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I. Introduction 

In the last decade the ideas of Migdal and Polyakov I) on one 

hand and Kadanoffs2)work on the other hand led to Wilsons3) renorma - 

lization group approach and the Wilson-Fischer E-expansion4~ - These two 

steps renewed the interest of many physicists in critical phenomena 

and second order phase transitions5~ The origin of the methods which 

contributed so much to the understanding of the statistical mechanics 

of phase transitions is quantum field theory, which on the other 

hand benefited a lot from the applications to phase transitions. Many 

of the relevant new ideas in the area of quantum field theory and the 

theory of phase transitions developed parallel in the two fields so the 

ideas of scaling of operator product expansions etc. The aim of the 

present lectures is a discussion of critical behaviour directly in re- 

normalized field theory. But first I will briefly discuss some characte- 

ristic properties of second order phase transitions and give a heuristic 

understanding how the relation between quantum field theory and statisti- 

cal mechanics near criticality comes about. 

We will then turn to renormalized quantum field theory in 4- E dimensions, 

calculate critical indices, and introduce a (pre - ) scaling parametri- 

zati0n which will turn out to be most appropriate for a discussion of 

the scaling behaviour. We then investigate the structure of corrections 

to scaling for the thermodynamical quantities and the correlation 

functions. 

2. Critical Phenomena 2) 5) 

a. ~he thermodynamic quantities 

We first introduce the relevant thermodynamic quantities for the 

study of second order phase transitions. For definiteness we start from 

a ferromagnetic Lenz-lsing system. 
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On a D dimensional lattice G in configuration space, with lattice a 
spacing aj there is associated a discrete classical spin G--~ = + 1 

to each lattice point ~ (labeled by integers). The spins interact 

with its nearest neighbours (n.n.) only. Parallel spins are attractive 

with energy -K, a spin parallel to an external magnetic field H has 

energy -H; for antiparallel spins the energy is K and H. Accordingly 

the Lenz-lsing Hamiltonian reads 

(2.1) 

For a finite system with N spins we obtain in the usual way thermodyna- 

mical quantities from the partition function 

7 -2 A " _- ZZ ~,~p( 7<) ) - ~ (2.2 

For the free energy density 

A/ 
; ..~'-~ ~ - ~ -Z,v (23  

the spin correlation functions 

- '  2__ ~ ~ - A  z< 

and the energy correlation functions 

e.'tc. 

(2.4 

- - 4  

< E ~  2- - -  Z,v 

_ A  

KE,~ E~, 7 = 7,,, E~E, ~ ~/~ ~ 

we will always take the thermodynamic limit N~. 

From the free energy density f we define the thermodynamical quantities 

(k = ,~ K; h =p H): 
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magnetization density 

energy density 

susceptibility 

d __ _ ~--~ -- ~ <E N ~ > ~  specific heat. 

Here we have taken into account translation invariance. 

(2.5) 

b) Second order phase transitions 

The 2nd order phase transitions are related to the spin fluctu- 

ations in the system. For large distances the spin correlations away 

from the critical point show the Ornstein-Zernicke exponential fall 

off 

This relation defines the correlation length ~ (the most important 

parameter in the study of 2. order phase transitions). 

The phase diagram for a ferromagnetic system is depicted in Fig. 1 

Fig. 1 

T 

For H ~ 0 all T and H = 0, T > T the thermodynamic functions are 
C 

analytic functions of T and H due to finite ~ , which means that the 

physics actually takes place in a finite box of size L ~ ~ . 
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For H : O, T < T the spins are aligned and a spontaneous magne- 
t 

tization 

< ~  = ± h O O T )  

o c c u r s .  The s t a t e  i s  n o t  l o n g e r  u n i q u e l y  d e f i n e d  as a f u n c t i o n  o f  T.  A 

first order phase-transition takes place as H changes sign and the 

system jumps from M to -M. As T--> T from below the first order tran- 
c 

sition disappears. This is the critical point of a second order phase 

transition. It is necessarily a point of non analyticity as M(H,T) : 0 

for T ~ T and # 0 for T < T . 
c c 

What happens is that for H : O, T ~ T c there is a net magnetization, 

in the z direction say, and clusters of spins pointing in the wrong 

direction of maximal size~ (with a clustering down to microscopic 

scale). To turn the spins it costs energy and therefore macroscopically 

the system is in a stable state. 

As ~-->~ (T--> Tc, T __~ T c) criticality is approached; the difference 

in magnetization approaches zero and together with it the energy cost 

per area of producing a region of wrong phase. This is the region of 

large scale weak fluctuations in magnetization. The physics is then no 

longer determined by what's happening in a finite box. We are faced 

with a system of infinitly many degrees of freedom. With the critical 

behaviour there are associated characteristic singularities which are 

caused by correlations over infinite distances in space i.e. the funda- 

mental reason is the divergence of ~ at the critical point 

(2.7) 

The correlation functions then behave as 

(2.8) 

causing divergent thermodynamic quantities (infinite sums over the 

densities). The singularities may be parametrized by power laws as 

calculations from the Lenz-lsing model and the mean field theory 

(qualitatively correct picture) as well as experiments confirm. The 

exponents are the critical indices defined by: 
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C I~ - C-t,F' :"  

- C, 

( 2 . 9 )  

/ # f / g  H --> * O T 

2) c. The K a d a n o f f  p i c t u r e  o f  c r i t i c a l  b e h a v i o u r  

What is an appropriate theory of critical phenomena? Kadanoff 

had the idea that the critical system can be reduced to the consideration 

of the physics contained in a finite box. Kadanoff's block spin picture 

can be roughly described as follows: The microscopic theory is described 

by cells of size a D As T ~ T c (i.e. ~ >'> a) a coarser division of 

the system into cells should give a good approximation to the macrosco- 

pic properties of the system. Hence one obtaines a new description of 

the system by forming block spins i.e. cells of size L D (a < L~ ~ ); 

within these cells the spins are strongly correlated and behave essen- 

tially as one big spin with nearest neighbour interaction. 

By forming the big spin 

~& ~ . ~ '  ( 2 . 1 0 )  

one a c t u a l l y  averages  out  the  non r e l e v a n t  degrees  o f  f r e e d o m . " R e n o r m a -  

l i z i n g "  the  b i g  s p i n s  t o  + 1 one ge t s  an e q u i v a l e n t  d e s c r i p t i o n  o f  t he  

s y s t e m  

by the Hamiltonian 

with ~ = ('/=/q JJf~ and ~ = (L/~)X ~ (2.12) 
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For exactly aligned spins in each cell 

:= ~ o =  / ~ - 4  and )~ - Xo ~" ~ (2 .13 )  

The crucial point is that the spins are not exactly lined up due to 

fluctuations down to microscopic scale and therefore the coefficients 

x and y have not the values (2.13), they merely have to be considered as 

unknown parameters *. It will be one of the main goals of a theory of 

critical phenomena to explain and calculate these indices. In a precise 

formulation of the block spin picture the "average" (2.10) has to be 

done actually in the partition function. This will be discussed in 

detail by Wegner in his lectures. The transformation 

~ ~ >  ~--/1- = I'--zi, i H ~ ( 2 .14 ) 

is called a renormalization group (RG) transformation 3). It has the 

semigroup property. 

For ~ >7 L ~ a we expect the physics described by ~L to be essen- 

tially unchanged 

At the critical point the physics is expected to be independent of the 

cell size such that 

toj  ~- "7-~ 7" c 

(2.15) 

i. e. we have a fixed point of the above transformation TL/a. 

d. Fixed point properties 3)6) 

As the system deviates from criticality ~ ~ the Hamiltonian 

may be viewed as consisting of a critical part ~ and a remainder 

8 4  = ÷ JH 
i.e. 

(2.16) 

~(Note  t h a t  the  homogeneous Ansatz  (2 .12 )  i s  assumed t o  make sense o n l y  
near criticality.) 
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with k - k proportional to the reduced temperatur t. Hence h. are 
C i 

the parameters ("fields") which describe the deviation from criticality 

and the Oi's are the conjugate operators. For infinitesimal 

3 / / - /  = 

and the Oi's choosen (if possible) diagonal under TLI a it follows: 

~- (2.17) 
j / - / - - / z  = = Z {.. ¢ = [" ¢ 

According to whether h. --> ~. is increasing or decreasing the eigen- 
i 1 

operators (and the conjugate fields) are classified: 

~j > O relevant 

~" < O irrelevant 

~j = O marginal 

(2.18) 

If the relevant fields are zero we call ~ = ~_~(0) critical. 

We have 

_ _  t o J  , . ,  

ILI,~ tf-/ > tt-'l i' A-" ~" (2.19) 

under suitable behaviour of the marginal fields. As we will see in our 

field theoretical treatment the marginal operators alone determine the 

fixed point (if any) properties of ~-~ 

When (2.17) can be realized globally (~L) by a suitable choice of the 

parametrization of non marginal fields we call this a parametrization 

in terms of global scalin~ fields. These fields have been introduced by 

Wegner 6) . 

e. Scalin~ 2) 

What follows from this intuitive block spin picture for the thermodynamic 

properties in the critical region? 

a cell of size L contains (~)D- spins it follows in view of (2.10-12) As 

that as we increase the cell size from a to L: 



121 

-~ ~cZ,~] :f4.7~ic~, {} 
Hence 

.9-x 9 /  .~-x 

(2.20) 

- ( ' /a  = (L/,~) < E > c~,,~; 

Thus we are able to express the functions <~ ,< 6 ~ etc. we are 

interested in through functions ~ , <E~ etc. referring to a 

system with a reduced number of degrees of freedom. 

