optimal performances

of the detectors and the short duration of the coincident run, the



relevance of this work is mostly methodological. Results must be

interpreted by taking into account the uncertainties which affects our

estimation of the “off-source” accidental coincidences.
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Chapter 1

Introduction

From December 24, 2003 to January 9, 2004, for the first time, the newly upgraded

AURIGA detector and the LIGO interferometers took data simultaneously. This

opened the coincidence analysis between the two collaborations, even if the short-

ness of the coincidence run force us to consider the results of a joint analysis as

a playground for future, longer, runs. In July 2004, the spokespersons of the two

collaborations signed a Memorandum of Understanding (LIGO-AURIGA MoU

(2004)) for the first joint data analysis between the two experiments. A Joint

Working Group was formed to join the efforts of the two collaborations and to

develop a methodology for a coincidence bursts search. The Joint Working Group

agreed to implement a wide-band cross-correlation search on the LIGO timeseries

triggered by the AURIGA candidate events. Cross-correlation has been applied

between the interferometers of Hanford (LHO1 with a 4 Km arm and LHO2 with

a 2 Km arm) and Livingston (LLO) in the case of quadruple coincidence network

AURIGA-LHO1-LHO2-LLO. The same analysis has been repeated for the triple

coincidences AURIGA-LHO1-LHO2. The relevance of the results relies in the

test of a methodology for a joint search between non-homogeneous detectors.
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Chapter 2

Gravitational wave detectors

In this chapter a short introduction of the gravitational waves is given (sec-

tion 2.1). Purpose of the section is just giving a short derivation of gravitational

waves from General Relativity. For a more exhaustive outline of gravitation we

remand to Misner, Thorne & Wheeler (1973). Another elementary introduction

is given in Chakrabarty (1999).

Since this work has been developed within the AURIGA collaboration, sec-

tion 2.3 focuses on the main features and problems of this resonant detector in

its newly updated setup.

About the interferometric detectors which will be involved in the AURIGA-

LIGO analysis (treated in the following chapters), we limit the description to

the informations given in section 2.2, where the main principles of operation are

discussed.

2.1 Gravitational waves

In analogy to the prediction of electromagnetic waves by the Maxwell equations

of electrodynamics, gravitational waves can be derived as a radiative solution of

the Einstein field equation under certain approximations.

The Einstein equation, in its general form, is written as:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (2.1)
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2. GRAVITATIONAL WAVE DETECTORS

where Rµν
1 and R are the Ricci tensor and scalar, gµν is the metric tensor,

Tµν is the stress-energy tensor, c is the speed of light and G is the gravitational

constant. The Ricci tensor depends on the metric through the equation:

Rµν = ∂βΓ
β
µν − ∂νΓ

β
µβ + ΓβνµΓ

γ
βγ − ΓγµβΓ

β
νγ (2.2)

where Γµαβ are the Christoffel symbols:

Γµαβ =
1

2
gµν(∂βgνα + ∂αgνβ − ∂νgαβ) (2.3)

Equation 2.1 results difficult to solve because of the dependence of the Ricci

tensor and scalar on the metric gµν . However, approximations are usually adopted

in these cases to find the solutions gµν of the Einstein fields equations (called

“metrics” of space-time).

A first simplification of equation 2.1 is the weak field approximation. In ab-

sence of gravity, space-time is flat and described by the simple Minkowsky metric

gµν = ηµν = diag(−1, 1, 1, 1). Introducing a weak gravitational field means intro-

ducing a small perturbation on the metric (|hµν | � 1):

gµν = ηµν + hµν (2.4)

This formalism is known as “linearized theory of General Relativity”. Now, it is

possible to define the tensor:

φνµ = hνµ −
1

2
ηνµh (2.5)

Since the coordinate system in space-time is not fully specified by equation 2.4

we must fix a gauge, for example:

∂νφ
ν
µ = 0 (2.6)

which is often referred to as the Lorentz gauge (see Misner, Thorne & Wheeler

(1973)). From equation 2.5 and equation 2.6 we get:

∂ν(h
ν
µ −

1

2
ηνµh) = 0 (2.7)

1as usual, indexes with Greek letters are referring to the 4 space-time components. Repeated
indexes imply the sum over all components.
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2.1 Gravitational waves

while, from equation 2.2 (neglecting the quadratic terms) we have:

Rµν = −1

2
∂β∂

βhµν (2.8)

By introducing equation 2.8 in the general form of Einstein equation 2.1 we get

the simpler formula:

�φµν = −16πG

c4
Tµν (2.9)

In vacuum, Tµν = 0 and

�φµν = 0 (2.10)

The simplest solution of equation 2.10 is the monochromatic plane wave:

φµν = Aµνe
ikαxα

(2.11)

with frequency ω2
0 = c2k2

0 = c2(k2
1 + k2

2 + k2
3) and propagation speed c. The

direction of the wave will be k̂ = 1
2
(k1, k2, k3).

As can be seen from equation 2.11, a gravitational wave must be specified by

means of 10 coefficients Aµν (in fact Aµν is a symmetrical matrix).

However, in equation 2.11 there is still a gauge freedom which can be fixed

(for example) in this way:

Aµµ = 0 (2.12)

AµνU
β = 0 (2.13)

where Uβ is a constant time-like unit vector arbitrarily chosen. Equation 2.12

imposes a null trace for Aµν , while equation 2.13 imposes its orthogonality to

the wavefront. This gauge is called transverse-traceless (TT) gauge. By im-

posing these conditions, we reduce from 10 to 2 the components describing the

gravitational wave.

In other words, it is always possible to choose a gauge (the TT gauge) for

which a monochromatic wave in vacuum is described by means of only 2 scalars.

Now, if we take the coordinate axes so that our gravitational wave propagate

along the z direction, we can write:

ATT =


0 0 0 0
0 Axx Axy 0
0 Axy −Axx 0
0 0 0 0

 (2.14)
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2. GRAVITATIONAL WAVE DETECTORS

If we call Axx = A+ and Axy = A× the 2 independent polarizations, matrix 2.14

becomes:

ATT =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 (2.15)

Every gravitational wave can be described as a combination of the + and

× components just defined. As a gravitational wave passes by, massive objects

change their length as shown in figure 2.1. A survey of the principles and details

of gravitational detection will be given in section 2.2.

Figure 2.1: Time evolution (from left to right) of the effect of a gravitational wave
which propagates perpendicularly to the plane. A circular ring composed by free
particles is squeezed and stretched, depending on the phase of the wave, to form
an ellipse. The ellipses formed in accord to the two orthogonal polarizations (top
and bottom) are rotated by 45 degrees.

In 1993, Joseph H. Taylor Jr. and Russell A. Hulse were awarded with Nobel

Prize in Physics “for the discovery of a new type of pulsar (PSR1913 + 16), a

discovery that has opened up new possibilities for the study of gravitation”. With

this study they demonstrated that the orbiting period of the pulsar PSR1913+16

around its companion gradually diminishes accordingly to an energy loss consis-

tent with the emission of gravitational waves predicted for such a system. In this
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2.2 Bars and interferometric detectors

way an indirect proof of the existence of gravitational waves was given, even if,

nowadays, no one succeeded in a direct detection.

2.2 Bars and interferometric detectors

As presented in the previous section, gravitational waves cause tiny variations

in the dimensions of objects as the waves pass by. The operating gravitational

wave detectors exploit two main methods of detection. The first is the measure

of the elastic deformation of a body, close to its resonance frequency, due to the

incoming wave. The second is based on the measure of changes in the distance

between almost freely moving test particles.

The earliest attempt to measure ripples in the space-time was performed by

Joseph Weber in the early 1960s using resonant bar detectors. Detectors of this

kind are shaped as cylindrical masses of some tons. When a gravitational wave

passes and excites the longitudinal mode of the bar, these devices sense a change

in the spatial distance between their ends. Nowadays, the operating resonant bar

detectors are: AURIGA at LNL, Padova (see the AURIGA web page), NAU-

TILUS at LNF, Frascati (Astone et al. (1997)), EXPLORER at CERN (Astone

et al. (1993)) and ALLEGRO at Baton Rouge (Mauceli et al. (1996)). For the

precise sites and orientations of these detectors see Astone et al. (2003). A more

detailed description of the operating principles for the AURIGA bar is given in

section 2.3.

The second class of gravitational wave detectors is constituted by the interfero-

metric detectors (or interferometers). These kind of technology has been thought

to detect ripples in space-time by means of a laser interferometer: through this

device it is possible to measure (with a very high precision) the time spent by

light to travel between two freely suspended mirrors, hang at the extremes of the

two “arms” of the interferometer. The arms have been designed to be perpendic-

ular. Laser light is introduced in the detector splitted in two beams (by means

of a beam splitter). Each one travels through one arm, bounces back and forth

along it (because of the mirrors) and returns to the beam splitter, where the two
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2. GRAVITATIONAL WAVE DETECTORS

beams are recombined. If the arm lengths are exactly the same, the light return-

ing to the beam splitter will fully recombine and return toward the laser. If some

disturbances (e.g. a gravitational wave) cause a small relative change in the arms

length, light will return to the beam splitter with a phase difference between the

beams. In this case there will be a difference interference pattern for the light

from the two arms; a part of the combined beam will reach the laser while another

portion will spill onto a photodetector. LIGO interferometers operate in keeping

the photodetector in the dark: a feedback system keeps the mirrors in their places

by means of a force opposite to the one trying to change their positions. This

feedback is realized through a system of magnets and currents. The measure of

the force needed to feed back the mirrors provides an indirect measure of the

force acting on them.

The observation of gravitational waves through interferometers permits (with

respect to use resonant detectors) to inquire with a better sensitivity a larger

range of frequencies. Actually, several projects for interferometric detectors ex-

ist. The French-Italian experiment VIRGO (with arm-length of 3 Km, see the

VIRGO web page) is going to approach its design sensitivity. The GEO600 (see

the GEO web page) project has an arm-length of 600 m and is located in Han-

nover, Germany. Another interferometer, TAMA300 (see the TAMA web page),

is located in Japan and it is meant to be a prototype for the advanced interfero-

metric detector LCGT, also to be built in Japan. Both GEO600 and TAMA300

have already approached their design sensitivity and taken data in science-mode

in this configuration.

Yet, the largest project is LIGO (see the LIGO web page), which includes 3

detectors: one at Livingston (LLO, with arm-length of 4 Km) and two at Han-

ford: LHO1 with arm-length of 4 Km and LHO2 with arm-length of 2 Km (see

figure 2.2). In the last case the same facility hosts 2 different interferometers:

the vacuum tubes are the same but the test masses (and the arm-lengths) are

different. This causes, necessarily, a correlation in the environmental noise of the

2 devices which cannot be considered as affected by uncorrelated noise. How-

ever, the coincidence between the two interferometers LHO1 and LHO2 permits

relevant advantages:
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2.2 Bars and interferometric detectors

1. it helps to reject false alarms due to any non-correlated noise source, such

as the intrinsic noises of the detectors;

2. if coincident displacements occur between the two detectors, we can test the

signal consistencies since the gravitational wave would produce the same

displacements, apart from the scale factor due to the ratio between the arm

lengths.

For a detailed description of the sites and orientation of the interferometers

see Allen (2004).

The best performances reached by an interferometric detector can be repre-

sented by a typical spectrum of the LIGO detectors (the most sensitive operating

interferometers). In figure 2.3 the typical noise spectra of LHO1 during the last

scientific runs are compared with the design sensitivity for that detector. The

present configuration of LHO1 guarantees performances very near to the goal

sensitivity.

The best sensitivity reached by a resonant bar detector has been obtained by

AURIGA during the present run at 4.5 K (see figure 2.4). The strain noise is

better than 10−20 Hz−1/2 over a sensitivity band of 110 Hz. A strain noise of

the order of some 10−22 Hz−1/2 was obtained by NAUTILUS and AURIGA (in

its first run) at T ≈ 0.1 K, but on a much smaller bandwidth (see figure 2.6,

section 2.3).

Regardless of the sensitivity, it is of main importance, for each kind of de-

tector, to associate with other collaborations in order to form a network. The

multiple observation, achievable by a network of independent detectors, guaran-

tees an higher confidence the more detectors are contributing. Moreover, with a

network of detectors, it is possible to solve (by triangulation) the so-called “in-

verse problem”, i.e. to determine all the informations the wave carries and locate

the source in the sky by means of the direction. Several papers formalize a joint

observation of a source using a non-homogeneous (i.e. bars and interfermeters)

network, e.g. Gursel & Tinto (1989) or Astone et al. (1994). This last work
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2. GRAVITATIONAL WAVE DETECTORS

Figure 2.2: On the top: the LIGO (Laser Interferometer Gravitational-wave Ob-
servatory) of Hanford, WA. The interferometer is an L-shaped vacuum system
which houses 2 co-located detectors (LHO1, 4 Km of arm-lengths and LHO2, 2
Km of arm-lengths) which share the same vacuum system but have different test
masses at the extremes. On the bottom: the LIGO facility at Livingston, LA (4
Km of arm-lengths). (Photos: courtesy of the LIGO Laboratory).
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2.2 Bars and interferometric detectors

refers to time-coincidences and (on the contrary of the approach described in this

thesis) addresses the issue of different sensitivity bands by narrowbanding the

interferometer.

Figure 2.3: Typical strain sensitivity of LHO1 during the past scientific runs: S1
(August 23 - September 9, 2002), S2 (February 14 - April 14, 2003), S3 (October
31, 2003 - January 9, 2004), S4 (February 22 - March 23, 2005). The blue curve
refers to the most recent performances and proves that LIGO is approaching its
design sensitivity (the solid violet curve). (LIGO document LIGO-G050483-01-Z
- courtesy of LIGO laboratory).

In the next chapters we will describe the first data exchange between the

observatories LHO1, LHO2, LLO and AURIGA.
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Figure 2.4: One-sided strain noise of the AURIGA detector during summer 2005.
In the current setup, a readout upgrade increased the bandwith up to more than
100 Hz. The detector, running at a temperature of 4.5 K reaches a strain noise
of the order of 10−20 Hz−1/2 over all its bandwidth.

2.3 The AURIGA detector

2.3.1 General scheme

The AURIGA1 detector is one of the 4 operating resonant bar detectors.

A resonant detector of gravitational waves is a system of one or more free

moving masses. The physical effect of an incoming gravitational wave, impinging

on the detector, is to excite its quadrupolar modes. In particular, in a resonant

bar, one looks at the fundamental longitudinal mode. This can be modeled by a

system of free falling particles (of masses m/2, where m is the mass of the bar)

coupled by a spring. A gravitational wave with amplitude h modifies the relative

distance l of the 2 masses by an amount δl = h l.

The natural frequency of oscillation depends on the mass and the material of

the mechanical resonator. The body of AURIGA is a 3 m-long cylinder with a

diameter of 60 cm and it is made of aluminum enriched in magnesium (Al5056).

The mass of the bar results about 2.3 tons and the resonant frequency of its first

1AURIGA is a project financed by INFN (Istituto Nazionale di Fisica Nucleare).
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2.3 The AURIGA detector

longitudinal mode is around 1 KHz. The exact value of this frequency depends on

the temperature: at room temperature it is about 874 Hz, at 100 mK it is about

920 Hz. This makes of gravitational wave bursts around 1 KHz (see section 3.1)

the best candidates for detection.

In a resonant detector, the main, unavoidable, source of noise is constituted by

the thermal noise of the mechanical resonator. Thermal noise is due to thermal

motion of the atoms inner to the bar which causes a vibration of the bar itself.

This kind of disturbance can be carefully modeled by considering the detector

as affected by a stochastic force noise which spectral density is given by the

fluctuation-dissipation theorem (Nyquist (1928)):

SF (ω) = 4
ω

Q
mKBT (2.16)

where T is the temperature, m is the mass of the oscillator, KB is the Boltzmann

constant and Q represents the mechanical quality factor. Hence, in order to

minimize thermal noise, one must keep temperature as low as possible and use

materials with an high Q-factor. AURIGA belongs to the class of ultracryogenic

detectors because it can reach temperatures around 100 mK. The quality factor

is 4× 106.

To measure the displacement of the bar resonator, the mechanical signal from

the bar must be converted in an electric signal which will be read by a low noise

amplifier. A scheme of the AURIGA transducer and readout is given by figure 2.5.

The conversion of the signal from mechanical to electromagnetic is performed

by a resonant capacitive transducer (Crivelli-Visconti et al. (2000)). The trans-

ducer is a “mushroom” shaped oscillator which frequency is tuned to the reso-

nance frequency of the bar. Because of its lighter mass (of the order of Kg), the

transducer produces a mechanical amplification of the signal proportional to the

square root of the masses ratio. In this way, bar and transducer can be mod-

elled as a system of two coupled harmonic oscillators which resonate at the two

frequencies of their mechanical normal modes. These modes correspond to the

minima of the curves in figure 2.6. The “mushroom” resonator constitutes one
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2. GRAVITATIONAL WAVE DETECTORS

Figure 2.5: The readout chain of the AURIGA detector. On the left, the bar is
directly attached to a plate of a resonant capacitive transducer. The other plate
works as a resonator which induces a modulation on the transducer capacitance
Ct. This capacitance is kept constant thanks to a decoupling capacitor (Cd).
Then, before being amplified by a SQUID amplifier, the electrical signal passes
through a matching transformer. This optimizes the signal transfer from the
transducer to the SQUID.

the plates of a capacitor Ct. The second plate is rigidly attached to the bar. The

capacitor is biased with a DC electric field, kept by means of a decoupling capac-

itor Cd (see figure 2.5). In this way, the motion of the bar results in a modulation

of the transducer capacitance, and hence in an electrical output signal.

The final step in the detection chain is the readout of the electrical signal,

which is performed by a low noise dc SQUID (Superconducting Quantum In-

terference Device)1, the most sensitive amplifier available in the kHz frequency

range. A matching transformer is interposed in order to optimize the signal

transfer from the transducer to the SQUID.

All the components of the transducer chain introduce additional noise com-

ponents. In particular, both transducer and electrical circuit contain dissipating

elements and introduce thermal noise accordingly to equation 2.16. The SQUID

noise consists of 2 distinct components: an additive current noise with noise

spectral density Si, which superimposes on the input signal, and a back action

voltage noise (Sv) which acts as a real disturbance on the input circuit. A use-

ful figure of merit to characterize the SQUID noise is the noise temperature

1The dc SQUID is a superconducting device, based on the Josephson effect, which can
measure very small magnetic fields.
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2.3 The AURIGA detector

Tn = (SvSi)
−1/2/KB. It has been demonstrated that KBTn represents a lower

limit on the energy sensitivity of the detector (Giffard (1976), Price (1987)).

Thermal noise and electronic noise of the amplifier are internal noises because

they are directly related to the apparatus. Besides this class of noise (which can

be carefully modeled), a second class of noise limits the detection capability of

the experimental apparatus. It is the external noise: mechanical and acoustic

noise belong to this class because related to human activity and environmental

noise in the laboratory. These kind of disturbances introduce non-Gaussianity in

the data and (typically) they are very difficult to control because non-modelable.

The principal way to control external noises is to suppress them by means of

a careful isolation system. This is reached by the AURIGA detector through two

vacuum chambers (which isolate the bar from the acoustic noise) and through

a damping system (which isolates from the mechanical noise). The damping of

low frequencies is reach by placing the AURIGA detector on a sand layer which

damps up to 20 dB of the mechanical low-frequency vibrations of the floor. A

second stage of isolation is reached by means of the system of damped harmonic

oscillators (which will be described in next section 2.3.2) and which suppress noise

in the kHz range of frequency. Another strategy to suppress external noises is

implement an anti-coincidence veto on some known environmental noises (such

as the anti-coincidence with seismometers).

2.3.2 Setup for the second run

To improve the performances and overcome some problems met during the first

run (1997-1999), the AURIGA detector was forced to stop and undertake a 4

years period of R&D. The upgrade of the detector regarded: the suspension

system (Bignotto et al. (2005), Zendri et al. (2003)), the cryogenics (Zendri et al.

(2002)), the readout (Baggio et al. (2005)), the data acquisition and data analysis

(Cesaracciu et al. (2003)).

The AURIGA suspension system has been completely redesigned with respect

to its first run (see figure 2.7). Now, the filtering of environmental noise is reached
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through “spring-mass” elements capable to guarantee an attenuation of about 40

dB each one at 1 kHz, (see Bignotto et al. (2005) and Zendri et al. (2003)).

The “spring-mass” are combined in a cascade of 6 elements to form the body of 4

columns, for a total attenuation of 240 dB. The new suspension system is free from

internal resonances in the range of frequencies 700-1200 Hz. A further attenuation

of the environmental noise has been reached by changing the bar hanging method.

Instead of the old cable around the bar middle section, now AURIGA hangs from

its barycenter through a rod. This should limit the coupling between the bar

longitudinal mode and the suspension motion (Zendri et al. (2002)).

At present, the detector operates at a temperature of about 4.5 K, while

cooling down at ultracryogenic temperature (≈ 0.1 K) is scheduled for 2007.

This final cooling will be achieved by means of a diluition refrigerator, not yet

integrated in the cryostat, which exploits the phase migration of 3He towards
4He to absorb heat.

