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Abstract. We consider a massless conformally (Weyl) invariant classical action consisting
of a magnetic monopole coupled to gravity in an anti-de Sitter background spacetime. We
implement quantum corrections and this breaks the conformal (Weyl) symmetry, introduces a
length scale via the process of renormalization and leads to the trace anomaly. We calculate
the one-loop effective potential and determine from it the vacuum expectation value (VEV).
Spontaneous symmetry breaking is radiatively induced a la Coleman-Weinberg and the scalar
coupling constant is exchanged for the dimensionful VEV via dimensional transmutation. An
important result is that the Ricci scalar of the AdS background spacetime is determined entirely
by the value of the VEV.

1. Introduction

There has been a general interest in scale and conformal (Weyl) symmmetry as a possible
fundamental principle in physics and cosmology, as pointed out for example in [1]. These authors
point out that the classical action of the standard model is already consistent with global scale
symmetry if the Higgs mass is dropped. Furthermore, on cosmic scales, the nearly-scale invariant
spectrum of primordial fluctuations seems to demand an explanation based on a fundamental
symmetry in nature. The authors therefore argue that scale and conformal symmetry could be
the clue to fitting observations simultaneously on both small and large scales. In [1], authors
discuss a model containing a Higgs field H, a dilaton field ¢, standard model fields as well as
gravity. However, their theory is classical and the authors mention that in a conformally (Weyl)
invariant theory there is no mechanism at the classical level to set the scale of ¢, the minimum
of the dilaton field in their model. They then mention that adding quantum corrections could
alleviate this problem via the Coleman-Weinberg mechanism [2]. This mechanism was recently
implemented in the context of the standard model [3] where the Higgs mass was induced quantum
mechanically starting with a scale invariant standard model. In our work, we implement the
Coleman Weinberg mechanism starting with a classically Weyl invariant action containing a
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magnetic monopole. We provide here a review of the most salient features. The reader can find
details in [4].

The classical Weyl invariant theory of a magnetic monopole coupled to gravity was studied
in [5]. The gravity sector does not include an Einstein-Hilbert term because that term is not Weyl
invariant; instead, one includes a Weyl squared term (which is Weyl invariant). A cosmological
constant is also forbidden by Weyl invariance. In this massless model, the conformal coupling
term —R ¢?/6, where R is the Ricci scalar “replaces” the usual negative mass term a?¢? in
the symmmetry breaking potential. The vacuum expectation value (VEV) is now expressed
in terms of R. As pointed out in [1], there is no mechanism at the classical level that can
introduce a length scale in a Weyl invariant theory; one must therefore choose a VEV value
by hand (or alternatively specify the asymptotic value of the Ricci scalar). Magnetic monopole
solutions in a background anti-de Sitter (AdS) space are then found numerically [5]. The static
spherically symmetric solution at large distances (outside the monopole core) is Schwarzschild-
AdS. It should be stressed that the solution in [5] is not a black hole (BH) solution since the
core is non-singular and static. In contrast, a BH has a horizon and there exits a region in the
interior which is non-stationary, where all Killing vectors are spacelike [6].

In this work, we introduce a length scale by considering the effects of quantum fluctuations
of scalar fields at one loop in a classical gravitational and gauge field background. We derive
the effective potential at one loop for a massless theory with a triplet of scalar fields and
extract the vacuum expectation value (VEV) from it. The coupling constant A is defined at
the renormalization scale M and the dimensionless A is traded for the dimensionful VEV of the
theory, through dimensional transmutation [2]. The asymptotic (background) spacetime is AdS
and an important result is that its Ricci scalar is completely determined by the VEV.

2. Schwinger-Dewitt coefficient and trace anomaly

The effects due to vacuum fluctuations of matter fields can be included via an effective action W
which can be into two parts: a divergent part Wg;, and a renormalized finite part Wien = W—Wy;y.
Waiy is due to high-frequency fluctuations and is therefore local and state-independent [8]. It
is expressed as an integral over the Schwinger-Dewitt coefficient as(z), which can be calculated
via a set of “curvatures” [10]. Wy, is incorporated into the original action S by adding the
appropriate counterterms. We label this S;.,, the renormalized local part of the one loop
effective action. Wiep is the finite state-dependent nonlocal part of the effective action due to
long wavelength fluctuations that sample the entire geometry. For example, the finite part of
the vacuum expectation value of the energy-momentum tensor, (7),,), that will appear on the
right hand side of the gravitational equations of motion, can be viewed as a Casimir effect which
also arises from long wavelength quantum fluctuations [11].