With ~= a/~ 

In order the cell size L to cancel the function on the r.h.s, can only 

depend on the invariant product : ~{¢I-~ hence (set ~I~/~ or 

~I~/~ ) 

< ~ >.(~,{ )= .r.,,f,,, { /~1 a~-~ - ~  

= ~<.~ I{/ 9(¢ (~/{I 

(with ~(o) , ~ (o) 

properties of the system. 

Similarly 

2. cx-~ ) ~j 4 a¢× 

(2,21) 

finite) where we used in addition the symmetry 

(2,22) 

= I ~ / ~ ~  ~¢~E (t¢~l~f/~, 7, m -'/~ 
= 1~t z~-~j */'EE Le til -~, 4 l¢I x )  
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The functions ~. and ~.. are expected to be finite at zero ~ and 

integrable (summable) on ~ ~ such that at the critical point the be- 

haviour (2.8) for the spin and energy correlation can be read off i.e. 

X= -~- ~ ; ~ = ~ -  dE (2.23) 

Similarly we get for the thermodynamical quantities: 

c x ~  z -  ~3/~ 3 ; -- - ~ ,  ~ d / =  ~ ; ~ - _ ; ~  ( 2 . 2 4 )  

From the comparison of the Ornstein-Zernicke form (2.6) and (2.22) 

we have 

~y _= d/~ (2.25) 

As all critical indices are related to x and y we have the following 

scaling relations among them: 

~=~' ~ ~ V I 

(2.26) 

To summarize the Kadanoff scaling picture leads to the following results: 

(1) Second order phase transitions are described by homogeneous 

functions. More refined arguments show that at the critical 

point physics is governed by a scale invariant theory 

(powerlaws, in exceptional cases also logarithms). 

(2) The scaling assumption relates all critical indices to 

two independent coefficients determined from the knowledge 

of the spin and the energy twopoint functions. 

f. Kadanoff Universality 2)7) 

Our discussion makes plausible, and it is supported by experiments 

and from model calculations, that the critical behaviour of systems with 

short range forces is independent on the 

* (as they refer to a system with a finite number of degrees of free- 

dom by the elimination process) 
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a) lattice structure and the discretness 

b) details of interactions. 

Accordingly one expects universality classes of critical theories with 

identical critical properties. Within an universality class one can 

perform transformations on the physical parameters such that different 

systems are described by the same functions. It is well known that e.g. 

the ferromagnetic transitions and the liquid-gas transitions have the 

same critical indices. 

On the other hand it is found that critical behaviour is differentiated 

by 

a) the dimension of the system; 

as Wilson pointed out critical indices seem to depend analy- 

tically on D as D~ 4 (This suggested the Wilson-Fisher 

6-expansion) 

b) Symmetry of the system; 

e.g. Lenz-Ising, Heisenberg, Spherical model. 

c) ev. other unknown parameters. 

This closes our phenomenological discussion of critical phenomena. 

What has to be done is to make Kadanoff's ideas quantitative. In 

particular one has to explain the scaling and universality properties 

and to calculate the critical indices. It was the main benefit from 

Wilson's RG approach relating Kadanoff's picture to field theory and 

the Z-expansion and the I/n - expansion that one has approximate 

solutions for a considerable range of universality classes which also 

cover many systems realized in nature 2) In the next section we will 

discuss how field theory is related to statistical mechanics. 

3. TMe Lenz-lsin~ System and Euclidean Field Theory 

a. The Lenz-lsin~ system 

Migdal, Polyakov and in most powerful manner Wilson used the 

Kadanoff ideas in order to relate the lattice systems of classical 

statistical mechanics to euclidean field theory by disgarding details 

(short range fluctuations) such that one stays in the original univer- 

sality class, i. e. not changing the critical behaviour. We briefly 

discuss Wilsons instructive argumentation to manufacture a field theory 

which is in the universality class of the L. I. model 3) 
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Let us consider a lattice system of classical spins ~-~ , with spin 

distribution ~(~ ~ ) The generating functional for the spin 

correlation functions is 

(3.1) 

• .~m "~ (3.2) 

C serves to normalize Z to Z ~o~ = 1. For the ferromagnetic Lenz- 

~ ~ o ; K- ~ = o ; K~- = Ising model K~ m n n -m ~ -~ 

w i t h  

0 otherwise 

(3.3) 

i.e. in Fourierspace 

(3.4) 

The spin values are fixed to G = + 1 with 
d 

~o - ~(~z 
(3.5) 

The approximate Lenz-lsing model we are interested in we obtain for 

finite Uo(U ° >~i); the L.I. system will be recovered as Uo-->~ 

The bilinear part of ~E~3then reads 

(3.6) 

with "propagator" 
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(3.7 

-~_~o-3-~ ~ ¢ ~ . :  

The "interaction" part is: 

~'r. = ~ d [ - ' ~  -~ ~-o ~- (.~'~)7" (3.8 

The generating functional (3.i) may then be written in the form 

with 

~3Go]  

(3.1' 

the free generating functional. 

A formal power expansion in u o gives rise to a Feynman graph expansion 

for the correlation functions (3.2): 

X ~'~'A ~ .  ,,~ ~ .  '1- .~3 
. . . . . .  G~_,  i 

T h i s  e x p r e s s i o n  e q u a l s  b y  ( 3 . 1 ' )  a n d  ( 3 . 2 )  t o  t h e  sum o v e r  a l l  t o t a l  

contractions of pairs of ~ 's in ~... ~ ' _ ~  

The Feynman-rules are: 

(3.2') 

Contractions: ~ ~ = Go ( . ~ _  ~) • ~ 

vertices: Z_ ~ 

As we will see under the RG-transformation u ° transforms in analogy 

to (2.12) to small effective couplings and perturbation theory becomes 

applicable near criticality. (In renormalized field theory the re- 

normalized coupling will turn out to be small whereas the bare 

coupling ~,--~ ~ as /~ --7 ~ ). 
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qi 
For small momenta Pi : ~-- we observe that 

GoC.#) = < ~ ,  -:'1 with ,1. '~2---2~'Z(&<>~'"- l-,~ ) (3.9) 

is apart from a factor, which is eliminated by rescaling the field 

~ ~_ Q~- ~ an euclidean scalar propagator i.e. in the long 

range region 

behaves as a continuous euclidean scalar field. The energy density (2.4) 

in a similar way 

A ,,,a "~-'A 

. . . .  (3.9b5 

behaves as a field. 

If one change according to Wilson (3.6) to 

I~I<A 
one expects not to change the critical behaviour as the small momentum 

behaviour (long range) is kept exactly. The rotational invariant cut-off 

here represents a substitute for the lattice cut-off a -I. The difficulty 

is that the classical functional (3.1) with the replaced ~ is illde- 

fined and ~ ~ has to be replaced by a box field 

I~t<A 
For the correlation functions the "thermodynamic limit" L--~ may then 

be carried out: 

(L) 
< crc ) . . . .  = < ca)> 

We prefer however to construct directly an euclidean cut-off field 

theory with ~o of the form (3.10) avoiding the difficulty of the 

functional formulation. 
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b. Euclidean Field Theory 8) 

An euclidean cut-off theory may be constructed as follows: 

Let A(k) and A+(k) be annihilation and creation operators subject 

to the commutation relations 

i 

From the cyclic euclidean free vacuum 

we generate the euclidean Fock-space 

Then the free field 

ko c x ) =<2~ ~'~ J ~a~ 
/ {  t~ A ' " ' -  

J ( { < j ,  A({')]=- FA*r.{), A*(-~')7=o 

I ~o>E 

(3.11) 

3.12) 

3.13) 

3.14) 

leads to the propagator (3.10) 

to<> (,<_~ j : Wjo/AoO<~ Ao<~j I ~  >~ 3.15) 

The commuting fields Ao(X) generate from the euclidean vacuum a cut-off 

Hilbert-space ~gA C ~E In order to obtain a complete set of ope- 

rators one introduces the canonical conjugate field 

14_1< A 
(3.16) 

(3.17) 

Contrary to the relativistic case (non commuting fields) the euclidean 

generators of symmetry transformations cannot be represented in terms of 

the now commuting A's e. g. the euclidean Hamiltonian, generating time 

translations in ~ , a  is: 
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/ - - I  = -  -z ~s x ' l locx; % A<>cx;  " (3.18) 

In the interacting case, with ~i#Ao~ an integral over a local polyno- 

mial in Ao, the euclidean Green functions 

#~o/ i ~ ( x = ;  . . . ACx,,,J lo l~  = E~'#o l t~o<x,] ' ' ' f f</x"<)#~'~' [ '¢°~l  ~"2 E ( 3 . 1 9 5  

are identical with the probabilistic correlation functions (3.2) for 

~4 z #A,7 - -  <,<,  J ~  ' AJ<x,. (3.20) 

There are some peculiar features to euclidean fields: Due to 

e A<>r+IJ k'tO+,~" = ~ 11oO<) +~ ( - 4  4 ~ )  Ao cx) Z (3.21) 

there exist short range fields as 

(3.22) 

with 

(3.23) 

In the relativistic case of course ~o (x) ~ o. The set of euclidean 

local fields therefore consists of the usual Wick ordered fields 

~o Cx) " 

and short range composite fields like 

This situation of course persists in the interacting case. We believe 

that the so called "redundant" operators introduced by Wegner are re- 

lated to the short range fields discussed here. 