The most significant improvement in the passing from the first to the second

run has been a drastic enlargement of the AURIGA sensitive band (see figure 2.6)

as a consequence of the new readout system. The basic scheme is the classical

capacitive transducer shown in figure 2.5. The main new feature is the tuning of

a third electrical mode, constituted by the LC resonance of the electrical readout

circuit, to the frequency of the mechanical modes (see Baggio et al. (2005) and

Zendri et al. (2002)). This procedure improves the signal transfer from the bar

to the amplifier and allows to obtain a significant increase of the bandwidth,

provided that the quality factor of the electrical mode is at least of the order

of the mechanical quality factor. This condition has substantially been achieved

(Baggio et al. (2005)). The electrical bias field is about 7 ·106 V/m and is similar

to the one obtained in the first run. However, there are prospects to improve this

value by at least a factor 2.5 in the next ultracryogenic run. Besides the transducer

improvements, a low noise two-stage SQUID amplifier has been implemented (see

Vinante et al. (2001) and Vinante et al. (2002)). The noise temperature is of the

order of 600~ at T = 4.5 K, to compare with the 4000~ of the first run. It

has been shown that the noise of this device scales with temperature down to
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2.3 The AURIGA detector

0.2 K (Mezzena et al. (2001)), so that a large noise reduction is expected at

ultracryogenic temperature. As a consequence of the readout improvements, a

sensitivity S
1/2
hh better than 10−20 Hz−1/2 over a bandwidth of 110 Hz has been

achieved (Vinante (2006)).

Side by side to the hardware upgrades, the AURIGA data acquisition and

data analysis pipelines have been redesigned. In particular, the data acquisition

system (DAQ) and the AURIGA data analysis (ada) have been rewritten using

an “object oriented” language and exploiting several “open source” libraries. For

technical details on the data acquisition see Cesaracciu et al. (2003). A description

of the ada analysis pipeline will be given in section 5.2.1.

On December 2003, the AURIGA detector started a period of data taking (at

a temperature of 4.5 K) for purpose of diagnostic and calibration. During this

period, even if affected by spurious non-modeled lines, the antenna achieved a

sensitivity very closed to the predicted one. Data used for the AURIGA-LIGO

joint analysis have been acquired during this period.

The effect of environmental noises (and related nonlinear phenomena produc-

ing spurious lines in band) significantly decreased in spring 2005 when the inner

suspensions system of figure 2.7 has been enriched with external suspensions (see

figure 2.8) which guaranteed a good mechanical isolation at low frequency. These

seismic isolations consist of active-air mounts, welded to the cryostat while keep-

ing liquid helium in. The result achieved is a very stable behavior (duty cycle of

∼ 98%) and a good gaussianity of data (Taffarello (2005)).

Up to now, AURIGA operated at cryogenic temperatures (1.5−4.2 K) because

this setup guarantees the longer duty cycle. A cool down to ultra-cryogenic

temperature (50−100 mK) is planned for the year 2007 and will be reached with

the use of a diluition refrigerator. Noise predictions of the future performances

are given in figure 2.6 where the effect of the cool down to 100 mK (green curve)

is shown together with the effect of increasing the transducer field by a factor 2.5

(magenta curve).
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Figure 2.6: One-sided noise spectra featured by the AURIGA detector during its
first run (in yellow) and its second run (in blue). More informations on the spuri-
ous lines featured in the second run will be given in section 5.2. Noise theoretical
predictions are also indicated for the 4.5 K setup (in black), the ultracryogenic
setup (in dark green) and in case of ultracryogenic setup with transducer bias
field increased by a factor 2.5 (in magenta). The agreement between the current
sensitivity and the expected one is remarkable.
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Figure 2.7: In this figure the inner suspensions of AURIGA are shown inside the
liquid Helium vessel (in blue). A system of 4 columns consisting of 6 aluminum
springs (in yellow) loaded by bronze masses (in green) supports a structure (in
magenta) where a rod is fixed to support the bar (in gray) from its center of
mass. The rod (which is not visible in this picture) has also the aim of providing
thermal link between the bar and the refrigerator. At the visible extremity of the
bar, the transducer and the SQUID readout system.

Figure 2.8: Photograph of the external suspensions of AURIGA: these active-air
mounts consent a good damping of the environmental oscillations above 2 Hz.
Thanks to this damping system (set up on spring 2005) AURIGA achieved a
very good duty cycle and improved the Gaussianity of data.
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Chapter 3

Science goals and overview of
gravitational wave bursts
searches

As anticipated in the previous chapters, the target signals for the first AURIGA-

LIGO joint search are gravitational waves bursts. In this chapter, an overview of

the possible sources for this kind of signal is given in section 3.1.

Gravitational wave bursts are one of the most targeted by network analyses,

since this kind of search has been extensively treated in literature. Section 3.2

gives an overview of the works which inspired the analysis described in next

chapters. Works analyzed here are all devoted to a search using networks of

detectors. In fact, as stressed in section 2.2, only a multiple observation could be

a reliable detection and could resolve direction and polarization of the signal.

The methodologies for bursts search studied within the AURIGA-LIGO Joint

Working Group are presented in section 3.3, where an outline of the performances

of the network, during the coincidence run, is also introduced. A more detailed

description of the methodology applied in the final analysis will be given in chap-

ters 5 and 6.

3.1 Sources

The kind of network analysis greatly affects the detection efficiency to different

sources. In the AURIGA-LIGO network we choose to target signals with short
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duration (≤ 20 ms) in the AURIGA sensitivity band. The most suitable sources

for these signals are black holes ring-downs, mergers of coalescing neutron stars

(NSs) or black holes (BHs) binary systems.

In literature, it is well known that coalescence of compact objects consti-

tutes an interesting source of high-frequency gravitational waves (Thorne (1987)).

Among them, the coalescence of NS-NS, NS-BH, BH-BH binary systems are ex-

pected to emit gravitational radiation in the kHz range (Thorne (1995)). Binary

black hole systems are the most massive and, as a consequence, the most promis-

ing sources. During the coalescence, the following phases of emission can be

distinguished: the inspiral phase, the merger phase and the ringdown.

In the inspiral phase two distinct bodies spiral towards one another, losing

energy and angular momentum (Thorne (1987)). During this phase the wave-

form increases its amplitude and sweeps upward in frequency (forming the so

called “chirp” waveform). The rate of frequency sweeping (df/dt) depends on

the masses involved. In the case of circular orbit, it is proportional to the ratio

(M1M2)
3/5/(M1 + M2)

1/5. The mass of a neutron star is less than 1.4M�, that

of a BH reaches some tens of M�. Binary pulsars (such as the Hulse-Taylor bi-

nary, see Taylor (1994)) emit roughly at 10−4 Hz but, in their final coalescence

stage, they are expected first to reach the ground-based interferometer range of

frequencies and then (in few minutes) the resonant detectors’ band (∼ 103 Hz).

For such a kind of sources, the internal, nonspherical kinetic energy as been es-

timated (Thorne (1995)) to be of the order of a solar mass, and the amplitude

h of the emitted gravitational waves is evaluated as h ∼ 10−21 at 200 Mpc (the

best-guessed distance to have few NS-NS binaries per year). Even if this kind

of signal could (in principle) be detected both by interferometers and resonant

detectors, the chirp signals are not the target of the joint analysis which this

thesis is devoted to. Instead, the subsequent stages of the coalescence are of pri-

mary interest because expected to emit gravitational wave bursts. The inspiral

of a binary BH system is not so fully understand as the inspiral of binary NS

systems. Some works (such for example Abbott et al. (2005a)) performed the

search using the implementation of specific phenomenological templates. Abbott
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et al. (2005a) also set an upper limit on this kind of sources using data from the

LIGO scientific run S2.

The inspiral phase ends in a freely falling plunge when a dynamical instabil-

ity is encountered by the bodies. The collision between the inspiralling objects,

which should be quick, constitutes the merger phase, and is expected to emit

gravitational waves (Cutler et al. (1993)). Even if the signals waveforms during

this phase are not known, their duration is supposed to be about some millisec-

onds and the signal can be considered as a burst. Several scenarios exist to model

this kind of emission (Baker et al. (2002)). Thorne (1995) indicates 800-2500 Hz

as the possible range of gravitational wave emission in a NS/NS merger. A kHz

range is expected also for the system NS-BH. Flanagan & Hughes (1998) explored

the possibility of detection of a binary black hole system (at ∼ 200 Mpc) during

the merger phase through ground-based interferometers and estimated the pos-

sible SNR as few tens (in a range of masses of few M� − 2000M�). A numerical

simulation of the signal waveform from merger and ringdown is given by Baker

et al. (2002). According to Baker et al. (2002) the gravitational radiation during

the merger of a binary system with masses of some tens of M� would have an

high energy content around 1 kHz, so it should be detectable also by AURIGA.

At the end of this phase, the waveform is expected to slowly resemble that of the

ringdown phase.

The final stage of the binary system evolution is represented by the ringdown

of the merged black hole. During this phase the system settles down through a

series of oscillations (quasinormal modes) whose signal waveform can be thought

as an exponentially damped sinusoid (Flanagan & Hughes (1998)).

Another important source of gravitational wave signals is constituted by the

collapse of a massive star in a neutron star or a black hole. This happens when

the star exhausts its nuclear fuel. Sometimes, the collapse causes a subsequent

explosion of the star’s mantle and we have a supernova explosion. The collapse

can give rise to several possible evolutions, with subsequent emission of grav-

itational waves. Thorne (1995) provided a short review of different scenarios
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with an emission of gravitational waves in the range few hundreds-1000 Hz. The

LIGO full-band sensitivity to supernovae has been evaluated to be of the order

of ∼ 1 kpc or less for the Zwerger-Muller sources (Zwerger & Muller (1997))

and Dimmelmeier-Font-Muller sources (Dimmelmeier, Font & Muller (2002)). A

larger distance has been evaluated for the Ott-Burrows-Levine-Walder waveforms

(Ott et al. (2004))

The joint working group decided to test the efficiency of the AURIGA-LIGO

network on three waveforms: a damped sinusoid waveform (motivated by the ring-

down phase) and simpler pulses waveforms as a Gaussian pulse and sinusoidal

oscillations with a Gaussian envelope of the amplitude (see section 6.2 and ap-

pendix B). These last class of signals has not an astrophysical meaning but, since

they are very simple linear polarized waveforms, Gaussians and sine-Gaussians

are very useful for reference and tuning of the analysis algorithms.

3.2 Overview of gravitational wave bursts

searches

Before the first AURIGA-LIGO joint analysis, both the LIGO and the AURIGA

collaborations have taken part to previous burst searches which produced upper

limits. In the following, I report on the works which inspired the methodologies

and the considerations proposed for the first AURIGA-LIGO burst search.

Astone et al. (2003) present final results for the first burst search within the

International Gravitational Event Collaboration (IGEC). This analysis, which

covers a 4-year observation time, involved the greatest number of detectors ever

combined in a worldwide network. In fact, all the existing bars (all nearly co-

aligned) were considered to form networks of two or more detectors in simultane-

ous observation. Target of the search were δ-like gravitational wave bursts with

frequency ∼ 1 kHz and a duration of ∼ 1 ms.

Each bar detector is searched by the responsible group for δ-like signals with an

adaptive amplitude threshold at a fixed SNR (ranging from 3 to 5 in amplitude).

The information exchanged within IGEC include the candidate event lists (with
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arrival time and estimated amplitude) and the value of detector absolute threshold

during time. The amplitudes are given in terms of the Fourier component (units

1/Hz):

H0 =
1

4Lν2
0

√
Es
M

(3.1)

where L, M , ν0 and Es are (respectively) the length, the mass, the mean resonant

frequency and the energy released in each bar.

The network analysis is based on a data selection and a time coincidence search

as a function of the amplitude of the target signal. In particular, the detector

threshold information is used to determine, from time to time, which configuration

of detectors is more efficient for a target signal amplitude and direction. Then,

the time coincidence is required only within the more suitable configurations,

and exploits the informations on the arrival time uncertainties to keep under

control the false dismissal. The methodology provided an accurate estimation of

the statistics of accidental coincidences obtained by repeating the whole analysis

procedure on a set of time-shifted lists (from 103 to 106 shifts). The first crucial

result has been an extremely low false alarm rate for three-fold and four-fold

accidental coincidences, less than 1/104 per year. The final result consisted in an

upper limit for the rate of short bursts as low as few per year.

From LIGO side, the first search of gravitational waves bursts (see LSC (2004))

regarded the analysis of its first scientific run, S1 (August 23 - September 9,

2002). This was the first chance to test the two event trigger generators SLOPE

and TFCLUSTER, thought to cover a broad range of possible waveforms. Targets of

the search were short unmodeled bursts (4−100 ms) in the LIGO sensitivity band

(150−3000 Hz). The only hypothesis on the signal amplitude was to be sufficiently

high to be observed over all the detectors noises. For this first burst search,

only the configuration of triple coincidence LHO1-LHO2-LLO was considered

as a network. Part of the observation time in 3-fold coincidence (about 10%)

was used as a “playground” data set, to optimize the data processing pipeline

and its parameters. After this procedure, the analysis pipeline was frozen and

applied to the full set (which covered the remaining period, about 35.5 h). The

strategy for estimating the accidental coincidences for this analysis was the same
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we will apply in the AURIGA-LIGO burst search: the population of time-shifted

coincident burst events (which should be Poisson distributed) has been studied

to look for statistically significant excesses in the not-shifted data set. The “off-

source” data sets were formed, in this first LIGO analysis, by 24 time shifted data

sets. The analysis method consisted in the search of coincident trigger triplets

in the network LHO1-LHO2-LLO, which occurred within an interval consistent

with the light travel time between the sites and the uncertainties due to the

used event trigger generator (ETG). The sets of candidate events were separately

produced in each detector using the same ETG. For this analysis, two ETG have

been used: SLOPE (used to detect, in the time domain, a large time derivative

in the data stream, see Pradier et al. (2001)) and TFCLUSTER (which searches

clusters of excess power in time-frequency spectrograms, see Sylvestre (2002)).

The parameters which characterize these two techniques can be fixed in part

without reference to the data and in part using the playground. The tuning has

been performed in order to expect about 1 accidental coincidence in the remaining

full data set. However, the playground resulted to be not representative of the

data set because of a series of additional effects appeared in the full data set. As a

consequence, both event trigger generators resulted non optimally tuned respect

to the data and the not shifted data set showed more than 1 coincidence event.

Since the “off-source” data sets showed an high variability, SLOPE has not been

used to produce the final events rate because of limits due to its non-adaptive

thresholding. The upper limit rate obtained by this analysis was of 1.6 events

per day with a 90% confidence level. This upper limit rate is higher respect

to IGEC results because, in this first LIGO-only analysis, the observation time

was only 35.5 h. The efficiency of the method has been tested through sinusoidal

calibration excitations injected in the data, as will be done in the AURIGA-LIGO

analysis (see section 6.2).

The previous search method was repeated by the LIGO collaboration on the

second scientific run S2 (February 14 - April 14, 2003) with some changes (LSC

(2005)). The goal of the analysis was, once again, to determine an upper limit

on the rate of gravitational wave bursts (without assumptions on the waveform)

using the network LHO1-LHO2-LLO. Candidates signals for this analysis were
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all the short signals (� 1 s) with enough signal strength in the band 100-1100

Hz. As in LSC (2004), thresholds have been tuned to predict less than 1 event

over the course of the full run (∼ 10 days). However, with respect to the S1

analysis, a different ETG (WaveBurst) has been introduced, which consents the

r-statistic test (a time-domain cross-correlation test, which checks the consistency

between the output of the detectors, see appendix A.1.1). In particular, rather

than analyzing separately each single data stream and combine the triggers lists to

form coincidences, WaveBurst analyzes simultaneously pairs of detectors and finds

clusters of excess power after decomposing the signal in the wavelet domain. For

each pair, it identifies and writes a list of the transients with consistent features in

both the timeseries. The three lists formed analyzing the possible pairs are then

compared, in order to check consistency and form a final triple coincidence list.

Finally, a waveform consistency test, based on the r-statistic (see appendix A)

was performed on this list. The rate of accidental coincidences has been studied,

once again, in a set of un-physical time shifted data. An upper limit of 0.26 events

per day was set on this data with a confidence level of 90%. The interpretation

of the results and the efficiency of the method have been studied using the same

classes of injected signal used in S1.

Same data used by LIGO on LSC (2005) were exchanged with the TAMA in-

terferometer for the first upper limit between the LIGO and TAMA observatories

(Abbott et al. (2005b)). This analysis targeted unmodeled, millisecond-duration

gravitational wave bursts.

This heterogeneous network faced new problems with respect to the LIGO-

only analysis, in particular different noise spectra and orientations. Abbott et al.

(2005b) showed that the LIGO and TAMA interferometers have maximum sensi-

tivity to different portions of the sky. This issue was addressed for the first time

because both the IGEC and the LIGO-only analysis involved co-aligned detectors.

The LIGO-TAMA collaboration issued the problem by neglecting the effect of the

antenna pattern during the analysis (the least sensitive detector determined the

overall sensitivity of the network) and re-introducing the matter in the study of

efficiency (performed using signal injections). To cope with the different noise
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spectra, the analysis was limited to the search in the range 700-2000 Hz (where

all the interferometers featured comparable sensitivity).

For all other aspects, the analysis is similar to LSC (2004) and LSC (2005)):

both LIGO and TAMA collaborations produced a list of candidate events to be

inquired for coincidences. This was done by LIGO using the TFCLUSTER ETG,

while TAMA used an excess power algorithm such that used in Ando et al. (2005).

The rate of accidental coincidences have been studied, once again, in a set of

shifted time series. The same consistency test used in LSC (2005) has been

performed but only on LIGO data, since it is not clear what one expects from the

r-statistic when detectors have different orientations. The “off-source” data sets,

after tuning, predict a rate of accidental coincidences of less than 0.1 events over

the entire observation time. No events were observed in the “on-source” data set.

An upper limit of 0.12 events per day was set at 90% of confidence.

3.3 Methodologies for the first AURIGA-LIGO

joint analysis

The most important benefit of a multi-detector data analysis, compared to a

single detector analysis, is the provision of a procedure to estimate the statis-

tics of the false alarms occurring by chance (i.e. “switching off” the sources of

gravitational waves). In all network burst searches (see previous section) this

has been accomplished by investigating the accidental coincidences occurring on

time-shifted data sets: the data analysis is repeated many times adding different

offsets to the time coordinate of one or more detectors. The time offsets are cho-

sen larger than the light travel time between detectors plus the expected signal

duration and the timing uncertainty of the detectors, so to cancel the effects of

any coincident gravitational wave present in the data. To ensure independent

repetitions of the “off source” experiment, the different time offsets are separated

by a length greater than the autocorrelation length of the network coincidences.

This method has proven to work well in predicting the statistics of accidental co-

incidences with a network of independent detectors (such for example in Astone

et al. (2003)), so that it has been applied also in the AURIGA-LIGO analysis
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with the caveat of not shifting the two Hanford detectors with respect to one

another, since they show some noise correlation.

In Baggio et al. (2004), two different approaches have been proposed for the

joint analysis, both focused on the search of gravitational wave bursts through

an exchange of triggers: a directional method (method 1 ) (to be repeated for

several directions in order to map the sky) and a non-directional method (method

2 ) (thought to be an “all-sky” search). The choice of bursts as a target signal

has been dictated by the requirement to maximize the potential of the network.

This can be achieved only focusing on waveforms seen with more or less the

same sensitivity in all the detectors. In other words, we need a signal with a

detectable component in the frequency range 800-1000 Hz (the sensitivity band

of AURIGA), like signals described in section 3.1.

The so-called method 1 consists in a time coincidence directional search on

the guidelines of the IGEC analysis (Astone et al. (2003)). Accordingly to this

strategy a list of candidate events (triggers) would be produced by the collabora-

tions involved. This method requires the use of homogeneous estimates of signal

arrival times and amplitudes, despite the different spectral sensitivities of the

detectors (Cadonati et al. (2005)). In fact, we are constrained to a template-less

search1 because of the current uncertainties in the waveform of the target signal.

We are still investigating on this issue. One approach, which we are currently

testing, is computing the time and amplitude estimators for a common reduced

bandwidth (see LIGO Parameter Estimation web page). In this way we sacrifice

the most sensitive zone of LIGOs’ spectra (i.e. the lower frequencies). Another

approach is to exploit some more priors on the waveform, of course loosing some

generality. We impose some constraints on the shape of the signal so that LIGO

can make the estimates in all its sensitivity band, while AURIGA aims at the

narrow-band components at high frequency.

1A template search exploits the information of a specific signal shape to optimize its de-
tection efficiency; therefore a good efficiency to different kinds of signals is not assured. A
template-less search, instead, uses much weaker assumptions on the signal waveform (e.g. du-
ration) and aims to achieve good performances on a much wider class of signals.
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An additional difficulty which must be solved (and was not present in the

first IGEC analysis) comes from the signal polarization. In fact the detectors

show different sensitivity to the same polarization. This issue can be solved by

repeating the search for each direction, with all possible signal polarizations (see

section 4).

Method 2 consists in an “all-sky” triggered search (see Cadonati et al. (2005)

and Poggi et al. (2006)). By “all-sky” we mean that the procedure is not opti-

mized for a particular sky direction but, instead, it is tuned to a population of

sources uniformly distributed in the sky and with random polarization angles. Of

course, this is motivated by lack of knowledge on the signal waveform, polariza-

tion and direction. This kind of analysis has been developed on the guidelines of

previous LIGO analysis (such as LSC (2004) and LSC (2005)). AURIGA provides

a list of candidate events obtained by the usual δ-matched filter. These events

work as triggers for a search of excesses of coherent power between the LIGO

interferometers in the full bandwidth of the detectors. This search is performed

(as usual for the LIGO collaboration) using CorrPower (see appendix A.1) a

MatLab code which implement a cross-correlation algorithm between the three

data stream of the LIGO observatories (Cadonati & Marka (2005)). Once im-

plemented, the detection efficiency of method 2 is estimated using Monte Carlo

simulations, by simulating the effects of a set of uniformly distributed sources

(with random polarization angles) on all the detectors. Using these injected sig-

nals it is possible to evaluate the efficiency of our search method. A more detailed

description of this method and the results it returns will be given in chapters 5

and 6.

The Joint Working Group decided to give priority to method 2 which, in

fact, has been implemented first. The collaboration agreed on the intention of

interpreting the results of this first joint analysis as a methodological study to

be considered as a guideline for future, longer runs. For this reason, any ex-

cess of candidate events, with respect to the expected accidentals, will be first

investigated as a possible hint of problems in the analysis procedure (namely
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in the estimation of the accidental coincidences) or as the presence of unknown

correlated noise.