The conformally invariant action that leads to a magnetic monopole coupled to gravity
contains a metric gy, a triplet of scalar fields ¢ and nonabelian gauge fields A7. It is given
by [5]

vVoT 1 a v a 1 a >\ a
S = /d4x\/7—g (CWUTC“ — 5 B B+ Do D6 + ¢ Ro"6u = (9 ¢a)2)

1 1 A
— [atev=g(C?— 15 PP+ (Do) + R = 510 (1)

where Cyor is the Weyl tensor, Fj, is the gauge field strength defined by V, AJ -V, Al +
%, Aﬁ AS, and D,¢“ is the covariant derivative defined by V, ¢%+4¢%,. Aﬁ ¢€. The square of

v
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the Weyl tensor is denoted as C? and F? = Fr, Fl (D¢)? = D,¢% D*¢, and &% = ¢%,.
The Ricci-Levi-Civita three-dimensional coefficients €45, are totally antisymmetric. Raising or
lowering of the internal (latin) indices does not change the sign so that ¢, = ¢® and implicit
summation is assumed throughout e.g. ¢,¢* =0 + ¢3 + ¢2. The action (1) is invariant under
the conformal transformations g,, — Q2(z)gw and ¢ — ¢*/Q(z) where Q(z) is called the
conformal factor, an arbitrary positive smooth function.

We consider the vacuum fluctuations of the triplet ¢ in a gravitational and gauge field
classical background. The Euclidean effective action is given by W = %tr(lnH ) where H is
the hessian of the Euclidean version of the action (1). It takes the following form [10]

N . 1_.
H =g" DD, + P~ - Ri. (2)

The above operator is a 3 x 3 matrix in the internal vector space of the triplet ¢® and 1 is the
identity matrix. Here P ! arises from the self interaction term A(¢® ¢,)?/4!, %Ri arises from the
conformally coupled scalar field term % R ¢%¢q and gV D, D, arises from the covariant derivative
term D, ¢ D*¢,. The gravitational and nonabelian gauge fields are treated classically. One
identifies three “curvatures” for the operator (2) that enter into the calculation of the effective
action [10]. These are the Riemann curvature associated with g,,, the commutator curvature

., associated with the covariant derivative D, and defined by
[Dy, D) ¢ = %%, 6" with Z, = Z“,,, (4)

and the potential P which is its own curvature. The divergent part Wy, of the Euclidean
effective action can be expressed entirely in terms of these curvatures as [10]

Waiv = ni4/d4x\/§ tras(x, x) (n—4) (5)

X 1 N DN TR R

az(z,x) = 180 (RuuchRWUT—RwRW"‘ O R) 1+E R R 5 P T Op. (6)
The curvatures P and %, for the Euclidean version of the action (1) are calculated in [4]. Here
we simply state the result, the quantity of interest that appears in the integrand of Wy;,. This
is

1
as(x) = trs(r, ) = o (RWWR“”‘” ~ R, R™+0 R) (7)

1 11\ A? 5

_ L2 (7)7 4_ 2 a2

6 + 3/ 4! ¢ 36 ¢
where the factor of 11/3 in front of A\? stems from having a triplet of scalar fields (it is equal
to 3 for a single scalar field). To cancel the divergent part Wys,, we simply add the appropriate
counterterm to the original action (1). The renormalized local part of the action at one loop is
simply

1 1 A
Sren = /d4$ vV —g (O‘R2 +BRMVRMV - T€2F2 + (D¢)2+ ERQSQ - E¢4> . (8)
! The matrix elements of the potential P are
o 0 A a A o .
P, = -3 a?j@(%‘ﬁ )2 = -5 (6ij Pad™ +2 s ;) where 4,7 =1,2,3. (3)
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The total derivatives R and O (¢, ¢®) appearing in (7) are not included in the above action
as they lead to boundary terms that have no bearing on the equations of motion. The terms
ClworCH°7 and Ryq- R do not appear in (8) since they can be eliminated in favor of R,,, R*”
and R? using the equality CuvorCH" = Ryyor RF°T =2 R, RM + R? /3 and the fact that the
integral of R, R*77—4 RWRW—FRQ, the Gauss-Bonnet integral, is a topological invariant (the
Euler number) in four dimensions. The quantities e, A, o, and  are renormalized constants.
They are running coupling constants governed by a renormalization group equation which we
do not need to state here for our purposes (for details see [12,13]). At one loop, the constants
a and 3 are related by o = —f/3 and the sum of the first two terms in (8) are conformally
invariant. At higher loops, non-conformally invariant terms like R? are generated [12,13] and
the two constants become independent. Our calculations will be at the one loop level, so we
assume the relation o = —3/3.