A further serious difference is the following: After renormalization 

relativistic composite fields remain in the class of operator-valued 

distribution as A -~ . This is not true for euclidean composite 

fields as e. g. in D = 4 

z # A~,~) 1 ~ o > ~ 1 / - - ~  ~ , C A - > = ~ J  ( 3 . 2 4 )  
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2 
i.e. : Ao(x): can only have a meaning as a bilinear form and does not 

exist as an operator. For non-overlapping test-functions fl,...,fn 

composite correlation functions however exist in the limit A --~ ~ : 

2 2 A,,A C > / fo finite <3.25) 

in D : 2 dimensions: A n : exists for A --~" , for D : 3 only 
o~A 

: A2o': and A ° in D = 4 only Ao exists as an operator in the limit 

This situation is a handicap for the Kadanoff-Wilson operator product 

expansion. Either one has to consider it as a statement on correlation 

functions only or one has to go to the relativistic theory. 

The only thing we should learn from the above discussion is that the 

L. I. model and the A4-field theory are likely to belong to the same 

universality class. 

4. Construction of Critical Theories 

In the construction of critical theories there are two different 

possibilities. The more ambitious one is to study critical behaviour 

and deviations from it directly within the global physical theory (e,g. 

for certain physical systems the Lenz-lsing model in D = 3 dimensions). 

In this case also non universal properties of the system may be calcu- 

lated. Recent progress in this approach has been made by Nauenberg and 

Nienhuis 9) for the LI system. 

The other attempt in the spirit of Kadanoff, is to take care only 

of the universal properties i.e. to construct critical theories lying 

in a particular universality class where one hopes to find a single 

scale invariant (and hence conformal invariant) 10) theory. The most 

reasonable approach in constructing critical theories therefore seems 

to be the direct construction of conformal invariant theories and to 

determine the spectrum of e. g. anomalous dimensions of conformal theo- 

ries (classification of critical theories). This actually was the first 

attempt in the construction of critical theories by Polyakov I) in his 

bootstrap approach as developed further by Parisi-Peliti 11~," Mack 12) 

and others. This ambitious program unfortuna~ly did not yet succeed 

but we believe that this is the way to construct non trivial critical 

theories beyond the present approximation schemes. 

It was Wilson who succeeded first in the construction of nontri- 
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vial critical theories by his RG approach. A quantitative realization 

of Kadanoff's idea of eliminating irrelevant degrees of freedom (i.e. 

the,short range fluctuations) for the A 4 cut-off theory in functional 

form (3.1) led him to a study of the RG transformation 

g 

with ~ s  ~ S /2 . In this procedure all internal lines in Feynman 

diagrams are integrated out over the short range part S~A< /pl < A 

giving rise to new effective mass and coupling (renormalized) and 

new (nonrenormalizable) vertices which however should be irrelevant 

in the critical region. The external lines have momenta restricted to 

/?I < / S -4 . In an approximate form Wilson was able to determine fix- 

ed points of the transformation from computer calculations. Under further 

approximation using perturbation theory in ~ = 4-D dimensions analytic 

calculations for nontrivial fixed points have been done by Wilson and 

Fisher 4) and Wegner and Houghton 4) and others. 

According to our philosophy only the universal scaling properties of 

models (which differ from the global physical model) can be taken 

seriously. These models have to be choosen within one universality class 

from the point of view of simplicity and computability. Concerning the 

universality class of the L.I. system we presented the arguments which 

suggest that A4-field theory models are in the same class and we are 

faced simply with the problem of constructing scale invariant A 4 models. 

As the direct conformal construction was not yet successfull the next 

step would be to use renormalized perturbation theory. This is what we 

will do in the following. We will eliminate the cut-off A in the 

euclidean A4-model from the beginning and use renormalized field 

theory 13) " for the study of scale invariant theories by looking at the 

fixed point properties of the dilatation Ward-identity (Callan-Symanzik 

equation). 

We will go one step further and consider the relativistic local 

A4-theory avoiding thereby the peculiarities of euclidean theories 

mentioned in the last section. In doing so we refer to the equivalence 

statement of Osterwalder and Schrader8). By the spectrum condition the 

time ordered relativistic Green functions in D space-time dimensions 

x : (x °, x I . x D-I) ,.. , are analytic in x ° and are identical with the 

euclidean Green functions for 

, ' X .  A r e a l  
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Criteria on the validity of the Landau mean field approximation as con- 

firmed by model calculations show that the critical theory is a free 

field theory in D ~ 4 dimensions and critical indices are likely to 

depend analytically on D below D : 4. This suggested Wilson and Fisher 4) 

to compute critical theories starting from D : 4 by analytic continuation 

in I >> ~ : D-4~O (perturbation around free theory: E -expansion). Low 

order ~ calculations are in remarkable agreement with Ll-calculations 

and experiments for E : 1 and even for ~ : 2 (see Tab. 2). In our 

approach we will use the ~ -expansion for the construction of critical 

theories. A direct approach to critical theories in D : 3 and D : 2 

was given by Parisii4); see also the investigations of Symanzik 14) and 

Schroer 29) 

To summarize: What we will do in our further discussion within the 

framework of renormalized perturbation theory, is to 

a) construct a long range scale invariant theory 

b calculate critical indices and prove the relations among 

them 

c formulate field theoretical Kadanoff scale transformations 

d calculate corrections to scaling 

5. Renormalized Perturbation Theory andE-Expansion 

a. Parametrizations of Green Functions 

We briefly discuss renormalized quantum field theory as used in 

our further considerations. We start from a Lagrangian cut-off /~ 

theory with ( ~ ~ - J~I 

.Z.Zo" o  ' ' j  " "  = - " - ~ A  - ~.----~ A (5.1) 

The correlation functions (time ordered Green functions) are obtained 

as a formal power series expansion (Feynman graph expansion) in ~ 

from the Gell-Mann-Low formula 16) 

, ( r o j  
dr (5.2) 
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i ~,> denotes the free Fock vacuum; A~O(x)r ~ is the free scalar field 
.p/l; 

of mass m o and ~z.~ = .Z:~'~,.~ (" A";] . ~ denotes the omission of vacuum 

diagrams i.e. the division by <~ole ~'~'r:~dx I~,:'>. 
The generating functional for the disconnected Green functions (parti- 

tion functional) is 
[.. (o; rol , 
d(Z+,,~ + 3c~)A c~.V dx  

.7 ' { a t  = < ~ > l  e I--$=>® (5.3) 

The generating functional of the connected Green functions (Gibbs po- 

tential, free entalpy functional) is given by ~ ~ = ~ ~I~ 

<--  J.t 
(~ Cx., .,x,,)= <";-77 ACx~)> =C-~) I (5.45 

• " ~., g ~<,.j . ~ ~c~,) 

I -- 0 "% 

The parametrization in terms of the bare parameters ~o and m is not 
0 

convenient for the purpose of statistical mechanics. At criticality not 

the bare mass m but the renormalized mass m( ~ = m -I correlation length) 
o 

defined by the momentum space location of the propagator pole has to 

vanish (see (2.6) respectively (2.8)). 

Like in particle physics it is therefore much more convenient to use a 

parametrization in terms of renormalized quantities. To this end a multi- 

plicative renormalization of fields ~--2 A = ~7 A and subtractions 

(by adding appropriate counterterms to the bare Lagrangian (5.1)) are 

performed to the correlation functions in such a way that certain norma- 

lization conditions (defining the physical interpretation of the new 

parameters) are satisfied. 