3.3.1 Performances of the detectors during the coinci-
dence run

With respect to the previous scientific run S2, the upgrade of the LIGO detec-

tors can be summarized as a significant reduction of correlated noise between

the collocated LHO1 and LHO2 and a general better sensitivity achieved (see

figure 2.3). The main problems of the three detectors during the coincidence run

were: transient glitches (for the LHO1 detector) and low duty cycle (30%) for

LLO. Moreover, during the course of the run, the noise spectrum of LLO, in the

frequency range of AURIGA bandwidth, fluctuated by up to a factor 3. For the

Hanford observatories the duty cycles were: 77% for LHO1 and 66% for LHO2.

The period of total triple coincidence during S3 reaches 23%.

As extensively explained in section 2.3, during its second run the AURIGA

spectrum featured a lower sensitivity (on the dips) respect to its first run (1997-

1999) while the band was significantly enlarged (close to 100 Hz) (see figure 2.6).

Unfortunately, the AURIGA-LIGO coincidence run took place in the first phase

of the AURIGA data taking (December 2003 - January 2004, before setting up the

new external suspensions system) when the spectrum was still affected by several,

not fully understand, classes of noise lines. One of them produced 4 spurious

lines in band (see figure 3.1). The spurious peaks in the AURIGA band during

the coincidence run were not stationary, showing day-night variations related to

the human activities in the lab and nearby facilities. Usually they stand over

the modeled noise by one order of magnitude, and temporarily disappeared for

periods of about few minutes. In order to cope with the presence of these spurious

lines, AURIGA data analysis has been modified through an adaptive algorithm

capable to track their variation in amplitude and to whiten them. A Butterworth

notch-filter was used when this was not possible because of rapid variability of

the lines.

31



3. SCIENCE GOALS AND OVERVIEW OF GRAVITATIONAL
WAVE BURSTS SEARCHES

850 900 950 1000
Frequency [Hz]

1e-21

1e-20

1e-19

h(
f) 

[H
z-1

/2
]

LHO1 (Jan 4, 2004)
LHO2 (Nov 30, 2003)
LLO (Nov 13, 2003)
AURIGA (Dec 27, 2003)

Figure 3.1: Best single-sided sensitivity spectra for AURIGA (blue curve) and
the three LIGO interferometers during their first coincidence run, around the
sensitivity band of AURIGA (∼ 800− 1000 Hz). For LIGO (black, green and red
curves), these are typical spectra during the scientific run S3 while it needs to
be remarked that, during the coincidence run, LLO spectra was about 2-3 times
worse than in this picture. AURIGA spectrum is affected by some spurious lines
at 866.5, 877, 884, 909.5 and 935.5 Hz. In LIGO spectra the calibration lines
arevisible (973 Hz for the Hanford detectors and 927 Hz for Livingston). Both
the spurious and the calibration lines must be filtered by the analysis. (Figure
from Cadonati et al. (2005)).
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Figure 3.1 shows the four spectra of the detectors involved in the network.

In order to make a more direct comparison between the performances of each

detector during the coincidence run, it is useful to compare the response to the

same waveform, injected in each detector with the same signal-to-noise ratio. For

this purpose, let us consider a sine-Gaussian waveform (see also appendix B):

h(t) = h0 sin [2πf0(t− t0)] · e−
(t−t0)2

τ2 , (3.2)

where the central frequency has been fixed to f0 = 900 Hz (in order to be fully

included in the band of interest) and τ = 2/f0, corresponding to a quality factor

Q = 8.9. Now we impose to detect its with the same signal-to-noise ratio ρ = 1,

accordingly to the definition1:

ρ =

√√√√
4

∫ ∞

0

df

∣∣∣h̃(f)
∣∣∣2

S(f)
(3.3)

where h̃(f) is the Fourier transform of h(t) and S(f) is the single-sided power

spectral density of the noise, (Flanagan & Hughes (1998)). By definition, hrss is

the square root of the total burst energy:

hrss =

√∫ ∞

−∞
dt |h(t)|2 =

√
2

∫ ∞

0

df
∣∣∣h̃(f)

∣∣∣2 (3.4)

In figure 3.2 the minimum detectable amplitude hrss required to have signal-

to-noise ratio ρ = 1 (for the test waveform in equation 3.2) is shown as a function

of time. In this way it is possible to evaluate, for all the detectors in the network,

the actual live time of a measurement at a given threshold, and the stationarity

over the observed period.

From figures 3.1 and 3.2 the AURIGA detector might seem not to be of great

advantage in the global sensitivity of the network. In particular, from figure 3.2

we can roughly estimate the sensitivity of AURIGA to be 1/3 of the sensitivity of

LLO (the least sensitive, at these frequencies, between LIGO detectors) and of the

LIGO network as a whole. Despite the sensitivity considerations, the addition

of a fourth detector to the observatories of Hanford and Livingston improves

1This is the signal-to-noise ratio related to an optimal linear filter matched to the signal.
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Figure 3.2: Comparison between hrss (see equation (3.4)) of a 900 Hz Sine-
Gaussian (characterized by Q = 8.9 and ρ = 1, see equation 3.3) as seen by
AURIGA (blue line) and the three LIGO interferometers (respectively LHO1 in
black, LHO2 in green and LLO in red circles) during the coincidence run. (Figure
from Cadonati et al. (2005)).
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the analysis from several points of view. First of, all it results in a consistent

suppression of the false alarm rate of the network. As a second improvement, if

we require at least two or three operating detectors to perform the coincidence

analysis, adding a new observatory increases the effective observation time for the

analysis. Besides, a network with at least 3 detector sites gives the opportunity to

solve the so-called “inverse problem”; in fact the network AURIGA-LHO-LLO,

in simultaneous observation with different antenna patterns, provides enough

informations to fully characterize the incoming signal (two coordinates for the

directions and two independent polarizations). In the case of the AURIGA-LIGO

network, the overabundance of informations can be used as a physical consistency

test on the candidate events. In general, the addition of a detector with different

antenna pattern in a network results also in a better coverage of the sky. This is

not particularly significant in this specific case because of the low sensitivity of

AURIGA (as will be discussed in the next chapter 4).
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Chapter 4

Methodological considerations for
a network of non-homogeneous
detectors

In this chapter we propose 2 strategies to combine non-homogeneous detectors,

i.e. detectors with different directional sensitivities, or antenna patterns. The

definitions of the 2 strategies in (section 4.1) take into account only the geomet-

rical aspects of the detectors involved. In other words, only detectors type and

location have been considered, not their relative sensitivities.

As a practical illustration, we have applied both the methodologies to the

AURIGA-LIGO network. Here we will consider the 2 Hanford interferometers as

a single one (called LHO) because co-located, with the same antenna pattern and

very similar sensitivities. To be more realistic, in section 4.2, we have introduced

a scaling factor to weight for the lower sensitivity of AURIGA. From this section,

we neglect the simple case of circularly polarized signals and focus exclusively on

the linearly polarized case. The analysis of sky coverages will be completed by

considering a re-orientation of the bar.

In section 4.3 we address our investigation to the improvements of the sky

coverage when AURIGA is added to the pair LHO-LLO. Both the methodologies

introduced in section 4.1 are taken into consideration.
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4.1 Strategies to combine detectors with

different antenna patterns

The directional sensitivity of a detector depends on its orientation and its op-

erating principle. The output of gravitational wave detectors is converted in

equivalent strain at input heq assuming the most favorable direction and polar-

ization of the wave. The antenna pattern F is the scalar function which projects

the strain h of the incident wave to heq:

heq = F (θ, φ, ψ; t) · h (4.1)

|F (θ, φ, ψ; t)| ≤ 1 (4.2)

where the coordinates are: direction (θ and φ) and polarization (ψ) of the source

and time (t).

For both the resonant bars and the interferometric detectors, the dependence

on ψ is:

F (θ, φ, ψ) = A(θ, φ) cos(2ψ + δ(θ, φ)). (4.3)

In other words the antenna pattern of each detector is simply a sinusoidal func-

tion of the polarization angle ψ of the source with a phase δ depending on the

direction. For this reason, any gravitational wave detector can be considered a

linear polarizer. The function Fi depends on the source direction only through

the magnitude and the phase. The importance of δ will be introduced in next

sections. The magnitude A of equation 4.3 can be expressed as:

A =

√
(F+

2 + F×
2) (4.4)

where F+ and F× are the antenna patterns for the plus and cross independent

components of the polarization of heq:

heq = F+h+ + F×h×. (4.5)
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In equation 4.3 we described the general dependence of the antenna pattern

on ψ. To be more precise, F (θ, φ, ψ) will be written in different ways according

to the kind of detector considered:

F (θ, φ, ψ) =


Wkln

knl (bar)

1
2
Wkl(n

knl −mkml) (interferometer)
(4.6)

where n and m are the versors along the arms of the interferometer (n for the

bar) and W is the gravitational wave polarization tensor.

In a network coincidence analysis, in order to reconstruct the amplitude h

of the wave, the amplitude measured by any detector must be divided by its

F (θ, φ, ψ). This procedure has been extensively used by IGEC to implement a

directional search (Astone et al. (2003)).

In the IGEC method, the first step consisted in a data selection performed

by putting, on each detector, a threshold proportional to its F−1 for the target

direction and polarization. On the following sections, we will refer to this strategy

as the detector-threshold strategy. We will also propose an alternative strategy

(referred to as the product-threshold strategy), in which we will characterize the

directional sensitivity of a detector pair by means of the product of their antenna

patterns F1 and F2. This is the most natural choice in the case of a cross-

correlation search. In this case the reconstructed square of the wave amplitude

h2 is inversely proportional to F1 · F2.

In the following of this section we will analyze this second strategy and we

postpone to section 4.2 a comparison (through an example of network) between

detector-threshold and product-threshold strategies.

Let us reconstruct the product of directional sensitivities for the pair of de-

tectors 1 and 2. According to equation 4.3, F1 · F2 is written as:

F1(ψ) · F2(ψ) = A1 · A2 cos(2ψ + δ1) cos(2ψ + δ2)

= A1 · A2
1

2
[cos(4ψ + δ1 + δ2) + cos(δ1 − δ2)]. (4.7)

Now we apply to the pair of detectors AURIGA and LHO the detector thresh-

old and product threshold strategies. The first thing we need is the magnitude of
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the antenna pattern for each one of the 2 detectors, evaluated as in equation 4.4.

The magnitudes A1 and A2 (for our example) are shown in figure 4.1. In the

next subsections 4.1.1 and 4.1.2 we will focus on the importance of the relative

phase shift δ1−δ2 of equation 4.7 and the way it affects the sensitivity of the pair

according to the polarization of the incoming signal.
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Figure 4.1: On the top: the magnitude A of the antenna pattern of AURIGA is
shown respect to all the directions in the sky. On the bottom: the magnitude A
of the LHO antenna pattern.

4.1.1 The case of linear polarization

Linearly polarized signals, by definition, are characterized by a polarization ψ

which doesn’t vary with time.

Let us consider again the pair of detectors AURIGA-LHO. To define the

product of their antenna patterns we must combine (according to equation 4.7)
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the magnitudes A shown in figure 4.1 and their phases δ1 and δ2 (in figure 4.2

one can see the difference δ1 − δ2). Both magnitude and phase depend on the

direction of the source. Moreover, F1 · F2 is also modulated by the polarization

signal ψ. For different values of ψ we get different sky coverages and, for each

direction, there is a ψ for which F1 ·F2 nulls. To get a single representative picture

of all the possible coverages, the absolute value of the product F1 · F2 has been

averaged over all the ψ. In figure 4.3 the result of 〈|F1 · F2|〉ψ is shown for the

pair of detectors in our example (AURIGA and LHO).

If we are interested in the sky coverage guaranteed by the single detectors

AURIGA and LHO, the absolute value of their antenna pattern (|F |) must be

averaged over ψ, see figure 4.4.

4.1.2 The case of circular polarization

Now we want to evaluate the product in equation 4.7 with respect to the other

extreme case of signal polarization: the circular polarization.

A circularly polarized signal is, by definition:(
h+

h×

)
= h(t)

(
cos(2ψ)
sin(2ψ)

)
(4.8)

where h+ and h× are the 2 independent components of wave amplitude. The

polarization ψ can be written as:

ψ = 2πf0t (4.9)

where f0 is the rotation frequency of ψ and t is the time. If we assume that

the amplitude h(t) of the incoming wave is varying on time-scales longer than

1/f0 (i.e. if h(t) can be considered constant during the period of ψ) we can state

that the amplitude h, measured by two detectors in product-threshold strategy,

is simply the product of the magnitudes of their antenna patterns. In fact, the

relative phase δ1 − δ2 results in a spurious time shift ∆t (see Gursel & Tinto

(1989)) which can be written as:

∆t =
δ1 − δ2
2πf0

(4.10)
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Figure 4.2: In this figure the absolute value of the difference δ1 − δ2, for the pair
of detectors AURIGA-LHO, is shown for each direction in the sky.

 0  0.2  0.4  0.6  0.8  1

2π3π /2ππ /20
-1

-0.5

 0

 0.5

 1

S
in(declination)

Right ascension [rad]

Figure 4.3: This is the result of the average, over all the polarizations, of the
product |F1 · F2| for the pair of detectors AURIGA-LHO. This product fully
corresponds to the integration over ψ, of the absolute value of equation 4.7 and
represents the right procedure to multiply the 2 antenna patterns when the signal
is linearly polarized. In the case of linearly polarized signal with polarizations
isotropically distributed, this pattern represents the sky coverage of the network.
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Figure 4.4: On the top: for each direction in the sky, the value of the AURIGA
antenna pattern has been averaged over all the possible polarizations (〈|F1|〉ψ).
On the bottom: the same but evaluated for the Hanford interferometers (〈|F2|〉ψ).
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Its maximum value is:

|∆t| = 1

4f0

(4.11)

For a detector which works around 1 kHz this shift can reach 0.25 ms.

Hence, neglecting the contribution of the phase difference, the product of the

antenna pattern of AURIGA and LHO is simply the product of the 2 magnitudes

shown in figure 4.1 and it doesn’t depend on ψ (see figure 4.5):

F1 · F2 = A1 · A2 (4.12)

It is worth to notice that there is a slight difference between the sky coverage

guaranteed by the pair LHO-AURIGA in the case of linearly polarized signal

(figure 4.3) and in the case of circularly polarized signal (figure 4.5).
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Figure 4.5: This is simply the product of the magnitudes of the antenna patterns
for the two detectors AURIGA and LHO. This product correspond to the right
procedure to multiply the two antenna patterns in the case of circularly polarized
signal and gives the sky coverage in that particular situation.

4.2 The sky coverage of the network AURIGA-

LHO-LLO

In this section we make a comparison between the product-threshold strategy

and the detector-threshold strategy (introduced in section 4.1) by analyzing the
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sky coverage guaranteed by the same detectors with respect to linearly polarized

signals. In fact, this is the most tangled case and final considerations on the

network can be completed by considering the re-orientation of the bar. As an

example, we will consider all the detectors involved in the AURIGA-LIGO data

exchange.

In order to give more realistic coverage estimations, we have added to the

geometrical considerations an “handicap factor” to decrease the sensitivity of

AURIGA respect to the LIGO observatories. This has been done by means of

a scaling factor 1/3 applied to the antenna pattern of AURIGA. In doing so we

have simulated the configuration of a network where the 2 LIGO are 3 times more

sensitive than AURIGA. The particular scaling factor introduced in this analysis

is motivated by the sensitivities shown in figure 3.2.

4.2.1 The product-threshold strategy

As explained in section 4.1, the product threshold strategy requires thresholding

the product of the detectors’ antenna patterns.

In the case of a 3-detectors network, we decided to threshold all the possible

pairs (2-fold coincidences), in order to maximize the sky coverage. Hence, in

a product-threshold strategy, we calculate the sky coverage guaranteed by the

network in 2-fold coincidence by imposing that (at least) one of the three products

of pairs of antenna patterns is above a fixed threshold. A scalar which summarizes

the sky coverage over all the directions (θ, φ) is simply the integration:

α =
1

2

∫
d(sin θ)

1

2π

∫
dφ

⋃
i,j; i6=j

(∫
Fi·Fj>threshold

dψ

)
(4.13)

For the present orientation of AURIGA (44 degs, clockwise from North) the sky

coverage of the AURIGA-LHO-LLO network is α = 0.5386 (if we take a threshold

of 0.1) and α = 0.9562 (if we take a threshold of 0.01).

If we want to investigate if this coverage would be better by rotating the bar,

we must repeat the same requirements as before but changing the azimuth of

AURIGA in the formula of its antenna pattern. We get the results summarized

in table 4.1.
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Azimuth (degs) Threshold at 0.1 Threshold at 0.01

10 0.5515 0.9630
20 0.5485 0.9601
30 0.5429 0.9564
40 0.5391 0.9566
50 0.5390 0.9552
60 0.5435 0.9527
70 0.5494 0.9532
80 0.5554 0.9514
90 0.5653 0.9486

100 0.5669 0.9495
110 0.5641 0.9537
120 0.5586 0.9574
130 0.5504 0.9611
140 0.5434 0.9653
150 0.5422 0.9657
160 0.5444 0.9661
170 0.5458 0.9653
180 0.5474 0.9644

Table 4.1: On the first column all the considered values of azimuth for the
AURIGA detector are shown. The second column indicates the coverage (in
the product-threshold sense) guaranteed by pairs of detectors in the network
AURIGA-LHO-LLO over the threshold 0.1. On the third column: the same
coverage (α) but referring to threshold 0.01. All these values refer to linearly
polarized signals.
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From table 4.1 we deduce that it is not of great relevance the orientation of

the bar for this kind of search: the coverages are all very close.

4.2.2 The detector-threshold strategy

The second strategy introduced in section 4.1 is the so called detector-threshold

strategy. In this case the antenna pattern of all the detectors must singularly be

above a fixed threshold. In what follows, the thresholds have been chosen to be

comparable with the ones applied in the product-threshold strategy, i.e. they are

the square root of 0.1 and 0.01 (0.3 and 0.1). Considering the square root of the

product thresholds allows only a first order comparison of the sky coverages in

the 2 strategies. A complete comparison would require to completely specify each

network analysis, to be able to take into account the detection efficiency and the

false alarms. Here we limited our investigation on the effect of the directional

sensitivity alone, neglecting the noises introduced by the detectors.

Of course, we expect that the sky coverage of the detector threshold strat-

egy be smaller than the ones in section 4.2.1 because now we require a 3-fold

coincidence.

The lower sensitivity of AURIGA is taken into account, as usual, by multi-

plying its antenna pattern by a factor 1/3. This, obviously, makes the threshold

0.3 not particularly significant: the maximum value AURIGA can take is 0.33.

The fraction of sky covered by a network, in the detector-threshold sense, must

be defined as the average, over all the directions, of the fraction of polarizations

simultaneously seen by all the detectors. Here, with the term “seen”, we mean

the antenna pattern of the detector must be above a predefined threshold.

We will analyze here the 3-fold coincidence, in detector-threshold sense, be-

tween AURIGA, LHO and LLO. For the present orientation of AURIGA (44

degs, clockwise from North), the sky coverage of this network is 0.4582 with a

threshold 0.1.

In the following table 4.2 the fractions of sky covered by the 3 detectors

(averaged over all directions and polarizations), are shown for different values of
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AURIGA azimuth and the thresholds 0.3, 0.1 and 0.01.

Azimuth (degs) Threshold at 0.3 Threshold at 0.1 Threshold at 0.01

10 0.0220 0.4321 0.9111
20 0.0275 0.4417 0.9114
30 0.0356 0.4493 0.9114
40 0.0450 0.4562 0.9118
50 0.0497 0.4586 0.9112
60 0.0478 0.4562 0.9111
70 0.0410 0.4489 0.9110
80 0.0357 0.4393 0.9108
90 0.0306 0.4360 0.9112

100 0.0267 0.4356 0.9109
110 0.0226 0.4353 0.9104
120 0.0238 0.4380 0.9103
130 0.0283 0.4385 0.9110
140 0.0323 0.4338 0.9110
150 0.0302 0.4334 0.9104
160 0.0248 0.4297 0.9108
170 0.0203 0.4249 0.9107
180 0.0187 0.4262 0.9104

Table 4.2: In the first column all the considered azimuth are shown. In the
second one the fraction of the sky (averaged over all directions and polarizations)
covered (in the detector-threshold sense) by the three detectors LHO, LLO and
AURIGA is shown for linearly polarized signals. We have required that all the
antenna patterns are simultaneously above a threshold of 0.3. (This column is
not particularly significant: in fact, because of the handicap due to its lower
sensitivity, AURIGA can reach, as a maximum value, only 0.33). In the third
column the same is shown for a threshold at 0.1. The fourth column (threshold
at 0.01) has been added to show that, to significantly improve the efficiency, we
have to lower the threshold to few percent of the antenna pattern. We don’t
notice a great difference in reorienting the bar.

From table 4.2 it’s possible to notice that there is not a great difference in the

detection efficiency for different azimuths. Like in the previous strategy, we must

conclude that it is not of any advantage re-orienting the bar.
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4.3 Contribution of AURIGA to the network

In this section we will focus on the contribution to the sky coverage given by

AURIGA and we will discuss how the sky coverage of the pair LHO-LLO changes

after introducing the bar. We will analyze the problem from the different points

of view of the product-threshold and the detector-threshold strategy. Also in this

section the only class of considered signals is that of linearly polarized signals.