2.1. Trace Anomaly

To find the trace, we first note that under a conformal tranformation the inverse metric
transforms according to g"(x) — €2?@ gt (z) and the scalar field transforms according to
¢*(x) — e @ ¢?(z) where o(x) is introduced for convenience and is related to the conformal
factor Q(z) (previously introduced) by e~ = Q(z). This yields the functional relation

5 L, oy 0
so(m) 2 gy T sy

The functional variation of the one-loop effective action with respect to o(x) is proportional to
the Scwinger-Dewitt coefficient ag(z) [10]

0 Wien o \/ngLQ(:L‘)
bo 1672 (10)

9)

and using (9) this yields

1 oW, oW,
9 MV ren a ren
=5 P g g

The vacuum expectation value of the energy-momentum tensor is defined as

)= )

2 5Wren
T, = — . 12
(T) = =" (12)
JFrom (11), its trace is given by
T (13)
H 1672
where 5 W
[E] = — (14)

= V=g oo
and ag(x) is given by (7). The renormalized composite operator [E] can be obtained readily
once the effective potential has been calculated.
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2.1.1. AdS space As already discussed, the magnetic monopole solution is obtained when the
spacetime is asymptotically anti-de Sitter space. This is a maximally symmetric spacetime with
constant Ricci scalar R (positive in our notation). It is the submanifold obtained by embedding
a hyperboloid in a flat five-dimensional spacetime of signature(+,+,-,-,-). The universal covering
space of AdS space has the topology of R* and can be represented by the following metric:

.
1+ kr?

where (7,0, ¢) cover the usual range of spherical coordinates (r>0, 0 <60 <7, 0 <¢< 27) and
—o0 <t <oo. The constant k is positive with the Ricci scalar given by R = 12k.

ds® = (1 + kr?)dt® — r?(df? + sin® 0 d¢?) (15)

The symmetry group (isometry group) of AdS space is the ten parameter group SO(2,3).
The only maximally form invariant rank two tensor under this group is the metric g, (times
a constant) so that the expectation value of the energy-momentum tensor in AdS space can be
expressed in terms of its trace:

1
<TIW>0 = 1 gNV<Tl:L>O (16)
where the zero subscript means that the quantity is evaluated asymptotically in AdS space, the
vacuum spacetime.

3. The effective potential

In this section we obtain the one loop effective potential by summing all the one loop one-particle
irreducible (1PI) Feynman diagrams in the presence of A\¢?/24 and —R¢?/6 interactions. The
coupling constant ) is defined at a renormalization scale M. We choose the renormalization scale
M to coincide with the VEV, the minimum of the effective potential. This in turn fixes the
value of \; the dimensionless constant A is traded for the dimensionful VEV through dimensional
transmutation. The expectation value of the composite operator [E], which appears both in the
trace anomaly and in the equations of motion for the scalar field, can be readily obtained from
the effective potential. Note that at one loop the effective potential and the expectation value
of composite operators do not generate new geometrical curvature terms; they are generated
starting only at the two loop level [12,13]. In particular, for the calculation of the effective
potential, the /—g factor plays no role at one loop. The calculation proceeds in the same
manner as in flat space, though of course the Ricci scalar R is non-zero and acts as a vertex for
the R¢? interaction.

The (classical) potential is given by
Ay 1,5
=t - = ) 1
U=p9 —5ft? (17)

We have a triplet of scalar fields and without loss of generality we take the vacuum expectation
value to lie along the third component ¢3. For ¢s3 loops, U generates two vertices: —R/3
and )\(;5%/2. They can be combined into a single vertex given by the second derivative
U'(¢3) = —R/3 + Ap3/2. The vacuum expectation value of ¢1 and ¢2 are zero but they
can still fluctuate in loops. The vertex for both is U”(¢1) = U”(¢2) = —R/3 + A$3/6 which is
equivalent to replacing the coupling constant A by \/3 in the previous case. There are three sets
of one loop 1PI Feynman diagrams; these are depicted in Fig.4.1. Let the classical field ¢.(x)
be defined as the vacuum expectation value of ¢3 in the presence of some external source J(z)
(0]¢p3()|0)

be(T) = W J~ (18)
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where J appears in the action in the usual fashion via the source term J¢. The effective potential
is obtained by summing all the diagrams in Fig.4.1. Note that the propagator is massless. For
the first set of diagrams, the one-loop contribution yields

Ak =1
V=i —
Z/(27r)4n212n

A
1 / Ehn [1+—R/3+A¢g/2]
0

k% + ie

~R/3+ A¢g/2] !