The re-normalization (re-parametrization) is most conveniently 

done for the vertex functions, the Legendre-transforms (with respect to 

the source J(x)) of the connected Green functions. The generating 

functional (Helmholz potential, free energy functional) 17) reads: 

i U  ) -'- c j _ m J /x<,, 7<,, u+< 

with ~CxJ : - d & ~47.t" 
o e ; ]c×l  

(5.5) 

The vertex functions 

f ~ - ,  ~ " / - ~ : 7  ~ )  . = /~ .~. ( 5 . 6 )  :,<,,..., x , ; =  jl <= ° 
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are represented by a sum over the proper i.e. the connected one-particle 

irreducible (i.e. connected after cutting a single line) amputated 

(i.e. no external legs) diagrams and 

(5.7) 

The G(N)'s which are then trees in the~ (N)'s (no extra loops!) are 

given by the inverse Legendre transformation. The renormalization problem 

is completly solved by the renormalization of the ~ (N)'s. The Fourier 

transforms of ~ (N) may be written as: 

(p,,..-,P,v) = < T A c o J T ( p ~ . .  A(p~J (5.8) 

We now consider the different parametrizations of the correlation 

functions. The parametrization standard in particle physics (mass shell 

normalization) is defined through the normalization conditions (see 
e.g. 18) 19)): 

ff ~ O 

OP'~-=, = i p" Ip .z (5.9) 

[.~ ( e ) f ,,~ z I~.~.~, =_c~ ~ ~ee~ s.p. ." P"P2 = ¢~3cr0.  _/),,,,, ,z 

T h i s  p a r a m e t r i z a t i o n  i s  n o t  s u i t a b l e  t o  o u r  a i m  o f  c o n s t r u c t i n g  a 

c r i t i c a l  t h e o r y  ~ - i  = m = 0 ( z e r o  m a s s  t h e o r y )  a s  t h e  G r e e n  f u n c t i o n s  

a r e  n o t  c o n t i n u o u s  a t  m = 0 ( d i v e r g i n g  r e s i d u e  o f  t h e  p r o p a g a t o r  p o l e ) .  

A parametrization with a continuous zero mass limit was given by Gell- 

Mann and Low 16) 20) 

= 0 

= - 

Here the critical theory is obtained for ~ -I = m = 0 where the 's 

exist (finite residue of the propagator pole). 

There is an other parametrization (soft or pre-scalin ~ parametrization) 

which will be most adequate for our purpose. It is defined by 21). 
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11 (Z) 

/._.~Cz.) 
I¢.-Zf" 

= 0 

(5.11) 

/ ~  Ce / 

a n d  

This  p a r a m e t r i z a t i o n  w i l l  be used i n  the f o l l o w i n g .  The p r o p e r t i e s  we 

w i l l  d i scuss  i n  s e c t i o n  8. We on ly  ment ion here t h a t  the c r i t i c a l  t h e o r y  

aga in  i s  ob ta ined  f o r  ~ = o (however now ~ ~ ~ - ~  ) where the /~ 's 

exist. Equivalent parametrizations have been discussed in Ref. 22) and 23) 

in a different context in Ref. 24). We will see that ~z = t is a para- 

meter proportional to the reduced'temperatur (T-~}/Tc in the critical 

region, t will simply be called temperature in the following. All the 

parametrizations mentioned above have a limit A -7 ~ and we are 

dealing hence with a renormalized local quantum field theory. 

Also our model is superrenormalizable in D = 4-~ (~7o) dimensions we 

will keep the normalization conditions as for D = 4 in order to have a 

continuous transition ~-~ where the critical theory will turn out 

to be mean field (free theory). 

b. Composite. fields 

For the study of energy fluctuations (2.8), (3.9b) we will also 

need correlation functions involving composite fields £°i(x ) = 

local monomial in A and derivatives of A. Composite correlation functions 

are defined from a corresponding Gall-Mann-Low formula 

l< ,W k r cos 

< ,,o,, 
T j  '~' ,., , )  <~olT~.. ,oS Z ,.j , -S , : ,  4,~ 

(o/ 
with ~ (~J the monomical ~i in terms of free fields. 

The generating functional is 

(o/ qol r 0) 

Z { 5, ; <'¢o1 e / #o (5.13) 
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The connected correlation functions are generated by ~ 7 "/,..' J = L~,. 2'~7,/,.-~ 

~X~  • " • " 

The Legendre transform (5.5) of G IJ, hi~ 

the c o m p o s i t e  v e r t e x  f u n c t i o n s  

with respect to J generates 

~c#, KJ 

k'~:::l', ) . - .  ~ , ' { ~ . ) ~ / ' { ( . , J . . .  ~lX(~,v) R.k, . (~"  15) 

X4" -" X~Z 

where proper (prop graphs are connected and one-particle irreducible 

with respect to all cuts not separating y-vertices. The Fourier trans- 

forms may be written as 

C p , , . . . , f f v i q , , . . . , ~ l ~ )  ~ ~.TACo)/~(O,.)... A@~v) ~'(q,/... ~. c¢~,J "~-°e 
(5.16) 

The compos i te  f i e l d s  have t o  be n o r m a l i z e d  a c c o r d i n g  t o  the  a s s i g n e d  
physical interpretation. Composite fields which have an interpretation 

directly in the critical theory must be renormalized such that the limit 

A ->~ as well as ~ (or ~ or m)~ o is finite for D ~ 4. Correspon- 

ding composite fields (normal products) are denoted by 

A 

/V'[ Oo-2 
Note that composite fields need apart from multiplicative renormalization 

A 
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also additive renormalizations (depending on K and N) 

A 

I~/£ ~ ' ~ ( ~ ) . . . / ~ E ~ ' ~ g ~ )  ~(x,J . . .~CX~) -- local distribution(5.18) 

Examples will be given in section 6. 

For statistical mechanics the euclidean correlation functions are 

obtained by analytic continuation in x ° to euclidean points: 

For structural investigations and proofs of the existence of various 

limits to all orders of perturbation theory one most conveniently uses 

the Bogoliubo~Parasiuk-Hepp-Zimmermann (BPHZ)-renormalization 

scheme26) 27). In this approach the correlation functions ((5.2),(5.12)) 

are defined directly by a finite part prescription to the Feynman 

integrands avoiding a cut-off or other regularizations. For technical 

details we refer to Ref. 21). 

c. @-Expansion 

The continuation of a scalar field theory from D integer to non- 

integer dimensions is possible only via the continuation of Feynman 

integrals. 

Let 

be a Feynman integrand in momentum space to a connected Feynman-diagram 

with ~ internal lines and n vertices. D denotes the number of space- 

time (with metric (+,(D-I)-) dimensions, pj is the external momentum 

at vertex j and 

i +i for a line ending at vertex j 

~ '~ = -i for a line originating at vertex j 

o otherwise 

The Schwinger-parametric representation of (5.20) (which is defined 

for D = integer) is obtained with 
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i 7 ~' . L ~ ( g q  "-.,- " 4 - , 'o  ) 
= J d a g  

.~a_  ,.mz ¢-~'0 o 

(5.21) 

The four momentum integrals are then all of the Gaussian type 

(5.22) 

and lead to (see e. g. 25)) 

Ycp,. , ,m,,  ) = il_ z ~ ~ ; (  g-,'av g Z p j  ) x 
-l 

"" - ~" / %  ( ~,,~- .,'o ) Z l'~ d.~i p~" 
× Jdo, .... ,z / e  

(5.23) 

Here L is the number of loops of the graph, 

P is a homogeneous polynomial in the ~'s of degree L 
-I 

d~ = /~'j /~ with Nij a homogeneous polynomial in the~ 's 

of degree L + i. 

The representation (5.23) may now be analytically continued to 

complex D. l(pj, m, E ) is for m > o a meromorphic function in D with 

poles at some negative rational Z = 4-D. Hence l(pj, m, ~ ) has a 

power expansion in Z for ~ ~ o. In this way the correlation functions 

are obtained as double (formal) power series in g and Z . 

For a treatment of field theory in D = 4- Z dimensions not using the 

q-expansion see Parisi and Symanzik 14) 

Footnote: 

For m = o there are infrared poles at some positive rational values of 

E in the region Z > ~ (pj , ~ the perturbation theoretic order of I ,o, ~). 

Due to these IR divergences the Green functions to all orders in g do 

not exist at m = o in 4- ~ ( ~ > o) dimensions in an usual perturbation 

theory. Symanzik 14) " has given a new expansion exhibiting terms non 

analytic in g which is free of the IR singularities. 
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6. Critical Theory (Preasymptotic Zero-Mass Theory) 

We will first construct the critical theory in order to under- 

stand and calculate the behaviour (2.8) field theoretically 

(6.1a) 

I~ ~ z---d~A~ (6. Ib ) 

To this end we have to look for a scale invariant (for long distances) 

A4-theory. The only candidate for a Lagrangian that can lead to a scale 

invariant field theory is (no dimensional parameters!): 

- (6.2) 

The Lagrangian (6.2) however only makes sense either in a UV-cut-off 

(A) theory where A destroys scale invariance or (as UV-subtractions 

at zero momenta cause infrared divergencies) after performing UV-sub- 

tractions at some spacelike normalization spot//< where/~ destroys 

scale invariance. Hence in perturbation theory there is no scale in- 

variance (nonexistence of a zero theory without scale parameterZ). 

We consider in the following the preasymptotic zero mass theory normalized 

by 

a ;  _ ( Z  ] . .  . ( W  , 

Ip .o  " °  ) CIp~_/,,, -",,~* "l /2 Is.t,.-/'~ - ~/"  (6.3) 

The~ -dependence is governed by the Gell-Mann-Low renormalization group 

(RG) equation 

o (6 .4 )  

Here /~/~ acts as the dilatation operator in the parameter space and 

(6.4) represents the dilatation Ward-identity. 

If we assume (6.4) to be true beyond perturbation theory the 

vertex functions /~o scale (i. e. are homogeneous functions) provided 

~c~) = O for some value g = g . Hence scale invariance is found 
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in the (by the differential equation) summed up perturbation theory. 

Expanding the scale invariant solution in g leads back to the leading 

perturbation terms being individually non scale invariant. 