4.3.1 The product-threshold strategy

Let us consider the 2 networks: LHO-LLO and LHO-LLO-AURIGA. We choose,

as a strategy of detection, the product-threshold strategy (i.e. to be above a

certain threshold with the product of the antenna patterns). We want to compare

the sky coverage of the first and the second network with the requirement of

considering double coincidence detections. In other words, in the case of LHO-

LLO we simply require that the product of the 2 antenna patterns is above the

chosen threshold, and in the case of LHO-LLO-AURIGA we require that at least

one of the three products (between the possible pairs LHO-LLO, LHO-AURIGA

or LLO-AURIGA) is above the same threshold. If we assume an homogeneous

distribution of source polarizations, we can interpret this result as the fraction of

polarizations “seen” by the network with respect to each direction.

To make this comparison, we have taken into account the different sensitivity

of the bar with respect to the interferometers: the antenna pattern of AURIGA

is considered, as before, with an handicap of 1/3.

In figure 4.6 the product-threshold has been applied to LHO-LLO. Now, we

recall the definition of α (see equation 4.13) which gives an average (over all

the possible directions and polarizations) of the fraction of sky seen by a pair of

detectors (with respect to a particular threshold). For LHO-LLO, if we take a

threshold of 0.1 (top figure of 4.6) this integration gives α = 0.5206, if we take a

threshold of 0.01 it returns α = 0.8658 (bottom figure of 4.6).

In figure 4.7 the product-threshold has been applied to the possible pairs in

the network LHO-LLO-AURIGA. The values of α in this configuration are the

same anticipated in section 4.2.1 (i.e. α = 0.5386 for a threshold of 0.1 and

α = 0.9562 for a threshold of 0.01).
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By comparing figure 4.6 and 4.7 we notice that: the improvement of the sky

coverage obtained by adding AURIGA is not visible if we require to be above

a threshold of 0.1 by at least one product of antenna patterns. The situation

improves if we lower the threshold to 0.01: in this case the addition of the AU-

RIGA detector, improves the “view” of the network with respect to almost all

the directions. However, it is worth to notice that the sky coverage of LHO-LLO

was already very high and this improvement is generalized in the sky but, on the

average, limited to few percent of the fraction of visible polarizations.
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Figure 4.6: Fraction of polarizations seen by the pair LHO-LLO in the case of
product-threshold: the product of the 2 antenna patterns of LHO and LLO is
requested to be above a certain threshold. The fraction of polarizations which
respects this requirement is plotted for each direction. On the top: threshold
at 0.1. On the bottom: threshold at 0.01. The two interferometers have been
considered with the same sensitivity.
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Figure 4.7: Fraction of polarizations seen by (at least!) one of the three possible
pairs of detectors we can form with LHO, LLO and AURIGA in the case of
product-threshold strategy. The threshold is put on the 3 possible products of
pairs of antenna patterns, and we require that at least one of them is above the
threshold. This gives us the fraction of polarizations seen in each direction in
the case of homogeneous distribution of polarizations. As in figure 4.6: on the
top: threshold at 0.1; on the bottom: threshold at 0.01. For this plot AURIGA
has been weighted with a factor 1/3 to take account of its lower sensitivity with
respect to the interferometers.
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Now, it is interesting to inquire into the exact contribution given by the AU-

RIGA detector to the plot of figure 4.7. In particular, we want to calculate the

portion of the sky seen by at least one of the pairs LHO-AURIGA LLO-AURIGA

while LHO-LLO is not sensitive.

We have calculated that, for the present orientation of AURIGA, the frac-

tion of the sky (averaged over all the polarizations and directions) for which at

least one of the two pairs AURIGA-LHO and AURIGA-LLO is sensitive (in the

product-threshold sense) while the pair LHO-LLO is not is about α = 0.0180 for

a threshold at 0.1, and about α = 0.0904 for a threshold at 0.01.

We can expect an improvement of these numbers if we tune opportunely the

orientation of AURIGA. For this reason, it is of main importance to study how

the joint coverage of AURIGA-LHO and AURIGA-LLO changes in rotating the

bar.

For the present orientation of AURIGA (44 degs, clockwise from North), the

fraction of the sky (averaged over all polarizations and directions) for which (at

least!) one of the pairs AURIGA-LHO and AURIGA-LLO is sensitive (in the

product-threshold sense) is about α = 0.2474 in the case of threshold at 0.1, and

about α = 0.8362 if the threshold is at 0.01. If we want to see how α changes by

rotating the bar, table 4.3 shows us the different coverages (referring to several

azimuths) for the same thresholds.

From table 4.3 we notice that, if we reorient the bar, it is possible to improve

the detection for threshold 0.1 only by a factor 1% (the best azimuth is about

60◦), while if we put the threshold to 0.01, the better azimuth (about 160◦) gives

an improvement of about 3%. Because of these results, once again, we do not

consider reorienting a convenient strategy.

4.3.2 The detector-threshold strategy

Now we change the strategy of detection and we require that the antenna pattern

of each single detector in the network is simultaneously above the same threshold

(here AURIGA is considered with the same handicap of 1/3 of section 4.3.1 and

figures therein). The thresholds taken into account have been chosen to be the
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Azimuth (degs) Threshold at 0.1 Threshold at 0.01

10 0.2053 0.8534
20 0.2176 0.8488
30 0.2263 0.8438
40 0.2417 0.8378
50 0.2528 0.8341
60 0.2545 0.8359
70 0.2469 0.8371
80 0.2346 0.8377
90 0.2239 0.8374

100 0.2166 0.8415
110 0.2127 0.8469
120 0.2111 0.8510
130 0.2110 0.8542
140 0.2069 0.8564
150 0.2025 0.8593
160 0.1961 0.8608
170 0.1908 0.8597
180 0.1924 0.8565

Table 4.3: In the first column all the considered azimuths are indicated (with
a step of 10◦). In the second one, the fraction of the sky (averaged over all
polarizations and directions) for which at least one of the products of the antenna
pattern LHO-AURIGA LLO-AURIGA is above the threshold 0.1 is indicated. In
the third column: the same but with threshold at 0.01.
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square root of the ones applied in section 4.3.1 (as in the previous sections). Once

again we consider linearly polarized signals.

Figure 4.8 shows the sky coverage guaranteed by the pair LHO-LLO if we

require that both their antenna patterns are above the threshold 0.3 (on the

top) or 0.1 (on the bottom). Figure 4.9, instead, refers to the whole network

LHO-LLO-AURIGA. Obviously the first threshold is not very significant: the

sky coverage respect to a threshold 0.3 appears dominated by the shadow-zones

of AURIGA because we have lowered its antenna pattern of 1/3, so its maximum

value is now 0.33. The sky coverage referring to threshold 0.1 appears to be

worse than the same threshold on figure 4.8 (0.4582 versus 0.7537) but we have

to remind that, in the case of triple coincidence between three detectors, we have

gained, for those regions in the sky, a better confidence of detection. In other

words a search of this kind is not aimed to get a better sky coverage but to

improve the false alarm rate.

Concluding, in this chapter we estimated the sky coverage of different network

analysis strategies as applied to the AURIGA-LIGO network. Even though our

estimations were based only on the directional sensitivity of the detectors, we

can conclude that the AURIGA/LIGO-Hanford (LHO) and the AURIGA/LIGO-

Livingston (LLO) pairs do not offer a significant improvement on the sky coverage

of the LHO-LLO pair. This occurs mostly because the AURIGA sensitivity has

been assumed 1/3 of the LIGO sensitivity. For this reason we cannot list a better

sky coverage among the advantages of adding AURIGA to the LHO-LLO network.

Nevertheless, AURIGA helps in the reduction of the network false alarm rate (in

particular there is a significant portion of the sky seen by the 3-fold coincidences,

see figure 4.9), it improves the statistical confidence of a possible detection and

gives the possibility to solve the “inverse problem” and localize a source.
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Figure 4.8: Fraction of polarizations seen by the pair LHO-LLO accordingly to
a detector-threshold strategy: the threshold has been put on the single antenna
patterns and we require that all satisfy the request to be above its. Top: threshold
at 0.3; bottom: threshold at 0.1. These threshold have been chosen so that
0.3 '

√
0.1 and 0.1 =

√
0.01, and we can roughly compare this plot with those

of section 4.3.1.
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Figure 4.9: Fraction of polarizations seen by the network LHO-LLO-AURIGA in
the detector-threshold sense: the requirement in this case is that all the antenna
patterns of the three detectors must be above a threshold. In AURIGA, an
handicap factor of 1/3 has been introduced. Top: threshold at 0.3; bottom:
threshold at 0.1.

56



Chapter 5

Preliminary steps to the joint
data analysis AURIGA-LIGO

This chapter starts describing the criteria used to select the joint observation time

for the first AURIGA-LIGO joint analysis. All data quality assessments (applied

independently by the two collaborations) are also presented in section 5.1.

The role of AURIGA in this analysis has been to provide the triggers for a

wide-band cross-correlation analysis within the LIGO interferometers. To pro-

duce the triggers list, the AURIGA collaboration has been forced to modify the

implemented AURIGA data analysis pipeline (ada) to take into account several

noises featured by the spectrum during the coincidence run. A description of the

analysis pipeline is given in section 5.2.

After the release of the triggers, the list has been processed in order to select

only the events falling within the LIGO observation time (see section 5.3). The

procedure has been repeated on a series of “off-source” data sets, built by time-

shifting the LIGO data stream, with the purpose to get a representative set for

tuning the analysis and estimate the rate of accidental coincidences in the not-

shifted data set.

The subsequent step of the analysis, described in section 5.4, consists in a

wide-band cross-correlation search performed on LIGO data around each trigger.

First, all the “off-source” data sets have been processed. Then, once tuned and

frozen the analysis as described in the next chapter, also the “on-source” data

set has been analyzed.

57
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5.1 Joint observation time

The first AURIGA-LIGO joint data taking covered the period from GPS time

756299212 to GPS time 757698029, with a total coincident run of 1398806 s

(∼ 388.6 h). This number takes into account just the superposition of LIGO

run S3 (October 31, 2003 - January 9, 2004) and AURIGA run 331 (December

24, 2003 - January 13, 2004). Losses of lock (from LIGO side) and periods of

operation in non-scientific mode (from both sides) are not taken into account in

this number.

Before proceeding in the analysis, we have chosen to set aside a bench data set

(called playground) to test the pipeline and the code in its first implementation. In

order to avoid biases in the final results, the collaborations agreed to “sacrifice”

this small subset of data (∼ 10% of the whole data set) and exclude it from

the final search. A detailed description of the criteria to select a representative

playground will be given in section 5.1.1.

Next, a series of data quality assessments has been separately applied by

the 2 collaborations before realizing the data exchange (as will be described in

sections 5.1.2 and 5.1.3).

After the playground removal and the application of data validation criteria,

the observation time of the network in quadruple coincidence resulted about 36

h. The triple coincidence AURIGA-LHO1-LHO2 has also been analyzed (other

triple coincidence configurations were not considered, mostly because during S3

the Livingston interferometer featured the lowest duty cycle). The observation

time in 3-fold coincidence (after playground and vetoes removals) reduces to 110

h (as summarized in table 5.3 of section 5.1.4). Of these, only the 74 h not yet

analyzed as quadruple coincidence have been considered.
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5.1 Joint observation time

5.1.1 Playground selection and data subsets used for tun-
ing the analysis

The use of a playground data set to test codes and pipelines is a strategy already

used by the LIGO collaboration (e.g. LSC (2004), LSC (2005)). To be able to

perform significant tests on the data analysis pipelines, the playground should be

representative of all the features of the complete data set (such as non modelled

noise, non stationary behavior, etc.). In this analysis, playground selection fol-

lowed the definition used for the LIGO run S3 (Finn (2003)). The playground

has been obtained by the rule:

T := {[tn, tn + 600) : tn = 729273613 + 6370n, n ∈ Z} (5.1)

where 729273613 is the GPS start time of the previous LIGO run S2. Equa-

tion 5.1, in fact, has been inherited from the definition of playground used for S2.

Time segments obtained from equation (5.1) can be considered a representative

sample of S3 data and, in the same way, the intersection of the LIGO playground

time with the AURIGA observation time gives a representative playground for

the quadruple coincidence analysis. The intersection of LIGO playground with

AURIGA livetime gives a test data set of 36.7 h (∼ 9.4% of the whole run, see also

table 5.3). The extraction of playground time segments from the LIGO full data

set has been performed by the tool segwizard of LIGOtools (see the LIGOtool

web page).

Typically, the playground data set is exploited to set thresholds and tune

the analysis before applying it to the remaining data set. This is important to

prevent any a-posteriori choice in the analysis procedure which could jeopardize

the statistical interpretation of the results. In our work, we used the playground

data not only for a preliminary tuning of the analysis procedures but also for

debugging the data analysis procedures. In fact, thanks to this exercise, we have

been able to spot a code problem in drawing results.

After this initial step of tuning and debugging of the data analysis procedures,

we have discarded the playground data set and decided to perform the final tuning

of the analysis parameters (e.g. setting final thresholds etc.) on the remaining

data. This has been accomplished by using the off-source instantiations of the
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complete data set obtained by time shifting the data series of the LIGO detectors

with respect to each others (for a more detailed description see chapter 5.3).

Data from the playground have not been used for the final analysis, where

only the remaining dataset (non-playground) has been analyzed.

5.1.2 AURIGA data quality selection

In principle, assuming Gaussian statistics, the AURIGA noise should be perfectly

modelled by an analytic function expressed by a product of poles and zeroes. How-

ever, external non-modelled noises take part in affecting the detector sensitivity,

as described in section 2.3. This environmental noise results in spurious lines and

in a series of burst electromagnetic disturbances (referred to, in the following, as

wide-band events). In order to overcome these problems, three main phases of

vetoes have been implemented in the AURIGA data quality procedure: the first

level vetoes, the anti-coincidence vetoes and the second level vetoes.

Periods of non-operation or maintenance vetoes belong to the first class of

vetoes. None of these occurred during the coincidence run, since AURIGA took

data continuously from December 24, 2003 to January 9, 2004.

However, during the coincidence run, data were significantly affected by wide-

band transients. AURIGA is a resonant detector sensitive only in the 850-950 Hz

range. None of the signals which deposit energy outside this bandwidth can be

considered as a candidate event. Moreover, four sub-bands outside the AURIGA

bandwidth (605-645 Hz, 655-685 Hz, 705-745 Hz and 755-795 Hz) have been

continuously monitored to detect any excess of energy (with respect to a certain

threshold) caused by the wide-band events. An anti-coincidence check has been

implemented to veto the corresponding events detected in the sensitivity band,

which can be considered as effects of wide-band electromagnetic spikes. This

mechanism has also allowed to veto a great number of triggers due to other

effects in band. In fact, most of the spurious lines featured by the AURIGA band

during run 331 (see chapter 5.2) had a significant tail in the four sub-bands and

the events they produced can be recognized by monitoring those frequencies. The
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5.1 Joint observation time

number of candidate triggers vetoed using the wide-band check was about 30%

of the total amount, while the loss in observation time was only 4%.

Second level vetoes applied to run 331 were those referring to non-Gaussianity

of data (revealed by some quality monitors) or degraded detection efficiency. The

whole run was divided in 579 time segments (each one of 2415.9 s 1). On each

time segment, software-injected signal (with a rate of 25 s−1 and a signal to noise

ratio randomly distributed between 5.5 and 7.5) were introduced and searched by

the AURIGA Data Analysis (ada), while an empirically-tuned algorithm selected

“good” and “bad” segments, to keep or reject them. The validation criteria

applied were the following: for each segment, the SNR distribution of the found

events was evaluated; mean and sigma (m1 and m2) of the SNR distribution were

evaluated for each time segment and compared to the mean values (M1 and M2)

and RMS (σM1
and σM2

) evaluated over all the segments. If m1 or m2 resulted

at more than 3 sigmas from their mean values, the segment was rejected by a

Chauvenet algorithm and the procedure was repeated recursively on the others.

At the end, all the segments respecting the requirements:

Abs
(
m1 −M1

)
≤ 3 · σM1

Abs
(
m2 −M2

)
≤ 3 · σM2

(5.2)

were kept.

As a final condition, a cut has been applied to the segments with much lower

efficiency by requiring (for SNR ≥ 4.5):

Efficiency ≥ 1
3
. (5.3)

As a result of criteria (5.2) and (5.3), 58% of the segments survived the cuts

and have been considered for the data exchange.

1the length of the segments has been chosen to minimize bias effects from the model esti-
mator tool. With longer segments we were unable to follow instabilities; with shorter segments
we did not collect enough statistics for the estimations.
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5.1.3 LIGO data quality selection

The first step in LIGO data quality validation has been performed on line in the

control rooms of the Hanford and Livingston observatories. Here the scientific

responsible defined science mode only those data streams which passed a certain

number of figures of merits. Data passing this step were stored into series of

non-overlapping time segments with extremes rounded off to integer seconds.

Next data quality selection consisted in the application of a data quality flags set

released by the LSC (LIGO Scientific Collaboration) Detector Characterization

team (for the following analysis, version 05 of January 25, 2005 has been used,

see for instance the LIGO Segment data quality repository on the web). These

flags are associated to segments of data characterized by noise of known (or

recognized) nature (e.g. seismic anomalies or calibration lines). After the release

of the adopted version of data quality flags, the LSC found still a correlation

between the gravitational channel and some auxiliary channels. For this reason

care has been taken to extend by 1 minute both the extremes of seismic vetoes

flags. All the applied flags (and the final rejected time associated to each one of

them) are listed in table 5.1 (for the LHO1-LHO2-LLO coincidence) and table 5.2

(for the LHO1-LHO2 coincidence). The extraction of “good” segments from the

full data set or from the non-playground data set has been done using the tool

segwizard of LIGOtools (see the LIGOtool web page). The extensions of 1

minute to the end and the beginning of some flags has been performed by a shell

script1 based on LIGOtool segments v1.8.

5.1.4 AURIGA-LIGO: livetime of quadruple and triple
coincidence

After the playground removal described in section 5.1.1, we reduced the total

observation time from 388.6 h to 351.9 h with a playground of about 36.7 h

(see table 5.3). During these 388.6 h, AURIGA livetime after vetoes resulted

190.6 h. After applying the LIGO validation criteria described in section 5.1.3,

the LHO1-LHO2-LLO livetime resulted 61.4 h while the LHO1-LHO2 livetime

resulted 132.0 h.

1subtract time lists, see the Handbook for the 1st LIGO-AURIGA analysis tools.
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Flag Affected IFOs Extension Vetoed time

OUTSIDE S3 H1 H2 L1 2396 s (0.25 %)
UNLOCKED H1 H2 L1 468 s (0.05 %)
PRELOCKLOSS 10 H1 H2 L1 4309 s (0.45 %)
DAQ OVERFLOW H1 H2 L1 12927 s (1.35 %)
INVALID TIMING H1 H2 35349 s (3.69 %)
LIGHTDIP H1 H2 L1 589 s (0.06 %)
CALIB LINE V03 H1 H2 L1 23191 s (2.42 %)
FE SYNCH ERROR L1 2071 s (0.22 %)
ACOUSTIC ELEVATED H1 H2 ±60 s 3611 s (0.38 %)
AIRPLANE H1 H2 L1 ±60 s 16685 s (1.74 %)
SEISMIC ELEVATED H1 H2 ±60 s 26973 s (2.82 %)
SEISMIC HIGH H1 H2 ±60 s 1401 s (0.15 %)
SEISMIC TRANSIENT H1 H2 ±60 s 1184 s (0.12 %)
DUST H1 H2 L1 154846 s (16.18 %)

Table 5.1: List of data quality flags used in the selection of LIGO S3 data for the
AURIGA-LHO1-LHO2-LLO burst search. In the first column the flags applied
to reject data. The second column shows which interferometer was affected by
each one. The third column specifies which flag was extended (of 60 seconds to
both the extremes) because of recognized transient environmental disturbances.
The last column reports on the livetime loss associated to each flag in S3 data
(all times refer to full data set, the playground removal was not applied).

Flag Affected IFOs Extension Vetoed time

OUTSIDE S3 H1 H2 13458 s (0.41 %)
UNLOCKED H1 H2 694 s (0.02 %)
PRELOCKLOSS 10 H1 H2 6923 s (0.21 %)
NO DATA H1 H2 595 s (0.02 %)
NO RDS H1 H2 659 s (0.02 %)
DAQ OVERFLOW H1 H2 2836 s (0.09 %)
INVALID TIMING H1 H2 62300 s (1.88 %)
LIGHTDIP H1 H2 220 s ( 0.01 %)
CALIB LINE V03 H1 H2 58894 s ( 1.78 %)
ACOUSTIC ELEVATED H1 H2 ±60 s 11668 s ( 0.35 %)
AIRPLANE H1 H2 ±60 s 22827 s ( 0.69 %)
SEISMIC ELEVATED H1 H2 ±60 s 141059 s ( 4.26 %)
SEISMIC HIGH H1 H2 ±60 s 10361 s ( 0.31 %)
SEISMIC TRANSIENT H1 H2 ±60 s 635 s ( 0.02%)
DUST H1 H2 244409 s ( 7.38 %)

Table 5.2: Same of table 5.1 but referring to the LHO1-LHO2 coincidence used
for the burst search with the network AURIGA-LHO1-LHO2.
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If we restrict the observation time to the coincidence AURIGA-LIGO, the ob-

servation time after playground and vetoes removals was 36.0 h for the quadruple

coincidence AUR-LHO1-LHO2-LLO and 110.0 h for the triple coincidence AUR-

LHO1-LHO2. Of these, we have considered only 74.0 h, i.e. only the time not

previously analyzed as “quadruple coincidence”. The final livetimes used for the

analysis of quadruple and triple coincidence are listed in table 5.3.