(19)

1672 k2

where kg is the Euclidean momenta and A is a momentum cut-off. The integral in (19) can
be readily evaluated but we do not write it out explicitly here. The other two sets of Feynman
diagrams can be evaluated by simply replacing A by A/3 in (19). The one loop contribution to
the potential is then

Vi=V+2V[IA— A/3]. (20)

As it stands, the expression V; is divergent in the infinite A limit. This is handled in the usual
fashion by adding the necessary counterterms and then imposing the appropriate renormalization
conditions. The total potential is given by

Ay 1,4 2 4
‘/tot:E¢c_6R¢c+V1+A¢c+B¢c (21)
where the last two terms are the counterterms. The constants A and B are determined via the
renormalization conditions

4
A\ = d ‘/tot
do?

(22)

a. =
Pec=M 3 d¢g

The renormalization scale M sets the scale for the theory. Substituting A and B back into (21),
taking the infinite A limit and then collecting terms into compact expressions, we obtain the
one loop effective potential

Ag 1, 1 R Ap>\2. [2R — 3\¢?
= — — = 1 _ c 1 T e
Verr = 7 % 6R¢c+11527r2[8( 37 ) n[ 2R ]
R Ap2\2, [2R— \¢? )
+36<_§+T) ln[ 2R ]+5RM’C (23)
9 2R 2R
2. 4(Y e ey
A %(2 IH{QR—S)\MQ} +ln[2R—)\M2D]
+ A
where

A — 28 (—1584R* + 11904 M2 R3\ — 20360M* R?)\? 4- 12480 MO RA\3 — 2475 M8\%) (24)

13824 72(—2R + MZ\)2(—2R + 3M?2\)2

Let ¢. = v be the vacuum expectation value (VEV). It takes on this value in the asymptotic
(background) spacetime, which is AdS space. We will see later, in section 4.1, that solving the
equations of motion asymptotically yields the relation (42) between Ry, the Ricci scalar of AdS
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space, and the VEV: Ry = v/110 Av2. The VEV occurs at the minimum of the effective potential
in the AdS background spacetime, where

AVeg
=0. 2
dgbc ¢c:U O ( 5)
R=v/110X v2

We set the arbitrary scale M to be equal to the VEV i.e. ¢.=v= M. Equation (25) then yields
a numerical value of A = C'/D = 2519.926, where the exact expressions for C and D are

C = 2887%(197355230v/110 — 1144879587) and
D = 299795296V 110 — 3734763307+

(121n(2v/110—1)+18 In(2v/110—3) — 151In(440))(—96294467+/110+524292560) .
(26)

The ratio of the one loop correction to the tree (classical) result for the potential can be readily
calculated to be —0.504. Such ratios are typical of one loop corrections in massless theories (e.g.
in massless A\¢? theory in flat space with a single scalar field the ratio is close to —1 [14]). We
discuss in the conclusions how adding gauge field fluctuations can effect this scenario.

We started with a classical massless theory, a conformally invariant theory with A\¢* and R ¢?
interactions. After including one loop quantum corrections, the dimensionelss parameter A has
been traded for the dimensionful VEV. An important result is that the Ricci scalar of AdS space
is now completely determined by the value of the VEV.

3.1. Composite operator [E]

The composite operator [E(y)] is defined via (14). It appears in the trace but also as a quantum
correction to the equations of motion for the scalar fields (see section 4 below). Inserting this
operator into an n-point Green’s function I'"*(x1, ..., z,,) and integrating over all y yields n times
the same Green’s function [13]. The Feynman diagrams are therefore identical to those used
to evaluate the effective potential Vog, namely those of Fig.4.1 (the only difference is that the
symmetry factor is multiplied by n). The upshot is that [E] can be obtained by taking the
negative of the derivative of the one loop part of the effective potential (23), Vigop = Ve — U,
and then multiplying it by ¢,