When ga is small we can use the perturbation theory to calculate 

~(~) and [C~]. In this case scaling is in an approximate sense 

computable. 

The global solu, tion of (6.4) is 

( { <~ p : ] ,../., Z ) = ~ r-c { po] (6.5) 

with (6.6) 9 c ~ )  { ~  ~ -- ]" %--{%'} d~' 
$ 

~ c ~ ' J  6.7) 

with d A : d + ~A the dynamical dimension of A; 

d~ ~ i the canonical dimension of A, and ~A = -C(~ ~] 

the anomalous dimension of A relative to g* 

At g : ~ we have 

A ~'-z Oil~ 

{d~po-]g~,~')= ~ ,o (dpjS/~,~*) 6.8) 

.,'4, 

i.e. the ~ 's are homogeneous functions in the momenta,~ as a com- 

pletelypassive scale can be eliminated. 

4e 
There is no reason that in nature g = g , hence we have to study the 

ease g # 

If g # g* we distinguish two cases 

i) As ~->o , g(at) has to go to a value (if any) go 

where ~- (go) = o and ~ increasing at go (Fig. 2). 

Fig. 2 
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If ~ ' (go) > o then ~ (~} --~ f-o finite and 

(,~'1 ,--... j3- Nd; ,~, 

Hence if there is a zero go of ~ with ~'e~) > o the long range part 

of the preasymptotic zero mass theory approaches a scale invariant limit 

(long range scaling), go is called an infrared stable scaling fixed point. 

This limit is the one relevant for statistical mechanics (i. e. agrees 

with the critical regime of the L. I. System) where scaling is expected 

too only in the long range region. The relation is a special case of 

(6.9) for N = 2. The Lagrangian (6.2) ~c~J can be identified as a 

critical one. 

2) As ~--~ by (6.6) g (~) has to approach a value (if any) 

g~ with ~(~) = o and ~ decreasing at g~ (Fig. 3). 

Fig. 3 

When ~ ' ( ~ . ~  ~ , 0  then ~*~}  --~ ~ finite and 

(6.10) 

Thus if there is a zero g~D of ~ with ~fg@~J ~ O the short range 

part of the preasymptotic zero mass theory shows scale invariance 

(short distance scaling), g~ is an ultraviolet stable fixed point. 

This limit might be relevant for hish energy physics. This scaling 

limit is present only in our renormalized embbeding theory not in the 

L. I. model or the cut-off field theory which exhibit smooth ultraviolet 

behaviour. 
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Note that if ~'= o, w' # o at g e then 

2 ~ w l 0 

~ o ~ >  ~ (6.11) 

for G" ~ o i. e. in this case one has logarithmic modifications and 

no scaling in the strict sense (see also section 8). 

From our consideration we see that the preasymptotic theory contains 

all information about the scaling structure of A4-theory whether long 

range or short range. The question of computable scaling we will discuss 

below. 

We turn now to the consideration of composite fields in the 

preasymptotic theory, in order to derive (6.1b). 

The energy density by (3.9b) is of the form #rz)~ ~ C~A)Z ~ A z  

In the long range region (relevant for statistical mechanics) however 

the term of lowest dimension is dominant and hence 

We thus consider the field 

The composite vertex-functions are 

= . .  / I / ' [ ,4  L7 r~, j . . . ' - ~  "°P I~ (K. qi ;i,~,~7 ) 7 t < T  j,oJ Arp,.s. t, , (6.12) 

normalized by (6.5) and 

They obey the RG-equation 

(6.13) 

The term ~ (g) is due to multiplicative renormalization of A 2 whereas 

the inhomogeneous term occurs from the additive renormalization of the 

"energy fluctuation" ~T N~ A~C~) NEA~ (o) ~ which is already 

present in the free field case. 

In A4-theory there are no other dynamically independent composite fields 



with d o ~ D; the A 3 field is connected by the equation of motion to 

A and A 2. Non renormalizable fields as 

j !  /V~ A6~ (×) 

can be included in a similar manner 21) 

From the normalization conditions (6.2) and (6.13) the coefficients in 

(6.14) are given by: ~L; 
$g 

• z-f ~ ~(~J 

~-C~, ~) = - 2 ~  9/~zls .~.-p~ . ~}-c 

g _2zp  9 C 

and may be calculated in perturbation theory (see Appendix A). In per- 

turbation theory to n-th order these functions are holomorphic in 
2 

for ~ 2 Re ~ ~ o (see however Appendix C). In D : 4- ~ dimensions the 
2O) 

leading terms in the~-expansion are 

c ~ J  ~ 4 oC , ~ 9  
(6.16) 

4 
~ o =  C-4F/• 4 0 ( ~ , T J  

The fixed point condition ~ (g*, Z ) : o can now be solved explicitly 

for g + (= power series in ~ ) in an approximate sense (computable sca- 

ling) (Fig. 4). 

For ~ ~ o there is a long range scaling fixed point ( ~'>o ) 
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(4"~r)z~_ f- d)(e 'J  (6.17 $ o -  3 

and a Gaussian (free field) short range fixed point ( ~' < o ) g~= o 

3° 
J 

g=o 

Fig.4 

Hence in D = 4-~ ( ~ >o) dimensions we have a non-trivial critical 

scaling theory with anomalous dimensions 

7"(#<,): & = ~Ty + oce3j 

(6.18 

1_~ ~.3 + 0 ( ~ 3  J 

For calculations to order OC ~J see Ref. 19). 

We have actually calculated the critical indices 

d ~  ~ dA = a ~ K~ 

and O E = dA ~= 2 d  + ~A~ 

appearing in formula (2.8) and by (2.23) we have calculated the two 

independent Kadanoff coefficients. 

The short range (high energy) asymptote is a canonical theory. 

(6.19 

In D = 4 dimensions there is (in perturbation theory) only a second 

order infrared scaling fixed point at go = o. We thus have reproduced 

the well known result that in D = 4 dimensions the critical theory 

(associated with a ferromagnetic Lenz-lsing system) is a mean field 
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theory (mean field critical indices). The ~ -expansion appears hence 

as a perturbation expansion around a free field theory. 

As ~r = o in view of (6.11) the o/~(~J's scale. However as ~ o  

(an analogue of (6.11) holds for ~ ) the ~ (N'K)'s (K ~ o) show up 

logarithms in the leading terms 26 
) 

In order to study the singular behaviour (2.9) we have now to consider 

the non critical (t,H) ~ (o,o) theory. 

7. Non Critical Theory (Linearly broken massive A4-theory) 

a) ~caling parametrization 20) - 24) 

We will now perturb the preasymptotic (critical) theory by the 

relevant fields (the temperature and the magnetization) in the sense 

of Kadanoff-Wegner (2.16) (remember E(x) ~ A2(x)): 

Z Z ~°~ ~'~°~ ~ A,'£A~cxJ +HA~xj  = + $ Z  = . z _ c ~ -  ~ ( 7 . 1 )  

in order to study the singular behaviour (2.9). By a translation of 

the field A 

A - >  A = A "  M ~ /V ~ A > -, 

our Lagrangian takes the form Z-So ÷ ~,~ 

= -  _ + C A  

with C-- H - ~7(~_ ÷ ) determined by <7) : o 

(7.2) 

As independent parameters we choose 

t, M, g and 
/ 

In the perturbation expansion g M 2 is (as a mass term) treated as O (i). 

The equation of state reads 

o M, ÷ c ( 7 . 3 )  

All technical details are given in Ref. 21). 

; ~ 2 / ~ -  (7.~') 
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In o.th order we see that the phase diagram is of the correct form 

(Fig. i). 

The theory is normalized by (5.iI) 

a) the preasymptotic normalizations 

c t ) ,_7C~) (. I ¢e-..~ 

/-, : o ; " I f . <  ` - ' > "  ; : 
~.,tl - 0  .~,  t~ = = 0  

(7.4) 

i. e. at (t,M) : (o,o) /~ and g are the parameters of the preasymptotic 

theory. 

b) The normalizations of the "perturbation" terms 

/ -'ral {~; 

$~,]p:o~::~:_:-& } P _= o (7.5) 

these conditions define the "temperature" t and the "magnetization" M. 

There are three independent (linear) parametric differential equations 

(~,s) ~ .N+ M ,~ . + < ~ ) ~  +<~_ ~ .~ ,  / 
tp  f" GC~)O-~ - EeT) 

~ - q  

- -  -~: p ~cy; J~o g.z 
(7.6) 

ZI ~ = d x /V  f A ( ~ ) - "-D-t 

(7.7) 

"~t-i I'-ll~'l{l - I~CE~I = - A  N 

/~t and~M are soft insertions (in the high energy sense) i.e. A6tfy 

falls off relative to / 7&A6'~¢] for large nonexceptional euclidean momenta 

by powers (up to logarithms) to all orders of perturbation theory. This 

implies that the t and M dependence of Green functions drops out for 

large nonexceptional momenta. We therefore call this parametrization soft. 
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For M : o C~o and (7.7) tells us that t is actually the parameter 

conjugate to N~A 23 i. e. the temperature. That M is the magnetization 

is guaranted by M =<A>. For comparison the PDE's for the parametri- 

zations (5.9) and (5.10) are given in Appendix B. 