Coincident Run 1398806 s 388.6 h

Playground 132000 s 36.7 h
After playground removal 1266806 s 351.9 h

After AURIGA epoch veto (exchanged triggers): 686049 s 190.6 h
LHO1-LHO2-LLO triple-coincidence (with DQ flags): 221027 s 61.4 h
LHO1-LHO2 double coincidence (with DQ flags): 475201 s 132.0 h

AUR-LHO1-LHO2-LLO: 129699 s 36.0 h
AUR-LHO1-LHO2: 266544 s 74.0 h

Table 5.3: Observation times for the LIGO observatory, the AURIGA detector
and the two network configurations AURIGA-LHO1-LHO2-LLO and AURIGA-
LHO1-LHO2. All the observation times are computed after playground removal.
The time budget of the configuration AURIGA-LHO1-LHO2 is obtained af-
ter removing the time segments already analyzed for the quadruple coincidence
AURIGA-LHO1-LHO2-LLO.

5.2 The AURIGA triggers

Since the role of the resonant detector in the first AURIGA-LIGO joint analysis

was to provide the triggers for the LIGO observatories, the AURIGA collabo-

ration was forced to solve problems related to periods of large environmental

disturbances in its data.

In fact, run 331 occurred during the first data taking after the hardware

upgrade of the previous years (Bignotto et al. (2005), Zendri et al. (2003),Baggio

et al. (2005)) but before the new suspensions setup was installed (as explained in

section 2.3.2). The appearance of unexpected excess noise (see figure 5.1), due to

the increase of the bandwidth, forced the AURIGA team to modify the AURIGA
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data analysis (ada) in order to cope with several “families” of spurious lines (see

Fattori (2004)). All the spurious lines present in the AURIGA sensitivity band

in that period can be reported to these main families of noise:

1. The first class of spurious lines can be clearly identified in figure 5.1 and is

represented by 5 lines in the detection band: 866.6 Hz, 877.1 Hz, 883.9 Hz,

909.8 Hz and 935.7 Hz. These lines (all strongly correlated and character-

ized by the same peculiarities) were always present in the sensitivity band

for all the duration of run 331 (except for short periods of minutes). Their

amplitude was clearly related to human activities and featured an evident

“day-night” effect. Their frequency was found to be slightly dependent on

the amplitude. Sometimes, the presence of the line at f0 = 909.8 Hz was

coupled to the appearance of some other peaks regularly spaced at its sides

with frequencies fn following the rule:

fn = (f0 + n× 5.26)Hz (5.4)

with n = ±1 or ±2. A correlation between the appearance of these lines

and an excitation of low-frequency lines (around 20 Hz), typical of the

suspensions, has been observed. For this reason, the current interpreta-

tion connects these phenomena to up-conversions in band of seismic noise

through non-linear terms in the suspension dynamics.

To white raw data from this class of noise, the 5 spurious lines have been

fitted as Lorentzian modes and their contributions have been subtracted to

the noise spectrum model (see figure 5.1). Nevertheless, sometimes the non-

stationarity of these lines was faster than the capability of the algorithm to

track their fluctuations. In these cases, whitening of data became very hard

and an excess of non-modeled noise “dirtied” the list of candidate events

with clusters of non-Gaussian events.

2. The spectrum in band featured the presence of a second important class of

noise which must be taken into account to get a reliable whitening of the

raw data set. The lines of this family (867.9 Hz, 870.5 Hz, 900.2 Hz, 943.9

Hz, 946.6 Hz, 962.1 Hz and 967.6 Hz) shared with the previous family a
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“day-night” effect but differed because of frequencies which did not vary

with time. Because of the stable frequency, in the phase of whitening data

these lines have been treated with a narrow band cut around the frequency

of interest.

Besides, there was another class of noise which cannot be whitened with the

strategies described above, the wide band transients : disturbances of short du-

ration (less than 20 ms) which deposited most of their energy outside the sensi-

tivity band. These transients were consistent with an impulsive electromagnetic

excitation at the transducer. The spurious bursts produced in band by these

phenomenas could be rejected from the list of candidate triggers only by means

of the anti-coincidence vetoes described in section 5.1.2.
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Figure 5.1: AURIGA (not calibrated) RAW spectrum during the coincidence run.
Red markers indicates the 3 fundamental modes: at about 865 Hz, 914 Hz and
956 Hz. Blue markers refer to spurious lines of the first class. To be whitened
from data, these lines have been fitted as Lorentzian modes and appear on the
fitting poles-and-zeroes function (green line) which models the detector noise.
Some more noisy line is visible in the plot (red dots) which refers to spurious
lines of the second class.
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5.2.1 Production

The AURIGA data analysis (ada) is based on a modular, open source project

supported by libraries such as root (see the root web page), FrameLib (see the

FrameLib web page), fftw (see the fftw web page), lal (see the lal web page),

mkfilter (see the mkfilter web page). The triggers production is performed by

several interacting modules of analysis. Here I will describe the main blocks which

allowed to generate the released triggers list for the data exchange. The schema

of the complete pipeline is resumed in figure 5.2.

MDC file 
set

MDC
Efficiency 

Efficiencies

Triggers 
list

EVT

MTC

I LEVEL
VETOS

DAQ FW

Application 
of II

 LEVEL 
VETOS
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Application 
of I
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VETOS

MDC 
injections

FME

Figure 5.2: AURIGA analysis pipeline used to produce triggers for the AURIGA-
LIGO analysis. In blue the main pipeline (i.e. the pipeline which refers to event
production). In red: pipeline to produce the efficiency curve by means of Monte
Carlo. In green: steps of analysis, introduced in the code for the first time for
this analysis, which produce the efficiency curve by means of MDC injections.
In yellow: the veto procedure. More details on each analysis-block in the text
(section 5.2.1).

The storing of AURIGA data is possible through the acquisition system (Ce-

saracciu et al. (2003)). ADC-type (Analog-to-Digital Converter) frames are built

and stored in the DAQ (Data Acquisition) module of ada and passed to the anal-

ysis. It is also possible to inject in the analysis pipeline a series of simulated
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frames (in that case called DAQS) constructed by ada using ARMA algorithms1.

Moreover, it is possible to inject simulated signals directly on real data (bursts or

periodic signals). To perform the LIGO-AURIGA analysis, DAQ module of ada

has been modified to implement the possibility to menage MDCs data frames

(see section 6.2).

After storing, raw data are passed to the module FME (Full Model Estimate).

Through 2 subsequent phases, FME reconstructs the analytic part of the noise

model and stores the evaluated parameters. In phase 1 a buffer is filled with

consecutive periodograms. Only a fraction of the periodograms is selected to

reconstruct the spectrum, while a fixed percentage2 of the most noisy ones is

rejected. The remaining spectrograms are fitted using a MIGRAD3 routine by

taking care to exclude each frequency bin affected by spurious lines of the second

class and to fit with Lorentzian poles and zeroes the spurious lines of the first

class. After a first model has been produced, FME phase 1 recycles the time

series and the fit parameters are computed once more after removing the bins

with higher deviation from the fit. Other outlier removal algorithms are called

by the phase 2 to smooth the fluctuations in time of the estimated parameters.

This is helpful to get a reliable fit of the model also in case of transient noises.

The task of whitening is carried out by the module FW (Full Whitening). As

a first step, this block performs a band-pass Butterworth filter and a decimation

in the time domain. Then, FW gets the noise model from FME phase 2, performs

accordingly the whitening in frequency domain of the AURIGA bandwidth and

saves the resulting frames.

The final lists of events is produced by the EVT (Event search) module. This

performs a matched template filtering and event search on whitened data. Care

needs to be taken to provide whitened data suitable for the specified template

to search. A max-hold algorithm searches for local maxima (with respect to a

1Also every subsequent module in the analysis provides the possibility to test each step
with simulated data.

2This percentage is empirically chosen on the basis of the noise featured by each run.
3MIGRAD is an algorithm for minimization capable to calculate the differentials on the fly.
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given dead time) and checks the crossing of a given threshold. If this happens, a

candidate event trigger is issued. For each event trigger, the exact time of arrival

and amplitude are computed after fine interpolation of the samples.

The task of computing the errors distribution and the efficiency of event pa-

rameters estimators is performed by MTC (Monte Carlo). This module returns a

numerical estimation of the distributions of arrival time, amplitude errors and

detection efficiency, for a chosen bank of templates. Software injection of signals

(and subsequent search) takes place in the time domain, by adding the chosen

template to the filtered data. This operation is cycled for specified time and

amplitude increments and, finally, returns the residuals of differences between

injected and measured event parameters.

To be released as triggers, the AURIGA events list needed to satisfy the data

quality validation described in section 5.1.2. In particular, the wide-band vetoes

affected the 4% of the observation time, while 42% of the time was affected by

second level vetoes.

The list of candidate triggers for the first AURIGA-LIGO joint data analysis

has been realized by thresholding the output of the optimal filter matched to a

delta-like signal. After the data quality assessments, only the candidate triggers

with SNR ≥ 4.5 have been exchanged. The exchange threshold of 4.5 has been

chosen to ensure a satisfactory significance of the candidate triggers. The trig-

gers list released by the AURIGA collaboration for the joint analysis with LIGO

consisted of 182516 events distributed over 190.6 h. Each event was characterized

by the following informations:

i. Arrival time (with error). The arrival time was given in GPS seconds. Its

error corresponded to the RMS of the arrival time as estimated by the

Monte Carlo module. For this purpose a Monte Carlo simulation was run

on a bank of δ-like software injected signals. The uncertainties estimated

were inversely proportional to the SNR of each event.
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ii. SNR (with error). The SNR is the measured signal to noise ratio in ampli-

tude of the event. Its uncertainty was given at 1σ.

iii. Amplitude (with error). The amplitude (given in Hz−1) corresponded to

the amplitude of the δ template used in the search. The uncertainty (also in

Hz−1) corresponded to the standard deviation of the amplitude estimation

and it is also provided by the Monte Carlo.

iv. χ2 value (with 20 degrees of freedom) of the event respect to the δ template.

The events have been exchanged in the form of a root “ntuple”.

5.2.2 Characteristics

To test the Gaussianity, stationarity and main statistical properties, the charac-

teristics of the AURIGA triggers data set has been analyzed.

During the coincidence run, the uncertainties on the triggers arrival times

(evaluated as explained in the previous section 5.2.1) varied from some fraction of

ms to 40 ms, with an average of ∼ 10 ms. Besides, AURIGA featured a significant

variability in the rate of events produced, as can be observed from figure 5.3. The

rate per minute could vary of 1 order of magnitude in few minutes. Moreover,

arrival time distribution was far from a Poisson distribution. This feature is

enlightened in figure 5.5 where the autocorrelation of the triggers is shown with

respect to the time of correlation. In this plot the number of coincidences has

been evaluated between the trigger arrival times and theirselves after a shift. The

shifts considered (from −500 s to +500 s) are shown on the x axis. For triggers

over the higher thresholds, a clustering is clearly visible up to ∼ 300 s. This effect

is the result of a non-perfect filtering of spurious lines with non-stationarity in

that time scales. A correlation around 20 s is shown for events above the lower

thresholds.

In figure 5.4 the time series of the exchanged h is shown with respect to the

full coincidence run. The variability of h mirrors in a significant variability of the

SNR. The SNR distribution for all the exchanged triggers has been produced and

superimposed to the same distribution restricted to the periods of quadruple and

triple coincidence (figure 5.6).
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Figure 5.3: Rate of exchanged AURIGA triggers per minute. Time (on the x
axis) is expressed in GPS seconds.
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Figure 5.4: Time distribution of the amplitudes h of AURIGA triggers. Time
(on the x axis) is expressed in GPS seconds.
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Figure 5.5: Auto-coincidences of the AURIGA exchanged triggers. The plot is
obtained by shifting, back and forth, the triggers arrival time from −500 s to
+500 s and counting the coincidences. Different curves refer to triggers above
different thresholds: in black SNR > 4.5, in red SNR > 5, in green SNR > 6,
and in blue SNR > 7. Highest events show a correlation within timescales of
200-300 s while, at the lower thresholds, a “bump” is present around 20 s.

5.3 Triggers selection and “off-source” measure-

ments

The event list produced by the AURIGA analysis system (see previous section 5.2)

must be reduced to the triggers falling in LIGO time segments before to be

passed to the CorrPower algorithm (see section 5.4). In the quadruple coincidence

analysis only AURIGA triggers which fall in the LIGO LHO1-LHO2-LLO segment

list have been taken into account (the 221027 seconds obtained with the quality

requirements described in section 5.1.3). The same has been done for the triple

coincidence AURIGA-LHO1-LHO2, where the list to consider was the LHO1-

LHO2 segment list (475201 seconds).

In order to estimate the rate of accidental coincidences, we built independent

“off-source” data sets by applying many different time shifts to the LIGO data

sets1: we kept fixed the AURIGA event time, assigned a time lag to the Hanford

1the two Hanford detectors have not been shifted relative to each other, in order to account,
in our estimation, for local Hanford correlated noise.
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Figure 5.6: On the top: histogram of SNR distribution for all the triggers in the
coincident run (182516 events, red histogram) and for triggers during the quadru-
ple coincidence AURIGA-LHO1-LHO2-LLO (31533 events, blue histogram). On
the bottom: histogram of SNR distribution for all the triggers in the coinci-
dent run (182516 events, red histogram) and for triggers during the triple coin-
cidence AURIGA-LHO1-LHO2 not included in quadruple coincidence time seg-
ments (62074 events, green histogram).
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observatories and a different time lag to the Livingston observatory. We defined

a series of time shifted data sets (99 for quadruple coincidence and 93 for triple

coincidences) as listed in tables 5.4 and 5.5. Each “off-source” data set was

constructed as follows. Time-lags were both positive and negative: the code

associated two positive lags to one third the sets, two negative lags to another

third, and one positive and one negative lag to the remaining sets. The lags

were randomly selected by the standard c++ function rand() within the program

which creates the lags (see the Handbook for the 1st LIGO-AURIGA analysis

tools). The upper limit for the generated shift (100 s) was chosen to guarantee

a sufficient stationarity on all the detectors involved. The lower limit (5 s) was

chosen to avoid the intrinsic correlation of data. All time shifts were generated

as integer multiples of 0.125 s. This choice, at the beginning, was driven by the

need to debug a problem in the code. Once fixed the bug, the definition of time

lags has not been changed. For each “off-source” set, we drew a new random

number to set the Hanford time lag and took the previously generated one as the

Livingston lag (see tables 5.4 and 5.5).

After defining the “off-source” data sets, a trigger selection was performed on

each event of the AURIGA triggers list, released as a root TTree (see the root

web page). The selection was performed by keeping all the triggers falling (before

and after the shift) within the same segment of the LIGO time list. We took care

to search a trigger in the same segment of the “on-source” data set because a

different segment could be affected by a different noise statistics (for example

the lock could be changed) and so could result in an event with different char-

acteristics and not representative of the “on-source” events. However, selecting

triggers falling in the same segment of the LIGO list (instead of in any possible

segment) did not excluded a great number of triggers: the length of each time

segment (both in LHO1-LHO2 and in LHO1-LHO2-LLO lists) was of the order

of hundreds of seconds, while our shifts were of the order of some tens of seconds.

After the triggers selection, the output has been converted in an ASCII file

consistent with the input of CorrPower and processed with this code. In particu-

lar, each event passed to CorrPower was centered at the trigger time of AURIGA,
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while its extremes were extended of its time uncertainty plus the light travel time1.

The actual tuning of the analysis thresholds has been performed by looking at

the first half of “off-source” data sets (see table 5.4). Then, all the available

“off-source” data sets have been used to estimate the accidental coincidences

(including those in table 5.5) to improve the statistical uncertainties.

5.3.1 Livetimes of the “off source” data sets

The livetimes of the not shifted data sets were simply given by the superposition

of the time segments lists of the detectors involved in the analysis. In the case of

quadruple coincidence we get 129699 s, while for the triple coincidence: 266544

s.

The equivalent observation time of each “off-source” data set has been com-

puted as follows in order to comply with the trigger selection criterium presented

in section 5.3. First, one considered the intersections of each time segment of

the LIGO configuration at the true time with the same segment after applying

the time shifts. Then, we intersected the resulting fragmented observation time

of LIGO with the AURIGA livetime and we took the total duration. As a con-

sequence, the trigger selection criterium adopted for the analysis implied that

different “off-source” data sets had different livetimes. This has been performed

both on the LHO1-LHO2 and on the LHO1-LHO2-LLO configurations.

The livetimes of all the “off-source” data sets (referring to 4-fold and 3-fold

coincidences) are listed in tables 5.6 and 5.7.

The total livetime of the 99 “off-source” data sets in the case of quadruple

coincidence is: 11965485 s.

The total livetime of the 93 “off-source” data sets in the case of triple coinci-

dence is: 23743361 s. As previously said, in this analysis the time of quadruple

and triple coincidences are disjoint since the 3-fold livetime refers to periods when

LLO was off.

Since the duration of the several “off-source” data sets was fluctuating at

most by ∼ ±7%, we approximated our model for the found number of accidental

coincidences in each 4-fold set as a sample of the same Poisson random variable.

1in all cases, we have considered as “light travel time” the travel time between AURIGA
and Hanford (i.e. 0.027 s).
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Set name H1 H2 L1 AUR
l50 89.1250 89.1250 28.0000 0
l51 7.3750 7.3750 89.1250 0
l52 29.7500 29.7500 7.3750 0
l53 91.8750 91.8750 29.7500 0
l54 34.6250 34.6250 91.8750 0
l55 85.1250 85.1250 34.6250 0
l56 51.7500 51.7500 85.1250 0
l57 65.6250 65.6250 51.7500 0
l58 33.0000 33.0000 65.6250 0
l59 77.3750 77.3750 33.0000 0
l60 79.2500 79.2500 77.3750 0
l61 49.8750 49.8750 79.2500 0
l62 66.1250 66.1250 49.8750 0
l63 28.7500 28.7500 66.1250 0
l64 30.5000 30.5000 28.7500 0
l65 83.8750 83.8750 30.5000 0
l66 69.8750 69.8750 83.8750 0
l67 -89.1250 -89.1250 -28.0000 0
l68 -7.3750 -7.3750 -89.1250 0
l69 -29.7500 -29.7500 -7.3750 0
l70 -91.8750 -91.8750 -29.7500 0
l71 -34.6250 -34.6250 -91.8750 0
l72 -85.1250 -85.1250 -34.6250 0
l73 -51.7500 -51.7500 -85.1250 0
l74 -65.6250 -65.6250 -51.7500 0
l75 -33.0000 -33.0000 -65.6250 0
l76 -77.3750 -77.3750 -33.0000 0
l77 -79.2500 -79.2500 -77.3750 0
l78 -49.8750 -49.8750 -79.2500 0
l79 -66.1250 -66.1250 -49.8750 0
l80 -28.7500 -28.7500 -66.1250 0
l81 -30.5000 -30.5000 -28.7500 0
l82 -83.8750 -83.8750 -30.5000 0
l83 -69.8750 -69.8750 -83.8750 0
l84 92.3750 92.3750 -69.8750 0
l85 -85.7500 -85.7500 92.3750 0
l86 97.1250 97.1250 -85.7500 0
l87 -8.1250 -8.1250 97.1250 0
l88 15.3750 15.3750 -8.1250 0
l89 -89.1250 -89.1250 15.3750 0
l90 80.6250 80.6250 -89.1250 0
l91 -53.7500 -53.7500 80.6250 0
l92 39.1250 39.1250 -53.7500 0
l93 -10.7500 -10.7500 39.1250 0
l94 77.5000 77.5000 -10.7500 0
l95 -28.6250 -28.6250 77.5000 0
l96 89.6250 89.6250 -28.6250 0
l97 -11.5000 -11.5000 89.6250 0
l98 95.3750 95.3750 -11.5000 0

Table 5.4: Definition of the time lags shifts l50-l98 (units of seconds).
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Set name H1 H2 L1 AUR
l1 72.5000 72.5000 88.8750 0
l2 35.7500 35.7500 72.5000 0
l3 78.6250 78.6250 35.7500 0
l4 33.1250 33.1250 78.6250 0
l5 83.2500 83.2500 33.1250 0
l6 15.5000 15.5000 83.2500 0
l7 90.6250 90.6250 15.5000 0
l8 41.8750 41.8750 90.6250 0
l9 64.3750 64.3750 41.8750 0
l10 70.0000 70.0000 64.3750 0
l11 15.1250 15.1250 70.0000 0
l12 17.2500 17.2500 15.1250 0
l13 5.7500 5.7500 17.2500 0
l14 31.3750 31.3750 5.7500 0
l15 67.7500 67.7500 31.3750 0
l16 34.6250 34.6250 67.7500 0
l17 25.5000 25.5000 34.6250 0
l18 -72.5000 -72.5000 -88.8750 0
l19 -35.7500 -35.7500 -72.5000 0
l20 -78.6250 -78.6250 -35.7500 0
l21 -33.1250 -33.1250 -78.6250 0
l22 -83.2500 -83.2500 -33.1250 0
l23 -15.5000 -15.5000 -83.2500 0
l24 -90.6250 -90.6250 -15.5000 0
l25 -41.8750 -41.8750 -90.6250 0
l26 -64.3750 -64.3750 -41.8750 0
l27 -70.0000 -70.0000 -64.3750 0
l28 -15.1250 -15.1250 -70.0000 0
l29 -17.2500 -17.2500 -15.1250 0
l30 -5.7500 -5.7500 -17.2500 0
l31 -31.3750 -31.3750 -5.7500 0
l32 -67.7500 -67.7500 -31.3750 0
l33 -34.6250 -34.6250 -67.7500 0
l34 -25.5000 -25.5000 -34.6250 0
l35 60.0000 60.0000 -25.5000 0
l36 -48.0000 -48.0000 60.0000 0
l37 37.5000 37.5000 -48.0000 0
l38 -27.7500 -27.7500 37.5000 0
l39 13.1250 13.1250 -27.7500 0
l40 -88.0000 -88.0000 13.1250 0
l41 52.3750 52.3750 -88.0000 0
l42 -54.8750 -54.8750 52.3750 0
l43 77.3750 77.3750 -54.8750 0
l44 -65.8750 -65.8750 77.3750 0
l45 18.0000 18.0000 -65.8750 0
l46 -62.3750 -62.3750 18.0000 0
l47 52.3750 52.3750 -62.3750 0
l48 -9.6250 -9.6250 52.3750 0
l49 72.0000 72.0000 -9.6250 0
l50 -65.6250 -65.6250 72.0000 0