B = —oc g
) _ 2 2 2
- _115127r2 (_ ? + AS) In { = 21?% }sz - 108(_ ? + A?)22}% i(ﬁ?fm%
2 <_ g * Agﬁ) n [ 2R2—RA¢g }A‘bg - 72<_ ? " A§3)22RA—¢2A¢% !
+10RA¢§+A2¢3(18 1n[2R_27$W] +41n[2RE}§MzD]
_4A.
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4. Equations of motion

For the magnetic monopole, we seek static spherically symmetric solutions where the spatial
symmetry (isometry) and gauge symmetry are both SO(3). These can be viewed as the lowest
energy or ground state solution [5]. The metric, scalar triplet, and non-abelian gauge fields take
on the following spherically symmetric form [5]:

metric: ds? = N(r) dt? — (r)dr® — r? (d6? + sin?(0) d¢?) (28)
scalar: ¢%(r) = f(r) ; = f(r)[sinfsin ¢, sin O cos ¢, cos ¢] (29)

gauge: A = q(r) ¥ where &' are the Killing vectors for SO(3), namely
= 10,0, cos ¢, — sin p cot 0], £&§ = [0,0, — sin ¢, — cos p cot 0] and &§ = [0,0,0,1]. (30)

It will be convenient to work with a(r) = 1+ 72 ¢(r) instead of ¢(r). There are four functions of
r to determine: the “metric” fields N(r) and 9 (r), the “gauge field” a(r) and the “scalar” field
f(r). It is convenient to obtain the equations of motion by direct variation of these functions.
The Lagrangian corresponding to Sy, is given by

L:47T/OO dr/Nr (aR2+BRWR“” —F“ FM +D,,¢" D“%—F%Réba%—%((ﬁa%)z)
=4 ZLadr. 31
. /0 . (31)

The quantities that appear in (31) are evaluated using Eqgs. 28-30 and are given in [4].

The equation of motion for N is given by

2 ~ ~ .
7\%(aR2+BRjRJ)+ Nipr? (mz%%@mg&%ij)
9 OR ORI 9 OR ORI
— {\/N r (2aRaN/+26RJaN,)} {\/N r (QaRaN,,+25RJaNH)}
1 2 2 2 (0 2 /77/} 2 ¢ el >\T2f4¢

((a2 —1)% + 2r2a’2) a’f?p  rif'? B VN r? )
1e2r2/N¢ - JVN¢  6yN¢g 2

where the explicit expressions for the Ricci scalar R and for éj = RJ are found in [4]. Implicit
summation over j = 1,2, 3,4 is assumed. The equation of motion for ¢ is given by

(32)

VNY? s OR ORI
T R+ BR;RY) + /N r? (2aR%+2ﬁR]aw>
OR ORI . OR ORI 1"
- [V Y(2aRg; +26R; aw,)} [VNur (2aRaw,,+2ﬁR]w”)}
Ar?fAN  N(a® —1)? N2 a" N2 f72

T BYNG 1,2 NG 22 (NOPE | 2(Ng)P
rff (4N?+rN'N)  f*(N? = N?¢ — 6a®*N*) + rNN’)
6 (Np)3/2 6 (Ny)3/2
N r?

= —{T"). (33)
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The equation of motion for a is

2 2 1/]/ N’
2 2 _ 1 4 2 p2 2 = n 2 - 4
a(a )+4ae” for war—i— m (1/) N> 0 (34)
and finally the equation of motion for f is given by
daiP O PPRON 20 [fh N
=4 L= 2 ) =-[F 35
2 T3 f R ( TN 2/)) 2] (35)

where [E] is given by (27).

The above equations of motion are for static field configurations. Therefore the higher
derivative terms in the metric field equations (32) and (33) pose no issues as they are spatial not
time derivatives. Higher spatial derivatives appear in many branches of physics e.g. in physical
acoustics the wave equation is modified by a term with four spatial derivatives when the bending
stiffness of a vibrating string is included.