We will see below that the (pre)-scaling equation (7.6) (replacing the 

usual RG equation) is nothing but a differential form of Kadanoff 

scaling (scaling substitution law). Actually our parametrization is a 

global (pre)-scaling parametrization in the sense of Wegner. We observe 

that the hard (in the high energy sense) dilatation symmetry breaking 

terms are exactly those already present in the preasymptotic theory. 

The dilatation-Ward-identity (Callan-Symanzik) (CS) equation) follows 

from (7.6) and (7.7,8): 

I D + , t r 
(7.9) 

C 

where D =~+lt~+~H is the dilatation operator in the parameter 

space. Our parametrization has the particular property that the two 

limits: 

(i) large nonexceptional momenta 

(ii) preasymptotic (t,M)--> (o,o) 

are identical to ~(~ @] In both limits the RG equation (7.6) and the 

CS-equation (7.9) coincide. 

In the soft parametrization t only appears in the propagators not how- 

ever in (the symmetric) counterterms; this explains our observations 

of ~cH/ = /~o (~) ( /~f the nonexceptional large momentum asymptote). 

The main feature of the pre-scaling parametrization is that the hard 

dilatation symmetry breaking is completely controlled by a globall[ 

solvable pre-scaling equation. At the same time it is the appropriate 

parametrization (as we will see) for the study of statistical mechanics 

aspects of the model. 

From the normalization condition (7.5) we have 

~ = 0  
(7.1o) 
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with 

2.. / - ~  ( ~ ' )  

I e =~ 
IH--O 

In D : 4- ~ dimensions 

A ~ 0 
(= ~C~) to this order) (7.11) 

/% 
Generally ~5(~)¢ ~(~J , at the fixed point g~ (~(g~) = o) however 

/% 

This is shown in Appendix C (see (C.7)). 

b) Global solution of the ~re-scaling equation 

The global solution of (7.6) reads 

3)-/v'4~÷ k(a~ ,~-~ ,1  -At IX, /-7 o~ "~ ( 7 . 1 2 )  

jb.~ 

+ ~j~ E~ /~o Y~2 

where g(~) and r~ are defined in (6.6,7) and 

~C~ ~ (~. 1 

F,S = e x p  ~ ,)  
(7.13) 

(7.14) 

Apart from the E~ term (7.12) represents a global substitution law 

(analogue of (2.11,12) and (2.17) under momentum dilatations. 

this is a generalization of Kadanoff's scaling. 
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Now if there is ascaling fixed point g~ : ~ (ge) = o and if ~, ~ 
and o~ are continuous (at least one side) then for g : g~ (where no 

hard breaking of dilatation symmetry is present) (7.12) takes a homo- 

geneous substitution form (Kadanoff in narrow sense). We have then 

strict global Kadanoff scaling as 

A 

satisfies 

~C~'~ c ~',~po. ji/.,, ~/ ~, S*) 
(7.17) 

:~-~' C l c I ' , ~ - ~ - ~ [ ~ I J " ~ ' - ~ - A Z  ; 2~',4~ ~ 

~may be eliminated completely by introducing quantities of canonical 

dimension zero: 
A 

- -  F - p ,  ~ - -  

From positivity the dynamical dimensions of the fields A and A 2 are 

larger than d. 

We assume (always true in the region where perturbation theory applies 

i.e. for small anomalous dimensions) d A and dA2 to be smaller than 

D. Hence 

(7.19) 

In view of (2.17,18) we may then classify the fields. In order to have 

also an example of an irrelevant field (in the long range region) we 

add to the Lagrangian (7.1) a non renormalizable perturbation term 

22--> Z -  FC#J(xJ 6/ 

and assume dA~ > D 21). We than have 
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(i) As ~_~ ~. 

d A 

short range irrelevant 

i 
(~ )-~ ~= ~ marginal 

irrelevant 

short range relevant 

(ii) As ~-~ 

long range relevant 

i (J.~)-~) ~ = ~ marginal 

~ l - ~ °  = ~ ' ~ ) - ~ ° ~  a~C~°)  ' ~ ~ irrelevant I 

L(. I --~ 0 long range irrelevant 

The marginal variables lying at the boundary of UV and IR-criticality 

are those determining the fixed point structure of the theory. 

As we will see below for g ~ g* the power laws appearing in (7.17) 

are (under certain conditions) at most modified by logarithms and they 

do not change the character of the fields. 

The critical surfaces and trajectories under momentum dilatations for 

a A4-theory with A 2 and A 6 perturbations, normalized such that we have 

a global scaling parametrization 

A 

a r e  d e p i c t e d  i n  F i g .  5 
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,I,i 
i i I I I i ~  

i l i  / J 

t '~o 

CeJt 

C n~n cn, '~Lc~-~ 

Fig. 5 

8. Marginal Corrections to Kadanoff Scaling 

As shown in the last section the homogeneous substitution laws 

(7.17) are violated by the non vanishing marginal variable ~ = g - g~. 

If we assume (ev. beyond perturbation theory) 

i. the existence of a fixed point g 

2. ~,~ ~ and a~ have asymptotic expansion in g at g* 

(8.1) 

we may expand the "correction" terms appearing in formula (7.12) in the 

region 



1 5 1  

I < 1 <  1,~1<<~ 

with ~o leading term of g (~)- 

Leading corrections: 

a) 

g • 

{ =ZoI. - 

(8.2) 

(8.3) 

(Q.S) 

finite. 

In this case scaling holds in the strict sense. 

We find this situation for the A 4 theory in D = 4 - E 

dimensions in the infrared and the ultraviolet region. 

(~>o)  

b) ,n 

A + ouo -2J} 
(8.4) 

Hence if ~# o ; ~ ~ O there are logarithmic corrections to 

scaling 
CN) / 

if ~', = O the [-~ S scale 

if ~l O the /~ (~; ' = ~ scale 

This situation happens in D = 4 dimensions for the A 4 - theory at the, 

infrared fixed point go = o, where ~, =°i ~t =o; ~ o  ; J1 ~ 0 
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c) 

(~ -  , ~  ~ )% ; 

3CZ ~C~ - o,,%J 

_ 3 ( zo,~.% - cx ,% ) 

This situation holds for the A3-theory in D = 6 dimensions and for a 

class of non-abelian gauge theories (with ~r =oj 2 z÷O j ~ @ O ). 

Note that the structure of the marginal corrections are completely de- 

termined from the universal preasymptotic theory. 

9. ~hermodynamical quantities 

From the field theoretical analogues of the definitions (2.5) 

and the Kadanoff relation (7.17) we obtain the singularities of the 

thermodynamical quantities (2.9 or 2.21,22). Using the expansion (8.1) 

in the region (8.2) we immediately get the corrections to scaling by 

expanding the r.h.s, of the Kadanoff relations. The corrections are 

given below for a >o ; they are by (8.3) powers in g-g* and oc ~ with 
~ 30 ) 

a) ~ = O : ~ = - - ( ~ ) D  
- /  

- 2  d A 
F_ield susceptibility Y4 : With ~= ~_ ~A ~ 

(9.1) 

The numbers ~,(~')are given Y:" 
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• . . . , (z]  ~ 
(o  (~t~,) = ~ /  .2 1 C*;/-<,,b< ~' O,  ) 

.., <~/<~ ~ - ~ i-.<<~ J ~o ~/~ ,2 < <, ~ ~ '2  
( 9 . 2 )  

.,.4 
c-~ (,~) = ' t l  ~-2 ' 9 ~  ( o, fi,/~5 o,g*) - C, 6~*) 

For ~ 0  a similar expansion can be obtained from: 

9(., : I ( % , . . , : , ~ , ~  ; : ( f i < l  n- F ' ( , ,#<, t . , ' r . , .e  x,-< , <f+4; 

w~ere ~ ~ ) - f i  
x : (# .  

Equation (9.3) has a power expansion in x. 

(9.3) 

(9.4) 

~-2 c l A z  
Enepgy susceptibility ~ = ~ (specific heat): with ~ = 

- t~oC~*j +~-~2 s>,cg,V+ ocA~; L7 ; o< ÷o 

where 

, (o,~) ' ¢.~o v '  

e-~u V 
c~ 

,~/- ,  t~,l) 0 ..~ (o ~ J .<,,<, _ 2 ¢  , ~ ,  " 2<r,  , - , , ,  <0,~,,2<,,o&(9.6) 
: F "  9 j  +- ~ - ] p  ~ - E  + ~ F' J(o;/<,,l<;a,~.*)_.¢" 2 to +c. - 

-o<. ; .b,<c~J = - ~ - a -  2_5<> + ~ - ~  



~5~ 

The leading terms for t --~ o are: 

/ 
( 9 . 7 )  

As from (7.19) -(~-¢&) ~o ~ Z , the critical index ~=-VC2oro-~) 
actually can take positive and negative values. 

In D : 4 we have ~ = o and C behaves logarithmically due to the additive 

renormalization term E~ ! In D : 4- [ ({>o) dimensions ~ = ~ } ÷Oce~)~o 

the power singularity is present. 