Table 5.5: Definition of the time lags shifts l1-l50 (units of seconds).
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Set Livetime
name (seconds)

0 129698.5
1 120081.3
2 121739.1
3 121109.0
4 121109.0
5 120646.3
6 120646.3
7 119904.9
8 119904.9
9 122591.7
10 121999.7
11 121999.7
12 127704.9
13 127704.9
14 126144.3
15 122234.8
16 122234.8
17 125790.0
18 119876.8
19 121584.6
20 120940.9
21 120940.9
22 120460.7
23 120460.7
24 119695.0
25 119695.0
26 122453.7
27 121850.4
28 121850.4
29 127679.1
30 127679.1
31 126088.1
32 122090.0
33 122090.0

Set Livetime
name (seconds)

34 125722.4
35 120373.5
36 118054.7
37 120305.2
38 122445.4
39 125074.8
40 118645.2
41 114881.7
42 118112.8
43 115717.1
44 114660.5
45 120438.8
46 120802.9
47 117362.6
48 122831.7
49 120791.4
50 115185.3
51 120055.8
52 126321.4
53 119779.2
54 119779.2
55 120458.1
56 120458.1
57 122459.0
58 122459.0
59 121236.2
60 121045.7
61 121045.7
62 122405.8
63 122405.8
64 126239.5
65 120584.0
66 120584.0
67 119850.8

Set Livetime
name (seconds)

68 119850.8
69 126270.9
70 119567.2
71 119567.2
72 120266.6
73 120266.6
74 122319.0
75 122319.0
76 121072.0
77 120875.2
78 120875.2
79 122265.1
80 122265.1
81 126186.8
82 120395.6
83 120395.6
84 112909.4
85 111452.1
86 111040.6
87 118432.1
88 126999.4
89 118307.3
90 112174.7
91 115522.2
92 119543.2
93 124121.1
94 120116.9
95 118284.0
96 117118.8
97 118830.3
98 118265.1
99 120055.8

TOT= 11965485.2

Table 5.6: Livetimes of the “off-source” data sets referring to quadruple coinci-
dences. The livetime of the not shifted data set is 129698.5 s, the total livetime
(for the 99 “off-source” data sets) is: 11965485.2 s.
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Set Livetime
name (seconds)

0 266544.3
1 251054.3
2 258757.5
3 249815.2
4 259321.0
5 248883.2
6 263110.9
7 247403.3
8 257453.7
9 252723.6
10 251565.3
11 263191.6
12 262735.1
13 265243.0
14 259696.3
15 252027.4
17 260954.8
18 250782.4
19 258648.6
20 249512.9
21 259222.0
22 248559.9
23 263070.9
24 247045.4
25 257311.0
26 252485.7
27 251306.8
28 263152.4
29 262689.5
30 265224.4
31 259604.3
32 251777.7

Set Livetime
name (seconds)

34 260889.2
35 253629.1
36 255979.8
37 258383.4
38 260396.7
39 263624.8
40 247582.7
42 254506.1
44 252170.3
45 262573.8
46 252907.5
47 255225.2
48 264355.6
49 251156.3
51 264883.8
52 260043.2
53 247151.8
54 258998.3
55 248504.8
56 255357.0
57 252464.0
58 259347.8
59 250068.5
60 249689.0
61 255750.0
62 252360.4
63 260256.4
64 259882.6
65 248757.0
66 251591.0
67 247352.7
68 264859.3

Set Livetime
name (seconds)

69 259959.2
70 246790.3
71 258893.4
72 248173.2
73 255173.8
74 252223.0
75 259249.6
76 249772.0
77 249383.0
78 255576.4
79 252117.5
80 260178.2
81 259795.3
82 248430.9
83 251332.8
84 247052.3
85 248044.9
86 246101.4
87 264689.4
88 263138.1
89 247352.7
90 249411.1
91 254746.4
92 258038.2
93 264108.5
94 250043.0
95 260205.3
96 247604.0
97 263944.7
98 246453.6
99 247704.6

TOT= 23743361

Table 5.7: Livetimes of the “off-source” data sets referring to triple coincidences.
The livetime of the not shifted data set is 266544.3 s, the total livetime (for the
93 “off-source” data sets) is: 23743361 s.
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Similarly, for the 3-fold sets the duration fluctuated at most by ∼ ±4%. The

Poisson model will be tested in section 6.1.

To give an unbiased estimate of the expected accidental coincidences in the

“on-source” data sets, we have to take into account their longer duration with

respect to the “off-source” ones. This is easily accomplished by scaling the total

number of found “off-source” accidental coincidences by the ratio between the

duration of the not-shifted data set and the total duration of the“off-source”

data sets:

b =
Ton
Toff

· n (5.5)

where b is the mean number of accidental coincidences expected in the “on-

source” data set, Ton is the livetime of the “on-source” data set, Toff is the sum

of all livetimes in “off-source” data sets and n is the total number of accidental

coincidences found in the “off-source” data sets.

5.4 The LIGO coincidences

After the list of AURIGA triggers has been produced according to criteria de-

scribed in section 5.2, and selected according to criteria described in section 5.3,

a wide-band cross-correlation search has been performed on LIGO data around

each trigger. The code used for this step of the analysis is CorrPower which im-

plements the same analysis used for cross-correlation in the LIGO run S2 (LSC

(2005)).

In this step of the analysis, the random variable called r-statistic is evaluated:

r =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
√∑

i(yi − y)2
(5.6)

which expresses the correlation between a pair of detectors which timeseries are xi

and yi. In equation (5.6), index i spans an integration time window of 20, 50 or 100

ms1. Each of these time windows slided with 99% overlap around the AURIGA

1this time windows have been chosen to take into account several durations of the target
signal.
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trigger time; the closer end of each sliding window was kept within ±[27 ms + σt]

from the AURIGA trigger time1, where σt is the estimated 1σ timing error of the

AURIGA trigger. Equation (5.6) gives 1 if xi and yi are perfectly correlated and

−1 if perfectly anti-correlated (Cadonati (2004), see appendix A.1.1).

For each trigger and each jth pair of interferometers, the variable Γj has been

evaluated, being 10−Γj the statistical significance of the null-hypothesis test for

r. In this way, 10−Γj expresses the probability to obtain the measured cross-

correlation value if no correlation is present between the two interferometers in

the pair j.

When more than one pair of interferometers was available (such as in the case

of 4-fold coincidence AURIGA-LHO1-LHO2-LLO), the coherent statistic we took

was the arithmetic mean (Γ) of all Γj.

The same procedure has been repeated for all the considered time windows

and the maximum Γ was kept and used (together with the SNR) to characterize

each trigger.

In our analysis we considered only the LIGO coincidences with Γ ≥ 4. This

value is to be intended as a minimal threshold for the subsequent analysis. The

reasonable choice in case of perfectly Gaussian noise would have been Γ ≥ 3 but

the presence of broadband instrumental transients during the LIGO run S3 forced

the collaboration to increase this threshold.

127 ms is approximatively the light travel time between AURIGA and the Hanford site.
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Chapter 6

The joint data analysis
AURIGA-LIGO

As explained in the previous chapter, the method implemented for the first

AURIGA-LIGO joint analysis relies on the cross-correlation of data from the

LIGO interferometers triggered by the AURIGA burst candidate events (Cado-

nati et al. (2005)). No a-priori hypothesis is made on the source direction of the

signal; we just assume a detectable spectral power in the AURIGA bandwidth

(850-950 Hz) to be above the AURIGA threshold. After the triggers exchange,

LIGO performs a cross-correlation search between pairs of interferometers around

each trigger time (as seen in section 5.4). Then, the final list of candidate events

is characterized by several parameters (such as the statistical significance of the

cross-correlation Γ1, the estimated hrss at each detector, etc...) which can still be

used to further select the events and tune the analysis.

The two collaborations agreed to perform a blind search in order to avoid

biases on the results. With blind search we mean an analysis not tuned on its

results (as for an exploratory search). To satisfy this requirement, the Joint

Working Group agreed to adopt a strategy consisting in three points:

i. a playground of ∼ 10% of the total observation time is used to test the anal-

ysis pipeline and then excluded from the search (as seen in section 5.1.1);

1Γ corresponds to the arithmetic mean of three pairwise confidences for the no-correlation
hypothesis in the LIGO detectors, see appendix A.
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ii. the tuning of the analysis is performed on “off-source” data sets obtained

by time shifting the LIGO data (as seen in section 5.3);

iii. once the analysis procedure and thresholds are frozen, “the box is opened”

to search for gravitational wave bursts in the original data set.

In this chapter, tuning and results of the analysis are presented. The tuning

consists mainly on the choice of two thresholds: one for SNR and one for Γ. In

the final step of the analysis, only the events above the chosen thresholds will

be taken into consideration. It is important to notice that these two values are

very different physical quantities: SNR is the amplitude to noise ratio (measured

by AURIGA) of the triggers, while Γ gives the significance of the null hypothesis

test referring to the cross-correlation on LIGO data. The choice of the thresholds

for these two quantities will be done as a compromise between a small false-

alarm rate and large detection efficiency. The minimal thresholds considered

here are SNR = 4.5 and Γ = 4. The estimation of false alarms will be presented

in section 6.1, while the efficiency will be presented in section 6.2. The final

choice of the thresholds and the results will be presented in sections 6.3 and 6.4,

respectively.

6.1 Estimation of false alarms

As explained in section 5.3, “off-source” data sets have been formed by introduc-

ing un-physical delays between the LIGO interferometers. The number of time

shifts considered is 99 for the 4-fold coincidence mode and 93 for the 3-fold coin-

cidence mode. The total number of events over the exchange thresholds we get

for our “off-source” coincidences is 422 in the case of 4-fold network and 234460

in the case of 3-fold.

In order to reduce this number we have applied a cut on the sign of the

correlation between the two interferometers LHO1 and LHO2. Since they are

co-located, these two detectors must be positively correlated with respect to any

incoming gravitational wave. This test (which we will refer to in the following

and in the captions as “LHO-sign cut”) reduces to 203 events the “off-source”
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accidental coincidences for the 4-fold data set and to 119071 the same value for

the 3-fold.

Another strategy to suppress the number of accidental coincidences is to re-

quire the consistency of the estimated hrss in the co-located LHO1 and LHO2.

Tests have shown that this cut is effective at suppressing about half the false

alarms. However, at the time of this analysis, the hrss estimation code was not

mature for implementation.

On figure 6.1 the Γ distribution is shown for all the events before and after

applying the LHO-sign cut. In figure 6.2 the scatter plots of Γ versus SNR are

shown for the same events.
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Figure 6.1: Histogram of Γ distribution for all the events (black curve) and after
the LHO-sign cut (blue curve). Left: network in quadruple coincidence. Right:
network in triple coincidence. Only events above the exchange thresholds are
shown.

In order to choose the suitable thresholds for this analysis, it is important to

study how the false alarm rate depends on the values of SNR and Γ. Figure 6.3

shows the number of false alarms expected in the “on-source” data set (after

the LHO-sign cut) according to the false alarms obtained from the “off-source”

data sets. Levels have been drawn by normalizing the number of “off-source”

accidental coincidences with the ratio between the livetimes of the “on-source”

and “off-source” data sets (as in equation 5.5).
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Figure 6.2: Scatter plot of Γ vs SNR of the accidental events: for all the events
(black dots) and after the LHO-sign cut (blue dots). Left: network in quadruple
coincidence; right: network in triple coincidence. Only events above the exchange
thresholds are shown.

SNR AURIGA
5 6 7 8 9 10

 L
IG

O
Γ

4

6

8

10

12

14

a

b
c

SNR AURIGA
5 6 7 8 9 10

 L
IG

O
Γ

4

6

8

10

12

14

a

bc

Figure 6.3: Number of accidental coincidences expected for the “on-source” data
sets by studying the “off-source” data sets after the LHO-sign cut. Plot on the left
is obtained from the 99 “off-source” quadruple coincidence data sets. Plot on the
right refers to triple coincidences and has been obtained from the 93 “off-source”
triple coincidence data sets. For both the pictures, contour lines are drawn to
indicate the thresholds corresponding to: (a) 0.02 events, (b) 0.1 events and (c)
1 event.
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6.1 Estimation of false alarms

In order to predict the number of false alarms (and its error) in the “on-source”

data set, it is important to know the statistical distribution of the “off-source”

accidental coincidences, which should be Poisson distributed.

Under the ergodic hypothesis, each shifted data set has the same statistical

properties of the not shifted one. For this reason we consider each data set as an

independent trial of the same counting experiment. Independence is guaranteed

by the fact that time shifts are greater than the auto-correlation time of the

events. The number n of accidental coincidences in each data set is expected to

follow a Poisson distribution:

Pµ(n) = e−µ
µn

n!
(6.1)

where µ is the mean number of accidental coincidences in each set.

Actually, each “off-source” data set has a slightly different length (as seen in

tables 5.6-5.7) and, in principle, should not be considered as a trial of the same

experiment. A possible solution is normalizing the number of coincidences on

the effective time of each set. However, in this way, the distribution is no longer

Poisson because the output of each trial is not integer. For this reason, since

the livetime differences are small (see section 5.3.1 and tables within), we have

chosen a simplified approach and we have neglected them.

A test has been performed on the “off-source” data sets to check the overall

distribution of Γ. We expect a distribution fitting with the Poisson curve in equa-

tion 6.1 multiplied by the number of considered data sets (i.e. 99 for quadruple

coincidence and 93 for triple coincidence).

In figure 6.4 the distribution of Γ for the number of accidental events (above

the minimal threshold Γ ≥ 4) is shown for quadruple and triple coincidence “off-

source” data sets (red histogram). We have superimposed, to the first histogram,

the expected Poisson values while, to the second, (because of the great number

of events) the expected Gaussian values (gray markers). These theoretical curves

have been constructed using the means we get from the “off-source” data sets

(µ = 2.05 for quadruple coincidences and µ = 1280.33 for triple coincidences)

and the corresponding number of sets to normalize (99 for quadruple coincidences
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6. THE JOINT DATA ANALYSIS AURIGA-LIGO

and 93 for triple coincidences). For each bin, a gray bar indicates the expected

error according to the Poisson (or Gaussian) distribution (i.e. the square root of

the number of counts).

For both quadruple and triple coincidences, we have evaluated the χ2 between

the real distributions and the models. The number of counts of each bin in the

“off-source” distribution has been compared to the expected one in the theoretical

curve. Only bins with more than 5 counts in the expected Poisson distribution

have been taken into account to evaluate the χ2. For the quadruple coincidences,

the χ2 (with 3 degree of freedom) resulted 0.82 with a p-value1 of 84.4%. For the

triple coincidences, the χ2 (with 3 degree of freedom) resulted 4.07 with a p-value

of 25.3%. In both cases we conclude that the Poisson model is accepted.

However, we must consider that the “on-source” data sets have to be ana-

lyzed after applying some thresholds (referred to, in the following, as “analysis

thresholds”). For this reason it is important to check the Γ distribution close

to those thresholds. However, because of the small number of “off-source” data

sets, our Γ distribution for the quadruple coincidences results poorly populated.

At higher thresholds the number of bins with integral ≥ 5 becomes too small to

consent a χ2 test. For this reason, we performed the check with higher thresholds

only on the triple coincidences data sets (see figure 6.5). In this case, the highest

threshold we can choose is Γ > 7.5. For this value we get a χ2 (evaluated with

the same criteria described above) equal to 1.83 for 3 degree of freedom, with a

p-value of 61%. Also in this case we conclude that the Poisson model is accepted.

6.2 Detection efficiency of the network

The estimation of the pipeline’s efficiency and the code validation have been

performed with the standard mechanism developed and used by the LSC: the

so-called “Mock-Data Challenges” (MDCs), which consists of software-generated

signals superimposed to real data (Yakushin, Klimenko & Rakhmanov (2004)).

1The p-value is the probability, if the test statistic really was distributed as it would be
under the null hypothesis, of observing a test statistic (as extreme as, or more extreme than)
the one actually observed. In this case the null hypothesis is the assumption of samples Poisson
distributed.
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Figure 6.4: Distribution of the number of accidental coincidences with Γ ≥ 4
and passing the “LHO-sign cut” for the “off-source” data sets (red histograms).
On the top: quadruple coincidences. On the bottom triple coincidences. Each
distribution is compared to its model: a Poisson distribution with µ = 2.05 and
normalization factor = 99 for quadruple coincidences and a Gaussian distribution
with mean = 1280.33 and normalization factor = 93 for triple coincidences (in
gray): for each bin a gray marker and bar indicate the expected number of
coincidences and its error (evaluated as the square root of the counts).
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Figure 6.5: Distribution of the number of accidental coincidences with Γ ≥ 7.5
and passing the “LHO-sign cut” for the “off-source” triple coincidence data sets
(red histogram). The distribution is compared to its model: a Poisson distribution
with µ = 2.17 and normalization factor = 93 (in gray): for each bin a gray marker
and bar indicate the expected number of coincidences and its error (evaluated as
the square root of the counts).

The signals added in these time series are characterized by known statistical

properties and can be used to test the data analysis pipeline (as was be done in

LSC (2004) and LSC (2005)). The classes of signals considered for this analysis

are:

• LA SG2: Gaussians, sine-Gaussians and cosine-Gaussians (see sec. B.1)

• LA DS2: damped sinusoids (see sec. B.2)

Both sets of MDC frames have been produced in a two-step process.

First, a set of signal parameters (see table 6.1) are generated and stored into

an ASCII file. In particular, the source locations for the signals are simulated as

isotropically distributed over the sky: φ is uniform over [0, 2π], cos θ is uniform

over [−1, 1] and the polarization angle ψ is distributed randomly on [0, π] (for

more details, see table 6.1).

Frame production is performed by the LIGO software LDAS (see the LDAS

web page) by reading the parameters log file and writing a time series consisting
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6.2 Detection efficiency of the network

mostly of zeroes plus the injected waveforms (other informations are needed in

this step, such as the detectors calibration file and their sampling rates). All

the standard MDC production implemented by LIGO needed adaptations to the

AURIGA detector and this made necessary the tests described in Sutton (2005).

The Matlab scripts used for the check, the tcl scripts and the log files used for

the MDC production are publicly available in the MDC Matlab and tcl scripts

repository.

As explained in appendix B, all the considered waveforms (both of LA SG2

and LA DS2 class) have an “intrinsic” amplitude A = 7.5×10−21/
√

Hz. However,

the signal waveforms have been injected in the MDC frames after scaling them

by a set of scale factors, chosen in such way to cover a wide range of signal

amplitudes. After the injection, we have studied the response of the network

to the different simulated amplitudes of signal. For the 2 classes of signals, the

considered scale factors are:

LA SG2 scale factors s = 0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 128

256 512 1024 2048 4096

LA DS2 scale factors s = 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024

2048

Signals of the LA SG2 class, injected with intrinsic amplitude hrss = A =

s · 7.5 × 10−21/
√

Hz, will be seen at Earth (from the optimal orientation) with

that amplitude. Instead, for signals of the LA DS2 class (see equation B.6) we

must average over the inclination angle ι: hrss =
√

2s · 7.5× 10−21/
√

Hz.

We estimate the detection efficiency and its error using the binomial distribu-

tion statistics:

ε(hrss) = Ndet(hrss)/N0

σ(hrss) =
√
ε(hrss)(1− ε(hrss))/N0 (6.2)

where N0 is the number of injected waveforms and Ndet is the number of the de-

tected ones. The set of points (hrss, ε(hrss)) can be fitted using empirical sigmoid

curve:

ε(hrss) = p3

[
1 + (hrss/p1)

p0(1+p2 tanh (hrss/p1))
]−1

(6.3)

where:

p0 = parameter describing the steepness of the efficiency curve;
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1 integer part of GPS signal time (s)
2 decimal part of GPS signal time at LHO (ns, rounded)
3 decimal part of GPS signal time at LLO (ns, rounded)
4 decimal part of GPS signal time at GEO (ns, rounded)
5 decimal part of GPS signal time at TAMA (ns, rounded)
6 decimal part of GPS signal time at AURIGA (ns, rounded)
7 (signal time at LLO) - (signal time at LHO) (ns, rounded)
8 (signal time at GEO) - (signal time at LHO) (ns, rounded)
9 (signal time at TAMA) - (signal time at LHO) (ns, rounded)

10 (signal time at AURIGA) - (signal time at LHO) (ns, rounded)
11 antenna response factor F+ for LHO
12 antenna response factor F× for LHO
13 antenna response factor F+ for LLO
14 antenna response factor F× for LLO
15 antenna response factor F+ for GEO
16 antenna response factor F× for GEO
17 antenna response factor F+ for TAMA
18 antenna response factor F× for TAMA
19 antenna response factor F+ for AURIGA
20 antenna response factor F× for AURIGA
21 azimuthal sky coordinate φ of source (rad)
22 polar sky coordinate θ of source (rad)
23 polarization angle ψ of signal (rad)
24 name of the waveform type

25 RSS sky amplitude of the plus polarization (1/
√
Hz)

26 RSS sky amplitude of the cross polarization (1/
√
Hz)

Table 6.1: List of parameters characterizing the injected signals of each set of
MDC frames (LA SG2 and LA DS2). In this list, the “GPS signal time” is the
start time if the injection (the signal peaks approximately after 0.5 s). The “polar
sky coordinate” is expressed respect to Earth-based coordinates (the x-axis points
from the Earth’s center to the intersection of the Greenwich meridian with the
equator, the z-axis points from the Earth’s center to the North pole, while the y-
axis is chosen to form a right-handed coordinate system with the other two). The
“polarization angle” is the angle counterclockwise about the signal direction of
propagation from the line of constant θ (pointing to decreasing φ) to the x-axis of
the source coordinate system (the direction associated with the + polarization).
Of course, inputs referring to TAMA and GEO detectors have not been used in
this analysis.
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6.2 Detection efficiency of the network

p1 = scale factor, close to the point with 50% detection efficiency (which we will

call, in the following, hrss50%);

p2 = asymmetry parameter: it is 0.5 for the detection efficiency of optimally

oriented signals, but diverges from this value for sources that are uniformly dis-

tributed in the sky;

p3 = asymptotic detection efficiency for loud signals (1 in our curves).