4.1. Relation between Ricci scalar of AdS space and the VEV: asymptotic analytical solution

We now solve the equations of motion (32),(33), (34) and (35) analytically in the asymptotic
region to show that the Ricci scalar of AdS space is determined entirely by the VEV. The
vacuum expectation value of the energy momentum tensor in AdS space is given by (16) and
the non-zero components are

1 1 1
(T") = (T (T7") = =2 (L+ kr?)(Th)o
1+kr 4 a 36
0 1 T LR (36)
T : .
(1) = — 5 (Thdo (T%) = (T8,
where the AdS metric (15) was used. The trace (T%,) is given by
a(z)
(Tf) = == — [E]
Miﬂ 1 1 11 M2 (37)
_ voT v 2 2
= {5 (B R =Ry R+ OR) — < F? + — 226" — 2 A0[67]} — [E],

where (13) and (7) were used and [E] is given by (27). We now evaluate (37) in AdS space, the
asymptotic spacetime. Asymptotically, £, — 0, O [0%] = 0, Rpou = k(gpu Gov — Gpv gou) and
R,, = 3kgu sothat R =12k, R = 0 and R, - R*7"—R,, R = —12 k2. Substituting these
values into (37), we obtain

1R 11 A2,

THY =
(Tido=—gom t 1202

— [Elo (38)
where [E]y is [E] evaluated in asymptotic AdS space.

The boundary conditions for the magnetic monopole [5] are that asymptotically, as r — oo,
the spacetime is AdS where N — 14 kr2, ¢ — 1/(14+kr?), f — v, r f' — 0 (f' drops off faster
than 1/7), 2 f” — 0,a — 0 and @’ — 0. Both v and k are positive constants. Substituting these
boundary conditions into the gravity equation (32) (or (33)) and using (38) yields the following
relation
vt 1< 1k 11 A

JR— —_— e — — 4_
8072 T 1i52q2 Y [E]()) ' (39)

2 48k 8k
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We can eliminate [E]p above by solving the scalar equation (35) asymptotically. This yields

4kv: — = = —[E]p (40)

where we used that R = Ry = 12k in AdS space. Substituting the above into (39) yields the

solution
V110, o
so that

Ry = V110 \v?. (42)
The Ricei scalar of AdS space is therefore determined solely by the VEV since the value of
A is known (it is no longer a free parameter having been traded for the dimensionful VEV).
Substituting (41) into (40), yields [E]o = —’\%4 (24/110 — 1). This agrees with expression (27)
asymptotically i.e. after substituting R = v/110 Av? and ¢, = v = M. The remaining unbroken
U(1) is associated with F}" and the magnetic field is defined via Fy’ = €% B*. Asymptotically,
a(r) — 0 and the function ¢(r) appearing in (30) approaches —1/72. It is easy to verify that
one obtains a radial magnetic field that varies as 1/r? at large distances, corresponding to a
magnetic monopole.

-R/3 \/
= + @

A3°/2

U"(dps)=-R/3 + Ad3*/2

P, O <:> C} A >\/3
¢1
A > N3
Figure 1: One loop Feynman diagrams for a triplet of scalar fields. The two vertices
corresponding to —R¢?/6 and A¢*/24 interactions, which are replaced by a single vertex (black
dot). The last two sets of diagrams, where the components ¢2 and ¢; run around the loop,

have a vertex with 1/3 the coupling constant A of the first set of diagrams. The propagator is
massless.
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5. Conclusions

In this work, we introduced a renormalization scale into a massless theory by considering
quantum corrections. Symmetry breaking was radiatively induced a la la Coleman-Weinberg [2].
The dimensionless A, defined at the renormalizaton scale M, was traded for the dimensionful
VEV. An important result was that the Ricci scalar of the background AdS spacetime was
determined entirely by the VEV. Our work can now be naturally extended in a few ways.
First, one can add gauge field fluctuations in the calculation of the effective potential. Then
the coupling contant A can be expressed in terms the electromagnetic coupling constant e as
in [2]. In that scenario, the two parameters in the theory become e and the dimensionful
VEV. Second, we used the symmetry of AdS space to solve for (T),,)¢, the asymptotic value of
(T),,). This allowed us to solve the equations of motion analytically in the asymptotic regime
and to obtain an expression relating the Ricci scalar of AdS space to the VEV. The interior
spacetime obeys spherical symmetry but not the symmetry of AdS space. Therefore, the finite
and nonlocal part of (7),,) for the interior would require a more elaborate calculation. One
could then obtain numerical solutions of the interior. It is of interest to see how these numerical
solutions containing quantum corrections in an AdS background compare with those obtained in
the classical context of General Relativity (GR) [17]. Third, we worked with a background AdS
spacetime because the Ricci scalar of AdS space had the right sign for classical SSB [5]. However,
the VEV here is obtained from the quantum-corrected effective potential. In the presence of
quantum corrections, de Sitter (dS) space could well be a viable background spacetime. The
Ricci scalar of the background AdS space was determined solely by the VEV, which should
apply to dS space as well. Such solutions could be of greater cosmological interest.
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