For M # o one may again expand the expression 

XZ F 'c°''' - -  (o; /<,  e, /v' ,  + ) 
(9.8) 

= ~" ~ (o; t . , /<<&,f ,~  m', ~,~+~), <./<-~E<., 
~ )-+< +(+,,u 

in ~ and X • 

W 
Correlation length ~ : with V = 9-dj~ 

/-, (~) 
f - a  • ( 

= ' ~  = - ~ . _ _ e " '  ° " " ~ ' e ' ~ ' 2 ]  = 
9 p  = 

= - ~ (o,.,~, 7,  ~ ,  o, G*,~,,4 ) 

with 

(9.9) 

2v  ~ V~ A 

= -.i-<'(+~.) ~ A,,,?,v,'-- (~,.) (g.,.+,u,¢,:s+.],,-~-<+,,,+~.,.~-,? ,- oc,.,,+, .~ 
3 ¢-' 

,,.'x ..~ r ~ . ( # l  • - 4  

(9.10) 

: + ( ' o ; i ~ :  o ,  , 2 " )  - A , ,  r ~ * )  
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Again for M / o we may expand 

-2. 

= - a._C_~<,---~, ( o ~ , I . , , ~ , / 7 , ~ }  
,g p~ 

: - (fi, ~_n"' :°: l ' ,  t " ~ , r ~  ¢; ~",<~ : <Dpz 

in ~ and X • 

b) Equation of state: ~ = (~d)A/~ 

The equation of state (7.3) 

H : :W #,~(,,,-,,~,:-/,~ 
satisfies the scaling equation 21) 

e ~ -dA 
and hence with ~f :?z  and ~= dA 

. / . f  6" < .  .t d -, 
I - t r / , ~ ,# ,~ ) :~ -<< )  ~ i~</.<,/,Tr<, ,X ~ ,  ~"+t~ ) 

(9.11) 

(9.12) 

(9.13) 

On the critical isotherme y:o: 

w~ ( 9 . 1 4 5  

= i ~ @~ ) co<'~ '+) + ) :~- :sc: : , ,  +(~-s')c <~*),< o:,~<: 

Here the numbers c ~ . ( ~ )  are given by 

d-.J 
<o:~,j :,/.< /-to/,, o,r ~, ~, )  

.., ~._b <:., ~ H +/-,<" "~--~ (9.z5) 

c, c : ) : / ' . ,  ~-~ ( i ' ,  o,,t" # ,  ) - ~., 



2 1 ) .  On t h e  o t h e r  hand on t h e  c o e x i s t e n c e  curve H=o . 

d d  t h e  e q u a t i o n  o f  s t a t e  t a k e s  t h e  form: With /) = - 
9 - d A 1  

We have now determined a l l  t h e  c r i t i c a l  i n d i c e s  from ( 2 . 9 )  and we may 

check t h e  s c a l i n g  r e l a t i o n s  ( 2 . 2 6 )  t o  be  s a t i s f i e d  e x a c t l y .  For 

a t  t h e  f i x e d  p o i n t  (6 .17)  t h e  c o r r e c t i o n s  t o  s c a l i n g  f o r  t h e  thermo- 

dynamical q u a n t i t i e s  a r e  c o r n p l e t e l ~ ~ g o v e r n e d  by t h e  exponen t .  

+ 
These c o r r e c t i o n s  a r e  due t o  non v a n i s h i n g  marg ina l  v a r i a b l e  A = 3 - 9  
I n  t h e  " r e l e v a n t "  v a r i a b l e s  x  and y  of t h e  e q u a t i o n s  ( 9 . 3 ,  8 ,  11, 1 3 )  

t h e  thermodynamical q u a n t i t i e s  a r e  a n a l y t i c  ( t o  any o r d e r  of p e r t u r -  

b a t i o n  t h e o r y ) .  For  t h e  c o r r e l a t i o n  f u n c t i o n s  i n  c o n t r a s t  non v a n i s h i n g  

r e l e v a n t  f i e l d s  g i v e  r i s e  t o  c o r r e c t i o n s  of non a n a l y t i c  t y p e .  

10.  C o r r e l a t i o n  Func t ions  

A t  t h e  c r i t i c a l  p o i n t  t h e  long  range  p a r t s  of t h e  c o r r e l a t i o n  

f u n c t i o n s  s c a l e  a c c o r d i n g  t o  ( 7 . 1 2 )  and ( 8 . 3 )  
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/ TM ~#,~ .~_ ,v,~,( + ~(a,(,-~.)~ ~(n~<, 
[aepo.j;2,,e, r l , ~ )  ~_ ~ Io ( ~po.~;il,,~,o, 9 N (~o.1 

+ correction terms proportional to (g-g~) and 

(~t -<a'; ~ ' ' + .  -- .9 + ,.' d',,,.o 4~2/ -<-  "6~_ 
In particular with ~¢.t).J--- _ p z  ~-  

i-~ (10.2 

and O4 

, . , ~  ,.,~, ,-, ,., .R {d;- ~ / - "7 ' - -  ,,,<,,s)-l?,,' -?,,,,,,,~,o,s")-<,/<-~'J~ -...,.7 
(~o.3 

For (t,M) ~ (o,o) relevant corrections to scaling occur. In the region 

~z / . /2<~ ~ z. (10.4 

we have 

c t<~<.t ~/~,~'÷,~d14, ~ ; = 

+ 0 ( ~ ;  ] I ~(~'~; . -  ~rA,, g,~ 

Now we further may calculate the corrections for 

/ ,  t.1 z ~ z s , )  (1o.6) <<  p,." C < < /  

using the inhomogenoous PDE's (7.7) and (7.8) for the vortox functions 

on the r.h.s, of (10.5) togothor with short distance expansions (SDE), 

for the r.h.s, of these PDE's° 

For simplicity we only consider the leading relevant corrections for 

vanishing marginal field ~ = o i.e. of 

c Jp ;J jW, t ,n ,  G~) 
Integration of the PDE's (7.7) and (7.8) leads to: 
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As 

~tP.h~ ,~ , /~ ,~]= /, c ~P,-~; ~ ,o ,o ,~ ]  

~ ._,[~, ~., , 

- i 

_ ,,'. i C~pd;w,o,/7,~] 

M C~m 
~- ~0 I It,,. , t ; N even. 

for N odd and 

(&o.7) 

9~ F'~"~ ~p , ' J ; , /4 ,~ ,o ,~]  finite (10.7) holds for 

N odd also with ~(~1 replaced by ~H[~(~ ~I 

The small t, M behaviour may be obtained (using homogeneity and the fact 

that %he vertex functions depend on ~ only logarithmically) from the 

l&rge momentum expansion (SDE): 

N even: 

Z~t~l-'( ~p,'J~,e,/%J / +~(;~po;,oi6/,,?,,o,:l) /~ n 
(io.9) 

N odd: 

" " G c p , t , r / , ~ ) + # ~ ;  (~ '*o ]  

"~ ^ Z r¢o l  

Z~. zlt~ / C/p;.fi.,~,E,h',~)= / ~ ~ ~p~,oJ,p,/~, ,~ )~; t  & ~ , ~  ~ , 3 ) ÷ ~ , C ~ o 2  " ~ }  

f" ¢ ~p,,~o, oLW, t ,  ,%~,~ M c.,.,6,/v,~) ,~ , 
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The remainders R~.,:,Kjr~,~'~ drop out to each order of perturbation theory by 

powers up to logarithms. The coefficient functions 7~ (~..~k] 

are represented by graphs which get one particle irreducible with 

respect to cuts not separating the K-vertices after connecting the 

N-external legs to a point. The singular parts on the r.h.s, of 

(10.8 - 11) obey the scaling equations: 

with Qmn a polynomial in t and M of degree c~ --4-2n-m~o~ the coeffi- 

cients depending on g, and 

where Pmn is a polynomial of degree ~ = 3-2n-m ~ o. 

Here we used the notation 

" i  ~ - / I l l  / i -  .¢, I { '~  ~il  

and 

The inhomogeneous terms are due to the additive renormalizations of 

/~ and ~/~. In particular: 

(10.12) 

(10.13) 

are determined from: 

I~': o t '/~; b f=o  as 

~<-,o ,= "<;P~<"/'<~/~ " ] ~ + }  ~<>'t < • 
With the solutions of (10.12) at g = g' : Ik--#o 
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fi' :/.¢<,,~,2= £ :  / , , ( / . : , : o , : , ;  +.~:-~<<:<,,<~,,,, ,,<~ z-::~l .7 
-#  -~' 

. .:, ,:.-<,~., .~ ~, ' / : : . :  - 9--.,:./ 
(:o.t5) 

# d-z , ,'¢ d-z /./.-7 
1~ o 9, ~, t'i, 7*l : (.~a ) ~o :,k, ¢,,P ~ .ql) * / : ' / "  ~ <:.:o : ~ q v li'- ZlS )- Z ~ :  ) - (i,."./)J 

fc/v, u) we obtain from (10.5 - 15) the leading corrections to o and 

~ I] (N) in the region 

I t l , ~ l  ~< p~<<pz 
With Pi : Phi' p > o, Inil = 1; n i euclidean, nonexceptional using 

the notation (7.18) we have: 

For N even: 

~'(v'~s ( tp~zt; /.,.A ~ :7 ) .... 

with 

(10,16) 

:( ~+,/%:~,:-/%',~2 4 <~*.'; ("=<'; 
,$ 2 +"]  

,4,,(¢2 ~ c,,,q 

o,e~V=u-oJ~  ~ 4~q`,:;<~,~'j+4~y ' jJ ; 4 :~"2= < ~ : ( ~ ' 9  v <x-' 

.~ (:.2: (~-,<;)~ 7:-~' ,rT, ::,,<,,,: .:' ~ , ;. < 24,~v2; & ( : , , :  ~' o:~<~,v ,::--,i + 
For N odd: 

l : f : , / : , , :~v  " ( ~: +,,J F~ ( ~ v: r::=o2 

~( iTl~J o) ~ ( g q - ( t ~ ¢ &  v) E~c~*); (I==) 
with 

~.,' /u,, 32 
~(,v) 8/g9-:I c ~l,,..,a~,~ ;.~,./-,~,o,~,,) Joq.)= ~. ,o c ~i<,~:~ #, ,<,, <,, ~.,) i 
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with 

(1o.19) 

Higher correction terms may be calculated by taking into account further 

terms in the SDE's (10.8 - 11) and by applying SDE to the non leading 

terms in (10.5). 