Equation 6.3 proved to be representative of the real data in the case of LIGO-

only analysis but in the case of AURIGA, we introduce an offset parameter p4

to take into account the not negligible number of false alarms at the threshold of

SNR ≥ 4.5. In fact, also in the case of very low hrss injections, it could happen

to find an event which, by chance, occurs at the injection time of the signal. For

this reason, equation 6.3 becomes:

ε(hrss) = p4 + p3

[
1 + (hrss/p1)

p0(1+p2 tanh (hrss/p1))
]−1

(6.4)

Once introduced the parameter p4 the AURIGA-only efficiency to the injections

fits perfectly with the curve in equation 6.4. A check has been performed (see

figure 6.6) to test the consistency of the MDC-injections method on the AURIGA

data and the built-in Monte Carlo method normally used by the AURIGA col-

laboration. The check confirmed the consistency of the two methods, apart from

a small discrepancy due to the fact that, while the AURIGA Monte Carlo has

been performed on all the exchanged data set (211 h), the MDC injections (in

this case sine-Gaussians) were applied to a subset of 12 h.

To get an efficiency estimate both for the 4-fold and the 3-fold mode, each class

of MDC signals has been injected both in the LIGO and in the AURIGA pipelines

on their calibrated data sets. The number of events considered for each class is

listed in tables 6.2 and 6.3). In the same tables, the results for the efficiency are

given, with respect to the minimal thresholds SNR ≥ 4.5 and Γ ≥ 4, in terms of

hrss50% (i.e. the hrss value corresponding to a 50% detection efficiency). In the

applied pipeline, the same cuts used for the analysis have been applied.

Figure 6.7 shows the efficiency curves (obtained from real points by fitting

with the function in equation 6.4).
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Figure 6.6: Efficiency versus hrss as evaluated in AURIGA detector using built-
in Monte Carlo over all AURIGA exchanged data set (with a 25 Hz injection
rate) and using MDC injections. In both cases the injected signal is a sine-
Gaussian centered at 900 Hz and with Q = 9 uniformly distributed in the sky.
The polarization is linear with an arbitrary polarization angle. MDC injections
regarded only the quadruple coincidences livetime with an injection rate of 1/64
Hz.

Waveform Num of injections hrss50% hrss90%

Sine-Gaussians 1348 5.3×10−20/
√
Hz 4.7×10−19/

√
Hz

Gaussians 698 15×10−20/
√
Hz 10×10−19/

√
Hz

Damped sinusoids 2045 5.5×10−20/
√
Hz 3.2×10−19/

√
Hz

Table 6.2: List of the injections and efficiencies referring to the network in 4-
fold coincidence mode and to the minimal thresholds (SNR ≥ 4.5 and Γ ≥ 4).
The search has been completed with the check on the sign correlation between
LHO1 and LHO2. On the first column the waveform. On the second the number
of injections. On the third and fourth column the value of hrss50% (the value
of hrss which gives an efficiency of 50%) and hrss90% (the value of hrss which
gives an efficiency of 90%) obtained by fitting the esperimental point (see also
figure 6.7).
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Figure 6.7: Detection efficiency vs hrss of injection for the network in 4-fold (left) and 3-
fold (right) coincidence mode and for different waveforms. Here, the analysis pipeline includes
the cut on the sign of correlation between LHO1 and LHO2. The thresholds considered are
SNR ≥ 4.5 and Γ ≥ 4. The experimental points have been fitted with the curve described by
equation 6.4. The value of hrss50% is indicated for each fitting curve.
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Waveform Num of injections hrss50% hrss90%

Sine-Gaussians 1348 5.3×10−20/
√
Hz 4.7×10−19/

√
Hz

Gaussians 698 15×10−20/
√
Hz 10×10−19/

√
Hz

Damped sinusoids 2045 5.5×10−20/
√
Hz 3.1×10−19/

√
Hz

Table 6.3: List of the injections and efficiencies referring to the network in 3-
fold coincidence mode and to the minimal thresholds (SNR ≥ 4.5 and Γ ≥ 4).
The search has been completed with the check on the sign correlation between
LHO1 and LHO2. On the first column the waveform. On the second the number
of injections. On the third and fourth column the value of hrss50% (the value
of hrss which gives an efficiency of 50%) and hrss90% (the value of hrss which
gives an efficiency of 90%) obtained by fitting the esperimental point (see also
figure 6.7).
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Figure 6.8: Efficiency to sine/cosine-Gaussians centered at a frequency of 900 Hz
and with Q ≈ 3. On the x axis the value of SNR from the exchange threshold
to SNR = 10. On the y axis the value of Γ from the exchange threshold to
Γ = 15. The colour scale indicate the value of hrss50% for the network at the
corresponding thresholds (efficiency is lower where hrss50% is higher). Both the
4-fold (left) and 3-fold (right) coincidences have been considered.
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6.3 Tuning

The plan for the last step of the analysis has been agreed by the AURIGA and

LIGO collaborations before “opening the box” of final results, in order to keep

blind the analysis. It has been agreed to perform the analysis on the entire

observation time by merging the two data sets of 4-fold and 3-fold coincidences.

According to this intent, thresholds on Γ and SNR have been chosen to render

the 2 data sets (after the LHO-sign cut) very similar in terms of the rate of

accidental coincidences. For our case also the efficiency to selected waveforms

results very close. The agreed plan for the statistical treatment of the results is

presented in section 6.3.2.

6.3.1 Analysis thresholds

Figure 6.9 is a superposition of the efficiency plots of figure 6.8 and the false alarm

contour lines obtained in section 6.1. In correspondence of each Γ − SNR pair

it is possible to compare the value of hrss50% for the network and the number of

accidental coincidences expected in the not shifted data set. We have tuned the

thresholds (from the exchange values Γ = 4 and SNR = 4.5) by paying the least

on the detection efficiency while lowering the number of accidental coincidences

down to the desired level. As one can see from figure 6.9, the optimal way of

doing this is moving the thresholds towards higher Γ without changing the value

of SNR. We have chosen the thresholds: Γ ≥ 6 and SNR ≥ 4.5 for quadruple

coincidences and Γ ≥ 9 and SNR ≥ 4.5 for triple coincidences.

If we apply these thresholds to the 99 quadruple coincidences “off-source”

data sets we get 8 events surviving the LHO-sign cut in ≈ 3323.7 hours. The

false alarm rate (in events per day) and the total events expected in “on-source”

data set are:

rate 4−fold = 0.058± 0.021 events/day

= 0.09± 0.03 events in the “on− source′′ data set (6.5)

where the uncertainty is the 1σ error of the Poisson distribution of the counts.
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Figure 6.9: On the top color scale plot: efficiency to sine-Gaussians waveforms
and false alarms for the 4-fold network. On the bottom color scale plot: the
same but referring to the 3-fold network. Sensitivity is given in terms of hrss at
50% efficiency. For both plots, contour lines refer to the accidental coincidences
expected in the not shifted data set: (a) 0.02 events, (b) 0.1 events and (c) 1
event.
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If we set to Γ ≥ 9 and SNR ≥ 4.5 the thresholds on the triple coincidence

events, from the 93 “off-source” data sets we get 12 events surviving the LHO-

sign cut in ≈ 6595.4 hours. The false alarm rate (in events per day) and the total

events expected in “on-source” data set are:

rate 3−fold = 0.044± 0.013 events/day

= 0.13± 0.04 events in the “on− source′′ data set (6.6)

where the uncertainty is the 1σ error of the Poisson distribution of the counts.

From equations 6.5 and 6.6 and from figure 6.9 we can notice that, after the

tuning, both the 4-fold and the 3-fold networks predict about 0.1 events in the

“on-source” data set.

For the selected thresholds, the efficiency in figure 6.9 has been evaluated with

respect to the sine and cosine-Gaussians waveform. In figure 6.10, the efficiency

(for quadruple and for triple coincidences) has been plotted for all the considered

templates (sine-Gaussians, Gaussians and damped sinusoids) with respect to the

hrss of the injection. From figure 6.10, the values of the hrss50% have been

extrapolated and listed in tables 6.4 and 6.5. From the tabulated values, it is

possible to notice the very similar efficiencies of the 4-fold and 3-fold data set at

the chosen thresholds.

Waveform Num of injections hrss50% hrss90%

Sine-Gaussians 1348 5.6×10−20/
√
Hz 4.9×10−19/

√
Hz

Gaussians 698 15×10−20/
√
Hz 10×10−19/

√
Hz

Damped sinusoids 2045 5.7×10−20/
√
Hz 3.3×10−19/

√
Hz

Table 6.4: List of the injections and efficiencies referring to the network in 4-
fold coincidence mode after the LHO-sign cut and to the thresholds SNR ≥ 4.5
and Γ ≥ 6. On the first column the waveform. On the second, the number of
injections. On the third and fourth column, the values of hrss50% and hrss90%
obtained by fitting the experimental points (see also figure 6.10).

We combine the 4-fold and 3-fold data sets at the tuned threshold to form a

single data set. We take, as a number of accidental coincidences in the combined
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Figure 6.10: Efficiency of detection vs hrss of injection for the network in 4-fold (left) and
3-fold (right) coincidence mode and for different waveforms. Here, the analysis pipeline includes
the cut on the sign of correlation between LHO1 and LHO2. The thresholds considered are
SNR ≥ 4.5 and Γ ≥ 6 for the 4-fold coincidence and SNR ≥ 4.5 and Γ ≥ 9 for the 3-fold. The
experimental points have been fitted with the curve described by equation 6.4. The value of
hrss50% is indicated for each fitting curve.
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Waveform Num of injections hrss50% hrss90%

Sine-Gaussians 1348 5.8×10−20/
√
Hz 5.3×10−19/

√
Hz

Gaussians 698 15×10−20/
√
Hz 11×10−19/

√
Hz

Damped sinusoids 2045 5.7×10−20/
√
Hz 3.4×10−19/

√
Hz

Table 6.5: List of the injections and efficiencies referring to the network in 3-fold
coincidence mode and to the thresholds SNR ≥ 4.5 and Γ ≥ 9. The search has
been completed with the check on the sign correlation between LHO1 and LHO2.
On the first column the waveform. On the second, the number of injections.
On the third and fourth column, the values of hrss50% and hrss90% obtained by
fitting the experimental points (see also figure 6.10).

data set, the sum of the “off-source” coincidences in quadruple and triple coinci-

dence sets (8 + 12). The full observation time is 3323.7 + 6595.4 hours. The rate

and the number of events expected in the “on-source” data set are:

rate 4+3−fold = 0.048± 0.011 events/day

= 0.22± 0.05 events in the “on− source′′ data set (6.7)

The efficiency of the combined data set can be approximated with an average

between the efficiencies of the 4-fold and 3-fold data sets. This average must be

weighted for the observation times according to:

ε(hrss)4+3−fold =
ε(hrss)4−fold · T4−fold + ε(hrss)3−fold · T3−fold

T4−fold + T3−fold
(6.8)

where T4−fold and T3−fold are the livetimes of the “on-source” quadruple and triple

coincidence data sets and ε(hrss)4−fold and ε(hrss)3−fold are their efficiency curves.

6.3.2 Plan for the statistical analysis

The final step of the analysis consists in the statistical treatment of the results of

this counting experiment aiming at testing the compliance of the null hypothesis

and to set confidence intervals with selected coverage. According to the null

hypothesis, the actual number of events we will find in the “on-source” data set

has to be compliant with estimated distribution of the accidental coincidences.

With only one trial planned, we have chosen 99% as a threshold on the confidence.
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Given the expected accidental coincidences, the null hypothesis is rejected if at

least 3 coincidences will be found.

Rejecting the null hypothesis does not imply a claim on gravitational wave

detection but, instead, a claim for an excess correlation in the observatory at the

true time, which has not been measured by looking at the accidental coincidences

in our “off-source” data sets. It might be due to: correlated noise in the detectors,

deviations from the Poisson noise model or gravitational waves.

We have agreed to set the confidence intervals according to Feldman and

Cousins (Feldman & Cousins (1998)) with at least a 95% coverage. The uncer-

tainties on the estimate of the accidental coincidences will be taken into account

in the confidence belt construction, by considering an uncertainty of the mean

accidental counts b of ±3σ. The standard Feldman and Cousins construction

has been modified according to our null hypothesis test. If the null hypothesis is

confirmed at 99% coverage, we will consider the upper bound of the Feldman and

Cousins construction at 95% coverage but we will extend its lower bound to 0;

otherwise, in the critical region of the null hypothesis test we will keep the origi-

nal confidence intervals. As a result, we will get a confidence belt with controlled

false alarm probability in rejecting the null hypothesis. Our confidence belt will

be slightly more conservative than the standard Feldman and Cousins’s for small

values of the signal.

Once that confidence interval is set, the result will be converted in equivalent

gravitational wave rate by dividing for the measured efficiency of detection for

each selected waveform.

In case the null hypothesis is confirmed, the result will be an upper limit

on the gravitational wave rate. If the null hypothesis is rejected, the causes

should be investigated to check for any problems in the analysis procedures (e.g.

background estimation) or in the hardware (e.g. instrumental correlations). The

investigation should include further independent checks for each detector data

and code and, more important, targeted analysis to estimates arrival times and

spectral amplitudes. This targeted analysis can be more powerful than the present

one since it can exploit coherent methods of analysis (i.e. taking advantage on

the phase informations of LIGO data with respect to AURIGA data).
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6.4 Results

As the last step of the analysis, we “opened the box” to investigate the “on-

source” data sets. The results can be summarized as follows. In the triple co-

incidence data set, 1288 events survived the LHO-sign cut (over the exchange

thresholds). None of these are above the analysis threshold Γ ≥ 9. In the

quadruple coincidence data set no events surviving the LHO-sign cut have been

found. As a result, our “on-source” data set counts no events and therefore the

null hypothesis is confirmed.

To compare the resulting distribution of “on-source” events with the estimated

distribution predicted by the “off-source” data sets, we have taken into account

also the events under the analysis thresholds. In figure 6.11 the triple coincidence

events with Γ ≥ 4 which pass the LHO-sign cut on the “on-source” data set are

superimposed to the distribution predicted by the “off-source” data sets. We note

a good agreement between the “on-source” events and the expected distribution

(within its spread).

To quantify the agreement between the 2 data sets, we have applied the

Kolmogorov-Smirnov test to the “on-source” and “off-source” cumulative dis-

tributions of Γ (F (Γ) and S(Γ), respectively). The cumulative distributions have

been empirically estimated from the Γi values of the coincident events, by simply

counting how many events have Γi ≤ Γ. Even though the resulting “off-source”

distribution is sampled, it can be considered a good approximation of the model

distribution since the number of “off-source” samples is about 100 times larger

than the number of the “on-source” ones. The two distributions and their resid-

uals:

d(Γ) = F (Γ)− S(Γ) (6.9)

are shown in figure 6.12. The Kolmogorov-Smirnov statistic is simply:

D = max|d(Γ)| (6.10)

For our “on-source” samples:

D = 0.01385 at Γ = 4.3926 (6.11)
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Given the number of “on-source” samples (1288) the resulting probability of

getting a larger deviation, assuming the correctness of the “off-source” model, is

very high, 0.6.

Once verified the compliance of the “on-source” and “off-source” data sets,

we can return to consider the analysis thresholds and set the confidence intervals

for the resulting null “on-source” counts. As seen in section 6.1 the number of

accidental coincidences in all the “off-source” data sets can be described as a

Poisson process. The known mean number of predicted accidental coincidences

is b = 0.22 (as seen in section 6.3). We assume that also the “on-source” coinci-

dences (n) follow a Poisson distribution with a mean given by b plus an unknown

mean µ (related, for example, to a flux of gravitational waves). The probability

to get n coincidences for a given µ is given by:

P (n|µ) = (µ+ b)n exp[−(µ+ b)]/n! (6.12)

Using the procedure described in Feldman & Cousins (1998), we can build the

confidence intervals [µ1, µ2] which guarantee a coverage (C.L.) of 95%. To take

into account the uncertainty on b we build the confidence belts for b = 0.22+3σ1

and b = 0.22− 3σ and take the union of the 2 belts (to be conservative). Then,

we have modified the standard Feldman and Cousins belt as follows. When the

null hypothesis is confirmed at 99% coverage, we consider, as the upper bound,

the classical costruction of Feldman and Cousins at 95% coverage and we extend

the lower bound to 0. When the null hypotesis is not verified we keep the original

confidence intervals. The resulting confidence belt is shown in figure 6.13.

From figure 6.13 we can set a one-sided confidence interval for n < 3, or a

two-sided confidence interval otherwise. In our case n = 0 and the upper limit

we get is:

Upper limit 95% = 3.02 events in the “on− source′′ data set

= 0.66 events/day (6.13)

The result in formula 6.13, scaled by the overall efficiency of the network,

gives us the possibility to set a limit on the flux of gravitational waves of a given

1here σ = 0.05 as we get in section 6.3 (see equation 6.7).
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Figure 6.11: Comparison between the “on-source” data sets and the correspond-
ing expected distribution as estimated from “off-source” data sets. On the top:
quadruple coincidence AURIGA-LHO1-LHO2-LLO. On the bottom: triple coin-
cidence AURIGA-LHO1-LHO2. In both cases, only the events with Γ ≥ 4 which
pass the LHO-sign cut have been considered. The analysis thresholds are (re-
spectively) Γ = 6 and Γ = 9. We have no events above these thresholds. Gray
markers and stair-step curve: distribution of the predicted accidental coincidence
counts in the “on-source” data set. The distribution is just the histogram of the
accidental coincidences (n) found in the “off-source” data sets scaled by the ratio
of “on-source” and “off-source” livetimes (Ton/Toff , see equation 5.5). 1σ statisti-
cal uncertainties of each bin are indicated as thin gray error bars (

√
n ·Ton/Toff ).

Gray shadows: 1σ statistical fluctuations of the expected “on-source” event dis-
tribution (evaluated as

√
n · Ton/Toff ). Red markers: events of the “on-source”

data set.
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Figure 6.12: On the bottom: cumulative distribution of Γ for the “off-source”
data set. On the top: differences between the “off-source” and the “on-source”
data sets are shown for each value of Γ. The value of the maximum difference
(Kolmogorov-Smirnov statistic D) is indicated with a blue marker and corre-
sponds to D = 0.01385.
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Figure 6.13: Confidence belt (based on Feldman & Cousins’s procedure), for
95% C.L. confidence intervals, unknown Poisson signal mean µ and a Poisson
background with b = 0.22 ± 3σ (evaluated from the “off-source” data sets). As
described in the plan for the statistical analysis (see section 6.3.2), we modify the
standard Feldman and Cousins construction in this way (red line in the plot):
in case the null hypothesis is confirmed at 99% coverage, we consider the upper
bound of the Feldman and Cousins construction at 95% coverage but we extend
its lower bound to 0; otherwise we keep the original confidence intervals.
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waveform and a given amplitude. As pointed out in section 6.3.1, the efficiency

of the combined (4-fold+3-fold) data set can be written as an average of the two

efficiencies (see equation 6.8). In figure 6.14 the upper limits on the event rate

versus hrss are shown for sine-Gaussians, Gaussians and damped sinusoids. For

all the waveforms, when the efficiency approaches 1, the asymptotic behavior

of the event rate at large hrss is 0.66 events/day. Values of hrss for which the

efficiency vanishes give a rate limit which reaches infinity asymptotically. The

region of the plot above each curve defines the region of hrss-rate excluded by the

AURIGA-LIGO search at 95% coverage or greater.

It is possible to compare figure 6.14 with similar results obtained by IGEC

(Astone et al. (2003)) and LIGO-only analysis (LSC (2004), LSC (2005)). The

asymptotic event rate at high of hrss of the presented AURIGA-LIGO analysis

is much higher than the one set by IGEC (0.66 events/day against 4 × 10−3
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Figure 6.14: Upper limits on the event rate versus hrss for the considered wave-
forms (sine-Gaussians at f0 = 900 Hz and τ = 0.2 ms, Gaussians with τ = 0.2
ms, and damped sinusoids with f0 = 930 Hz and damping time τ = 6 ms). These
curves have been built by scaling the upper limit of 0.66 events/day (95% C.L.) by
the average efficiency of 4-fold and 3-fold coincidence data sets (see equation 6.8).
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events/day, at 95% C.L.) while comparable with the LIGO S2 analysis (0.33

events/day, at 95% C.L.). These numbers can be easily explained by considering

that, at high hrss, the upper limit is inversely proportional to the observation

time (much longer in IGEC analysis). At low hrss, the comparison depends

on the signal morphology and the assumptions on the source population and is

dominated by the detection efficiency of the network. However, we can conclude

that at low hrss the present AURIGA-LIGO event rate is better than the IGEC

one because the Shh sensitivity of AURIGA (and to a greater extent that of

the LIGO detectors) are better than the previous sensitivity of the bars in the

IGEC 1997-2000 search, mainly because of the wider bandwidth. However, the

improvement cannot be computed easily because the published IGEC result did

not take into account the detection efficiency of the IGEC network for a given

signal class.

The comparison with the LIGO S2 results can be performed more quanti-

tatively by using the same signal morphology (sine Gaussian with Q = 8.9)

and source population model (isotropically distributed in the sky). If we scale

our coverage from 95% to 90% the AURIGA-LIGO resulting upper limit is 0.51

events/day. This value can be compared to the upper limit at 90% coverage set

by the LIGO S2 and TAMA-LIGO S2 analysis on the sine-Gaussian with central

frequency at 850 Hz and Q = 8.9 (see figure 6.15). Even if the sine-Gaussian

waveform considered for AURIGA-LIGO efficiency curve was centered at 900 Hz,

this difference in frequency does not significantly affect the comparison between

the networks. In fact, it has been estimated that, for sine-Gaussians Q = 9,

the detection efficiency of AURIGA, for central frequencies in the range 850-960

Hz, is penalized at most by 16% with respect to the one measured for central

frequency 900 Hz. Therefore, the resulting upper limit of the present search for

such waveforms would worsen at most by the same factor in the cited spectral

range. For this sine-Gaussians, LIGO-only S2 analysis set an upper limit of 0.26

events/day (see LSC (2005)), while TAMA-LIGO S2 set an upper limit of 0.12

events/day (see Abbott et al. (2005b)).

In the bandwidth of sensitivity of this search, the resulting AURIGA-LIGO

upper limit on the rate is worse by a factor of ∼ 2− 3 with respect to the LIGO

S2 one, at the same confidence level. Taking into account the scaling of the upper
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limit curves due to the different observation times (LIGO S2 could use 239.5 h of

on source data, double with respect to the 110 h of AURIGA-LIGO-S3) the two

curves differ of about a factor 2. The same considerations on preliminary LIGO-

only S3 results would give an handicap of a factor 2 (Katsavounidis (2005)). This

is due to the fact that the overall network efficiency of AURIGA-LIGO is limited

by the AURIGA detector.

]Hz [strain/rssh
-2010 -1910 -1810 -1710

]Hz [strain/rssh
-2010 -1910 -1810 -1710

Ra
te

 [e
ve

nt
s/

da
y]

-110

1

10
AURIGA LIGO-S3
LIGO-S2
TAMA LIGO-S2

Figure 6.15: Upper limits on the event rate versus hrss for the sine-Gaussian
waveform in different network analysis: AURIGA-LIGO S3 (in blue), LIGO-only
S2 (in red) and TAMA-LIGO S2 (in green). The sine-Gaussians considered have
central frequency 900 Hz (for AURIGA-LIGO S3) and 850 Hz (for LIGO-only S2
and TAMA-LIGO S2). The Q is 8.9. In this plot, all the upper limits have been
evaluated at 90% C.L. With this coverage, the upper limit rate of the AURIGA-
LIGO network is 0.51 events/day and can be compared to the same value from the
LIGO-only S2 analysis (0.26 events/day) and from the TAMA-LIGO S2 analysis
(0.12 events/day).
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Chapter 7

Conclusions

This work presents all the analysis steps and my personal conclusions on the

first AURIGA-LIGO burst search. This is the first joint search for bursts by

non-homogeneous detectors such as resonant and interferometric. The analysis

methods have already been published in Cadonati et al. (2005) and in Poggi et al.

(2006). At present, results are still under review by the 2 collaborations for a

final publication. Because of the shortness of the coincidence run (2 weeks from

December 24, 2003 to January 9, 2004) and the non-stationarities of AURIGA,

the 2 collaborations chose to consider this data exchange as a playground for

future analysis. As a consequence, it has been agreed to consider this analysis

simply as a methodological study on a network of non-homogeneous detectors.

In fact, the AURIGA-LIGO analysis involved detectors based on different

technologies and resulting in different spectral sensitivities, bandwidths and an-

tenna patterns. Detectors considered here are the AURIGA bar (Legnaro, Italy),

and the interferometers LHO1 (Hanford, USA), LHO2 (Hanford, USA) and LLO

(Livingston, USA). The resulting network has been considered in 4-fold coinci-

dence (i.e. AURIGA-LHO1-LHO2-LLO coincidence) and in 3-fold coincidence

(i.e. AURIGA-LHO1-LHO2 coincidence).

The problem of different bandwidths has been addressed by performing a

search of coherent power in the wideband LIGO interferometers around the trig-

ger times provided by AURIGA. Obviously, the AURIGA efficiency limited the
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sensitivity of the network to signals showing suitable power in the 850-950 Hz

spectral range. As a consequence, the choice of the target signal fell on bursts

with high frequency content. In literature, the most suitable sources for such a

kind of signals are black holes ring-downs, mergers of coalescing neutron stars

and black holes binary systems.

The study of the AURIGA-LIGO network sensitivity has been addressed in

chapter 4. In order to establish (from a geometrical point of view) which fraction

of the sky can be seen by these detectors, we outlined 2 strategies to accomplish

for the combination of different antenna patterns. In both cases we considered

only signals with linear polarization and we completed the study with the analysis

of the possibility to reorient the bar.

According to the “product-threshold” strategy, we threshold a product of all

the possible pairs of antenna patterns and we require that, at least, one of these

products is above a fixed threshold. To take into account the different sensitivity

of the bar with respect to the LIGO ones, we introduced an “handicap factor” of

1/3 to scale the AURIGA antenna pattern. In these conditions we studied the

average (over all the source directions and polarizations) of the fraction of sky

“seen” by the network. We concluded that the sky coverage of the pair LHO-

LLO is already very high and the addition of the AURIGA detector improves the

coverage only when the threshold on the antenna pattern product is low (about

0.01). In this case, the improvement regards almost all the directions but it is

limited to few percent of the sky coverage. At the same threshold, the fraction of

the sky which is not seen by the LIGO-only network but is seen by the AURIGA-

LIGO network is about 0.01. If we change the orientation of the AURIGA bar,

these results do not change significantly. For this reason we do not consider

reorienting a convenient strategy.

According to the “detector-threshold” strategy, we require that the antenna

patterns of all the detectors are, singularly, above a fixed threshold. Also in

this case we adopted the “handicap factor” of 1/3 to scale the AURIGA antenna

pattern. The fraction of the sky (averaged over all the source directions and polar-

izations) “seen” by the AURIGA-LIGO network in detector-threshold strategy is

0.4582 at a threshold of 0.1. For this fraction of the sky we can guarantee a triple
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coincidence detection (by the three sites of Hanford, Livingston and AURIGA)

and, as a consequence, a better false alarm rate. The sky coverage improves of

few percent in changing the azimuth of AURIGA, so we must conclude, like in

the previous strategy, that it is not of any advantage reorienting the bar.

As a consequence of these considerations, we cannot state that AURIGA im-

proves significantly the sky coverage of the LIGO network. However, we must

remember that it can give a contribution to reduce the false alarm rate, to im-

prove the statistical confidence of detection and to localize a source (through

the solution of the “inverse problem”). The study of false alarm rate has been

addressed in chapter 5 and finalized in chapter 6.

Before starting the analysis, a series of data quality assessments has been

applied by the AURIGA and LIGO collaborations. Of the remaining time, a 10%

of the whole data set has been set aside to be used as a playground for testing

the pipeline. The final observation time of the network in quadruple coincidence

(AURIGA-LHO1-LHO2-LLO) is about 36 h. Moreover, we have exploited the 74

h of triple coincidence (AURIGA-LHO1-LHO2) corresponding to off-periods of

LLO. These two disjoint periods of observation sum up to 110 h. In order to get

an indirect measure of the accidental coincidences, we considered a series of “off-

source” data sets, built by time-shifting LIGO data. Livetimes of the quadruple

and triple coincidence “off-source” data sets represent more than 90 times the

length of the corresponding “on-source” sets. Using the “off-source” data sets

we were able to tune the thresholds and optimize the search before “opening

the box” of “on-source” data and avoiding in this way biases on the statistical

interpretation of the results.

The two collaborations agreed to perform a triggered search of burst sources.

AURIGA produced a trigger list according to its usual analysis pipeline. After

the triggers exchange, a cross-correlation search was performed on LIGO data

around each candidate event using integration windows of some tens of ms. This

was performed by the CorrPower code. In this step of the analysis, a value of Γi

was evaluated for each pair of interferometers in correspondence of each trigger

(being 10−Γi the statistical significance of the corrrelation between 2 detectors).
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The final value of Γ associated to each trigger is simply the arithmetic mean of

the Γi from each pair, maximized over all the considered integration windows.

In this way, after the CorrPower process, each trigger has been characterized

by a pair of variables: SNR and Γ. We chose to consider, as minimal thresholds

for the analysis, SNR = 4.5 and Γ = 4.

In chapter 6 a tuning has been performed on these 2 thresholds by studying

the “off-source” data sets which resulted, at the minimal thresholds, sufficiently

Poisson distributed. The tuning resulted in the choice of SNR = 4.5 and Γ = 6 as

the analysis thresholds for the quadruple coincidence data set and of SNR = 4.5

and Γ = 9 for the triple coincidence data set. It has been agreed to suppress, from

the list of events above these thresholds, all the events for which the 2 Hanford

detectors do not show a positive sign in the correlation (LHO-sign cut). This

strategy suppressed a significant fraction of false alarms. With this requirement,

the study of the “off-source” data sets predicted about 0.1 events above the

analysis thresholds in the “on-source” quadruple coincidence data set. The same

was expected for the triple coincidences. Moreover, for these thresholds, the

estimation of the efficiency to the same waveform gave very similar results in

both the sets (hrss50% = 5.6 × 10−20/
√
Hz for a sine-Gaussian centered at 900

Hz and with Q = 8.9, being hrss50% the hrss at 50% efficiency).

The plan for the statistical interpretation of the results has been established

before “opening the box” of “on-source” data sets. First of all, it has been agreed

to consider the overall quadruple and triple observation time, making a single

trial. This choice is justified by the very similar false alarm rates we get after the

tuning.

The compliance between the number of events in the “on-source” and in the

“off-source” data sets (null hypothesis) has to be tested; we decided to test it

with a 99% of significance. In the case of an excess of coincidences in the “on-

source” data set, we might not exclude a correlation of the detector noises between

the possible causes. For this reason, in this case, more investigations would be

necessary both on the analysis pipeline and on the found candidate events. The

2 collaborations agreed to set confidence intervals according to Feldman and

Cousins procedure with, at least, a coverage of 95%. The construction of the
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confidence belt and the subsequent confidence intervals have been set by taking

into account the uncertainty on the mean accidental counts (conservatively we

considered ±3σ).

In the “on-source” data set we did not find any event over the chosen analysis

thresholds which survived to the LHO-sign cut and therefore the null hypothesis

is confirmed. The only “on-source” events found occurred in the 3-fold set under

the analysis thresholds; these events have been verified to be compliant with the

estimated “off-source” distribution.

The upper limit which resulted from the absence of events above the anal-

ysis thresholds is 0.66 events/day at 95% confidence level. This rate has been

converted in equivalent gravitational wave rate by dividing for the detection effi-

ciency corresponding to the considered waveforms (sine-Gaussians, Gaussians and

damped sinusoids). For each waveform, the efficiencies of quadruple coincidence

and the triple coincidence data sets have been averaged (weighted for their re-

spective livetimes) to get the efficiency of the overall data set. The resulting rate

versus hrss exclusion plots are very similar to the ones obtained by LIGO-only S2

analysis and TAMA-LIGO S2 analysis.

After the period of simultaneous observation of AURIGA and LIGO consid-

ered in this analysis (December 24, 2003 - January 9, 2004), both detectors have

been improved (see figure 7.1). AURIGA is taking data with a very satisfactory

quality since December 2004 (as described in section 2.3.2). The duty cycle has

been improved to above 90% after the last suspension upgrade in May 2005. The

AURIGA operating temperature remained 4.5 K and therefore the sensitivity

improvement has been limited to a factor 2 in signal amplitude, thanks to the

disappearance of the spurious noise lines. LIGO detectors have performed a 4

week scientific run in early 2005 (run S4) and started a long term observation

since mid November 2005 (run S5). Their Shh sensitivity improved significantly,

being currently about one order of magnitude better than the one of AURIGA

within its bandwidth (see figure 7.1). At present, a collaborative search is pos-

sible between the LIGO observatories and the four bar detectors participating

to the IGEC-2 collaboration (ALLEGRO, AURIGA, EXPLORER, NAUTILUS,
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see Prodi (2005)). Given the current sensitivity handicap of the bar detectors,

their main contribution would be the opportunity to add significant confidence of

detection to candidates identified by LIGO at high SNR. The added confidence

would rely on the very low false alarm probability of the bar observatory. More-

over, the addition of a detector to the LIGO network consents to solve the inverse

problem and localize a source.

As for what concerns the near future, we plan to lower the operating temper-

ature of AURIGA to 0.1 K in 2007, and we expect to reach Shh ∼ 3 · 10−22/
√
Hz

with a slightly improved bandwidth (see figure 7.2). This figure would be very

close to the sensitivity now achieved by the LHO2 detector. In that scenario, the

current analysis could be repeated as is, getting to a very similar picture for what

concerns the efficiency of the LIGO-only search to a possible AURIGA-LIGO

search. Of course, more detectors are planning to begin observations, above all

the wide-band detectors VIRGO (see the VIRGO web page) and GEO600 (see

the GEO web page): these news will greatly affect the scenario and the method-

ologies of future searches for gravitational waves. In particular, it will be possible

to develop and implement methods of network analysis which take advantage also

of the phase information (coherent methods, see Rakhmanov & Klimenko (2005)

and Parameswaran (2005)) and solve the inverse problem of reconstructing all

the gravitational wave parameters.
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Figure 7.1: AURIGA strain sensitivity during the coincidence run (in gray) and

with the new suspensions (in blue). LHO1 strain sensitivity during the coinci-

dence run (in green), during S4 (in cyan) and during S5 (in red). (Courtesy of

LIGO laboratory).
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Figure 7.2: Predicted strain sensitivity for AURIGA in ultracryogenic mode:

in green temperature at 0.1 K, in magenta temperature at 0.1 K and with a

transducer bias field increased by a factor 2.5. In red the LHO1 noise spectra

during S5. (Courtesy of LIGO laboratory).
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Appendix A

The CorrPower analysis

Because of the typically unknown (or poor modelled) nature of bursts, the search

for them cannot consider a precise template but have to be as broad as possible.

By renouncing to a template waveform we renounce also at the the possibility to

get an optimal search and to the parameters to discriminate it.

A correlation search is performed on 2 time series:

s1(t) = h(t− t1) + n1(t)

s2(t) = h(t− t2) + n2(t) (A.1)

where h is the signal, ni is the noise detected by the ith detector and si is the

output from that detector. The cross-correlation of signals in equation A.1 is

defined as:

C(t, tw, toff ) =

∫ +tw/2

−tw/2
s1(t

′)s2(t
′ + toff )dt

′

≈
∫
tw

h2(t)dt+

∫
tw

n1(t)n2(t)dt (A.2)

where tw is the adopted integration window. First term in equation (A.2) is called

hrss for that signal (see equation 3.4), while the second gives 0.
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A.1 CorrPower algorithm

CorrPower is a Cross-Correlation based algorithm thought to perform a gravita-

tional burst search on LIGO data in a triggered or untriggered mode (Cadonati

& Marka (2005)). This kind of software permits several modalities of search: first

of all it consents a cross-correlation between two or more interferometers and it

generates a list of events on the base of an excess of coherent power. As a second

point, it permits to “promote” to event a candidate which passes the r-statistic

consistency test (see next section). At least, CorrPower can perform a search

of bursts triggered by an external source (e.g. triggered by GRBs events, as in

Mohanty et al. (2004)).

The general strategy of this software is to detect eventual excesses of power in

the coherent components of detectors’ data streams. For doing this, the r-statistic

test is exploited.

A.1.1 The r-statistic test

The r-statistic test is a consistency test included in the LIGO burst analysis from

the second science run (S2) and which demonstrated to be capable of suppress the

burst false alarm rate by 2-4 orders of magnitudes (Cadonati (2004)). This test,

which purpose is to find accidental coincidence between two or more detectors, is

based on a statistic defined as:

r =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
√∑

i(yi − y)2
(A.3)

where xi and yi are the two sequences we want to correlate. Equation (A.3)

returns 1 in the case of perfect correlation and −1 in the case of perfect anti-

correlation. If there is not any correlation between xi and yi, we expect from

equation (A.3) a Gaussian distribution with a 0 mean and σ = 1/
√
N (with N =

number of point in which calculate r) (Cadonati (2004)). Equation (A.3) detects

each component of correlation between xi and yi as a deviation respect to the

normal distribution. The number N of points considered for the evaluation of r

must be established as a compromise between a too large window (which involves

120



A.1 CorrPower algorithm

loosing the signal in too much averages) and a too narrow window (which means

a poor statistic).

In an application of equation (A.3) to real data, we must consider several time

shifts (k) and several integration windows between the different time series l and

m. Hence, for each interval j, we will have a value of r which corresponds to:

rkplmj =

∑
i(x

i
plmj − xplmj)(y

i+k
plmj − ykplmj)√∑

i(x
i
plmj − xplmj)2

√∑
i(y

i+k
plmj − ykplmj)

2
(A.4)

The distribution which results from equation (A.4) is compared to a zero mean

normal distribution. If the distribution doesn’t fit with a Gaussian, the one-sides

significance:

Skplmj = erfc
(
|rkplmj|

√
N

2

)
(A.5)

and the confidence:

Ck
plmj = −log10(S

k
plmj) (A.6)

are evaluated. The confidence assigned to each interval j for the cross-correlation

of the pair l −m is:

γplmj = maxkC
k
plmj (A.7)

Equation (A.7) refers to the pair of detectors l −m, but if (more in general) we

are considering a network of more than 2 detectors, we must resume all the γplmj

in one single value, which depends only on the integration window p:

γpj =
1

Nifo(Nifo − 1)

∑
l 6=m

γplmj (A.8)

where Nifo is the number of pairs we can form within the network. Now, if we

want to resume also the informations about the integration window p and we

desire to define a correlation confidence which is univocally associated to the

event, we must maximaze γpj first on the intervals j and then on p:

Γpj = maxp[maxjγpj] (A.9)

Finally, the waveform consistency test is performed by comparing Γ with a chosen

threshold β. If Γ > β the event has passed the test.
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Appendix B

Template waveforms

To tune the search algorithm and interpret the results of the analysis, the LIGO-

AURIGA working group has focused its analysis on particular classes of signals

and tuned their parameters so that the waveforms result fully included in the

narrow band of AURIGA.

The efficiency of the network in 4-fold and 3-fold coincidence (see section 6.2)

have been studied for the following classes of simulated signals.

B.1 LA SG2 class: Gaussians, sine-Gaussians

and cosine-Gaussians

Gaussians waveforms (very often used in LIGO analysis) represents an optimal

signal (even if no known astrophysical source is associated to them) because of

their simple interpretation in the contest of the analysis. For the injections refer-

ring to this MDC set, we assume a null ×-polarization, while the +-polarization

contains a Gaussian-modulated signal. The waveform is randomly selected be-

tween the three possible choices listed below.
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B. TEMPLATE WAVEFORMS

The definition for a Gaussian waveform is:

h+(t) = hpeak e−(t−t0)2/τ2

h×(t) = 0 (B.1)

In definition B.1 the strain associated to the cross polarization is chosen to be

zero. The plus polarization, instead, is shaped as a Gaussian signal. The same

rule is used in the sine-Gaussians and cosine-Gaussians templates. The parameter

τ is chosen as τ = 0.2 ms, in this way the maximum fraction (5%) of the signal

energy falls in AURIGA band. This signal is not properly the best choice when

dealing with narrow band detectors such as AURIGA but it has been chosen as

a standard reference function.

For tuning the analysis, sine-Gaussians signals (as those used in LSC (2004)

and LSC (2005)) of the form:

h+(t) = hpeak e−(t−t0)2/τ2

sin(2πf0(t− t0))

h×(t) = 0 (B.2)

have been injected in the data stream, with central frequency f0 = 900Hz,

τ = 2/f0 = 2.2ms and Q ≡
√

2πf0τ = 8.9. f0 has been chosen to be in the

middle of the band of interest.

A variation on the last template are the cosine-Gaussians signals:

h+(t) = hpeak e−(t−t0)2/τ2

cos(2πf0(t− t0))

h×(t) = 0 (B.3)

where f0 and τ are defined as in equation B.2. The analysis pipeline developed

for LIGO-AURIGA data exchange makes no distinction between sine and cosine-

Gaussians, for this reason signals of the class in equation B.2 or in equation B.3

can be merged in one single case (which we call, in general, sine-Gaussians).

B.2 LA DS2 class: damped sinusoids

Another kind of ad-hoc built-in functions, are the damped sinusoids. They can

be associated to the behavior of perturbed systems, such as ringing black holes

in their late stages (see section 3.1).
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The definition of damped sinusoid is:

h+(t) =

{
hpeak

1
2
(1 + cos2 ι) cos(2πf0t+ δ) e−t/τ t ≥ 0 ,

hpeak
1
2
(1 + cos2 ι) cos(2πf0t+ δ) et/(10τ) t < 0 ,

(B.4)

h×(t) =

{
hpeak cos ι sin(2πf0t+ δ) e−t/τ t ≥ 0
hpeak cos ι sin(2πf0t+ δ) et/(10τ) t < 0

(B.5)

In equation B.5, the +-polarization behaves as a damped cosine, the×-polarization

as a damped sine. In the LIGO-AURIGA analysis, we considered as null the ar-

bitrary phase δ of equation B.5. The angle ι corresponds to the inclination of the

source and has been chosen so that cos ι is uniformly distributed over the range

[−1, 1]. All the signals have “intrinsic” amplitude A = 7.5× 10−21/
√

Hz for each

polarization separately but each polarization must be rescaled according to the

inclination ι:

hrss+ =
1

2
A(1 + cos2 ι);

hrss× = A cos ι. (B.6)

As a central frequency for equation B.5 we have used f0 = 930Hz. For the

damping time τ , we have considered τ = 6ms (which correspond, for a black-

hole ring-down, to masses and spins of approximately (M,a) = (30M�, 0.98)

respectively (Echeverria (1989); Flanagan & Hughes (1998)).
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