In view of (9.14) and (9.17) we easily obtain the relevant corrections 

on the coexistence curve from (10.16). 

ii. Conclusions 

Within our field theoretical framework we are able to give a precise 

meaning to many of Kadanoff's considerations and we have a model matching 

Wegner's phenomenological scheme 6) 

Our discussion shows that the soft parametrization is most transparent 

for the discussion of scaling behaviour. We want to point out that using 

the soft renormalization technique 21) all perturbation calculations can 

be performed in a usual sense (no loopwise-summation) and that all per- 

turbation theoretical statements have been proved to all orders using 

PDE's. 

What we have shown is that the A4-model exhibits: 

i. Long range scaling for 

~, [7 Z ~2 <<,~ euclidean nonexceptional 

2. There are two independent critical indices and the scaling relations 

among the critical indices are exactly valid (calculable in 4- E 

dim. o~Z<~A ). 

3. In D = 4- £ (~ >~ dimensions strict homogeneous Kadanoff substitution 

laws (Kadanoff scaling) are valid in the long range asymptote. 

4. There is a global (pre-)scaling parametrization in the sense of 

Wegner. 

5. The scaling structure (singular behaviour) and the structure of 
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corrections are universal in the sense that they are intrinsic to 

the preasymptotic theory (i.e. known fromG (g), ~(g) andS(g) ). 

Whereas thermodynamical quantities besides the "marginal" correc- 

tions are analytic in the relevant variables, the correlation 

functions exhibit non analytic "relevant" corrections. 

In Tab. 1 we have listed the values for the critical exponents obtained 

from the ~-expansion to order ~2 and E 3 in comparison to the experimen- 

tal values, the mean field values (MFA) and results from Lenz-lsing model 

calculations for D=3. To order El 2 the agreement is stricking for D=3 

and even for D=2 the results have the right orders of magnitude. There 

is of course (at present) no explanation why starting from an asympto- 

tic expansion for small ~ by setting ~ = 1 (or 2) one gets reasonable 

answers. 

Concerning the structural investigations our results immediatly gene- 

ralize to n-component scalar models: 

2=:  2 

The functions ~ ,~ , ~ and ~ now depend on n and so do the correspon- 

ding critical indices 19). For n > 1 the Goldstone phenomenon takes 

place in the spontaneous limit otherwise there is no principal structu- 

ral change. 

For similar investigations of other models we refer to the review ar- 

ticles Ref. 33). 
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Appendix A: Graphical Representation of Green Functions 

a) Zero mass 

7o ~ = ~- O 

c4-) 

(Z,4) 
/ o  = 

_Jo, z } 
/: = + ~ 4 • . • 

+ 

For a evaluation of the integrals see e.g. Ref. 20). 

b) (t; M) ~ (o;o 

O --<D-- O 

~ + + + 

I n  D=4 t o  l o w e s t  o r d e r  we h a v e  f o r  M : o :  

c ~ o s s e d  t e r m g  4---. 

/-~ {Z } 

= 4 

d 
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Equation of state to lowest order: 

prop 

t/'~ ~/~z + 

+ . . 

Appendix B: Structure of PDE's for the Parametrizations (5.9) 

and (5.10) 

In the symmetric (M : o) mass shell normalized theory (m : phy- 

sical mass) there is one PDE, the standard CS-equation (Dilatation 

Ward-identity)29) 

i.e. the physical mass breaks dilatation symmetry necessarily in a hard 

way as # ~ o for generic g and the large momentum (nonexceptional) 

asymptote ~s ( ~j differs from ~r~ by a complicated wave-function - 

and coupling-constant - renormalization. Also the ~r~J are vertex- 

functions of a zero mass theory (mass in propagators dropped out) 

the ~5 (~j 's still depend on m (through the m-dependent counter terms). 

The /~5 c~/ are solutions to the homgeneous CS-equation. 

(B.2) 

Note that the functionsl~ (g) andS(g) are expressed in terms of massive 

vertex functions and are hence holomorphic in ~ for Re ~ ~o . The 

widely used~-normalization of Gell-Mann and Low with mass shell norma- 

lization of the propagator pole (m physical mass) has similar proper- 

ties, however with Green-functions continuous at m : o 16). The PDE's 

are (see e. g. 22)) 

,,~ "9 ~ c ,  zj 

(RG-equation) 

(B.3) 
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( CS-equat ion ) 

(B.4) 

In this parametrization the RG-equation is not globally integrable for 

m # o. There are two regimes: 

(i) Large nonexceptional momenta: fN m ~ drops, however: 

CS ~. RG Io~ # o still m dependence! 

(ii) zero mass: ~ P drops and ~,g~ ~ and ~ simplify such 

that CS Fo : RG I~o 

Again f4~ and ~ are related by complicated wave 

function and coupling constant renormalization. 

Appe.ndix C: Universality Properties of I~o . 

Two zero mass A4-theories /7 /4 and with length scales/~ and 
0 0 

can differ at/A only by a finite wave-function-and coupling 

constant renormalization: 

As /~o 

and 

q ( w l ,'Vlz 
cp;p, vr~j)-- 7c~2 Io rp,.i~,~j 

and {v o obey the PDE's 

C.l) 

C.2) 

we have 

C.3) 

As in perturbation theory V(g) = g P(g) and Z(g) = i + g Q(g) with P 

and Q polynomials in g we see that 

j .  IvY2 : z - r#~)  (o.4) 
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d~ d~, #h- ~.]-, and a ~ -  ~-~ ¢o. av  ~ 
_ = , = d 9 ; 

etc. 

i.e. fixed points and their nature as well as anomalous dimensions are 

universal. 

Note that the composite field ~ f A 2 ] in (7.7) normalized by 

1 

and the field ~ L-A23 in (6.12) normalized by 

=,4 

2 < T IV'[AZ3:o) Acp, J A (p,) > t~,=P"P'~-)2 ~ 

,L--- o 
are similarly related by 

= ) #/ /# A'J 

i . e .  

= ~f 

c#,,...,?~,~)= Z~c~) ! (p, , . . . ,p~,?)  (c.5) 

/-' (#j p (~Aj 
As ~ : ( p , , . . ;  p~, o )  

momenta q # o as t-2 o: 

we have from (7.6) for non-exceptional 

whereas 

Hence it 

#~-/, , ~ , -  ~/v.,,- ~ ~C ( p,,...,r~,~; =o 

I/~ +~ ~- o c p , , . . , p , , v , ~ ) =  o 

follows 

C.6) 

(C.7) 

and -- ~c~C~*J= v_u .c~C~*] at any fixed point g 
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We see that if /- above is identified with the vertex functions 
O 

~a in (B.2) the functions and well ~ (g) as as are 
S 

expressed in terms of massive vertex functions. They are hence holo- 

morphic in the dimension [ = D-4 for Re ~ ~ o. On the other hand the 

functions V(g) and Z(g) may show up infrared singularities (see 

Symanzik 14)) and so do the massless functions ~ (g), ~ (g) andS(g). 

From (C.4) and (C.7) however we see that these infrared sigularities 

do not give troubles at the fixed points. 

D : 3 (i.e. e : 1) 

Table i. 32) 

Critical Exponents 

2 3 Exp. Exp MFA L. - I. e e 

small 0 0.125 ~.015 0.077 0.196 

8 0.3+0.4 1/2 O.312 ~.003 0.340 0.304 

y 1.2+1.4 i 1.250 ~.003 1.244 1.195 

(1.250 HTE) 

6 - 3 5.15 + .O2 4.463 - 

v 0.6+0.7 1/2 0.642 +.003 0.627 - 

n small 0 0.056~.01 0.037 0.029 

(0.041 HTE) 

D = 2 (i.e. e = 2) 

n.I° 

e 2 

B ~ ~ v n 

in 0.125 1.75 15.0 1 0.25 

-0.025 O.191 1.642 6.852 0.840 0.235 
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